xref: /linux/arch/x86/mm/pat/memtype.c (revision 04c35ab3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Page Attribute Table (PAT) support: handle memory caching attributes in page tables.
4  *
5  * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
6  *          Suresh B Siddha <suresh.b.siddha@intel.com>
7  *
8  * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
9  *
10  * Basic principles:
11  *
12  * PAT is a CPU feature supported by all modern x86 CPUs, to allow the firmware and
13  * the kernel to set one of a handful of 'caching type' attributes for physical
14  * memory ranges: uncached, write-combining, write-through, write-protected,
15  * and the most commonly used and default attribute: write-back caching.
16  *
17  * PAT support supersedes and augments MTRR support in a compatible fashion: MTRR is
18  * a hardware interface to enumerate a limited number of physical memory ranges
19  * and set their caching attributes explicitly, programmed into the CPU via MSRs.
20  * Even modern CPUs have MTRRs enabled - but these are typically not touched
21  * by the kernel or by user-space (such as the X server), we rely on PAT for any
22  * additional cache attribute logic.
23  *
24  * PAT doesn't work via explicit memory ranges, but uses page table entries to add
25  * cache attribute information to the mapped memory range: there's 3 bits used,
26  * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT), with the 8 possible values mapped by the
27  * CPU to actual cache attributes via an MSR loaded into the CPU (MSR_IA32_CR_PAT).
28  *
29  * ( There's a metric ton of finer details, such as compatibility with CPU quirks
30  *   that only support 4 types of PAT entries, and interaction with MTRRs, see
31  *   below for details. )
32  */
33 
34 #include <linux/seq_file.h>
35 #include <linux/memblock.h>
36 #include <linux/debugfs.h>
37 #include <linux/ioport.h>
38 #include <linux/kernel.h>
39 #include <linux/pfn_t.h>
40 #include <linux/slab.h>
41 #include <linux/mm.h>
42 #include <linux/fs.h>
43 #include <linux/rbtree.h>
44 
45 #include <asm/cacheflush.h>
46 #include <asm/cacheinfo.h>
47 #include <asm/processor.h>
48 #include <asm/tlbflush.h>
49 #include <asm/x86_init.h>
50 #include <asm/fcntl.h>
51 #include <asm/e820/api.h>
52 #include <asm/mtrr.h>
53 #include <asm/page.h>
54 #include <asm/msr.h>
55 #include <asm/memtype.h>
56 #include <asm/io.h>
57 
58 #include "memtype.h"
59 #include "../mm_internal.h"
60 
61 #undef pr_fmt
62 #define pr_fmt(fmt) "" fmt
63 
64 static bool __read_mostly pat_disabled = !IS_ENABLED(CONFIG_X86_PAT);
65 static u64 __ro_after_init pat_msr_val;
66 
67 /*
68  * PAT support is enabled by default, but can be disabled for
69  * various user-requested or hardware-forced reasons:
70  */
pat_disable(const char * msg_reason)71 static void __init pat_disable(const char *msg_reason)
72 {
73 	if (pat_disabled)
74 		return;
75 
76 	pat_disabled = true;
77 	pr_info("x86/PAT: %s\n", msg_reason);
78 
79 	memory_caching_control &= ~CACHE_PAT;
80 }
81 
nopat(char * str)82 static int __init nopat(char *str)
83 {
84 	pat_disable("PAT support disabled via boot option.");
85 	return 0;
86 }
87 early_param("nopat", nopat);
88 
pat_enabled(void)89 bool pat_enabled(void)
90 {
91 	return !pat_disabled;
92 }
93 EXPORT_SYMBOL_GPL(pat_enabled);
94 
95 int pat_debug_enable;
96 
pat_debug_setup(char * str)97 static int __init pat_debug_setup(char *str)
98 {
99 	pat_debug_enable = 1;
100 	return 1;
101 }
102 __setup("debugpat", pat_debug_setup);
103 
104 #ifdef CONFIG_X86_PAT
105 /*
106  * X86 PAT uses page flags arch_1 and uncached together to keep track of
107  * memory type of pages that have backing page struct.
108  *
109  * X86 PAT supports 4 different memory types:
110  *  - _PAGE_CACHE_MODE_WB
111  *  - _PAGE_CACHE_MODE_WC
112  *  - _PAGE_CACHE_MODE_UC_MINUS
113  *  - _PAGE_CACHE_MODE_WT
114  *
115  * _PAGE_CACHE_MODE_WB is the default type.
