xref: /linux/drivers/ata/libata-core.c (revision c0297e7d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  libata-core.c - helper library for ATA
4  *
5  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
6  *  Copyright 2003-2004 Jeff Garzik
7  *
8  *  libata documentation is available via 'make {ps|pdf}docs',
9  *  as Documentation/driver-api/libata.rst
10  *
11  *  Hardware documentation available from http://www.t13.org/ and
12  *  http://www.sata-io.org/
13  *
14  *  Standards documents from:
15  *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
16  *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
17  *	http://www.sata-io.org (SATA)
18  *	http://www.compactflash.org (CF)
19  *	http://www.qic.org (QIC157 - Tape and DSC)
20  *	http://www.ce-ata.org (CE-ATA: not supported)
21  *
22  * libata is essentially a library of internal helper functions for
23  * low-level ATA host controller drivers.  As such, the API/ABI is
24  * likely to change as new drivers are added and updated.
25  * Do not depend on ABI/API stability.
26  */
27 
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/init.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/spinlock.h>
35 #include <linux/blkdev.h>
36 #include <linux/delay.h>
37 #include <linux/timer.h>
38 #include <linux/time.h>
39 #include <linux/interrupt.h>
40 #include <linux/completion.h>
41 #include <linux/suspend.h>
42 #include <linux/workqueue.h>
43 #include <linux/scatterlist.h>
44 #include <linux/io.h>
45 #include <linux/log2.h>
46 #include <linux/slab.h>
47 #include <linux/glob.h>
48 #include <scsi/scsi.h>
49 #include <scsi/scsi_cmnd.h>
50 #include <scsi/scsi_host.h>
51 #include <linux/libata.h>
52 #include <asm/byteorder.h>
53 #include <asm/unaligned.h>
54 #include <linux/cdrom.h>
55 #include <linux/ratelimit.h>
56 #include <linux/leds.h>
57 #include <linux/pm_runtime.h>
58 #include <linux/platform_device.h>
59 #include <asm/setup.h>
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/libata.h>
63 
64 #include "libata.h"
65 #include "libata-transport.h"
66 
67 const struct ata_port_operations ata_base_port_ops = {
68 	.prereset		= ata_std_prereset,
69 	.postreset		= ata_std_postreset,
70 	.error_handler		= ata_std_error_handler,
71 	.sched_eh		= ata_std_sched_eh,
72 	.end_eh			= ata_std_end_eh,
73 };
74 
75 const struct ata_port_operations sata_port_ops = {
76 	.inherits		= &ata_base_port_ops,
77 
78 	.qc_defer		= ata_std_qc_defer,
79 	.hardreset		= sata_std_hardreset,
80 };
81 EXPORT_SYMBOL_GPL(sata_port_ops);
82 
83 static unsigned int ata_dev_init_params(struct ata_device *dev,
84 					u16 heads, u16 sectors);
85 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
86 static void ata_dev_xfermask(struct ata_device *dev);
87 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
88 
89 atomic_t ata_print_id = ATOMIC_INIT(0);
90 
91 #ifdef CONFIG_ATA_FORCE
92 struct ata_force_param {
93 	const char	*name;
94 	u8		cbl;
95 	u8		spd_limit;
96 	unsigned int	xfer_mask;
97 	unsigned int	horkage_on;
98 	unsigned int	horkage_off;
99 	u16		lflags_on;
100 	u16		lflags_off;
101 };
102 
103 struct ata_force_ent {
104 	int			port;
105 	int			device;
106 	struct ata_force_param	param;
107 };
108 
109 static struct ata_force_ent *ata_force_tbl;
110 static int ata_force_tbl_size;
111 
112 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
113 /* param_buf is thrown away after initialization, disallow read */
114 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
115 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
116 #endif
117 
118 static int atapi_enabled = 1;
119 module_param(atapi_enabled, int, 0444);
120 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
121 
122 static int atapi_dmadir = 0;
123 module_param(atapi_dmadir, int, 0444);
124 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
125 
126 int atapi_passthru16 = 1;
127 module_param(atapi_passthru16, int, 0444);
128 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
129 
130 int libata_fua = 0;
131 module_param_named(fua, libata_fua, int, 0444);
132 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
133 
134 static int ata_ignore_hpa;
135 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
136 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
137 
138 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
139 module_param_named(dma, libata_dma_mask, int, 0444);
140 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
141 
142 static int ata_probe_timeout;
143 module_param(ata_probe_timeout, int, 0444);
144 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
145 
146 int libata_noacpi = 0;
147 module_param_named(noacpi, libata_noacpi, int, 0444);
148 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
149 
150 int libata_allow_tpm = 0;
151 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
152 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
153 
154 static int atapi_an;
155 module_param(atapi_an, int, 0444);
156 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
157 
158 MODULE_AUTHOR("Jeff Garzik");
159 MODULE_DESCRIPTION("Library module for ATA devices");
160 MODULE_LICENSE("GPL");
161 MODULE_VERSION(DRV_VERSION);
162 
ata_dev_print_info(struct ata_device * dev)163 static inline bool ata_dev_print_info(struct ata_device *dev)
164 {
165 	struct ata_eh_context *ehc = &dev->link->eh_context;
166 
167 	return ehc->i.flags & ATA_EHI_PRINTINFO;
168 }
169 
ata_sstatus_online(u32 sstatus)170 static bool ata_sstatus_online(u32 sstatus)
171 {
172 	return (sstatus & 0xf) == 0x3;
173 }
174 
175 /**
176  *	ata_link_next - link iteration helper
177  *	@link: the previous link, NULL to start
178  *	@ap: ATA port containing links to iterate
179  *	@mode: iteration mode, one of ATA_LITER_*
180  *
181  *	LOCKING:
182  *	Host lock or EH context.
183  *
184  *	RETURNS:
185  *	Pointer to the next link.
186  */
ata_link_next(struct ata_link * link,struct ata_port * ap,enum ata_link_iter_mode mode)187 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
188 			       enum ata_link_iter_mode mode)
189 {
190 	BUG_ON(mode != ATA_LITER_EDGE &&
191 	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
192 
193 	/* NULL link indicates start of iteration */
194 	if (!link)
195 		switch (mode) {
196 		case ATA_LITER_EDGE:
197 		case ATA_LITER_PMP_FIRST:
198 			if (sata_pmp_attached(ap))
199 				return ap->pmp_link;
200 			fallthrough;
201 		case ATA_LITER_HOST_FIRST:
202 			return &ap->link;
203 		}
204 
205 	/* we just iterated over the host link, what's next? */
206 	if (link == &ap->link)
207 		switch (mode) {
208 		case ATA_LITER_HOST_FIRST:
209 			if (sata_pmp_attached(ap))
210 				return ap->pmp_link;
211 			fallthrough;
212 		case ATA_LITER_PMP_FIRST:
213 			if (unlikely(ap->slave_link))
214 				return ap->slave_link;
215 			fallthrough;
216 		case ATA_LITER_EDGE:
217 			return NULL;
218 		}
219 
220 	/* slave_link excludes PMP */
221 	if (unlikely(link == ap->slave_link))
222 		return NULL;
223 
224 	/* we were over a PMP link */
225 	if (++link < ap->pmp_link + ap->nr_pmp_links)
226 		return link;
227 
228 	if (mode == ATA_LITER_PMP_FIRST)
229 		return &ap->link;
230 
231 	return NULL;
232 }
233 EXPORT_SYMBOL_GPL(ata_link_next);
234 
235 /**
236  *	ata_dev_next - device iteration helper
237  *	@dev: the previous device, NULL to start
238  *	@link: ATA link containing devices to iterate
239  *	@mode: iteration mode, one of ATA_DITER_*
240  *
241  *	LOCKING:
242  *	Host lock or EH context.
243  *
244  *	RETURNS:
245  *	Pointer to the next device.
246  */
ata_dev_next(struct ata_device * dev,struct ata_link * link,enum ata_dev_iter_mode mode)247 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
248 				enum ata_dev_iter_mode mode)
249 {
250 	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
251 	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
252 
253 	/* NULL dev indicates start of iteration */
254 	if (!dev)
255 		switch (mode) {
256 		case ATA_DITER_ENABLED:
257 		case ATA_DITER_ALL:
258 			dev = link->device;
259 			goto check;
260 		case ATA_DITER_ENABLED_REVERSE:
261 		case ATA_DITER_ALL_REVERSE:
262 			dev = link->device + ata_link_max_devices(link) - 1;
263 			goto check;
264 		}
265 
266  next:
267 	/* move to the next one */
268 	switch (mode) {
269 	case ATA_DITER_ENABLED:
270 	case ATA_DITER_ALL:
271 		if (++dev < link->device + ata_link_max_devices(link))
272 			goto check;
273 		return NULL;
274 	case ATA_DITER_ENABLED_REVERSE:
275 	case ATA_DITER_ALL_REVERSE:
276 		if (--dev >= link->device)
277 			goto check;
278 		return NULL;
279 	}
280 
281  check:
282 	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
283 	    !ata_dev_enabled(dev))
284 		goto next;
285 	return dev;
286 }
287 EXPORT_SYMBOL_GPL(ata_dev_next);
288 
289 /**
290  *	ata_dev_phys_link - find physical link for a device
291  *	@dev: ATA device to look up physical link for
292  *
293  *	Look up physical link which @dev is attached to.  Note that
294  *	this is different from @dev->link only when @dev is on slave
295  *	link.  For all other cases, it's the same as @dev->link.
296  *
297  *	LOCKING:
298  *	Don't care.
299  *
300  *	RETURNS:
301  *	Pointer to the found physical link.
302  */
ata_dev_phys_link(struct ata_device * dev)303 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
304 {
305 	struct ata_port *ap = dev->link->ap;
306 
307 	if (!ap->slave_link)
308 		return dev->link;
309 	if (!dev->devno)
310 		return &ap->link;
311 	return ap->slave_link;
312 }
313 
314 #ifdef CONFIG_ATA_FORCE
315 /**
316  *	ata_force_cbl - force cable type according to libata.force
317  *	@ap: ATA port of interest
318  *
319  *	Force cable type according to libata.force and whine about it.
320  *	The last entry which has matching port number is used, so it
321  *	can be specified as part of device force parameters.  For
322  *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
323  *	same effect.
324  *
325  *	LOCKING:
326  *	EH context.
