1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2017 Nexenta Systems, Inc. All rights reserved.
24 */
25
26 #include <sys/cpuvar.h>
27 #include <sys/conf.h>
28 #include <sys/file.h>
29 #include <sys/ddi.h>
30 #include <sys/sunddi.h>
31 #include <sys/modctl.h>
32
33 #include <sys/socket.h>
34 #include <sys/strsubr.h>
35 #include <sys/sysmacros.h>
36
37 #include <sys/socketvar.h>
38 #include <netinet/in.h>
39
40 #include <sys/idm/idm.h>
41 #include <sys/idm/idm_so.h>
42
43 #define IDM_NAME_VERSION "iSCSI Data Mover"
44
45 extern struct mod_ops mod_miscops;
46 extern struct mod_ops mod_miscops;
47
48 static struct modlmisc modlmisc = {
49 &mod_miscops, /* Type of module */
50 IDM_NAME_VERSION
51 };
52
53 static struct modlinkage modlinkage = {
54 MODREV_1, (void *)&modlmisc, NULL
55 };
56
57 extern void idm_wd_thread(void *arg);
58
59 static int _idm_init(void);
60 static int _idm_fini(void);
61 static void idm_buf_bind_in_locked(idm_task_t *idt, idm_buf_t *buf);
62 static void idm_buf_bind_out_locked(idm_task_t *idt, idm_buf_t *buf);
63 static void idm_buf_unbind_in_locked(idm_task_t *idt, idm_buf_t *buf);
64 static void idm_buf_unbind_out_locked(idm_task_t *idt, idm_buf_t *buf);
65 static stmf_status_t idm_task_abort_one(idm_conn_t *ic, idm_task_t *idt,
66 idm_abort_type_t abort_type);
67 static void idm_task_aborted(idm_task_t *idt, idm_status_t status);
68 static idm_pdu_t *idm_pdu_alloc_common(uint_t hdrlen, uint_t datalen,
69 int sleepflag);
70
71 boolean_t idm_conn_logging = 0;
72 boolean_t idm_svc_logging = 0;
73 #ifdef DEBUG
74 boolean_t idm_pattern_checking = 1;
75 #else
76 boolean_t idm_pattern_checking = 0;
77 #endif
78
79 /*
80 * Potential tuneable for the maximum number of tasks. Default to
81 * IDM_TASKIDS_MAX
82 */
83
84 uint32_t idm_max_taskids = IDM_TASKIDS_MAX;
85
86 /*
87 * Global list of transport handles
88 * These are listed in preferential order, so we can simply take the
89 * first "it_conn_is_capable" hit. Note also that the order maps to
90 * the order of the idm_transport_type_t list.
91 */
92 idm_transport_t idm_transport_list[] = {
93
94 /* iSER on InfiniBand transport handle */
95 {IDM_TRANSPORT_TYPE_ISER, /* type */
96 "/devices/ib/iser@0:iser", /* device path */
97 NULL, /* LDI handle */
98 NULL, /* transport ops */
99 NULL}, /* transport caps */
100
101 /* IDM native sockets transport handle */
102 {IDM_TRANSPORT_TYPE_SOCKETS, /* type */
103 NULL, /* device path */
104 NULL, /* LDI handle */
105 NULL, /* transport ops */
106 NULL} /* transport caps */
107
108 };
109
110 idm_global_t idm; /* Global state */
111
112 int
_init(void)113 _init(void)
114 {
115 int rc;
116
117 if ((rc = _idm_init()) != 0) {
118 return (rc);
119 }
120
121 return (mod_install(&modlinkage));
122 }
123
124 int
_fini(void)125 _fini(void)
126 {
127 int rc;
128
129 if ((rc = _idm_fini()) != 0) {
130 return (rc);
131 }
132
133 if ((rc = mod_remove(&modlinkage)) != 0) {
134 return (rc);
135 }
136
137 return (rc);
138 }
139
140 int
_info(struct modinfo * modinfop)141 _info(struct modinfo *modinfop)
142 {
143 return (mod_info(&modlinkage, modinfop));
144 }
145
146 /*
147 * idm_transport_register()
148 *
149 * Provides a mechanism for an IDM transport driver to register its
150 * transport ops and caps with the IDM kernel module. Invoked during
151 * a transport driver's attach routine.
152 */
153 idm_status_t
idm_transport_register(idm_transport_attr_t * attr)154 idm_transport_register(idm_transport_attr_t *attr)
155 {
156 ASSERT(attr->it_ops != NULL);
157 ASSERT(attr->it_caps != NULL);
158
159 switch (attr->type) {
160 /* All known non-native transports here; for now, iSER */
161 case IDM_TRANSPORT_TYPE_ISER:
162 idm_transport_list[attr->type].it_ops = attr->it_ops;
163 idm_transport_list[attr->type].it_caps = attr->it_caps;
164 return (IDM_STATUS_SUCCESS);
165
166 default:
167 cmn_err(CE_NOTE, "idm: unknown transport type (0x%x) in "
168 "idm_transport_register", attr->type);
169 return (IDM_STATUS_SUCCESS);
170 }
171 }
172
173 /*
174 * idm_ini_conn_create
175 *
176 * This function is invoked by the iSCSI layer to create a connection context.
177 * This does not actually establish the socket connection.
178 *
179 * cr - Connection request parameters
180 * new_con - Output parameter that contains the new request if successful
181 *
182 */
183 idm_status_t
idm_ini_conn_create(idm_conn_req_t * cr,idm_conn_t ** new_con)184 idm_ini_conn_create(idm_conn_req_t *cr, idm_conn_t **new_con)
185 {
186 idm_transport_t *it;
187 idm_conn_t *ic;
188 int rc;
189
190 it = idm_transport_lookup(cr);
191
192 retry:
193 ic = idm_conn_create_common(CONN_TYPE_INI, it->it_type,
194 &cr->icr_conn_ops);
195
196 bcopy(&cr->cr_ini_dst_addr, &ic->ic_ini_dst_addr,
197 sizeof (cr->cr_ini_dst_addr));
198
199 /* create the transport-specific connection components */
200 rc = it->it_ops->it_ini_conn_create(cr, ic);
201 if (rc != IDM_STATUS_SUCCESS) {
202 /* cleanup the failed connection */
203 idm_conn_destroy_common(ic);
204
205 /*
206 * It is possible for an IB client to connect to
207 * an ethernet-only client via an IB-eth gateway.
208 * Therefore, if we are attempting to use iSER and
209 * fail, retry with sockets before ultimately
210 * failing the connection.
211 */
212 if (it->it_type == IDM_TRANSPORT_TYPE_ISER) {
213 it = &idm_transport_list[IDM_TRANSPORT_TYPE_SOCKETS];
214 goto retry;
215 }
216
217 return (IDM_STATUS_FAIL);
218 }
219
220 *new_con = ic;
221
222 mutex_enter(&idm.idm_global_mutex);
223 list_insert_tail(&idm.idm_ini_conn_list, ic);
224 mutex_exit(&idm.idm_global_mutex);
225
226 return (IDM_STATUS_SUCCESS);
227 }
228
229 /*
230 * idm_ini_conn_destroy
231 *
232 * Releases any resources associated with the connection. This is the
233 * complement to idm_ini_conn_create.
234 * ic - idm_conn_t structure representing the relevant connection
235 *
236 */
237 void
idm_ini_conn_destroy_task(void * ic_void)238 idm_ini_conn_destroy_task(void *ic_void)
239 {
240 idm_conn_t *ic = ic_void;
241
242 ic->ic_transport_ops->it_ini_conn_destroy(ic);
243 idm_conn_destroy_common(ic);
244 }
245
246 void
idm_ini_conn_destroy(idm_conn_t * ic)247 idm_ini_conn_destroy(idm_conn_t *ic)
248 {
249 /*
250 * It's reasonable for the initiator to call idm_ini_conn_destroy
251 * from within the context of the CN_CONNECT_DESTROY notification.
252 * That's a problem since we want to destroy the taskq for the
253 * state machine associated with the connection. Remove the
254 * connection from the list right away then handle the remaining
255 * work via the idm_global_taskq.
256 */
257 mutex_enter(&idm.idm_global_mutex);
258 list_remove(&idm.idm_ini_conn_list, ic);
259 mutex_exit(&idm.idm_global_mutex);
260
261 if (taskq_dispatch(idm.idm_global_taskq,
262 &idm_ini_conn_destroy_task, ic, TQ_SLEEP) == TASKQID_INVALID) {
263 cmn_err(CE_WARN,
264 "idm_ini_conn_destroy: Couldn't dispatch task");
265 }
266 }
267
268 /*
269 * idm_ini_conn_connect
270 *
271 * Establish connection to the remote system identified in idm_conn_t.
272 * The connection parameters including the remote IP address were established
273 * in the call to idm_ini_conn_create. The IDM state machine will
274 * perform client notifications as necessary to prompt the initiator through
275 * the login process. IDM also keeps a timer running so that if the login
276 * process doesn't complete in a timely manner it will fail.
277 *
278 * ic - idm_conn_t structure representing the relevant connection
279 *
280 * Returns success if the connection was established, otherwise some kind
281 * of meaningful error code.
282 *
283 * Upon return the login has either failed or is loggin in (ffp)
284 */
285 idm_status_t
idm_ini_conn_connect(idm_conn_t * ic)286 idm_ini_conn_connect(idm_conn_t *ic)
287 {
288 idm_status_t rc;
289
290 rc = idm_conn_sm_init(ic);
291 if (rc != IDM_STATUS_SUCCESS) {
292 return (ic->ic_conn_sm_status);
293 }
294
295 /* Hold connection until we return */
296 idm_conn_hold(ic);
297
298 /* Kick state machine */
299 idm_conn_event(ic, CE_CONNECT_REQ, (uintptr_t)NULL);
300
301 /* Wait for login flag */
302 mutex_enter(&ic->ic_state_mutex);
303 while (!(ic->ic_state_flags & CF_LOGIN_READY) &&
304 !(ic->ic_state_flags & CF_ERROR)) {
305 cv_wait(&ic->ic_state_cv, &ic->ic_state_mutex);
306 }
307
308 /*
309 * The CN_READY_TO_LOGIN and/or the CN_CONNECT_FAIL call to
310 * idm_notify_client has already been generated by the idm conn
311 * state machine. If connection fails any time after this
312 * check, we will detect it in iscsi_login.
313 */
314 if (ic->ic_state_flags & CF_ERROR) {
315 rc = ic->ic_conn_sm_status;
316 }
317 mutex_exit(&ic->ic_state_mutex);
318 idm_conn_rele(ic);
319
320 return (rc);
321 }
322
323 /*
324 * idm_ini_conn_disconnect
325 *
326 * Forces a connection (previously established using idm_ini_conn_connect)
327 * to perform a controlled shutdown, cleaning up any outstanding requests.
328 *
329 * ic - idm_conn_t structure representing the relevant connection
330 *
331 * This is asynchronous and will return before the connection is properly
332 * shutdown
333 */
334 /* ARGSUSED */
335 void
idm_ini_conn_disconnect(idm_conn_t * ic)336 idm_ini_conn_disconnect(idm_conn_t *ic)
337 {
338 idm_conn_event(ic, CE_TRANSPORT_FAIL, (uintptr_t)NULL);
339 }
340
341 /*
342 * idm_ini_conn_disconnect_wait
343 *
344 * Forces a connection (previously established using idm_ini_conn_connect)
345 * to perform a controlled shutdown. Blocks until the connection is
346 * disconnected.
347 *
348 * ic - idm_conn_t structure representing the relevant connection
349 */
350 /* ARGSUSED */
351 void
idm_ini_conn_disconnect_sync(idm_conn_t * ic)352 idm_ini_conn_disconnect_sync(idm_conn_t *ic)
353 {
354 mutex_enter(&ic->ic_state_mutex);
355 if ((ic->ic_state != CS_S9_INIT_ERROR) &&
356 (ic->ic_state != CS_S11_COMPLETE)) {
357 idm_conn_event_locked(ic, CE_TRANSPORT_FAIL, (uintptr_t)NULL,
358 CT_NONE);
359 while ((ic->ic_state != CS_S9_INIT_ERROR) &&
360 (ic->ic_state != CS_S11_COMPLETE))
361 cv_wait(&ic->ic_state_cv, &ic->ic_state_mutex);
362 }
363 mutex_exit(&ic->ic_state_mutex);
364 }
365
366 /*
367 * idm_tgt_svc_create
368 *
369 * The target calls this service to obtain a service context for each available
370 * transport, starting a service of each type related to the IP address and port
371 * passed. The idm_svc_req_t contains the service parameters.