116  */
117 
118 #define _PGMT_WB		0
119 #define _PGMT_WC		(1UL << PG_arch_1)
120 #define _PGMT_UC_MINUS		(1UL << PG_uncached)
121 #define _PGMT_WT		(1UL << PG_uncached | 1UL << PG_arch_1)
122 #define _PGMT_MASK		(1UL << PG_uncached | 1UL << PG_arch_1)
123 #define _PGMT_CLEAR_MASK	(~_PGMT_MASK)
124 
get_page_memtype(struct page * pg)125 static inline enum page_cache_mode get_page_memtype(struct page *pg)
126 {
127 	unsigned long pg_flags = pg->flags & _PGMT_MASK;
128 
129 	if (pg_flags == _PGMT_WB)
130 		return _PAGE_CACHE_MODE_WB;
131 	else if (pg_flags == _PGMT_WC)
132 		return _PAGE_CACHE_MODE_WC;
133 	else if (pg_flags == _PGMT_UC_MINUS)
134 		return _PAGE_CACHE_MODE_UC_MINUS;
135 	else
136 		return _PAGE_CACHE_MODE_WT;
137 }
138 
set_page_memtype(struct page * pg,enum page_cache_mode memtype)139 static inline void set_page_memtype(struct page *pg,
140 				    enum page_cache_mode memtype)
141 {
142 	unsigned long memtype_flags;
143 	unsigned long old_flags;
144 	unsigned long new_flags;
145 
146 	switch (memtype) {
147 	case _PAGE_CACHE_MODE_WC:
148 		memtype_flags = _PGMT_WC;
149 		break;
150 	case _PAGE_CACHE_MODE_UC_MINUS:
151 		memtype_flags = _PGMT_UC_MINUS;
152 		break;
153 	case _PAGE_CACHE_MODE_WT:
154 		memtype_flags = _PGMT_WT;
155 		break;
156 	case _PAGE_CACHE_MODE_WB:
157 	default:
158 		memtype_flags = _PGMT_WB;
159 		break;
160 	}
161 
162 	old_flags = READ_ONCE(pg->flags);
163 	do {
164 		new_flags = (old_flags & _PGMT_CLEAR_MASK) | memtype_flags;
165 	} while (!try_cmpxchg(&pg->flags, &old_flags, new_flags));
166 }
167 #else
get_page_memtype(struct page * pg)168 static inline enum page_cache_mode get_page_memtype(struct page *pg)
169 {
170 	return -1;
171 }
set_page_memtype(struct page * pg,enum page_cache_mode memtype)172 static inline void set_page_memtype(struct page *pg,
173 				    enum page_cache_mode memtype)
174 {
175 }
176 #endif
177 
178 enum {
179 	PAT_UC = 0,		/* uncached */
180 	PAT_WC = 1,		/* Write combining */
181 	PAT_WT = 4,		/* Write Through */
182 	PAT_WP = 5,		/* Write Protected */
183 	PAT_WB = 6,		/* Write Back (default) */
184 	PAT_UC_MINUS = 7,	/* UC, but can be overridden by MTRR */
185 };
186 
187 #define CM(c) (_PAGE_CACHE_MODE_ ## c)
188 
pat_get_cache_mode(unsigned int pat_val,char * msg)189 static enum page_cache_mode __init pat_get_cache_mode(unsigned int pat_val,
190 						      char *msg)
191 {
192 	enum page_cache_mode cache;
193 	char *cache_mode;
194 
195 	switch (pat_val) {
196 	case PAT_UC:       cache = CM(UC);       cache_mode = "UC  "; break;
197 	case PAT_WC:       cache = CM(WC);       cache_mode = "WC  "; break;
198 	case PAT_WT:       cache = CM(WT);       cache_mode = "WT  "; break;
199 	case PAT_WP:       cache = CM(WP);       cache_mode = "WP  "; break;
200 	case PAT_WB:       cache = CM(WB);       cache_mode = "WB  "; break;
201 	case PAT_UC_MINUS: cache = CM(UC_MINUS); cache_mode = "UC- "; break;
202 	default:           cache = CM(WB);       cache_mode = "WB  "; break;
203 	}
204 
205 	memcpy(msg, cache_mode, 4);
206 
207 	return cache;
208 }
209 
210 #undef CM
211 
212 /*
213  * Update the cache mode to pgprot translation tables according to PAT
214  * configuration.
215  * Using lower indices is preferred, so we start with highest index.
216  */
init_cache_modes(u64 pat)217 static void __init init_cache_modes(u64 pat)
218 {
219 	enum page_cache_mode cache;
220 	char pat_msg[33];
221 	int i;
222 
223 	pat_msg[32] = 0;
224 	for (i = 7; i >= 0; i--) {
225 		cache = pat_get_cache_mode((pat >> (i * 8)) & 7,
226 					   pat_msg + 4 * i);
227 		update_cache_mode_entry(i, cache);
228 	}
229 	pr_info("x86/PAT: Configuration [0-7]: %s\n", pat_msg);
230 }
231 
pat_cpu_init(void)232 void pat_cpu_init(void)
233 {
234 	if (!boot_cpu_has(X86_FEATURE_PAT)) {
235 		/*
236 		 * If this happens we are on a secondary CPU, but switched to
237 		 * PAT on the boot CPU. We have no way to undo PAT.
238 		 */
239 		panic("x86/PAT: PAT enabled, but not supported by secondary CPU\n");
240 	}
241 
242 	wrmsrl(MSR_IA32_CR_PAT, pat_msr_val);
243 
244 	__flush_tlb_all();
245 }
246 
247 /**
248  * pat_bp_init - Initialize the PAT MSR value and PAT table
249  *
250  * This function initializes PAT MSR value and PAT table with an OS-defined
251  * value to enable additional cache attributes, WC, WT and WP.
252  *
253  * This function prepares the calls of pat_cpu_init() via cache_cpu_init()
254  * on all CPUs.
255  */
pat_bp_init(void)256 void __init pat_bp_init(void)
257 {
258 	struct cpuinfo_x86 *c = &boot_cpu_data;
259 #define PAT(p0, p1, p2, p3, p4, p5, p6, p7)			\
260 	(((u64)PAT_ ## p0) | ((u64)PAT_ ## p1 << 8) |		\
261 	((u64)PAT_ ## p2 << 16) | ((u64)PAT_ ## p3 << 24) |	\
262 	((u64)PAT_ ## p4 << 32) | ((u64)PAT_ ## p5 << 40) |	\
263 	((u64)PAT_ ## p6 << 48) | ((u64)PAT_ ## p7 << 56))
264 
265 
266 	if (!IS_ENABLED(CONFIG_X86_PAT))
267 		pr_info_once("x86/PAT: PAT support disabled because CONFIG_X86_PAT is disabled in the kernel.\n");
268 
269 	if (!cpu_feature_enabled(X86_FEATURE_PAT))
270 		pat_disable("PAT not supported by the CPU.");
271 	else
272 		rdmsrl(MSR_IA32_CR_PAT, pat_msr_val);
273 
274 	if (!pat_msr_val) {
275 		pat_disable("PAT support disabled by the firmware.");
276 
277 		/*
278 		 * No PAT. Emulate the PAT table that corresponds to the two
279 		 * cache bits, PWT (Write Through) and PCD (Cache Disable).
280 		 * This setup is also the same as the BIOS default setup.
281 		 *
282 		 * PTE encoding:
283 		 *
284 		 *       PCD
285 		 *       |PWT  PAT
286 		 *       ||    slot
287 		 *       00    0    WB : _PAGE_CACHE_MODE_WB
288 		 *       01    1    WT : _PAGE_CACHE_MODE_WT
289 		 *       10    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
290 		 *       11    3    UC : _PAGE_CACHE_MODE_UC
291 		 *
292 		 * NOTE: When WC or WP is used, it is redirected to UC- per
293 		 * the default setup in __cachemode2pte_tbl[].