327  */
ata_force_cbl(struct ata_port * ap)328 void ata_force_cbl(struct ata_port *ap)
329 {
330 	int i;
331 
332 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
333 		const struct ata_force_ent *fe = &ata_force_tbl[i];
334 
335 		if (fe->port != -1 && fe->port != ap->print_id)
336 			continue;
337 
338 		if (fe->param.cbl == ATA_CBL_NONE)
339 			continue;
340 
341 		ap->cbl = fe->param.cbl;
342 		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
343 		return;
344 	}
345 }
346 
347 /**
348  *	ata_force_link_limits - force link limits according to libata.force
349  *	@link: ATA link of interest
350  *
351  *	Force link flags and SATA spd limit according to libata.force
352  *	and whine about it.  When only the port part is specified
353  *	(e.g. 1:), the limit applies to all links connected to both
354  *	the host link and all fan-out ports connected via PMP.  If the
355  *	device part is specified as 0 (e.g. 1.00:), it specifies the
356  *	first fan-out link not the host link.  Device number 15 always
357  *	points to the host link whether PMP is attached or not.  If the
358  *	controller has slave link, device number 16 points to it.
359  *
360  *	LOCKING:
361  *	EH context.
362  */
ata_force_link_limits(struct ata_link * link)363 static void ata_force_link_limits(struct ata_link *link)
364 {
365 	bool did_spd = false;
366 	int linkno = link->pmp;
367 	int i;
368 
369 	if (ata_is_host_link(link))
370 		linkno += 15;
371 
372 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
373 		const struct ata_force_ent *fe = &ata_force_tbl[i];
374 
375 		if (fe->port != -1 && fe->port != link->ap->print_id)
376 			continue;
377 
378 		if (fe->device != -1 && fe->device != linkno)
379 			continue;
380 
381 		/* only honor the first spd limit */
382 		if (!did_spd && fe->param.spd_limit) {
383 			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
384 			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
385 					fe->param.name);
386 			did_spd = true;
387 		}
388 
389 		/* let lflags stack */
390 		if (fe->param.lflags_on) {
391 			link->flags |= fe->param.lflags_on;
392 			ata_link_notice(link,
393 					"FORCE: link flag 0x%x forced -> 0x%x\n",
394 					fe->param.lflags_on, link->flags);
395 		}
396 		if (fe->param.lflags_off) {
397 			link->flags &= ~fe->param.lflags_off;
398 			ata_link_notice(link,
399 				"FORCE: link flag 0x%x cleared -> 0x%x\n",
400 				fe->param.lflags_off, link->flags);
401 		}
402 	}
403 }
404 
405 /**
406  *	ata_force_xfermask - force xfermask according to libata.force
407  *	@dev: ATA device of interest
408  *
409  *	Force xfer_mask according to libata.force and whine about it.
410  *	For consistency with link selection, device number 15 selects
411  *	the first device connected to the host link.
412  *
413  *	LOCKING:
414  *	EH context.
415  */
ata_force_xfermask(struct ata_device * dev)416 static void ata_force_xfermask(struct ata_device *dev)
417 {
418 	int devno = dev->link->pmp + dev->devno;
419 	int alt_devno = devno;
420 	int i;
421 
422 	/* allow n.15/16 for devices attached to host port */
423 	if (ata_is_host_link(dev->link))
424 		alt_devno += 15;
425 
426 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
427 		const struct ata_force_ent *fe = &ata_force_tbl[i];
428 		unsigned int pio_mask, mwdma_mask, udma_mask;
429 
430 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
431 			continue;
432 
433 		if (fe->device != -1 && fe->device != devno &&
434 		    fe->device != alt_devno)
435 			continue;
436 
437 		if (!fe->param.xfer_mask)
438 			continue;
439 
440 		ata_unpack_xfermask(fe->param.xfer_mask,
441 				    &pio_mask, &mwdma_mask, &udma_mask);
442 		if (udma_mask)
443 			dev->udma_mask = udma_mask;
444 		else if (mwdma_mask) {
445 			dev->udma_mask = 0;
446 			dev->mwdma_mask = mwdma_mask;
447 		} else {
448 			dev->udma_mask = 0;
449 			dev->mwdma_mask = 0;
450 			dev->pio_mask = pio_mask;
451 		}
452 
453 		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
454 			       fe->param.name);
455 		return;
456 	}
457 }
458 
459 /**
460  *	ata_force_horkage - force horkage according to libata.force
461  *	@dev: ATA device of interest
462  *
463  *	Force horkage according to libata.force and whine about it.
464  *	For consistency with link selection, device number 15 selects
465  *	the first device connected to the host link.
466  *
467  *	LOCKING:
468  *	EH context.
469  */
ata_force_horkage(struct ata_device * dev)470 static void ata_force_horkage(struct ata_device *dev)
471 {
472 	int devno = dev->link->pmp + dev->devno;
473 	int alt_devno = devno;
474 	int i;
475 
476 	/* allow n.15/16 for devices attached to host port */
477 	if (ata_is_host_link(dev->link))
478 		alt_devno += 15;
479 
480 	for (i = 0; i < ata_force_tbl_size; i++) {
481 		const struct ata_force_ent *fe = &ata_force_tbl[i];
482 
483 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
484 			continue;
485 
486 		if (fe->device != -1 && fe->device != devno &&
487 		    fe->device != alt_devno)
488 			continue;
489 
490 		if (!(~dev->horkage & fe->param.horkage_on) &&
491 		    !(dev->horkage & fe->param.horkage_off))
492 			continue;
493 
494 		dev->horkage |= fe->param.horkage_on;
495 		dev->horkage &= ~fe->param.horkage_off;
496 
497 		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
498 			       fe->param.name);
499 	}
500 }
501 #else
ata_force_link_limits(struct ata_link * link)502 static inline void ata_force_link_limits(struct ata_link *link) { }
ata_force_xfermask(struct ata_device * dev)503 static inline void ata_force_xfermask(struct ata_device *dev) { }
ata_force_horkage(struct ata_device * dev)504 static inline void ata_force_horkage(struct ata_device *dev) { }
505 #endif
506 
507 /**
508  *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
509  *	@opcode: SCSI opcode
510  *
511  *	Determine ATAPI command type from @opcode.
512  *
513  *	LOCKING:
514  *	None.
515  *
516  *	RETURNS:
517  *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
518  */
atapi_cmd_type(u8 opcode)519 int atapi_cmd_type(u8 opcode)
520 {
521 	switch (opcode) {
522 	case GPCMD_READ_10:
523 	case GPCMD_READ_12:
524 		return ATAPI_READ;
525 
526 	case GPCMD_WRITE_10:
527 	case GPCMD_WRITE_12:
528 	case GPCMD_WRITE_AND_VERIFY_10:
529 		return ATAPI_WRITE;
530 
531 	case GPCMD_READ_CD:
532 	case GPCMD_READ_CD_MSF:
533 		return ATAPI_READ_CD;
534 
535 	case ATA_16:
536 	case ATA_12:
537 		if (atapi_passthru16)
538 			return ATAPI_PASS_THRU;
539 		fallthrough;
540 	default:
541 		return ATAPI_MISC;
542 	}
543 }
544 EXPORT_SYMBOL_GPL(atapi_cmd_type);
545 
546 static const u8 ata_rw_cmds[] = {
547 	/* pio multi */
548 	ATA_CMD_READ_MULTI,
549 	ATA_CMD_WRITE_MULTI,
550 	ATA_CMD_READ_MULTI_EXT,
551 	ATA_CMD_WRITE_MULTI_EXT,
552 	0,
553 	0,
554 	0,
555 	0,
556 	/* pio */
557 	ATA_CMD_PIO_READ,
558 	ATA_CMD_PIO_WRITE,
559 	ATA_CMD_PIO_READ_EXT,
560 	ATA_CMD_PIO_WRITE_EXT,
561 	0,
562 	0,
563 	0,
564 	0,
565 	/* dma */
566 	ATA_CMD_READ,
567 	ATA_CMD_WRITE,
568 	ATA_CMD_READ_EXT,
569 	ATA_CMD_WRITE_EXT,
570 	0,
571 	0,
572 	0,
573 	ATA_CMD_WRITE_FUA_EXT
574 };
575 
576 /**
577  *	ata_set_rwcmd_protocol - set taskfile r/w command and protocol
578  *	@dev: target device for the taskfile
579  *	@tf: taskfile to examine and configure
580  *
581  *	Examine the device configuration and tf->flags to determine
582  *	the proper read/write command and protocol to use for @tf.
583  *
584  *	LOCKING:
585  *	caller.
586  */
ata_set_rwcmd_protocol(struct ata_device * dev,struct ata_taskfile * tf)587 static bool ata_set_rwcmd_protocol(struct ata_device *dev,
588 				   struct ata_taskfile *tf)
589 {
590 	u8 cmd;
591 
592 	int index, fua, lba48, write;
593 
594 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
595 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
596 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
597 
598 	if (dev->flags & ATA_DFLAG_PIO) {
599 		tf->protocol = ATA_PROT_PIO;
600 		index = dev->multi_count ? 0 : 8;
601 	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
602 		/* Unable to use DMA due to host limitation */
603 		tf->protocol = ATA_PROT_PIO;
604 		index = dev->multi_count ? 0 : 8;
605 	} else {
606 		tf->protocol = ATA_PROT_DMA;
607 		index = 16;
608 	}
609 
610 	cmd = ata_rw_cmds[index + fua + lba48 + write];
611 	if (!cmd)
612 		return false;
613 
614 	tf->command = cmd;
615 
616 	return true;
617 }
618 
619 /**
620  *	ata_tf_read_block - Read block address from ATA taskfile
621  *	@tf: ATA taskfile of interest
622  *	@dev: ATA device @tf belongs to
623  *
624  *	LOCKING:
625  *	None.
626  *
627  *	Read block address from @tf.  This function can handle all
628  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
629  *	flags select the address format to use.
630  *
631  *	RETURNS:
632  *	Block address read from @tf.