372 */
373 idm_status_t
idm_tgt_svc_create(idm_svc_req_t * sr,idm_svc_t ** new_svc)374 idm_tgt_svc_create(idm_svc_req_t *sr, idm_svc_t **new_svc)
375 {
376 idm_transport_type_t type;
377 idm_transport_t *it;
378 idm_svc_t *is;
379 int rc;
380
381 *new_svc = NULL;
382 is = kmem_zalloc(sizeof (idm_svc_t), KM_SLEEP);
383
384 /* Initialize transport-agnostic components of the service handle */
385 is->is_svc_req = *sr;
386 mutex_init(&is->is_mutex, NULL, MUTEX_DEFAULT, NULL);
387 cv_init(&is->is_cv, NULL, CV_DEFAULT, NULL);
388 mutex_init(&is->is_count_mutex, NULL, MUTEX_DEFAULT, NULL);
389 cv_init(&is->is_count_cv, NULL, CV_DEFAULT, NULL);
390 idm_refcnt_init(&is->is_refcnt, is);
391
392 /*
393 * Make sure all available transports are setup. We call this now
394 * instead of at initialization time in case IB has become available
395 * since we started (hotplug, etc).
396 */
397 idm_transport_setup(sr->sr_li, B_FALSE);
398
399 /*
400 * Loop through the transports, configuring the transport-specific
401 * components of each one.
402 */
403 for (type = 0; type < IDM_TRANSPORT_NUM_TYPES; type++) {
404
405 it = &idm_transport_list[type];
406 /*
407 * If it_ops is NULL then the transport is unconfigured
408 * and we shouldn't try to start the service.
409 */
410 if (it->it_ops == NULL) {
411 continue;
412 }
413
414 rc = it->it_ops->it_tgt_svc_create(sr, is);
415 if (rc != IDM_STATUS_SUCCESS) {
416 /* Teardown any configured services */
417 while (type--) {
418 it = &idm_transport_list[type];
419 if (it->it_ops == NULL) {
420 continue;
421 }
422 it->it_ops->it_tgt_svc_destroy(is);
423 }
424 /* Free the svc context and return */
425 kmem_free(is, sizeof (idm_svc_t));
426 return (rc);
427 }
428 }
429
430 *new_svc = is;
431
432 mutex_enter(&idm.idm_global_mutex);
433 list_insert_tail(&idm.idm_tgt_svc_list, is);
434 mutex_exit(&idm.idm_global_mutex);
435
436 return (IDM_STATUS_SUCCESS);
437 }
438
439 /*
440 * idm_tgt_svc_destroy
441 *
442 * is - idm_svc_t returned by the call to idm_tgt_svc_create
443 *
444 * Cleanup any resources associated with the idm_svc_t.
445 */
446 void
idm_tgt_svc_destroy(idm_svc_t * is)447 idm_tgt_svc_destroy(idm_svc_t *is)
448 {
449 idm_transport_type_t type;
450 idm_transport_t *it;
451
452 mutex_enter(&idm.idm_global_mutex);
453 /* remove this service from the global list */
454 list_remove(&idm.idm_tgt_svc_list, is);
455 /* wakeup any waiters for service change */
456 cv_broadcast(&idm.idm_tgt_svc_cv);
457 mutex_exit(&idm.idm_global_mutex);
458
459 /* teardown each transport-specific service */
460 for (type = 0; type < IDM_TRANSPORT_NUM_TYPES; type++) {
461 it = &idm_transport_list[type];
462 if (it->it_ops == NULL) {
463 continue;
464 }
465
466 it->it_ops->it_tgt_svc_destroy(is);
467 }
468
469 /* tear down the svc resources */
470 idm_refcnt_destroy(&is->is_refcnt);
471 cv_destroy(&is->is_count_cv);
472 mutex_destroy(&is->is_count_mutex);
473 cv_destroy(&is->is_cv);
474 mutex_destroy(&is->is_mutex);
475
476 /* free the svc handle */
477 kmem_free(is, sizeof (idm_svc_t));
478 }
479
480 void
idm_tgt_svc_hold(idm_svc_t * is)481 idm_tgt_svc_hold(idm_svc_t *is)
482 {
483 idm_refcnt_hold(&is->is_refcnt);
484 }
485
486 void
idm_tgt_svc_rele_and_destroy(idm_svc_t * is)487 idm_tgt_svc_rele_and_destroy(idm_svc_t *is)
488 {
489 idm_refcnt_rele_and_destroy(&is->is_refcnt,
490 (idm_refcnt_cb_t *)&idm_tgt_svc_destroy);
491 }
492
493 /*
494 * idm_tgt_svc_online
495 *
496 * is - idm_svc_t returned by the call to idm_tgt_svc_create
497 *
498 * Online each transport service, as we want this target to be accessible
499 * via any configured transport.
500 *
501 * When the initiator establishes a new connection to the target, IDM will
502 * call the "new connect" callback defined in the idm_svc_req_t structure
503 * and it will pass an idm_conn_t structure representing that new connection.
504 */
505 idm_status_t
idm_tgt_svc_online(idm_svc_t * is)506 idm_tgt_svc_online(idm_svc_t *is)
507 {
508
509 idm_transport_type_t type, last_type;
510 idm_transport_t *it;
511 int rc = IDM_STATUS_SUCCESS;
512
513 mutex_enter(&is->is_mutex);
514 if (is->is_online == 0) {
515 /* Walk through each of the transports and online them */
516 for (type = 0; type < IDM_TRANSPORT_NUM_TYPES; type++) {
517 it = &idm_transport_list[type];
518 if (it->it_ops == NULL) {
519 /* transport is not registered */
520 continue;
521 }
522
523 mutex_exit(&is->is_mutex);
524 rc = it->it_ops->it_tgt_svc_online(is);
525 mutex_enter(&is->is_mutex);
526 if (rc != IDM_STATUS_SUCCESS) {
527 last_type = type;
528 break;
529 }
530 }
531 if (rc != IDM_STATUS_SUCCESS) {
532 /*
533 * The last transport failed to online.
534 * Offline any transport onlined above and
535 * do not online the target.
536 */
537 for (type = 0; type < last_type; type++) {
538 it = &idm_transport_list[type];
539 if (it->it_ops == NULL) {
540 /* transport is not registered */
541 continue;
542 }
543
544 mutex_exit(&is->is_mutex);
545 it->it_ops->it_tgt_svc_offline(is);
546 mutex_enter(&is->is_mutex);
547 }
548 } else {
549 /* Target service now online */
550 is->is_online = 1;
551 }
552 } else {
553 /* Target service already online, just bump the count */
554 is->is_online++;
555 }
556 mutex_exit(&is->is_mutex);
557
558 return (rc);
559 }
560
561 /*
562 * idm_tgt_svc_offline
563 *
564 * is - idm_svc_t returned by the call to idm_tgt_svc_create
565 *
566 * Shutdown any online target services.
567 */
568 void
idm_tgt_svc_offline(idm_svc_t * is)569 idm_tgt_svc_offline(idm_svc_t *is)
570 {
571 idm_transport_type_t type;
572 idm_transport_t *it;
573
574 mutex_enter(&is->is_mutex);
575 is->is_online--;
576 if (is->is_online == 0) {
577 /* Walk through each of the transports and offline them */
578 for (type = 0; type < IDM_TRANSPORT_NUM_TYPES; type++) {
579 it = &idm_transport_list[type];
580 if (it->it_ops == NULL) {
581 /* transport is not registered */
582 continue;
583 }
584
585 mutex_exit(&is->is_mutex);
586 it->it_ops->it_tgt_svc_offline(is);
587 mutex_enter(&is->is_mutex);
588 }
589 }
590 mutex_exit(&is->is_mutex);
591 }
592
593 /*
594 * idm_tgt_svc_lookup
595 *
596 * Lookup a service instance listening on the specified port
597 */
598
599 idm_svc_t *
idm_tgt_svc_lookup(uint16_t port)600 idm_tgt_svc_lookup(uint16_t port)
601 {
602 idm_svc_t *result;
603
604 retry:
605 mutex_enter(&idm.idm_global_mutex);
606 for (result = list_head(&idm.idm_tgt_svc_list);
607 result != NULL;
608 result = list_next(&idm.idm_tgt_svc_list, result)) {
609 if (result->is_svc_req.sr_port == port) {
610 if (result->is_online == 0) {
611 /*
612 * A service exists on this port, but it
613 * is going away, wait for it to cleanup.
614 */
615 cv_wait(&idm.idm_tgt_svc_cv,
616 &idm.idm_global_mutex);
617 mutex_exit(&idm.idm_global_mutex);
618 goto retry;
619 }
620 idm_tgt_svc_hold(result);
621 mutex_exit(&idm.idm_global_mutex);
622 return (result);
623 }
624 }
625 mutex_exit(&idm.idm_global_mutex);
626
627 return (NULL);
628 }
629
630 /*
631 * idm_negotiate_key_values()
632 * Give IDM level a chance to negotiate any login parameters it should own.
633 * -- leave unhandled parameters alone on request_nvl
634 * -- move all handled parameters to response_nvl with an appropriate response
635 * -- also add an entry to negotiated_nvl for any accepted parameters
636 */
637 kv_status_t
idm_negotiate_key_values(idm_conn_t * ic,nvlist_t * request_nvl,nvlist_t * response_nvl,nvlist_t * negotiated_nvl)638 idm_negotiate_key_values(idm_conn_t *ic, nvlist_t *request_nvl,
639 nvlist_t *response_nvl, nvlist_t *negotiated_nvl)
640 {
641 ASSERT(ic->ic_transport_ops != NULL);
642 return (ic->ic_transport_ops->it_negotiate_key_values(ic,
643 request_nvl, response_nvl, negotiated_nvl));
644 }
645
646 /*
647 * idm_notice_key_values()
648 * Activate at the IDM level any parameters that have been negotiated.
649 * Passes the set of key value pairs to the transport for activation.
650 * This will be invoked as the connection is entering full-feature mode.
651 */
652 void
idm_notice_key_values(idm_conn_t * ic,nvlist_t * negotiated_nvl)653 idm_notice_key_values(idm_conn_t *ic, nvlist_t *negotiated_nvl)
654 {
655 ASSERT(ic->ic_transport_ops != NULL);
656 ic->ic_transport_ops->it_notice_key_values(ic, negotiated_nvl);
657 }
658
659 /*
660 * idm_declare_key_values()
661 * Activate an operational set of declarative parameters from the config_nvl,
662 * and return the selected values in the outgoing_nvl.
663 */
664 kv_status_t
idm_declare_key_values(idm_conn_t * ic,nvlist_t * config_nvl,nvlist_t * outgoing_nvl)665 idm_declare_key_values(idm_conn_t *ic, nvlist_t *config_nvl,
666 nvlist_t *outgoing_nvl)
667 {
668 ASSERT(ic->ic_transport_ops != NULL);
669 return (ic->ic_transport_ops->it_declare_key_values(ic, config_nvl,
670 outgoing_nvl));
671 }
672
673 /*
674 * idm_buf_tx_to_ini
675 *
676 * This is IDM's implementation of the 'Put_Data' operational primitive.
677 *
678 * This function is invoked by a target iSCSI layer to request its local
679 * Datamover layer to transmit the Data-In PDU to the peer iSCSI layer
680 * on the remote iSCSI node. The I/O buffer represented by 'idb' is
681 * transferred to the initiator associated with task 'idt'. The connection
682 * info, contents of the Data-In PDU header, the DataDescriptorIn, BHS,
683 * and the callback (idb->idb_buf_cb) at transfer completion are
684 * provided as input.
685 *
686 * This data transfer takes place transparently to the remote iSCSI layer,
687 * i.e. without its participation.
688 *
689 * Using sockets, IDM implements the data transfer by segmenting the data
690 * buffer into appropriately sized iSCSI PDUs and transmitting them to the
691 * initiator. iSER performs the transfer using RDMA write.
