xref: /linux/arch/x86/kernel/sev.c (revision 1e525507)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Memory Encryption Support
4  *
5  * Copyright (C) 2019 SUSE
6  *
7  * Author: Joerg Roedel <jroedel@suse.de>
8  */
9 
10 #define pr_fmt(fmt)	"SEV: " fmt
11 
12 #include <linux/sched/debug.h>	/* For show_regs() */
13 #include <linux/percpu-defs.h>
14 #include <linux/cc_platform.h>
15 #include <linux/printk.h>
16 #include <linux/mm_types.h>
17 #include <linux/set_memory.h>
18 #include <linux/memblock.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/cpumask.h>
22 #include <linux/efi.h>
23 #include <linux/platform_device.h>
24 #include <linux/io.h>
25 #include <linux/psp-sev.h>
26 #include <linux/dmi.h>
27 #include <uapi/linux/sev-guest.h>
28 
29 #include <asm/init.h>
30 #include <asm/cpu_entry_area.h>
31 #include <asm/stacktrace.h>
32 #include <asm/sev.h>
33 #include <asm/insn-eval.h>
34 #include <asm/fpu/xcr.h>
35 #include <asm/processor.h>
36 #include <asm/realmode.h>
37 #include <asm/setup.h>
38 #include <asm/traps.h>
39 #include <asm/svm.h>
40 #include <asm/smp.h>
41 #include <asm/cpu.h>
42 #include <asm/apic.h>
43 #include <asm/cpuid.h>
44 #include <asm/cmdline.h>
45 
46 #define DR7_RESET_VALUE        0x400
47 
48 /* AP INIT values as documented in the APM2  section "Processor Initialization State" */
49 #define AP_INIT_CS_LIMIT		0xffff
50 #define AP_INIT_DS_LIMIT		0xffff
51 #define AP_INIT_LDTR_LIMIT		0xffff
52 #define AP_INIT_GDTR_LIMIT		0xffff
53 #define AP_INIT_IDTR_LIMIT		0xffff
54 #define AP_INIT_TR_LIMIT		0xffff
55 #define AP_INIT_RFLAGS_DEFAULT		0x2
56 #define AP_INIT_DR6_DEFAULT		0xffff0ff0
57 #define AP_INIT_GPAT_DEFAULT		0x0007040600070406ULL
58 #define AP_INIT_XCR0_DEFAULT		0x1
59 #define AP_INIT_X87_FTW_DEFAULT		0x5555
60 #define AP_INIT_X87_FCW_DEFAULT		0x0040
61 #define AP_INIT_CR0_DEFAULT		0x60000010
62 #define AP_INIT_MXCSR_DEFAULT		0x1f80
63 
64 static const char * const sev_status_feat_names[] = {
65 	[MSR_AMD64_SEV_ENABLED_BIT]		= "SEV",
66 	[MSR_AMD64_SEV_ES_ENABLED_BIT]		= "SEV-ES",
67 	[MSR_AMD64_SEV_SNP_ENABLED_BIT]		= "SEV-SNP",
68 	[MSR_AMD64_SNP_VTOM_BIT]		= "vTom",
69 	[MSR_AMD64_SNP_REFLECT_VC_BIT]		= "ReflectVC",
70 	[MSR_AMD64_SNP_RESTRICTED_INJ_BIT]	= "RI",
71 	[MSR_AMD64_SNP_ALT_INJ_BIT]		= "AI",
72 	[MSR_AMD64_SNP_DEBUG_SWAP_BIT]		= "DebugSwap",
73 	[MSR_AMD64_SNP_PREVENT_HOST_IBS_BIT]	= "NoHostIBS",
74 	[MSR_AMD64_SNP_BTB_ISOLATION_BIT]	= "BTBIsol",
75 	[MSR_AMD64_SNP_VMPL_SSS_BIT]		= "VmplSSS",
76 	[MSR_AMD64_SNP_SECURE_TSC_BIT]		= "SecureTSC",
77 	[MSR_AMD64_SNP_VMGEXIT_PARAM_BIT]	= "VMGExitParam",
78 	[MSR_AMD64_SNP_IBS_VIRT_BIT]		= "IBSVirt",
79 	[MSR_AMD64_SNP_VMSA_REG_PROT_BIT]	= "VMSARegProt",
80 	[MSR_AMD64_SNP_SMT_PROT_BIT]		= "SMTProt",
81 };
82 
83 /* For early boot hypervisor communication in SEV-ES enabled guests */
84 static struct ghcb boot_ghcb_page __bss_decrypted __aligned(PAGE_SIZE);
85 
86 /*
87  * Needs to be in the .data section because we need it NULL before bss is
88  * cleared
89  */
90 static struct ghcb *boot_ghcb __section(".data");
91 
92 /* Bitmap of SEV features supported by the hypervisor */
93 static u64 sev_hv_features __ro_after_init;
94 
95 /* #VC handler runtime per-CPU data */
96 struct sev_es_runtime_data {
97 	struct ghcb ghcb_page;
98 
99 	/*
100 	 * Reserve one page per CPU as backup storage for the unencrypted GHCB.
101 	 * It is needed when an NMI happens while the #VC handler uses the real
102 	 * GHCB, and the NMI handler itself is causing another #VC exception. In
103 	 * that case the GHCB content of the first handler needs to be backed up
104 	 * and restored.
105 	 */
106 	struct ghcb backup_ghcb;
107 
108 	/*
109 	 * Mark the per-cpu GHCBs as in-use to detect nested #VC exceptions.
110 	 * There is no need for it to be atomic, because nothing is written to
111 	 * the GHCB between the read and the write of ghcb_active. So it is safe
112 	 * to use it when a nested #VC exception happens before the write.
113 	 *
114 	 * This is necessary for example in the #VC->NMI->#VC case when the NMI
115 	 * happens while the first #VC handler uses the GHCB. When the NMI code
116 	 * raises a second #VC handler it might overwrite the contents of the
117 	 * GHCB written by the first handler. To avoid this the content of the
118 	 * GHCB is saved and restored when the GHCB is detected to be in use
119 	 * already.
120 	 */
121 	bool ghcb_active;
122 	bool backup_ghcb_active;
123 
124 	/*
125 	 * Cached DR7 value - write it on DR7 writes and return it on reads.
126 	 * That value will never make it to the real hardware DR7 as debugging
127 	 * is currently unsupported in SEV-ES guests.
128 	 */
129 	unsigned long dr7;
130 };
131 
132 struct ghcb_state {
133 	struct ghcb *ghcb;
134 };
135 
136 static DEFINE_PER_CPU(struct sev_es_runtime_data*, runtime_data);
137 static DEFINE_PER_CPU(struct sev_es_save_area *, sev_vmsa);
138 
139 struct sev_config {
140 	__u64 debug		: 1,
141 
142 	      /*
143 	       * A flag used by __set_pages_state() that indicates when the
144 	       * per-CPU GHCB has been created and registered and thus can be
145 	       * used by the BSP instead of the early boot GHCB.
146 	       *
147 	       * For APs, the per-CPU GHCB is created before they are started
148 	       * and registered upon startup, so this flag can be used globally
149 	       * for the BSP and APs.
150 	       */
151 	      ghcbs_initialized	: 1,
152 
153 	      __reserved	: 62;
154 };
155 
156 static struct sev_config sev_cfg __read_mostly;
157 
on_vc_stack(struct pt_regs * regs)158 static __always_inline bool on_vc_stack(struct pt_regs *regs)
159 {
160 	unsigned long sp = regs->sp;
161 
162 	/* User-mode RSP is not trusted */
163 	if (user_mode(regs))
164 		return false;
165 
166 	/* SYSCALL gap still has user-mode RSP */
167 	if (ip_within_syscall_gap(regs))
168 		return false;
169 
170 	return ((sp >= __this_cpu_ist_bottom_va(VC)) && (sp < __this_cpu_ist_top_va(VC)));
171 }
172 
173 /*
174  * This function handles the case when an NMI is raised in the #VC
175  * exception handler entry code, before the #VC handler has switched off
176  * its IST stack. In this case, the IST entry for #VC must be adjusted,
177  * so that any nested #VC exception will not overwrite the stack
178  * contents of the interrupted #VC handler.
179  *
180  * The IST entry is adjusted unconditionally so that it can be also be
181  * unconditionally adjusted back in __sev_es_ist_exit(). Otherwise a
182  * nested sev_es_ist_exit() call may adjust back the IST entry too
183  * early.
184  *
185  * The __sev_es_ist_enter() and __sev_es_ist_exit() functions always run
186  * on the NMI IST stack, as they are only called from NMI handling code
187  * right now.
188  */
__sev_es_ist_enter(struct pt_regs * regs)189 void noinstr __sev_es_ist_enter(struct pt_regs *regs)
190 {
191 	unsigned long old_ist, new_ist;
192 
193 	/* Read old IST entry */
194 	new_ist = old_ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
195 
196 	/*
197 	 * If NMI happened while on the #VC IST stack, set the new IST
198 	 * value below regs->sp, so that the interrupted stack frame is
199 	 * not overwritten by subsequent #VC exceptions.
200 	 */
201 	if (on_vc_stack(regs))
202 		new_ist = regs->sp;
203 
204 	/*
205 	 * Reserve additional 8 bytes and store old IST value so this
206 	 * adjustment can be unrolled in __sev_es_ist_exit().
207 	 */
208 	new_ist -= sizeof(old_ist);
209 	*(unsigned long *)new_ist = old_ist;
210 
211 	/* Set new IST entry */
212 	this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], new_ist);
213 }
214 
__sev_es_ist_exit(void)215 void noinstr __sev_es_ist_exit(void)
216 {
217 	unsigned long ist;
218 
219 	/* Read IST entry */
220 	ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
221 
222 	if (WARN_ON(ist == __this_cpu_ist_top_va(VC)))
223 		return;
224 
225 	/* Read back old IST entry and write it to the TSS */
226 	this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], *(unsigned long *)ist);
227 }
228 
229 /*
230  * Nothing shall interrupt this code path while holding the per-CPU
231  * GHCB. The backup GHCB is only for NMIs interrupting this path.
232  *
233  * Callers must disable local interrupts around it.
234  */
__sev_get_ghcb(struct ghcb_state * state)235 static noinstr struct ghcb *__sev_get_ghcb(struct ghcb_state *state)
236 {
237 	struct sev_es_runtime_data *data;
238 	struct ghcb *ghcb;
239 
240 	WARN_ON(!irqs_disabled());
241 
242 	data = this_cpu_read(runtime_data);
243 	ghcb = &data->ghcb_page;
244 
245 	if (unlikely(data->ghcb_active)) {
246 		/* GHCB is already in use - save its contents */
247 
248 		if (unlikely(data->backup_ghcb_active)) {
249 			/*
250 			 * Backup-GHCB is also already in use. There is no way
251 			 * to continue here so just kill the machine. To make
252 			 * panic() work, mark GHCBs inactive so that messages
253 			 * can be printed out.