633  */
ata_tf_read_block(const struct ata_taskfile * tf,struct ata_device * dev)634 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
635 {
636 	u64 block = 0;
637 
638 	if (tf->flags & ATA_TFLAG_LBA) {
639 		if (tf->flags & ATA_TFLAG_LBA48) {
640 			block |= (u64)tf->hob_lbah << 40;
641 			block |= (u64)tf->hob_lbam << 32;
642 			block |= (u64)tf->hob_lbal << 24;
643 		} else
644 			block |= (tf->device & 0xf) << 24;
645 
646 		block |= tf->lbah << 16;
647 		block |= tf->lbam << 8;
648 		block |= tf->lbal;
649 	} else {
650 		u32 cyl, head, sect;
651 
652 		cyl = tf->lbam | (tf->lbah << 8);
653 		head = tf->device & 0xf;
654 		sect = tf->lbal;
655 
656 		if (!sect) {
657 			ata_dev_warn(dev,
658 				     "device reported invalid CHS sector 0\n");
659 			return U64_MAX;
660 		}
661 
662 		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
663 	}
664 
665 	return block;
666 }
667 
668 /*
669  * Set a taskfile command duration limit index.
670  */
ata_set_tf_cdl(struct ata_queued_cmd * qc,int cdl)671 static inline void ata_set_tf_cdl(struct ata_queued_cmd *qc, int cdl)
672 {
673 	struct ata_taskfile *tf = &qc->tf;
674 
675 	if (tf->protocol == ATA_PROT_NCQ)
676 		tf->auxiliary |= cdl;
677 	else
678 		tf->feature |= cdl;
679 
680 	/*
681 	 * Mark this command as having a CDL and request the result
682 	 * task file so that we can inspect the sense data available
683 	 * bit on completion.
684 	 */
685 	qc->flags |= ATA_QCFLAG_HAS_CDL | ATA_QCFLAG_RESULT_TF;
686 }
687 
688 /**
689  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
690  *	@qc: Metadata associated with the taskfile to build
691  *	@block: Block address
692  *	@n_block: Number of blocks
693  *	@tf_flags: RW/FUA etc...
694  *	@cdl: Command duration limit index
695  *	@class: IO priority class
696  *
697  *	LOCKING:
698  *	None.
699  *
700  *	Build ATA taskfile for the command @qc for read/write request described
701  *	by @block, @n_block, @tf_flags and @class.
702  *
703  *	RETURNS:
704  *
705  *	0 on success, -ERANGE if the request is too large for @dev,
706  *	-EINVAL if the request is invalid.
707  */
ata_build_rw_tf(struct ata_queued_cmd * qc,u64 block,u32 n_block,unsigned int tf_flags,int cdl,int class)708 int ata_build_rw_tf(struct ata_queued_cmd *qc, u64 block, u32 n_block,
709 		    unsigned int tf_flags, int cdl, int class)
710 {
711 	struct ata_taskfile *tf = &qc->tf;
712 	struct ata_device *dev = qc->dev;
713 
714 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
715 	tf->flags |= tf_flags;
716 
717 	if (ata_ncq_enabled(dev)) {
718 		/* yay, NCQ */
719 		if (!lba_48_ok(block, n_block))
720 			return -ERANGE;
721 
722 		tf->protocol = ATA_PROT_NCQ;
723 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
724 
725 		if (tf->flags & ATA_TFLAG_WRITE)
726 			tf->command = ATA_CMD_FPDMA_WRITE;
727 		else
728 			tf->command = ATA_CMD_FPDMA_READ;
729 
730 		tf->nsect = qc->hw_tag << 3;
731 		tf->hob_feature = (n_block >> 8) & 0xff;
732 		tf->feature = n_block & 0xff;
733 
734 		tf->hob_lbah = (block >> 40) & 0xff;
735 		tf->hob_lbam = (block >> 32) & 0xff;
736 		tf->hob_lbal = (block >> 24) & 0xff;
737 		tf->lbah = (block >> 16) & 0xff;
738 		tf->lbam = (block >> 8) & 0xff;
739 		tf->lbal = block & 0xff;
740 
741 		tf->device = ATA_LBA;
742 		if (tf->flags & ATA_TFLAG_FUA)
743 			tf->device |= 1 << 7;
744 
745 		if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED &&
746 		    class == IOPRIO_CLASS_RT)
747 			tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO;
748 
749 		if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
750 			ata_set_tf_cdl(qc, cdl);
751 
752 	} else if (dev->flags & ATA_DFLAG_LBA) {
753 		tf->flags |= ATA_TFLAG_LBA;
754 
755 		if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
756 			ata_set_tf_cdl(qc, cdl);
757 
758 		/* Both FUA writes and a CDL index require 48-bit commands */
759 		if (!(tf->flags & ATA_TFLAG_FUA) &&
760 		    !(qc->flags & ATA_QCFLAG_HAS_CDL) &&
761 		    lba_28_ok(block, n_block)) {
762 			/* use LBA28 */
763 			tf->device |= (block >> 24) & 0xf;
764 		} else if (lba_48_ok(block, n_block)) {
765 			if (!(dev->flags & ATA_DFLAG_LBA48))
766 				return -ERANGE;
767 
768 			/* use LBA48 */
769 			tf->flags |= ATA_TFLAG_LBA48;
770 
771 			tf->hob_nsect = (n_block >> 8) & 0xff;
772 
773 			tf->hob_lbah = (block >> 40) & 0xff;
774 			tf->hob_lbam = (block >> 32) & 0xff;
775 			tf->hob_lbal = (block >> 24) & 0xff;
776 		} else {
777 			/* request too large even for LBA48 */
778 			return -ERANGE;
779 		}
780 
781 		if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
782 			return -EINVAL;
783 
784 		tf->nsect = n_block & 0xff;
785 
786 		tf->lbah = (block >> 16) & 0xff;
787 		tf->lbam = (block >> 8) & 0xff;
788 		tf->lbal = block & 0xff;
789 
790 		tf->device |= ATA_LBA;
791 	} else {
792 		/* CHS */
793 		u32 sect, head, cyl, track;
794 
795 		/* The request -may- be too large for CHS addressing. */
796 		if (!lba_28_ok(block, n_block))
797 			return -ERANGE;
798 
799 		if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
800 			return -EINVAL;
801 
802 		/* Convert LBA to CHS */
803 		track = (u32)block / dev->sectors;
804 		cyl   = track / dev->heads;
805 		head  = track % dev->heads;
806 		sect  = (u32)block % dev->sectors + 1;
807 
808 		/* Check whether the converted CHS can fit.
809 		   Cylinder: 0-65535
810 		   Head: 0-15
811 		   Sector: 1-255*/
812 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
813 			return -ERANGE;
814 
815 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
816 		tf->lbal = sect;
817 		tf->lbam = cyl;
818 		tf->lbah = cyl >> 8;
819 		tf->device |= head;
820 	}
821 
822 	return 0;
823 }
824 
825 /**
826  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
827  *	@pio_mask: pio_mask
828  *	@mwdma_mask: mwdma_mask
829  *	@udma_mask: udma_mask
830  *
831  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
832  *	unsigned int xfer_mask.
833  *
834  *	LOCKING:
835  *	None.
836  *
837  *	RETURNS:
838  *	Packed xfer_mask.
839  */
ata_pack_xfermask(unsigned int pio_mask,unsigned int mwdma_mask,unsigned int udma_mask)840 unsigned int ata_pack_xfermask(unsigned int pio_mask,
841 			       unsigned int mwdma_mask,
842 			       unsigned int udma_mask)
843 {
844 	return	((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
845 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
846 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
847 }
848 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
849 
850 /**
851  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
852  *	@xfer_mask: xfer_mask to unpack
853  *	@pio_mask: resulting pio_mask
854  *	@mwdma_mask: resulting mwdma_mask
855  *	@udma_mask: resulting udma_mask
856  *
857  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
858  *	Any NULL destination masks will be ignored.
859  */
ata_unpack_xfermask(unsigned int xfer_mask,unsigned int * pio_mask,unsigned int * mwdma_mask,unsigned int * udma_mask)860 void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask,
861 			 unsigned int *mwdma_mask, unsigned int *udma_mask)
862 {
863 	if (pio_mask)
864 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
865 	if (mwdma_mask)
866 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
867 	if (udma_mask)
868 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
869 }
870 
871 static const struct ata_xfer_ent {
872 	int shift, bits;
873 	u8 base;
874 } ata_xfer_tbl[] = {
875 	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
876 	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
877 	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
878 	{ -1, },
879 };
880 
881 /**
882  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
883  *	@xfer_mask: xfer_mask of interest
884  *
885  *	Return matching XFER_* value for @xfer_mask.  Only the highest
886  *	bit of @xfer_mask is considered.
887  *
888  *	LOCKING:
889  *	None.
890  *
891  *	RETURNS:
892  *	Matching XFER_* value, 0xff if no match found.
893  */
ata_xfer_mask2mode(unsigned int xfer_mask)894 u8 ata_xfer_mask2mode(unsigned int xfer_mask)
895 {
896 	int highbit = fls(xfer_mask) - 1;
897 	const struct ata_xfer_ent *ent;
898 
899 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
900 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
901 			return ent->base + highbit - ent->shift;
902 	return 0xff;
903 }
904 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
905 
906 /**
907  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
908  *	@xfer_mode: XFER_* of interest
909  *
910  *	Return matching xfer_mask for @xfer_mode.
911  *
912  *	LOCKING:
913  *	None.
914  *
915  *	RETURNS:
916  *	Matching xfer_mask, 0 if no match found.
917  */
ata_xfer_mode2mask(u8 xfer_mode)918 unsigned int ata_xfer_mode2mask(u8 xfer_mode)
919 {
920 	const struct ata_xfer_ent *ent;
921 
922 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
923 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
924 			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
925 				& ~((1 << ent->shift) - 1);
926 	return 0;
927 }
928 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
929 
930 /**
931  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
932  *	@xfer_mode: XFER_* of interest
933  *
934  *	Return matching xfer_shift for @xfer_mode.
935  *
936  *	LOCKING:
937  *	None.
938  *
939  *	RETURNS:
940  *	Matching xfer_shift, -1 if no match found.
941  */
ata_xfer_mode2shift(u8 xfer_mode)942 int ata_xfer_mode2shift(u8 xfer_mode)
943 {
944 	const struct ata_xfer_ent *ent;
945 
946 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
947 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
948 			return ent->shift;
949 	return -1;
950 }
951 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
952 
953 /**
954  *	ata_mode_string - convert xfer_mask to string
955  *	@xfer_mask: mask of bits supported; only highest bit counts.
956  *
957  *	Determine string which represents the highest speed
958  *	(highest bit in @modemask).
959  *
960  *	LOCKING:
961  *	None.
962  *
963  *	RETURNS:
964  *	Constant C string representing highest speed listed in
965  *	@mode_mask, or the constant C string "<n/a>".
