xref: /linux/arch/s390/net/bpf_jit_comp.c (revision 68378982)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * BPF Jit compiler for s390.
4  *
5  * Minimum build requirements:
6  *
7  *  - HAVE_MARCH_Z196_FEATURES: laal, laalg
8  *  - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
9  *  - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
10  *  - 64BIT
11  *
12  * Copyright IBM Corp. 2012,2015
13  *
14  * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
15  *	      Michael Holzheu <holzheu@linux.vnet.ibm.com>
16  */
17 
18 #define KMSG_COMPONENT "bpf_jit"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20 
21 #include <linux/netdevice.h>
22 #include <linux/filter.h>
23 #include <linux/init.h>
24 #include <linux/bpf.h>
25 #include <linux/mm.h>
26 #include <linux/kernel.h>
27 #include <asm/cacheflush.h>
28 #include <asm/extable.h>
29 #include <asm/dis.h>
30 #include <asm/facility.h>
31 #include <asm/nospec-branch.h>
32 #include <asm/set_memory.h>
33 #include <asm/text-patching.h>
34 #include "bpf_jit.h"
35 
36 struct bpf_jit {
37 	u32 seen;		/* Flags to remember seen eBPF instructions */
38 	u32 seen_reg[16];	/* Array to remember which registers are used */
39 	u32 *addrs;		/* Array with relative instruction addresses */
40 	u8 *prg_buf;		/* Start of program */
41 	int size;		/* Size of program and literal pool */
42 	int size_prg;		/* Size of program */
43 	int prg;		/* Current position in program */
44 	int lit32_start;	/* Start of 32-bit literal pool */
45 	int lit32;		/* Current position in 32-bit literal pool */
46 	int lit64_start;	/* Start of 64-bit literal pool */
47 	int lit64;		/* Current position in 64-bit literal pool */
48 	int base_ip;		/* Base address for literal pool */
49 	int exit_ip;		/* Address of exit */
50 	int r1_thunk_ip;	/* Address of expoline thunk for 'br %r1' */
51 	int r14_thunk_ip;	/* Address of expoline thunk for 'br %r14' */
52 	int tail_call_start;	/* Tail call start offset */
53 	int excnt;		/* Number of exception table entries */
54 	int prologue_plt_ret;	/* Return address for prologue hotpatch PLT */
55 	int prologue_plt;	/* Start of prologue hotpatch PLT */
56 };
57 
58 #define SEEN_MEM	BIT(0)		/* use mem[] for temporary storage */
59 #define SEEN_LITERAL	BIT(1)		/* code uses literals */
60 #define SEEN_FUNC	BIT(2)		/* calls C functions */
61 #define SEEN_STACK	(SEEN_FUNC | SEEN_MEM)
62 
63 /*
64  * s390 registers
65  */
66 #define REG_W0		(MAX_BPF_JIT_REG + 0)	/* Work register 1 (even) */
67 #define REG_W1		(MAX_BPF_JIT_REG + 1)	/* Work register 2 (odd) */
68 #define REG_L		(MAX_BPF_JIT_REG + 2)	/* Literal pool register */
69 #define REG_15		(MAX_BPF_JIT_REG + 3)	/* Register 15 */
70 #define REG_0		REG_W0			/* Register 0 */
71 #define REG_1		REG_W1			/* Register 1 */
72 #define REG_2		BPF_REG_1		/* Register 2 */
73 #define REG_3		BPF_REG_2		/* Register 3 */
74 #define REG_4		BPF_REG_3		/* Register 4 */
75 #define REG_7		BPF_REG_6		/* Register 7 */
76 #define REG_8		BPF_REG_7		/* Register 8 */
77 #define REG_14		BPF_REG_0		/* Register 14 */
78 
79 /*
80  * Mapping of BPF registers to s390 registers
81  */
82 static const int reg2hex[] = {
83 	/* Return code */
84 	[BPF_REG_0]	= 14,
85 	/* Function parameters */
86 	[BPF_REG_1]	= 2,
87 	[BPF_REG_2]	= 3,
88 	[BPF_REG_3]	= 4,
89 	[BPF_REG_4]	= 5,
90 	[BPF_REG_5]	= 6,
91 	/* Call saved registers */
92 	[BPF_REG_6]	= 7,
93 	[BPF_REG_7]	= 8,
94 	[BPF_REG_8]	= 9,
95 	[BPF_REG_9]	= 10,
96 	/* BPF stack pointer */
97 	[BPF_REG_FP]	= 13,
98 	/* Register for blinding */
99 	[BPF_REG_AX]	= 12,
100 	/* Work registers for s390x backend */
101 	[REG_W0]	= 0,
102 	[REG_W1]	= 1,
103 	[REG_L]		= 11,
104 	[REG_15]	= 15,
105 };
106 
reg(u32 dst_reg,u32 src_reg)107 static inline u32 reg(u32 dst_reg, u32 src_reg)
108 {
109 	return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
110 }
111 
reg_high(u32 reg)112 static inline u32 reg_high(u32 reg)
113 {
114 	return reg2hex[reg] << 4;
115 }
116 
reg_set_seen(struct bpf_jit * jit,u32 b1)117 static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
118 {
119 	u32 r1 = reg2hex[b1];
120 
121 	if (r1 >= 6 && r1 <= 15 && !jit->seen_reg[r1])
122 		jit->seen_reg[r1] = 1;
123 }
124 
125 #define REG_SET_SEEN(b1)					\
126 ({								\
127 	reg_set_seen(jit, b1);					\
128 })
129 
130 #define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
131 
132 /*
133  * EMIT macros for code generation
134  */
135 
136 #define _EMIT2(op)						\
137 ({								\
138 	if (jit->prg_buf)					\
139 		*(u16 *) (jit->prg_buf + jit->prg) = (op);	\
140 	jit->prg += 2;						\
141 })
142 
143 #define EMIT2(op, b1, b2)					\
144 ({								\
145 	_EMIT2((op) | reg(b1, b2));				\
146 	REG_SET_SEEN(b1);					\
147 	REG_SET_SEEN(b2);					\
148 })
149 
150 #define _EMIT4(op)						\
151 ({								\
152 	if (jit->prg_buf)					\
153 		*(u32 *) (jit->prg_buf + jit->prg) = (op);	\
154 	jit->prg += 4;						\
155 })
156 
157 #define EMIT4(op, b1, b2)					\
158 ({								\
159 	_EMIT4((op) | reg(b1, b2));				\
160 	REG_SET_SEEN(b1);					\
161 	REG_SET_SEEN(b2);					\
162 })
163 
164 #define EMIT4_RRF(op, b1, b2, b3)				\
165 ({								\
166 	_EMIT4((op) | reg_high(b3) << 8 | reg(b1, b2));		\
167 	REG_SET_SEEN(b1);					\
168 	REG_SET_SEEN(b2);					\
169 	REG_SET_SEEN(b3);					\
170 })
171 
172 #define _EMIT4_DISP(op, disp)					\
173 ({								\
174 	unsigned int __disp = (disp) & 0xfff;			\
175 	_EMIT4((op) | __disp);					\
176 })
177 
178 #define EMIT4_DISP(op, b1, b2, disp)				\
179 ({								\
180 	_EMIT4_DISP((op) | reg_high(b1) << 16 |			\
181 		    reg_high(b2) << 8, (disp));			\
182 	REG_SET_SEEN(b1);					\
183 	REG_SET_SEEN(b2);					\
184 })
185 
186 #define EMIT4_IMM(op, b1, imm)					\
187 ({								\
188 	unsigned int __imm = (imm) & 0xffff;			\
189 	_EMIT4((op) | reg_high(b1) << 16 | __imm);		\
190 	REG_SET_SEEN(b1);					\
191 })
192 
193 #define EMIT4_PCREL(op, pcrel)					\
194 ({								\
195 	long __pcrel = ((pcrel) >> 1) & 0xffff;			\
196 	_EMIT4((op) | __pcrel);					\
197 })
198 
199 #define EMIT4_PCREL_RIC(op, mask, target)			\
200 ({								\
201 	int __rel = ((target) - jit->prg) / 2;			\
202 	_EMIT4((op) | (mask) << 20 | (__rel & 0xffff));		\
203 })
204 
205 #define _EMIT6(op1, op2)					\
206 ({								\
207 	if (jit->prg_buf) {					\
208 		*(u32 *) (jit->prg_buf + jit->prg) = (op1);	\
209 		*(u16 *) (jit->prg_buf + jit->prg + 4) = (op2);	\
210 	}							\
211 	jit->prg += 6;						\
212 })
213 
214 #define _EMIT6_DISP(op1, op2, disp)				\
215 ({								\
216 	unsigned int __disp = (disp) & 0xfff;			\
217 	_EMIT6((op1) | __disp, op2);				\
218 })
219 
220 #define _EMIT6_DISP_LH(op1, op2, disp)				\
221 ({								\
222 	u32 _disp = (u32) (disp);				\
223 	unsigned int __disp_h = _disp & 0xff000;		\
224 	unsigned int __disp_l = _disp & 0x00fff;		\
225 	_EMIT6((op1) | __disp_l, (op2) | __disp_h >> 4);	\
226 })
227 
228 #define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp)		\
229 ({								\
230 	_EMIT6_DISP_LH((op1) | reg(b1, b2) << 16 |		\
231 		       reg_high(b3) << 8, op2, disp);		\
232 	REG_SET_SEEN(b1);					\
233 	REG_SET_SEEN(b2);					\
234 	REG_SET_SEEN(b3);					\
235 })
236 
237 #define EMIT6_PCREL_RIEB(op1, op2, b1, b2, mask, target)	\
238 ({								\
239 	unsigned int rel = (int)((target) - jit->prg) / 2;	\
240 	_EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff),	\
241 	       (op2) | (mask) << 12);				\
242 	REG_SET_SEEN(b1);					\
243 	REG_SET_SEEN(b2);					\
244 })
245 
246 #define EMIT6_PCREL_RIEC(op1, op2, b1, imm, mask, target)	\
247 ({								\
248 	unsigned int rel = (int)((target) - jit->prg) / 2;	\
249 	_EMIT6((op1) | (reg_high(b1) | (mask)) << 16 |		\
250 		(rel & 0xffff), (op2) | ((imm) & 0xff) << 8);	\
251 	REG_SET_SEEN(b1);					\
252 	BUILD_BUG_ON(((unsigned long) (imm)) > 0xff);		\
253 })
254 
255 #define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask)		\
256 ({								\
257 	int rel = (addrs[(i) + (off) + 1] - jit->prg) / 2;	\
258 	_EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), (op2) | (mask));\
259 	REG_SET_SEEN(b1);					\
260 	REG_SET_SEEN(b2);					\
261 })
262 
263 #define EMIT6_PCREL_RILB(op, b, target)				\
264 ({								\
265 	unsigned int rel = (int)((target) - jit->prg) / 2;	\
266 	_EMIT6((op) | reg_high(b) << 16 | rel >> 16, rel & 0xffff);\
267 	REG_SET_SEEN(b);					\
268 })
269 
270 #define EMIT6_PCREL_RIL(op, target)				\
271 ({								\
272 	unsigned int rel = (int)((target) - jit->prg) / 2;	\
273 	_EMIT6((op) | rel >> 16, rel & 0xffff);			\
274 })
275 
276 #define EMIT6_PCREL_RILC(op, mask, target)			\
277 ({								\
278 	EMIT6_PCREL_RIL((op) | (mask) << 20, (target));		\
279 })
280 
281 #define _EMIT6_IMM(op, imm)					\
282 ({								\
283 	unsigned int __imm = (imm);				\
284 	_EMIT6((op) | (__imm >> 16), __imm & 0xffff);		\
285 })
286 
287 #define EMIT6_IMM(op, b1, imm)					\
288 ({								\
289 	_EMIT6_IMM((op) | reg_high(b1) << 16, imm);		\
290 	REG_SET_SEEN(b1);					\
291 })
292 
293 #define _EMIT_CONST_U32(val)					\
294 ({								\
295 	unsigned int ret;					\
296 	ret = jit->lit32;					\
297 	if (jit->prg_buf)					\
298 		*(u32 *)(jit->prg_buf + jit->lit32) = (u32)(val);\
299 	jit->lit32 += 4;					\
300 	ret;							\
301 })
302 
303 #define EMIT_CONST_U32(val)					\
304 ({								\
305 	jit->seen |= SEEN_LITERAL;				\
306 	_EMIT_CONST_U32(val) - jit->base_ip;			\
307 })
308 
309 #define _EMIT_CONST_U64(val)					\
310 ({								\
311 	unsigned int ret;					\
312 	ret = jit->lit64;					\
313 	if (jit->prg_buf)					\
314 		*(u64 *)(jit->prg_buf + jit->lit64) = (u64)(val);\
315 	jit->lit64 += 8;					\
316 	ret;							\
317 })
318 
319 #define EMIT_CONST_U64(val)					\
320 ({								\
321 	jit->seen |= SEEN_LITERAL;				\
322 	_EMIT_CONST_U64(val) - jit->base_ip;			\
323 })
324 
325 #define EMIT_ZERO(b1)						\
326 ({								\
327 	if (!fp->aux->verifier_zext) {				\
328 		/* llgfr %dst,%dst (zero extend to 64 bit) */	\
329 		EMIT4(0xb9160000, b1, b1);			\
330 		REG_SET_SEEN(b1);				\
331 	}							\
332 })
333 
334 /*
335  * Return whether this is the first pass. The first pass is special, since we
336  * don't know any sizes yet, and thus must be conservative.
337  */
is_first_pass(struct bpf_jit * jit)338 static bool is_first_pass(struct bpf_jit *jit)
339 {
340 	return jit->size == 0;
341 }
342 
343 /*
344  * Return whether this is the code generation pass. The code generation pass is
345  * special, since we should change as little as possible.