692 *
693 */
694 idm_status_t
idm_buf_tx_to_ini(idm_task_t * idt,idm_buf_t * idb,uint32_t offset,uint32_t xfer_len,idm_buf_cb_t idb_buf_cb,void * cb_arg)695 idm_buf_tx_to_ini(idm_task_t *idt, idm_buf_t *idb,
696 uint32_t offset, uint32_t xfer_len,
697 idm_buf_cb_t idb_buf_cb, void *cb_arg)
698 {
699 idm_status_t rc;
700
701 idb->idb_bufoffset = offset;
702 idb->idb_xfer_len = xfer_len;
703 idb->idb_buf_cb = idb_buf_cb;
704 idb->idb_cb_arg = cb_arg;
705 gethrestime(&idb->idb_xfer_start);
706
707 /*
708 * Buffer should not contain the pattern. If the pattern is
709 * present then we've been asked to transmit initialized data
710 */
711 IDM_BUFPAT_CHECK(idb, xfer_len, BP_CHECK_ASSERT);
712
713 mutex_enter(&idt->idt_mutex);
714 switch (idt->idt_state) {
715 case TASK_ACTIVE:
716 idt->idt_tx_to_ini_start++;
717 idm_task_hold(idt);
718 idm_buf_bind_in_locked(idt, idb);
719 idb->idb_in_transport = B_TRUE;
720 rc = (*idt->idt_ic->ic_transport_ops->it_buf_tx_to_ini)
721 (idt, idb);
722 return (rc);
723
724 case TASK_SUSPENDING:
725 case TASK_SUSPENDED:
726 /*
727 * Bind buffer but don't start a transfer since the task
728 * is suspended
729 */
730 idm_buf_bind_in_locked(idt, idb);
731 mutex_exit(&idt->idt_mutex);
732 return (IDM_STATUS_SUCCESS);
733
734 case TASK_ABORTING:
735 case TASK_ABORTED:
736 /*
737 * Once the task is aborted, any buffers added to the
738 * idt_inbufv will never get cleaned up, so just return
739 * SUCCESS. The buffer should get cleaned up by the
740 * client or framework once task_aborted has completed.
741 */
742 mutex_exit(&idt->idt_mutex);
743 return (IDM_STATUS_SUCCESS);
744
745 default:
746 ASSERT(0);
747 break;
748 }
749 mutex_exit(&idt->idt_mutex);
750
751 return (IDM_STATUS_FAIL);
752 }
753
754 /*
755 * idm_buf_rx_from_ini
756 *
757 * This is IDM's implementation of the 'Get_Data' operational primitive.
758 *
759 * This function is invoked by a target iSCSI layer to request its local
760 * Datamover layer to retrieve certain data identified by the R2T PDU from the
761 * peer iSCSI layer on the remote node. The retrieved Data-Out PDU will be
762 * mapped to the respective buffer by the task tags (ITT & TTT).
763 * The connection information, contents of an R2T PDU, DataDescriptor, BHS, and
764 * the callback (idb->idb_buf_cb) notification for data transfer completion are
765 * are provided as input.
766 *
767 * When an iSCSI node sends an R2T PDU to its local Datamover layer, the local
768 * Datamover layer, the local and remote Datamover layers transparently bring
769 * about the data transfer requested by the R2T PDU, without the participation
770 * of the iSCSI layers.
771 *
772 * Using sockets, IDM transmits an R2T PDU for each buffer and the rx_data_out()
773 * assembles the Data-Out PDUs into the buffer. iSER uses RDMA read.
774 *
775 */
776 idm_status_t
idm_buf_rx_from_ini(idm_task_t * idt,idm_buf_t * idb,uint32_t offset,uint32_t xfer_len,idm_buf_cb_t idb_buf_cb,void * cb_arg)777 idm_buf_rx_from_ini(idm_task_t *idt, idm_buf_t *idb,
778 uint32_t offset, uint32_t xfer_len,
779 idm_buf_cb_t idb_buf_cb, void *cb_arg)
780 {
781 idm_status_t rc;
782
783 idb->idb_bufoffset = offset;
784 idb->idb_xfer_len = xfer_len;
785 idb->idb_buf_cb = idb_buf_cb;
786 idb->idb_cb_arg = cb_arg;
787 gethrestime(&idb->idb_xfer_start);
788
789 /*
790 * "In" buf list is for "Data In" PDU's, "Out" buf list is for
791 * "Data Out" PDU's
792 */
793 mutex_enter(&idt->idt_mutex);
794 switch (idt->idt_state) {
795 case TASK_ACTIVE:
796 idt->idt_rx_from_ini_start++;
797 idm_task_hold(idt);
798 idm_buf_bind_out_locked(idt, idb);
799 idb->idb_in_transport = B_TRUE;
800 rc = (*idt->idt_ic->ic_transport_ops->it_buf_rx_from_ini)
801 (idt, idb);
802 return (rc);
803 case TASK_SUSPENDING:
804 case TASK_SUSPENDED:
805 case TASK_ABORTING:
806 case TASK_ABORTED:
807 /*
808 * Bind buffer but don't start a transfer since the task
809 * is suspended
810 */
811 idm_buf_bind_out_locked(idt, idb);
812 mutex_exit(&idt->idt_mutex);
813 return (IDM_STATUS_SUCCESS);
814 default:
815 ASSERT(0);
816 break;
817 }
818 mutex_exit(&idt->idt_mutex);
819
820 return (IDM_STATUS_FAIL);
821 }
822
823 /*
824 * idm_buf_tx_to_ini_done
825 *
826 * The transport calls this after it has completed a transfer requested by
827 * a call to transport_buf_tx_to_ini
828 *
829 * Caller holds idt->idt_mutex, idt->idt_mutex is released before returning.
830 * idt may be freed after the call to idb->idb_buf_cb.
831 */
832 void
idm_buf_tx_to_ini_done(idm_task_t * idt,idm_buf_t * idb,idm_status_t status)833 idm_buf_tx_to_ini_done(idm_task_t *idt, idm_buf_t *idb, idm_status_t status)
834 {
835 ASSERT(mutex_owned(&idt->idt_mutex));
836 idb->idb_in_transport = B_FALSE;
837 idb->idb_tx_thread = B_FALSE;
838 idt->idt_tx_to_ini_done++;
839 gethrestime(&idb->idb_xfer_done);
840
841 /*
842 * idm_refcnt_rele may cause TASK_SUSPENDING --> TASK_SUSPENDED or
843 * TASK_ABORTING --> TASK_ABORTED transistion if the refcount goes
844 * to 0.
845 */
846 idm_task_rele(idt);
847 idb->idb_status = status;
848
849 switch (idt->idt_state) {
850 case TASK_ACTIVE:
851 idt->idt_ic->ic_timestamp = ddi_get_lbolt();
852 idm_buf_unbind_in_locked(idt, idb);
853 mutex_exit(&idt->idt_mutex);
854 (*idb->idb_buf_cb)(idb, status);
855 return;
856 case TASK_SUSPENDING:
857 case TASK_SUSPENDED:
858 case TASK_ABORTING:
859 case TASK_ABORTED:
860 /*
861 * To keep things simple we will ignore the case where the
862 * transfer was successful and leave all buffers bound to the
863 * task. This allows us to also ignore the case where we've
864 * been asked to abort a task but the last transfer of the
865 * task has completed. IDM has no idea whether this was, in
866 * fact, the last transfer of the task so it would be difficult
867 * to handle this case. Everything should get sorted out again
868 * after task reassignment is complete.
869 *
870 * In the case of TASK_ABORTING we could conceivably call the
871 * buffer callback here but the timing of when the client's
872 * client_task_aborted callback is invoked vs. when the client's
873 * buffer callback gets invoked gets sticky. We don't want
874 * the client to here from us again after the call to
875 * client_task_aborted() but we don't want to give it a bunch
876 * of failed buffer transfers until we've called
877 * client_task_aborted(). Instead we'll just leave all the
878 * buffers bound and allow the client to cleanup.
879 */
880 break;
881 default:
882 ASSERT(0);
883 }
884 mutex_exit(&idt->idt_mutex);
885 }
886
887 /*
888 * idm_buf_rx_from_ini_done
889 *
890 * The transport calls this after it has completed a transfer requested by
891 * a call totransport_buf_tx_to_ini
892 *
893 * Caller holds idt->idt_mutex, idt->idt_mutex is released before returning.
894 * idt may be freed after the call to idb->idb_buf_cb.
895 */
896 void
idm_buf_rx_from_ini_done(idm_task_t * idt,idm_buf_t * idb,idm_status_t status)897 idm_buf_rx_from_ini_done(idm_task_t *idt, idm_buf_t *idb, idm_status_t status)
898 {
899 ASSERT(mutex_owned(&idt->idt_mutex));
900 idb->idb_in_transport = B_FALSE;
901 idt->idt_rx_from_ini_done++;
902 gethrestime(&idb->idb_xfer_done);
903
904 /*
905 * idm_refcnt_rele may cause TASK_SUSPENDING --> TASK_SUSPENDED or
906 * TASK_ABORTING --> TASK_ABORTED transistion if the refcount goes
907 * to 0.
908 */
909 idm_task_rele(idt);
910 idb->idb_status = status;
911
912 if (status == IDM_STATUS_SUCCESS) {
913 /*
914 * Buffer should not contain the pattern. If it does then
915 * we did not get the data from the remote host.
916 */
917 IDM_BUFPAT_CHECK(idb, idb->idb_xfer_len, BP_CHECK_ASSERT);
918 }
919
920 switch (idt->idt_state) {
921 case TASK_ACTIVE:
922 idt->idt_ic->ic_timestamp = ddi_get_lbolt();
923 idm_buf_unbind_out_locked(idt, idb);
924 mutex_exit(&idt->idt_mutex);
925 (*idb->idb_buf_cb)(idb, status);
926 return;
927 case TASK_SUSPENDING:
928 case TASK_SUSPENDED:
929 case TASK_ABORTING:
930 case TASK_ABORTED:
931 /*
932 * To keep things simple we will ignore the case where the
933 * transfer was successful and leave all buffers bound to the
934 * task. This allows us to also ignore the case where we've
935 * been asked to abort a task but the last transfer of the
936 * task has completed. IDM has no idea whether this was, in
937 * fact, the last transfer of the task so it would be difficult
938 * to handle this case. Everything should get sorted out again
939 * after task reassignment is complete.
940 *
941 * In the case of TASK_ABORTING we could conceivably call the
942 * buffer callback here but the timing of when the client's
943 * client_task_aborted callback is invoked vs. when the client's
944 * buffer callback gets invoked gets sticky. We don't want
945 * the client to here from us again after the call to
946 * client_task_aborted() but we don't want to give it a bunch
947 * of failed buffer transfers until we've called
948 * client_task_aborted(). Instead we'll just leave all the
949 * buffers bound and allow the client to cleanup.
950 */
951 break;
952 default:
953 ASSERT(0);
954 }
955 mutex_exit(&idt->idt_mutex);
956 }
957
958 /*
959 * idm_buf_alloc
960 *
961 * Allocates a buffer handle and registers it for use with the transport
962 * layer. If a buffer is not passed on bufptr, the buffer will be allocated
963 * as well as the handle.
964 *
965 * ic - connection on which the buffer will be transferred
966 * bufptr - allocate memory for buffer if NULL, else assign to buffer
967 * buflen - length of buffer
968 *
969 * Returns idm_buf_t handle if successful, otherwise NULL
970 */
971 idm_buf_t *
idm_buf_alloc(idm_conn_t * ic,void * bufptr,uint64_t buflen)972 idm_buf_alloc(idm_conn_t *ic, void *bufptr, uint64_t buflen)
973 {
974 idm_buf_t *buf = NULL;
975 int rc;
976
977 ASSERT(ic != NULL);
978 ASSERT(idm.idm_buf_cache != NULL);
979 ASSERT(buflen > 0);
980
981 /* Don't allocate new buffers if we are not in FFP */
982 mutex_enter(&ic->ic_state_mutex);
983 if (!ic->ic_ffp) {
984 mutex_exit(&ic->ic_state_mutex);
985 return (NULL);
986 }
987
988
989 idm_conn_hold(ic);
990 mutex_exit(&ic->ic_state_mutex);
991
992 buf = kmem_cache_alloc(idm.idm_buf_cache, KM_NOSLEEP);
993 if (buf == NULL) {
994 idm_conn_rele(ic);
995 return (NULL);
996 }
997
998 buf->idb_ic = ic;
999 buf->idb_buflen = buflen;
1000 buf->idb_exp_offset = 0;
1001 buf->idb_bufoffset = 0;
1002 buf->idb_xfer_len = 0;
1003 buf->idb_magic = IDM_BUF_MAGIC;
1004 buf->idb_in_transport = B_FALSE;
1005 buf->idb_bufbcopy = B_FALSE;
1006
1007 /*
1008 * If bufptr is NULL, we have an implicit request to allocate
1009 * memory for this IDM buffer handle and register it for use
1010 * with the transport. To simplify this, and to give more freedom
1011 * to the transport layer for it's own buffer management, both of
1012 * these actions will take place in the transport layer.
1013 * If bufptr is set, then the caller has allocated memory (or more
1014 * likely it's been passed from an upper layer), and we need only
1015 * register the buffer for use with the transport layer.