966  */
ata_mode_string(unsigned int xfer_mask)967 const char *ata_mode_string(unsigned int xfer_mask)
968 {
969 	static const char * const xfer_mode_str[] = {
970 		"PIO0",
971 		"PIO1",
972 		"PIO2",
973 		"PIO3",
974 		"PIO4",
975 		"PIO5",
976 		"PIO6",
977 		"MWDMA0",
978 		"MWDMA1",
979 		"MWDMA2",
980 		"MWDMA3",
981 		"MWDMA4",
982 		"UDMA/16",
983 		"UDMA/25",
984 		"UDMA/33",
985 		"UDMA/44",
986 		"UDMA/66",
987 		"UDMA/100",
988 		"UDMA/133",
989 		"UDMA7",
990 	};
991 	int highbit;
992 
993 	highbit = fls(xfer_mask) - 1;
994 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
995 		return xfer_mode_str[highbit];
996 	return "<n/a>";
997 }
998 EXPORT_SYMBOL_GPL(ata_mode_string);
999 
sata_spd_string(unsigned int spd)1000 const char *sata_spd_string(unsigned int spd)
1001 {
1002 	static const char * const spd_str[] = {
1003 		"1.5 Gbps",
1004 		"3.0 Gbps",
1005 		"6.0 Gbps",
1006 	};
1007 
1008 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1009 		return "<unknown>";
1010 	return spd_str[spd - 1];
1011 }
1012 
1013 /**
1014  *	ata_dev_classify - determine device type based on ATA-spec signature
1015  *	@tf: ATA taskfile register set for device to be identified
1016  *
1017  *	Determine from taskfile register contents whether a device is
1018  *	ATA or ATAPI, as per "Signature and persistence" section
1019  *	of ATA/PI spec (volume 1, sect 5.14).
1020  *
1021  *	LOCKING:
1022  *	None.
1023  *
1024  *	RETURNS:
1025  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1026  *	%ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1027  */
ata_dev_classify(const struct ata_taskfile * tf)1028 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1029 {
1030 	/* Apple's open source Darwin code hints that some devices only
1031 	 * put a proper signature into the LBA mid/high registers,
1032 	 * So, we only check those.  It's sufficient for uniqueness.
1033 	 *
1034 	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1035 	 * signatures for ATA and ATAPI devices attached on SerialATA,
1036 	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1037 	 * spec has never mentioned about using different signatures
1038 	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1039 	 * Multiplier specification began to use 0x69/0x96 to identify
1040 	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1041 	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1042 	 * 0x69/0x96 shortly and described them as reserved for
1043 	 * SerialATA.
1044 	 *
1045 	 * We follow the current spec and consider that 0x69/0x96
1046 	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1047 	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1048 	 * SEMB signature.  This is worked around in
1049 	 * ata_dev_read_id().
1050 	 */
1051 	if (tf->lbam == 0 && tf->lbah == 0)
1052 		return ATA_DEV_ATA;
1053 
1054 	if (tf->lbam == 0x14 && tf->lbah == 0xeb)
1055 		return ATA_DEV_ATAPI;
1056 
1057 	if (tf->lbam == 0x69 && tf->lbah == 0x96)
1058 		return ATA_DEV_PMP;
1059 
1060 	if (tf->lbam == 0x3c && tf->lbah == 0xc3)
1061 		return ATA_DEV_SEMB;
1062 
1063 	if (tf->lbam == 0xcd && tf->lbah == 0xab)
1064 		return ATA_DEV_ZAC;
1065 
1066 	return ATA_DEV_UNKNOWN;
1067 }
1068 EXPORT_SYMBOL_GPL(ata_dev_classify);
1069 
1070 /**
1071  *	ata_id_string - Convert IDENTIFY DEVICE page into string
1072  *	@id: IDENTIFY DEVICE results we will examine
1073  *	@s: string into which data is output
1074  *	@ofs: offset into identify device page
1075  *	@len: length of string to return. must be an even number.
1076  *
1077  *	The strings in the IDENTIFY DEVICE page are broken up into
1078  *	16-bit chunks.  Run through the string, and output each
1079  *	8-bit chunk linearly, regardless of platform.
1080  *
1081  *	LOCKING:
1082  *	caller.
1083  */
1084 
ata_id_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1085 void ata_id_string(const u16 *id, unsigned char *s,
1086 		   unsigned int ofs, unsigned int len)
1087 {
1088 	unsigned int c;
1089 
1090 	BUG_ON(len & 1);
1091 
1092 	while (len > 0) {
1093 		c = id[ofs] >> 8;
1094 		*s = c;
1095 		s++;
1096 
1097 		c = id[ofs] & 0xff;
1098 		*s = c;
1099 		s++;
1100 
1101 		ofs++;
1102 		len -= 2;
1103 	}
1104 }
1105 EXPORT_SYMBOL_GPL(ata_id_string);
1106 
1107 /**
1108  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1109  *	@id: IDENTIFY DEVICE results we will examine
1110  *	@s: string into which data is output
1111  *	@ofs: offset into identify device page
1112  *	@len: length of string to return. must be an odd number.
1113  *
1114  *	This function is identical to ata_id_string except that it
1115  *	trims trailing spaces and terminates the resulting string with
1116  *	null.  @len must be actual maximum length (even number) + 1.
1117  *
1118  *	LOCKING:
1119  *	caller.
1120  */
ata_id_c_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1121 void ata_id_c_string(const u16 *id, unsigned char *s,
1122 		     unsigned int ofs, unsigned int len)
1123 {
1124 	unsigned char *p;
1125 
1126 	ata_id_string(id, s, ofs, len - 1);
1127 
1128 	p = s + strnlen(s, len - 1);
1129 	while (p > s && p[-1] == ' ')
1130 		p--;
1131 	*p = '\0';
1132 }
1133 EXPORT_SYMBOL_GPL(ata_id_c_string);
1134 
ata_id_n_sectors(const u16 * id)1135 static u64 ata_id_n_sectors(const u16 *id)
1136 {
1137 	if (ata_id_has_lba(id)) {
1138 		if (ata_id_has_lba48(id))
1139 			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1140 
1141 		return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1142 	}
1143 
1144 	if (ata_id_current_chs_valid(id))
1145 		return (u32)id[ATA_ID_CUR_CYLS] * (u32)id[ATA_ID_CUR_HEADS] *
1146 		       (u32)id[ATA_ID_CUR_SECTORS];
1147 
1148 	return (u32)id[ATA_ID_CYLS] * (u32)id[ATA_ID_HEADS] *
1149 	       (u32)id[ATA_ID_SECTORS];
1150 }
1151 
ata_tf_to_lba48(const struct ata_taskfile * tf)1152 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1153 {
1154 	u64 sectors = 0;
1155 
1156 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1157 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1158 	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1159 	sectors |= (tf->lbah & 0xff) << 16;
1160 	sectors |= (tf->lbam & 0xff) << 8;
1161 	sectors |= (tf->lbal & 0xff);
1162 
1163 	return sectors;
1164 }
1165 
ata_tf_to_lba(const struct ata_taskfile * tf)1166 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1167 {
1168 	u64 sectors = 0;
1169 
1170 	sectors |= (tf->device & 0x0f) << 24;
1171 	sectors |= (tf->lbah & 0xff) << 16;
1172 	sectors |= (tf->lbam & 0xff) << 8;
1173 	sectors |= (tf->lbal & 0xff);
1174 
1175 	return sectors;
1176 }
1177 
1178 /**
1179  *	ata_read_native_max_address - Read native max address
1180  *	@dev: target device
1181  *	@max_sectors: out parameter for the result native max address
1182  *
1183  *	Perform an LBA48 or LBA28 native size query upon the device in
1184  *	question.
1185  *
1186  *	RETURNS:
1187  *	0 on success, -EACCES if command is aborted by the drive.
1188  *	-EIO on other errors.
1189  */
ata_read_native_max_address(struct ata_device * dev,u64 * max_sectors)1190 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1191 {
1192 	unsigned int err_mask;
1193 	struct ata_taskfile tf;
1194 	int lba48 = ata_id_has_lba48(dev->id);
1195 
1196 	ata_tf_init(dev, &tf);
1197 
1198 	/* always clear all address registers */
1199 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1200 
1201 	if (lba48) {
1202 		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1203 		tf.flags |= ATA_TFLAG_LBA48;
1204 	} else
1205 		tf.command = ATA_CMD_READ_NATIVE_MAX;
1206 
1207 	tf.protocol = ATA_PROT_NODATA;
1208 	tf.device |= ATA_LBA;
1209 
1210 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1211 	if (err_mask) {
1212 		ata_dev_warn(dev,
1213 			     "failed to read native max address (err_mask=0x%x)\n",
1214 			     err_mask);
1215 		if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
1216 			return -EACCES;
1217 		return -EIO;
1218 	}
1219 
1220 	if (lba48)
1221 		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1222 	else
1223 		*max_sectors = ata_tf_to_lba(&tf) + 1;
1224 	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1225 		(*max_sectors)--;
1226 	return 0;
1227 }
1228 
1229 /**
1230  *	ata_set_max_sectors - Set max sectors
1231  *	@dev: target device
1232  *	@new_sectors: new max sectors value to set for the device
1233  *
1234  *	Set max sectors of @dev to @new_sectors.
1235  *
1236  *	RETURNS:
1237  *	0 on success, -EACCES if command is aborted or denied (due to
1238  *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1239  *	errors.
1240  */
ata_set_max_sectors(struct ata_device * dev,u64 new_sectors)1241 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1242 {
1243 	unsigned int err_mask;
1244 	struct ata_taskfile tf;
1245 	int lba48 = ata_id_has_lba48(dev->id);
1246 
1247 	new_sectors--;
1248 
1249 	ata_tf_init(dev, &tf);
1250 
1251 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1252 
1253 	if (lba48) {
1254 		tf.command = ATA_CMD_SET_MAX_EXT;
1255 		tf.flags |= ATA_TFLAG_LBA48;
1256 
1257 		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1258 		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1259 		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1260 	} else {
1261 		tf.command = ATA_CMD_SET_MAX;
1262 
1263 		tf.device |= (new_sectors >> 24) & 0xf;
1264 	}
1265 
1266 	tf.protocol = ATA_PROT_NODATA;
1267 	tf.device |= ATA_LBA;
1268 
1269 	tf.lbal = (new_sectors >> 0) & 0xff;
1270 	tf.lbam = (new_sectors >> 8) & 0xff;
1271 	tf.lbah = (new_sectors >> 16) & 0xff;
1272 
1273 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1274 	if (err_mask) {
1275 		ata_dev_warn(dev,
1276 			     "failed to set max address (err_mask=0x%x)\n",
1277 			     err_mask);
1278 		if (err_mask == AC_ERR_DEV &&
1279 		    (tf.error & (ATA_ABORTED | ATA_IDNF)))
1280 			return -EACCES;
1281 		return -EIO;
1282 	}
1283 
1284 	return 0;
1285 }
1286 
1287 /**
1288  *	ata_hpa_resize		-	Resize a device with an HPA set
1289  *	@dev: Device to resize
1290  *
1291  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1292  *	it if required to the full size of the media. The caller must check
1293  *	the drive has the HPA feature set enabled.
