xref: /linux/crypto/jitterentropy-kcapi.c (revision 8405ec8e)
1 /*
2  * Non-physical true random number generator based on timing jitter --
3  * Linux Kernel Crypto API specific code
4  *
5  * Copyright Stephan Mueller <smueller@chronox.de>, 2015 - 2023
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, and the entire permission notice in its entirety,
12  *    including the disclaimer of warranties.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The name of the author may not be used to endorse or promote
17  *    products derived from this software without specific prior
18  *    written permission.
19  *
20  * ALTERNATIVELY, this product may be distributed under the terms of
21  * the GNU General Public License, in which case the provisions of the GPL2 are
22  * required INSTEAD OF the above restrictions.  (This clause is
23  * necessary due to a potential bad interaction between the GPL and
24  * the restrictions contained in a BSD-style copyright.)
25  *
26  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
27  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
28  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
29  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
30  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
32  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
33  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
34  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
35  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
36  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
37  * DAMAGE.
38  */
39 
40 #include <crypto/hash.h>
41 #include <crypto/sha3.h>
42 #include <linux/fips.h>
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/slab.h>
46 #include <linux/time.h>
47 #include <crypto/internal/rng.h>
48 
49 #include "jitterentropy.h"
50 
51 #define JENT_CONDITIONING_HASH	"sha3-256-generic"
52 
53 /***************************************************************************
54  * Helper function
55  ***************************************************************************/
56 
jent_kvzalloc(unsigned int len)57 void *jent_kvzalloc(unsigned int len)
58 {
59 	return kvzalloc(len, GFP_KERNEL);
60 }
61 
jent_kvzfree(void * ptr,unsigned int len)62 void jent_kvzfree(void *ptr, unsigned int len)
63 {
64 	memzero_explicit(ptr, len);
65 	kvfree(ptr);
66 }
67 
jent_zalloc(unsigned int len)68 void *jent_zalloc(unsigned int len)
69 {
70 	return kzalloc(len, GFP_KERNEL);
71 }
72 
jent_zfree(void * ptr)73 void jent_zfree(void *ptr)
74 {
75 	kfree_sensitive(ptr);
76 }
77 
78 /*
79  * Obtain a high-resolution time stamp value. The time stamp is used to measure
80  * the execution time of a given code path and its variations. Hence, the time
81  * stamp must have a sufficiently high resolution.
82  *
83  * Note, if the function returns zero because a given architecture does not
84  * implement a high-resolution time stamp, the RNG code's runtime test
85  * will detect it and will not produce output.
86  */
jent_get_nstime(__u64 * out)87 void jent_get_nstime(__u64 *out)
88 {
89 	__u64 tmp = 0;
90 
91 	tmp = random_get_entropy();
92 
93 	/*
94 	 * If random_get_entropy does not return a value, i.e. it is not
95 	 * implemented for a given architecture, use a clock source.
96 	 * hoping that there are timers we can work with.
97 	 */
98 	if (tmp == 0)
99 		tmp = ktime_get_ns();
100 
101 	*out = tmp;
102 	jent_raw_hires_entropy_store(tmp);
103 }
104 
jent_hash_time(void * hash_state,__u64 time,u8 * addtl,unsigned int addtl_len,__u64 hash_loop_cnt,unsigned int stuck)105 int jent_hash_time(void *hash_state, __u64 time, u8 *addtl,
106 		   unsigned int addtl_len, __u64 hash_loop_cnt,
107 		   unsigned int stuck)
108 {
109 	struct shash_desc *hash_state_desc = (struct shash_desc *)hash_state;
110 	SHASH_DESC_ON_STACK(desc, hash_state_desc->tfm);
111 	u8 intermediary[SHA3_256_DIGEST_SIZE];
112 	__u64 j = 0;
113 	int ret;
114 
115 	desc->tfm = hash_state_desc->tfm;
116 
117 	if (sizeof(intermediary) != crypto_shash_digestsize(desc->tfm)) {
118 		pr_warn_ratelimited("Unexpected digest size\n");
119 		return -EINVAL;
120 	}
121 
122 	/*
123 	 * This loop fills a buffer which is injected into the entropy pool.
124 	 * The main reason for this loop is to execute something over which we
125 	 * can perform a timing measurement. The injection of the resulting
126 	 * data into the pool is performed to ensure the result is used and
127 	 * the compiler cannot optimize the loop away in case the result is not
128 	 * used at all. Yet that data is considered "additional information"
129 	 * considering the terminology from SP800-90A without any entropy.
130 	 *
131 	 * Note, it does not matter which or how much data you inject, we are
132 	 * interested in one Keccack1600 compression operation performed with
133 	 * the crypto_shash_final.