294 		 */
295 		pat_msr_val = PAT(WB, WT, UC_MINUS, UC, WB, WT, UC_MINUS, UC);
296 	}
297 
298 	/*
299 	 * Xen PV doesn't allow to set PAT MSR, but all cache modes are
300 	 * supported.
301 	 */
302 	if (pat_disabled || cpu_feature_enabled(X86_FEATURE_XENPV)) {
303 		init_cache_modes(pat_msr_val);
304 		return;
305 	}
306 
307 	if ((c->x86_vendor == X86_VENDOR_INTEL) &&
308 	    (((c->x86 == 0x6) && (c->x86_model <= 0xd)) ||
309 	     ((c->x86 == 0xf) && (c->x86_model <= 0x6)))) {
310 		/*
311 		 * PAT support with the lower four entries. Intel Pentium 2,
312 		 * 3, M, and 4 are affected by PAT errata, which makes the
313 		 * upper four entries unusable. To be on the safe side, we don't
314 		 * use those.
315 		 *
316 		 *  PTE encoding:
317 		 *      PAT
318 		 *      |PCD
319 		 *      ||PWT  PAT
320 		 *      |||    slot
321 		 *      000    0    WB : _PAGE_CACHE_MODE_WB
322 		 *      001    1    WC : _PAGE_CACHE_MODE_WC
323 		 *      010    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
324 		 *      011    3    UC : _PAGE_CACHE_MODE_UC
325 		 * PAT bit unused
326 		 *
327 		 * NOTE: When WT or WP is used, it is redirected to UC- per
328 		 * the default setup in __cachemode2pte_tbl[].
329 		 */
330 		pat_msr_val = PAT(WB, WC, UC_MINUS, UC, WB, WC, UC_MINUS, UC);
331 	} else {
332 		/*
333 		 * Full PAT support.  We put WT in slot 7 to improve
334 		 * robustness in the presence of errata that might cause
335 		 * the high PAT bit to be ignored.  This way, a buggy slot 7
336 		 * access will hit slot 3, and slot 3 is UC, so at worst
337 		 * we lose performance without causing a correctness issue.
338 		 * Pentium 4 erratum N46 is an example for such an erratum,
339 		 * although we try not to use PAT at all on affected CPUs.
340 		 *
341 		 *  PTE encoding:
342 		 *      PAT
343 		 *      |PCD
344 		 *      ||PWT  PAT
345 		 *      |||    slot
346 		 *      000    0    WB : _PAGE_CACHE_MODE_WB
347 		 *      001    1    WC : _PAGE_CACHE_MODE_WC
348 		 *      010    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
349 		 *      011    3    UC : _PAGE_CACHE_MODE_UC
350 		 *      100    4    WB : Reserved
351 		 *      101    5    WP : _PAGE_CACHE_MODE_WP
352 		 *      110    6    UC-: Reserved
353 		 *      111    7    WT : _PAGE_CACHE_MODE_WT
354 		 *
355 		 * The reserved slots are unused, but mapped to their
356 		 * corresponding types in the presence of PAT errata.
357 		 */
358 		pat_msr_val = PAT(WB, WC, UC_MINUS, UC, WB, WP, UC_MINUS, WT);
359 	}
360 
361 	memory_caching_control |= CACHE_PAT;
362 
363 	init_cache_modes(pat_msr_val);
364 #undef PAT
365 }
366 
367 static DEFINE_SPINLOCK(memtype_lock);	/* protects memtype accesses */
368 
369 /*
370  * Does intersection of PAT memory type and MTRR memory type and returns
371  * the resulting memory type as PAT understands it.
372  * (Type in pat and mtrr will not have same value)
373  * The intersection is based on "Effective Memory Type" tables in IA-32
374  * SDM vol 3a
375  */
pat_x_mtrr_type(u64 start,u64 end,enum page_cache_mode req_type)376 static unsigned long pat_x_mtrr_type(u64 start, u64 end,
377 				     enum page_cache_mode req_type)
378 {
379 	/*
380 	 * Look for MTRR hint to get the effective type in case where PAT
381 	 * request is for WB.
382 	 */
383 	if (req_type == _PAGE_CACHE_MODE_WB) {
384 		u8 mtrr_type, uniform;
385 
386 		mtrr_type = mtrr_type_lookup(start, end, &uniform);
387 		if (mtrr_type != MTRR_TYPE_WRBACK)
388 			return _PAGE_CACHE_MODE_UC_MINUS;
389 
390 		return _PAGE_CACHE_MODE_WB;
391 	}
392 
393 	return req_type;
394 }
395 
396 struct pagerange_state {
397 	unsigned long		cur_pfn;
398 	int			ram;
399 	int			not_ram;
400 };
401 
402 static int
pagerange_is_ram_callback(unsigned long initial_pfn,unsigned long total_nr_pages,void * arg)403 pagerange_is_ram_callback(unsigned long initial_pfn, unsigned long total_nr_pages, void *arg)
404 {
405 	struct pagerange_state *state = arg;
406 
407 	state->not_ram	|= initial_pfn > state->cur_pfn;
408 	state->ram	|= total_nr_pages > 0;
409 	state->cur_pfn	 = initial_pfn + total_nr_pages;
410 
411 	return state->ram && state->not_ram;
412 }
413 
pat_pagerange_is_ram(resource_size_t start,resource_size_t end)414 static int pat_pagerange_is_ram(resource_size_t start, resource_size_t end)
415 {
416 	int ret = 0;
417 	unsigned long start_pfn = start >> PAGE_SHIFT;
418 	unsigned long end_pfn = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
419 	struct pagerange_state state = {start_pfn, 0, 0};
420 
421 	/*
422 	 * For legacy reasons, physical address range in the legacy ISA
423 	 * region is tracked as non-RAM. This will allow users of
424 	 * /dev/mem to map portions of legacy ISA region, even when
425 	 * some of those portions are listed(or not even listed) with
426 	 * different e820 types(RAM/reserved/..)
