1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26
27 /*
28 * Copyright (c) 2018, Joyent, Inc.
29 */
30
31 #include <sys/types.h>
32 #include <sys/time.h>
33 #include <sys/nvpair.h>
34 #include <sys/cmn_err.h>
35 #include <sys/cred.h>
36 #include <sys/open.h>
37 #include <sys/ddi.h>
38 #include <sys/sunddi.h>
39 #include <sys/conf.h>
40 #include <sys/modctl.h>
41 #include <sys/cyclic.h>
42 #include <sys/errorq.h>
43 #include <sys/stat.h>
44 #include <sys/cpuvar.h>
45 #include <sys/mc_intel.h>
46 #include <sys/mc.h>
47 #include <sys/fm/protocol.h>
48 #include "nhm_log.h"
49 #include "intel_nhm.h"
50
51 extern nvlist_t *inhm_mc_nvl[MAX_CPU_NODES];
52 extern char closed_page;
53 extern char ecc_enabled;
54 extern char lockstep[MAX_CPU_NODES];
55 extern char mirror_mode[MAX_CPU_NODES];
56 extern char spare_channel[MAX_CPU_NODES];
57
58 static void
inhm_vrank(nvlist_t * vrank,int num,uint64_t dimm_base,uint64_t limit,uint32_t sinterleave,uint32_t cinterleave,uint32_t rinterleave,uint32_t sway,uint32_t cway,uint32_t rway)59 inhm_vrank(nvlist_t *vrank, int num, uint64_t dimm_base, uint64_t limit,
60 uint32_t sinterleave, uint32_t cinterleave, uint32_t rinterleave,
61 uint32_t sway, uint32_t cway, uint32_t rway)
62 {
63 char buf[128];
64
65 (void) snprintf(buf, sizeof (buf), "dimm-rank-base-%d", num);
66 (void) nvlist_add_uint64(vrank, buf, dimm_base);
67 (void) snprintf(buf, sizeof (buf), "dimm-rank-limit-%d", num);
68 (void) nvlist_add_uint64(vrank, buf, dimm_base + limit);
69 if (sinterleave > 1) {
70 (void) snprintf(buf, sizeof (buf), "dimm-socket-interleave-%d",
71 num);
72 (void) nvlist_add_uint32(vrank, buf, sinterleave);
73 (void) snprintf(buf, sizeof (buf),
74 "dimm-socket-interleave-way-%d", num);
75 (void) nvlist_add_uint32(vrank, buf, sway);
76 }
77 if (cinterleave > 1) {
78 (void) snprintf(buf, sizeof (buf), "dimm-channel-interleave-%d",
79 num);
80 (void) nvlist_add_uint32(vrank, buf, cinterleave);
81 (void) snprintf(buf, sizeof (buf),
82 "dimm-channel-interleave-way-%d", num);
83 (void) nvlist_add_uint32(vrank, buf, cway);
84 }
85 if (rinterleave > 1) {
86 (void) snprintf(buf, sizeof (buf), "dimm-rank-interleave-%d",
87 num);
88 (void) nvlist_add_uint32(vrank, buf, rinterleave);
89 (void) snprintf(buf, sizeof (buf),
90 "dimm-rank-interleave-way-%d", num);
91 (void) nvlist_add_uint32(vrank, buf, rway);
92 }
93 }
94
95 static void
inhm_rank(nvlist_t * newdimm,nhm_dimm_t * nhm_dimm,uint32_t node,uint8_t channel,uint32_t dimm,uint64_t rank_size)96 inhm_rank(nvlist_t *newdimm, nhm_dimm_t *nhm_dimm, uint32_t node,
97 uint8_t channel, uint32_t dimm, uint64_t rank_size)
98 {
99 nvlist_t **newrank;
100 int num;
101 int i;
102 uint64_t dimm_base;
103 uint64_t vrank_sz;
104 uint64_t rank_addr;
105 uint64_t pa;
106 uint32_t sinterleave, cinterleave, rinterleave;
107 uint32_t sway, cway, rway;
108