1294  *
1295  *	RETURNS:
1296  *	0 on success, -errno on failure.
1297  */
ata_hpa_resize(struct ata_device * dev)1298 static int ata_hpa_resize(struct ata_device *dev)
1299 {
1300 	bool print_info = ata_dev_print_info(dev);
1301 	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1302 	u64 sectors = ata_id_n_sectors(dev->id);
1303 	u64 native_sectors;
1304 	int rc;
1305 
1306 	/* do we need to do it? */
1307 	if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1308 	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1309 	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1310 		return 0;
1311 
1312 	/* read native max address */
1313 	rc = ata_read_native_max_address(dev, &native_sectors);
1314 	if (rc) {
1315 		/* If device aborted the command or HPA isn't going to
1316 		 * be unlocked, skip HPA resizing.
1317 		 */
1318 		if (rc == -EACCES || !unlock_hpa) {
1319 			ata_dev_warn(dev,
1320 				     "HPA support seems broken, skipping HPA handling\n");
1321 			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1322 
1323 			/* we can continue if device aborted the command */
1324 			if (rc == -EACCES)
1325 				rc = 0;
1326 		}
1327 
1328 		return rc;
1329 	}
1330 	dev->n_native_sectors = native_sectors;
1331 
1332 	/* nothing to do? */
1333 	if (native_sectors <= sectors || !unlock_hpa) {
1334 		if (!print_info || native_sectors == sectors)
1335 			return 0;
1336 
1337 		if (native_sectors > sectors)
1338 			ata_dev_info(dev,
1339 				"HPA detected: current %llu, native %llu\n",
1340 				(unsigned long long)sectors,
1341 				(unsigned long long)native_sectors);
1342 		else if (native_sectors < sectors)
1343 			ata_dev_warn(dev,
1344 				"native sectors (%llu) is smaller than sectors (%llu)\n",
1345 				(unsigned long long)native_sectors,
1346 				(unsigned long long)sectors);
1347 		return 0;
1348 	}
1349 
1350 	/* let's unlock HPA */
1351 	rc = ata_set_max_sectors(dev, native_sectors);
1352 	if (rc == -EACCES) {
1353 		/* if device aborted the command, skip HPA resizing */
1354 		ata_dev_warn(dev,
1355 			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1356 			     (unsigned long long)sectors,
1357 			     (unsigned long long)native_sectors);
1358 		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1359 		return 0;
1360 	} else if (rc)
1361 		return rc;
1362 
1363 	/* re-read IDENTIFY data */
1364 	rc = ata_dev_reread_id(dev, 0);
1365 	if (rc) {
1366 		ata_dev_err(dev,
1367 			    "failed to re-read IDENTIFY data after HPA resizing\n");
1368 		return rc;
1369 	}
1370 
1371 	if (print_info) {
1372 		u64 new_sectors = ata_id_n_sectors(dev->id);
1373 		ata_dev_info(dev,
1374 			"HPA unlocked: %llu -> %llu, native %llu\n",
1375 			(unsigned long long)sectors,
1376 			(unsigned long long)new_sectors,
1377 			(unsigned long long)native_sectors);
1378 	}
1379 
1380 	return 0;
1381 }
1382 
1383 /**
1384  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1385  *	@dev: device from which the information is fetched
1386  *	@id: IDENTIFY DEVICE page to dump
1387  *
1388  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1389  *	page.
1390  *
1391  *	LOCKING:
1392  *	caller.
1393  */
1394 
ata_dump_id(struct ata_device * dev,const u16 * id)1395 static inline void ata_dump_id(struct ata_device *dev, const u16 *id)
1396 {
1397 	ata_dev_dbg(dev,
1398 		"49==0x%04x  53==0x%04x  63==0x%04x  64==0x%04x  75==0x%04x\n"
1399 		"80==0x%04x  81==0x%04x  82==0x%04x  83==0x%04x  84==0x%04x\n"
1400 		"88==0x%04x  93==0x%04x\n",
1401 		id[49], id[53], id[63], id[64], id[75], id[80],
1402 		id[81], id[82], id[83], id[84], id[88], id[93]);
1403 }
1404 
1405 /**
1406  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1407  *	@id: IDENTIFY data to compute xfer mask from
1408  *
1409  *	Compute the xfermask for this device. This is not as trivial
1410  *	as it seems if we must consider early devices correctly.
1411  *
1412  *	FIXME: pre IDE drive timing (do we care ?).
1413  *
1414  *	LOCKING:
1415  *	None.
1416  *
1417  *	RETURNS:
1418  *	Computed xfermask
1419  */
ata_id_xfermask(const u16 * id)1420 unsigned int ata_id_xfermask(const u16 *id)
1421 {
1422 	unsigned int pio_mask, mwdma_mask, udma_mask;
1423 
1424 	/* Usual case. Word 53 indicates word 64 is valid */
1425 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1426 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1427 		pio_mask <<= 3;
1428 		pio_mask |= 0x7;
1429 	} else {
1430 		/* If word 64 isn't valid then Word 51 high byte holds
1431 		 * the PIO timing number for the maximum. Turn it into
1432 		 * a mask.
1433 		 */
1434 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1435 		if (mode < 5)	/* Valid PIO range */
1436 			pio_mask = (2 << mode) - 1;
1437 		else
1438 			pio_mask = 1;
1439 
1440 		/* But wait.. there's more. Design your standards by
1441 		 * committee and you too can get a free iordy field to
1442 		 * process. However it is the speeds not the modes that
1443 		 * are supported... Note drivers using the timing API
1444 		 * will get this right anyway
1445 		 */
1446 	}
1447 
1448 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1449 
1450 	if (ata_id_is_cfa(id)) {
1451 		/*
1452 		 *	Process compact flash extended modes
1453 		 */
1454 		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1455 		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1456 
1457 		if (pio)
1458 			pio_mask |= (1 << 5);
1459 		if (pio > 1)
1460 			pio_mask |= (1 << 6);
1461 		if (dma)
1462 			mwdma_mask |= (1 << 3);
1463 		if (dma > 1)
1464 			mwdma_mask |= (1 << 4);
1465 	}
1466 
1467 	udma_mask = 0;
1468 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1469 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1470 
1471 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1472 }
1473 EXPORT_SYMBOL_GPL(ata_id_xfermask);
1474 
ata_qc_complete_internal(struct ata_queued_cmd * qc)1475 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1476 {
1477 	struct completion *waiting = qc->private_data;
1478 
1479 	complete(waiting);
1480 }
1481 
1482 /**
1483  *	ata_exec_internal - execute libata internal command
1484  *	@dev: Device to which the command is sent
1485  *	@tf: Taskfile registers for the command and the result
1486  *	@cdb: CDB for packet command
1487  *	@dma_dir: Data transfer direction of the command
1488  *	@buf: Data buffer of the command
1489  *	@buflen: Length of data buffer
1490  *	@timeout: Timeout in msecs (0 for default)
1491  *
1492  *	Executes libata internal command with timeout. @tf contains
1493  *	the command on entry and the result on return. Timeout and error
1494  *	conditions are reported via the return value. No recovery action
1495  *	is taken after a command times out. It is the caller's duty to
1496  *	clean up after timeout.
1497  *
1498  *	LOCKING:
1499  *	None.  Should be called with kernel context, might sleep.
1500  *
1501  *	RETURNS:
1502  *	Zero on success, AC_ERR_* mask on failure
1503  */
ata_exec_internal(struct ata_device * dev,struct ata_taskfile * tf,const u8 * cdb,enum dma_data_direction dma_dir,void * buf,unsigned int buflen,unsigned int timeout)1504 unsigned int ata_exec_internal(struct ata_device *dev, struct ata_taskfile *tf,
1505 			       const u8 *cdb, enum dma_data_direction dma_dir,
1506 			       void *buf, unsigned int buflen,
1507 			       unsigned int timeout)
1508 {
1509 	struct ata_link *link = dev->link;
1510 	struct ata_port *ap = link->ap;
1511 	u8 command = tf->command;
1512 	struct ata_queued_cmd *qc;
1513 	struct scatterlist sgl;
1514 	unsigned int preempted_tag;
1515 	u32 preempted_sactive;
1516 	u64 preempted_qc_active;
1517 	int preempted_nr_active_links;
1518 	bool auto_timeout = false;
1519 	DECLARE_COMPLETION_ONSTACK(wait);
1520 	unsigned long flags;
1521 	unsigned int err_mask;
1522 	int rc;
1523 
1524 	if (WARN_ON(dma_dir != DMA_NONE && !buf))
1525 		return AC_ERR_INVALID;
1526 
1527 	spin_lock_irqsave(ap->lock, flags);
1528 
1529 	/* No internal command while frozen */
1530 	if (ata_port_is_frozen(ap)) {
1531 		spin_unlock_irqrestore(ap->lock, flags);
1532 		return AC_ERR_SYSTEM;
1533 	}
1534 
1535 	/* Initialize internal qc */
1536 	qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1537 
1538 	qc->tag = ATA_TAG_INTERNAL;
1539 	qc->hw_tag = 0;
1540 	qc->scsicmd = NULL;
1541 	qc->ap = ap;
1542 	qc->dev = dev;
1543 	ata_qc_reinit(qc);
1544 
1545 	preempted_tag = link->active_tag;
1546 	preempted_sactive = link->sactive;
1547 	preempted_qc_active = ap->qc_active;
1548 	preempted_nr_active_links = ap->nr_active_links;
1549 	link->active_tag = ATA_TAG_POISON;
1550 	link->sactive = 0;
1551 	ap->qc_active = 0;
1552 	ap->nr_active_links = 0;
1553 
1554 	/* Prepare and issue qc */
1555 	qc->tf = *tf;
1556 	if (cdb)
1557 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1558 
1559 	/* Some SATA bridges need us to indicate data xfer direction */
1560 	if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1561 	    dma_dir == DMA_FROM_DEVICE)
1562 		qc->tf.feature |= ATAPI_DMADIR;
1563 
1564 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1565 	qc->dma_dir = dma_dir;
1566 	if (dma_dir != DMA_NONE) {
1567 		sg_init_one(&sgl, buf, buflen);
1568 		ata_sg_init(qc, &sgl, 1);
1569 		qc->nbytes = buflen;
1570 	}
1571 
1572 	qc->private_data = &wait;
1573 	qc->complete_fn = ata_qc_complete_internal;
1574 
1575 	ata_qc_issue(qc);
1576 
1577 	spin_unlock_irqrestore(ap->lock, flags);
1578 
1579 	if (!timeout) {
1580 		if (ata_probe_timeout) {
1581 			timeout = ata_probe_timeout * 1000;
1582 		} else {
1583 			timeout = ata_internal_cmd_timeout(dev, command);
1584 			auto_timeout = true;
1585 		}
1586 	}
1587 
1588 	ata_eh_release(ap);
1589 
1590 	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1591 
1592 	ata_eh_acquire(ap);
1593 
1594 	ata_sff_flush_pio_task(ap);
1595 
1596 	if (!rc) {
1597 		/*
1598 		 * We are racing with irq here. If we lose, the following test
1599 		 * prevents us from completing the qc twice. If we win, the port
1600 		 * is frozen and will be cleaned up by ->post_internal_cmd().
