xref: /linux/block/bio-integrity.c (revision 60d21aac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * bio-integrity.c - bio data integrity extensions
4  *
5  * Copyright (C) 2007, 2008, 2009 Oracle Corporation
6  * Written by: Martin K. Petersen <martin.petersen@oracle.com>
7  */
8 
9 #include <linux/blk-integrity.h>
10 #include <linux/mempool.h>
11 #include <linux/export.h>
12 #include <linux/bio.h>
13 #include <linux/workqueue.h>
14 #include <linux/slab.h>
15 #include "blk.h"
16 
17 static struct kmem_cache *bip_slab;
18 static struct workqueue_struct *kintegrityd_wq;
19 
blk_flush_integrity(void)20 void blk_flush_integrity(void)
21 {
22 	flush_workqueue(kintegrityd_wq);
23 }
24 
__bio_integrity_free(struct bio_set * bs,struct bio_integrity_payload * bip)25 static void __bio_integrity_free(struct bio_set *bs,
26 				 struct bio_integrity_payload *bip)
27 {
28 	if (bs && mempool_initialized(&bs->bio_integrity_pool)) {
29 		if (bip->bip_vec)
30 			bvec_free(&bs->bvec_integrity_pool, bip->bip_vec,
31 				  bip->bip_max_vcnt);
32 		mempool_free(bip, &bs->bio_integrity_pool);
33 	} else {
34 		kfree(bip);
35 	}
36 }
37 
38 /**
39  * bio_integrity_alloc - Allocate integrity payload and attach it to bio
40  * @bio:	bio to attach integrity metadata to
41  * @gfp_mask:	Memory allocation mask
42  * @nr_vecs:	Number of integrity metadata scatter-gather elements
43  *
44  * Description: This function prepares a bio for attaching integrity
45  * metadata.  nr_vecs specifies the maximum number of pages containing
46  * integrity metadata that can be attached.
47  */
bio_integrity_alloc(struct bio * bio,gfp_t gfp_mask,unsigned int nr_vecs)48 struct bio_integrity_payload *bio_integrity_alloc(struct bio *bio,
49 						  gfp_t gfp_mask,
50 						  unsigned int nr_vecs)
51 {
52 	struct bio_integrity_payload *bip;
53 	struct bio_set *bs = bio->bi_pool;
54 	unsigned inline_vecs;
55 
56 	if (WARN_ON_ONCE(bio_has_crypt_ctx(bio)))
57 		return ERR_PTR(-EOPNOTSUPP);
58 
59 	if (!bs || !mempool_initialized(&bs->bio_integrity_pool)) {
60 		bip = kmalloc(struct_size(bip, bip_inline_vecs, nr_vecs), gfp_mask);
61 		inline_vecs = nr_vecs;
62 	} else {
63 		bip = mempool_alloc(&bs->bio_integrity_pool, gfp_mask);
64 		inline_vecs = BIO_INLINE_VECS;
65 	}
66 
67 	if (unlikely(!bip))
68 		return ERR_PTR(-ENOMEM);
69 
70 	memset(bip, 0, sizeof(*bip));
71 
72 	/* always report as many vecs as asked explicitly, not inline vecs */
73 	bip->bip_max_vcnt = nr_vecs;
74 	if (nr_vecs > inline_vecs) {
75 		bip->bip_vec = bvec_alloc(&bs->bvec_integrity_pool,
76 					  &bip->bip_max_vcnt, gfp_mask);
77 		if (!bip->bip_vec)
78 			goto err;
79 	} else {
80 		bip->bip_vec = bip->bip_inline_vecs;
81 	}
82 
83 	bip->bip_bio = bio;
84 	bio->bi_integrity = bip;
85 	bio->bi_opf |= REQ_INTEGRITY;
86 
87 	return bip;
88 err:
89 	__bio_integrity_free(bs, bip);
90 	return ERR_PTR(-ENOMEM);
91 }
92 EXPORT_SYMBOL(bio_integrity_alloc);
93 
bio_integrity_unpin_bvec(struct bio_vec * bv,int nr_vecs,bool dirty)94 static void bio_integrity_unpin_bvec(struct bio_vec *bv, int nr_vecs,
95 				     bool dirty)
96 {
97 	int i;
98 
99 	for (i = 0; i < nr_vecs; i++) {