346  */
is_codegen_pass(struct bpf_jit * jit)347 static bool is_codegen_pass(struct bpf_jit *jit)
348 {
349 	return jit->prg_buf;
350 }
351 
352 /*
353  * Return whether "rel" can be encoded as a short PC-relative offset
354  */
is_valid_rel(int rel)355 static bool is_valid_rel(int rel)
356 {
357 	return rel >= -65536 && rel <= 65534;
358 }
359 
360 /*
361  * Return whether "off" can be reached using a short PC-relative offset
362  */
can_use_rel(struct bpf_jit * jit,int off)363 static bool can_use_rel(struct bpf_jit *jit, int off)
364 {
365 	return is_valid_rel(off - jit->prg);
366 }
367 
368 /*
369  * Return whether given displacement can be encoded using
370  * Long-Displacement Facility
371  */
is_valid_ldisp(int disp)372 static bool is_valid_ldisp(int disp)
373 {
374 	return disp >= -524288 && disp <= 524287;
375 }
376 
377 /*
378  * Return whether the next 32-bit literal pool entry can be referenced using
379  * Long-Displacement Facility
380  */
can_use_ldisp_for_lit32(struct bpf_jit * jit)381 static bool can_use_ldisp_for_lit32(struct bpf_jit *jit)
382 {
383 	return is_valid_ldisp(jit->lit32 - jit->base_ip);
384 }
385 
386 /*
387  * Return whether the next 64-bit literal pool entry can be referenced using
388  * Long-Displacement Facility
389  */
can_use_ldisp_for_lit64(struct bpf_jit * jit)390 static bool can_use_ldisp_for_lit64(struct bpf_jit *jit)
391 {
392 	return is_valid_ldisp(jit->lit64 - jit->base_ip);
393 }
394 
395 /*
396  * Fill whole space with illegal instructions
397  */
jit_fill_hole(void * area,unsigned int size)398 static void jit_fill_hole(void *area, unsigned int size)
399 {
400 	memset(area, 0, size);
401 }
402 
403 /*
404  * Save registers from "rs" (register start) to "re" (register end) on stack
405  */
save_regs(struct bpf_jit * jit,u32 rs,u32 re)406 static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
407 {
408 	u32 off = STK_OFF_R6 + (rs - 6) * 8;
409 
410 	if (rs == re)
411 		/* stg %rs,off(%r15) */
412 		_EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
413 	else
414 		/* stmg %rs,%re,off(%r15) */
415 		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
416 }
417 
418 /*
419  * Restore registers from "rs" (register start) to "re" (register end) on stack
420  */
restore_regs(struct bpf_jit * jit,u32 rs,u32 re,u32 stack_depth)421 static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re, u32 stack_depth)
422 {
423 	u32 off = STK_OFF_R6 + (rs - 6) * 8;
424 
425 	if (jit->seen & SEEN_STACK)
426 		off += STK_OFF + stack_depth;
427 
428 	if (rs == re)
429 		/* lg %rs,off(%r15) */
430 		_EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
431 	else
432 		/* lmg %rs,%re,off(%r15) */
433 		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
434 }
435 
436 /*
437  * Return first seen register (from start)
438  */
get_start(struct bpf_jit * jit,int start)439 static int get_start(struct bpf_jit *jit, int start)
440 {
441 	int i;
442 
443 	for (i = start; i <= 15; i++) {
444 		if (jit->seen_reg[i])
445 			return i;
446 	}
447 	return 0;
448 }
449 
450 /*
451  * Return last seen register (from start) (gap >= 2)
452  */
get_end(struct bpf_jit * jit,int start)453 static int get_end(struct bpf_jit *jit, int start)
454 {
455 	int i;
456 
457 	for (i = start; i < 15; i++) {
458 		if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
459 			return i - 1;
460 	}
461 	return jit->seen_reg[15] ? 15 : 14;
462 }
463 
464 #define REGS_SAVE	1
465 #define REGS_RESTORE	0
466 /*
467  * Save and restore clobbered registers (6-15) on stack.
468  * We save/restore registers in chunks with gap >= 2 registers.
469  */
save_restore_regs(struct bpf_jit * jit,int op,u32 stack_depth)470 static void save_restore_regs(struct bpf_jit *jit, int op, u32 stack_depth)
471 {
472 	const int last = 15, save_restore_size = 6;
473 	int re = 6, rs;
474 
475 	if (is_first_pass(jit)) {
476 		/*
477 		 * We don't know yet which registers are used. Reserve space
478 		 * conservatively.
479 		 */
480 		jit->prg += (last - re + 1) * save_restore_size;
481 		return;
482 	}
483 
484 	do {
485 		rs = get_start(jit, re);
486 		if (!rs)
487 			break;
488 		re = get_end(jit, rs + 1);
489 		if (op == REGS_SAVE)
490 			save_regs(jit, rs, re);
491 		else
492 			restore_regs(jit, rs, re, stack_depth);
493 		re++;
494 	} while (re <= last);
495 }
496 
bpf_skip(struct bpf_jit * jit,int size)497 static void bpf_skip(struct bpf_jit *jit, int size)
498 {
499 	if (size >= 6 && !is_valid_rel(size)) {
500 		/* brcl 0xf,size */
501 		EMIT6_PCREL_RIL(0xc0f4000000, size);
502 		size -= 6;
503 	} else if (size >= 4 && is_valid_rel(size)) {
504 		/* brc 0xf,size */
505 		EMIT4_PCREL(0xa7f40000, size);
506 		size -= 4;
507 	}
508 	while (size >= 2) {
509 		/* bcr 0,%0 */
510 		_EMIT2(0x0700);
511 		size -= 2;
512 	}
513 }
514 
515 /*
516  * PLT for hotpatchable calls. The calling convention is the same as for the
517  * ftrace hotpatch trampolines: %r0 is return address, %r1 is clobbered.
518  */
519 struct bpf_plt {
520 	char code[16];
521 	void *ret;
522 	void *target;
523 } __packed;
524 extern const struct bpf_plt bpf_plt;
525 asm(
526 	".pushsection .rodata\n"
527 	"	.balign 8\n"
528 	"bpf_plt:\n"
529 	"	lgrl %r0,bpf_plt_ret\n"
530 	"	lgrl %r1,bpf_plt_target\n"
531 	"	br %r1\n"
532 	"	.balign 8\n"
533 	"bpf_plt_ret: .quad 0\n"
534 	"bpf_plt_target: .quad 0\n"
535 	"	.popsection\n"
536 );
537 
bpf_jit_plt(struct bpf_plt * plt,void * ret,void * target)538 static void bpf_jit_plt(struct bpf_plt *plt, void *ret, void *target)
539 {
540 	memcpy(plt, &bpf_plt, sizeof(*plt));
541 	plt->ret = ret;
542 	plt->target = target;
543 }
544 
545 /*
546  * Emit function prologue
547  *
548  * Save registers and create stack frame if necessary.
549  * See stack frame layout description in "bpf_jit.h"!
550  */
bpf_jit_prologue(struct bpf_jit * jit,struct bpf_prog * fp,u32 stack_depth)551 static void bpf_jit_prologue(struct bpf_jit *jit, struct bpf_prog *fp,
552 			     u32 stack_depth)
553 {
554 	/* No-op for hotpatching */
555 	/* brcl 0,prologue_plt */
556 	EMIT6_PCREL_RILC(0xc0040000, 0, jit->prologue_plt);
557 	jit->prologue_plt_ret = jit->prg;
558 
559 	if (!bpf_is_subprog(fp)) {
560 		/* Initialize the tail call counter in the main program. */
561 		/* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
562 		_EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
563 	} else {
564 		/*
565 		 * Skip the tail call counter initialization in subprograms.
566 		 * Insert nops in order to have tail_call_start at a
567 		 * predictable offset.
568 		 */
569 		bpf_skip(jit, 6);
570 	}
571 	/* Tail calls have to skip above initialization */
572 	jit->tail_call_start = jit->prg;
573 	/* Save registers */
574 	save_restore_regs(jit, REGS_SAVE, stack_depth);
575 	/* Setup literal pool */
576 	if (is_first_pass(jit) || (jit->seen & SEEN_LITERAL)) {
577 		if (!is_first_pass(jit) &&
578 		    is_valid_ldisp(jit->size - (jit->prg + 2))) {
579 			/* basr %l,0 */
580 			EMIT2(0x0d00, REG_L, REG_0);
581 			jit->base_ip = jit->prg;
582 		} else {
583 			/* larl %l,lit32_start */
584 			EMIT6_PCREL_RILB(0xc0000000, REG_L, jit->lit32_start);
585 			jit->base_ip = jit->lit32_start;
586 		}
587 	}
588 	/* Setup stack and backchain */
589 	if (is_first_pass(jit) || (jit->seen & SEEN_STACK)) {
590 		if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
591 			/* lgr %w1,%r15 (backchain) */
592 			EMIT4(0xb9040000, REG_W1, REG_15);
593 		/* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
594 		EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
595 		/* aghi %r15,-STK_OFF */
596 		EMIT4_IMM(0xa70b0000, REG_15, -(STK_OFF + stack_depth));
597 		if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
598 			/* stg %w1,152(%r15) (backchain) */
599 			EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
600 				      REG_15, 152);
601 	}
602 }
603 
604 /*
605  * Emit an expoline for a jump that follows
606  */
emit_expoline(struct bpf_jit * jit)607 static void emit_expoline(struct bpf_jit *jit)
608 {
609 	/* exrl %r0,.+10 */
610 	EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
611 	/* j . */
612 	EMIT4_PCREL(0xa7f40000, 0);
613 }
614 
615 /*
616  * Emit __s390_indirect_jump_r1 thunk if necessary
617  */
emit_r1_thunk(struct bpf_jit * jit)618 static void emit_r1_thunk(struct bpf_jit *jit)
619 {
620 	if (nospec_uses_trampoline()) {
621 		jit->r1_thunk_ip = jit->prg;
622 		emit_expoline(jit);
623 		/* br %r1 */
624 		_EMIT2(0x07f1);
625 	}
626 }
627 
628 /*
629  * Call r1 either directly or via __s390_indirect_jump_r1 thunk
630  */
call_r1(struct bpf_jit * jit)631 static void call_r1(struct bpf_jit *jit)
632 {
633 	if (nospec_uses_trampoline())
634 		/* brasl %r14,__s390_indirect_jump_r1 */
635 		EMIT6_PCREL_RILB(0xc0050000, REG_14, jit->r1_thunk_ip);
636 	else
637 		/* basr %r14,%r1 */
638 		EMIT2(0x0d00, REG_14, REG_1);
639 }
640 
641 /*
642  * Function epilogue
643  */
bpf_jit_epilogue(struct bpf_jit * jit,u32 stack_depth)644 static void bpf_jit_epilogue(struct bpf_jit *jit, u32 stack_depth)
645 {
646 	jit->exit_ip = jit->prg;
647 	/* Load exit code: lgr %r2,%b0 */
648 	EMIT4(0xb9040000, REG_2, BPF_REG_0);
649 	/* Restore registers */
650 	save_restore_regs(jit, REGS_RESTORE, stack_depth);
651 	if (nospec_uses_trampoline()) {
652 		jit->r14_thunk_ip = jit->prg;
653 		/* Generate __s390_indirect_jump_r14 thunk */
654 		emit_expoline(jit);
655 	}
656 	/* br %r14 */
657 	_EMIT2(0x07fe);
658 
659 	if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
660 		emit_r1_thunk(jit);
661 
662 	jit->prg = ALIGN(jit->prg, 8);
663 	jit->prologue_plt = jit->prg;
664 	if (jit->prg_buf)
665 		bpf_jit_plt((struct bpf_plt *)(jit->prg_buf + jit->prg),
666 			    jit->prg_buf + jit->prologue_plt_ret, NULL);
667 	jit->prg += sizeof(struct bpf_plt);
668 }
669 
get_probe_mem_regno(const u8 * insn)670 static int get_probe_mem_regno(const u8 *insn)
671 {
672 	/*
673 	 * insn must point to llgc, llgh, llgf, lg, lgb, lgh or lgf, which have
674 	 * destination register at the same position.
675 	 */
676 	if (insn[0] != 0xe3) /* common prefix */
677 		return -1;
678 	if (insn[5] != 0x90 && /* llgc */
679 	    insn[5] != 0x91 && /* llgh */
680 	    insn[5] != 0x16 && /* llgf */
681 	    insn[5] != 0x04 && /* lg */
682 	    insn[5] != 0x77 && /* lgb */
683 	    insn[5] != 0x15 && /* lgh */
684 	    insn[5] != 0x14) /* lgf */
685 		return -1;
686 	return insn[1] >> 4;
687 }
688 
ex_handler_bpf(const struct exception_table_entry * x,struct pt_regs * regs)689 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
690 {
691 	regs->psw.addr = extable_fixup(x);
692 	regs->gprs[x->data] = 0;
693 	return true;
694 }
695 
bpf_jit_probe_mem(struct bpf_jit * jit,struct bpf_prog * fp,int probe_prg,int nop_prg)696 static int bpf_jit_probe_mem(struct bpf_jit *jit, struct bpf_prog *fp,
697 			     int probe_prg, int nop_prg)
698 {
699 	struct exception_table_entry *ex;
700 	int reg, prg;
701 	s64 delta;
702 	u8 *insn;
703 	int i;
704 
705 	if (!fp->aux->extable)
706 		/* Do nothing during early JIT passes. */
707 		return 0;
708 	insn = jit->prg_buf + probe_prg;
709 	reg = get_probe_mem_regno(insn);
710 	if (WARN_ON_ONCE(reg < 0))
711 		/* JIT bug - unexpected probe instruction. */
712 		return -1;
713 	if (WARN_ON_ONCE(probe_prg + insn_length(*insn) != nop_prg))
714 		/* JIT bug - gap between probe and nop instructions. */
715 		return -1;
716 	for (i = 0; i < 2; i++) {
717 		if (WARN_ON_ONCE(jit->excnt >= fp->aux->num_exentries))
718 			/* Verifier bug - not enough entries. */
719 			return -1;
720 		ex = &fp->aux->extable[jit->excnt];
721 		/* Add extable entries for probe and nop instructions. */
722 		prg = i == 0 ? probe_prg : nop_prg;
723 		delta = jit->prg_buf + prg - (u8 *)&ex->insn;
724 		if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
725 			/* JIT bug - code and extable must be close. */
726 			return -1;
727 		ex->insn = delta;
728 		/*
729 		 * Always land on the nop. Note that extable infrastructure
730 		 * ignores fixup field, it is handled by ex_handler_bpf().