1601 		 */
1602 		spin_lock_irqsave(ap->lock, flags);
1603 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1604 			qc->err_mask |= AC_ERR_TIMEOUT;
1605 			ata_port_freeze(ap);
1606 			ata_dev_warn(dev, "qc timeout after %u msecs (cmd 0x%x)\n",
1607 				     timeout, command);
1608 		}
1609 		spin_unlock_irqrestore(ap->lock, flags);
1610 	}
1611 
1612 	if (ap->ops->post_internal_cmd)
1613 		ap->ops->post_internal_cmd(qc);
1614 
1615 	/* Perform minimal error analysis */
1616 	if (qc->flags & ATA_QCFLAG_EH) {
1617 		if (qc->result_tf.status & (ATA_ERR | ATA_DF))
1618 			qc->err_mask |= AC_ERR_DEV;
1619 
1620 		if (!qc->err_mask)
1621 			qc->err_mask |= AC_ERR_OTHER;
1622 
1623 		if (qc->err_mask & ~AC_ERR_OTHER)
1624 			qc->err_mask &= ~AC_ERR_OTHER;
1625 	} else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1626 		qc->result_tf.status |= ATA_SENSE;
1627 	}
1628 
1629 	/* Finish up */
1630 	spin_lock_irqsave(ap->lock, flags);
1631 
1632 	*tf = qc->result_tf;
1633 	err_mask = qc->err_mask;
1634 
1635 	ata_qc_free(qc);
1636 	link->active_tag = preempted_tag;
1637 	link->sactive = preempted_sactive;
1638 	ap->qc_active = preempted_qc_active;
1639 	ap->nr_active_links = preempted_nr_active_links;
1640 
1641 	spin_unlock_irqrestore(ap->lock, flags);
1642 
1643 	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1644 		ata_internal_cmd_timed_out(dev, command);
1645 
1646 	return err_mask;
1647 }
1648 
1649 /**
1650  *	ata_pio_need_iordy	-	check if iordy needed
1651  *	@adev: ATA device
1652  *
1653  *	Check if the current speed of the device requires IORDY. Used
1654  *	by various controllers for chip configuration.
1655  */
ata_pio_need_iordy(const struct ata_device * adev)1656 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1657 {
1658 	/* Don't set IORDY if we're preparing for reset.  IORDY may
1659 	 * lead to controller lock up on certain controllers if the
1660 	 * port is not occupied.  See bko#11703 for details.
1661 	 */
1662 	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1663 		return 0;
1664 	/* Controller doesn't support IORDY.  Probably a pointless
1665 	 * check as the caller should know this.
1666 	 */
1667 	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1668 		return 0;
1669 	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1670 	if (ata_id_is_cfa(adev->id)
1671 	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1672 		return 0;
1673 	/* PIO3 and higher it is mandatory */
1674 	if (adev->pio_mode > XFER_PIO_2)
1675 		return 1;
1676 	/* We turn it on when possible */
1677 	if (ata_id_has_iordy(adev->id))
1678 		return 1;
1679 	return 0;
1680 }
1681 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1682 
1683 /**
1684  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1685  *	@adev: ATA device
1686  *
1687  *	Compute the highest mode possible if we are not using iordy. Return
1688  *	-1 if no iordy mode is available.
1689  */
ata_pio_mask_no_iordy(const struct ata_device * adev)1690 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1691 {
1692 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1693 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1694 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1695 		/* Is the speed faster than the drive allows non IORDY ? */
1696 		if (pio) {
1697 			/* This is cycle times not frequency - watch the logic! */
1698 			if (pio > 240)	/* PIO2 is 240nS per cycle */
1699 				return 3 << ATA_SHIFT_PIO;
1700 			return 7 << ATA_SHIFT_PIO;
1701 		}
1702 	}
1703 	return 3 << ATA_SHIFT_PIO;
1704 }
1705 
1706 /**
1707  *	ata_do_dev_read_id		-	default ID read method
1708  *	@dev: device
1709  *	@tf: proposed taskfile
1710  *	@id: data buffer
1711  *
1712  *	Issue the identify taskfile and hand back the buffer containing
1713  *	identify data. For some RAID controllers and for pre ATA devices
1714  *	this function is wrapped or replaced by the driver
1715  */
ata_do_dev_read_id(struct ata_device * dev,struct ata_taskfile * tf,__le16 * id)1716 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1717 				struct ata_taskfile *tf, __le16 *id)
1718 {
1719 	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1720 				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1721 }
1722 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1723 
1724 /**
1725  *	ata_dev_read_id - Read ID data from the specified device
1726  *	@dev: target device
1727  *	@p_class: pointer to class of the target device (may be changed)
1728  *	@flags: ATA_READID_* flags
1729  *	@id: buffer to read IDENTIFY data into
1730  *
1731  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1732  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1733  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1734  *	for pre-ATA4 drives.
1735  *
1736  *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1737  *	now we abort if we hit that case.
1738  *
1739  *	LOCKING:
1740  *	Kernel thread context (may sleep)
1741  *
1742  *	RETURNS:
1743  *	0 on success, -errno otherwise.
1744  */
ata_dev_read_id(struct ata_device * dev,unsigned int * p_class,unsigned int flags,u16 * id)1745 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1746 		    unsigned int flags, u16 *id)
1747 {
1748 	struct ata_port *ap = dev->link->ap;
1749 	unsigned int class = *p_class;
1750 	struct ata_taskfile tf;
1751 	unsigned int err_mask = 0;
1752 	const char *reason;
1753 	bool is_semb = class == ATA_DEV_SEMB;
1754 	int may_fallback = 1, tried_spinup = 0;
1755 	int rc;
1756 
1757 retry:
1758 	ata_tf_init(dev, &tf);
1759 
1760 	switch (class) {
1761 	case ATA_DEV_SEMB:
1762 		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1763 		fallthrough;
1764 	case ATA_DEV_ATA:
1765 	case ATA_DEV_ZAC:
1766 		tf.command = ATA_CMD_ID_ATA;
1767 		break;
1768 	case ATA_DEV_ATAPI:
1769 		tf.command = ATA_CMD_ID_ATAPI;
1770 		break;
1771 	default:
1772 		rc = -ENODEV;
1773 		reason = "unsupported class";
1774 		goto err_out;
1775 	}
1776 
1777 	tf.protocol = ATA_PROT_PIO;
1778 
1779 	/* Some devices choke if TF registers contain garbage.  Make
1780 	 * sure those are properly initialized.
1781 	 */
1782 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1783 
1784 	/* Device presence detection is unreliable on some
1785 	 * controllers.  Always poll IDENTIFY if available.
1786 	 */
1787 	tf.flags |= ATA_TFLAG_POLLING;
1788 
1789 	if (ap->ops->read_id)
1790 		err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id);
1791 	else
1792 		err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id);
1793 
1794 	if (err_mask) {
1795 		if (err_mask & AC_ERR_NODEV_HINT) {
1796 			ata_dev_dbg(dev, "NODEV after polling detection\n");
1797 			return -ENOENT;
1798 		}
1799 
1800 		if (is_semb) {
1801 			ata_dev_info(dev,
1802 		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1803 			/* SEMB is not supported yet */
1804 			*p_class = ATA_DEV_SEMB_UNSUP;
1805 			return 0;
1806 		}
1807 
1808 		if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) {
1809 			/* Device or controller might have reported
1810 			 * the wrong device class.  Give a shot at the
1811 			 * other IDENTIFY if the current one is
1812 			 * aborted by the device.
1813 			 */
1814 			if (may_fallback) {
1815 				may_fallback = 0;
1816 
1817 				if (class == ATA_DEV_ATA)
1818 					class = ATA_DEV_ATAPI;
1819 				else
1820 					class = ATA_DEV_ATA;
1821 				goto retry;
1822 			}
1823 
1824 			/* Control reaches here iff the device aborted
1825 			 * both flavors of IDENTIFYs which happens
1826 			 * sometimes with phantom devices.
1827 			 */
1828 			ata_dev_dbg(dev,
1829 				    "both IDENTIFYs aborted, assuming NODEV\n");
1830 			return -ENOENT;
1831 		}
1832 
1833 		rc = -EIO;
1834 		reason = "I/O error";
1835 		goto err_out;
1836 	}
1837 
1838 	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1839 		ata_dev_info(dev, "dumping IDENTIFY data, "
1840 			    "class=%d may_fallback=%d tried_spinup=%d\n",
1841 			    class, may_fallback, tried_spinup);
1842 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET,
1843 			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1844 	}
1845 
1846 	/* Falling back doesn't make sense if ID data was read
1847 	 * successfully at least once.