100 		if (dirty && !PageCompound(bv[i].bv_page))
101 			set_page_dirty_lock(bv[i].bv_page);
102 		unpin_user_page(bv[i].bv_page);
103 	}
104 }
105 
bio_integrity_uncopy_user(struct bio_integrity_payload * bip)106 static void bio_integrity_uncopy_user(struct bio_integrity_payload *bip)
107 {
108 	unsigned short nr_vecs = bip->bip_max_vcnt - 1;
109 	struct bio_vec *copy = &bip->bip_vec[1];
110 	size_t bytes = bip->bip_iter.bi_size;
111 	struct iov_iter iter;
112 	int ret;
113 
114 	iov_iter_bvec(&iter, ITER_DEST, copy, nr_vecs, bytes);
115 	ret = copy_to_iter(bvec_virt(bip->bip_vec), bytes, &iter);
116 	WARN_ON_ONCE(ret != bytes);
117 
118 	bio_integrity_unpin_bvec(copy, nr_vecs, true);
119 }
120 
bio_integrity_unmap_user(struct bio_integrity_payload * bip)121 static void bio_integrity_unmap_user(struct bio_integrity_payload *bip)
122 {
123 	bool dirty = bio_data_dir(bip->bip_bio) == READ;
124 
125 	if (bip->bip_flags & BIP_COPY_USER) {
126 		if (dirty)
127 			bio_integrity_uncopy_user(bip);
128 		kfree(bvec_virt(bip->bip_vec));
129 		return;
130 	}
131 
132 	bio_integrity_unpin_bvec(bip->bip_vec, bip->bip_max_vcnt, dirty);
133 }
134 
135 /**
136  * bio_integrity_free - Free bio integrity payload
137  * @bio:	bio containing bip to be freed
138  *
139  * Description: Used to free the integrity portion of a bio. Usually
140  * called from bio_free().
141  */
bio_integrity_free(struct bio * bio)142 void bio_integrity_free(struct bio *bio)
143 {
144 	struct bio_integrity_payload *bip = bio_integrity(bio);
145 	struct bio_set *bs = bio->bi_pool;
146 
147 	if (bip->bip_flags & BIP_BLOCK_INTEGRITY)
148 		kfree(bvec_virt(bip->bip_vec));
149 	else if (bip->bip_flags & BIP_INTEGRITY_USER)
150 		bio_integrity_unmap_user(bip);
151 
152 	__bio_integrity_free(bs, bip);
153 	bio->bi_integrity = NULL;
154 	bio->bi_opf &= ~REQ_INTEGRITY;
155 }
156 
157 /**
158  * bio_integrity_add_page - Attach integrity metadata
159  * @bio:	bio to update
160  * @page:	page containing integrity metadata
161  * @len:	number of bytes of integrity metadata in page
162  * @offset:	start offset within page
163  *
164  * Description: Attach a page containing integrity metadata to bio.
165  */
bio_integrity_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)166 int bio_integrity_add_page(struct bio *bio, struct page *page,
167 			   unsigned int len, unsigned int offset)
168 {
169 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
170 	struct bio_integrity_payload *bip = bio_integrity(bio);
171 
172 	if (((bip->bip_iter.bi_size + len) >> SECTOR_SHIFT) >
173 	    queue_max_hw_sectors(q))
174 		return 0;
175 
176 	if (bip->bip_vcnt > 0) {
177 		struct bio_vec *bv = &bip->bip_vec[bip->bip_vcnt - 1];
178 		bool same_page = false;
179 
180 		if (bvec_try_merge_hw_page(q, bv, page, len, offset,
181 					   &same_page)) {
182 			bip->bip_iter.bi_size += len;
183 			return len;
184 		}
185 
186 		if (bip->bip_vcnt >=
187 		    min(bip->bip_max_vcnt, queue_max_integrity_segments(q)))
188 			return 0;
189 
190 		/*
191 		 * If the queue doesn't support SG gaps and adding this segment
192 		 * would create a gap, disallow it.