109 newrank = kmem_zalloc(sizeof (nvlist_t *) * nhm_dimm->nranks, KM_SLEEP);
110 for (i = 0; i < nhm_dimm->nranks; i++) {
111 (void) nvlist_alloc(&newrank[i], NV_UNIQUE_NAME, KM_SLEEP);
112 rank_addr = 0;
113 num = 0;
114 while (rank_addr < rank_size) {
115 pa = dimm_to_addr(node, channel, dimm * 4 + i,
116 rank_addr, &dimm_base, &vrank_sz, &sinterleave,
117 &cinterleave, &rinterleave, &sway, &cway, &rway);
118 if (pa == -1 || vrank_sz == 0)
119 break;
120 inhm_vrank(newrank[i], num, dimm_base,
121 vrank_sz * sinterleave * cinterleave * rinterleave,
122 sinterleave, cinterleave, rinterleave, sway, cway,
123 rway);
124 rank_addr += vrank_sz;
125 num++;
126 }
127
128 }
129 (void) nvlist_add_nvlist_array(newdimm, MCINTEL_NVLIST_RANKS, newrank,
130 nhm_dimm->nranks);
131 for (i = 0; i < nhm_dimm->nranks; i++)
132 nvlist_free(newrank[i]);
133 kmem_free(newrank, sizeof (nvlist_t *) * nhm_dimm->nranks);
134 }
135
136 static nvlist_t *
inhm_dimm(nhm_dimm_t * nhm_dimm,uint32_t node,uint8_t channel,uint32_t dimm)137 inhm_dimm(nhm_dimm_t *nhm_dimm, uint32_t node, uint8_t channel, uint32_t dimm)
138 {
139 nvlist_t *newdimm;
140 uint8_t t;
141 char sbuf[65];
142
143 (void) nvlist_alloc(&newdimm, NV_UNIQUE_NAME, KM_SLEEP);
144 (void) nvlist_add_uint32(newdimm, "dimm-number", dimm);
145
146 if (nhm_dimm->dimm_size >= 1024*1024*1024) {
147 (void) snprintf(sbuf, sizeof (sbuf), "%dG",
148 (int)(nhm_dimm->dimm_size / (1024*1024*1024)));
149 } else {
150 (void) snprintf(sbuf, sizeof (sbuf), "%dM",
151 (int)(nhm_dimm->dimm_size / (1024*1024)));
152 }
153 (void) nvlist_add_string(newdimm, "dimm-size", sbuf);
154 (void) nvlist_add_uint64(newdimm, "size", nhm_dimm->dimm_size);
155 (void) nvlist_add_uint32(newdimm, "nbanks", (uint32_t)nhm_dimm->nbanks);
156 (void) nvlist_add_uint32(newdimm, "ncolumn",
157 (uint32_t)nhm_dimm->ncolumn);
158 (void) nvlist_add_uint32(newdimm, "nrow", (uint32_t)nhm_dimm->nrow);
159 (void) nvlist_add_uint32(newdimm, "width", (uint32_t)nhm_dimm->width);
160 (void) nvlist_add_uint32(newdimm, "ranks", (uint32_t)nhm_dimm->nranks);
161 inhm_rank(newdimm, nhm_dimm, node, channel, dimm,
162 nhm_dimm->dimm_size / nhm_dimm->nranks);
163 if (nhm_dimm->manufacturer[0]) {
164 t = sizeof (nhm_dimm->manufacturer);
165 (void) strncpy(sbuf, nhm_dimm->manufacturer, t);
166 sbuf[t] = 0;
167 (void) nvlist_add_string(newdimm, "manufacturer", sbuf);
168 }
169 if (nhm_dimm->serial_number[0]) {
170 t = sizeof (nhm_dimm->serial_number);
171 (void) strncpy(sbuf, nhm_dimm->serial_number, t);
172 sbuf[t] = 0;
173 (void) nvlist_add_string(newdimm, FM_FMRI_HC_SERIAL_ID, sbuf);
174 }
175 if (nhm_dimm->part_number[0]) {
176 t = sizeof (nhm_dimm->part_number);
177 (void) strncpy(sbuf, nhm_dimm->part_number, t);
178 sbuf[t] = 0;
179 (void) nvlist_add_string(newdimm, FM_FMRI_HC_PART, sbuf);
180 }
181 if (nhm_dimm->revision[0]) {
182 t = sizeof (nhm_dimm->revision);