254 			 */
255 			data->ghcb_active        = false;
256 			data->backup_ghcb_active = false;
257 
258 			instrumentation_begin();
259 			panic("Unable to handle #VC exception! GHCB and Backup GHCB are already in use");
260 			instrumentation_end();
261 		}
262 
263 		/* Mark backup_ghcb active before writing to it */
264 		data->backup_ghcb_active = true;
265 
266 		state->ghcb = &data->backup_ghcb;
267 
268 		/* Backup GHCB content */
269 		*state->ghcb = *ghcb;
270 	} else {
271 		state->ghcb = NULL;
272 		data->ghcb_active = true;
273 	}
274 
275 	return ghcb;
276 }
277 
sev_es_rd_ghcb_msr(void)278 static inline u64 sev_es_rd_ghcb_msr(void)
279 {
280 	return __rdmsr(MSR_AMD64_SEV_ES_GHCB);
281 }
282 
sev_es_wr_ghcb_msr(u64 val)283 static __always_inline void sev_es_wr_ghcb_msr(u64 val)
284 {
285 	u32 low, high;
286 
287 	low  = (u32)(val);
288 	high = (u32)(val >> 32);
289 
290 	native_wrmsr(MSR_AMD64_SEV_ES_GHCB, low, high);
291 }
292 
vc_fetch_insn_kernel(struct es_em_ctxt * ctxt,unsigned char * buffer)293 static int vc_fetch_insn_kernel(struct es_em_ctxt *ctxt,
294 				unsigned char *buffer)
295 {
296 	return copy_from_kernel_nofault(buffer, (unsigned char *)ctxt->regs->ip, MAX_INSN_SIZE);
297 }
298 
__vc_decode_user_insn(struct es_em_ctxt * ctxt)299 static enum es_result __vc_decode_user_insn(struct es_em_ctxt *ctxt)
300 {
301 	char buffer[MAX_INSN_SIZE];
302 	int insn_bytes;
303 
304 	insn_bytes = insn_fetch_from_user_inatomic(ctxt->regs, buffer);
305 	if (insn_bytes == 0) {
306 		/* Nothing could be copied */
307 		ctxt->fi.vector     = X86_TRAP_PF;
308 		ctxt->fi.error_code = X86_PF_INSTR | X86_PF_USER;
309 		ctxt->fi.cr2        = ctxt->regs->ip;
310 		return ES_EXCEPTION;
311 	} else if (insn_bytes == -EINVAL) {
312 		/* Effective RIP could not be calculated */
313 		ctxt->fi.vector     = X86_TRAP_GP;
314 		ctxt->fi.error_code = 0;
315 		ctxt->fi.cr2        = 0;
316 		return ES_EXCEPTION;
317 	}
318 
319 	if (!insn_decode_from_regs(&ctxt->insn, ctxt->regs, buffer, insn_bytes))
320 		return ES_DECODE_FAILED;
321 
322 	if (ctxt->insn.immediate.got)
323 		return ES_OK;
324 	else
325 		return ES_DECODE_FAILED;
326 }
327 
__vc_decode_kern_insn(struct es_em_ctxt * ctxt)328 static enum es_result __vc_decode_kern_insn(struct es_em_ctxt *ctxt)
329 {
330 	char buffer[MAX_INSN_SIZE];
331 	int res, ret;
332 
333 	res = vc_fetch_insn_kernel(ctxt, buffer);
334 	if (res) {
335 		ctxt->fi.vector     = X86_TRAP_PF;
336 		ctxt->fi.error_code = X86_PF_INSTR;
337 		ctxt->fi.cr2        = ctxt->regs->ip;
338 		return ES_EXCEPTION;
339 	}
340 
341 	ret = insn_decode(&ctxt->insn, buffer, MAX_INSN_SIZE, INSN_MODE_64);
342 	if (ret < 0)
343 		return ES_DECODE_FAILED;
344 	else
345 		return ES_OK;
346 }
347 
vc_decode_insn(struct es_em_ctxt * ctxt)348 static enum es_result vc_decode_insn(struct es_em_ctxt *ctxt)
349 {
350 	if (user_mode(ctxt->regs))
351 		return __vc_decode_user_insn(ctxt);
352 	else
353 		return __vc_decode_kern_insn(ctxt);
354 }
355 
vc_write_mem(struct es_em_ctxt * ctxt,char * dst,char * buf,size_t size)356 static enum es_result vc_write_mem(struct es_em_ctxt *ctxt,
357 				   char *dst, char *buf, size_t size)
358 {
359 	unsigned long error_code = X86_PF_PROT | X86_PF_WRITE;
360 
361 	/*
362 	 * This function uses __put_user() independent of whether kernel or user
363 	 * memory is accessed. This works fine because __put_user() does no
364 	 * sanity checks of the pointer being accessed. All that it does is
365 	 * to report when the access failed.
366 	 *
367 	 * Also, this function runs in atomic context, so __put_user() is not
368 	 * allowed to sleep. The page-fault handler detects that it is running
369 	 * in atomic context and will not try to take mmap_sem and handle the
370 	 * fault, so additional pagefault_enable()/disable() calls are not
371 	 * needed.
372 	 *
373 	 * The access can't be done via copy_to_user() here because
374 	 * vc_write_mem() must not use string instructions to access unsafe
375 	 * memory. The reason is that MOVS is emulated by the #VC handler by
376 	 * splitting the move up into a read and a write and taking a nested #VC
377 	 * exception on whatever of them is the MMIO access. Using string
378 	 * instructions here would cause infinite nesting.
379 	 */
380 	switch (size) {
381 	case 1: {
382 		u8 d1;
383 		u8 __user *target = (u8 __user *)dst;
384 
385 		memcpy(&d1, buf, 1);
386 		if (__put_user(d1, target))
387 			goto fault;
388 		break;
389 	}
390 	case 2: {
391 		u16 d2;
392 		u16 __user *target = (u16 __user *)dst;
393 
394 		memcpy(&d2, buf, 2);
395 		if (__put_user(d2, target))
396 			goto fault;
397 		break;
398 	}
399 	case 4: {
400 		u32 d4;
401 		u32 __user *target = (u32 __user *)dst;
402 
403 		memcpy(&d4, buf, 4);
404 		if (__put_user(d4, target))
405 			goto fault;
406 		break;
407 	}
408 	case 8: {
409 		u64 d8;
410 		u64 __user *target = (u64 __user *)dst;
411 
412 		memcpy(&d8, buf, 8);
413 		if (__put_user(d8, target))
414 			goto fault;
415 		break;
416 	}
417 	default:
418 		WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
419 		return ES_UNSUPPORTED;
420 	}
421 
422 	return ES_OK;
423 
424 fault:
425 	if (user_mode(ctxt->regs))
426 		error_code |= X86_PF_USER;
427 
428 	ctxt->fi.vector = X86_TRAP_PF;
429 	ctxt->fi.error_code = error_code;
430 	ctxt->fi.cr2 = (unsigned long)dst;
431 
432 	return ES_EXCEPTION;
433 }
434 
vc_read_mem(struct es_em_ctxt * ctxt,char * src,char * buf,size_t size)435 static enum es_result vc_read_mem(struct es_em_ctxt *ctxt,
436 				  char *src, char *buf, size_t size)
437 {
438 	unsigned long error_code = X86_PF_PROT;
439 
440 	/*
441 	 * This function uses __get_user() independent of whether kernel or user
442 	 * memory is accessed. This works fine because __get_user() does no
443 	 * sanity checks of the pointer being accessed. All that it does is
444 	 * to report when the access failed.
445 	 *
446 	 * Also, this function runs in atomic context, so __get_user() is not
447 	 * allowed to sleep. The page-fault handler detects that it is running
448 	 * in atomic context and will not try to take mmap_sem and handle the
449 	 * fault, so additional pagefault_enable()/disable() calls are not
450 	 * needed.
451 	 *
452 	 * The access can't be done via copy_from_user() here because
453 	 * vc_read_mem() must not use string instructions to access unsafe
454 	 * memory. The reason is that MOVS is emulated by the #VC handler by
455 	 * splitting the move up into a read and a write and taking a nested #VC
456 	 * exception on whatever of them is the MMIO access. Using string
457 	 * instructions here would cause infinite nesting.
458 	 */
459 	switch (size) {
460 	case 1: {
461 		u8 d1;
462 		u8 __user *s = (u8 __user *)src;
463 
464 		if (__get_user(d1, s))
465 			goto fault;
466 		memcpy(buf, &d1, 1);
467 		break;
468 	}
469 	case 2: {
470 		u16 d2;
471 		u16 __user *s = (u16 __user *)src;
472 
473 		if (__get_user(d2, s))
474 			goto fault;
475 		memcpy(buf, &d2, 2);
476 		break;
477 	}
478 	case 4: {
479 		u32 d4;
480 		u32 __user *s = (u32 __user *)src;
481 
482 		if (__get_user(d4, s))
483 			goto fault;
484 		memcpy(buf, &d4, 4);
485 		break;
486 	}
487 	case 8: {
488 		u64 d8;
489 		u64 __user *s = (u64 __user *)src;
490 		if (__get_user(d8, s))
491 			goto fault;
492 		memcpy(buf, &d8, 8);
493 		break;
494 	}
495 	default:
496 		WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
497 		return ES_UNSUPPORTED;
498 	}
499 
500 	return ES_OK;
501 
502 fault:
503 	if (user_mode(ctxt->regs))
504 		error_code |= X86_PF_USER;
505 
506 	ctxt->fi.vector = X86_TRAP_PF;
507 	ctxt->fi.error_code = error_code;
508 	ctxt->fi.cr2 = (unsigned long)src;
509 
510 	return ES_EXCEPTION;
511 }
512 
vc_slow_virt_to_phys(struct ghcb * ghcb,struct es_em_ctxt * ctxt,unsigned long vaddr,phys_addr_t * paddr)513 static enum es_result vc_slow_virt_to_phys(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
514 					   unsigned long vaddr, phys_addr_t *paddr)
515 {
516 	unsigned long va = (unsigned long)vaddr;
517 	unsigned int level;
518 	phys_addr_t pa;
519 	pgd_t *pgd;
520 	pte_t *pte;
521 
522 	pgd = __va(read_cr3_pa());
523 	pgd = &pgd[pgd_index(va)];
524 	pte = lookup_address_in_pgd(pgd, va, &level);
525 	if (!pte) {
526 		ctxt->fi.vector     = X86_TRAP_PF;
527 		ctxt->fi.cr2        = vaddr;
528 		ctxt->fi.error_code = 0;
529 
530 		if (user_mode(ctxt->regs))
531 			ctxt->fi.error_code |= X86_PF_USER;
532 
533 		return ES_EXCEPTION;
534 	}
535 
536 	if (WARN_ON_ONCE(pte_val(*pte) & _PAGE_ENC))
537 		/* Emulated MMIO to/from encrypted memory not supported */
538 		return ES_UNSUPPORTED;
539 
540 	pa = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
541 	pa |= va & ~page_level_mask(level);
542 
543 	*paddr = pa;
544 
545 	return ES_OK;
546 }
547 
vc_ioio_check(struct es_em_ctxt * ctxt,u16 port,size_t size)548 static enum es_result vc_ioio_check(struct es_em_ctxt *ctxt, u16 port, size_t size)
549 {
550 	BUG_ON(size > 4);
551 
552 	if (user_mode(ctxt->regs)) {
553 		struct thread_struct *t = &current->thread;
554 		struct io_bitmap *iobm = t->io_bitmap;
555 		size_t idx;
556 
557 		if (!iobm)
558 			goto fault;
559 
560 		for (idx = port; idx < port + size; ++idx) {
561 			if (test_bit(idx, iobm->bitmap))
562 				goto fault;
563 		}
564 	}
565 
566 	return ES_OK;
567 
568 fault:
569 	ctxt->fi.vector = X86_TRAP_GP;
570 	ctxt->fi.error_code = 0;
571 
572 	return ES_EXCEPTION;
573 }
574 
575 /* Include code shared with pre-decompression boot stage */
576 #include "sev-shared.c"
577 
__sev_put_ghcb(struct ghcb_state * state)578 static noinstr void __sev_put_ghcb(struct ghcb_state *state)
579 {
580 	struct sev_es_runtime_data *data;
581 	struct ghcb *ghcb;
582 
583 	WARN_ON(!irqs_disabled());
584 
585 	data = this_cpu_read(runtime_data);
586 	ghcb = &data->ghcb_page;
587 
588 	if (state->ghcb) {
589 		/* Restore GHCB from Backup */
590 		*ghcb = *state->ghcb;
591 		data->backup_ghcb_active = false;
592 		state->ghcb = NULL;
593 	} else {
594 		/*
595 		 * Invalidate the GHCB so a VMGEXIT instruction issued
596 		 * from userspace won't appear to be valid.