193 		 */
194 		if (bvec_gap_to_prev(&q->limits, bv, offset))
195 			return 0;
196 	}
197 
198 	bvec_set_page(&bip->bip_vec[bip->bip_vcnt], page, len, offset);
199 	bip->bip_vcnt++;
200 	bip->bip_iter.bi_size += len;
201 
202 	return len;
203 }
204 EXPORT_SYMBOL(bio_integrity_add_page);
205 
bio_integrity_copy_user(struct bio * bio,struct bio_vec * bvec,int nr_vecs,unsigned int len,unsigned int direction,u32 seed)206 static int bio_integrity_copy_user(struct bio *bio, struct bio_vec *bvec,
207 				   int nr_vecs, unsigned int len,
208 				   unsigned int direction, u32 seed)
209 {
210 	bool write = direction == ITER_SOURCE;
211 	struct bio_integrity_payload *bip;
212 	struct iov_iter iter;
213 	void *buf;
214 	int ret;
215 
216 	buf = kmalloc(len, GFP_KERNEL);
217 	if (!buf)
218 		return -ENOMEM;
219 
220 	if (write) {
221 		iov_iter_bvec(&iter, direction, bvec, nr_vecs, len);
222 		if (!copy_from_iter_full(buf, len, &iter)) {
223 			ret = -EFAULT;
224 			goto free_buf;
225 		}
226 
227 		bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
228 	} else {
229 		memset(buf, 0, len);
230 
231 		/*
232 		 * We need to preserve the original bvec and the number of vecs
233 		 * in it for completion handling
234 		 */
235 		bip = bio_integrity_alloc(bio, GFP_KERNEL, nr_vecs + 1);
236 	}
237 
238 	if (IS_ERR(bip)) {
239 		ret = PTR_ERR(bip);
240 		goto free_buf;
241 	}
242 
243 	if (write)
244 		bio_integrity_unpin_bvec(bvec, nr_vecs, false);
245 	else
246 		memcpy(&bip->bip_vec[1], bvec, nr_vecs * sizeof(*bvec));
247 
248 	ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
249 				     offset_in_page(buf));
250 	if (ret != len) {
251 		ret = -ENOMEM;
252 		goto free_bip;
253 	}
254 
255 	bip->bip_flags |= BIP_INTEGRITY_USER | BIP_COPY_USER;
256 	bip->bip_iter.bi_sector = seed;
257 	return 0;
258 free_bip:
259 	bio_integrity_free(bio);
260 free_buf:
261 	kfree(buf);
262 	return ret;
263 }
264 
bio_integrity_init_user(struct bio * bio,struct bio_vec * bvec,int nr_vecs,unsigned int len,u32 seed)265 static int bio_integrity_init_user(struct bio *bio, struct bio_vec *bvec,
266 				   int nr_vecs, unsigned int len, u32 seed)
267 {
268 	struct bio_integrity_payload *bip;
269 
270 	bip = bio_integrity_alloc(bio, GFP_KERNEL, nr_vecs);
271 	if (IS_ERR(bip))
272 		return PTR_ERR(bip);
273 
274 	memcpy(bip->bip_vec, bvec, nr_vecs * sizeof(*bvec));
275 	bip->bip_flags |= BIP_INTEGRITY_USER;
276 	bip->bip_iter.bi_sector = seed;
277 	bip->bip_iter.bi_size = len;
278 	return 0;
279 }
280 
bvec_from_pages(struct bio_vec * bvec,struct page ** pages,int nr_vecs,ssize_t bytes,ssize_t offset)281 static unsigned int bvec_from_pages(struct bio_vec *bvec, struct page **pages,
282 				    int nr_vecs, ssize_t bytes, ssize_t offset)
283 {
284 	unsigned int nr_bvecs = 0;
285 	int i, j;
286 
287 	for (i = 0; i < nr_vecs; i = j) {
288 		size_t size = min_t(size_t, bytes, PAGE_SIZE - offset);
289 		struct folio *folio = page_folio(pages[i]);
290 
291 		bytes -= size;
292 		for (j = i + 1; j < nr_vecs; j++) {
293 			size_t next = min_t(size_t, PAGE_SIZE, bytes);
294 