1016 */
1017 if (bufptr == NULL) {
1018 /*
1019 * Allocate a buffer from the transport layer (which
1020 * will also register the buffer for use).
1021 */
1022 rc = ic->ic_transport_ops->it_buf_alloc(buf, buflen);
1023 if (rc != 0) {
1024 idm_conn_rele(ic);
1025 kmem_cache_free(idm.idm_buf_cache, buf);
1026 return (NULL);
1027 }
1028 /* Set the bufalloc'd flag */
1029 buf->idb_bufalloc = B_TRUE;
1030 } else {
1031 /*
1032 * For large transfers, Set the passed bufptr into
1033 * the buf handle, and register the handle with the
1034 * transport layer. As memory registration with the
1035 * transport layer is a time/cpu intensive operation,
1036 * for small transfers (up to a pre-defined bcopy
1037 * threshold), use pre-registered memory buffers
1038 * and bcopy data at the appropriate time.
1039 */
1040 buf->idb_buf = bufptr;
1041
1042 rc = ic->ic_transport_ops->it_buf_setup(buf);
1043 if (rc != 0) {
1044 idm_conn_rele(ic);
1045 kmem_cache_free(idm.idm_buf_cache, buf);
1046 return (NULL);
1047 }
1048 /*
1049 * The transport layer is now expected to set the idb_bufalloc
1050 * correctly to indicate if resources have been allocated.
1051 */
1052 }
1053
1054 IDM_BUFPAT_SET(buf);
1055
1056 return (buf);
1057 }
1058
1059 /*
1060 * idm_buf_free
1061 *
1062 * Release a buffer handle along with the associated buffer that was allocated
1063 * or assigned with idm_buf_alloc
1064 */
1065 void
idm_buf_free(idm_buf_t * buf)1066 idm_buf_free(idm_buf_t *buf)
1067 {
1068 idm_conn_t *ic = buf->idb_ic;
1069
1070
1071 buf->idb_task_binding = NULL;
1072
1073 if (buf->idb_bufalloc) {
1074 ic->ic_transport_ops->it_buf_free(buf);
1075 } else {
1076 ic->ic_transport_ops->it_buf_teardown(buf);
1077 }
1078 kmem_cache_free(idm.idm_buf_cache, buf);
1079 idm_conn_rele(ic);
1080 }
1081
1082 /*
1083 * idm_buf_bind_in
1084 *
1085 * This function associates a buffer with a task. This is only for use by the
1086 * iSCSI initiator that will have only one buffer per transfer direction
1087 *
1088 */
1089 void
idm_buf_bind_in(idm_task_t * idt,idm_buf_t * buf)1090 idm_buf_bind_in(idm_task_t *idt, idm_buf_t *buf)
1091 {
1092 mutex_enter(&idt->idt_mutex);
1093 idm_buf_bind_in_locked(idt, buf);
1094 mutex_exit(&idt->idt_mutex);
1095 }
1096
1097 static void
idm_buf_bind_in_locked(idm_task_t * idt,idm_buf_t * buf)1098 idm_buf_bind_in_locked(idm_task_t *idt, idm_buf_t *buf)
1099 {
1100 buf->idb_task_binding = idt;
1101 buf->idb_ic = idt->idt_ic;
1102 idm_listbuf_insert(&idt->idt_inbufv, buf);
1103 }
1104
1105 void
idm_buf_bind_out(idm_task_t * idt,idm_buf_t * buf)1106 idm_buf_bind_out(idm_task_t *idt, idm_buf_t *buf)
1107 {
1108 /*
1109 * For small transfers, the iSER transport delegates the IDM
1110 * layer to bcopy the SCSI Write data for faster IOPS.
1111 */
1112 if (buf->idb_bufbcopy == B_TRUE) {
1113
1114 bcopy(buf->idb_bufptr, buf->idb_buf, buf->idb_buflen);
1115 }
1116 mutex_enter(&idt->idt_mutex);
1117 idm_buf_bind_out_locked(idt, buf);
1118 mutex_exit(&idt->idt_mutex);
1119 }
1120
1121 static void
idm_buf_bind_out_locked(idm_task_t * idt,idm_buf_t * buf)1122 idm_buf_bind_out_locked(idm_task_t *idt, idm_buf_t *buf)
1123 {
1124 buf->idb_task_binding = idt;
1125 buf->idb_ic = idt->idt_ic;
1126 idm_listbuf_insert(&idt->idt_outbufv, buf);
1127 }
1128
1129 void
idm_buf_unbind_in(idm_task_t * idt,idm_buf_t * buf)1130 idm_buf_unbind_in(idm_task_t *idt, idm_buf_t *buf)
1131 {
1132 /*
1133 * For small transfers, the iSER transport delegates the IDM
1134 * layer to bcopy the SCSI Read data into the read buufer
1135 * for faster IOPS.
1136 */
1137 if (buf->idb_bufbcopy == B_TRUE) {
1138 bcopy(buf->idb_buf, buf->idb_bufptr, buf->idb_buflen);
1139 }
1140 mutex_enter(&idt->idt_mutex);
1141 idm_buf_unbind_in_locked(idt, buf);
1142 mutex_exit(&idt->idt_mutex);
1143 }
1144
1145 static void
idm_buf_unbind_in_locked(idm_task_t * idt,idm_buf_t * buf)1146 idm_buf_unbind_in_locked(idm_task_t *idt, idm_buf_t *buf)
1147 {
1148 list_remove(&idt->idt_inbufv, buf);
1149 }
1150
1151 void
idm_buf_unbind_out(idm_task_t * idt,idm_buf_t * buf)1152 idm_buf_unbind_out(idm_task_t *idt, idm_buf_t *buf)
1153 {
1154 mutex_enter(&idt->idt_mutex);
1155 idm_buf_unbind_out_locked(idt, buf);
1156 mutex_exit(&idt->idt_mutex);
1157 }
1158
1159 static void
idm_buf_unbind_out_locked(idm_task_t * idt,idm_buf_t * buf)1160 idm_buf_unbind_out_locked(idm_task_t *idt, idm_buf_t *buf)
1161 {
1162 list_remove(&idt->idt_outbufv, buf);
1163 }
1164
1165 /*
1166 * idm_buf_find() will lookup the idm_buf_t based on the relative offset in the
1167 * iSCSI PDU
1168 */
1169 idm_buf_t *
idm_buf_find(void * lbuf,size_t data_offset)1170 idm_buf_find(void *lbuf, size_t data_offset)
1171 {
1172 idm_buf_t *idb;
1173 list_t *lst = (list_t *)lbuf;
1174
1175 /* iterate through the list to find the buffer */
1176 for (idb = list_head(lst); idb != NULL; idb = list_next(lst, idb)) {
1177
1178 ASSERT((idb->idb_ic->ic_conn_type == CONN_TYPE_TGT) ||
1179 (idb->idb_bufoffset == 0));
1180
1181 if ((data_offset >= idb->idb_bufoffset) &&
1182 (data_offset < (idb->idb_bufoffset + idb->idb_buflen))) {
1183
1184 return (idb);
1185 }
1186 }
1187
1188 return (NULL);
1189 }
1190
1191 void
idm_bufpat_set(idm_buf_t * idb)1192 idm_bufpat_set(idm_buf_t *idb)
1193 {
1194 idm_bufpat_t *bufpat;
1195 int len, i;
1196
1197 len = idb->idb_buflen;
1198 len = (len / sizeof (idm_bufpat_t)) * sizeof (idm_bufpat_t);
1199
1200 bufpat = idb->idb_buf;
1201 for (i = 0; i < len; i += sizeof (idm_bufpat_t)) {
1202 bufpat->bufpat_idb = idb;
1203 bufpat->bufpat_bufmagic = IDM_BUF_MAGIC;
1204 bufpat->bufpat_offset = i;
1205 bufpat++;
1206 }
1207 }
1208
1209 boolean_t
idm_bufpat_check(idm_buf_t * idb,int check_len,idm_bufpat_check_type_t type)1210 idm_bufpat_check(idm_buf_t *idb, int check_len, idm_bufpat_check_type_t type)
1211 {
1212 idm_bufpat_t *bufpat;
1213 int len, i;
1214
1215 len = (type == BP_CHECK_QUICK) ? sizeof (idm_bufpat_t) : check_len;
1216 len = (len / sizeof (idm_bufpat_t)) * sizeof (idm_bufpat_t);
1217 ASSERT(len <= idb->idb_buflen);
1218 bufpat = idb->idb_buf;
1219
1220 /*
1221 * Don't check the pattern in buffers that came from outside IDM
1222 * (these will be buffers from the initiator that we opted not
1223 * to double-buffer)
1224 */
1225 if (!idb->idb_bufalloc)
1226 return (B_FALSE);
1227
1228 /*
1229 * Return true if we find the pattern anywhere in the buffer
1230 */
1231 for (i = 0; i < len; i += sizeof (idm_bufpat_t)) {
1232 if (BUFPAT_MATCH(bufpat, idb)) {
1233 IDM_CONN_LOG(CE_WARN, "idm_bufpat_check found: "
1234 "idb %p bufpat %p "
1235 "bufpat_idb=%p bufmagic=%08x offset=%08x",
1236 (void *)idb, (void *)bufpat, bufpat->bufpat_idb,
1237 bufpat->bufpat_bufmagic, bufpat->bufpat_offset);
1238 DTRACE_PROBE2(bufpat__pattern__found,
1239 idm_buf_t *, idb, idm_bufpat_t *, bufpat);
1240 if (type == BP_CHECK_ASSERT) {
1241 ASSERT(0);
1242 }
1243 return (B_TRUE);
1244 }
1245 bufpat++;
1246 }
1247
1248 return (B_FALSE);
1249 }
1250
1251 /*
1252 * idm_task_alloc
1253 *
1254 * This function will allocate a idm_task_t structure. A task tag is also
1255 * generated and saved in idt_tt. The task is not active.
1256 */
1257 idm_task_t *
idm_task_alloc(idm_conn_t * ic)1258 idm_task_alloc(idm_conn_t *ic)
1259 {
1260 idm_task_t *idt;
1261
1262 ASSERT(ic != NULL);
1263
1264 /* Don't allocate new tasks if we are not in FFP */
1265 if (!ic->ic_ffp) {
1266 return (NULL);
1267 }
1268 idt = kmem_cache_alloc(idm.idm_task_cache, KM_NOSLEEP);
1269 if (idt == NULL) {
1270 return (NULL);
1271 }
1272
1273 ASSERT(list_is_empty(&idt->idt_inbufv));
1274 ASSERT(list_is_empty(&idt->idt_outbufv));
1275
1276 mutex_enter(&ic->ic_state_mutex);
1277 if (!ic->ic_ffp) {
1278 mutex_exit(&ic->ic_state_mutex);
1279 kmem_cache_free(idm.idm_task_cache, idt);
1280 return (NULL);
1281 }
1282 idm_conn_hold(ic);
1283 mutex_exit(&ic->ic_state_mutex);
1284
1285 idt->idt_state = TASK_IDLE;
1286 idt->idt_ic = ic;
1287 idt->idt_private = NULL;
1288 idt->idt_exp_datasn = 0;
1289 idt->idt_exp_rttsn = 0;
1290 idt->idt_flags = 0;
1291 return (idt);
1292 }
1293
1294 /*
1295 * idm_task_start
1296 *
1297 * Mark the task active and initialize some stats. The caller
1298 * sets up the idm_task_t structure with a prior call to idm_task_alloc().
1299 * The task service does not function as a task/work engine, it is the
1300 * responsibility of the initiator to start the data transfer and free the
1301 * resources.
1302 */
1303 void
idm_task_start(idm_task_t * idt,uintptr_t handle)1304 idm_task_start(idm_task_t *idt, uintptr_t handle)
1305 {
1306 ASSERT(idt != NULL);
1307
1308 /* mark the task as ACTIVE */
1309 idt->idt_state = TASK_ACTIVE;
1310 idt->idt_client_handle = handle;
1311 idt->idt_tx_to_ini_start = idt->idt_tx_to_ini_done =
1312 idt->idt_rx_from_ini_start = idt->idt_rx_from_ini_done =
1313 idt->idt_tx_bytes = idt->idt_rx_bytes = 0;
1314 }
1315
1316 /*
1317 * idm_task_done
1318 *
1319 * This function sets the state to indicate that the task is no longer active.