427 	 */
428 	if (start_pfn < ISA_END_ADDRESS >> PAGE_SHIFT)
429 		start_pfn = ISA_END_ADDRESS >> PAGE_SHIFT;
430 
431 	if (start_pfn < end_pfn) {
432 		ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
433 				&state, pagerange_is_ram_callback);
434 	}
435 
436 	return (ret > 0) ? -1 : (state.ram ? 1 : 0);
437 }
438 
439 /*
440  * For RAM pages, we use page flags to mark the pages with appropriate type.
441  * The page flags are limited to four types, WB (default), WC, WT and UC-.
442  * WP request fails with -EINVAL, and UC gets redirected to UC-.  Setting
443  * a new memory type is only allowed for a page mapped with the default WB
444  * type.
445  *
446  * Here we do two passes:
447  * - Find the memtype of all the pages in the range, look for any conflicts.
448  * - In case of no conflicts, set the new memtype for pages in the range.
449  */
reserve_ram_pages_type(u64 start,u64 end,enum page_cache_mode req_type,enum page_cache_mode * new_type)450 static int reserve_ram_pages_type(u64 start, u64 end,
451 				  enum page_cache_mode req_type,
452 				  enum page_cache_mode *new_type)
453 {
454 	struct page *page;
455 	u64 pfn;
456 
457 	if (req_type == _PAGE_CACHE_MODE_WP) {
458 		if (new_type)
459 			*new_type = _PAGE_CACHE_MODE_UC_MINUS;
460 		return -EINVAL;
461 	}
462 
463 	if (req_type == _PAGE_CACHE_MODE_UC) {
464 		/* We do not support strong UC */
465 		WARN_ON_ONCE(1);
466 		req_type = _PAGE_CACHE_MODE_UC_MINUS;
467 	}
468 
469 	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
470 		enum page_cache_mode type;
471 
472 		page = pfn_to_page(pfn);
473 		type = get_page_memtype(page);
474 		if (type != _PAGE_CACHE_MODE_WB) {
475 			pr_info("x86/PAT: reserve_ram_pages_type failed [mem %#010Lx-%#010Lx], track 0x%x, req 0x%x\n",
476 				start, end - 1, type, req_type);
477 			if (new_type)
478 				*new_type = type;
479 
480 			return -EBUSY;
481 		}
482 	}
483 
484 	if (new_type)
485 		*new_type = req_type;
486 
487 	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
488 		page = pfn_to_page(pfn);
489 		set_page_memtype(page, req_type);
490 	}
491 	return 0;
492 }
493 
free_ram_pages_type(u64 start,u64 end)494 static int free_ram_pages_type(u64 start, u64 end)
495 {
496 	struct page *page;
497 	u64 pfn;
498 
499 	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
500 		page = pfn_to_page(pfn);
501 		set_page_memtype(page, _PAGE_CACHE_MODE_WB);
502 	}
503 	return 0;
504 }
505 
sanitize_phys(u64 address)506 static u64 sanitize_phys(u64 address)
507 {
508 	/*
509 	 * When changing the memtype for pages containing poison allow
510 	 * for a "decoy" virtual address (bit 63 clear) passed to
511 	 * set_memory_X(). __pa() on a "decoy" address results in a
512 	 * physical address with bit 63 set.
513 	 *
514 	 * Decoy addresses are not present for 32-bit builds, see
515 	 * set_mce_nospec().
516 	 */
517 	if (IS_ENABLED(CONFIG_X86_64))
518 		return address & __PHYSICAL_MASK;
519 	return address;
520 }
521 
522 /*
523  * req_type typically has one of the:
524  * - _PAGE_CACHE_MODE_WB
525  * - _PAGE_CACHE_MODE_WC
526  * - _PAGE_CACHE_MODE_UC_MINUS
527  * - _PAGE_CACHE_MODE_UC
528  * - _PAGE_CACHE_MODE_WT
529  *
530  * If new_type is NULL, function will return an error if it cannot reserve the
531  * region with req_type. If new_type is non-NULL, function will return
532  * available type in new_type in case of no error. In case of any error
533  * it will return a negative return value.
534  */
memtype_reserve(u64 start,u64 end,enum page_cache_mode req_type,enum page_cache_mode * new_type)535 int memtype_reserve(u64 start, u64 end, enum page_cache_mode req_type,
536 		    enum page_cache_mode *new_type)
537 {
538 	struct memtype *entry_new;
539 	enum page_cache_mode actual_type;
540 	int is_range_ram;
541 	int err = 0;
542 
543 	start = sanitize_phys(start);
544 
545 	/*
546 	 * The end address passed into this function is exclusive, but
547 	 * sanitize_phys() expects an inclusive address.
548 	 */
549 	end = sanitize_phys(end - 1) + 1;
550 	if (start >= end) {
551 		WARN(1, "%s failed: [mem %#010Lx-%#010Lx], req %s\n", __func__,
552 				start, end - 1, cattr_name(req_type));
553 		return -EINVAL;
554 	}
555 
556 	if (!pat_enabled()) {
557 		/* This is identical to page table setting without PAT */
558 		if (new_type)
559 			*new_type = req_type;
560 		return 0;
561 	}
562 
563 	/* Low ISA region is always mapped WB in page table. No need to track */
564 	if (x86_platform.is_untracked_pat_range(start, end)) {
565 		if (new_type)
566 			*new_type = _PAGE_CACHE_MODE_WB;
567 		return 0;
568 	}
569 
570 	/*
571 	 * Call mtrr_lookup to get the type hint. This is an
572 	 * optimization for /dev/mem mmap'ers into WB memory (BIOS
573 	 * tools and ACPI tools). Use WB request for WB memory and use
574 	 * UC_MINUS otherwise.