731 		 */
732 		delta = jit->prg_buf + nop_prg - (u8 *)&ex->fixup;
733 		if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
734 			/* JIT bug - landing pad and extable must be close. */
735 			return -1;
736 		ex->fixup = delta;
737 		ex->type = EX_TYPE_BPF;
738 		ex->data = reg;
739 		jit->excnt++;
740 	}
741 	return 0;
742 }
743 
744 /*
745  * Sign-extend the register if necessary
746  */
sign_extend(struct bpf_jit * jit,int r,u8 size,u8 flags)747 static int sign_extend(struct bpf_jit *jit, int r, u8 size, u8 flags)
748 {
749 	if (!(flags & BTF_FMODEL_SIGNED_ARG))
750 		return 0;
751 
752 	switch (size) {
753 	case 1:
754 		/* lgbr %r,%r */
755 		EMIT4(0xb9060000, r, r);
756 		return 0;
757 	case 2:
758 		/* lghr %r,%r */
759 		EMIT4(0xb9070000, r, r);
760 		return 0;
761 	case 4:
762 		/* lgfr %r,%r */
763 		EMIT4(0xb9140000, r, r);
764 		return 0;
765 	case 8:
766 		return 0;
767 	default:
768 		return -1;
769 	}
770 }
771 
772 /*
773  * Compile one eBPF instruction into s390x code
774  *
775  * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
776  * stack space for the large switch statement.
777  */
bpf_jit_insn(struct bpf_jit * jit,struct bpf_prog * fp,int i,bool extra_pass,u32 stack_depth)778 static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp,
779 				 int i, bool extra_pass, u32 stack_depth)
780 {
781 	struct bpf_insn *insn = &fp->insnsi[i];
782 	s32 branch_oc_off = insn->off;
783 	u32 dst_reg = insn->dst_reg;
784 	u32 src_reg = insn->src_reg;
785 	int last, insn_count = 1;
786 	u32 *addrs = jit->addrs;
787 	s32 imm = insn->imm;
788 	s16 off = insn->off;
789 	int probe_prg = -1;
790 	unsigned int mask;
791 	int nop_prg;
792 	int err;
793 
794 	if (BPF_CLASS(insn->code) == BPF_LDX &&
795 	    (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
796 	     BPF_MODE(insn->code) == BPF_PROBE_MEMSX))
797 		probe_prg = jit->prg;
798 
799 	switch (insn->code) {
800 	/*
801 	 * BPF_MOV
802 	 */
803 	case BPF_ALU | BPF_MOV | BPF_X:
804 		switch (insn->off) {
805 		case 0: /* DST = (u32) SRC */
806 			/* llgfr %dst,%src */
807 			EMIT4(0xb9160000, dst_reg, src_reg);
808 			if (insn_is_zext(&insn[1]))
809 				insn_count = 2;
810 			break;
811 		case 8: /* DST = (u32)(s8) SRC */
812 			/* lbr %dst,%src */
813 			EMIT4(0xb9260000, dst_reg, src_reg);
814 			/* llgfr %dst,%dst */
815 			EMIT4(0xb9160000, dst_reg, dst_reg);
816 			break;
817 		case 16: /* DST = (u32)(s16) SRC */
818 			/* lhr %dst,%src */
819 			EMIT4(0xb9270000, dst_reg, src_reg);
820 			/* llgfr %dst,%dst */
821 			EMIT4(0xb9160000, dst_reg, dst_reg);
822 			break;
823 		}
824 		break;
825 	case BPF_ALU64 | BPF_MOV | BPF_X:
826 		switch (insn->off) {
827 		case 0: /* DST = SRC */
828 			/* lgr %dst,%src */
829 			EMIT4(0xb9040000, dst_reg, src_reg);
830 			break;
831 		case 8: /* DST = (s8) SRC */
832 			/* lgbr %dst,%src */
833 			EMIT4(0xb9060000, dst_reg, src_reg);
834 			break;
835 		case 16: /* DST = (s16) SRC */
836 			/* lghr %dst,%src */
837 			EMIT4(0xb9070000, dst_reg, src_reg);
838 			break;
839 		case 32: /* DST = (s32) SRC */
840 			/* lgfr %dst,%src */
841 			EMIT4(0xb9140000, dst_reg, src_reg);
842 			break;
843 		}
844 		break;
845 	case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
846 		/* llilf %dst,imm */
847 		EMIT6_IMM(0xc00f0000, dst_reg, imm);
848 		if (insn_is_zext(&insn[1]))
849 			insn_count = 2;
850 		break;
851 	case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
852 		/* lgfi %dst,imm */
853 		EMIT6_IMM(0xc0010000, dst_reg, imm);
854 		break;
855 	/*
856 	 * BPF_LD 64
857 	 */
858 	case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
859 	{
860 		/* 16 byte instruction that uses two 'struct bpf_insn' */
861 		u64 imm64;
862 
863 		imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
864 		/* lgrl %dst,imm */
865 		EMIT6_PCREL_RILB(0xc4080000, dst_reg, _EMIT_CONST_U64(imm64));
866 		insn_count = 2;
867 		break;
868 	}
869 	/*
870 	 * BPF_ADD
871 	 */
872 	case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
873 		/* ar %dst,%src */
874 		EMIT2(0x1a00, dst_reg, src_reg);
875 		EMIT_ZERO(dst_reg);
876 		break;
877 	case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
878 		/* agr %dst,%src */
879 		EMIT4(0xb9080000, dst_reg, src_reg);
880 		break;
881 	case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
882 		if (imm != 0) {
883 			/* alfi %dst,imm */
884 			EMIT6_IMM(0xc20b0000, dst_reg, imm);
885 		}
886 		EMIT_ZERO(dst_reg);
887 		break;
888 	case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
889 		if (!imm)
890 			break;
891 		/* agfi %dst,imm */
892 		EMIT6_IMM(0xc2080000, dst_reg, imm);
893 		break;
894 	/*
895 	 * BPF_SUB
896 	 */
897 	case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
898 		/* sr %dst,%src */
899 		EMIT2(0x1b00, dst_reg, src_reg);
900 		EMIT_ZERO(dst_reg);
901 		break;
902 	case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
903 		/* sgr %dst,%src */
904 		EMIT4(0xb9090000, dst_reg, src_reg);
905 		break;
906 	case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
907 		if (imm != 0) {
908 			/* alfi %dst,-imm */
909 			EMIT6_IMM(0xc20b0000, dst_reg, -imm);
910 		}
911 		EMIT_ZERO(dst_reg);
912 		break;
913 	case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
914 		if (!imm)
915 			break;
916 		if (imm == -0x80000000) {
917 			/* algfi %dst,0x80000000 */
918 			EMIT6_IMM(0xc20a0000, dst_reg, 0x80000000);
919 		} else {
920 			/* agfi %dst,-imm */
921 			EMIT6_IMM(0xc2080000, dst_reg, -imm);
922 		}
923 		break;
924 	/*
925 	 * BPF_MUL
926 	 */
927 	case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
928 		/* msr %dst,%src */
929 		EMIT4(0xb2520000, dst_reg, src_reg);
930 		EMIT_ZERO(dst_reg);
931 		break;
932 	case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
933 		/* msgr %dst,%src */
934 		EMIT4(0xb90c0000, dst_reg, src_reg);
935 		break;
936 	case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
937 		if (imm != 1) {
938 			/* msfi %r5,imm */
939 			EMIT6_IMM(0xc2010000, dst_reg, imm);
940 		}
941 		EMIT_ZERO(dst_reg);
942 		break;
943 	case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
944 		if (imm == 1)
945 			break;
946 		/* msgfi %dst,imm */
947 		EMIT6_IMM(0xc2000000, dst_reg, imm);
948 		break;
949 	/*
950 	 * BPF_DIV / BPF_MOD
951 	 */
952 	case BPF_ALU | BPF_DIV | BPF_X:
953 	case BPF_ALU | BPF_MOD | BPF_X:
954 	{
955 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
956 
957 		switch (off) {
958 		case 0: /* dst = (u32) dst {/,%} (u32) src */
959 			/* xr %w0,%w0 */
960 			EMIT2(0x1700, REG_W0, REG_W0);
961 			/* lr %w1,%dst */
962 			EMIT2(0x1800, REG_W1, dst_reg);
963 			/* dlr %w0,%src */
964 			EMIT4(0xb9970000, REG_W0, src_reg);
965 			break;
966 		case 1: /* dst = (u32) ((s32) dst {/,%} (s32) src) */
967 			/* lgfr %r1,%dst */
968 			EMIT4(0xb9140000, REG_W1, dst_reg);
969 			/* dsgfr %r0,%src */
970 			EMIT4(0xb91d0000, REG_W0, src_reg);
971 			break;
972 		}
973 		/* llgfr %dst,%rc */
974 		EMIT4(0xb9160000, dst_reg, rc_reg);
975 		if (insn_is_zext(&insn[1]))
976 			insn_count = 2;
977 		break;
978 	}
979 	case BPF_ALU64 | BPF_DIV | BPF_X:
980 	case BPF_ALU64 | BPF_MOD | BPF_X:
981 	{
982 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
983 
984 		switch (off) {
985 		case 0: /* dst = dst {/,%} src */
986 			/* lghi %w0,0 */
987 			EMIT4_IMM(0xa7090000, REG_W0, 0);
988 			/* lgr %w1,%dst */
989 			EMIT4(0xb9040000, REG_W1, dst_reg);
990 			/* dlgr %w0,%src */
991 			EMIT4(0xb9870000, REG_W0, src_reg);
992 			break;
993 		case 1: /* dst = (s64) dst {/,%} (s64) src */
994 			/* lgr %w1,%dst */
995 			EMIT4(0xb9040000, REG_W1, dst_reg);
996 			/* dsgr %w0,%src */
997 			EMIT4(0xb90d0000, REG_W0, src_reg);
998 			break;
999 		}
1000 		/* lgr %dst,%rc */
1001 		EMIT4(0xb9040000, dst_reg, rc_reg);
1002 		break;
1003 	}
1004 	case BPF_ALU | BPF_DIV | BPF_K:
1005 	case BPF_ALU | BPF_MOD | BPF_K:
1006 	{
1007 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
1008 
1009 		if (imm == 1) {
1010 			if (BPF_OP(insn->code) == BPF_MOD)
1011 				/* lghi %dst,0 */
1012 				EMIT4_IMM(0xa7090000, dst_reg, 0);
1013 			else
1014 				EMIT_ZERO(dst_reg);
1015 			break;
1016 		}
1017 		if (!is_first_pass(jit) && can_use_ldisp_for_lit32(jit)) {
1018 			switch (off) {
1019 			case 0: /* dst = (u32) dst {/,%} (u32) imm */
1020 				/* xr %w0,%w0 */
1021 				EMIT2(0x1700, REG_W0, REG_W0);
1022 				/* lr %w1,%dst */
1023 				EMIT2(0x1800, REG_W1, dst_reg);
1024 				/* dl %w0,<d(imm)>(%l) */
1025 				EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0,
1026 					      REG_L, EMIT_CONST_U32(imm));
1027 				break;
1028 			case 1: /* dst = (s32) dst {/,%} (s32) imm */
1029 				/* lgfr %r1,%dst */
1030 				EMIT4(0xb9140000, REG_W1, dst_reg);
1031 				/* dsgf %r0,<d(imm)>(%l) */
1032 				EMIT6_DISP_LH(0xe3000000, 0x001d, REG_W0, REG_0,
1033 					      REG_L, EMIT_CONST_U32(imm));
1034 				break;
1035 			}
1036 		} else {
1037 			switch (off) {
1038 			case 0: /* dst = (u32) dst {/,%} (u32) imm */
1039 				/* xr %w0,%w0 */
1040 				EMIT2(0x1700, REG_W0, REG_W0);
1041 				/* lr %w1,%dst */
1042 				EMIT2(0x1800, REG_W1, dst_reg);
1043 				/* lrl %dst,imm */
1044 				EMIT6_PCREL_RILB(0xc40d0000, dst_reg,
1045 						 _EMIT_CONST_U32(imm));
1046 				jit->seen |= SEEN_LITERAL;
1047 				/* dlr %w0,%dst */
1048 				EMIT4(0xb9970000, REG_W0, dst_reg);
1049 				break;
1050 			case 1: /* dst = (s32) dst {/,%} (s32) imm */
1051 				/* lgfr %w1,%dst */
1052 				EMIT4(0xb9140000, REG_W1, dst_reg);
1053 				/* lgfrl %dst,imm */
1054 				EMIT6_PCREL_RILB(0xc40c0000, dst_reg,
1055 						 _EMIT_CONST_U32(imm));
1056 				jit->seen |= SEEN_LITERAL;
1057 				/* dsgr %w0,%dst */
1058 				EMIT4(0xb90d0000, REG_W0, dst_reg);
1059 				break;
1060 			}
1061 		}
1062 		/* llgfr %dst,%rc */
1063 		EMIT4(0xb9160000, dst_reg, rc_reg);
1064 		if (insn_is_zext(&insn[1]))
1065 			insn_count = 2;
1066 		break;
1067 	}
1068 	case BPF_ALU64 | BPF_DIV | BPF_K:
1069 	case BPF_ALU64 | BPF_MOD | BPF_K:
1070 	{
1071 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
1072 
1073 		if (imm == 1) {
1074 			if (BPF_OP(insn->code) == BPF_MOD)
1075 				/* lhgi %dst,0 */
1076 				EMIT4_IMM(0xa7090000, dst_reg, 0);
1077 			break;
1078 		}
1079 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1080 			switch (off) {
1081 			case 0: /* dst = dst {/,%} imm */
1082 				/* lghi %w0,0 */
1083 				EMIT4_IMM(0xa7090000, REG_W0, 0);
1084 				/* lgr %w1,%dst */
1085 				EMIT4(0xb9040000, REG_W1, dst_reg);
1086 				/* dlg %w0,<d(imm)>(%l) */
1087 				EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0,