597 		 */
598 		vc_ghcb_invalidate(ghcb);
599 		data->ghcb_active = false;
600 	}
601 }
602 
__sev_es_nmi_complete(void)603 void noinstr __sev_es_nmi_complete(void)
604 {
605 	struct ghcb_state state;
606 	struct ghcb *ghcb;
607 
608 	ghcb = __sev_get_ghcb(&state);
609 
610 	vc_ghcb_invalidate(ghcb);
611 	ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_NMI_COMPLETE);
612 	ghcb_set_sw_exit_info_1(ghcb, 0);
613 	ghcb_set_sw_exit_info_2(ghcb, 0);
614 
615 	sev_es_wr_ghcb_msr(__pa_nodebug(ghcb));
616 	VMGEXIT();
617 
618 	__sev_put_ghcb(&state);
619 }
620 
get_secrets_page(void)621 static u64 __init get_secrets_page(void)
622 {
623 	u64 pa_data = boot_params.cc_blob_address;
624 	struct cc_blob_sev_info info;
625 	void *map;
626 
627 	/*
628 	 * The CC blob contains the address of the secrets page, check if the
629 	 * blob is present.
630 	 */
631 	if (!pa_data)
632 		return 0;
633 
634 	map = early_memremap(pa_data, sizeof(info));
635 	if (!map) {
636 		pr_err("Unable to locate SNP secrets page: failed to map the Confidential Computing blob.\n");
637 		return 0;
638 	}
639 	memcpy(&info, map, sizeof(info));
640 	early_memunmap(map, sizeof(info));
641 
642 	/* smoke-test the secrets page passed */
643 	if (!info.secrets_phys || info.secrets_len != PAGE_SIZE)
644 		return 0;
645 
646 	return info.secrets_phys;
647 }
648 
get_snp_jump_table_addr(void)649 static u64 __init get_snp_jump_table_addr(void)
650 {
651 	struct snp_secrets_page *secrets;
652 	void __iomem *mem;
653 	u64 pa, addr;
654 
655 	pa = get_secrets_page();
656 	if (!pa)
657 		return 0;
658 
659 	mem = ioremap_encrypted(pa, PAGE_SIZE);
660 	if (!mem) {
661 		pr_err("Unable to locate AP jump table address: failed to map the SNP secrets page.\n");
662 		return 0;
663 	}
664 
665 	secrets = (__force struct snp_secrets_page *)mem;
666 
667 	addr = secrets->os_area.ap_jump_table_pa;
668 	iounmap(mem);
669 
670 	return addr;
671 }
672 
get_jump_table_addr(void)673 static u64 __init get_jump_table_addr(void)
674 {
675 	struct ghcb_state state;
676 	unsigned long flags;
677 	struct ghcb *ghcb;
678 	u64 ret = 0;
679 
680 	if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
681 		return get_snp_jump_table_addr();
682 
683 	local_irq_save(flags);
684 
685 	ghcb = __sev_get_ghcb(&state);
686 
687 	vc_ghcb_invalidate(ghcb);
688 	ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_JUMP_TABLE);
689 	ghcb_set_sw_exit_info_1(ghcb, SVM_VMGEXIT_GET_AP_JUMP_TABLE);
690 	ghcb_set_sw_exit_info_2(ghcb, 0);
691 
692 	sev_es_wr_ghcb_msr(__pa(ghcb));
693 	VMGEXIT();
694 
695 	if (ghcb_sw_exit_info_1_is_valid(ghcb) &&
696 	    ghcb_sw_exit_info_2_is_valid(ghcb))
697 		ret = ghcb->save.sw_exit_info_2;
698 
699 	__sev_put_ghcb(&state);
700 
701 	local_irq_restore(flags);
702 
703 	return ret;
704 }
705 
706 static void __head
early_set_pages_state(unsigned long vaddr,unsigned long paddr,unsigned long npages,enum psc_op op)707 early_set_pages_state(unsigned long vaddr, unsigned long paddr,
708 		      unsigned long npages, enum psc_op op)
709 {
710 	unsigned long paddr_end;
711 	u64 val;
712 	int ret;
713 
714 	vaddr = vaddr & PAGE_MASK;
715 
716 	paddr = paddr & PAGE_MASK;
717 	paddr_end = paddr + (npages << PAGE_SHIFT);
718 
719 	while (paddr < paddr_end) {
720 		if (op == SNP_PAGE_STATE_SHARED) {
721 			/* Page validation must be rescinded before changing to shared */
722 			ret = pvalidate(vaddr, RMP_PG_SIZE_4K, false);
723 			if (WARN(ret, "Failed to validate address 0x%lx ret %d", paddr, ret))
724 				goto e_term;
725 		}
726 
727 		/*
728 		 * Use the MSR protocol because this function can be called before
729 		 * the GHCB is established.
730 		 */
731 		sev_es_wr_ghcb_msr(GHCB_MSR_PSC_REQ_GFN(paddr >> PAGE_SHIFT, op));
732 		VMGEXIT();
733 
734 		val = sev_es_rd_ghcb_msr();
735 
736 		if (WARN(GHCB_RESP_CODE(val) != GHCB_MSR_PSC_RESP,
737 			 "Wrong PSC response code: 0x%x\n",
738 			 (unsigned int)GHCB_RESP_CODE(val)))
739 			goto e_term;
740 
741 		if (WARN(GHCB_MSR_PSC_RESP_VAL(val),
742 			 "Failed to change page state to '%s' paddr 0x%lx error 0x%llx\n",
743 			 op == SNP_PAGE_STATE_PRIVATE ? "private" : "shared",
744 			 paddr, GHCB_MSR_PSC_RESP_VAL(val)))
745 			goto e_term;
746 
747 		if (op == SNP_PAGE_STATE_PRIVATE) {
748 			/* Page validation must be performed after changing to private */
749 			ret = pvalidate(vaddr, RMP_PG_SIZE_4K, true);
750 			if (WARN(ret, "Failed to validate address 0x%lx ret %d", paddr, ret))
751 				goto e_term;
752 		}
753 
754 		vaddr += PAGE_SIZE;
755 		paddr += PAGE_SIZE;
756 	}
757 
758 	return;
759 
760 e_term:
761 	sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
762 }
763 
early_snp_set_memory_private(unsigned long vaddr,unsigned long paddr,unsigned long npages)764 void __head early_snp_set_memory_private(unsigned long vaddr, unsigned long paddr,
765 					 unsigned long npages)
766 {
767 	/*
768 	 * This can be invoked in early boot while running identity mapped, so
769 	 * use an open coded check for SNP instead of using cc_platform_has().
770 	 * This eliminates worries about jump tables or checking boot_cpu_data
771 	 * in the cc_platform_has() function.
772 	 */
773 	if (!(RIP_REL_REF(sev_status) & MSR_AMD64_SEV_SNP_ENABLED))
774 		return;
775 
776 	 /*
777 	  * Ask the hypervisor to mark the memory pages as private in the RMP
778 	  * table.
779 	  */
780 	early_set_pages_state(vaddr, paddr, npages, SNP_PAGE_STATE_PRIVATE);
781 }
782 
early_snp_set_memory_shared(unsigned long vaddr,unsigned long paddr,unsigned long npages)783 void __init early_snp_set_memory_shared(unsigned long vaddr, unsigned long paddr,
784 					unsigned long npages)
785 {
786 	/*
787 	 * This can be invoked in early boot while running identity mapped, so
788 	 * use an open coded check for SNP instead of using cc_platform_has().
789 	 * This eliminates worries about jump tables or checking boot_cpu_data
790 	 * in the cc_platform_has() function.
791 	 */
792 	if (!(RIP_REL_REF(sev_status) & MSR_AMD64_SEV_SNP_ENABLED))
793 		return;
794 
795 	 /* Ask hypervisor to mark the memory pages shared in the RMP table. */
796 	early_set_pages_state(vaddr, paddr, npages, SNP_PAGE_STATE_SHARED);
797 }
798 
__set_pages_state(struct snp_psc_desc * data,unsigned long vaddr,unsigned long vaddr_end,int op)799 static unsigned long __set_pages_state(struct snp_psc_desc *data, unsigned long vaddr,
800 				       unsigned long vaddr_end, int op)
801 {
802 	struct ghcb_state state;
803 	bool use_large_entry;
804 	struct psc_hdr *hdr;
805 	struct psc_entry *e;
806 	unsigned long flags;
807 	unsigned long pfn;
808 	struct ghcb *ghcb;
809 	int i;
810 
811 	hdr = &data->hdr;
812 	e = data->entries;
813 
814 	memset(data, 0, sizeof(*data));
815 	i = 0;
816 
817 	while (vaddr < vaddr_end && i < ARRAY_SIZE(data->entries)) {
818 		hdr->end_entry = i;
819 
820 		if (is_vmalloc_addr((void *)vaddr)) {
821 			pfn = vmalloc_to_pfn((void *)vaddr);
822 			use_large_entry = false;
823 		} else {
824 			pfn = __pa(vaddr) >> PAGE_SHIFT;
825 			use_large_entry = true;
826 		}
827 
828 		e->gfn = pfn;
829 		e->operation = op;
830 
831 		if (use_large_entry && IS_ALIGNED(vaddr, PMD_SIZE) &&
832 		    (vaddr_end - vaddr) >= PMD_SIZE) {
833 			e->pagesize = RMP_PG_SIZE_2M;
834 			vaddr += PMD_SIZE;
835 		} else {
836 			e->pagesize = RMP_PG_SIZE_4K;
837 			vaddr += PAGE_SIZE;
838 		}
839 
840 		e++;
841 		i++;
842 	}
843 
844 	/* Page validation must be rescinded before changing to shared */
845 	if (op == SNP_PAGE_STATE_SHARED)
846 		pvalidate_pages(data);
847 
848 	local_irq_save(flags);
849 
850 	if (sev_cfg.ghcbs_initialized)
851 		ghcb = __sev_get_ghcb(&state);
852 	else
853 		ghcb = boot_ghcb;
854 
855 	/* Invoke the hypervisor to perform the page state changes */
856 	if (!ghcb || vmgexit_psc(ghcb, data))
857 		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
858 
859 	if (sev_cfg.ghcbs_initialized)
860 		__sev_put_ghcb(&state);
861 
862 	local_irq_restore(flags);
863 
864 	/* Page validation must be performed after changing to private */
865 	if (op == SNP_PAGE_STATE_PRIVATE)
866 		pvalidate_pages(data);
867 
868 	return vaddr;
869 }
870 
set_pages_state(unsigned long vaddr,unsigned long npages,int op)871 static void set_pages_state(unsigned long vaddr, unsigned long npages, int op)
872 {
873 	struct snp_psc_desc desc;
874 	unsigned long vaddr_end;
875 
876 	/* Use the MSR protocol when a GHCB is not available. */
877 	if (!boot_ghcb)
878 		return early_set_pages_state(vaddr, __pa(vaddr), npages, op);
879 
880 	vaddr = vaddr & PAGE_MASK;
881 	vaddr_end = vaddr + (npages << PAGE_SHIFT);
882 
883 	while (vaddr < vaddr_end)
884 		vaddr = __set_pages_state(&desc, vaddr, vaddr_end, op);
885 }
886 
snp_set_memory_shared(unsigned long vaddr,unsigned long npages)887 void snp_set_memory_shared(unsigned long vaddr, unsigned long npages)
888 {
889 	if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
890 		return;
891 
892 	set_pages_state(vaddr, npages, SNP_PAGE_STATE_SHARED);
893 }
894 
snp_set_memory_private(unsigned long vaddr,unsigned long npages)895 void snp_set_memory_private(unsigned long vaddr, unsigned long npages)
896 {
897 	if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
898 		return;
899 
900 	set_pages_state(vaddr, npages, SNP_PAGE_STATE_PRIVATE);
901 }
902 
snp_accept_memory(phys_addr_t start,phys_addr_t end)903 void snp_accept_memory(phys_addr_t start, phys_addr_t end)
904 {
905 	unsigned long vaddr, npages;
906 
907 	if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
908 		return;
909 
910 	vaddr = (unsigned long)__va(start);
911 	npages = (end - start) >> PAGE_SHIFT;
912 
913 	set_pages_state(vaddr, npages, SNP_PAGE_STATE_PRIVATE);
914 }
915 
snp_set_vmsa(void * va,bool vmsa)916 static int snp_set_vmsa(void *va, bool vmsa)
917 {
918 	u64 attrs;
919 
920 	/*
921 	 * Running at VMPL0 allows the kernel to change the VMSA bit for a page
922 	 * using the RMPADJUST instruction. However, for the instruction to
923 	 * succeed it must target the permissions of a lesser privileged
924 	 * (higher numbered) VMPL level, so use VMPL1 (refer to the RMPADJUST
925 	 * instruction in the AMD64 APM Volume 3).