134 	 */
135 	for (j = 0; j < hash_loop_cnt; j++) {
136 		ret = crypto_shash_init(desc) ?:
137 		      crypto_shash_update(desc, intermediary,
138 					  sizeof(intermediary)) ?:
139 		      crypto_shash_finup(desc, addtl, addtl_len, intermediary);
140 		if (ret)
141 			goto err;
142 	}
143 
144 	/*
145 	 * Inject the data from the previous loop into the pool. This data is
146 	 * not considered to contain any entropy, but it stirs the pool a bit.
147 	 */
148 	ret = crypto_shash_update(desc, intermediary, sizeof(intermediary));
149 	if (ret)
150 		goto err;
151 
152 	/*
153 	 * Insert the time stamp into the hash context representing the pool.
154 	 *
155 	 * If the time stamp is stuck, do not finally insert the value into the
156 	 * entropy pool. Although this operation should not do any harm even
157 	 * when the time stamp has no entropy, SP800-90B requires that any
158 	 * conditioning operation to have an identical amount of input data
159 	 * according to section 3.1.5.
160 	 */
161 	if (!stuck) {
162 		ret = crypto_shash_update(hash_state_desc, (u8 *)&time,
163 					  sizeof(__u64));
164 	}
165 
166 err:
167 	shash_desc_zero(desc);
168 	memzero_explicit(intermediary, sizeof(intermediary));
169 
170 	return ret;
171 }
172 
jent_read_random_block(void * hash_state,char * dst,unsigned int dst_len)173 int jent_read_random_block(void *hash_state, char *dst, unsigned int dst_len)
174 {
175 	struct shash_desc *hash_state_desc = (struct shash_desc *)hash_state;
176 	u8 jent_block[SHA3_256_DIGEST_SIZE];
177 	/* Obtain data from entropy pool and re-initialize it */
178 	int ret = crypto_shash_final(hash_state_desc, jent_block) ?:
179 		  crypto_shash_init(hash_state_desc) ?:
180 		  crypto_shash_update(hash_state_desc, jent_block,
181 				      sizeof(jent_block));
182 
183 	if (!ret && dst_len)
184 		memcpy(dst, jent_block, dst_len);
185 
186 	memzero_explicit(jent_block, sizeof(jent_block));
187 	return ret;
188 }
189 
190 /***************************************************************************
191  * Kernel crypto API interface
192  ***************************************************************************/
193 
194 struct jitterentropy {
195 	spinlock_t jent_lock;
196 	struct rand_data *entropy_collector;
197 	struct crypto_shash *tfm;
198 	struct shash_desc *sdesc;
199 };
200 
jent_kcapi_cleanup(struct crypto_tfm * tfm)201 static void jent_kcapi_cleanup(struct crypto_tfm *tfm)
202 {
203 	struct jitterentropy *rng = crypto_tfm_ctx(tfm);
204 
205 	spin_lock(&rng->jent_lock);
206 
207 	if (rng->sdesc) {
208 		shash_desc_zero(rng->sdesc);
209 		kfree(rng->sdesc);
210 	}
211 	rng->sdesc = NULL;
212 
213 	if (rng->tfm)
214 		crypto_free_shash(rng->tfm);
215 	rng->tfm = NULL;
216 
217 	if (rng->entropy_collector)
218 		jent_entropy_collector_free(rng->entropy_collector);
219 	rng->entropy_collector = NULL;
220 	spin_unlock(&rng->jent_lock);
221 }
222 
jent_kcapi_init(struct crypto_tfm * tfm)223 static int jent_kcapi_init(struct crypto_tfm *tfm)
224 {
225 	struct jitterentropy *rng = crypto_tfm_ctx(tfm);
226 	struct crypto_shash *hash;
227 	struct shash_desc *sdesc;
228 	int size, ret = 0;
229 
230 	spin_lock_init(&rng->jent_lock);
231 
232 	/*
233 	 * Use SHA3-256 as conditioner. We allocate only the generic
234 	 * implementation as we are not interested in high-performance. The
235 	 * execution time of the SHA3 operation is measured and adds to the
236 	 * Jitter RNG's unpredictable behavior. If we have a slower hash
237 	 * implementation, the execution timing variations are larger. When
238 	 * using a fast implementation, we would need to call it more often
239 	 * as its variations are lower.