1088 					      REG_L, EMIT_CONST_U64(imm));
1089 				break;
1090 			case 1: /* dst = (s64) dst {/,%} (s64) imm */
1091 				/* lgr %w1,%dst */
1092 				EMIT4(0xb9040000, REG_W1, dst_reg);
1093 				/* dsg %w0,<d(imm)>(%l) */
1094 				EMIT6_DISP_LH(0xe3000000, 0x000d, REG_W0, REG_0,
1095 					      REG_L, EMIT_CONST_U64(imm));
1096 				break;
1097 			}
1098 		} else {
1099 			switch (off) {
1100 			case 0: /* dst = dst {/,%} imm */
1101 				/* lghi %w0,0 */
1102 				EMIT4_IMM(0xa7090000, REG_W0, 0);
1103 				/* lgr %w1,%dst */
1104 				EMIT4(0xb9040000, REG_W1, dst_reg);
1105 				/* lgrl %dst,imm */
1106 				EMIT6_PCREL_RILB(0xc4080000, dst_reg,
1107 						 _EMIT_CONST_U64(imm));
1108 				jit->seen |= SEEN_LITERAL;
1109 				/* dlgr %w0,%dst */
1110 				EMIT4(0xb9870000, REG_W0, dst_reg);
1111 				break;
1112 			case 1: /* dst = (s64) dst {/,%} (s64) imm */
1113 				/* lgr %w1,%dst */
1114 				EMIT4(0xb9040000, REG_W1, dst_reg);
1115 				/* lgrl %dst,imm */
1116 				EMIT6_PCREL_RILB(0xc4080000, dst_reg,
1117 						 _EMIT_CONST_U64(imm));
1118 				jit->seen |= SEEN_LITERAL;
1119 				/* dsgr %w0,%dst */
1120 				EMIT4(0xb90d0000, REG_W0, dst_reg);
1121 				break;
1122 			}
1123 		}
1124 		/* lgr %dst,%rc */
1125 		EMIT4(0xb9040000, dst_reg, rc_reg);
1126 		break;
1127 	}
1128 	/*
1129 	 * BPF_AND
1130 	 */
1131 	case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
1132 		/* nr %dst,%src */
1133 		EMIT2(0x1400, dst_reg, src_reg);
1134 		EMIT_ZERO(dst_reg);
1135 		break;
1136 	case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
1137 		/* ngr %dst,%src */
1138 		EMIT4(0xb9800000, dst_reg, src_reg);
1139 		break;
1140 	case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
1141 		/* nilf %dst,imm */
1142 		EMIT6_IMM(0xc00b0000, dst_reg, imm);
1143 		EMIT_ZERO(dst_reg);
1144 		break;
1145 	case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
1146 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1147 			/* ng %dst,<d(imm)>(%l) */
1148 			EMIT6_DISP_LH(0xe3000000, 0x0080,
1149 				      dst_reg, REG_0, REG_L,
1150 				      EMIT_CONST_U64(imm));
1151 		} else {
1152 			/* lgrl %w0,imm */
1153 			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1154 					 _EMIT_CONST_U64(imm));
1155 			jit->seen |= SEEN_LITERAL;
1156 			/* ngr %dst,%w0 */
1157 			EMIT4(0xb9800000, dst_reg, REG_W0);
1158 		}
1159 		break;
1160 	/*
1161 	 * BPF_OR
1162 	 */
1163 	case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
1164 		/* or %dst,%src */
1165 		EMIT2(0x1600, dst_reg, src_reg);
1166 		EMIT_ZERO(dst_reg);
1167 		break;
1168 	case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
1169 		/* ogr %dst,%src */
1170 		EMIT4(0xb9810000, dst_reg, src_reg);
1171 		break;
1172 	case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
1173 		/* oilf %dst,imm */
1174 		EMIT6_IMM(0xc00d0000, dst_reg, imm);
1175 		EMIT_ZERO(dst_reg);
1176 		break;
1177 	case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
1178 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1179 			/* og %dst,<d(imm)>(%l) */
1180 			EMIT6_DISP_LH(0xe3000000, 0x0081,
1181 				      dst_reg, REG_0, REG_L,
1182 				      EMIT_CONST_U64(imm));
1183 		} else {
1184 			/* lgrl %w0,imm */
1185 			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1186 					 _EMIT_CONST_U64(imm));
1187 			jit->seen |= SEEN_LITERAL;
1188 			/* ogr %dst,%w0 */
1189 			EMIT4(0xb9810000, dst_reg, REG_W0);
1190 		}
1191 		break;
1192 	/*
1193 	 * BPF_XOR
1194 	 */
1195 	case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
1196 		/* xr %dst,%src */
1197 		EMIT2(0x1700, dst_reg, src_reg);
1198 		EMIT_ZERO(dst_reg);
1199 		break;
1200 	case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
1201 		/* xgr %dst,%src */
1202 		EMIT4(0xb9820000, dst_reg, src_reg);
1203 		break;
1204 	case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
1205 		if (imm != 0) {
1206 			/* xilf %dst,imm */
1207 			EMIT6_IMM(0xc0070000, dst_reg, imm);
1208 		}
1209 		EMIT_ZERO(dst_reg);
1210 		break;
1211 	case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
1212 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1213 			/* xg %dst,<d(imm)>(%l) */
1214 			EMIT6_DISP_LH(0xe3000000, 0x0082,
1215 				      dst_reg, REG_0, REG_L,
1216 				      EMIT_CONST_U64(imm));
1217 		} else {
1218 			/* lgrl %w0,imm */
1219 			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1220 					 _EMIT_CONST_U64(imm));
1221 			jit->seen |= SEEN_LITERAL;
1222 			/* xgr %dst,%w0 */
1223 			EMIT4(0xb9820000, dst_reg, REG_W0);
1224 		}
1225 		break;
1226 	/*
1227 	 * BPF_LSH
1228 	 */
1229 	case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
1230 		/* sll %dst,0(%src) */
1231 		EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
1232 		EMIT_ZERO(dst_reg);
1233 		break;
1234 	case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
1235 		/* sllg %dst,%dst,0(%src) */
1236 		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
1237 		break;
1238 	case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
1239 		if (imm != 0) {
1240 			/* sll %dst,imm(%r0) */
1241 			EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
1242 		}
1243 		EMIT_ZERO(dst_reg);
1244 		break;
1245 	case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
1246 		if (imm == 0)
1247 			break;
1248 		/* sllg %dst,%dst,imm(%r0) */
1249 		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
1250 		break;
1251 	/*
1252 	 * BPF_RSH
1253 	 */
1254 	case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
1255 		/* srl %dst,0(%src) */
1256 		EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
1257 		EMIT_ZERO(dst_reg);
1258 		break;
1259 	case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
1260 		/* srlg %dst,%dst,0(%src) */
1261 		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
1262 		break;
1263 	case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
1264 		if (imm != 0) {
1265 			/* srl %dst,imm(%r0) */
1266 			EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
1267 		}
1268 		EMIT_ZERO(dst_reg);
1269 		break;
1270 	case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
1271 		if (imm == 0)
1272 			break;
1273 		/* srlg %dst,%dst,imm(%r0) */
1274 		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
1275 		break;
1276 	/*
1277 	 * BPF_ARSH
1278 	 */
1279 	case BPF_ALU | BPF_ARSH | BPF_X: /* ((s32) dst) >>= src */
1280 		/* sra %dst,%dst,0(%src) */
1281 		EMIT4_DISP(0x8a000000, dst_reg, src_reg, 0);
1282 		EMIT_ZERO(dst_reg);
1283 		break;
1284 	case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
1285 		/* srag %dst,%dst,0(%src) */
1286 		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
1287 		break;
1288 	case BPF_ALU | BPF_ARSH | BPF_K: /* ((s32) dst >> imm */
1289 		if (imm != 0) {
1290 			/* sra %dst,imm(%r0) */
1291 			EMIT4_DISP(0x8a000000, dst_reg, REG_0, imm);
1292 		}
1293 		EMIT_ZERO(dst_reg);
1294 		break;
1295 	case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
1296 		if (imm == 0)
1297 			break;
1298 		/* srag %dst,%dst,imm(%r0) */
1299 		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
1300 		break;
1301 	/*
1302 	 * BPF_NEG
1303 	 */
1304 	case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
1305 		/* lcr %dst,%dst */
1306 		EMIT2(0x1300, dst_reg, dst_reg);
1307 		EMIT_ZERO(dst_reg);
1308 		break;
1309 	case BPF_ALU64 | BPF_NEG: /* dst = -dst */
1310 		/* lcgr %dst,%dst */
1311 		EMIT4(0xb9030000, dst_reg, dst_reg);
1312 		break;
1313 	/*
1314 	 * BPF_FROM_BE/LE
1315 	 */
1316 	case BPF_ALU | BPF_END | BPF_FROM_BE:
1317 		/* s390 is big endian, therefore only clear high order bytes */
1318 		switch (imm) {
1319 		case 16: /* dst = (u16) cpu_to_be16(dst) */
1320 			/* llghr %dst,%dst */
1321 			EMIT4(0xb9850000, dst_reg, dst_reg);
1322 			if (insn_is_zext(&insn[1]))
1323 				insn_count = 2;
1324 			break;
1325 		case 32: /* dst = (u32) cpu_to_be32(dst) */
1326 			if (!fp->aux->verifier_zext)
1327 				/* llgfr %dst,%dst */
1328 				EMIT4(0xb9160000, dst_reg, dst_reg);
1329 			break;
1330 		case 64: /* dst = (u64) cpu_to_be64(dst) */
1331 			break;
1332 		}
1333 		break;
1334 	case BPF_ALU | BPF_END | BPF_FROM_LE:
1335 	case BPF_ALU64 | BPF_END | BPF_FROM_LE:
1336 		switch (imm) {
1337 		case 16: /* dst = (u16) cpu_to_le16(dst) */
1338 			/* lrvr %dst,%dst */
1339 			EMIT4(0xb91f0000, dst_reg, dst_reg);
1340 			/* srl %dst,16(%r0) */
1341 			EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
1342 			/* llghr %dst,%dst */
1343 			EMIT4(0xb9850000, dst_reg, dst_reg);
1344 			if (insn_is_zext(&insn[1]))
1345 				insn_count = 2;
1346 			break;
1347 		case 32: /* dst = (u32) cpu_to_le32(dst) */
1348 			/* lrvr %dst,%dst */
1349 			EMIT4(0xb91f0000, dst_reg, dst_reg);
1350 			if (!fp->aux->verifier_zext)
1351 				/* llgfr %dst,%dst */
1352 				EMIT4(0xb9160000, dst_reg, dst_reg);
1353 			break;
1354 		case 64: /* dst = (u64) cpu_to_le64(dst) */
1355 			/* lrvgr %dst,%dst */
1356 			EMIT4(0xb90f0000, dst_reg, dst_reg);
1357 			break;
1358 		}
1359 		break;
1360 	/*
1361 	 * BPF_NOSPEC (speculation barrier)
1362 	 */
1363 	case BPF_ST | BPF_NOSPEC:
1364 		break;
1365 	/*
1366 	 * BPF_ST(X)
1367 	 */
1368 	case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
1369 		/* stcy %src,off(%dst) */
1370 		EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
1371 		jit->seen |= SEEN_MEM;
1372 		break;
1373 	case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
1374 		/* sthy %src,off(%dst) */
1375 		EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
1376 		jit->seen |= SEEN_MEM;
1377 		break;
1378 	case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
1379 		/* sty %src,off(%dst) */
1380 		EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
1381 		jit->seen |= SEEN_MEM;
1382 		break;
1383 	case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
1384 		/* stg %src,off(%dst) */
1385 		EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
1386 		jit->seen |= SEEN_MEM;
1387 		break;
1388 	case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
1389 		/* lhi %w0,imm */
1390 		EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
1391 		/* stcy %w0,off(dst) */
1392 		EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
1393 		jit->seen |= SEEN_MEM;
1394 		break;
1395 	case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
1396 		/* lhi %w0,imm */
1397 		EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
1398 		/* sthy %w0,off(dst) */
1399 		EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
1400 		jit->seen |= SEEN_MEM;
1401 		break;
1402 	case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