1320 */
1321 void
idm_task_done(idm_task_t * idt)1322 idm_task_done(idm_task_t *idt)
1323 {
1324 ASSERT(idt != NULL);
1325
1326 mutex_enter(&idt->idt_mutex);
1327 idt->idt_state = TASK_IDLE;
1328 mutex_exit(&idt->idt_mutex);
1329
1330 /*
1331 * Although unlikely it is possible for a reference to come in after
1332 * the client has decided the task is over but before we've marked
1333 * the task idle. One specific unavoidable scenario is the case where
1334 * received PDU with the matching ITT/TTT results in a successful
1335 * lookup of this task. We are at the mercy of the remote node in
1336 * that case so we need to handle it. Now that the task state
1337 * has changed no more references will occur so a simple call to
1338 * idm_refcnt_wait_ref should deal with the situation.
1339 */
1340 idm_refcnt_wait_ref(&idt->idt_refcnt);
1341 idm_refcnt_reset(&idt->idt_refcnt);
1342 }
1343
1344 /*
1345 * idm_task_free
1346 *
1347 * This function will free the Task Tag and the memory allocated for the task
1348 * idm_task_done should be called prior to this call
1349 */
1350 void
idm_task_free(idm_task_t * idt)1351 idm_task_free(idm_task_t *idt)
1352 {
1353 idm_conn_t *ic;
1354
1355 ASSERT(idt != NULL);
1356 ASSERT(idt->idt_refcnt.ir_refcnt == 0);
1357 ASSERT(idt->idt_state == TASK_IDLE);
1358
1359 ic = idt->idt_ic;
1360
1361 /*
1362 * It's possible for items to still be in the idt_inbufv list if
1363 * they were added after idm_free_task_rsrc was called. We rely on
1364 * STMF to free all buffers associated with the task however STMF
1365 * doesn't know that we have this reference to the buffers.
1366 * Use list_create so that we don't end up with stale references
1367 * to these buffers.
1368 */
1369 list_create(&idt->idt_inbufv, sizeof (idm_buf_t),
1370 offsetof(idm_buf_t, idb_buflink));
1371 list_create(&idt->idt_outbufv, sizeof (idm_buf_t),
1372 offsetof(idm_buf_t, idb_buflink));
1373
1374 kmem_cache_free(idm.idm_task_cache, idt);
1375
1376 idm_conn_rele(ic);
1377 }
1378
1379 /*
1380 * idm_task_find_common
1381 * common code for idm_task_find() and idm_task_find_and_complete()
1382 */
1383 /*ARGSUSED*/
1384 static idm_task_t *
idm_task_find_common(idm_conn_t * ic,uint32_t itt,uint32_t ttt,boolean_t complete)1385 idm_task_find_common(idm_conn_t *ic, uint32_t itt, uint32_t ttt,
1386 boolean_t complete)
1387 {
1388 uint32_t tt, client_handle;
1389 idm_task_t *idt;
1390
1391 /*
1392 * Must match both itt and ttt. The table is indexed by itt
1393 * for initiator connections and ttt for target connections.
1394 */
1395 if (IDM_CONN_ISTGT(ic)) {
1396 tt = ttt;
1397 client_handle = itt;
1398 } else {
1399 tt = itt;
1400 client_handle = ttt;
1401 }
1402
1403 rw_enter(&idm.idm_taskid_table_lock, RW_READER);
1404 if (tt >= idm.idm_taskid_max) {
1405 rw_exit(&idm.idm_taskid_table_lock);
1406 return (NULL);
1407 }
1408
1409 idt = idm.idm_taskid_table[tt];
1410
1411 if (idt != NULL) {
1412 mutex_enter(&idt->idt_mutex);
1413 if ((idt->idt_state != TASK_ACTIVE) ||
1414 (idt->idt_ic != ic) ||
1415 (IDM_CONN_ISTGT(ic) &&
1416 (idt->idt_client_handle != client_handle))) {
1417 /*
1418 * Task doesn't match or task is aborting and
1419 * we don't want any more references.
1420 */
1421 if ((idt->idt_ic != ic) &&
1422 (idt->idt_state == TASK_ACTIVE) &&
1423 (IDM_CONN_ISINI(ic) || idt->idt_client_handle ==
1424 client_handle)) {
1425 IDM_CONN_LOG(CE_WARN,
1426 "idm_task_find: wrong connection %p != %p",
1427 (void *)ic, (void *)idt->idt_ic);
1428 }
1429 mutex_exit(&idt->idt_mutex);
1430 rw_exit(&idm.idm_taskid_table_lock);
1431 return (NULL);
1432 }
1433 idm_task_hold(idt);
1434 /*
1435 * Set the task state to TASK_COMPLETE so it can no longer
1436 * be found or aborted.
1437 */
1438 if (B_TRUE == complete)
1439 idt->idt_state = TASK_COMPLETE;
1440 mutex_exit(&idt->idt_mutex);
1441 }
1442 rw_exit(&idm.idm_taskid_table_lock);
1443
1444 return (idt);
1445 }
1446
1447 /*
1448 * This function looks up a task by task tag.
1449 */
1450 idm_task_t *
idm_task_find(idm_conn_t * ic,uint32_t itt,uint32_t ttt)1451 idm_task_find(idm_conn_t *ic, uint32_t itt, uint32_t ttt)
1452 {
1453 return (idm_task_find_common(ic, itt, ttt, B_FALSE));
1454 }
1455
1456 /*
1457 * This function looks up a task by task tag. If found, the task state
1458 * is atomically set to TASK_COMPLETE so it can longer be found or aborted.
1459 */
1460 idm_task_t *
idm_task_find_and_complete(idm_conn_t * ic,uint32_t itt,uint32_t ttt)1461 idm_task_find_and_complete(idm_conn_t *ic, uint32_t itt, uint32_t ttt)
1462 {
1463 return (idm_task_find_common(ic, itt, ttt, B_TRUE));
1464 }
1465
1466 /*
1467 * idm_task_find_by_handle
1468 *
1469 * This function looks up a task by the client-private idt_client_handle.
1470 *
1471 * This function should NEVER be called in the performance path. It is
1472 * intended strictly for error recovery/task management.
1473 */
1474 /*ARGSUSED*/
1475 void *
idm_task_find_by_handle(idm_conn_t * ic,uintptr_t handle)1476 idm_task_find_by_handle(idm_conn_t *ic, uintptr_t handle)
1477 {
1478 idm_task_t *idt = NULL;
1479 int idx = 0;
1480
1481 rw_enter(&idm.idm_taskid_table_lock, RW_READER);
1482
1483 for (idx = 0; idx < idm.idm_taskid_max; idx++) {
1484 idt = idm.idm_taskid_table[idx];
1485
1486 if (idt == NULL)
1487 continue;
1488
1489 mutex_enter(&idt->idt_mutex);
1490
1491 if (idt->idt_state != TASK_ACTIVE) {
1492 /*
1493 * Task is either in suspend, abort, or already
1494 * complete.
1495 */
1496 mutex_exit(&idt->idt_mutex);
1497 continue;
1498 }
1499
1500 if (idt->idt_client_handle == handle) {
1501 idm_task_hold(idt);
1502 mutex_exit(&idt->idt_mutex);
1503 break;
1504 }
1505
1506 mutex_exit(&idt->idt_mutex);
1507 }
1508
1509 rw_exit(&idm.idm_taskid_table_lock);
1510
1511 if ((idt == NULL) || (idx == idm.idm_taskid_max))
1512 return (NULL);
1513
1514 return (idt->idt_private);
1515 }
1516
1517 void
idm_task_hold(idm_task_t * idt)1518 idm_task_hold(idm_task_t *idt)
1519 {
1520 idm_refcnt_hold(&idt->idt_refcnt);
1521 }
1522
1523 void
idm_task_rele(idm_task_t * idt)1524 idm_task_rele(idm_task_t *idt)
1525 {
1526 idm_refcnt_rele(&idt->idt_refcnt);
1527 }
1528
1529 stmf_status_t
idm_task_abort(idm_conn_t * ic,idm_task_t * idt,idm_abort_type_t abort_type)1530 idm_task_abort(idm_conn_t *ic, idm_task_t *idt, idm_abort_type_t abort_type)
1531 {
1532 idm_task_t *task;
1533 int idx;
1534 stmf_status_t s = STMF_SUCCESS;
1535
1536 /*
1537 * Passing NULL as the task indicates that all tasks
1538 * for this connection should be aborted.
1539 */
1540 if (idt == NULL) {
1541 /*
1542 * Only the connection state machine should ask for
1543 * all tasks to abort and this should never happen in FFP.
1544 */
1545 ASSERT(!ic->ic_ffp);
1546 rw_enter(&idm.idm_taskid_table_lock, RW_READER);
1547 for (idx = 0; idx < idm.idm_taskid_max; idx++) {
1548 task = idm.idm_taskid_table[idx];
1549 if (task == NULL)
1550 continue;
1551 mutex_enter(&task->idt_mutex);
1552 if ((task->idt_state != TASK_IDLE) &&
1553 (task->idt_state != TASK_COMPLETE) &&
1554 (task->idt_ic == ic)) {
1555 rw_exit(&idm.idm_taskid_table_lock);
1556 s = idm_task_abort_one(ic, task, abort_type);
1557 rw_enter(&idm.idm_taskid_table_lock, RW_READER);
1558 } else
1559 mutex_exit(&task->idt_mutex);
1560 }
1561 rw_exit(&idm.idm_taskid_table_lock);
1562 } else {
1563 mutex_enter(&idt->idt_mutex);
1564 s = idm_task_abort_one(ic, idt, abort_type);
1565 }
1566 return (s);
1567 }
1568
1569 static void
idm_task_abort_unref_cb(void * ref)1570 idm_task_abort_unref_cb(void *ref)
1571 {
1572 idm_task_t *idt = ref;
1573
1574 mutex_enter(&idt->idt_mutex);
1575 switch (idt->idt_state) {
1576 case TASK_SUSPENDING:
1577 idt->idt_state = TASK_SUSPENDED;
1578 mutex_exit(&idt->idt_mutex);
1579 idm_task_aborted(idt, IDM_STATUS_SUSPENDED);
1580 return;
1581 case TASK_ABORTING:
1582 idt->idt_state = TASK_ABORTED;
1583 mutex_exit(&idt->idt_mutex);
1584 idm_task_aborted(idt, IDM_STATUS_ABORTED);
1585 return;
1586 default:
1587 mutex_exit(&idt->idt_mutex);
1588 ASSERT(0);
1589 break;
1590 }
1591 }
1592
1593 /*
1594 * Abort the idm task.
1595 * Caller must hold the task mutex, which will be released before return
1596 */
1597 static stmf_status_t
idm_task_abort_one(idm_conn_t * ic,idm_task_t * idt,idm_abort_type_t abort_type)1598 idm_task_abort_one(idm_conn_t *ic, idm_task_t *idt, idm_abort_type_t abort_type)
1599 {
1600 stmf_status_t s = STMF_SUCCESS;
1601
1602 /* Caller must hold connection mutex */
1603 ASSERT(mutex_owned(&idt->idt_mutex));
1604 switch (idt->idt_state) {
1605 case TASK_ACTIVE:
1606 switch (abort_type) {
1607 case AT_INTERNAL_SUSPEND:
1608 /* Call transport to release any resources */
1609 idt->idt_state = TASK_SUSPENDING;
1610 mutex_exit(&idt->idt_mutex);
1611 ic->ic_transport_ops->it_free_task_rsrc(idt);
1612
1613 /*
1614 * Wait for outstanding references. When all
1615 * references are released the callback will call
1616 * idm_task_aborted().
1617 */
1618 idm_refcnt_async_wait_ref(&idt->idt_refcnt,
1619 &idm_task_abort_unref_cb);
1620 return (s);
1621 case AT_INTERNAL_ABORT:
1622 case AT_TASK_MGMT_ABORT:
1623 idt->idt_state = TASK_ABORTING;
1624 mutex_exit(&idt->idt_mutex);
1625 ic->ic_transport_ops->it_free_task_rsrc(idt);
1626
1627 /*
1628 * Wait for outstanding references. When all
1629 * references are released the callback will call
1630 * idm_task_aborted().