1848 	 */
1849 	may_fallback = 0;
1850 
1851 	swap_buf_le16(id, ATA_ID_WORDS);
1852 
1853 	/* sanity check */
1854 	rc = -EINVAL;
1855 	reason = "device reports invalid type";
1856 
1857 	if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1858 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1859 			goto err_out;
1860 		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1861 							ata_id_is_ata(id)) {
1862 			ata_dev_dbg(dev,
1863 				"host indicates ignore ATA devices, ignored\n");
1864 			return -ENOENT;
1865 		}
1866 	} else {
1867 		if (ata_id_is_ata(id))
1868 			goto err_out;
1869 	}
1870 
1871 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1872 		tried_spinup = 1;
1873 		/*
1874 		 * Drive powered-up in standby mode, and requires a specific
1875 		 * SET_FEATURES spin-up subcommand before it will accept
1876 		 * anything other than the original IDENTIFY command.
1877 		 */
1878 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1879 		if (err_mask && id[2] != 0x738c) {
1880 			rc = -EIO;
1881 			reason = "SPINUP failed";
1882 			goto err_out;
1883 		}
1884 		/*
1885 		 * If the drive initially returned incomplete IDENTIFY info,
1886 		 * we now must reissue the IDENTIFY command.
1887 		 */
1888 		if (id[2] == 0x37c8)
1889 			goto retry;
1890 	}
1891 
1892 	if ((flags & ATA_READID_POSTRESET) &&
1893 	    (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1894 		/*
1895 		 * The exact sequence expected by certain pre-ATA4 drives is:
1896 		 * SRST RESET
1897 		 * IDENTIFY (optional in early ATA)
1898 		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1899 		 * anything else..
1900 		 * Some drives were very specific about that exact sequence.
1901 		 *
1902 		 * Note that ATA4 says lba is mandatory so the second check
1903 		 * should never trigger.
1904 		 */
1905 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1906 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
1907 			if (err_mask) {
1908 				rc = -EIO;
1909 				reason = "INIT_DEV_PARAMS failed";
1910 				goto err_out;
1911 			}
1912 
1913 			/* current CHS translation info (id[53-58]) might be
1914 			 * changed. reread the identify device info.
1915 			 */
1916 			flags &= ~ATA_READID_POSTRESET;
1917 			goto retry;
1918 		}
1919 	}
1920 
1921 	*p_class = class;
1922 
1923 	return 0;
1924 
1925  err_out:
1926 	ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1927 		     reason, err_mask);
1928 	return rc;
1929 }
1930 
ata_dev_power_init_tf(struct ata_device * dev,struct ata_taskfile * tf,bool set_active)1931 bool ata_dev_power_init_tf(struct ata_device *dev, struct ata_taskfile *tf,
1932 			   bool set_active)
1933 {
1934 	/* Only applies to ATA and ZAC devices */
1935 	if (dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC)
1936 		return false;
1937 
1938 	ata_tf_init(dev, tf);
1939 	tf->flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1940 	tf->protocol = ATA_PROT_NODATA;
1941 
1942 	if (set_active) {
1943 		/* VERIFY for 1 sector at lba=0 */
1944 		tf->command = ATA_CMD_VERIFY;
1945 		tf->nsect = 1;
1946 		if (dev->flags & ATA_DFLAG_LBA) {
1947 			tf->flags |= ATA_TFLAG_LBA;
1948 			tf->device |= ATA_LBA;
1949 		} else {
1950 			/* CHS */
1951 			tf->lbal = 0x1; /* sect */
1952 		}
1953 	} else {
1954 		tf->command = ATA_CMD_STANDBYNOW1;
1955 	}
1956 
1957 	return true;
1958 }
1959 
ata_dev_power_is_active(struct ata_device * dev)1960 static bool ata_dev_power_is_active(struct ata_device *dev)
1961 {
1962 	struct ata_taskfile tf;
1963 	unsigned int err_mask;
1964 
1965 	ata_tf_init(dev, &tf);
1966 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1967 	tf.protocol = ATA_PROT_NODATA;
1968 	tf.command = ATA_CMD_CHK_POWER;
1969 
1970 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1971 	if (err_mask) {
1972 		ata_dev_err(dev, "Check power mode failed (err_mask=0x%x)\n",
1973 			    err_mask);
1974 		/*
1975 		 * Assume we are in standby mode so that we always force a
1976 		 * spinup in ata_dev_power_set_active().
1977 		 */
1978 		return false;
1979 	}
1980 
1981 	ata_dev_dbg(dev, "Power mode: 0x%02x\n", tf.nsect);
1982 
1983 	/* Active or idle */
1984 	return tf.nsect == 0xff;
1985 }
1986 
1987 /**
1988  *	ata_dev_power_set_standby - Set a device power mode to standby
1989  *	@dev: target device
1990  *
1991  *	Issue a STANDBY IMMEDIATE command to set a device power mode to standby.
1992  *	For an HDD device, this spins down the disks.
1993  *
1994  *	LOCKING:
1995  *	Kernel thread context (may sleep).
1996  */
ata_dev_power_set_standby(struct ata_device * dev)1997 void ata_dev_power_set_standby(struct ata_device *dev)
1998 {
1999 	unsigned long ap_flags = dev->link->ap->flags;
2000 	struct ata_taskfile tf;
2001 	unsigned int err_mask;
2002 
2003 	/* If the device is already sleeping or in standby, do nothing. */
2004 	if ((dev->flags & ATA_DFLAG_SLEEPING) ||
2005 	    !ata_dev_power_is_active(dev))
2006 		return;
2007 
2008 	/*
2009 	 * Some odd clown BIOSes issue spindown on power off (ACPI S4 or S5)
2010 	 * causing some drives to spin up and down again. For these, do nothing
2011 	 * if we are being called on shutdown.
2012 	 */
2013 	if ((ap_flags & ATA_FLAG_NO_POWEROFF_SPINDOWN) &&
2014 	    system_state == SYSTEM_POWER_OFF)
2015 		return;
2016 
2017 	if ((ap_flags & ATA_FLAG_NO_HIBERNATE_SPINDOWN) &&
2018 	    system_entering_hibernation())
2019 		return;
2020 
2021 	/* Issue STANDBY IMMEDIATE command only if supported by the device */
2022 	if (!ata_dev_power_init_tf(dev, &tf, false))
2023 		return;
2024 
2025 	ata_dev_notice(dev, "Entering standby power mode\n");
2026 
2027 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2028 	if (err_mask)
2029 		ata_dev_err(dev, "STANDBY IMMEDIATE failed (err_mask=0x%x)\n",
2030 			    err_mask);
2031 }
2032 
2033 /**
2034  *	ata_dev_power_set_active -  Set a device power mode to active
2035  *	@dev: target device
2036  *
2037  *	Issue a VERIFY command to enter to ensure that the device is in the
2038  *	active power mode. For a spun-down HDD (standby or idle power mode),
2039  *	the VERIFY command will complete after the disk spins up.
2040  *
2041  *	LOCKING:
2042  *	Kernel thread context (may sleep).
2043  */
ata_dev_power_set_active(struct ata_device * dev)2044 void ata_dev_power_set_active(struct ata_device *dev)
2045 {
2046 	struct ata_taskfile tf;
2047 	unsigned int err_mask;
2048 
2049 	/*
2050 	 * Issue READ VERIFY SECTORS command for 1 sector at lba=0 only
2051 	 * if supported by the device.
2052 	 */
2053 	if (!ata_dev_power_init_tf(dev, &tf, true))
2054 		return;
2055 
2056 	/*
2057 	 * Check the device power state & condition and force a spinup with
2058 	 * VERIFY command only if the drive is not already ACTIVE or IDLE.
2059 	 */
2060 	if (ata_dev_power_is_active(dev))
2061 		return;
2062 
2063 	ata_dev_notice(dev, "Entering active power mode\n");
2064 
2065 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2066 	if (err_mask)
2067 		ata_dev_err(dev, "VERIFY failed (err_mask=0x%x)\n",
2068 			    err_mask);
2069 }
2070 
2071 /**
2072  *	ata_read_log_page - read a specific log page
2073  *	@dev: target device
2074  *	@log: log to read
2075  *	@page: page to read
2076  *	@buf: buffer to store read page
2077  *	@sectors: number of sectors to read
2078  *
2079  *	Read log page using READ_LOG_EXT command.
2080  *
2081  *	LOCKING:
2082  *	Kernel thread context (may sleep).
2083  *
2084  *	RETURNS:
2085  *	0 on success, AC_ERR_* mask otherwise.
2086  */
ata_read_log_page(struct ata_device * dev,u8 log,u8 page,void * buf,unsigned int sectors)2087 unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2088 			       u8 page, void *buf, unsigned int sectors)
2089 {
2090 	unsigned long ap_flags = dev->link->ap->flags;
2091 	struct ata_taskfile tf;
2092 	unsigned int err_mask;
2093 	bool dma = false;
2094 
2095 	ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page);
2096 
2097 	/*
2098 	 * Return error without actually issuing the command on controllers
2099 	 * which e.g. lockup on a read log page.
2100 	 */
2101 	if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2102 		return AC_ERR_DEV;
2103 
2104 retry:
2105 	ata_tf_init(dev, &tf);
2106 	if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) &&
2107 	    !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
2108 		tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2109 		tf.protocol = ATA_PROT_DMA;
2110 		dma = true;
2111 	} else {
2112 		tf.command = ATA_CMD_READ_LOG_EXT;
2113 		tf.protocol = ATA_PROT_PIO;
2114 		dma = false;
2115 	}
2116 	tf.lbal = log;
2117 	tf.lbam = page;
2118 	tf.nsect = sectors;
2119 	tf.hob_nsect = sectors >> 8;
2120 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2121 
2122 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2123 				     buf, sectors * ATA_SECT_SIZE, 0);
2124 
2125 	if (err_mask) {
2126 		if (dma) {
2127 			dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2128 			if (!ata_port_is_frozen(dev->link->ap))
2129 				goto retry;
2130 		}
2131 		ata_dev_err(dev,
2132 			    "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n",
2133 			    (unsigned int)log, (unsigned int)page, err_mask);
2134 	}
2135 
2136 	return err_mask;
2137 }
2138 
ata_log_supported(struct ata_device * dev,u8 log)2139 static int ata_log_supported(struct ata_device *dev, u8 log)
2140 {
2141 	struct ata_port *ap = dev->link->ap;
2142 
2143 	if (dev->horkage & ATA_HORKAGE_NO_LOG_DIR)
2144 		return 0;
2145 
2146 	if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2147 		return 0;
2148 	return get_unaligned_le16(&ap->sector_buf[log * 2]);
2149 }
2150 
ata_identify_page_supported(struct ata_device * dev,u8 page)2151 static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2152 {
2153 	struct ata_port *ap = dev->link->ap;
2154 	unsigned int err, i;
2155 
2156 	if (dev->horkage & ATA_HORKAGE_NO_ID_DEV_LOG)
2157 		return false;
2158 
2159 	if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2160 		/*
2161 		 * IDENTIFY DEVICE data log is defined as mandatory starting
2162 		 * with ACS-3 (ATA version 10). Warn about the missing log
2163 		 * for drives which implement this ATA level or above.