1403 		/* llilf %w0,imm  */
1404 		EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
1405 		/* sty %w0,off(%dst) */
1406 		EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
1407 		jit->seen |= SEEN_MEM;
1408 		break;
1409 	case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
1410 		/* lgfi %w0,imm */
1411 		EMIT6_IMM(0xc0010000, REG_W0, imm);
1412 		/* stg %w0,off(%dst) */
1413 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
1414 		jit->seen |= SEEN_MEM;
1415 		break;
1416 	/*
1417 	 * BPF_ATOMIC
1418 	 */
1419 	case BPF_STX | BPF_ATOMIC | BPF_DW:
1420 	case BPF_STX | BPF_ATOMIC | BPF_W:
1421 	{
1422 		bool is32 = BPF_SIZE(insn->code) == BPF_W;
1423 
1424 		switch (insn->imm) {
1425 /* {op32|op64} {%w0|%src},%src,off(%dst) */
1426 #define EMIT_ATOMIC(op32, op64) do {					\
1427 	EMIT6_DISP_LH(0xeb000000, is32 ? (op32) : (op64),		\
1428 		      (insn->imm & BPF_FETCH) ? src_reg : REG_W0,	\
1429 		      src_reg, dst_reg, off);				\
1430 	if (insn->imm & BPF_FETCH) {					\
1431 		/* bcr 14,0 - see atomic_fetch_{add,and,or,xor}() */	\
1432 		_EMIT2(0x07e0);						\
1433 		if (is32)                                               \
1434 			EMIT_ZERO(src_reg);				\
1435 	}								\
1436 } while (0)
1437 		case BPF_ADD:
1438 		case BPF_ADD | BPF_FETCH:
1439 			/* {laal|laalg} */
1440 			EMIT_ATOMIC(0x00fa, 0x00ea);
1441 			break;
1442 		case BPF_AND:
1443 		case BPF_AND | BPF_FETCH:
1444 			/* {lan|lang} */
1445 			EMIT_ATOMIC(0x00f4, 0x00e4);
1446 			break;
1447 		case BPF_OR:
1448 		case BPF_OR | BPF_FETCH:
1449 			/* {lao|laog} */
1450 			EMIT_ATOMIC(0x00f6, 0x00e6);
1451 			break;
1452 		case BPF_XOR:
1453 		case BPF_XOR | BPF_FETCH:
1454 			/* {lax|laxg} */
1455 			EMIT_ATOMIC(0x00f7, 0x00e7);
1456 			break;
1457 #undef EMIT_ATOMIC
1458 		case BPF_XCHG:
1459 			/* {ly|lg} %w0,off(%dst) */
1460 			EMIT6_DISP_LH(0xe3000000,
1461 				      is32 ? 0x0058 : 0x0004, REG_W0, REG_0,
1462 				      dst_reg, off);
1463 			/* 0: {csy|csg} %w0,%src,off(%dst) */
1464 			EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1465 				      REG_W0, src_reg, dst_reg, off);
1466 			/* brc 4,0b */
1467 			EMIT4_PCREL_RIC(0xa7040000, 4, jit->prg - 6);
1468 			/* {llgfr|lgr} %src,%w0 */
1469 			EMIT4(is32 ? 0xb9160000 : 0xb9040000, src_reg, REG_W0);
1470 			if (is32 && insn_is_zext(&insn[1]))
1471 				insn_count = 2;
1472 			break;
1473 		case BPF_CMPXCHG:
1474 			/* 0: {csy|csg} %b0,%src,off(%dst) */
1475 			EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1476 				      BPF_REG_0, src_reg, dst_reg, off);
1477 			break;
1478 		default:
1479 			pr_err("Unknown atomic operation %02x\n", insn->imm);
1480 			return -1;
1481 		}
1482 
1483 		jit->seen |= SEEN_MEM;
1484 		break;
1485 	}
1486 	/*
1487 	 * BPF_LDX
1488 	 */
1489 	case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
1490 	case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1491 		/* llgc %dst,0(off,%src) */
1492 		EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
1493 		jit->seen |= SEEN_MEM;
1494 		if (insn_is_zext(&insn[1]))
1495 			insn_count = 2;
1496 		break;
1497 	case BPF_LDX | BPF_MEMSX | BPF_B: /* dst = *(s8 *)(ul) (src + off) */
1498 	case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
1499 		/* lgb %dst,0(off,%src) */
1500 		EMIT6_DISP_LH(0xe3000000, 0x0077, dst_reg, src_reg, REG_0, off);
1501 		jit->seen |= SEEN_MEM;
1502 		break;
1503 	case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
1504 	case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1505 		/* llgh %dst,0(off,%src) */
1506 		EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
1507 		jit->seen |= SEEN_MEM;
1508 		if (insn_is_zext(&insn[1]))
1509 			insn_count = 2;
1510 		break;
1511 	case BPF_LDX | BPF_MEMSX | BPF_H: /* dst = *(s16 *)(ul) (src + off) */
1512 	case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
1513 		/* lgh %dst,0(off,%src) */
1514 		EMIT6_DISP_LH(0xe3000000, 0x0015, dst_reg, src_reg, REG_0, off);
1515 		jit->seen |= SEEN_MEM;
1516 		break;
1517 	case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
1518 	case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1519 		/* llgf %dst,off(%src) */
1520 		jit->seen |= SEEN_MEM;
1521 		EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
1522 		if (insn_is_zext(&insn[1]))
1523 			insn_count = 2;
1524 		break;
1525 	case BPF_LDX | BPF_MEMSX | BPF_W: /* dst = *(s32 *)(ul) (src + off) */
1526 	case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
1527 		/* lgf %dst,off(%src) */
1528 		jit->seen |= SEEN_MEM;
1529 		EMIT6_DISP_LH(0xe3000000, 0x0014, dst_reg, src_reg, REG_0, off);
1530 		break;
1531 	case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
1532 	case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1533 		/* lg %dst,0(off,%src) */
1534 		jit->seen |= SEEN_MEM;
1535 		EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
1536 		break;
1537 	/*
1538 	 * BPF_JMP / CALL
1539 	 */
1540 	case BPF_JMP | BPF_CALL:
1541 	{
1542 		const struct btf_func_model *m;
1543 		bool func_addr_fixed;
1544 		int j, ret;
1545 		u64 func;
1546 
1547 		ret = bpf_jit_get_func_addr(fp, insn, extra_pass,
1548 					    &func, &func_addr_fixed);
1549 		if (ret < 0)
1550 			return -1;
1551 
1552 		REG_SET_SEEN(BPF_REG_5);
1553 		jit->seen |= SEEN_FUNC;
1554 		/*
1555 		 * Copy the tail call counter to where the callee expects it.
1556 		 *
1557 		 * Note 1: The callee can increment the tail call counter, but
1558 		 * we do not load it back, since the x86 JIT does not do this
1559 		 * either.
1560 		 *
1561 		 * Note 2: We assume that the verifier does not let us call the
1562 		 * main program, which clears the tail call counter on entry.
1563 		 */
1564 		/* mvc STK_OFF_TCCNT(4,%r15),N(%r15) */
1565 		_EMIT6(0xd203f000 | STK_OFF_TCCNT,
1566 		       0xf000 | (STK_OFF_TCCNT + STK_OFF + stack_depth));
1567 
1568 		/* Sign-extend the kfunc arguments. */
1569 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
1570 			m = bpf_jit_find_kfunc_model(fp, insn);
1571 			if (!m)
1572 				return -1;
1573 
1574 			for (j = 0; j < m->nr_args; j++) {
1575 				if (sign_extend(jit, BPF_REG_1 + j,
1576 						m->arg_size[j],
1577 						m->arg_flags[j]))
1578 					return -1;
1579 			}
1580 		}
1581 
1582 		/* lgrl %w1,func */
1583 		EMIT6_PCREL_RILB(0xc4080000, REG_W1, _EMIT_CONST_U64(func));
1584 		/* %r1() */
1585 		call_r1(jit);
1586 		/* lgr %b0,%r2: load return value into %b0 */
1587 		EMIT4(0xb9040000, BPF_REG_0, REG_2);
1588 		break;
1589 	}
1590 	case BPF_JMP | BPF_TAIL_CALL: {
1591 		int patch_1_clrj, patch_2_clij, patch_3_brc;
1592 
1593 		/*
1594 		 * Implicit input:
1595 		 *  B1: pointer to ctx
1596 		 *  B2: pointer to bpf_array
1597 		 *  B3: index in bpf_array
1598 		 *
1599 		 * if (index >= array->map.max_entries)
1600 		 *         goto out;
1601 		 */
1602 
1603 		/* llgf %w1,map.max_entries(%b2) */
1604 		EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
1605 			      offsetof(struct bpf_array, map.max_entries));
1606 		/* if ((u32)%b3 >= (u32)%w1) goto out; */
1607 		/* clrj %b3,%w1,0xa,out */
1608 		patch_1_clrj = jit->prg;
1609 		EMIT6_PCREL_RIEB(0xec000000, 0x0077, BPF_REG_3, REG_W1, 0xa,
1610 				 jit->prg);
1611 
1612 		/*
1613 		 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
1614 		 *         goto out;
1615 		 */
1616 
1617 		if (jit->seen & SEEN_STACK)
1618 			off = STK_OFF_TCCNT + STK_OFF + stack_depth;
1619 		else
1620 			off = STK_OFF_TCCNT;
1621 		/* lhi %w0,1 */
1622 		EMIT4_IMM(0xa7080000, REG_W0, 1);
1623 		/* laal %w1,%w0,off(%r15) */
1624 		EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1625 		/* clij %w1,MAX_TAIL_CALL_CNT-1,0x2,out */
1626 		patch_2_clij = jit->prg;
1627 		EMIT6_PCREL_RIEC(0xec000000, 0x007f, REG_W1, MAX_TAIL_CALL_CNT - 1,
1628 				 2, jit->prg);
1629 
1630 		/*
1631 		 * prog = array->ptrs[index];
1632 		 * if (prog == NULL)
1633 		 *         goto out;
1634 		 */
1635 
1636 		/* llgfr %r1,%b3: %r1 = (u32) index */
1637 		EMIT4(0xb9160000, REG_1, BPF_REG_3);
1638 		/* sllg %r1,%r1,3: %r1 *= 8 */
1639 		EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, REG_1, REG_0, 3);
1640 		/* ltg %r1,prog(%b2,%r1) */
1641 		EMIT6_DISP_LH(0xe3000000, 0x0002, REG_1, BPF_REG_2,
1642 			      REG_1, offsetof(struct bpf_array, ptrs));
1643 		/* brc 0x8,out */
1644 		patch_3_brc = jit->prg;
1645 		EMIT4_PCREL_RIC(0xa7040000, 8, jit->prg);
1646 
1647 		/*
1648 		 * Restore registers before calling function
1649 		 */
1650 		save_restore_regs(jit, REGS_RESTORE, stack_depth);
1651 
1652 		/*
1653 		 * goto *(prog->bpf_func + tail_call_start);
1654 		 */
1655 
1656 		/* lg %r1,bpf_func(%r1) */
1657 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1658 			      offsetof(struct bpf_prog, bpf_func));
1659 		if (nospec_uses_trampoline()) {
1660 			jit->seen |= SEEN_FUNC;
1661 			/* aghi %r1,tail_call_start */
1662 			EMIT4_IMM(0xa70b0000, REG_1, jit->tail_call_start);
1663 			/* brcl 0xf,__s390_indirect_jump_r1 */
1664 			EMIT6_PCREL_RILC(0xc0040000, 0xf, jit->r1_thunk_ip);
1665 		} else {
1666 			/* bc 0xf,tail_call_start(%r1) */
1667 			_EMIT4(0x47f01000 + jit->tail_call_start);
1668 		}
1669 		/* out: */
1670 		if (jit->prg_buf) {
1671 			*(u16 *)(jit->prg_buf + patch_1_clrj + 2) =
1672 				(jit->prg - patch_1_clrj) >> 1;
1673 			*(u16 *)(jit->prg_buf + patch_2_clij + 2) =
1674 				(jit->prg - patch_2_clij) >> 1;
1675 			*(u16 *)(jit->prg_buf + patch_3_brc + 2) =
1676 				(jit->prg - patch_3_brc) >> 1;
1677 		}
1678 		break;
1679 	}
1680 	case BPF_JMP | BPF_EXIT: /* return b0 */
1681 		last = (i == fp->len - 1) ? 1 : 0;
1682 		if (last)
1683 			break;
1684 		if (!is_first_pass(jit) && can_use_rel(jit, jit->exit_ip))
1685 			/* brc 0xf, <exit> */
1686 			EMIT4_PCREL_RIC(0xa7040000, 0xf, jit->exit_ip);
1687 		else
1688 			/* brcl 0xf, <exit> */
1689 			EMIT6_PCREL_RILC(0xc0040000, 0xf, jit->exit_ip);
1690 		break;
1691 	/*
1692 	 * Branch relative (number of skipped instructions) to offset on
1693 	 * condition.
1694 	 *
1695 	 * Condition code to mask mapping:
1696 	 *
1697 	 * CC | Description	   | Mask
1698 	 * ------------------------------
1699 	 * 0  | Operands equal	   |	8
1700 	 * 1  | First operand low  |	4
1701 	 * 2  | First operand high |	2
1702 	 * 3  | Unused		   |	1
1703 	 *
1704 	 * For s390x relative branches: ip = ip + off_bytes
1705 	 * For BPF relative branches:	insn = insn + off_insns + 1
1706 	 *
1707 	 * For example for s390x with offset 0 we jump to the branch
1708 	 * instruction itself (loop) and for BPF with offset 0 we
1709 	 * branch to the instruction behind the branch.