575 	 */
576 	actual_type = pat_x_mtrr_type(start, end, req_type);
577 
578 	if (new_type)
579 		*new_type = actual_type;
580 
581 	is_range_ram = pat_pagerange_is_ram(start, end);
582 	if (is_range_ram == 1) {
583 
584 		err = reserve_ram_pages_type(start, end, req_type, new_type);
585 
586 		return err;
587 	} else if (is_range_ram < 0) {
588 		return -EINVAL;
589 	}
590 
591 	entry_new = kzalloc(sizeof(struct memtype), GFP_KERNEL);
592 	if (!entry_new)
593 		return -ENOMEM;
594 
595 	entry_new->start = start;
596 	entry_new->end	 = end;
597 	entry_new->type	 = actual_type;
598 
599 	spin_lock(&memtype_lock);
600 
601 	err = memtype_check_insert(entry_new, new_type);
602 	if (err) {
603 		pr_info("x86/PAT: memtype_reserve failed [mem %#010Lx-%#010Lx], track %s, req %s\n",
604 			start, end - 1,
605 			cattr_name(entry_new->type), cattr_name(req_type));
606 		kfree(entry_new);
607 		spin_unlock(&memtype_lock);
608 
609 		return err;
610 	}
611 
612 	spin_unlock(&memtype_lock);
613 
614 	dprintk("memtype_reserve added [mem %#010Lx-%#010Lx], track %s, req %s, ret %s\n",
615 		start, end - 1, cattr_name(entry_new->type), cattr_name(req_type),
616 		new_type ? cattr_name(*new_type) : "-");
617 
618 	return err;
619 }
620 
memtype_free(u64 start,u64 end)621 int memtype_free(u64 start, u64 end)
622 {
623 	int is_range_ram;
624 	struct memtype *entry_old;
625 
626 	if (!pat_enabled())
627 		return 0;
628 
629 	start = sanitize_phys(start);
630 	end = sanitize_phys(end);
631 
632 	/* Low ISA region is always mapped WB. No need to track */
633 	if (x86_platform.is_untracked_pat_range(start, end))
634 		return 0;
635 
636 	is_range_ram = pat_pagerange_is_ram(start, end);
637 	if (is_range_ram == 1)
638 		return free_ram_pages_type(start, end);
639 	if (is_range_ram < 0)
640 		return -EINVAL;
641 
642 	spin_lock(&memtype_lock);
643 	entry_old = memtype_erase(start, end);
644 	spin_unlock(&memtype_lock);
645 
646 	if (IS_ERR(entry_old)) {
647 		pr_info("x86/PAT: %s:%d freeing invalid memtype [mem %#010Lx-%#010Lx]\n",
648 			current->comm, current->pid, start, end - 1);
649 		return -EINVAL;
650 	}
651 
652 	kfree(entry_old);
653 
654 	dprintk("memtype_free request [mem %#010Lx-%#010Lx]\n", start, end - 1);
655 
656 	return 0;
657 }
658 
659 
660 /**
661  * lookup_memtype - Looks up the memory type for a physical address
662  * @paddr: physical address of which memory type needs to be looked up
663  *
664  * Only to be called when PAT is enabled
665  *
666  * Returns _PAGE_CACHE_MODE_WB, _PAGE_CACHE_MODE_WC, _PAGE_CACHE_MODE_UC_MINUS
667  * or _PAGE_CACHE_MODE_WT.
668  */
lookup_memtype(u64 paddr)669 static enum page_cache_mode lookup_memtype(u64 paddr)
670 {
671 	enum page_cache_mode rettype = _PAGE_CACHE_MODE_WB;
672 	struct memtype *entry;
673 
674 	if (x86_platform.is_untracked_pat_range(paddr, paddr + PAGE_SIZE))
675 		return rettype;
676 
677 	if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) {
678 		struct page *page;
679 
680 		page = pfn_to_page(paddr >> PAGE_SHIFT);
681 		return get_page_memtype(page);
682 	}
683 
684 	spin_lock(&memtype_lock);
685 
686 	entry = memtype_lookup(paddr);
687 	if (entry != NULL)
688 		rettype = entry->type;
689 	else
690 		rettype = _PAGE_CACHE_MODE_UC_MINUS;
691 
692 	spin_unlock(&memtype_lock);
693 
694 	return rettype;
695 }
696 
697 /**
698  * pat_pfn_immune_to_uc_mtrr - Check whether the PAT memory type
699  * of @pfn cannot be overridden by UC MTRR memory type.
700  *
701  * Only to be called when PAT is enabled.
702  *
703  * Returns true, if the PAT memory type of @pfn is UC, UC-, or WC.
704  * Returns false in other cases.