1631 */
1632 idm_refcnt_async_wait_ref(&idt->idt_refcnt,
1633 &idm_task_abort_unref_cb);
1634 return (s);
1635 default:
1636 ASSERT(0);
1637 }
1638 break;
1639 case TASK_SUSPENDING:
1640 /* Already called transport_free_task_rsrc(); */
1641 switch (abort_type) {
1642 case AT_INTERNAL_SUSPEND:
1643 /* Already doing it */
1644 break;
1645 case AT_INTERNAL_ABORT:
1646 case AT_TASK_MGMT_ABORT:
1647 idt->idt_state = TASK_ABORTING;
1648 break;
1649 default:
1650 ASSERT(0);
1651 }
1652 break;
1653 case TASK_SUSPENDED:
1654 /* Already called transport_free_task_rsrc(); */
1655 switch (abort_type) {
1656 case AT_INTERNAL_SUSPEND:
1657 /* Already doing it */
1658 break;
1659 case AT_INTERNAL_ABORT:
1660 case AT_TASK_MGMT_ABORT:
1661 idt->idt_state = TASK_ABORTING;
1662 mutex_exit(&idt->idt_mutex);
1663
1664 /*
1665 * We could probably call idm_task_aborted directly
1666 * here but we may be holding the conn lock. It's
1667 * easier to just switch contexts. Even though
1668 * we shouldn't really have any references we'll
1669 * set the state to TASK_ABORTING instead of
1670 * TASK_ABORTED so we can use the same code path.
1671 */
1672 idm_refcnt_async_wait_ref(&idt->idt_refcnt,
1673 &idm_task_abort_unref_cb);
1674 return (s);
1675 default:
1676 ASSERT(0);
1677 }
1678 break;
1679 case TASK_ABORTING:
1680 case TASK_ABORTED:
1681 switch (abort_type) {
1682 case AT_INTERNAL_SUSPEND:
1683 /* We're already past this point... */
1684 case AT_INTERNAL_ABORT:
1685 case AT_TASK_MGMT_ABORT:
1686 /* Already doing it */
1687 break;
1688 default:
1689 ASSERT(0);
1690 }
1691 break;
1692 case TASK_COMPLETE:
1693 idm_refcnt_wait_ref(&idt->idt_refcnt);
1694 s = STMF_ABORT_SUCCESS;
1695 break;
1696 default:
1697 ASSERT(0);
1698 }
1699 mutex_exit(&idt->idt_mutex);
1700
1701 return (s);
1702 }
1703
1704 static void
idm_task_aborted(idm_task_t * idt,idm_status_t status)1705 idm_task_aborted(idm_task_t *idt, idm_status_t status)
1706 {
1707 (*idt->idt_ic->ic_conn_ops.icb_task_aborted)(idt, status);
1708 }
1709
1710 /*
1711 * idm_pdu_tx
1712 *
1713 * This is IDM's implementation of the 'Send_Control' operational primitive.
1714 * This function is invoked by an initiator iSCSI layer requesting the transfer
1715 * of a iSCSI command PDU or a target iSCSI layer requesting the transfer of a
1716 * iSCSI response PDU. The PDU will be transmitted as-is by the local Datamover
1717 * layer to the peer iSCSI layer in the remote iSCSI node. The connection info
1718 * and iSCSI PDU-specific qualifiers namely BHS, AHS, DataDescriptor and Size
1719 * are provided as input.
1720 *
1721 */
1722 void
idm_pdu_tx(idm_pdu_t * pdu)1723 idm_pdu_tx(idm_pdu_t *pdu)
1724 {
1725 idm_conn_t *ic = pdu->isp_ic;
1726 iscsi_async_evt_hdr_t *async_evt;
1727
1728 /*
1729 * If we are in full-featured mode then route SCSI-related
1730 * commands to the appropriate function vector without checking
1731 * the connection state. We will only be in full-feature mode
1732 * when we are in an acceptable state for SCSI PDU's.
1733 *
1734 * We also need to ensure that there are no PDU events outstanding
1735 * on the state machine. Any non-SCSI PDU's received in full-feature
1736 * mode will result in PDU events and until these have been handled
1737 * we need to route all PDU's through the state machine as PDU
1738 * events to maintain ordering.
1739 *
1740 * Note that IDM cannot enter FFP mode until it processes in
1741 * its state machine the last xmit of the login process.
1742 * Hence, checking the IDM_PDU_LOGIN_TX flag here would be
1743 * superfluous.
1744 */
1745 mutex_enter(&ic->ic_state_mutex);
1746 if (ic->ic_ffp && (ic->ic_pdu_events == 0)) {
1747 mutex_exit(&ic->ic_state_mutex);
1748 switch (IDM_PDU_OPCODE(pdu)) {
1749 case ISCSI_OP_SCSI_RSP:
1750 /* Target only */
1751 DTRACE_ISCSI_2(scsi__response, idm_conn_t *, ic,
1752 iscsi_scsi_rsp_hdr_t *,
1753 (iscsi_scsi_rsp_hdr_t *)pdu->isp_hdr);
1754 idm_pdu_tx_forward(ic, pdu);
1755 return;
1756 case ISCSI_OP_SCSI_TASK_MGT_RSP:
1757 /* Target only */
1758 DTRACE_ISCSI_2(task__response, idm_conn_t *, ic,
1759 iscsi_text_rsp_hdr_t *,
1760 (iscsi_text_rsp_hdr_t *)pdu->isp_hdr);
1761 idm_pdu_tx_forward(ic, pdu);
1762 return;
1763 case ISCSI_OP_SCSI_DATA_RSP:
1764 /* Target only */
1765 DTRACE_ISCSI_2(data__send, idm_conn_t *, ic,
1766 iscsi_data_rsp_hdr_t *,
1767 (iscsi_data_rsp_hdr_t *)pdu->isp_hdr);
1768 idm_pdu_tx_forward(ic, pdu);
1769 return;
1770 case ISCSI_OP_RTT_RSP:
1771 /* Target only */
1772 DTRACE_ISCSI_2(data__request, idm_conn_t *, ic,
1773 iscsi_rtt_hdr_t *,
1774 (iscsi_rtt_hdr_t *)pdu->isp_hdr);
1775 idm_pdu_tx_forward(ic, pdu);
1776 return;
1777 case ISCSI_OP_NOOP_IN:
1778 /* Target only */
1779 DTRACE_ISCSI_2(nop__send, idm_conn_t *, ic,
1780 iscsi_nop_in_hdr_t *,
1781 (iscsi_nop_in_hdr_t *)pdu->isp_hdr);
1782 idm_pdu_tx_forward(ic, pdu);
1783 return;
1784 case ISCSI_OP_TEXT_RSP:
1785 /* Target only */
1786 DTRACE_ISCSI_2(text__response, idm_conn_t *, ic,
1787 iscsi_text_rsp_hdr_t *,
1788 (iscsi_text_rsp_hdr_t *)pdu->isp_hdr);
1789 idm_pdu_tx_forward(ic, pdu);
1790 return;
1791 case ISCSI_OP_TEXT_CMD:
1792 case ISCSI_OP_NOOP_OUT:
1793 case ISCSI_OP_SCSI_CMD:
1794 case ISCSI_OP_SCSI_DATA:
1795 case ISCSI_OP_SCSI_TASK_MGT_MSG:
1796 /* Initiator only */
1797 idm_pdu_tx_forward(ic, pdu);
1798 return;
1799 default:
1800 break;
1801 }
1802
1803 mutex_enter(&ic->ic_state_mutex);
1804 }
1805
1806 /*
1807 * Any PDU's processed outside of full-feature mode and non-SCSI
1808 * PDU's in full-feature mode are handled by generating an
1809 * event to the connection state machine. The state machine
1810 * will validate the PDU against the current state and either
1811 * transmit the PDU if the opcode is allowed or handle an
1812 * error if the PDU is not allowed.
1813 *
1814 * This code-path will also generate any events that are implied
1815 * by the PDU opcode. For example a "login response" with success
1816 * status generates a CE_LOGOUT_SUCCESS_SND event.
1817 */
1818 switch (IDM_PDU_OPCODE(pdu)) {
1819 case ISCSI_OP_LOGIN_CMD:
1820 idm_conn_tx_pdu_event(ic, CE_LOGIN_SND, (uintptr_t)pdu);
1821 break;
1822 case ISCSI_OP_LOGIN_RSP:
1823 DTRACE_ISCSI_2(login__response, idm_conn_t *, ic,
1824 iscsi_login_rsp_hdr_t *,
1825 (iscsi_login_rsp_hdr_t *)pdu->isp_hdr);
1826 idm_parse_login_rsp(ic, pdu, /* Is RX */ B_FALSE);
1827 break;
1828 case ISCSI_OP_LOGOUT_CMD:
1829 idm_parse_logout_req(ic, pdu, /* Is RX */ B_FALSE);
1830 break;
1831 case ISCSI_OP_LOGOUT_RSP:
1832 DTRACE_ISCSI_2(logout__response, idm_conn_t *, ic,
1833 iscsi_logout_rsp_hdr_t *,
1834 (iscsi_logout_rsp_hdr_t *)pdu->isp_hdr);
1835 idm_parse_logout_rsp(ic, pdu, /* Is RX */ B_FALSE);
1836 break;
1837 case ISCSI_OP_ASYNC_EVENT:
1838 DTRACE_ISCSI_2(async__send, idm_conn_t *, ic,
1839 iscsi_async_evt_hdr_t *,
1840 (iscsi_async_evt_hdr_t *)pdu->isp_hdr);
1841 async_evt = (iscsi_async_evt_hdr_t *)pdu->isp_hdr;
1842 switch (async_evt->async_event) {
1843 case ISCSI_ASYNC_EVENT_REQUEST_LOGOUT:
1844 idm_conn_tx_pdu_event(ic, CE_ASYNC_LOGOUT_SND,
1845 (uintptr_t)pdu);
1846 break;
1847 case ISCSI_ASYNC_EVENT_DROPPING_CONNECTION:
1848 idm_conn_tx_pdu_event(ic, CE_ASYNC_DROP_CONN_SND,
1849 (uintptr_t)pdu);
1850 break;
1851 case ISCSI_ASYNC_EVENT_DROPPING_ALL_CONNECTIONS:
1852 idm_conn_tx_pdu_event(ic, CE_ASYNC_DROP_ALL_CONN_SND,
1853 (uintptr_t)pdu);
1854 break;
1855 case ISCSI_ASYNC_EVENT_SCSI_EVENT:
1856 case ISCSI_ASYNC_EVENT_PARAM_NEGOTIATION:
1857 default:
1858 idm_conn_tx_pdu_event(ic, CE_MISC_TX,
1859 (uintptr_t)pdu);
1860 break;
1861 }
1862 break;
1863 case ISCSI_OP_SCSI_RSP:
1864 /* Target only */
1865 DTRACE_ISCSI_2(scsi__response, idm_conn_t *, ic,
1866 iscsi_scsi_rsp_hdr_t *,
1867 (iscsi_scsi_rsp_hdr_t *)pdu->isp_hdr);
1868 idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu);
1869 break;
1870 case ISCSI_OP_SCSI_TASK_MGT_RSP:
1871 /* Target only */
1872 DTRACE_ISCSI_2(task__response, idm_conn_t *, ic,
1873 iscsi_scsi_task_mgt_rsp_hdr_t *,
1874 (iscsi_scsi_task_mgt_rsp_hdr_t *)pdu->isp_hdr);
1875 idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu);
1876 break;
1877 case ISCSI_OP_SCSI_DATA_RSP:
1878 /* Target only */
1879 DTRACE_ISCSI_2(data__send, idm_conn_t *, ic,
1880 iscsi_data_rsp_hdr_t *,
1881 (iscsi_data_rsp_hdr_t *)pdu->isp_hdr);
1882 idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu);
1883 break;
1884 case ISCSI_OP_RTT_RSP:
1885 /* Target only */
1886 DTRACE_ISCSI_2(data__request, idm_conn_t *, ic,
1887 iscsi_rtt_hdr_t *,
1888 (iscsi_rtt_hdr_t *)pdu->isp_hdr);
1889 idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu);
1890 break;
1891 case ISCSI_OP_NOOP_IN:
1892 /* Target only */
1893 DTRACE_ISCSI_2(nop__send, idm_conn_t *, ic,
1894 iscsi_nop_in_hdr_t *,
1895 (iscsi_nop_in_hdr_t *)pdu->isp_hdr);
1896 idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu);
1897 break;
1898 case ISCSI_OP_TEXT_RSP:
1899 /* Target only */
1900 DTRACE_ISCSI_2(text__response, idm_conn_t *, ic,
1901 iscsi_text_rsp_hdr_t *,
1902 (iscsi_text_rsp_hdr_t *)pdu->isp_hdr);
1903 idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu);
1904 break;
1905 /* Initiator only */
1906 case ISCSI_OP_SCSI_CMD:
1907 case ISCSI_OP_SCSI_TASK_MGT_MSG:
1908 case ISCSI_OP_SCSI_DATA:
1909 case ISCSI_OP_NOOP_OUT:
1910 case ISCSI_OP_TEXT_CMD:
1911 case ISCSI_OP_SNACK_CMD:
1912 case ISCSI_OP_REJECT_MSG:
1913 default:
1914 /*
1915 * Connection state machine will validate these PDU's against
1916 * the current state. A PDU not allowed in the current
1917 * state will cause a protocol error.