1710 	 */
1711 	case BPF_JMP32 | BPF_JA: /* if (true) */
1712 		branch_oc_off = imm;
1713 		fallthrough;
1714 	case BPF_JMP | BPF_JA: /* if (true) */
1715 		mask = 0xf000; /* j */
1716 		goto branch_oc;
1717 	case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
1718 	case BPF_JMP32 | BPF_JSGT | BPF_K: /* ((s32) dst > (s32) imm) */
1719 		mask = 0x2000; /* jh */
1720 		goto branch_ks;
1721 	case BPF_JMP | BPF_JSLT | BPF_K: /* ((s64) dst < (s64) imm) */
1722 	case BPF_JMP32 | BPF_JSLT | BPF_K: /* ((s32) dst < (s32) imm) */
1723 		mask = 0x4000; /* jl */
1724 		goto branch_ks;
1725 	case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
1726 	case BPF_JMP32 | BPF_JSGE | BPF_K: /* ((s32) dst >= (s32) imm) */
1727 		mask = 0xa000; /* jhe */
1728 		goto branch_ks;
1729 	case BPF_JMP | BPF_JSLE | BPF_K: /* ((s64) dst <= (s64) imm) */
1730 	case BPF_JMP32 | BPF_JSLE | BPF_K: /* ((s32) dst <= (s32) imm) */
1731 		mask = 0xc000; /* jle */
1732 		goto branch_ks;
1733 	case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
1734 	case BPF_JMP32 | BPF_JGT | BPF_K: /* ((u32) dst_reg > (u32) imm) */
1735 		mask = 0x2000; /* jh */
1736 		goto branch_ku;
1737 	case BPF_JMP | BPF_JLT | BPF_K: /* (dst_reg < imm) */
1738 	case BPF_JMP32 | BPF_JLT | BPF_K: /* ((u32) dst_reg < (u32) imm) */
1739 		mask = 0x4000; /* jl */
1740 		goto branch_ku;
1741 	case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
1742 	case BPF_JMP32 | BPF_JGE | BPF_K: /* ((u32) dst_reg >= (u32) imm) */
1743 		mask = 0xa000; /* jhe */
1744 		goto branch_ku;
1745 	case BPF_JMP | BPF_JLE | BPF_K: /* (dst_reg <= imm) */
1746 	case BPF_JMP32 | BPF_JLE | BPF_K: /* ((u32) dst_reg <= (u32) imm) */
1747 		mask = 0xc000; /* jle */
1748 		goto branch_ku;
1749 	case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
1750 	case BPF_JMP32 | BPF_JNE | BPF_K: /* ((u32) dst_reg != (u32) imm) */
1751 		mask = 0x7000; /* jne */
1752 		goto branch_ku;
1753 	case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
1754 	case BPF_JMP32 | BPF_JEQ | BPF_K: /* ((u32) dst_reg == (u32) imm) */
1755 		mask = 0x8000; /* je */
1756 		goto branch_ku;
1757 	case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1758 	case BPF_JMP32 | BPF_JSET | BPF_K: /* ((u32) dst_reg & (u32) imm) */
1759 		mask = 0x7000; /* jnz */
1760 		if (BPF_CLASS(insn->code) == BPF_JMP32) {
1761 			/* llilf %w1,imm (load zero extend imm) */
1762 			EMIT6_IMM(0xc00f0000, REG_W1, imm);
1763 			/* nr %w1,%dst */
1764 			EMIT2(0x1400, REG_W1, dst_reg);
1765 		} else {
1766 			/* lgfi %w1,imm (load sign extend imm) */
1767 			EMIT6_IMM(0xc0010000, REG_W1, imm);
1768 			/* ngr %w1,%dst */
1769 			EMIT4(0xb9800000, REG_W1, dst_reg);
1770 		}
1771 		goto branch_oc;
1772 
1773 	case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
1774 	case BPF_JMP32 | BPF_JSGT | BPF_X: /* ((s32) dst > (s32) src) */
1775 		mask = 0x2000; /* jh */
1776 		goto branch_xs;
1777 	case BPF_JMP | BPF_JSLT | BPF_X: /* ((s64) dst < (s64) src) */
1778 	case BPF_JMP32 | BPF_JSLT | BPF_X: /* ((s32) dst < (s32) src) */
1779 		mask = 0x4000; /* jl */
1780 		goto branch_xs;
1781 	case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
1782 	case BPF_JMP32 | BPF_JSGE | BPF_X: /* ((s32) dst >= (s32) src) */
1783 		mask = 0xa000; /* jhe */
1784 		goto branch_xs;
1785 	case BPF_JMP | BPF_JSLE | BPF_X: /* ((s64) dst <= (s64) src) */
1786 	case BPF_JMP32 | BPF_JSLE | BPF_X: /* ((s32) dst <= (s32) src) */
1787 		mask = 0xc000; /* jle */
1788 		goto branch_xs;
1789 	case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
1790 	case BPF_JMP32 | BPF_JGT | BPF_X: /* ((u32) dst > (u32) src) */
1791 		mask = 0x2000; /* jh */
1792 		goto branch_xu;
1793 	case BPF_JMP | BPF_JLT | BPF_X: /* (dst < src) */
1794 	case BPF_JMP32 | BPF_JLT | BPF_X: /* ((u32) dst < (u32) src) */
1795 		mask = 0x4000; /* jl */
1796 		goto branch_xu;
1797 	case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
1798 	case BPF_JMP32 | BPF_JGE | BPF_X: /* ((u32) dst >= (u32) src) */
1799 		mask = 0xa000; /* jhe */
1800 		goto branch_xu;
1801 	case BPF_JMP | BPF_JLE | BPF_X: /* (dst <= src) */
1802 	case BPF_JMP32 | BPF_JLE | BPF_X: /* ((u32) dst <= (u32) src) */
1803 		mask = 0xc000; /* jle */
1804 		goto branch_xu;
1805 	case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
1806 	case BPF_JMP32 | BPF_JNE | BPF_X: /* ((u32) dst != (u32) src) */
1807 		mask = 0x7000; /* jne */
1808 		goto branch_xu;
1809 	case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
1810 	case BPF_JMP32 | BPF_JEQ | BPF_X: /* ((u32) dst == (u32) src) */
1811 		mask = 0x8000; /* je */
1812 		goto branch_xu;
1813 	case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
1814 	case BPF_JMP32 | BPF_JSET | BPF_X: /* ((u32) dst & (u32) src) */
1815 	{
1816 		bool is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1817 
1818 		mask = 0x7000; /* jnz */
1819 		/* nrk or ngrk %w1,%dst,%src */
1820 		EMIT4_RRF((is_jmp32 ? 0xb9f40000 : 0xb9e40000),
1821 			  REG_W1, dst_reg, src_reg);
1822 		goto branch_oc;
1823 branch_ks:
1824 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1825 		/* cfi or cgfi %dst,imm */
1826 		EMIT6_IMM(is_jmp32 ? 0xc20d0000 : 0xc20c0000,
1827 			  dst_reg, imm);
1828 		if (!is_first_pass(jit) &&
1829 		    can_use_rel(jit, addrs[i + off + 1])) {
1830 			/* brc mask,off */
1831 			EMIT4_PCREL_RIC(0xa7040000,
1832 					mask >> 12, addrs[i + off + 1]);
1833 		} else {
1834 			/* brcl mask,off */
1835 			EMIT6_PCREL_RILC(0xc0040000,
1836 					 mask >> 12, addrs[i + off + 1]);
1837 		}
1838 		break;
1839 branch_ku:
1840 		/* lgfi %w1,imm (load sign extend imm) */
1841 		src_reg = REG_1;
1842 		EMIT6_IMM(0xc0010000, src_reg, imm);
1843 		goto branch_xu;
1844 branch_xs:
1845 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1846 		if (!is_first_pass(jit) &&
1847 		    can_use_rel(jit, addrs[i + off + 1])) {
1848 			/* crj or cgrj %dst,%src,mask,off */
1849 			EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0076 : 0x0064),
1850 				    dst_reg, src_reg, i, off, mask);
1851 		} else {
1852 			/* cr or cgr %dst,%src */
1853 			if (is_jmp32)
1854 				EMIT2(0x1900, dst_reg, src_reg);
1855 			else
1856 				EMIT4(0xb9200000, dst_reg, src_reg);
1857 			/* brcl mask,off */
1858 			EMIT6_PCREL_RILC(0xc0040000,
1859 					 mask >> 12, addrs[i + off + 1]);
1860 		}
1861 		break;
1862 branch_xu:
1863 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1864 		if (!is_first_pass(jit) &&
1865 		    can_use_rel(jit, addrs[i + off + 1])) {
1866 			/* clrj or clgrj %dst,%src,mask,off */
1867 			EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0077 : 0x0065),
1868 				    dst_reg, src_reg, i, off, mask);
1869 		} else {
1870 			/* clr or clgr %dst,%src */
1871 			if (is_jmp32)
1872 				EMIT2(0x1500, dst_reg, src_reg);
1873 			else
1874 				EMIT4(0xb9210000, dst_reg, src_reg);
1875 			/* brcl mask,off */
1876 			EMIT6_PCREL_RILC(0xc0040000,
1877 					 mask >> 12, addrs[i + off + 1]);
1878 		}
1879 		break;
1880 branch_oc:
1881 		if (!is_first_pass(jit) &&
1882 		    can_use_rel(jit, addrs[i + branch_oc_off + 1])) {
1883 			/* brc mask,off */
1884 			EMIT4_PCREL_RIC(0xa7040000,
1885 					mask >> 12,
1886 					addrs[i + branch_oc_off + 1]);
1887 		} else {
1888 			/* brcl mask,off */
1889 			EMIT6_PCREL_RILC(0xc0040000,
1890 					 mask >> 12,
1891 					 addrs[i + branch_oc_off + 1]);
1892 		}
1893 		break;
1894 	}
1895 	default: /* too complex, give up */
1896 		pr_err("Unknown opcode %02x\n", insn->code);
1897 		return -1;
1898 	}
1899 
1900 	if (probe_prg != -1) {
1901 		/*
1902 		 * Handlers of certain exceptions leave psw.addr pointing to
1903 		 * the instruction directly after the failing one. Therefore,
1904 		 * create two exception table entries and also add a nop in
1905 		 * case two probing instructions come directly after each
1906 		 * other.
1907 		 */
1908 		nop_prg = jit->prg;
1909 		/* bcr 0,%0 */
1910 		_EMIT2(0x0700);
1911 		err = bpf_jit_probe_mem(jit, fp, probe_prg, nop_prg);
1912 		if (err < 0)
1913 			return err;
1914 	}
1915 
1916 	return insn_count;
1917 }
1918 
1919 /*
1920  * Return whether new i-th instruction address does not violate any invariant
1921  */
bpf_is_new_addr_sane(struct bpf_jit * jit,int i)1922 static bool bpf_is_new_addr_sane(struct bpf_jit *jit, int i)
1923 {
1924 	/* On the first pass anything goes */
1925 	if (is_first_pass(jit))
1926 		return true;
1927 
1928 	/* The codegen pass must not change anything */
1929 	if (is_codegen_pass(jit))
1930 		return jit->addrs[i] == jit->prg;
1931 
1932 	/* Passes in between must not increase code size */
1933 	return jit->addrs[i] >= jit->prg;
1934 }
1935 
1936 /*
1937  * Update the address of i-th instruction
1938  */
bpf_set_addr(struct bpf_jit * jit,int i)1939 static int bpf_set_addr(struct bpf_jit *jit, int i)
1940 {
1941 	int delta;
1942 
1943 	if (is_codegen_pass(jit)) {
1944 		delta = jit->prg - jit->addrs[i];
1945 		if (delta < 0)
1946 			bpf_skip(jit, -delta);
1947 	}
1948 	if (WARN_ON_ONCE(!bpf_is_new_addr_sane(jit, i)))
1949 		return -1;
1950 	jit->addrs[i] = jit->prg;
1951 	return 0;
1952 }
1953 
1954 /*
1955  * Compile eBPF program into s390x code
1956  */
bpf_jit_prog(struct bpf_jit * jit,struct bpf_prog * fp,bool extra_pass,u32 stack_depth)1957 static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp,
1958 			bool extra_pass, u32 stack_depth)
1959 {
1960 	int i, insn_count, lit32_size, lit64_size;
1961 
1962 	jit->lit32 = jit->lit32_start;
1963 	jit->lit64 = jit->lit64_start;
1964 	jit->prg = 0;
1965 	jit->excnt = 0;
1966 
1967 	bpf_jit_prologue(jit, fp, stack_depth);
1968 	if (bpf_set_addr(jit, 0) < 0)
1969 		return -1;
1970 	for (i = 0; i < fp->len; i += insn_count) {
1971 		insn_count = bpf_jit_insn(jit, fp, i, extra_pass, stack_depth);
1972 		if (insn_count < 0)
1973 			return -1;
1974 		/* Next instruction address */
1975 		if (bpf_set_addr(jit, i + insn_count) < 0)
1976 			return -1;
1977 	}
1978 	bpf_jit_epilogue(jit, stack_depth);
1979 
1980 	lit32_size = jit->lit32 - jit->lit32_start;
1981 	lit64_size = jit->lit64 - jit->lit64_start;
1982 	jit->lit32_start = jit->prg;
1983 	if (lit32_size)
1984 		jit->lit32_start = ALIGN(jit->lit32_start, 4);
1985 	jit->lit64_start = jit->lit32_start + lit32_size;
1986 	if (lit64_size)
1987 		jit->lit64_start = ALIGN(jit->lit64_start, 8);
1988 	jit->size = jit->lit64_start + lit64_size;
1989 	jit->size_prg = jit->prg;
1990 
1991 	if (WARN_ON_ONCE(fp->aux->extable &&
1992 			 jit->excnt != fp->aux->num_exentries))
1993 		/* Verifier bug - too many entries. */
1994 		return -1;
1995 
1996 	return 0;
1997 }
1998 
bpf_jit_needs_zext(void)1999 bool bpf_jit_needs_zext(void)
2000 {
2001 	return true;
2002 }
2003 
2004 struct s390_jit_data {
2005 	struct bpf_binary_header *header;
2006 	struct bpf_jit ctx;
2007 	int pass;
2008 };
2009 
bpf_jit_alloc(struct bpf_jit * jit,struct bpf_prog * fp)2010 static struct bpf_binary_header *bpf_jit_alloc(struct bpf_jit *jit,
2011 					       struct bpf_prog *fp)
2012 {
2013 	struct bpf_binary_header *header;
2014 	u32 extable_size;
2015 	u32 code_size;
2016 
2017 	/* We need two entries per insn. */
2018 	fp->aux->num_exentries *= 2;
2019 
2020 	code_size = roundup(jit->size,
2021 			    __alignof__(struct exception_table_entry));
2022 	extable_size = fp->aux->num_exentries *
2023 		sizeof(struct exception_table_entry);
2024 	header = bpf_jit_binary_alloc(code_size + extable_size, &jit->prg_buf,
2025 				      8, jit_fill_hole);
2026 	if (!header)
2027 		return NULL;
2028 	fp->aux->extable = (struct exception_table_entry *)
2029 		(jit->prg_buf + code_size);
2030 	return header;
2031 }
2032 
2033 /*
2034  * Compile eBPF program "fp"
2035  */
bpf_int_jit_compile(struct bpf_prog * fp)2036 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
2037 {
2038 	u32 stack_depth = round_up(fp->aux->stack_depth, 8);
2039 	struct bpf_prog *tmp, *orig_fp = fp;
2040 	struct bpf_binary_header *header;
2041 	struct s390_jit_data *jit_data;
2042 	bool tmp_blinded = false;
2043 	bool extra_pass = false;
2044 	struct bpf_jit jit;
2045 	int pass;
2046 
2047 	if (!fp->jit_requested)
2048 		return orig_fp;
2049 
2050 	tmp = bpf_jit_blind_constants(fp);
2051 	/*
2052 	 * If blinding was requested and we failed during blinding,
2053 	 * we must fall back to the interpreter.