295 			if (page_folio(pages[j]) != folio ||
296 			    pages[j] != pages[j - 1] + 1)
297 				break;
298 			unpin_user_page(pages[j]);
299 			size += next;
300 			bytes -= next;
301 		}
302 
303 		bvec_set_page(&bvec[nr_bvecs], pages[i], size, offset);
304 		offset = 0;
305 		nr_bvecs++;
306 	}
307 
308 	return nr_bvecs;
309 }
310 
bio_integrity_map_user(struct bio * bio,void __user * ubuf,ssize_t bytes,u32 seed)311 int bio_integrity_map_user(struct bio *bio, void __user *ubuf, ssize_t bytes,
312 			   u32 seed)
313 {
314 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
315 	unsigned int align = q->dma_pad_mask | queue_dma_alignment(q);
316 	struct page *stack_pages[UIO_FASTIOV], **pages = stack_pages;
317 	struct bio_vec stack_vec[UIO_FASTIOV], *bvec = stack_vec;
318 	unsigned int direction, nr_bvecs;
319 	struct iov_iter iter;
320 	int ret, nr_vecs;
321 	size_t offset;
322 	bool copy;
323 
324 	if (bio_integrity(bio))
325 		return -EINVAL;
326 	if (bytes >> SECTOR_SHIFT > queue_max_hw_sectors(q))
327 		return -E2BIG;
328 
329 	if (bio_data_dir(bio) == READ)
330 		direction = ITER_DEST;
331 	else
332 		direction = ITER_SOURCE;
333 
334 	iov_iter_ubuf(&iter, direction, ubuf, bytes);
335 	nr_vecs = iov_iter_npages(&iter, BIO_MAX_VECS + 1);
336 	if (nr_vecs > BIO_MAX_VECS)
337 		return -E2BIG;
338 	if (nr_vecs > UIO_FASTIOV) {
339 		bvec = kcalloc(nr_vecs, sizeof(*bvec), GFP_KERNEL);
340 		if (!bvec)
341 			return -ENOMEM;
342 		pages = NULL;
343 	}
344 
345 	copy = !iov_iter_is_aligned(&iter, align, align);
346 	ret = iov_iter_extract_pages(&iter, &pages, bytes, nr_vecs, 0, &offset);
347 	if (unlikely(ret < 0))
348 		goto free_bvec;
349 
350 	nr_bvecs = bvec_from_pages(bvec, pages, nr_vecs, bytes, offset);
351 	if (pages != stack_pages)
352 		kvfree(pages);
353 	if (nr_bvecs > queue_max_integrity_segments(q))
354 		copy = true;
355 
356 	if (copy)
357 		ret = bio_integrity_copy_user(bio, bvec, nr_bvecs, bytes,
358 					      direction, seed);
359 	else
360 		ret = bio_integrity_init_user(bio, bvec, nr_bvecs, bytes, seed);
361 	if (ret)
362 		goto release_pages;
363 	if (bvec != stack_vec)
364 		kfree(bvec);
365 
366 	return 0;
367 
368 release_pages:
369 	bio_integrity_unpin_bvec(bvec, nr_bvecs, false);
370 free_bvec:
371 	if (bvec != stack_vec)
372 		kfree(bvec);
373 	return ret;
374 }
375 EXPORT_SYMBOL_GPL(bio_integrity_map_user);
376 
377 /**
378  * bio_integrity_process - Process integrity metadata for a bio
379  * @bio:	bio to generate/verify integrity metadata for
380  * @proc_iter:  iterator to process
381  * @proc_fn:	Pointer to the relevant processing function
382  */
bio_integrity_process(struct bio * bio,struct bvec_iter * proc_iter,integrity_processing_fn * proc_fn)383 static blk_status_t bio_integrity_process(struct bio *bio,
384 		struct bvec_iter *proc_iter, integrity_processing_fn *proc_fn)
385 {
386 	struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk);
387 	struct blk_integrity_iter iter;
388 	struct bvec_iter bviter;
389 	struct bio_vec bv;
390 	struct bio_integrity_payload *bip = bio_integrity(bio);
391 	blk_status_t ret = BLK_STS_OK;