705  */
pat_pfn_immune_to_uc_mtrr(unsigned long pfn)706 bool pat_pfn_immune_to_uc_mtrr(unsigned long pfn)
707 {
708 	enum page_cache_mode cm = lookup_memtype(PFN_PHYS(pfn));
709 
710 	return cm == _PAGE_CACHE_MODE_UC ||
711 	       cm == _PAGE_CACHE_MODE_UC_MINUS ||
712 	       cm == _PAGE_CACHE_MODE_WC;
713 }
714 EXPORT_SYMBOL_GPL(pat_pfn_immune_to_uc_mtrr);
715 
716 /**
717  * memtype_reserve_io - Request a memory type mapping for a region of memory
718  * @start: start (physical address) of the region
719  * @end: end (physical address) of the region
720  * @type: A pointer to memtype, with requested type. On success, requested
721  * or any other compatible type that was available for the region is returned
722  *
723  * On success, returns 0
724  * On failure, returns non-zero
725  */
memtype_reserve_io(resource_size_t start,resource_size_t end,enum page_cache_mode * type)726 int memtype_reserve_io(resource_size_t start, resource_size_t end,
727 			enum page_cache_mode *type)
728 {
729 	resource_size_t size = end - start;
730 	enum page_cache_mode req_type = *type;
731 	enum page_cache_mode new_type;
732 	int ret;
733 
734 	WARN_ON_ONCE(iomem_map_sanity_check(start, size));
735 
736 	ret = memtype_reserve(start, end, req_type, &new_type);
737 	if (ret)
738 		goto out_err;
739 
740 	if (!is_new_memtype_allowed(start, size, req_type, new_type))
741 		goto out_free;
742 
743 	if (memtype_kernel_map_sync(start, size, new_type) < 0)
744 		goto out_free;
745 
746 	*type = new_type;
747 	return 0;
748 
749 out_free:
750 	memtype_free(start, end);
751 	ret = -EBUSY;
752 out_err:
753 	return ret;
754 }
755 
756 /**
757  * memtype_free_io - Release a memory type mapping for a region of memory
758  * @start: start (physical address) of the region
759  * @end: end (physical address) of the region
760  */
memtype_free_io(resource_size_t start,resource_size_t end)761 void memtype_free_io(resource_size_t start, resource_size_t end)
762 {
763 	memtype_free(start, end);
764 }
765 
766 #ifdef CONFIG_X86_PAT
arch_io_reserve_memtype_wc(resource_size_t start,resource_size_t size)767 int arch_io_reserve_memtype_wc(resource_size_t start, resource_size_t size)
768 {
769 	enum page_cache_mode type = _PAGE_CACHE_MODE_WC;
770 
771 	return memtype_reserve_io(start, start + size, &type);
772 }
773 EXPORT_SYMBOL(arch_io_reserve_memtype_wc);
774 
arch_io_free_memtype_wc(resource_size_t start,resource_size_t size)775 void arch_io_free_memtype_wc(resource_size_t start, resource_size_t size)
776 {
777 	memtype_free_io(start, start + size);
778 }
779 EXPORT_SYMBOL(arch_io_free_memtype_wc);
780 #endif
781 
phys_mem_access_prot(struct file * file,unsigned long pfn,unsigned long size,pgprot_t vma_prot)782 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
783 				unsigned long size, pgprot_t vma_prot)
784 {
785 	if (!phys_mem_access_encrypted(pfn << PAGE_SHIFT, size))
786 		vma_prot = pgprot_decrypted(vma_prot);
787 
788 	return vma_prot;
789 }
790 
791 #ifdef CONFIG_STRICT_DEVMEM
792 /* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM */
range_is_allowed(unsigned long pfn,unsigned long size)793 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
794 {
795 	return 1;
796 }
797 #else
798 /* This check is needed to avoid cache aliasing when PAT is enabled */
range_is_allowed(unsigned long pfn,unsigned long size)799 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
800 {
801 	u64 from = ((u64)pfn) << PAGE_SHIFT;
802 	u64 to = from + size;
803 	u64 cursor = from;
804 
805 	if (!pat_enabled())
806 		return 1;
807 
808 	while (cursor < to) {
809 		if (!devmem_is_allowed(pfn))
810 			return 0;
811 		cursor += PAGE_SIZE;
812 		pfn++;
813 	}
814 	return 1;
815 }
816 #endif /* CONFIG_STRICT_DEVMEM */
817 
phys_mem_access_prot_allowed(struct file * file,unsigned long pfn,unsigned long size,pgprot_t * vma_prot)818 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
819 				unsigned long size, pgprot_t *vma_prot)
820 {
821 	enum page_cache_mode pcm = _PAGE_CACHE_MODE_WB;
822 
823 	if (!range_is_allowed(pfn, size))
824 		return 0;
825 
826 	if (file->f_flags & O_DSYNC)
827 		pcm = _PAGE_CACHE_MODE_UC_MINUS;
828 
829 	*vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
830 			     cachemode2protval(pcm));
831 	return 1;
832 }
833 
834 /*
835  * Change the memory type for the physical address range in kernel identity
836  * mapping space if that range is a part of identity map.
837  */
memtype_kernel_map_sync(u64 base,unsigned long size,enum page_cache_mode pcm)838 int memtype_kernel_map_sync(u64 base, unsigned long size,
839 			    enum page_cache_mode pcm)
840 {
841 	unsigned long id_sz;
842 
843 	if (base > __pa(high_memory-1))
844 		return 0;
845 
846 	/*
847 	 * Some areas in the middle of the kernel identity range
848 	 * are not mapped, for example the PCI space.
849 	 */
850 	if (!page_is_ram(base >> PAGE_SHIFT))
851 		return 0;
852 
853 	id_sz = (__pa(high_memory-1) <= base + size) ?
854 				__pa(high_memory) - base : size;
855 
856 	if (ioremap_change_attr((unsigned long)__va(base), id_sz, pcm) < 0) {
857 		pr_info("x86/PAT: %s:%d ioremap_change_attr failed %s for [mem %#010Lx-%#010Lx]\n",
858 			current->comm, current->pid,
859 			cattr_name(pcm),
860 			base, (unsigned long long)(base + size-1));
861 		return -EINVAL;
862 	}
863 	return 0;
864 }
865 
866 /*
867  * Internal interface to reserve a range of physical memory with prot.
868  * Reserved non RAM regions only and after successful memtype_reserve,
869  * this func also keeps identity mapping (if any) in sync with this new prot.
870  */
reserve_pfn_range(u64 paddr,unsigned long size,pgprot_t * vma_prot,int strict_prot)871 static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
872 				int strict_prot)
873 {
874 	int is_ram = 0;
875 	int ret;
876 	enum page_cache_mode want_pcm = pgprot2cachemode(*vma_prot);
877 	enum page_cache_mode pcm = want_pcm;
878 
879 	is_ram = pat_pagerange_is_ram(paddr, paddr + size);
880 
881 	/*
882 	 * reserve_pfn_range() for RAM pages. We do not refcount to keep
883 	 * track of number of mappings of RAM pages. We can assert that
884 	 * the type requested matches the type of first page in the range.