2054 	 */
2055 	if (IS_ERR(tmp))
2056 		return orig_fp;
2057 	if (tmp != fp) {
2058 		tmp_blinded = true;
2059 		fp = tmp;
2060 	}
2061 
2062 	jit_data = fp->aux->jit_data;
2063 	if (!jit_data) {
2064 		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
2065 		if (!jit_data) {
2066 			fp = orig_fp;
2067 			goto out;
2068 		}
2069 		fp->aux->jit_data = jit_data;
2070 	}
2071 	if (jit_data->ctx.addrs) {
2072 		jit = jit_data->ctx;
2073 		header = jit_data->header;
2074 		extra_pass = true;
2075 		pass = jit_data->pass + 1;
2076 		goto skip_init_ctx;
2077 	}
2078 
2079 	memset(&jit, 0, sizeof(jit));
2080 	jit.addrs = kvcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
2081 	if (jit.addrs == NULL) {
2082 		fp = orig_fp;
2083 		goto free_addrs;
2084 	}
2085 	/*
2086 	 * Three initial passes:
2087 	 *   - 1/2: Determine clobbered registers
2088 	 *   - 3:   Calculate program size and addrs array
2089 	 */
2090 	for (pass = 1; pass <= 3; pass++) {
2091 		if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
2092 			fp = orig_fp;
2093 			goto free_addrs;
2094 		}
2095 	}
2096 	/*
2097 	 * Final pass: Allocate and generate program
2098 	 */
2099 	header = bpf_jit_alloc(&jit, fp);
2100 	if (!header) {
2101 		fp = orig_fp;
2102 		goto free_addrs;
2103 	}
2104 skip_init_ctx:
2105 	if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
2106 		bpf_jit_binary_free(header);
2107 		fp = orig_fp;
2108 		goto free_addrs;
2109 	}
2110 	if (bpf_jit_enable > 1) {
2111 		bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
2112 		print_fn_code(jit.prg_buf, jit.size_prg);
2113 	}
2114 	if (!fp->is_func || extra_pass) {
2115 		if (bpf_jit_binary_lock_ro(header)) {
2116 			bpf_jit_binary_free(header);
2117 			fp = orig_fp;
2118 			goto free_addrs;
2119 		}
2120 	} else {
2121 		jit_data->header = header;
2122 		jit_data->ctx = jit;
2123 		jit_data->pass = pass;
2124 	}
2125 	fp->bpf_func = (void *) jit.prg_buf;
2126 	fp->jited = 1;
2127 	fp->jited_len = jit.size;
2128 
2129 	if (!fp->is_func || extra_pass) {
2130 		bpf_prog_fill_jited_linfo(fp, jit.addrs + 1);
2131 free_addrs:
2132 		kvfree(jit.addrs);
2133 		kfree(jit_data);
2134 		fp->aux->jit_data = NULL;
2135 	}
2136 out:
2137 	if (tmp_blinded)
2138 		bpf_jit_prog_release_other(fp, fp == orig_fp ?
2139 					   tmp : orig_fp);
2140 	return fp;
2141 }
2142 
bpf_jit_supports_kfunc_call(void)2143 bool bpf_jit_supports_kfunc_call(void)
2144 {
2145 	return true;
2146 }
2147 
bpf_jit_supports_far_kfunc_call(void)2148 bool bpf_jit_supports_far_kfunc_call(void)
2149 {
2150 	return true;
2151 }
2152 
bpf_arch_text_poke(void * ip,enum bpf_text_poke_type t,void * old_addr,void * new_addr)2153 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2154 		       void *old_addr, void *new_addr)
2155 {
2156 	struct bpf_plt expected_plt, current_plt, new_plt, *plt;
2157 	struct {
2158 		u16 opc;
2159 		s32 disp;
2160 	} __packed insn;
2161 	char *ret;
2162 	int err;
2163 
2164 	/* Verify the branch to be patched. */
2165 	err = copy_from_kernel_nofault(&insn, ip, sizeof(insn));
2166 	if (err < 0)
2167 		return err;
2168 	if (insn.opc != (0xc004 | (old_addr ? 0xf0 : 0)))
2169 		return -EINVAL;
2170 
2171 	if (t == BPF_MOD_JUMP &&
2172 	    insn.disp == ((char *)new_addr - (char *)ip) >> 1) {
2173 		/*
2174 		 * The branch already points to the destination,
2175 		 * there is no PLT.
2176 		 */
2177 	} else {
2178 		/* Verify the PLT. */
2179 		plt = ip + (insn.disp << 1);
2180 		err = copy_from_kernel_nofault(&current_plt, plt,
2181 					       sizeof(current_plt));
2182 		if (err < 0)
2183 			return err;
2184 		ret = (char *)ip + 6;
2185 		bpf_jit_plt(&expected_plt, ret, old_addr);
2186 		if (memcmp(&current_plt, &expected_plt, sizeof(current_plt)))
2187 			return -EINVAL;
2188 		/* Adjust the call address. */
2189 		bpf_jit_plt(&new_plt, ret, new_addr);
2190 		s390_kernel_write(&plt->target, &new_plt.target,
2191 				  sizeof(void *));
2192 	}
2193 
2194 	/* Adjust the mask of the branch. */
2195 	insn.opc = 0xc004 | (new_addr ? 0xf0 : 0);
2196 	s390_kernel_write((char *)ip + 1, (char *)&insn.opc + 1, 1);
2197 
2198 	/* Make the new code visible to the other CPUs. */
2199 	text_poke_sync_lock();
2200 
2201 	return 0;
2202 }
2203 
2204 struct bpf_tramp_jit {
2205 	struct bpf_jit common;
2206 	int orig_stack_args_off;/* Offset of arguments placed on stack by the
2207 				 * func_addr's original caller
2208 				 */
2209 	int stack_size;		/* Trampoline stack size */
2210 	int backchain_off;	/* Offset of backchain */
2211 	int stack_args_off;	/* Offset of stack arguments for calling
2212 				 * func_addr, has to be at the top
2213 				 */
2214 	int reg_args_off;	/* Offset of register arguments for calling
2215 				 * func_addr
2216 				 */
2217 	int ip_off;		/* For bpf_get_func_ip(), has to be at
2218 				 * (ctx - 16)
2219 				 */
2220 	int arg_cnt_off;	/* For bpf_get_func_arg_cnt(), has to be at
2221 				 * (ctx - 8)
2222 				 */
2223 	int bpf_args_off;	/* Offset of BPF_PROG context, which consists
2224 				 * of BPF arguments followed by return value
2225 				 */
2226 	int retval_off;		/* Offset of return value (see above) */
2227 	int r7_r8_off;		/* Offset of saved %r7 and %r8, which are used
2228 				 * for __bpf_prog_enter() return value and
2229 				 * func_addr respectively
2230 				 */
2231 	int run_ctx_off;	/* Offset of struct bpf_tramp_run_ctx */
2232 	int tccnt_off;		/* Offset of saved tailcall counter */
2233 	int r14_off;		/* Offset of saved %r14, has to be at the
2234 				 * bottom */
2235 	int do_fexit;		/* do_fexit: label */
2236 };
2237 
load_imm64(struct bpf_jit * jit,int dst_reg,u64 val)2238 static void load_imm64(struct bpf_jit *jit, int dst_reg, u64 val)
2239 {
2240 	/* llihf %dst_reg,val_hi */
2241 	EMIT6_IMM(0xc00e0000, dst_reg, (val >> 32));
2242 	/* oilf %rdst_reg,val_lo */
2243 	EMIT6_IMM(0xc00d0000, dst_reg, val);
2244 }
2245 
invoke_bpf_prog(struct bpf_tramp_jit * tjit,const struct btf_func_model * m,struct bpf_tramp_link * tlink,bool save_ret)2246 static int invoke_bpf_prog(struct bpf_tramp_jit *tjit,
2247 			   const struct btf_func_model *m,
2248 			   struct bpf_tramp_link *tlink, bool save_ret)
2249 {
2250 	struct bpf_jit *jit = &tjit->common;
2251 	int cookie_off = tjit->run_ctx_off +
2252 			 offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
2253 	struct bpf_prog *p = tlink->link.prog;
2254 	int patch;
2255 
2256 	/*
2257 	 * run_ctx.cookie = tlink->cookie;
2258 	 */
2259 
2260 	/* %r0 = tlink->cookie */
2261 	load_imm64(jit, REG_W0, tlink->cookie);
2262 	/* stg %r0,cookie_off(%r15) */
2263 	EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, REG_0, REG_15, cookie_off);
2264 
2265 	/*
2266 	 * if ((start = __bpf_prog_enter(p, &run_ctx)) == 0)
2267 	 *         goto skip;
2268 	 */
2269 
2270 	/* %r1 = __bpf_prog_enter */
2271 	load_imm64(jit, REG_1, (u64)bpf_trampoline_enter(p));
2272 	/* %r2 = p */
2273 	load_imm64(jit, REG_2, (u64)p);
2274 	/* la %r3,run_ctx_off(%r15) */
2275 	EMIT4_DISP(0x41000000, REG_3, REG_15, tjit->run_ctx_off);
2276 	/* %r1() */
2277 	call_r1(jit);
2278 	/* ltgr %r7,%r2 */
2279 	EMIT4(0xb9020000, REG_7, REG_2);
2280 	/* brcl 8,skip */
2281 	patch = jit->prg;
2282 	EMIT6_PCREL_RILC(0xc0040000, 8, 0);
2283 
2284 	/*
2285 	 * retval = bpf_func(args, p->insnsi);
2286 	 */
2287 
2288 	/* %r1 = p->bpf_func */
2289 	load_imm64(jit, REG_1, (u64)p->bpf_func);
2290 	/* la %r2,bpf_args_off(%r15) */
2291 	EMIT4_DISP(0x41000000, REG_2, REG_15, tjit->bpf_args_off);
2292 	/* %r3 = p->insnsi */
2293 	if (!p->jited)
2294 		load_imm64(jit, REG_3, (u64)p->insnsi);
2295 	/* %r1() */
2296 	call_r1(jit);
2297 	/* stg %r2,retval_off(%r15) */
2298 	if (save_ret) {
2299 		if (sign_extend(jit, REG_2, m->ret_size, m->ret_flags))
2300 			return -1;
2301 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_2, REG_0, REG_15,
2302 			      tjit->retval_off);
2303 	}
2304 
2305 	/* skip: */
2306 	if (jit->prg_buf)
2307 		*(u32 *)&jit->prg_buf[patch + 2] = (jit->prg - patch) >> 1;
2308 
2309 	/*
2310 	 * __bpf_prog_exit(p, start, &run_ctx);
2311 	 */
2312 
2313 	/* %r1 = __bpf_prog_exit */
2314 	load_imm64(jit, REG_1, (u64)bpf_trampoline_exit(p));
2315 	/* %r2 = p */
2316 	load_imm64(jit, REG_2, (u64)p);
2317 	/* lgr %r3,%r7 */
2318 	EMIT4(0xb9040000, REG_3, REG_7);
2319 	/* la %r4,run_ctx_off(%r15) */
2320 	EMIT4_DISP(0x41000000, REG_4, REG_15, tjit->run_ctx_off);
2321 	/* %r1() */
2322 	call_r1(jit);
2323 
2324 	return 0;
2325 }
2326 
alloc_stack(struct bpf_tramp_jit * tjit,size_t size)2327 static int alloc_stack(struct bpf_tramp_jit *tjit, size_t size)
2328 {
2329 	int stack_offset = tjit->stack_size;
2330 
2331 	tjit->stack_size += size;
2332 	return stack_offset;
2333 }
2334 
2335 /* ABI uses %r2 - %r6 for parameter passing. */
2336 #define MAX_NR_REG_ARGS 5
2337 
2338 /* The "L" field of the "mvc" instruction is 8 bits. */
2339 #define MAX_MVC_SIZE 256
2340 #define MAX_NR_STACK_ARGS (MAX_MVC_SIZE / sizeof(u64))
2341 
2342 /* -mfentry generates a 6-byte nop on s390x. */
2343 #define S390X_PATCH_SIZE 6
2344 
__arch_prepare_bpf_trampoline(struct bpf_tramp_image * im,struct bpf_tramp_jit * tjit,const struct btf_func_model * m,u32 flags,struct bpf_tramp_links * tlinks,void * func_addr)2345 static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im,
2346 					 struct bpf_tramp_jit *tjit,
2347 					 const struct btf_func_model *m,
2348 					 u32 flags,
2349 					 struct bpf_tramp_links *tlinks,
2350 					 void *func_addr)
2351 {
2352 	struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
2353 	struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
2354 	struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
2355 	int nr_bpf_args, nr_reg_args, nr_stack_args;
2356 	struct bpf_jit *jit = &tjit->common;
2357 	int arg, bpf_arg_off;
2358 	int i, j;
2359 
2360 	/* Support as many stack arguments as "mvc" instruction can handle. */
2361 	nr_reg_args = min_t(int, m->nr_args, MAX_NR_REG_ARGS);
2362 	nr_stack_args = m->nr_args - nr_reg_args;
2363 	if (nr_stack_args > MAX_NR_STACK_ARGS)
2364 		return -ENOTSUPP;
2365 
2366 	/* Return to %r14, since func_addr and %r0 are not available. */
2367 	if ((!func_addr && !(flags & BPF_TRAMP_F_ORIG_STACK)) ||
2368 	    (flags & BPF_TRAMP_F_INDIRECT))
2369 		flags |= BPF_TRAMP_F_SKIP_FRAME;
2370 
2371 	/*
2372 	 * Compute how many arguments we need to pass to BPF programs.
2373 	 * BPF ABI mirrors that of x86_64: arguments that are 16 bytes or
2374 	 * smaller are packed into 1 or 2 registers; larger arguments are
2375 	 * passed via pointers.
2376 	 * In s390x ABI, arguments that are 8 bytes or smaller are packed into
2377 	 * a register; larger arguments are passed via pointers.
2378 	 * We need to deal with this difference.
2379 	 */
2380 	nr_bpf_args = 0;
2381 	for (i = 0; i < m->nr_args; i++) {
2382 		if (m->arg_size[i] <= 8)
2383 			nr_bpf_args += 1;
2384 		else if (m->arg_size[i] <= 16)
2385 			nr_bpf_args += 2;
2386 		else
2387 			return -ENOTSUPP;
2388 	}
2389 
2390 	/*
2391 	 * Calculate the stack layout.
2392 	 */
2393 
2394 	/*
2395 	 * Allocate STACK_FRAME_OVERHEAD bytes for the callees. As the s390x
2396 	 * ABI requires, put our backchain at the end of the allocated memory.