392 
393 	iter.disk_name = bio->bi_bdev->bd_disk->disk_name;
394 	iter.interval = 1 << bi->interval_exp;
395 	iter.tuple_size = bi->tuple_size;
396 	iter.seed = proc_iter->bi_sector;
397 	iter.prot_buf = bvec_virt(bip->bip_vec);
398 	iter.pi_offset = bi->pi_offset;
399 
400 	__bio_for_each_segment(bv, bio, bviter, *proc_iter) {
401 		void *kaddr = bvec_kmap_local(&bv);
402 
403 		iter.data_buf = kaddr;
404 		iter.data_size = bv.bv_len;
405 		ret = proc_fn(&iter);
406 		kunmap_local(kaddr);
407 
408 		if (ret)
409 			break;
410 
411 	}
412 	return ret;
413 }
414 
415 /**
416  * bio_integrity_prep - Prepare bio for integrity I/O
417  * @bio:	bio to prepare
418  *
419  * Description:  Checks if the bio already has an integrity payload attached.
420  * If it does, the payload has been generated by another kernel subsystem,
421  * and we just pass it through. Otherwise allocates integrity payload.
422  * The bio must have data direction, target device and start sector set priot
423  * to calling.  In the WRITE case, integrity metadata will be generated using
424  * the block device's integrity function.  In the READ case, the buffer
425  * will be prepared for DMA and a suitable end_io handler set up.
426  */
bio_integrity_prep(struct bio * bio)427 bool bio_integrity_prep(struct bio *bio)
428 {
429 	struct bio_integrity_payload *bip;
430 	struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk);
431 	void *buf;
432 	unsigned long start, end;
433 	unsigned int len, nr_pages;
434 	unsigned int bytes, offset, i;
435 
436 	if (!bi)
437 		return true;
438 
439 	if (bio_op(bio) != REQ_OP_READ && bio_op(bio) != REQ_OP_WRITE)
440 		return true;
441 
442 	if (!bio_sectors(bio))
443 		return true;
444 
445 	/* Already protected? */
446 	if (bio_integrity(bio))
447 		return true;
448 
449 	if (bio_data_dir(bio) == READ) {
450 		if (!bi->profile->verify_fn ||
451 		    !(bi->flags & BLK_INTEGRITY_VERIFY))
452 			return true;
453 	} else {
454 		if (!bi->profile->generate_fn ||
455 		    !(bi->flags & BLK_INTEGRITY_GENERATE))
456 			return true;
457 	}
458 
459 	/* Allocate kernel buffer for protection data */
460 	len = bio_integrity_bytes(bi, bio_sectors(bio));
461 	buf = kmalloc(len, GFP_NOIO);
462 	if (unlikely(buf == NULL)) {
463 		printk(KERN_ERR "could not allocate integrity buffer\n");
464 		goto err_end_io;
465 	}
466 
467 	end = (((unsigned long) buf) + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
468 	start = ((unsigned long) buf) >> PAGE_SHIFT;
469 	nr_pages = end - start;
470 
471 	/* Allocate bio integrity payload and integrity vectors */
472 	bip = bio_integrity_alloc(bio, GFP_NOIO, nr_pages);
473 	if (IS_ERR(bip)) {
474 		printk(KERN_ERR "could not allocate data integrity bioset\n");
475 		kfree(buf);
476 		goto err_end_io;
477 	}
478 
479 	bip->bip_flags |= BIP_BLOCK_INTEGRITY;
480 	bip_set_seed(bip, bio->bi_iter.bi_sector);
481 
482 	if (bi->flags & BLK_INTEGRITY_IP_CHECKSUM)
483 		bip->bip_flags |= BIP_IP_CHECKSUM;
484 
485 	/* Map it */
486 	offset = offset_in_page(buf);
487 	for (i = 0; i < nr_pages && len > 0; i++) {