1918 */
1919 idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu);
1920 break;
1921 }
1922 mutex_exit(&ic->ic_state_mutex);
1923 }
1924
1925 /*
1926 * Common allocation of a PDU along with memory for header and data.
1927 */
1928 static idm_pdu_t *
idm_pdu_alloc_common(uint_t hdrlen,uint_t datalen,int sleepflag)1929 idm_pdu_alloc_common(uint_t hdrlen, uint_t datalen, int sleepflag)
1930 {
1931 idm_pdu_t *result;
1932
1933 /*
1934 * IDM clients should cache these structures for performance
1935 * critical paths. We can't cache effectively in IDM because we
1936 * don't know the correct header and data size.
1937 *
1938 * Valid header length is assumed to be hdrlen and valid data
1939 * length is assumed to be datalen. isp_hdrlen and isp_datalen
1940 * can be adjusted after the PDU is returned if necessary.
1941 */
1942 result = kmem_zalloc(sizeof (idm_pdu_t) + hdrlen + datalen, sleepflag);
1943 if (result != NULL) {
1944 /* For idm_pdu_free sanity check */
1945 result->isp_flags |= IDM_PDU_ALLOC;
1946 /* pointer arithmetic */
1947 result->isp_hdr = (iscsi_hdr_t *)(result + 1);
1948 result->isp_hdrlen = hdrlen;
1949 result->isp_hdrbuflen = hdrlen;
1950 result->isp_transport_hdrlen = 0;
1951 if (datalen != 0)
1952 result->isp_data = (uint8_t *)result->isp_hdr + hdrlen;
1953 result->isp_datalen = datalen;
1954 result->isp_databuflen = datalen;
1955 result->isp_magic = IDM_PDU_MAGIC;
1956 }
1957
1958 return (result);
1959 }
1960
1961 /*
1962 * Typical idm_pdu_alloc invocation, will block for resources.
1963 */
1964 idm_pdu_t *
idm_pdu_alloc(uint_t hdrlen,uint_t datalen)1965 idm_pdu_alloc(uint_t hdrlen, uint_t datalen)
1966 {
1967 return (idm_pdu_alloc_common(hdrlen, datalen, KM_SLEEP));
1968 }
1969
1970 /*
1971 * Non-blocking idm_pdu_alloc implementation, returns NULL if resources
1972 * are not available. Needed for transport-layer allocations which may
1973 * be invoking in interrupt context.
1974 */
1975 idm_pdu_t *
idm_pdu_alloc_nosleep(uint_t hdrlen,uint_t datalen)1976 idm_pdu_alloc_nosleep(uint_t hdrlen, uint_t datalen)
1977 {
1978 return (idm_pdu_alloc_common(hdrlen, datalen, KM_NOSLEEP));
1979 }
1980
1981 /*
1982 * Free a PDU previously allocated with idm_pdu_alloc() including any
1983 * header and data space allocated as part of the original request.
1984 * Additional memory regions referenced by subsequent modification of
1985 * the isp_hdr and/or isp_data fields will not be freed.
1986 */
1987 void
idm_pdu_free(idm_pdu_t * pdu)1988 idm_pdu_free(idm_pdu_t *pdu)
1989 {
1990 /* Make sure the structure was allocated using idm_pdu_alloc() */
1991 ASSERT(pdu->isp_flags & IDM_PDU_ALLOC);
1992 kmem_free(pdu,
1993 sizeof (idm_pdu_t) + pdu->isp_hdrbuflen + pdu->isp_databuflen);
1994 }
1995
1996 /*
1997 * Initialize the connection, private and callback fields in a PDU.
1998 */
1999 void
idm_pdu_init(idm_pdu_t * pdu,idm_conn_t * ic,void * private,idm_pdu_cb_t * cb)2000 idm_pdu_init(idm_pdu_t *pdu, idm_conn_t *ic, void *private, idm_pdu_cb_t *cb)
2001 {
2002 /*
2003 * idm_pdu_complete() will call idm_pdu_free if the callback is
2004 * NULL. This will only work if the PDU was originally allocated
2005 * with idm_pdu_alloc().
2006 */
2007 ASSERT((pdu->isp_flags & IDM_PDU_ALLOC) ||
2008 (cb != NULL));
2009 pdu->isp_magic = IDM_PDU_MAGIC;
2010 pdu->isp_ic = ic;
2011 pdu->isp_private = private;
2012 pdu->isp_callback = cb;
2013 }
2014
2015 /*
2016 * Initialize the header and header length field. This function should
2017 * not be used to adjust the header length in a buffer allocated via
2018 * pdu_pdu_alloc since it overwrites the existing header pointer.
2019 */
2020 void
idm_pdu_init_hdr(idm_pdu_t * pdu,uint8_t * hdr,uint_t hdrlen)2021 idm_pdu_init_hdr(idm_pdu_t *pdu, uint8_t *hdr, uint_t hdrlen)
2022 {
2023 pdu->isp_hdr = (iscsi_hdr_t *)((void *)hdr);
2024 pdu->isp_hdrlen = hdrlen;
2025 }
2026
2027 /*
2028 * Initialize the data and data length fields. This function should
2029 * not be used to adjust the data length of a buffer allocated via
2030 * idm_pdu_alloc since it overwrites the existing data pointer.
2031 */
2032 void
idm_pdu_init_data(idm_pdu_t * pdu,uint8_t * data,uint_t datalen)2033 idm_pdu_init_data(idm_pdu_t *pdu, uint8_t *data, uint_t datalen)
2034 {
2035 pdu->isp_data = data;
2036 pdu->isp_datalen = datalen;
2037 }
2038
2039 void
idm_pdu_complete(idm_pdu_t * pdu,idm_status_t status)2040 idm_pdu_complete(idm_pdu_t *pdu, idm_status_t status)
2041 {
2042 if (pdu->isp_callback) {
2043 pdu->isp_status = status;
2044 (*pdu->isp_callback)(pdu, status);
2045 } else {
2046 idm_pdu_free(pdu);
2047 }
2048 }
2049
2050 /*
2051 * State machine auditing
2052 */
2053
2054 void
idm_sm_audit_init(sm_audit_buf_t * audit_buf)2055 idm_sm_audit_init(sm_audit_buf_t *audit_buf)
2056 {
2057 bzero(audit_buf, sizeof (sm_audit_buf_t));
2058 audit_buf->sab_max_index = SM_AUDIT_BUF_MAX_REC - 1;
2059 }
2060
2061 static
2062 sm_audit_record_t *
idm_sm_audit_common(sm_audit_buf_t * audit_buf,sm_audit_record_type_t r_type,sm_audit_sm_type_t sm_type,int current_state)2063 idm_sm_audit_common(sm_audit_buf_t *audit_buf, sm_audit_record_type_t r_type,
2064 sm_audit_sm_type_t sm_type,
2065 int current_state)
2066 {
2067 sm_audit_record_t *sar;
2068
2069 sar = audit_buf->sab_records;
2070 sar += audit_buf->sab_index;
2071 audit_buf->sab_index++;
2072 audit_buf->sab_index &= audit_buf->sab_max_index;
2073
2074 sar->sar_type = r_type;
2075 gethrestime(&sar->sar_timestamp);
2076 sar->sar_sm_type = sm_type;
2077 sar->sar_state = current_state;
2078
2079 return (sar);
2080 }
2081
2082 void
idm_sm_audit_event(sm_audit_buf_t * audit_buf,sm_audit_sm_type_t sm_type,int current_state,int event,uintptr_t event_info)2083 idm_sm_audit_event(sm_audit_buf_t *audit_buf,
2084 sm_audit_sm_type_t sm_type, int current_state,
2085 int event, uintptr_t event_info)
2086 {
2087 sm_audit_record_t *sar;
2088
2089 sar = idm_sm_audit_common(audit_buf, SAR_STATE_EVENT,
2090 sm_type, current_state);
2091 sar->sar_event = event;
2092 sar->sar_event_info = event_info;
2093 }
2094
2095 void
idm_sm_audit_state_change(sm_audit_buf_t * audit_buf,sm_audit_sm_type_t sm_type,int current_state,int new_state)2096 idm_sm_audit_state_change(sm_audit_buf_t *audit_buf,
2097 sm_audit_sm_type_t sm_type, int current_state, int new_state)
2098 {
2099 sm_audit_record_t *sar;
2100
2101 sar = idm_sm_audit_common(audit_buf, SAR_STATE_CHANGE,
2102 sm_type, current_state);
2103 sar->sar_new_state = new_state;
2104 }
2105
2106
2107 /*
2108 * Object reference tracking
2109 */
2110
2111 void
idm_refcnt_init(idm_refcnt_t * refcnt,void * referenced_obj)2112 idm_refcnt_init(idm_refcnt_t *refcnt, void *referenced_obj)
2113 {
2114 bzero(refcnt, sizeof (*refcnt));
2115 idm_refcnt_reset(refcnt);
2116 refcnt->ir_referenced_obj = referenced_obj;
2117 bzero(&refcnt->ir_audit_buf, sizeof (refcnt_audit_buf_t));
2118 refcnt->ir_audit_buf.anb_max_index = REFCNT_AUDIT_BUF_MAX_REC - 1;
2119 mutex_init(&refcnt->ir_mutex, NULL, MUTEX_DEFAULT, NULL);
2120 cv_init(&refcnt->ir_cv, NULL, CV_DEFAULT, NULL);
2121 }
2122
2123 void
idm_refcnt_destroy(idm_refcnt_t * refcnt)2124 idm_refcnt_destroy(idm_refcnt_t *refcnt)
2125 {
2126 /*
2127 * Grab the mutex to there are no other lingering threads holding
2128 * the mutex before we destroy it (e.g. idm_refcnt_rele just after
2129 * the refcnt goes to zero if ir_waiting == REF_WAIT_ASYNC)
2130 */
2131 mutex_enter(&refcnt->ir_mutex);
2132 ASSERT(refcnt->ir_refcnt == 0);
2133 cv_destroy(&refcnt->ir_cv);
2134 mutex_destroy(&refcnt->ir_mutex);
2135 }
2136
2137 void
idm_refcnt_reset(idm_refcnt_t * refcnt)2138 idm_refcnt_reset(idm_refcnt_t *refcnt)
2139 {
2140 refcnt->ir_waiting = REF_NOWAIT;
2141 refcnt->ir_refcnt = 0;
2142 }
2143
2144 void
idm_refcnt_hold(idm_refcnt_t * refcnt)2145 idm_refcnt_hold(idm_refcnt_t *refcnt)
2146 {
2147 /*
2148 * Nothing should take a hold on an object after a call to
2149 * idm_refcnt_wait_ref or idm_refcnd_async_wait_ref
2150 */
2151 ASSERT(refcnt->ir_waiting == REF_NOWAIT);
2152
2153 mutex_enter(&refcnt->ir_mutex);
2154 refcnt->ir_refcnt++;
2155 REFCNT_AUDIT(refcnt);
2156 mutex_exit(&refcnt->ir_mutex);
2157 }
2158
2159 static void
idm_refcnt_unref_task(void * refcnt_void)2160 idm_refcnt_unref_task(void *refcnt_void)
2161 {
2162 idm_refcnt_t *refcnt = refcnt_void;
2163
2164 REFCNT_AUDIT(refcnt);
2165 (*refcnt->ir_cb)(refcnt->ir_referenced_obj);
2166 }
2167
2168 void
idm_refcnt_rele(idm_refcnt_t * refcnt)2169 idm_refcnt_rele(idm_refcnt_t *refcnt)
2170 {
2171 mutex_enter(&refcnt->ir_mutex);
2172 ASSERT(refcnt->ir_refcnt > 0);
2173 refcnt->ir_refcnt--;
2174 REFCNT_AUDIT(refcnt);
2175 if (refcnt->ir_waiting == REF_NOWAIT) {
2176 /* No one is waiting on this object */
2177 mutex_exit(&refcnt->ir_mutex);
2178 return;
2179 }
2180
2181 /*
2182 * Someone is waiting for this object to go idle so check if
2183 * refcnt is 0. Waiting on an object then later grabbing another
2184 * reference is not allowed so we don't need to handle that case.