2397 	 */
2398 	tjit->stack_size = STACK_FRAME_OVERHEAD;
2399 	tjit->backchain_off = tjit->stack_size - sizeof(u64);
2400 	tjit->stack_args_off = alloc_stack(tjit, nr_stack_args * sizeof(u64));
2401 	tjit->reg_args_off = alloc_stack(tjit, nr_reg_args * sizeof(u64));
2402 	tjit->ip_off = alloc_stack(tjit, sizeof(u64));
2403 	tjit->arg_cnt_off = alloc_stack(tjit, sizeof(u64));
2404 	tjit->bpf_args_off = alloc_stack(tjit, nr_bpf_args * sizeof(u64));
2405 	tjit->retval_off = alloc_stack(tjit, sizeof(u64));
2406 	tjit->r7_r8_off = alloc_stack(tjit, 2 * sizeof(u64));
2407 	tjit->run_ctx_off = alloc_stack(tjit,
2408 					sizeof(struct bpf_tramp_run_ctx));
2409 	tjit->tccnt_off = alloc_stack(tjit, sizeof(u64));
2410 	tjit->r14_off = alloc_stack(tjit, sizeof(u64) * 2);
2411 	/*
2412 	 * In accordance with the s390x ABI, the caller has allocated
2413 	 * STACK_FRAME_OVERHEAD bytes for us. 8 of them contain the caller's
2414 	 * backchain, and the rest we can use.
2415 	 */
2416 	tjit->stack_size -= STACK_FRAME_OVERHEAD - sizeof(u64);
2417 	tjit->orig_stack_args_off = tjit->stack_size + STACK_FRAME_OVERHEAD;
2418 
2419 	/* lgr %r1,%r15 */
2420 	EMIT4(0xb9040000, REG_1, REG_15);
2421 	/* aghi %r15,-stack_size */
2422 	EMIT4_IMM(0xa70b0000, REG_15, -tjit->stack_size);
2423 	/* stg %r1,backchain_off(%r15) */
2424 	EMIT6_DISP_LH(0xe3000000, 0x0024, REG_1, REG_0, REG_15,
2425 		      tjit->backchain_off);
2426 	/* mvc tccnt_off(4,%r15),stack_size+STK_OFF_TCCNT(%r15) */
2427 	_EMIT6(0xd203f000 | tjit->tccnt_off,
2428 	       0xf000 | (tjit->stack_size + STK_OFF_TCCNT));
2429 	/* stmg %r2,%rN,fwd_reg_args_off(%r15) */
2430 	if (nr_reg_args)
2431 		EMIT6_DISP_LH(0xeb000000, 0x0024, REG_2,
2432 			      REG_2 + (nr_reg_args - 1), REG_15,
2433 			      tjit->reg_args_off);
2434 	for (i = 0, j = 0; i < m->nr_args; i++) {
2435 		if (i < MAX_NR_REG_ARGS)
2436 			arg = REG_2 + i;
2437 		else
2438 			arg = tjit->orig_stack_args_off +
2439 			      (i - MAX_NR_REG_ARGS) * sizeof(u64);
2440 		bpf_arg_off = tjit->bpf_args_off + j * sizeof(u64);
2441 		if (m->arg_size[i] <= 8) {
2442 			if (i < MAX_NR_REG_ARGS)
2443 				/* stg %arg,bpf_arg_off(%r15) */
2444 				EMIT6_DISP_LH(0xe3000000, 0x0024, arg,
2445 					      REG_0, REG_15, bpf_arg_off);
2446 			else
2447 				/* mvc bpf_arg_off(8,%r15),arg(%r15) */
2448 				_EMIT6(0xd207f000 | bpf_arg_off,
2449 				       0xf000 | arg);
2450 			j += 1;
2451 		} else {
2452 			if (i < MAX_NR_REG_ARGS) {
2453 				/* mvc bpf_arg_off(16,%r15),0(%arg) */
2454 				_EMIT6(0xd20ff000 | bpf_arg_off,
2455 				       reg2hex[arg] << 12);
2456 			} else {
2457 				/* lg %r1,arg(%r15) */
2458 				EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_0,
2459 					      REG_15, arg);
2460 				/* mvc bpf_arg_off(16,%r15),0(%r1) */
2461 				_EMIT6(0xd20ff000 | bpf_arg_off, 0x1000);
2462 			}
2463 			j += 2;
2464 		}
2465 	}
2466 	/* stmg %r7,%r8,r7_r8_off(%r15) */
2467 	EMIT6_DISP_LH(0xeb000000, 0x0024, REG_7, REG_8, REG_15,
2468 		      tjit->r7_r8_off);
2469 	/* stg %r14,r14_off(%r15) */
2470 	EMIT6_DISP_LH(0xe3000000, 0x0024, REG_14, REG_0, REG_15, tjit->r14_off);
2471 
2472 	if (flags & BPF_TRAMP_F_ORIG_STACK) {
2473 		/*
2474 		 * The ftrace trampoline puts the return address (which is the
2475 		 * address of the original function + S390X_PATCH_SIZE) into
2476 		 * %r0; see ftrace_shared_hotpatch_trampoline_br and
2477 		 * ftrace_init_nop() for details.
2478 		 */
2479 
2480 		/* lgr %r8,%r0 */
2481 		EMIT4(0xb9040000, REG_8, REG_0);
2482 	} else {
2483 		/* %r8 = func_addr + S390X_PATCH_SIZE */
2484 		load_imm64(jit, REG_8, (u64)func_addr + S390X_PATCH_SIZE);
2485 	}
2486 
2487 	/*
2488 	 * ip = func_addr;
2489 	 * arg_cnt = m->nr_args;
2490 	 */
2491 
2492 	if (flags & BPF_TRAMP_F_IP_ARG) {
2493 		/* %r0 = func_addr */
2494 		load_imm64(jit, REG_0, (u64)func_addr);
2495 		/* stg %r0,ip_off(%r15) */
2496 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_0, REG_0, REG_15,
2497 			      tjit->ip_off);
2498 	}
2499 	/* lghi %r0,nr_bpf_args */
2500 	EMIT4_IMM(0xa7090000, REG_0, nr_bpf_args);
2501 	/* stg %r0,arg_cnt_off(%r15) */
2502 	EMIT6_DISP_LH(0xe3000000, 0x0024, REG_0, REG_0, REG_15,
2503 		      tjit->arg_cnt_off);
2504 
2505 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2506 		/*
2507 		 * __bpf_tramp_enter(im);
2508 		 */
2509 
2510 		/* %r1 = __bpf_tramp_enter */
2511 		load_imm64(jit, REG_1, (u64)__bpf_tramp_enter);
2512 		/* %r2 = im */
2513 		load_imm64(jit, REG_2, (u64)im);
2514 		/* %r1() */
2515 		call_r1(jit);
2516 	}
2517 
2518 	for (i = 0; i < fentry->nr_links; i++)
2519 		if (invoke_bpf_prog(tjit, m, fentry->links[i],
2520 				    flags & BPF_TRAMP_F_RET_FENTRY_RET))
2521 			return -EINVAL;
2522 
2523 	if (fmod_ret->nr_links) {
2524 		/*
2525 		 * retval = 0;
2526 		 */
2527 
2528 		/* xc retval_off(8,%r15),retval_off(%r15) */
2529 		_EMIT6(0xd707f000 | tjit->retval_off,
2530 		       0xf000 | tjit->retval_off);
2531 
2532 		for (i = 0; i < fmod_ret->nr_links; i++) {
2533 			if (invoke_bpf_prog(tjit, m, fmod_ret->links[i], true))
2534 				return -EINVAL;
2535 
2536 			/*
2537 			 * if (retval)
2538 			 *         goto do_fexit;
2539 			 */
2540 
2541 			/* ltg %r0,retval_off(%r15) */
2542 			EMIT6_DISP_LH(0xe3000000, 0x0002, REG_0, REG_0, REG_15,
2543 				      tjit->retval_off);
2544 			/* brcl 7,do_fexit */
2545 			EMIT6_PCREL_RILC(0xc0040000, 7, tjit->do_fexit);
2546 		}
2547 	}
2548 
2549 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2550 		/*
2551 		 * retval = func_addr(args);
2552 		 */
2553 
2554 		/* lmg %r2,%rN,reg_args_off(%r15) */
2555 		if (nr_reg_args)
2556 			EMIT6_DISP_LH(0xeb000000, 0x0004, REG_2,
2557 				      REG_2 + (nr_reg_args - 1), REG_15,
2558 				      tjit->reg_args_off);
2559 		/* mvc stack_args_off(N,%r15),orig_stack_args_off(%r15) */
2560 		if (nr_stack_args)
2561 			_EMIT6(0xd200f000 |
2562 				       (nr_stack_args * sizeof(u64) - 1) << 16 |
2563 				       tjit->stack_args_off,
2564 			       0xf000 | tjit->orig_stack_args_off);
2565 		/* mvc STK_OFF_TCCNT(4,%r15),tccnt_off(%r15) */
2566 		_EMIT6(0xd203f000 | STK_OFF_TCCNT, 0xf000 | tjit->tccnt_off);
2567 		/* lgr %r1,%r8 */
2568 		EMIT4(0xb9040000, REG_1, REG_8);
2569 		/* %r1() */
2570 		call_r1(jit);
2571 		/* stg %r2,retval_off(%r15) */
2572 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_2, REG_0, REG_15,
2573 			      tjit->retval_off);
2574 
2575 		im->ip_after_call = jit->prg_buf + jit->prg;
2576 
2577 		/*
2578 		 * The following nop will be patched by bpf_tramp_image_put().
2579 		 */
2580 
2581 		/* brcl 0,im->ip_epilogue */
2582 		EMIT6_PCREL_RILC(0xc0040000, 0, (u64)im->ip_epilogue);
2583 	}
2584 
2585 	/* do_fexit: */
2586 	tjit->do_fexit = jit->prg;
2587 	for (i = 0; i < fexit->nr_links; i++)
2588 		if (invoke_bpf_prog(tjit, m, fexit->links[i], false))
2589 			return -EINVAL;
2590 
2591 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2592 		im->ip_epilogue = jit->prg_buf + jit->prg;
2593 
2594 		/*
2595 		 * __bpf_tramp_exit(im);
2596 		 */
2597 
2598 		/* %r1 = __bpf_tramp_exit */
2599 		load_imm64(jit, REG_1, (u64)__bpf_tramp_exit);
2600 		/* %r2 = im */
2601 		load_imm64(jit, REG_2, (u64)im);
2602 		/* %r1() */
2603 		call_r1(jit);
2604 	}
2605 
2606 	/* lmg %r2,%rN,reg_args_off(%r15) */
2607 	if ((flags & BPF_TRAMP_F_RESTORE_REGS) && nr_reg_args)
2608 		EMIT6_DISP_LH(0xeb000000, 0x0004, REG_2,
2609 			      REG_2 + (nr_reg_args - 1), REG_15,
2610 			      tjit->reg_args_off);
2611 	/* lgr %r1,%r8 */
2612 	if (!(flags & BPF_TRAMP_F_SKIP_FRAME))
2613 		EMIT4(0xb9040000, REG_1, REG_8);
2614 	/* lmg %r7,%r8,r7_r8_off(%r15) */
2615 	EMIT6_DISP_LH(0xeb000000, 0x0004, REG_7, REG_8, REG_15,
2616 		      tjit->r7_r8_off);
2617 	/* lg %r14,r14_off(%r15) */
2618 	EMIT6_DISP_LH(0xe3000000, 0x0004, REG_14, REG_0, REG_15, tjit->r14_off);
2619 	/* lg %r2,retval_off(%r15) */
2620 	if (flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET))
2621 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_2, REG_0, REG_15,
2622 			      tjit->retval_off);
2623 	/* mvc stack_size+STK_OFF_TCCNT(4,%r15),tccnt_off(%r15) */
2624 	_EMIT6(0xd203f000 | (tjit->stack_size + STK_OFF_TCCNT),
2625 	       0xf000 | tjit->tccnt_off);
2626 	/* aghi %r15,stack_size */
2627 	EMIT4_IMM(0xa70b0000, REG_15, tjit->stack_size);
2628 	/* Emit an expoline for the following indirect jump. */
2629 	if (nospec_uses_trampoline())
2630 		emit_expoline(jit);
2631 	if (flags & BPF_TRAMP_F_SKIP_FRAME)
2632 		/* br %r14 */
2633 		_EMIT2(0x07fe);
2634 	else
2635 		/* br %r1 */
2636 		_EMIT2(0x07f1);
2637 
2638 	emit_r1_thunk(jit);
2639 
2640 	return 0;
2641 }
2642 
arch_bpf_trampoline_size(const struct btf_func_model * m,u32 flags,struct bpf_tramp_links * tlinks,void * orig_call)2643 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
2644 			     struct bpf_tramp_links *tlinks, void *orig_call)
2645 {
2646 	struct bpf_tramp_image im;
2647 	struct bpf_tramp_jit tjit;
2648 	int ret;
2649 
2650 	memset(&tjit, 0, sizeof(tjit));
2651 
2652 	ret = __arch_prepare_bpf_trampoline(&im, &tjit, m, flags,
2653 					    tlinks, orig_call);
2654 
2655 	return ret < 0 ? ret : tjit.common.prg;
2656 }
2657 
arch_prepare_bpf_trampoline(struct bpf_tramp_image * im,void * image,void * image_end,const struct btf_func_model * m,u32 flags,struct bpf_tramp_links * tlinks,void * func_addr)2658 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image,
2659 				void *image_end, const struct btf_func_model *m,
2660 				u32 flags, struct bpf_tramp_links *tlinks,
2661 				void *func_addr)
2662 {
2663 	struct bpf_tramp_jit tjit;
2664 	int ret;
2665 
2666 	/* Compute offsets, check whether the code fits. */
2667 	memset(&tjit, 0, sizeof(tjit));
2668 	ret = __arch_prepare_bpf_trampoline(im, &tjit, m, flags,
2669 					    tlinks, func_addr);
2670 
2671 	if (ret < 0)
2672 		return ret;
2673 	if (tjit.common.prg > (char *)image_end - (char *)image)
2674 		/*
2675 		 * Use the same error code as for exceeding
2676 		 * BPF_MAX_TRAMP_LINKS.
2677 		 */
2678 		return -E2BIG;
2679 
2680 	tjit.common.prg = 0;
2681 	tjit.common.prg_buf = image;
2682 	ret = __arch_prepare_bpf_trampoline(im, &tjit, m, flags,
2683 					    tlinks, func_addr);
2684 
2685 	return ret < 0 ? ret : tjit.common.prg;
2686 }
2687 
bpf_jit_supports_subprog_tailcalls(void)2688 bool bpf_jit_supports_subprog_tailcalls(void)
2689 {
2690 	return true;
2691 }
2692