926 	 */
927 	attrs = 1;
928 	if (vmsa)
929 		attrs |= RMPADJUST_VMSA_PAGE_BIT;
930 
931 	return rmpadjust((unsigned long)va, RMP_PG_SIZE_4K, attrs);
932 }
933 
934 #define __ATTR_BASE		(SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK)
935 #define INIT_CS_ATTRIBS		(__ATTR_BASE | SVM_SELECTOR_READ_MASK | SVM_SELECTOR_CODE_MASK)
936 #define INIT_DS_ATTRIBS		(__ATTR_BASE | SVM_SELECTOR_WRITE_MASK)
937 
938 #define INIT_LDTR_ATTRIBS	(SVM_SELECTOR_P_MASK | 2)
939 #define INIT_TR_ATTRIBS		(SVM_SELECTOR_P_MASK | 3)
940 
snp_alloc_vmsa_page(int cpu)941 static void *snp_alloc_vmsa_page(int cpu)
942 {
943 	struct page *p;
944 
945 	/*
946 	 * Allocate VMSA page to work around the SNP erratum where the CPU will
947 	 * incorrectly signal an RMP violation #PF if a large page (2MB or 1GB)
948 	 * collides with the RMP entry of VMSA page. The recommended workaround
949 	 * is to not use a large page.
950 	 *
951 	 * Allocate an 8k page which is also 8k-aligned.
952 	 */
953 	p = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL_ACCOUNT | __GFP_ZERO, 1);
954 	if (!p)
955 		return NULL;
956 
957 	split_page(p, 1);
958 
959 	/* Free the first 4k. This page may be 2M/1G aligned and cannot be used. */
960 	__free_page(p);
961 
962 	return page_address(p + 1);
963 }
964 
snp_cleanup_vmsa(struct sev_es_save_area * vmsa)965 static void snp_cleanup_vmsa(struct sev_es_save_area *vmsa)
966 {
967 	int err;
968 
969 	err = snp_set_vmsa(vmsa, false);
970 	if (err)
971 		pr_err("clear VMSA page failed (%u), leaking page\n", err);
972 	else
973 		free_page((unsigned long)vmsa);
974 }
975 
wakeup_cpu_via_vmgexit(u32 apic_id,unsigned long start_ip)976 static int wakeup_cpu_via_vmgexit(u32 apic_id, unsigned long start_ip)
977 {
978 	struct sev_es_save_area *cur_vmsa, *vmsa;
979 	struct ghcb_state state;
980 	unsigned long flags;
981 	struct ghcb *ghcb;
982 	u8 sipi_vector;
983 	int cpu, ret;
984 	u64 cr4;
985 
986 	/*
987 	 * The hypervisor SNP feature support check has happened earlier, just check
988 	 * the AP_CREATION one here.
989 	 */
990 	if (!(sev_hv_features & GHCB_HV_FT_SNP_AP_CREATION))
991 		return -EOPNOTSUPP;
992 
993 	/*
994 	 * Verify the desired start IP against the known trampoline start IP
995 	 * to catch any future new trampolines that may be introduced that
996 	 * would require a new protected guest entry point.
997 	 */
998 	if (WARN_ONCE(start_ip != real_mode_header->trampoline_start,
999 		      "Unsupported SNP start_ip: %lx\n", start_ip))
1000 		return -EINVAL;
1001 
1002 	/* Override start_ip with known protected guest start IP */
1003 	start_ip = real_mode_header->sev_es_trampoline_start;
1004 
1005 	/* Find the logical CPU for the APIC ID */
1006 	for_each_present_cpu(cpu) {
1007 		if (arch_match_cpu_phys_id(cpu, apic_id))
1008 			break;
1009 	}
1010 	if (cpu >= nr_cpu_ids)
1011 		return -EINVAL;
1012 
1013 	cur_vmsa = per_cpu(sev_vmsa, cpu);
1014 
1015 	/*
1016 	 * A new VMSA is created each time because there is no guarantee that
1017 	 * the current VMSA is the kernels or that the vCPU is not running. If
1018 	 * an attempt was done to use the current VMSA with a running vCPU, a
1019 	 * #VMEXIT of that vCPU would wipe out all of the settings being done
1020 	 * here.
1021 	 */
1022 	vmsa = (struct sev_es_save_area *)snp_alloc_vmsa_page(cpu);
1023 	if (!vmsa)
1024 		return -ENOMEM;
1025 
1026 	/* CR4 should maintain the MCE value */
1027 	cr4 = native_read_cr4() & X86_CR4_MCE;
1028 
1029 	/* Set the CS value based on the start_ip converted to a SIPI vector */
1030 	sipi_vector		= (start_ip >> 12);
1031 	vmsa->cs.base		= sipi_vector << 12;
1032 	vmsa->cs.limit		= AP_INIT_CS_LIMIT;
1033 	vmsa->cs.attrib		= INIT_CS_ATTRIBS;
1034 	vmsa->cs.selector	= sipi_vector << 8;
1035 
1036 	/* Set the RIP value based on start_ip */
1037 	vmsa->rip		= start_ip & 0xfff;
1038 
1039 	/* Set AP INIT defaults as documented in the APM */
1040 	vmsa->ds.limit		= AP_INIT_DS_LIMIT;
1041 	vmsa->ds.attrib		= INIT_DS_ATTRIBS;
1042 	vmsa->es		= vmsa->ds;
1043 	vmsa->fs		= vmsa->ds;
1044 	vmsa->gs		= vmsa->ds;
1045 	vmsa->ss		= vmsa->ds;
1046 
1047 	vmsa->gdtr.limit	= AP_INIT_GDTR_LIMIT;
1048 	vmsa->ldtr.limit	= AP_INIT_LDTR_LIMIT;
1049 	vmsa->ldtr.attrib	= INIT_LDTR_ATTRIBS;
1050 	vmsa->idtr.limit	= AP_INIT_IDTR_LIMIT;
1051 	vmsa->tr.limit		= AP_INIT_TR_LIMIT;
1052 	vmsa->tr.attrib		= INIT_TR_ATTRIBS;
1053 
1054 	vmsa->cr4		= cr4;
1055 	vmsa->cr0		= AP_INIT_CR0_DEFAULT;
1056 	vmsa->dr7		= DR7_RESET_VALUE;
1057 	vmsa->dr6		= AP_INIT_DR6_DEFAULT;
1058 	vmsa->rflags		= AP_INIT_RFLAGS_DEFAULT;
1059 	vmsa->g_pat		= AP_INIT_GPAT_DEFAULT;
1060 	vmsa->xcr0		= AP_INIT_XCR0_DEFAULT;
1061 	vmsa->mxcsr		= AP_INIT_MXCSR_DEFAULT;
1062 	vmsa->x87_ftw		= AP_INIT_X87_FTW_DEFAULT;
1063 	vmsa->x87_fcw		= AP_INIT_X87_FCW_DEFAULT;
1064 
1065 	/* SVME must be set. */
1066 	vmsa->efer		= EFER_SVME;
1067 
1068 	/*
1069 	 * Set the SNP-specific fields for this VMSA:
1070 	 *   VMPL level
1071 	 *   SEV_FEATURES (matches the SEV STATUS MSR right shifted 2 bits)
1072 	 */
1073 	vmsa->vmpl		= 0;
1074 	vmsa->sev_features	= sev_status >> 2;
1075 
1076 	/* Switch the page over to a VMSA page now that it is initialized */
1077 	ret = snp_set_vmsa(vmsa, true);
1078 	if (ret) {
1079 		pr_err("set VMSA page failed (%u)\n", ret);
1080 		free_page((unsigned long)vmsa);
1081 
1082 		return -EINVAL;
1083 	}
1084 
1085 	/* Issue VMGEXIT AP Creation NAE event */
1086 	local_irq_save(flags);
1087 
1088 	ghcb = __sev_get_ghcb(&state);
1089 
1090 	vc_ghcb_invalidate(ghcb);
1091 	ghcb_set_rax(ghcb, vmsa->sev_features);
1092 	ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_CREATION);
1093 	ghcb_set_sw_exit_info_1(ghcb, ((u64)apic_id << 32) | SVM_VMGEXIT_AP_CREATE);
1094 	ghcb_set_sw_exit_info_2(ghcb, __pa(vmsa));
1095 
1096 	sev_es_wr_ghcb_msr(__pa(ghcb));
1097 	VMGEXIT();
1098 
1099 	if (!ghcb_sw_exit_info_1_is_valid(ghcb) ||
1100 	    lower_32_bits(ghcb->save.sw_exit_info_1)) {
1101 		pr_err("SNP AP Creation error\n");
1102 		ret = -EINVAL;
1103 	}
1104 
1105 	__sev_put_ghcb(&state);
1106 
1107 	local_irq_restore(flags);
1108 
1109 	/* Perform cleanup if there was an error */
1110 	if (ret) {
1111 		snp_cleanup_vmsa(vmsa);
1112 		vmsa = NULL;
1113 	}
1114 
1115 	/* Free up any previous VMSA page */
1116 	if (cur_vmsa)
1117 		snp_cleanup_vmsa(cur_vmsa);
1118 
1119 	/* Record the current VMSA page */
1120 	per_cpu(sev_vmsa, cpu) = vmsa;
1121 
1122 	return ret;
1123 }
1124 
snp_set_wakeup_secondary_cpu(void)1125 void __init snp_set_wakeup_secondary_cpu(void)
1126 {
1127 	if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
1128 		return;
1129 
1130 	/*
1131 	 * Always set this override if SNP is enabled. This makes it the
1132 	 * required method to start APs under SNP. If the hypervisor does
1133 	 * not support AP creation, then no APs will be started.