2185 */
2186 if (refcnt->ir_refcnt == 0) {
2187 if (refcnt->ir_waiting == REF_WAIT_ASYNC) {
2188 if (taskq_dispatch(idm.idm_global_taskq,
2189 &idm_refcnt_unref_task, refcnt, TQ_SLEEP) ==
2190 TASKQID_INVALID) {
2191 cmn_err(CE_WARN,
2192 "idm_refcnt_rele: Couldn't dispatch task");
2193 }
2194 } else if (refcnt->ir_waiting == REF_WAIT_SYNC) {
2195 cv_signal(&refcnt->ir_cv);
2196 }
2197 }
2198 mutex_exit(&refcnt->ir_mutex);
2199 }
2200
2201 void
idm_refcnt_rele_and_destroy(idm_refcnt_t * refcnt,idm_refcnt_cb_t * cb_func)2202 idm_refcnt_rele_and_destroy(idm_refcnt_t *refcnt, idm_refcnt_cb_t *cb_func)
2203 {
2204 mutex_enter(&refcnt->ir_mutex);
2205 ASSERT(refcnt->ir_refcnt > 0);
2206 refcnt->ir_refcnt--;
2207 REFCNT_AUDIT(refcnt);
2208
2209 /*
2210 * Someone is waiting for this object to go idle so check if
2211 * refcnt is 0. Waiting on an object then later grabbing another
2212 * reference is not allowed so we don't need to handle that case.
2213 */
2214 if (refcnt->ir_refcnt == 0) {
2215 refcnt->ir_cb = cb_func;
2216 refcnt->ir_waiting = REF_WAIT_ASYNC;
2217 if (taskq_dispatch(idm.idm_global_taskq,
2218 &idm_refcnt_unref_task, refcnt, TQ_SLEEP) ==
2219 TASKQID_INVALID) {
2220 cmn_err(CE_WARN,
2221 "idm_refcnt_rele: Couldn't dispatch task");
2222 }
2223 }
2224 mutex_exit(&refcnt->ir_mutex);
2225 }
2226
2227 void
idm_refcnt_wait_ref(idm_refcnt_t * refcnt)2228 idm_refcnt_wait_ref(idm_refcnt_t *refcnt)
2229 {
2230 mutex_enter(&refcnt->ir_mutex);
2231 refcnt->ir_waiting = REF_WAIT_SYNC;
2232 REFCNT_AUDIT(refcnt);
2233 while (refcnt->ir_refcnt != 0)
2234 cv_wait(&refcnt->ir_cv, &refcnt->ir_mutex);
2235 mutex_exit(&refcnt->ir_mutex);
2236 }
2237
2238 void
idm_refcnt_async_wait_ref(idm_refcnt_t * refcnt,idm_refcnt_cb_t * cb_func)2239 idm_refcnt_async_wait_ref(idm_refcnt_t *refcnt, idm_refcnt_cb_t *cb_func)
2240 {
2241 mutex_enter(&refcnt->ir_mutex);
2242 refcnt->ir_waiting = REF_WAIT_ASYNC;
2243 refcnt->ir_cb = cb_func;
2244 REFCNT_AUDIT(refcnt);
2245 /*
2246 * It's possible we don't have any references. To make things easier
2247 * on the caller use a taskq to call the callback instead of
2248 * calling it synchronously
2249 */
2250 if (refcnt->ir_refcnt == 0) {
2251 if (taskq_dispatch(idm.idm_global_taskq,
2252 &idm_refcnt_unref_task, refcnt, TQ_SLEEP) ==
2253 TASKQID_INVALID) {
2254 cmn_err(CE_WARN,
2255 "idm_refcnt_async_wait_ref: "
2256 "Couldn't dispatch task");
2257 }
2258 }
2259 mutex_exit(&refcnt->ir_mutex);
2260 }
2261
2262 void
idm_refcnt_destroy_unref_obj(idm_refcnt_t * refcnt,idm_refcnt_cb_t * cb_func)2263 idm_refcnt_destroy_unref_obj(idm_refcnt_t *refcnt,
2264 idm_refcnt_cb_t *cb_func)
2265 {
2266 mutex_enter(&refcnt->ir_mutex);
2267 if (refcnt->ir_refcnt == 0) {
2268 mutex_exit(&refcnt->ir_mutex);
2269 (*cb_func)(refcnt->ir_referenced_obj);
2270 return;
2271 }
2272 mutex_exit(&refcnt->ir_mutex);
2273 }
2274
2275 /*
2276 * used to determine the status of the refcnt.
2277 *
2278 * if refcnt is 0 return is 0
2279 * if refcnt is negative return is -1
2280 * if refcnt > 0 and no waiters return is 1
2281 * if refcnt > 0 and waiters return is 2
2282 */
2283 int
idm_refcnt_is_held(idm_refcnt_t * refcnt)2284 idm_refcnt_is_held(idm_refcnt_t *refcnt)
2285 {
2286 if (refcnt->ir_refcnt < 0)
2287 return (-1);
2288
2289 if (refcnt->ir_refcnt == 0)
2290 return (0);
2291
2292 if (refcnt->ir_waiting == REF_NOWAIT && refcnt->ir_refcnt > 0)
2293 return (1);
2294
2295 return (2);
2296 }
2297
2298 void
idm_conn_hold(idm_conn_t * ic)2299 idm_conn_hold(idm_conn_t *ic)
2300 {
2301 idm_refcnt_hold(&ic->ic_refcnt);
2302 }
2303
2304 void
idm_conn_rele(idm_conn_t * ic)2305 idm_conn_rele(idm_conn_t *ic)
2306 {
2307 idm_refcnt_rele(&ic->ic_refcnt);
2308 }
2309
2310 void
idm_conn_set_target_name(idm_conn_t * ic,char * target_name)2311 idm_conn_set_target_name(idm_conn_t *ic, char *target_name)
2312 {
2313 (void) strlcpy(ic->ic_target_name, target_name, ISCSI_MAX_NAME_LEN + 1);
2314 }
2315
2316 void
idm_conn_set_initiator_name(idm_conn_t * ic,char * initiator_name)2317 idm_conn_set_initiator_name(idm_conn_t *ic, char *initiator_name)
2318 {
2319 (void) strlcpy(ic->ic_initiator_name, initiator_name,
2320 ISCSI_MAX_NAME_LEN + 1);
2321 }
2322
2323 void
idm_conn_set_isid(idm_conn_t * ic,uint8_t isid[ISCSI_ISID_LEN])2324 idm_conn_set_isid(idm_conn_t *ic, uint8_t isid[ISCSI_ISID_LEN])
2325 {
2326 (void) snprintf(ic->ic_isid, ISCSI_MAX_ISID_LEN + 1,
2327 "%02x%02x%02x%02x%02x%02x",
2328 isid[0], isid[1], isid[2], isid[3], isid[4], isid[5]);
2329 }
2330
2331 static int
_idm_init(void)2332 _idm_init(void)
2333 {
2334 /* Initialize the rwlock for the taskid table */
2335 rw_init(&idm.idm_taskid_table_lock, NULL, RW_DRIVER, NULL);
2336
2337 /* Initialize the global mutex and taskq */
2338 mutex_init(&idm.idm_global_mutex, NULL, MUTEX_DEFAULT, NULL);
2339
2340 cv_init(&idm.idm_tgt_svc_cv, NULL, CV_DEFAULT, NULL);
2341 cv_init(&idm.idm_wd_cv, NULL, CV_DEFAULT, NULL);
2342
2343 /*
2344 * The maximum allocation needs to be high here since there can be
2345 * many concurrent tasks using the global taskq.
2346 */
2347 idm.idm_global_taskq = taskq_create("idm_global_taskq", 1, minclsyspri,
2348 128, 16384, TASKQ_PREPOPULATE);
2349 if (idm.idm_global_taskq == NULL) {
2350 cv_destroy(&idm.idm_wd_cv);
2351 cv_destroy(&idm.idm_tgt_svc_cv);
2352 mutex_destroy(&idm.idm_global_mutex);
2353 rw_destroy(&idm.idm_taskid_table_lock);
2354 return (ENOMEM);
2355 }
2356
2357 /* Start watchdog thread */
2358 idm.idm_wd_thread = thread_create(NULL, 0,
2359 idm_wd_thread, NULL, 0, &p0, TS_RUN, minclsyspri);
2360 if (idm.idm_wd_thread == NULL) {
2361 /* Couldn't create the watchdog thread */
2362 taskq_destroy(idm.idm_global_taskq);
2363 cv_destroy(&idm.idm_wd_cv);
2364 cv_destroy(&idm.idm_tgt_svc_cv);
2365 mutex_destroy(&idm.idm_global_mutex);
2366 rw_destroy(&idm.idm_taskid_table_lock);
2367 return (ENOMEM);
2368 }
2369
2370 /* Pause until the watchdog thread is running */
2371 mutex_enter(&idm.idm_global_mutex);
2372 while (!idm.idm_wd_thread_running)
2373 cv_wait(&idm.idm_wd_cv, &idm.idm_global_mutex);
2374 mutex_exit(&idm.idm_global_mutex);
2375
2376 /*
2377 * Allocate the task ID table and set "next" to 0.
2378 */
2379
2380 idm.idm_taskid_max = idm_max_taskids;
2381 idm.idm_taskid_table = (idm_task_t **)
2382 kmem_zalloc(idm.idm_taskid_max * sizeof (idm_task_t *), KM_SLEEP);
2383 idm.idm_taskid_next = 0;
2384
2385 /* Create the global buffer and task kmem caches */
2386 idm.idm_buf_cache = kmem_cache_create("idm_buf_cache",
2387 sizeof (idm_buf_t), 8, NULL, NULL, NULL, NULL, NULL, KM_SLEEP);
2388
2389 /*
2390 * Note, we're explicitly allocating an additional iSER header-
2391 * sized chunk for each of these elements. See idm_task_constructor().
2392 */
2393 idm.idm_task_cache = kmem_cache_create("idm_task_cache",
2394 sizeof (idm_task_t) + IDM_TRANSPORT_HEADER_LENGTH, 8,
2395 &idm_task_constructor, &idm_task_destructor,
2396 NULL, NULL, NULL, KM_SLEEP);
2397
2398 /* Create the service and connection context lists */
2399 list_create(&idm.idm_tgt_svc_list, sizeof (idm_svc_t),
2400 offsetof(idm_svc_t, is_list_node));
2401 list_create(&idm.idm_tgt_conn_list, sizeof (idm_conn_t),
2402 offsetof(idm_conn_t, ic_list_node));
2403 list_create(&idm.idm_ini_conn_list, sizeof (idm_conn_t),
2404 offsetof(idm_conn_t, ic_list_node));
2405
2406 /* Initialize the native sockets transport */
2407 idm_so_init(&idm_transport_list[IDM_TRANSPORT_TYPE_SOCKETS]);
2408
2409 /* Create connection ID pool */
2410 (void) idm_idpool_create(&idm.idm_conn_id_pool);
2411
2412 return (DDI_SUCCESS);
2413 }
2414
2415 static int
_idm_fini(void)2416 _idm_fini(void)
2417 {
2418 if (!list_is_empty(&idm.idm_ini_conn_list) ||
2419 !list_is_empty(&idm.idm_tgt_conn_list) ||
2420 !list_is_empty(&idm.idm_tgt_svc_list)) {
2421 return (EBUSY);
2422 }
2423
2424 mutex_enter(&idm.idm_global_mutex);
2425 idm.idm_wd_thread_running = B_FALSE;
2426 cv_signal(&idm.idm_wd_cv);
2427 mutex_exit(&idm.idm_global_mutex);
2428
2429 thread_join(idm.idm_wd_thread_did);
2430
2431 idm_idpool_destroy(&idm.idm_conn_id_pool);
2432
2433 /* Close any LDI handles we have open on transport drivers */
2434 mutex_enter(&idm.idm_global_mutex);
2435 idm_transport_teardown();
2436 mutex_exit(&idm.idm_global_mutex);
2437
2438 /* Teardown the native sockets transport */
2439 idm_so_fini();
2440
2441 list_destroy(&idm.idm_ini_conn_list);
2442 list_destroy(&idm.idm_tgt_conn_list);
2443 list_destroy(&idm.idm_tgt_svc_list);
2444 kmem_cache_destroy(idm.idm_task_cache);
2445 kmem_cache_destroy(idm.idm_buf_cache);
2446 kmem_free(idm.idm_taskid_table,
2447 idm.idm_taskid_max * sizeof (idm_task_t *));
2448 mutex_destroy(&idm.idm_global_mutex);
2449 cv_destroy(&idm.idm_wd_cv);
2450 cv_destroy(&idm.idm_tgt_svc_cv);
2451 rw_destroy(&idm.idm_taskid_table_lock);
2452
2453 return (0);
2454 }
2455