240 	 */
241 	hash = crypto_alloc_shash(JENT_CONDITIONING_HASH, 0, 0);
242 	if (IS_ERR(hash)) {
243 		pr_err("Cannot allocate conditioning digest\n");
244 		return PTR_ERR(hash);
245 	}
246 	rng->tfm = hash;
247 
248 	size = sizeof(struct shash_desc) + crypto_shash_descsize(hash);
249 	sdesc = kmalloc(size, GFP_KERNEL);
250 	if (!sdesc) {
251 		ret = -ENOMEM;
252 		goto err;
253 	}
254 
255 	sdesc->tfm = hash;
256 	crypto_shash_init(sdesc);
257 	rng->sdesc = sdesc;
258 
259 	rng->entropy_collector =
260 		jent_entropy_collector_alloc(CONFIG_CRYPTO_JITTERENTROPY_OSR, 0,
261 					     sdesc);
262 	if (!rng->entropy_collector) {
263 		ret = -ENOMEM;
264 		goto err;
265 	}
266 
267 	spin_lock_init(&rng->jent_lock);
268 	return 0;
269 
270 err:
271 	jent_kcapi_cleanup(tfm);
272 	return ret;
273 }
274 
jent_kcapi_random(struct crypto_rng * tfm,const u8 * src,unsigned int slen,u8 * rdata,unsigned int dlen)275 static int jent_kcapi_random(struct crypto_rng *tfm,
276 			     const u8 *src, unsigned int slen,
277 			     u8 *rdata, unsigned int dlen)
278 {
279 	struct jitterentropy *rng = crypto_rng_ctx(tfm);
280 	int ret = 0;
281 
282 	spin_lock(&rng->jent_lock);
283 
284 	ret = jent_read_entropy(rng->entropy_collector, rdata, dlen);
285 
286 	if (ret == -3) {
287 		/* Handle permanent health test error */
288 		/*
289 		 * If the kernel was booted with fips=1, it implies that
290 		 * the entire kernel acts as a FIPS 140 module. In this case
291 		 * an SP800-90B permanent health test error is treated as
292 		 * a FIPS module error.
293 		 */
294 		if (fips_enabled)
295 			panic("Jitter RNG permanent health test failure\n");
296 
297 		pr_err("Jitter RNG permanent health test failure\n");
298 		ret = -EFAULT;
299 	} else if (ret == -2) {
300 		/* Handle intermittent health test error */
301 		pr_warn_ratelimited("Reset Jitter RNG due to intermittent health test failure\n");
302 		ret = -EAGAIN;
303 	} else if (ret == -1) {
304 		/* Handle other errors */
305 		ret = -EINVAL;
306 	}
307 
308 	spin_unlock(&rng->jent_lock);
309 
310 	return ret;
311 }
312 
jent_kcapi_reset(struct crypto_rng * tfm,const u8 * seed,unsigned int slen)313 static int jent_kcapi_reset(struct crypto_rng *tfm,
314 			    const u8 *seed, unsigned int slen)
315 {
316 	return 0;
317 }
318 
319 static struct rng_alg jent_alg = {
320 	.generate		= jent_kcapi_random,
321 	.seed			= jent_kcapi_reset,
322 	.seedsize		= 0,
323 	.base			= {
324 		.cra_name               = "jitterentropy_rng",
325 		.cra_driver_name        = "jitterentropy_rng",
326 		.cra_priority           = 100,
327 		.cra_ctxsize            = sizeof(struct jitterentropy),
328 		.cra_module             = THIS_MODULE,
329 		.cra_init               = jent_kcapi_init,
330 		.cra_exit               = jent_kcapi_cleanup,
331 	}
332 };
333 
jent_mod_init(void)334 static int __init jent_mod_init(void)
335 {
336 	SHASH_DESC_ON_STACK(desc, tfm);
337 	struct crypto_shash *tfm;
338 	int ret = 0;
339 
340 	jent_testing_init();
341 
342 	tfm = crypto_alloc_shash(JENT_CONDITIONING_HASH, 0, 0);
343 	if (IS_ERR(tfm)) {
344 		jent_testing_exit();
345 		return PTR_ERR(tfm);
346 	}
347 
348 	desc->tfm = tfm;
349 	crypto_shash_init(desc);
350 	ret = jent_entropy_init(CONFIG_CRYPTO_JITTERENTROPY_OSR, 0, desc, NULL);
351 	shash_desc_zero(desc);
352 	crypto_free_shash(tfm);
353 	if (ret) {
354 		/* Handle permanent health test error */
355 		if (fips_enabled)
356 			panic("jitterentropy: Initialization failed with host not compliant with requirements: %d\n", ret);
357 
358 		jent_testing_exit();
359 		pr_info("jitterentropy: Initialization failed with host not compliant with requirements: %d\n", ret);
360 		return -EFAULT;
361 	}
362 	return crypto_register_rng(&jent_alg);
363 }
364 
jent_mod_exit(void)365 static void __exit jent_mod_exit(void)
366 {
367 	jent_testing_exit();
368 	crypto_unregister_rng(&jent_alg);
369 }
370 
371 module_init(jent_mod_init);
372 module_exit(jent_mod_exit);
373 
374 MODULE_LICENSE("Dual BSD/GPL");
375 MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
376 MODULE_DESCRIPTION("Non-physical True Random Number Generator based on CPU Jitter");
377 MODULE_ALIAS_CRYPTO("jitterentropy_rng");
378