1134 	 */
1135 	apic_update_callback(wakeup_secondary_cpu, wakeup_cpu_via_vmgexit);
1136 }
1137 
sev_es_setup_ap_jump_table(struct real_mode_header * rmh)1138 int __init sev_es_setup_ap_jump_table(struct real_mode_header *rmh)
1139 {
1140 	u16 startup_cs, startup_ip;
1141 	phys_addr_t jump_table_pa;
1142 	u64 jump_table_addr;
1143 	u16 __iomem *jump_table;
1144 
1145 	jump_table_addr = get_jump_table_addr();
1146 
1147 	/* On UP guests there is no jump table so this is not a failure */
1148 	if (!jump_table_addr)
1149 		return 0;
1150 
1151 	/* Check if AP Jump Table is page-aligned */
1152 	if (jump_table_addr & ~PAGE_MASK)
1153 		return -EINVAL;
1154 
1155 	jump_table_pa = jump_table_addr & PAGE_MASK;
1156 
1157 	startup_cs = (u16)(rmh->trampoline_start >> 4);
1158 	startup_ip = (u16)(rmh->sev_es_trampoline_start -
1159 			   rmh->trampoline_start);
1160 
1161 	jump_table = ioremap_encrypted(jump_table_pa, PAGE_SIZE);
1162 	if (!jump_table)
1163 		return -EIO;
1164 
1165 	writew(startup_ip, &jump_table[0]);
1166 	writew(startup_cs, &jump_table[1]);
1167 
1168 	iounmap(jump_table);
1169 
1170 	return 0;
1171 }
1172 
1173 /*
1174  * This is needed by the OVMF UEFI firmware which will use whatever it finds in
1175  * the GHCB MSR as its GHCB to talk to the hypervisor. So make sure the per-cpu
1176  * runtime GHCBs used by the kernel are also mapped in the EFI page-table.
1177  */
sev_es_efi_map_ghcbs(pgd_t * pgd)1178 int __init sev_es_efi_map_ghcbs(pgd_t *pgd)
1179 {
1180 	struct sev_es_runtime_data *data;
1181 	unsigned long address, pflags;
1182 	int cpu;
1183 	u64 pfn;
1184 
1185 	if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
1186 		return 0;
1187 
1188 	pflags = _PAGE_NX | _PAGE_RW;
1189 
1190 	for_each_possible_cpu(cpu) {
1191 		data = per_cpu(runtime_data, cpu);
1192 
1193 		address = __pa(&data->ghcb_page);
1194 		pfn = address >> PAGE_SHIFT;
1195 
1196 		if (kernel_map_pages_in_pgd(pgd, pfn, address, 1, pflags))
1197 			return 1;
1198 	}
1199 
1200 	return 0;
1201 }
1202 
vc_handle_msr(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1203 static enum es_result vc_handle_msr(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
1204 {
1205 	struct pt_regs *regs = ctxt->regs;
1206 	enum es_result ret;
1207 	u64 exit_info_1;
1208 
1209 	/* Is it a WRMSR? */
1210 	exit_info_1 = (ctxt->insn.opcode.bytes[1] == 0x30) ? 1 : 0;
1211 
1212 	ghcb_set_rcx(ghcb, regs->cx);
1213 	if (exit_info_1) {
1214 		ghcb_set_rax(ghcb, regs->ax);
1215 		ghcb_set_rdx(ghcb, regs->dx);
1216 	}
1217 
1218 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_MSR, exit_info_1, 0);
1219 
1220 	if ((ret == ES_OK) && (!exit_info_1)) {
1221 		regs->ax = ghcb->save.rax;
1222 		regs->dx = ghcb->save.rdx;
1223 	}
1224 
1225 	return ret;
1226 }
1227 
snp_register_per_cpu_ghcb(void)1228 static void snp_register_per_cpu_ghcb(void)
1229 {
1230 	struct sev_es_runtime_data *data;
1231 	struct ghcb *ghcb;
1232 
1233 	data = this_cpu_read(runtime_data);
1234 	ghcb = &data->ghcb_page;
1235 
1236 	snp_register_ghcb_early(__pa(ghcb));
1237 }
1238 
setup_ghcb(void)1239 void setup_ghcb(void)
1240 {
1241 	if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
1242 		return;
1243 
1244 	/*
1245 	 * Check whether the runtime #VC exception handler is active. It uses
1246 	 * the per-CPU GHCB page which is set up by sev_es_init_vc_handling().
1247 	 *
1248 	 * If SNP is active, register the per-CPU GHCB page so that the runtime
1249 	 * exception handler can use it.
1250 	 */
1251 	if (initial_vc_handler == (unsigned long)kernel_exc_vmm_communication) {
1252 		if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
1253 			snp_register_per_cpu_ghcb();
1254 
1255 		sev_cfg.ghcbs_initialized = true;
1256 
1257 		return;
1258 	}
1259 
1260 	/*
1261 	 * Make sure the hypervisor talks a supported protocol.
1262 	 * This gets called only in the BSP boot phase.
1263 	 */
1264 	if (!sev_es_negotiate_protocol())
1265 		sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
1266 
1267 	/*
1268 	 * Clear the boot_ghcb. The first exception comes in before the bss
1269 	 * section is cleared.
1270 	 */
1271 	memset(&boot_ghcb_page, 0, PAGE_SIZE);
1272 
1273 	/* Alright - Make the boot-ghcb public */
1274 	boot_ghcb = &boot_ghcb_page;
1275 
1276 	/* SNP guest requires that GHCB GPA must be registered. */
1277 	if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
1278 		snp_register_ghcb_early(__pa(&boot_ghcb_page));
1279 }
1280 
1281 #ifdef CONFIG_HOTPLUG_CPU
sev_es_ap_hlt_loop(void)1282 static void sev_es_ap_hlt_loop(void)
1283 {
1284 	struct ghcb_state state;
1285 	struct ghcb *ghcb;
1286 
1287 	ghcb = __sev_get_ghcb(&state);
1288 
1289 	while (true) {
1290 		vc_ghcb_invalidate(ghcb);
1291 		ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_HLT_LOOP);
1292 		ghcb_set_sw_exit_info_1(ghcb, 0);
1293 		ghcb_set_sw_exit_info_2(ghcb, 0);
1294 
1295 		sev_es_wr_ghcb_msr(__pa(ghcb));
1296 		VMGEXIT();
1297 
1298 		/* Wakeup signal? */
1299 		if (ghcb_sw_exit_info_2_is_valid(ghcb) &&
1300 		    ghcb->save.sw_exit_info_2)
1301 			break;
1302 	}
1303 
1304 	__sev_put_ghcb(&state);
1305 }
1306 
1307 /*
1308  * Play_dead handler when running under SEV-ES. This is needed because
1309  * the hypervisor can't deliver an SIPI request to restart the AP.
1310  * Instead the kernel has to issue a VMGEXIT to halt the VCPU until the
1311  * hypervisor wakes it up again.
1312  */
sev_es_play_dead(void)1313 static void sev_es_play_dead(void)
1314 {
1315 	play_dead_common();
1316 
1317 	/* IRQs now disabled */
1318 
1319 	sev_es_ap_hlt_loop();
1320 
1321 	/*
1322 	 * If we get here, the VCPU was woken up again. Jump to CPU
1323 	 * startup code to get it back online.
1324 	 */
1325 	soft_restart_cpu();
1326 }
1327 #else  /* CONFIG_HOTPLUG_CPU */
1328 #define sev_es_play_dead	native_play_dead
1329 #endif /* CONFIG_HOTPLUG_CPU */
1330 
1331 #ifdef CONFIG_SMP
sev_es_setup_play_dead(void)1332 static void __init sev_es_setup_play_dead(void)
1333 {
1334 	smp_ops.play_dead = sev_es_play_dead;
1335 }
1336 #else
sev_es_setup_play_dead(void)1337 static inline void sev_es_setup_play_dead(void) { }
1338 #endif
1339 
alloc_runtime_data(int cpu)1340 static void __init alloc_runtime_data(int cpu)
1341 {
1342 	struct sev_es_runtime_data *data;
1343 
1344 	data = memblock_alloc_node(sizeof(*data), PAGE_SIZE, cpu_to_node(cpu));
1345 	if (!data)
1346 		panic("Can't allocate SEV-ES runtime data");
1347 
1348 	per_cpu(runtime_data, cpu) = data;
1349 }
1350 
init_ghcb(int cpu)1351 static void __init init_ghcb(int cpu)
1352 {
1353 	struct sev_es_runtime_data *data;
1354 	int err;
1355 
1356 	data = per_cpu(runtime_data, cpu);
1357 
1358 	err = early_set_memory_decrypted((unsigned long)&data->ghcb_page,
1359 					 sizeof(data->ghcb_page));
1360 	if (err)
1361 		panic("Can't map GHCBs unencrypted");
1362 
1363 	memset(&data->ghcb_page, 0, sizeof(data->ghcb_page));
1364 
1365 	data->ghcb_active = false;
1366 	data->backup_ghcb_active = false;
1367 }
1368 
sev_es_init_vc_handling(void)1369 void __init sev_es_init_vc_handling(void)
1370 {
1371 	int cpu;
1372 
1373 	BUILD_BUG_ON(offsetof(struct sev_es_runtime_data, ghcb_page) % PAGE_SIZE);
1374 
1375 	if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
1376 		return;
1377 
1378 	if (!sev_es_check_cpu_features())
1379 		panic("SEV-ES CPU Features missing");
1380 
1381 	/*
1382 	 * SNP is supported in v2 of the GHCB spec which mandates support for HV
1383 	 * features.