885 	 */
886 	if (is_ram) {
887 		if (!pat_enabled())
888 			return 0;
889 
890 		pcm = lookup_memtype(paddr);
891 		if (want_pcm != pcm) {
892 			pr_warn("x86/PAT: %s:%d map pfn RAM range req %s for [mem %#010Lx-%#010Lx], got %s\n",
893 				current->comm, current->pid,
894 				cattr_name(want_pcm),
895 				(unsigned long long)paddr,
896 				(unsigned long long)(paddr + size - 1),
897 				cattr_name(pcm));
898 			*vma_prot = __pgprot((pgprot_val(*vma_prot) &
899 					     (~_PAGE_CACHE_MASK)) |
900 					     cachemode2protval(pcm));
901 		}
902 		return 0;
903 	}
904 
905 	ret = memtype_reserve(paddr, paddr + size, want_pcm, &pcm);
906 	if (ret)
907 		return ret;
908 
909 	if (pcm != want_pcm) {
910 		if (strict_prot ||
911 		    !is_new_memtype_allowed(paddr, size, want_pcm, pcm)) {
912 			memtype_free(paddr, paddr + size);
913 			pr_err("x86/PAT: %s:%d map pfn expected mapping type %s for [mem %#010Lx-%#010Lx], got %s\n",
914 			       current->comm, current->pid,
915 			       cattr_name(want_pcm),
916 			       (unsigned long long)paddr,
917 			       (unsigned long long)(paddr + size - 1),
918 			       cattr_name(pcm));
919 			return -EINVAL;
920 		}
921 		/*
922 		 * We allow returning different type than the one requested in
923 		 * non strict case.
924 		 */
925 		*vma_prot = __pgprot((pgprot_val(*vma_prot) &
926 				      (~_PAGE_CACHE_MASK)) |
927 				     cachemode2protval(pcm));
928 	}
929 
930 	if (memtype_kernel_map_sync(paddr, size, pcm) < 0) {
931 		memtype_free(paddr, paddr + size);
932 		return -EINVAL;
933 	}
934 	return 0;
935 }
936 
937 /*
938  * Internal interface to free a range of physical memory.
939  * Frees non RAM regions only.
940  */
free_pfn_range(u64 paddr,unsigned long size)941 static void free_pfn_range(u64 paddr, unsigned long size)
942 {
943 	int is_ram;
944 
945 	is_ram = pat_pagerange_is_ram(paddr, paddr + size);
946 	if (is_ram == 0)
947 		memtype_free(paddr, paddr + size);
948 }
949 
get_pat_info(struct vm_area_struct * vma,resource_size_t * paddr,pgprot_t * pgprot)950 static int get_pat_info(struct vm_area_struct *vma, resource_size_t *paddr,
951 		pgprot_t *pgprot)
952 {
953 	unsigned long prot;
954 
955 	VM_WARN_ON_ONCE(!(vma->vm_flags & VM_PAT));
956 
957 	/*
958 	 * We need the starting PFN and cachemode used for track_pfn_remap()
959 	 * that covered the whole VMA. For most mappings, we can obtain that
960 	 * information from the page tables. For COW mappings, we might now
961 	 * suddenly have anon folios mapped and follow_phys() will fail.
962 	 *
963 	 * Fallback to using vma->vm_pgoff, see remap_pfn_range_notrack(), to
964 	 * detect the PFN. If we need the cachemode as well, we're out of luck
965 	 * for now and have to fail fork().
966 	 */
967 	if (!follow_phys(vma, vma->vm_start, 0, &prot, paddr)) {
968 		if (pgprot)
969 			*pgprot = __pgprot(prot);
970 		return 0;
971 	}
972 	if (is_cow_mapping(vma->vm_flags)) {
973 		if (pgprot)
974 			return -EINVAL;
975 		*paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT;
976 		return 0;
977 	}
978 	WARN_ON_ONCE(1);
979 	return -EINVAL;
980 }
981 
982 /*
983  * track_pfn_copy is called when vma that is covering the pfnmap gets
984  * copied through copy_page_range().
985  *
986  * If the vma has a linear pfn mapping for the entire range, we get the prot
987  * from pte and reserve the entire vma range with single reserve_pfn_range call.
988  */
track_pfn_copy(struct vm_area_struct * vma)989 int track_pfn_copy(struct vm_area_struct *vma)
990 {
991 	resource_size_t paddr;
992 	unsigned long vma_size = vma->vm_end - vma->vm_start;
993 	pgprot_t pgprot;
994 
995 	if (vma->vm_flags & VM_PAT) {
996 		if (get_pat_info(vma, &paddr, &pgprot))
997 			return -EINVAL;
998 		/* reserve the whole chunk covered by vma. */
999 		return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
1000 	}
1001 
1002 	return 0;
1003 }
1004 
1005 /*
1006  * prot is passed in as a parameter for the new mapping. If the vma has
1007  * a linear pfn mapping for the entire range, or no vma is provided,
1008  * reserve the entire pfn + size range with single reserve_pfn_range
1009  * call.
1010  */
track_pfn_remap(struct vm_area_struct * vma,pgprot_t * prot,unsigned long pfn,unsigned long addr,unsigned long size)1011 int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1012 		    unsigned long pfn, unsigned long addr, unsigned long size)
1013 {
1014 	resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT;
1015 	enum page_cache_mode pcm;
1016 
1017 	/* reserve the whole chunk starting from paddr */
1018 	if (!vma || (addr == vma->vm_start
1019 				&& size == (vma->vm_end - vma->vm_start))) {
1020 		int ret;
1021 
1022 		ret = reserve_pfn_range(paddr, size, prot, 0);
1023 		if (ret == 0 && vma)
1024 			vm_flags_set(vma, VM_PAT);
1025 		return ret;
1026 	}
1027 
1028 	if (!pat_enabled())
1029 		return 0;
1030 
1031 	/*
1032 	 * For anything smaller than the vma size we set prot based on the
1033 	 * lookup.
1034 	 */
1035 	pcm = lookup_memtype(paddr);
1036 
1037 	/* Check memtype for the remaining pages */
1038 	while (size > PAGE_SIZE) {
1039 		size -= PAGE_SIZE;
1040 		paddr += PAGE_SIZE;
1041 		if (pcm != lookup_memtype(paddr))
1042 			return -EINVAL;
1043 	}
1044 
1045 	*prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
1046 			 cachemode2protval(pcm));
1047 
1048 	return 0;
1049 }
1050 
track_pfn_insert(struct vm_area_struct * vma,pgprot_t * prot,pfn_t pfn)1051 void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, pfn_t pfn)
1052 {
1053 	enum page_cache_mode pcm;
1054 
1055 	if (!pat_enabled())
1056 		return;
1057 
1058 	/* Set prot based on lookup */
1059 	pcm = lookup_memtype(pfn_t_to_phys(pfn));
1060 	*prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
1061 			 cachemode2protval(pcm));
1062 }
1063 
1064 /*
1065  * untrack_pfn is called while unmapping a pfnmap for a region.