183 (void) strncpy(sbuf, nhm_dimm->revision, t);
184 sbuf[t] = 0;
185 (void) nvlist_add_string(newdimm, FM_FMRI_HC_REVISION, sbuf);
186 }
187 t = sizeof (nhm_dimm->label);
188 (void) strncpy(sbuf, nhm_dimm->label, t);
189 sbuf[t] = 0;
190 (void) nvlist_add_string(newdimm, FM_FAULT_FRU_LABEL, sbuf);
191 return (newdimm);
192 }
193
194 static void
inhm_dimmlist(uint32_t node,nvlist_t * nvl)195 inhm_dimmlist(uint32_t node, nvlist_t *nvl)
196 {
197 nvlist_t **dimmlist;
198 nvlist_t **newchannel;
199 int nchannels = CHANNELS_PER_MEMORY_CONTROLLER;
200 int nd;
201 uint8_t i, j;
202 nhm_dimm_t **dimmpp;
203 nhm_dimm_t *dimmp;
204
205 dimmlist = kmem_zalloc(sizeof (nvlist_t *) * MAX_DIMMS_PER_CHANNEL,
206 KM_SLEEP);
207 newchannel = kmem_zalloc(sizeof (nvlist_t *) * nchannels, KM_SLEEP);
208 dimmpp = &nhm_dimms[node * CHANNELS_PER_MEMORY_CONTROLLER *
209 MAX_DIMMS_PER_CHANNEL];
210 (void) nvlist_add_string(nvl, "memory-policy",
211 closed_page ? "closed-page" : "open-page");
212 (void) nvlist_add_string(nvl, "memory-ecc",
213 ecc_enabled ? lockstep[node] ? "x8" : "x4" : "no");
214 for (i = 0; i < nchannels; i++) {
215 (void) nvlist_alloc(&newchannel[i], NV_UNIQUE_NAME, KM_SLEEP);
216 (void) nvlist_add_string(newchannel[i], "channel-mode",
217 CHANNEL_DISABLED(MC_STATUS_RD(node), i) ? "disabled" :
218 i != 2 && lockstep[node] ? "lockstep" :
219 i != 2 && mirror_mode[node] ?
220 REDUNDANCY_LOSS(MC_RAS_STATUS_RD(node)) ?
221 "redundancy-loss" : "mirror" :
222 i == 2 && spare_channel[node] &&
223 !REDUNDANCY_LOSS(MC_RAS_STATUS_RD(node)) ? "spare" :
224 "independent");
225 nd = 0;
226 for (j = 0; j < MAX_DIMMS_PER_CHANNEL; j++) {
227 dimmp = *dimmpp;
228 if (dimmp != NULL) {
229 dimmlist[nd] = inhm_dimm(dimmp, node, i,
230 (uint32_t)j);
231 nd++;
232 }
233 dimmpp++;
234 }
235 if (nd) {
236 (void) nvlist_add_nvlist_array(newchannel[i],
237 "memory-dimms", dimmlist, nd);
238 for (j = 0; j < nd; j++)
239 nvlist_free(dimmlist[j]);
240 }
241 }
242 (void) nvlist_add_nvlist_array(nvl, MCINTEL_NVLIST_MC, newchannel,
243 nchannels);
244 for (i = 0; i < nchannels; i++)
245 nvlist_free(newchannel[i]);
246 kmem_free(dimmlist, sizeof (nvlist_t *) * MAX_DIMMS_PER_CHANNEL);
247 kmem_free(newchannel, sizeof (nvlist_t *) * nchannels);
248 }
249
250 char *
inhm_mc_name()251 inhm_mc_name()
252 {
253 return (NHM_INTERCONNECT);
254 }
255
256 void
inhm_create_nvl(int chip)257 inhm_create_nvl(int chip)
258 {
259 nvlist_t *nvl;
260
261 (void) nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP);
262 (void) nvlist_add_uint8(nvl, MCINTEL_NVLIST_VERSTR,
263 MCINTEL_NVLIST_VERS);
264 (void) nvlist_add_string(nvl, MCINTEL_NVLIST_MEM, inhm_mc_name());
265 (void) nvlist_add_uint8(nvl, MCINTEL_NVLIST_NMEM, 1);
266 (void) nvlist_add_uint8(nvl, MCINTEL_NVLIST_NRANKS, 4);
267 inhm_dimmlist(chip, nvl);
268
269 nvlist_free(inhm_mc_nvl[chip]);
270 inhm_mc_nvl[chip] = nvl;
271 }
272