1384 	 */
1385 	if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) {
1386 		sev_hv_features = get_hv_features();
1387 
1388 		if (!(sev_hv_features & GHCB_HV_FT_SNP))
1389 			sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
1390 	}
1391 
1392 	/* Initialize per-cpu GHCB pages */
1393 	for_each_possible_cpu(cpu) {
1394 		alloc_runtime_data(cpu);
1395 		init_ghcb(cpu);
1396 	}
1397 
1398 	sev_es_setup_play_dead();
1399 
1400 	/* Secondary CPUs use the runtime #VC handler */
1401 	initial_vc_handler = (unsigned long)kernel_exc_vmm_communication;
1402 }
1403 
vc_early_forward_exception(struct es_em_ctxt * ctxt)1404 static void __init vc_early_forward_exception(struct es_em_ctxt *ctxt)
1405 {
1406 	int trapnr = ctxt->fi.vector;
1407 
1408 	if (trapnr == X86_TRAP_PF)
1409 		native_write_cr2(ctxt->fi.cr2);
1410 
1411 	ctxt->regs->orig_ax = ctxt->fi.error_code;
1412 	do_early_exception(ctxt->regs, trapnr);
1413 }
1414 
vc_insn_get_rm(struct es_em_ctxt * ctxt)1415 static long *vc_insn_get_rm(struct es_em_ctxt *ctxt)
1416 {
1417 	long *reg_array;
1418 	int offset;
1419 
1420 	reg_array = (long *)ctxt->regs;
1421 	offset    = insn_get_modrm_rm_off(&ctxt->insn, ctxt->regs);
1422 
1423 	if (offset < 0)
1424 		return NULL;
1425 
1426 	offset /= sizeof(long);
1427 
1428 	return reg_array + offset;
1429 }
vc_do_mmio(struct ghcb * ghcb,struct es_em_ctxt * ctxt,unsigned int bytes,bool read)1430 static enum es_result vc_do_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
1431 				 unsigned int bytes, bool read)
1432 {
1433 	u64 exit_code, exit_info_1, exit_info_2;
1434 	unsigned long ghcb_pa = __pa(ghcb);
1435 	enum es_result res;
1436 	phys_addr_t paddr;
1437 	void __user *ref;
1438 
1439 	ref = insn_get_addr_ref(&ctxt->insn, ctxt->regs);
1440 	if (ref == (void __user *)-1L)
1441 		return ES_UNSUPPORTED;
1442 
1443 	exit_code = read ? SVM_VMGEXIT_MMIO_READ : SVM_VMGEXIT_MMIO_WRITE;
1444 
1445 	res = vc_slow_virt_to_phys(ghcb, ctxt, (unsigned long)ref, &paddr);
1446 	if (res != ES_OK) {
1447 		if (res == ES_EXCEPTION && !read)
1448 			ctxt->fi.error_code |= X86_PF_WRITE;
1449 
1450 		return res;
1451 	}
1452 
1453 	exit_info_1 = paddr;
1454 	/* Can never be greater than 8 */
1455 	exit_info_2 = bytes;
1456 
1457 	ghcb_set_sw_scratch(ghcb, ghcb_pa + offsetof(struct ghcb, shared_buffer));
1458 
1459 	return sev_es_ghcb_hv_call(ghcb, ctxt, exit_code, exit_info_1, exit_info_2);
1460 }
1461 
1462 /*
1463  * The MOVS instruction has two memory operands, which raises the
1464  * problem that it is not known whether the access to the source or the
1465  * destination caused the #VC exception (and hence whether an MMIO read
1466  * or write operation needs to be emulated).
1467  *
1468  * Instead of playing games with walking page-tables and trying to guess
1469  * whether the source or destination is an MMIO range, split the move
1470  * into two operations, a read and a write with only one memory operand.
1471  * This will cause a nested #VC exception on the MMIO address which can
1472  * then be handled.
1473  *
1474  * This implementation has the benefit that it also supports MOVS where
1475  * source _and_ destination are MMIO regions.
1476  *
1477  * It will slow MOVS on MMIO down a lot, but in SEV-ES guests it is a
1478  * rare operation. If it turns out to be a performance problem the split
1479  * operations can be moved to memcpy_fromio() and memcpy_toio().
1480  */
vc_handle_mmio_movs(struct es_em_ctxt * ctxt,unsigned int bytes)1481 static enum es_result vc_handle_mmio_movs(struct es_em_ctxt *ctxt,
1482 					  unsigned int bytes)
1483 {
1484 	unsigned long ds_base, es_base;
1485 	unsigned char *src, *dst;
1486 	unsigned char buffer[8];
1487 	enum es_result ret;
1488 	bool rep;
1489 	int off;
1490 
1491 	ds_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_DS);
1492 	es_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_ES);
1493 
1494 	if (ds_base == -1L || es_base == -1L) {
1495 		ctxt->fi.vector = X86_TRAP_GP;
1496 		ctxt->fi.error_code = 0;
1497 		return ES_EXCEPTION;
1498 	}
1499 
1500 	src = ds_base + (unsigned char *)ctxt->regs->si;
1501 	dst = es_base + (unsigned char *)ctxt->regs->di;
1502 
1503 	ret = vc_read_mem(ctxt, src, buffer, bytes);
1504 	if (ret != ES_OK)
1505 		return ret;
1506 
1507 	ret = vc_write_mem(ctxt, dst, buffer, bytes);
1508 	if (ret != ES_OK)
1509 		return ret;
1510 
1511 	if (ctxt->regs->flags & X86_EFLAGS_DF)
1512 		off = -bytes;
1513 	else
1514 		off =  bytes;
1515 
1516 	ctxt->regs->si += off;
1517 	ctxt->regs->di += off;
1518 
1519 	rep = insn_has_rep_prefix(&ctxt->insn);
1520 	if (rep)
1521 		ctxt->regs->cx -= 1;
1522 
1523 	if (!rep || ctxt->regs->cx == 0)
1524 		return ES_OK;
1525 	else
1526 		return ES_RETRY;
1527 }
1528 
vc_handle_mmio(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1529 static enum es_result vc_handle_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
1530 {
1531 	struct insn *insn = &ctxt->insn;
1532 	enum insn_mmio_type mmio;
1533 	unsigned int bytes = 0;
1534 	enum es_result ret;
1535 	u8 sign_byte;
1536 	long *reg_data;
1537 
1538 	mmio = insn_decode_mmio(insn, &bytes);
1539 	if (mmio == INSN_MMIO_DECODE_FAILED)
1540 		return ES_DECODE_FAILED;
1541 
1542 	if (mmio != INSN_MMIO_WRITE_IMM && mmio != INSN_MMIO_MOVS) {
1543 		reg_data = insn_get_modrm_reg_ptr(insn, ctxt->regs);
1544 		if (!reg_data)
1545 			return ES_DECODE_FAILED;
1546 	}
1547 
1548 	if (user_mode(ctxt->regs))
1549 		return ES_UNSUPPORTED;
1550 
1551 	switch (mmio) {
1552 	case INSN_MMIO_WRITE:
1553 		memcpy(ghcb->shared_buffer, reg_data, bytes);
1554 		ret = vc_do_mmio(ghcb, ctxt, bytes, false);
1555 		break;
1556 	case INSN_MMIO_WRITE_IMM:
1557 		memcpy(ghcb->shared_buffer, insn->immediate1.bytes, bytes);
1558 		ret = vc_do_mmio(ghcb, ctxt, bytes, false);
1559 		break;
1560 	case INSN_MMIO_READ:
1561 		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
1562 		if (ret)
1563 			break;
1564 
1565 		/* Zero-extend for 32-bit operation */
1566 		if (bytes == 4)
1567 			*reg_data = 0;
1568 
1569 		memcpy(reg_data, ghcb->shared_buffer, bytes);
1570 		break;
1571 	case INSN_MMIO_READ_ZERO_EXTEND:
1572 		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
1573 		if (ret)
1574 			break;
1575 
1576 		/* Zero extend based on operand size */
1577 		memset(reg_data, 0, insn->opnd_bytes);
1578 		memcpy(reg_data, ghcb->shared_buffer, bytes);
1579 		break;
1580 	case INSN_MMIO_READ_SIGN_EXTEND:
1581 		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
1582 		if (ret)
1583 			break;
1584 
1585 		if (bytes == 1) {
1586 			u8 *val = (u8 *)ghcb->shared_buffer;
1587 
1588 			sign_byte = (*val & 0x80) ? 0xff : 0x00;
1589 		} else {
1590 			u16 *val = (u16 *)ghcb->shared_buffer;
1591 
1592 			sign_byte = (*val & 0x8000) ? 0xff : 0x00;
1593 		}
1594 
1595 		/* Sign extend based on operand size */
1596 		memset(reg_data, sign_byte, insn->opnd_bytes);
1597 		memcpy(reg_data, ghcb->shared_buffer, bytes);
1598 		break;
1599 	case INSN_MMIO_MOVS:
1600 		ret = vc_handle_mmio_movs(ctxt, bytes);
1601 		break;
1602 	default:
1603 		ret = ES_UNSUPPORTED;
1604 		break;
1605 	}
1606 
1607 	return ret;
1608 }
1609 
vc_handle_dr7_write(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1610 static enum es_result vc_handle_dr7_write(struct ghcb *ghcb,
1611 					  struct es_em_ctxt *ctxt)
1612 {
1613 	struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
1614 	long val, *reg = vc_insn_get_rm(ctxt);
1615 	enum es_result ret;
1616 
1617 	if (sev_status & MSR_AMD64_SNP_DEBUG_SWAP)
1618 		return ES_VMM_ERROR;
1619 
1620 	if (!reg)
1621 		return ES_DECODE_FAILED;
1622 
1623 	val = *reg;
1624 
1625 	/* Upper 32 bits must be written as zeroes */
1626 	if (val >> 32) {
1627 		ctxt->fi.vector = X86_TRAP_GP;
1628 		ctxt->fi.error_code = 0;
1629 		return ES_EXCEPTION;
1630 	}
1631 
1632 	/* Clear out other reserved bits and set bit 10 */
1633 	val = (val & 0xffff23ffL) | BIT(10);
1634 
1635 	/* Early non-zero writes to DR7 are not supported */
1636 	if (!data && (val & ~DR7_RESET_VALUE))
1637 		return ES_UNSUPPORTED;
1638 
1639 	/* Using a value of 0 for ExitInfo1 means RAX holds the value */
1640 	ghcb_set_rax(ghcb, val);
1641 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WRITE_DR7, 0, 0);
1642 	if (ret != ES_OK)
1643 		return ret;
1644 
1645 	if (data)
1646 		data->dr7 = val;
1647 
1648 	return ES_OK;
1649 }
1650 
vc_handle_dr7_read(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1651 static enum es_result vc_handle_dr7_read(struct ghcb *ghcb,
1652 					 struct es_em_ctxt *ctxt)
1653 {
1654 	struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
1655 	long *reg = vc_insn_get_rm(ctxt);
1656 
1657 	if (sev_status & MSR_AMD64_SNP_DEBUG_SWAP)
1658 		return ES_VMM_ERROR;
1659 
1660 	if (!reg)
1661 		return ES_DECODE_FAILED;
1662 
1663 	if (data)
1664 		*reg = data->dr7;
1665 	else
1666 		*reg = DR7_RESET_VALUE;
1667 
1668 	return ES_OK;
1669 }
1670 
vc_handle_wbinvd(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1671 static enum es_result vc_handle_wbinvd(struct ghcb *ghcb,
1672 				       struct es_em_ctxt *ctxt)
1673 {
1674 	return sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WBINVD, 0, 0);
1675 }
1676 
vc_handle_rdpmc(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1677 static enum es_result vc_handle_rdpmc(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
1678 {
1679 	enum es_result ret;
1680 
1681 	ghcb_set_rcx(ghcb, ctxt->regs->cx);
1682 
1683 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_RDPMC, 0, 0);
1684 	if (ret != ES_OK)
1685 		return ret;
1686 
1687 	if (!(ghcb_rax_is_valid(ghcb) && ghcb_rdx_is_valid(ghcb)))
1688 		return ES_VMM_ERROR;
1689 
1690 	ctxt->regs->ax = ghcb->save.rax;
1691 	ctxt->regs->dx = ghcb->save.rdx;
1692 
1693 	return ES_OK;
1694 }
1695 
vc_handle_monitor(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1696 static enum es_result vc_handle_monitor(struct ghcb *ghcb,
1697 					struct es_em_ctxt *ctxt)
1698 {
1699 	/*
1700 	 * Treat it as a NOP and do not leak a physical address to the
1701 	 * hypervisor.