1066  * untrack can be called for a specific region indicated by pfn and size or
1067  * can be for the entire vma (in which case pfn, size are zero).
1068  */
untrack_pfn(struct vm_area_struct * vma,unsigned long pfn,unsigned long size,bool mm_wr_locked)1069 void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1070 		 unsigned long size, bool mm_wr_locked)
1071 {
1072 	resource_size_t paddr;
1073 
1074 	if (vma && !(vma->vm_flags & VM_PAT))
1075 		return;
1076 
1077 	/* free the chunk starting from pfn or the whole chunk */
1078 	paddr = (resource_size_t)pfn << PAGE_SHIFT;
1079 	if (!paddr && !size) {
1080 		if (get_pat_info(vma, &paddr, NULL))
1081 			return;
1082 		size = vma->vm_end - vma->vm_start;
1083 	}
1084 	free_pfn_range(paddr, size);
1085 	if (vma) {
1086 		if (mm_wr_locked)
1087 			vm_flags_clear(vma, VM_PAT);
1088 		else
1089 			__vm_flags_mod(vma, 0, VM_PAT);
1090 	}
1091 }
1092 
1093 /*
1094  * untrack_pfn_clear is called if the following situation fits:
1095  *
1096  * 1) while mremapping a pfnmap for a new region,  with the old vma after
1097  * its pfnmap page table has been removed.  The new vma has a new pfnmap
1098  * to the same pfn & cache type with VM_PAT set.
1099  * 2) while duplicating vm area, the new vma fails to copy the pgtable from
1100  * old vma.
1101  */
untrack_pfn_clear(struct vm_area_struct * vma)1102 void untrack_pfn_clear(struct vm_area_struct *vma)
1103 {
1104 	vm_flags_clear(vma, VM_PAT);
1105 }
1106 
pgprot_writecombine(pgprot_t prot)1107 pgprot_t pgprot_writecombine(pgprot_t prot)
1108 {
1109 	return __pgprot(pgprot_val(prot) |
1110 				cachemode2protval(_PAGE_CACHE_MODE_WC));
1111 }
1112 EXPORT_SYMBOL_GPL(pgprot_writecombine);
1113 
pgprot_writethrough(pgprot_t prot)1114 pgprot_t pgprot_writethrough(pgprot_t prot)
1115 {
1116 	return __pgprot(pgprot_val(prot) |
1117 				cachemode2protval(_PAGE_CACHE_MODE_WT));
1118 }
1119 EXPORT_SYMBOL_GPL(pgprot_writethrough);
1120 
1121 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
1122 
1123 /*
1124  * We are allocating a temporary printout-entry to be passed
1125  * between seq_start()/next() and seq_show():
1126  */
memtype_get_idx(loff_t pos)1127 static struct memtype *memtype_get_idx(loff_t pos)
1128 {
1129 	struct memtype *entry_print;
1130 	int ret;
1131 
1132 	entry_print  = kzalloc(sizeof(struct memtype), GFP_KERNEL);
1133 	if (!entry_print)
1134 		return NULL;
1135 
1136 	spin_lock(&memtype_lock);
1137 	ret = memtype_copy_nth_element(entry_print, pos);
1138 	spin_unlock(&memtype_lock);
1139 
1140 	/* Free it on error: */
1141 	if (ret) {
1142 		kfree(entry_print);
1143 		return NULL;
1144 	}
1145 
1146 	return entry_print;
1147 }
1148 
memtype_seq_start(struct seq_file * seq,loff_t * pos)1149 static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
1150 {
1151 	if (*pos == 0) {
1152 		++*pos;
1153 		seq_puts(seq, "PAT memtype list:\n");
1154 	}
1155 
1156 	return memtype_get_idx(*pos);
1157 }
1158 
memtype_seq_next(struct seq_file * seq,void * v,loff_t * pos)1159 static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1160 {
1161 	kfree(v);
1162 	++*pos;
1163 	return memtype_get_idx(*pos);
1164 }
1165 
memtype_seq_stop(struct seq_file * seq,void * v)1166 static void memtype_seq_stop(struct seq_file *seq, void *v)
1167 {
1168 	kfree(v);
1169 }
1170 
memtype_seq_show(struct seq_file * seq,void * v)1171 static int memtype_seq_show(struct seq_file *seq, void *v)
1172 {
1173 	struct memtype *entry_print = (struct memtype *)v;
1174 
1175 	seq_printf(seq, "PAT: [mem 0x%016Lx-0x%016Lx] %s\n",
1176 			entry_print->start,
1177 			entry_print->end,
1178 			cattr_name(entry_print->type));
1179 
1180 	return 0;
1181 }
1182 
1183 static const struct seq_operations memtype_seq_ops = {
1184 	.start = memtype_seq_start,
1185 	.next  = memtype_seq_next,
1186 	.stop  = memtype_seq_stop,
1187 	.show  = memtype_seq_show,
1188 };
1189 
memtype_seq_open(struct inode * inode,struct file * file)1190 static int memtype_seq_open(struct inode *inode, struct file *file)
1191 {
1192 	return seq_open(file, &memtype_seq_ops);
1193 }
1194 
1195 static const struct file_operations memtype_fops = {
1196 	.open    = memtype_seq_open,
1197 	.read    = seq_read,
1198 	.llseek  = seq_lseek,
1199 	.release = seq_release,
1200 };
1201 
pat_memtype_list_init(void)1202 static int __init pat_memtype_list_init(void)
1203 {
1204 	if (pat_enabled()) {
1205 		debugfs_create_file("pat_memtype_list", S_IRUSR,
1206 				    arch_debugfs_dir, NULL, &memtype_fops);
1207 	}
1208 	return 0;
1209 }
1210 late_initcall(pat_memtype_list_init);
1211 
1212 #endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */
1213