488 		bytes = PAGE_SIZE - offset;
489 
490 		if (bytes > len)
491 			bytes = len;
492 
493 		if (bio_integrity_add_page(bio, virt_to_page(buf),
494 					   bytes, offset) < bytes) {
495 			printk(KERN_ERR "could not attach integrity payload\n");
496 			goto err_end_io;
497 		}
498 
499 		buf += bytes;
500 		len -= bytes;
501 		offset = 0;
502 	}
503 
504 	/* Auto-generate integrity metadata if this is a write */
505 	if (bio_data_dir(bio) == WRITE) {
506 		bio_integrity_process(bio, &bio->bi_iter,
507 				      bi->profile->generate_fn);
508 	} else {
509 		bip->bio_iter = bio->bi_iter;
510 	}
511 	return true;
512 
513 err_end_io:
514 	bio->bi_status = BLK_STS_RESOURCE;
515 	bio_endio(bio);
516 	return false;
517 }
518 EXPORT_SYMBOL(bio_integrity_prep);
519 
520 /**
521  * bio_integrity_verify_fn - Integrity I/O completion worker
522  * @work:	Work struct stored in bio to be verified
523  *
524  * Description: This workqueue function is called to complete a READ
525  * request.  The function verifies the transferred integrity metadata
526  * and then calls the original bio end_io function.
527  */
bio_integrity_verify_fn(struct work_struct * work)528 static void bio_integrity_verify_fn(struct work_struct *work)
529 {
530 	struct bio_integrity_payload *bip =
531 		container_of(work, struct bio_integrity_payload, bip_work);
532 	struct bio *bio = bip->bip_bio;
533 	struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk);
534 
535 	/*
536 	 * At the moment verify is called bio's iterator was advanced
537 	 * during split and completion, we need to rewind iterator to
538 	 * it's original position.
539 	 */
540 	bio->bi_status = bio_integrity_process(bio, &bip->bio_iter,
541 						bi->profile->verify_fn);
542 	bio_integrity_free(bio);
543 	bio_endio(bio);
544 }
545 
546 /**
547  * __bio_integrity_endio - Integrity I/O completion function
548  * @bio:	Protected bio
549  *
550  * Description: Completion for integrity I/O
551  *
552  * Normally I/O completion is done in interrupt context.  However,
553  * verifying I/O integrity is a time-consuming task which must be run
554  * in process context.	This function postpones completion
555  * accordingly.
556  */
__bio_integrity_endio(struct bio * bio)557 bool __bio_integrity_endio(struct bio *bio)
558 {
559 	struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk);
560 	struct bio_integrity_payload *bip = bio_integrity(bio);
561 
562 	if (bio_op(bio) == REQ_OP_READ && !bio->bi_status &&
563 	    (bip->bip_flags & BIP_BLOCK_INTEGRITY) && bi->profile->verify_fn) {
564 		INIT_WORK(&bip->bip_work, bio_integrity_verify_fn);
565 		queue_work(kintegrityd_wq, &bip->bip_work);
566 		return false;
567 	}
568 
569 	bio_integrity_free(bio);
570 	return true;
571 }
572 
573 /**
574  * bio_integrity_advance - Advance integrity vector
575  * @bio:	bio whose integrity vector to update
576  * @bytes_done:	number of data bytes that have been completed
577  *
578  * Description: This function calculates how many integrity bytes the
579  * number of completed data bytes correspond to and advances the
580  * integrity vector accordingly.