1702 	 */
1703 	return ES_OK;
1704 }
1705 
vc_handle_mwait(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1706 static enum es_result vc_handle_mwait(struct ghcb *ghcb,
1707 				      struct es_em_ctxt *ctxt)
1708 {
1709 	/* Treat the same as MONITOR/MONITORX */
1710 	return ES_OK;
1711 }
1712 
vc_handle_vmmcall(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1713 static enum es_result vc_handle_vmmcall(struct ghcb *ghcb,
1714 					struct es_em_ctxt *ctxt)
1715 {
1716 	enum es_result ret;
1717 
1718 	ghcb_set_rax(ghcb, ctxt->regs->ax);
1719 	ghcb_set_cpl(ghcb, user_mode(ctxt->regs) ? 3 : 0);
1720 
1721 	if (x86_platform.hyper.sev_es_hcall_prepare)
1722 		x86_platform.hyper.sev_es_hcall_prepare(ghcb, ctxt->regs);
1723 
1724 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_VMMCALL, 0, 0);
1725 	if (ret != ES_OK)
1726 		return ret;
1727 
1728 	if (!ghcb_rax_is_valid(ghcb))
1729 		return ES_VMM_ERROR;
1730 
1731 	ctxt->regs->ax = ghcb->save.rax;
1732 
1733 	/*
1734 	 * Call sev_es_hcall_finish() after regs->ax is already set.
1735 	 * This allows the hypervisor handler to overwrite it again if
1736 	 * necessary.
1737 	 */
1738 	if (x86_platform.hyper.sev_es_hcall_finish &&
1739 	    !x86_platform.hyper.sev_es_hcall_finish(ghcb, ctxt->regs))
1740 		return ES_VMM_ERROR;
1741 
1742 	return ES_OK;
1743 }
1744 
vc_handle_trap_ac(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1745 static enum es_result vc_handle_trap_ac(struct ghcb *ghcb,
1746 					struct es_em_ctxt *ctxt)
1747 {
1748 	/*
1749 	 * Calling ecx_alignment_check() directly does not work, because it
1750 	 * enables IRQs and the GHCB is active. Forward the exception and call
1751 	 * it later from vc_forward_exception().
1752 	 */
1753 	ctxt->fi.vector = X86_TRAP_AC;
1754 	ctxt->fi.error_code = 0;
1755 	return ES_EXCEPTION;
1756 }
1757 
vc_handle_exitcode(struct es_em_ctxt * ctxt,struct ghcb * ghcb,unsigned long exit_code)1758 static enum es_result vc_handle_exitcode(struct es_em_ctxt *ctxt,
1759 					 struct ghcb *ghcb,
1760 					 unsigned long exit_code)
1761 {
1762 	enum es_result result = vc_check_opcode_bytes(ctxt, exit_code);
1763 
1764 	if (result != ES_OK)
1765 		return result;
1766 
1767 	switch (exit_code) {
1768 	case SVM_EXIT_READ_DR7:
1769 		result = vc_handle_dr7_read(ghcb, ctxt);
1770 		break;
1771 	case SVM_EXIT_WRITE_DR7:
1772 		result = vc_handle_dr7_write(ghcb, ctxt);
1773 		break;
1774 	case SVM_EXIT_EXCP_BASE + X86_TRAP_AC:
1775 		result = vc_handle_trap_ac(ghcb, ctxt);
1776 		break;
1777 	case SVM_EXIT_RDTSC:
1778 	case SVM_EXIT_RDTSCP:
1779 		result = vc_handle_rdtsc(ghcb, ctxt, exit_code);
1780 		break;
1781 	case SVM_EXIT_RDPMC:
1782 		result = vc_handle_rdpmc(ghcb, ctxt);
1783 		break;
1784 	case SVM_EXIT_INVD:
1785 		pr_err_ratelimited("#VC exception for INVD??? Seriously???\n");
1786 		result = ES_UNSUPPORTED;
1787 		break;
1788 	case SVM_EXIT_CPUID:
1789 		result = vc_handle_cpuid(ghcb, ctxt);
1790 		break;
1791 	case SVM_EXIT_IOIO:
1792 		result = vc_handle_ioio(ghcb, ctxt);
1793 		break;
1794 	case SVM_EXIT_MSR:
1795 		result = vc_handle_msr(ghcb, ctxt);
1796 		break;
1797 	case SVM_EXIT_VMMCALL:
1798 		result = vc_handle_vmmcall(ghcb, ctxt);
1799 		break;
1800 	case SVM_EXIT_WBINVD:
1801 		result = vc_handle_wbinvd(ghcb, ctxt);
1802 		break;
1803 	case SVM_EXIT_MONITOR:
1804 		result = vc_handle_monitor(ghcb, ctxt);
1805 		break;
1806 	case SVM_EXIT_MWAIT:
1807 		result = vc_handle_mwait(ghcb, ctxt);
1808 		break;
1809 	case SVM_EXIT_NPF:
1810 		result = vc_handle_mmio(ghcb, ctxt);
1811 		break;
1812 	default:
1813 		/*
1814 		 * Unexpected #VC exception
1815 		 */
1816 		result = ES_UNSUPPORTED;
1817 	}
1818 
1819 	return result;
1820 }
1821 
vc_forward_exception(struct es_em_ctxt * ctxt)1822 static __always_inline void vc_forward_exception(struct es_em_ctxt *ctxt)
1823 {
1824 	long error_code = ctxt->fi.error_code;
1825 	int trapnr = ctxt->fi.vector;
1826 
1827 	ctxt->regs->orig_ax = ctxt->fi.error_code;
1828 
1829 	switch (trapnr) {
1830 	case X86_TRAP_GP:
1831 		exc_general_protection(ctxt->regs, error_code);
1832 		break;
1833 	case X86_TRAP_UD:
1834 		exc_invalid_op(ctxt->regs);
1835 		break;
1836 	case X86_TRAP_PF:
1837 		write_cr2(ctxt->fi.cr2);
1838 		exc_page_fault(ctxt->regs, error_code);
1839 		break;
1840 	case X86_TRAP_AC:
1841 		exc_alignment_check(ctxt->regs, error_code);
1842 		break;
1843 	default:
1844 		pr_emerg("Unsupported exception in #VC instruction emulation - can't continue\n");
1845 		BUG();
1846 	}
1847 }
1848 
is_vc2_stack(unsigned long sp)1849 static __always_inline bool is_vc2_stack(unsigned long sp)
1850 {
1851 	return (sp >= __this_cpu_ist_bottom_va(VC2) && sp < __this_cpu_ist_top_va(VC2));
1852 }
1853 
vc_from_invalid_context(struct pt_regs * regs)1854 static __always_inline bool vc_from_invalid_context(struct pt_regs *regs)
1855 {
1856 	unsigned long sp, prev_sp;
1857 
1858 	sp      = (unsigned long)regs;
1859 	prev_sp = regs->sp;
1860 
1861 	/*
1862 	 * If the code was already executing on the VC2 stack when the #VC
1863 	 * happened, let it proceed to the normal handling routine. This way the
1864 	 * code executing on the VC2 stack can cause #VC exceptions to get handled.
1865 	 */
1866 	return is_vc2_stack(sp) && !is_vc2_stack(prev_sp);
1867 }
1868 
vc_raw_handle_exception(struct pt_regs * regs,unsigned long error_code)1869 static bool vc_raw_handle_exception(struct pt_regs *regs, unsigned long error_code)
1870 {
1871 	struct ghcb_state state;
1872 	struct es_em_ctxt ctxt;
1873 	enum es_result result;
1874 	struct ghcb *ghcb;
1875 	bool ret = true;
1876 
1877 	ghcb = __sev_get_ghcb(&state);
1878 
1879 	vc_ghcb_invalidate(ghcb);
1880 	result = vc_init_em_ctxt(&ctxt, regs, error_code);
1881 
1882 	if (result == ES_OK)
1883 		result = vc_handle_exitcode(&ctxt, ghcb, error_code);
1884 
1885 	__sev_put_ghcb(&state);
1886 
1887 	/* Done - now check the result */
1888 	switch (result) {
1889 	case ES_OK:
1890 		vc_finish_insn(&ctxt);
1891 		break;
1892 	case ES_UNSUPPORTED:
1893 		pr_err_ratelimited("Unsupported exit-code 0x%02lx in #VC exception (IP: 0x%lx)\n",
1894 				   error_code, regs->ip);
1895 		ret = false;
1896 		break;
1897 	case ES_VMM_ERROR:
1898 		pr_err_ratelimited("Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
1899 				   error_code, regs->ip);
1900 		ret = false;
1901 		break;
1902 	case ES_DECODE_FAILED:
1903 		pr_err_ratelimited("Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
1904 				   error_code, regs->ip);
1905 		ret = false;
1906 		break;
1907 	case ES_EXCEPTION:
1908 		vc_forward_exception(&ctxt);
1909 		break;
1910 	case ES_RETRY:
1911 		/* Nothing to do */
1912 		break;
1913 	default:
1914 		pr_emerg("Unknown result in %s():%d\n", __func__, result);
1915 		/*
1916 		 * Emulating the instruction which caused the #VC exception
1917 		 * failed - can't continue so print debug information
1918 		 */
1919 		BUG();
1920 	}
1921 
1922 	return ret;
1923 }
1924 
vc_is_db(unsigned long error_code)1925 static __always_inline bool vc_is_db(unsigned long error_code)
1926 {
1927 	return error_code == SVM_EXIT_EXCP_BASE + X86_TRAP_DB;
1928 }
1929 
1930 /*
1931  * Runtime #VC exception handler when raised from kernel mode. Runs in NMI mode
1932  * and will panic when an error happens.
1933  */
DEFINE_IDTENTRY_VC_KERNEL(exc_vmm_communication)1934 DEFINE_IDTENTRY_VC_KERNEL(exc_vmm_communication)
1935 {
1936 	irqentry_state_t irq_state;
1937 
1938 	/*
1939 	 * With the current implementation it is always possible to switch to a
1940 	 * safe stack because #VC exceptions only happen at known places, like
1941 	 * intercepted instructions or accesses to MMIO areas/IO ports. They can
1942 	 * also happen with code instrumentation when the hypervisor intercepts
1943 	 * #DB, but the critical paths are forbidden to be instrumented, so #DB
1944 	 * exceptions currently also only happen in safe places.
1945 	 *
1946 	 * But keep this here in case the noinstr annotations are violated due
1947 	 * to bug elsewhere.
1948 	 */
1949 	if (unlikely(vc_from_invalid_context(regs))) {
1950 		instrumentation_begin();
1951 		panic("Can't handle #VC exception from unsupported context\n");
1952 		instrumentation_end();
1953 	}
1954 
1955 	/*
1956 	 * Handle #DB before calling into !noinstr code to avoid recursive #DB.
1957 	 */
1958 	if (vc_is_db(error_code)) {
1959 		exc_debug(regs);
1960 		return;
1961 	}
1962 
1963 	irq_state = irqentry_nmi_enter(regs);
1964 
1965 	instrumentation_begin();
1966 
1967 	if (!vc_raw_handle_exception(regs, error_code)) {
1968 		/* Show some debug info */
1969 		show_regs(regs);
1970 
1971 		/* Ask hypervisor to sev_es_terminate */
1972 		sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
1973 
1974 		/* If that fails and we get here - just panic */
1975 		panic("Returned from Terminate-Request to Hypervisor\n");
1976 	}
1977 
1978 	instrumentation_end();
1979 	irqentry_nmi_exit(regs, irq_state);
1980 }
1981 
1982 /*
1983  * Runtime #VC exception handler when raised from user mode. Runs in IRQ mode
1984  * and will kill the current task with SIGBUS when an error happens.
1985  */
DEFINE_IDTENTRY_VC_USER(exc_vmm_communication)1986 DEFINE_IDTENTRY_VC_USER(exc_vmm_communication)
1987 {
1988 	/*
1989 	 * Handle #DB before calling into !noinstr code to avoid recursive #DB.
1990 	 */
1991 	if (vc_is_db(error_code)) {
1992 		noist_exc_debug(regs);
1993 		return;
1994 	}
1995 
1996 	irqentry_enter_from_user_mode(regs);
1997 	instrumentation_begin();
1998 
1999 	if (!vc_raw_handle_exception(regs, error_code)) {
2000 		/*
2001 		 * Do not kill the machine if user-space triggered the
2002 		 * exception. Send SIGBUS instead and let user-space deal with
2003 		 * it.
2004 		 */
2005 		force_sig_fault(SIGBUS, BUS_OBJERR, (void __user *)0);
2006 	}
2007 
2008 	instrumentation_end();
2009 	irqentry_exit_to_user_mode(regs);
2010 }
2011 
handle_vc_boot_ghcb(struct pt_regs * regs)2012 bool __init handle_vc_boot_ghcb(struct pt_regs *regs)
2013 {
2014 	unsigned long exit_code = regs->orig_ax;
2015 	struct es_em_ctxt ctxt;
2016 	enum es_result result;
2017 
2018 	vc_ghcb_invalidate(boot_ghcb);
2019 
2020 	result = vc_init_em_ctxt(&ctxt, regs, exit_code);
2021 	if (result == ES_OK)
2022 		result = vc_handle_exitcode(&ctxt, boot_ghcb, exit_code);
2023 
2024 	/* Done - now check the result */
2025 	switch (result) {
2026 	case ES_OK:
2027 		vc_finish_insn(&ctxt);
2028 		break;
2029 	case ES_UNSUPPORTED:
2030 		early_printk("PANIC: Unsupported exit-code 0x%02lx in early #VC exception (IP: 0x%lx)\n",
2031 				exit_code, regs->ip);
2032 		goto fail;
2033 	case ES_VMM_ERROR:
2034 		early_printk("PANIC: Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
2035 				exit_code, regs->ip);
2036 		goto fail;
2037 	case ES_DECODE_FAILED:
2038 		early_printk("PANIC: Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
2039 				exit_code, regs->ip);
2040 		goto fail;
2041 	case ES_EXCEPTION:
2042 		vc_early_forward_exception(&ctxt);
2043 		break;
2044 	case ES_RETRY:
2045 		/* Nothing to do */
2046 		break;
2047 	default:
2048 		BUG();
2049 	}
2050 
2051 	return true;
2052 
2053 fail:
2054 	show_regs(regs);
2055 
2056 	sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
2057 }
2058 
2059 /*
2060  * Initial set up of SNP relies on information provided by the
2061  * Confidential Computing blob, which can be passed to the kernel
2062  * in the following ways, depending on how it is booted:
2063  *
2064  * - when booted via the boot/decompress kernel:
2065  *   - via boot_params
2066  *
2067  * - when booted directly by firmware/bootloader (e.g. CONFIG_PVH):
2068  *   - via a setup_data entry, as defined by the Linux Boot Protocol
2069  *
2070  * Scan for the blob in that order.
2071  */
find_cc_blob(struct boot_params * bp)2072 static __head struct cc_blob_sev_info *find_cc_blob(struct boot_params *bp)
2073 {
2074 	struct cc_blob_sev_info *cc_info;
2075 
2076 	/* Boot kernel would have passed the CC blob via boot_params. */
2077 	if (bp->cc_blob_address) {
2078 		cc_info = (struct cc_blob_sev_info *)(unsigned long)bp->cc_blob_address;
2079 		goto found_cc_info;
2080 	}
2081 
2082 	/*
2083 	 * If kernel was booted directly, without the use of the
2084 	 * boot/decompression kernel, the CC blob may have been passed via
2085 	 * setup_data instead.
2086 	 */
2087 	cc_info = find_cc_blob_setup_data(bp);
2088 	if (!cc_info)
2089 		return NULL;
2090 
2091 found_cc_info:
2092 	if (cc_info->magic != CC_BLOB_SEV_HDR_MAGIC)
2093 		snp_abort();
2094 
2095 	return cc_info;
2096 }
2097 
snp_init(struct boot_params * bp)2098 bool __head snp_init(struct boot_params *bp)
2099 {
2100 	struct cc_blob_sev_info *cc_info;
2101 
2102 	if (!bp)
2103 		return false;
2104 
2105 	cc_info = find_cc_blob(bp);
2106 	if (!cc_info)
2107 		return false;
2108 
2109 	setup_cpuid_table(cc_info);
2110 
2111 	/*
2112 	 * The CC blob will be used later to access the secrets page. Cache
2113 	 * it here like the boot kernel does.
2114 	 */
2115 	bp->cc_blob_address = (u32)(unsigned long)cc_info;
2116 
2117 	return true;
2118 }
2119 
snp_abort(void)2120 void __head __noreturn snp_abort(void)
2121 {
2122 	sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
2123 }
2124 
2125 /*
2126  * SEV-SNP guests should only execute dmi_setup() if EFI_CONFIG_TABLES are
2127  * enabled, as the alternative (fallback) logic for DMI probing in the legacy
2128  * ROM region can cause a crash since this region is not pre-validated.
2129  */
snp_dmi_setup(void)2130 void __init snp_dmi_setup(void)
2131 {
2132 	if (efi_enabled(EFI_CONFIG_TABLES))
2133 		dmi_setup();
2134 }
2135 
dump_cpuid_table(void)2136 static void dump_cpuid_table(void)
2137 {
2138 	const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
2139 	int i = 0;
2140 
2141 	pr_info("count=%d reserved=0x%x reserved2=0x%llx\n",
2142 		cpuid_table->count, cpuid_table->__reserved1, cpuid_table->__reserved2);
2143 
2144 	for (i = 0; i < SNP_CPUID_COUNT_MAX; i++) {
2145 		const struct snp_cpuid_fn *fn = &cpuid_table->fn[i];
2146 
2147 		pr_info("index=%3d fn=0x%08x subfn=0x%08x: eax=0x%08x ebx=0x%08x ecx=0x%08x edx=0x%08x xcr0_in=0x%016llx xss_in=0x%016llx reserved=0x%016llx\n",
2148 			i, fn->eax_in, fn->ecx_in, fn->eax, fn->ebx, fn->ecx,
2149 			fn->edx, fn->xcr0_in, fn->xss_in, fn->__reserved);
2150 	}
2151 }
2152 
2153 /*
2154  * It is useful from an auditing/testing perspective to provide an easy way
2155  * for the guest owner to know that the CPUID table has been initialized as
2156  * expected, but that initialization happens too early in boot to print any
2157  * sort of indicator, and there's not really any other good place to do it,
2158  * so do it here.
2159  */
report_cpuid_table(void)2160 static int __init report_cpuid_table(void)
2161 {
2162 	const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
2163 
2164 	if (!cpuid_table->count)
2165 		return 0;
2166 
2167 	pr_info("Using SNP CPUID table, %d entries present.\n",
2168 		cpuid_table->count);
2169 
2170 	if (sev_cfg.debug)
2171 		dump_cpuid_table();
2172 
2173 	return 0;
2174 }
2175 arch_initcall(report_cpuid_table);
2176 
init_sev_config(char * str)2177 static int __init init_sev_config(char *str)
2178 {
2179 	char *s;
2180 
2181 	while ((s = strsep(&str, ","))) {
2182 		if (!strcmp(s, "debug")) {
2183 			sev_cfg.debug = true;
2184 			continue;
2185 		}
2186 
2187 		pr_info("SEV command-line option '%s' was not recognized\n", s);
2188 	}
2189 
2190 	return 1;
2191 }
2192 __setup("sev=", init_sev_config);
2193 
snp_issue_guest_request(u64 exit_code,struct snp_req_data * input,struct snp_guest_request_ioctl * rio)2194 int snp_issue_guest_request(u64 exit_code, struct snp_req_data *input, struct snp_guest_request_ioctl *rio)
2195 {
2196 	struct ghcb_state state;
2197 	struct es_em_ctxt ctxt;
2198 	unsigned long flags;
2199 	struct ghcb *ghcb;
2200 	int ret;
2201 
2202 	rio->exitinfo2 = SEV_RET_NO_FW_CALL;
2203 
2204 	/*
2205 	 * __sev_get_ghcb() needs to run with IRQs disabled because it is using
2206 	 * a per-CPU GHCB.
2207 	 */
2208 	local_irq_save(flags);
2209 
2210 	ghcb = __sev_get_ghcb(&state);
2211 	if (!ghcb) {
2212 		ret = -EIO;
2213 		goto e_restore_irq;
2214 	}
2215 
2216 	vc_ghcb_invalidate(ghcb);
2217 
2218 	if (exit_code == SVM_VMGEXIT_EXT_GUEST_REQUEST) {
2219 		ghcb_set_rax(ghcb, input->data_gpa);
2220 		ghcb_set_rbx(ghcb, input->data_npages);
2221 	}
2222 
2223 	ret = sev_es_ghcb_hv_call(ghcb, &ctxt, exit_code, input->req_gpa, input->resp_gpa);
2224 	if (ret)
2225 		goto e_put;
2226 
2227 	rio->exitinfo2 = ghcb->save.sw_exit_info_2;
2228 	switch (rio->exitinfo2) {
2229 	case 0:
2230 		break;
2231 
2232 	case SNP_GUEST_VMM_ERR(SNP_GUEST_VMM_ERR_BUSY):
2233 		ret = -EAGAIN;
2234 		break;
2235 
2236 	case SNP_GUEST_VMM_ERR(SNP_GUEST_VMM_ERR_INVALID_LEN):
2237 		/* Number of expected pages are returned in RBX */
2238 		if (exit_code == SVM_VMGEXIT_EXT_GUEST_REQUEST) {
2239 			input->data_npages = ghcb_get_rbx(ghcb);
2240 			ret = -ENOSPC;
2241 			break;
2242 		}
2243 		fallthrough;
2244 	default:
2245 		ret = -EIO;
2246 		break;
2247 	}
2248 
2249 e_put:
2250 	__sev_put_ghcb(&state);
2251 e_restore_irq:
2252 	local_irq_restore(flags);
2253 
2254 	return ret;
2255 }
2256 EXPORT_SYMBOL_GPL(snp_issue_guest_request);
2257 
2258 static struct platform_device sev_guest_device = {
2259 	.name		= "sev-guest",
2260 	.id		= -1,
2261 };
2262 
snp_init_platform_device(void)2263 static int __init snp_init_platform_device(void)
2264 {
2265 	struct sev_guest_platform_data data;
2266 	u64 gpa;
2267 
2268 	if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
2269 		return -ENODEV;
2270 
2271 	gpa = get_secrets_page();
2272 	if (!gpa)
2273 		return -ENODEV;
2274 
2275 	data.secrets_gpa = gpa;
2276 	if (platform_device_add_data(&sev_guest_device, &data, sizeof(data)))
2277 		return -ENODEV;
2278 
2279 	if (platform_device_register(&sev_guest_device))
2280 		return -ENODEV;
2281 
2282 	pr_info("SNP guest platform device initialized.\n");
2283 	return 0;
2284 }
2285 device_initcall(snp_init_platform_device);
2286 
sev_show_status(void)2287 void sev_show_status(void)
2288 {
2289 	int i;
2290 
2291 	pr_info("Status: ");
2292 	for (i = 0; i < MSR_AMD64_SNP_RESV_BIT; i++) {
2293 		if (sev_status & BIT_ULL(i)) {
2294 			if (!sev_status_feat_names[i])
2295 				continue;
2296 
2297 			pr_cont("%s ", sev_status_feat_names[i]);
2298 		}
2299 	}
2300 	pr_cont("\n");
2301 }
2302