581  */
bio_integrity_advance(struct bio * bio,unsigned int bytes_done)582 void bio_integrity_advance(struct bio *bio, unsigned int bytes_done)
583 {
584 	struct bio_integrity_payload *bip = bio_integrity(bio);
585 	struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk);
586 	unsigned bytes = bio_integrity_bytes(bi, bytes_done >> 9);
587 
588 	bip->bip_iter.bi_sector += bio_integrity_intervals(bi, bytes_done >> 9);
589 	bvec_iter_advance(bip->bip_vec, &bip->bip_iter, bytes);
590 }
591 
592 /**
593  * bio_integrity_trim - Trim integrity vector
594  * @bio:	bio whose integrity vector to update
595  *
596  * Description: Used to trim the integrity vector in a cloned bio.
597  */
bio_integrity_trim(struct bio * bio)598 void bio_integrity_trim(struct bio *bio)
599 {
600 	struct bio_integrity_payload *bip = bio_integrity(bio);
601 	struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk);
602 
603 	bip->bip_iter.bi_size = bio_integrity_bytes(bi, bio_sectors(bio));
604 }
605 EXPORT_SYMBOL(bio_integrity_trim);
606 
607 /**
608  * bio_integrity_clone - Callback for cloning bios with integrity metadata
609  * @bio:	New bio
610  * @bio_src:	Original bio
611  * @gfp_mask:	Memory allocation mask
612  *
613  * Description:	Called to allocate a bip when cloning a bio
614  */
bio_integrity_clone(struct bio * bio,struct bio * bio_src,gfp_t gfp_mask)615 int bio_integrity_clone(struct bio *bio, struct bio *bio_src,
616 			gfp_t gfp_mask)
617 {
618 	struct bio_integrity_payload *bip_src = bio_integrity(bio_src);
619 	struct bio_integrity_payload *bip;
620 
621 	BUG_ON(bip_src == NULL);
622 
623 	bip = bio_integrity_alloc(bio, gfp_mask, bip_src->bip_vcnt);
624 	if (IS_ERR(bip))
625 		return PTR_ERR(bip);
626 
627 	memcpy(bip->bip_vec, bip_src->bip_vec,
628 	       bip_src->bip_vcnt * sizeof(struct bio_vec));
629 
630 	bip->bip_vcnt = bip_src->bip_vcnt;
631 	bip->bip_iter = bip_src->bip_iter;
632 	bip->bip_flags = bip_src->bip_flags & ~BIP_BLOCK_INTEGRITY;
633 
634 	return 0;
635 }
636 
bioset_integrity_create(struct bio_set * bs,int pool_size)637 int bioset_integrity_create(struct bio_set *bs, int pool_size)
638 {
639 	if (mempool_initialized(&bs->bio_integrity_pool))
640 		return 0;
641 
642 	if (mempool_init_slab_pool(&bs->bio_integrity_pool,
643 				   pool_size, bip_slab))
644 		return -1;
645 
646 	if (biovec_init_pool(&bs->bvec_integrity_pool, pool_size)) {
647 		mempool_exit(&bs->bio_integrity_pool);
648 		return -1;
649 	}
650 
651 	return 0;
652 }
653 EXPORT_SYMBOL(bioset_integrity_create);
654 
bioset_integrity_free(struct bio_set * bs)655 void bioset_integrity_free(struct bio_set *bs)
656 {
657 	mempool_exit(&bs->bio_integrity_pool);
658 	mempool_exit(&bs->bvec_integrity_pool);
659 }
660 
bio_integrity_init(void)661 void __init bio_integrity_init(void)
662 {
663 	/*
664 	 * kintegrityd won't block much but may burn a lot of CPU cycles.
665 	 * Make it highpri CPU intensive wq with max concurrency of 1.
666 	 */
667 	kintegrityd_wq = alloc_workqueue("kintegrityd", WQ_MEM_RECLAIM |
668 					 WQ_HIGHPRI | WQ_CPU_INTENSIVE, 1);
669 	if (!kintegrityd_wq)
670 		panic("Failed to create kintegrityd\n");
671 
672 	bip_slab = kmem_cache_create("bio_integrity_payload",
673 				     sizeof(struct bio_integrity_payload) +
674 				     sizeof(struct bio_vec) * BIO_INLINE_VECS,
675 				     0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
676 }
677