2164 		 */
2165 		if (ata_id_major_version(dev->id) >= 10)
2166 			ata_dev_warn(dev,
2167 				"ATA Identify Device Log not supported\n");
2168 		dev->horkage |= ATA_HORKAGE_NO_ID_DEV_LOG;
2169 		return false;
2170 	}
2171 
2172 	/*
2173 	 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2174 	 * supported.
2175 	 */
2176 	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2177 				1);
2178 	if (err)
2179 		return false;
2180 
2181 	for (i = 0; i < ap->sector_buf[8]; i++) {
2182 		if (ap->sector_buf[9 + i] == page)
2183 			return true;
2184 	}
2185 
2186 	return false;
2187 }
2188 
ata_do_link_spd_horkage(struct ata_device * dev)2189 static int ata_do_link_spd_horkage(struct ata_device *dev)
2190 {
2191 	struct ata_link *plink = ata_dev_phys_link(dev);
2192 	u32 target, target_limit;
2193 
2194 	if (!sata_scr_valid(plink))
2195 		return 0;
2196 
2197 	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2198 		target = 1;
2199 	else
2200 		return 0;
2201 
2202 	target_limit = (1 << target) - 1;
2203 
2204 	/* if already on stricter limit, no need to push further */
2205 	if (plink->sata_spd_limit <= target_limit)
2206 		return 0;
2207 
2208 	plink->sata_spd_limit = target_limit;
2209 
2210 	/* Request another EH round by returning -EAGAIN if link is
2211 	 * going faster than the target speed.  Forward progress is
2212 	 * guaranteed by setting sata_spd_limit to target_limit above.
2213 	 */
2214 	if (plink->sata_spd > target) {
2215 		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2216 			     sata_spd_string(target));
2217 		return -EAGAIN;
2218 	}
2219 	return 0;
2220 }
2221 
ata_dev_knobble(struct ata_device * dev)2222 static inline u8 ata_dev_knobble(struct ata_device *dev)
2223 {
2224 	struct ata_port *ap = dev->link->ap;
2225 
2226 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2227 		return 0;
2228 
2229 	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2230 }
2231 
ata_dev_config_ncq_send_recv(struct ata_device * dev)2232 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2233 {
2234 	struct ata_port *ap = dev->link->ap;
2235 	unsigned int err_mask;
2236 
2237 	if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2238 		ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2239 		return;
2240 	}
2241 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2242 				     0, ap->sector_buf, 1);
2243 	if (!err_mask) {
2244 		u8 *cmds = dev->ncq_send_recv_cmds;
2245 
2246 		dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2247 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2248 
2249 		if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2250 			ata_dev_dbg(dev, "disabling queued TRIM support\n");
2251 			cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2252 				~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2253 		}
2254 	}
2255 }
2256 
ata_dev_config_ncq_non_data(struct ata_device * dev)2257 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2258 {
2259 	struct ata_port *ap = dev->link->ap;
2260 	unsigned int err_mask;
2261 
2262 	if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2263 		ata_dev_warn(dev,
2264 			     "NCQ Send/Recv Log not supported\n");
2265 		return;
2266 	}
2267 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2268 				     0, ap->sector_buf, 1);
2269 	if (!err_mask) {
2270 		u8 *cmds = dev->ncq_non_data_cmds;
2271 
2272 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2273 	}
2274 }
2275 
ata_dev_config_ncq_prio(struct ata_device * dev)2276 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2277 {
2278 	struct ata_port *ap = dev->link->ap;
2279 	unsigned int err_mask;
2280 
2281 	if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2282 		return;
2283 
2284 	err_mask = ata_read_log_page(dev,
2285 				     ATA_LOG_IDENTIFY_DEVICE,
2286 				     ATA_LOG_SATA_SETTINGS,
2287 				     ap->sector_buf,
2288 				     1);
2289 	if (err_mask)
2290 		goto not_supported;
2291 
2292 	if (!(ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)))
2293 		goto not_supported;
2294 
2295 	dev->flags |= ATA_DFLAG_NCQ_PRIO;
2296 
2297 	return;
2298 
2299 not_supported:
2300 	dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED;
2301 	dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2302 }
2303 
ata_dev_check_adapter(struct ata_device * dev,unsigned short vendor_id)2304 static bool ata_dev_check_adapter(struct ata_device *dev,
2305 				  unsigned short vendor_id)
2306 {
2307 	struct pci_dev *pcidev = NULL;
2308 	struct device *parent_dev = NULL;
2309 
2310 	for (parent_dev = dev->tdev.parent; parent_dev != NULL;
2311 	     parent_dev = parent_dev->parent) {
2312 		if (dev_is_pci(parent_dev)) {
2313 			pcidev = to_pci_dev(parent_dev);
2314 			if (pcidev->vendor == vendor_id)
2315 				return true;
2316 			break;
2317 		}
2318 	}
2319 
2320 	return false;
2321 }
2322 
ata_dev_config_ncq(struct ata_device * dev,char * desc,size_t desc_sz)2323 static int ata_dev_config_ncq(struct ata_device *dev,
2324 			       char *desc, size_t desc_sz)
2325 {
2326 	struct ata_port *ap = dev->link->ap;
2327 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2328 	unsigned int err_mask;
2329 	char *aa_desc = "";
2330 
2331 	if (!ata_id_has_ncq(dev->id)) {
2332 		desc[0] = '\0';
2333 		return 0;
2334 	}
2335 	if (!IS_ENABLED(CONFIG_SATA_HOST))
2336 		return 0;
2337 	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2338 		snprintf(desc, desc_sz, "NCQ (not used)");
2339 		return 0;
2340 	}
2341 
2342 	if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI &&
2343 	    ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) {
2344 		snprintf(desc, desc_sz, "NCQ (not used)");
2345 		return 0;
2346 	}
2347 
2348 	if (ap->flags & ATA_FLAG_NCQ) {
2349 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2350 		dev->flags |= ATA_DFLAG_NCQ;
2351 	}
2352 
2353 	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2354 		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2355 		ata_id_has_fpdma_aa(dev->id)) {
2356 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2357 			SATA_FPDMA_AA);
2358 		if (err_mask) {
2359 			ata_dev_err(dev,
2360 				    "failed to enable AA (error_mask=0x%x)\n",
2361 				    err_mask);
2362 			if (err_mask != AC_ERR_DEV) {
2363 				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2364 				return -EIO;
2365 			}
2366 		} else
2367 			aa_desc = ", AA";
2368 	}
2369 
2370 	if (hdepth >= ddepth)
2371 		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2372 	else
2373 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2374 			ddepth, aa_desc);
2375 
2376 	if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2377 		if (ata_id_has_ncq_send_and_recv(dev->id))
2378 			ata_dev_config_ncq_send_recv(dev);
2379 		if (ata_id_has_ncq_non_data(dev->id))
2380 			ata_dev_config_ncq_non_data(dev);
2381 		if (ata_id_has_ncq_prio(dev->id))
2382 			ata_dev_config_ncq_prio(dev);
2383 	}
2384 
2385 	return 0;
2386 }
2387 
ata_dev_config_sense_reporting(struct ata_device * dev)2388 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2389 {
2390 	unsigned int err_mask;
2391 
2392 	if (!ata_id_has_sense_reporting(dev->id))
2393 		return;
2394 
2395 	if (ata_id_sense_reporting_enabled(dev->id))
2396 		return;
2397 
2398 	err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2399 	if (err_mask) {
2400 		ata_dev_dbg(dev,
2401 			    "failed to enable Sense Data Reporting, Emask 0x%x\n",
2402 			    err_mask);
2403 	}
2404 }
2405 
ata_dev_config_zac(struct ata_device * dev)2406 static void ata_dev_config_zac(struct ata_device *dev)
2407 {
2408 	struct ata_port *ap = dev->link->ap;
2409 	unsigned int err_mask;
2410 	u8 *identify_buf = ap->sector_buf;
2411 
2412 	dev->zac_zones_optimal_open = U32_MAX;
2413 	dev->zac_zones_optimal_nonseq = U32_MAX;
2414 	dev->zac_zones_max_open = U32_MAX;
2415 
2416 	/*
2417 	 * Always set the 'ZAC' flag for Host-managed devices.
2418 	 */
2419 	if (dev->class == ATA_DEV_ZAC)
2420 		dev->flags |= ATA_DFLAG_ZAC;
2421 	else if (ata_id_zoned_cap(dev->id) == 0x01)
2422 		/*
2423 		 * Check for host-aware devices.
2424 		 */
2425 		dev->flags |= ATA_DFLAG_ZAC;
2426 
2427 	if (!(dev->flags & ATA_DFLAG_ZAC))
2428 		return;
2429 
2430 	if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2431 		ata_dev_warn(dev,
2432 			     "ATA Zoned Information Log not supported\n");
2433 		return;
2434 	}
2435 
2436 	/*
2437 	 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2438 	 */
2439 	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2440 				     ATA_LOG_ZONED_INFORMATION,
2441 				     identify_buf, 1);
2442 	if (!err_mask) {
2443 		u64 zoned_cap, opt_open, opt_nonseq, max_open;
2444 
2445 		zoned_cap = get_unaligned_le64(&identify_buf[8]);
2446 		if ((zoned_cap >> 63))
2447 			dev->zac_zoned_cap = (zoned_cap & 1);
2448 		opt_open = get_unaligned_le64(&identify_buf[24]);
2449 		if ((opt_open >> 63))
2450 			dev->zac_zones_optimal_open = (u32)opt_open;
2451 		opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2452 		if ((opt_nonseq >> 63))
2453 			dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2454 		max_open = get_unaligned_le64(&identify_buf[40]);
2455 		if ((max_open >> 63))
2456 			dev->zac_zones_max_open = (u32)max_open;
2457 	}
2458 }
2459 
ata_dev_config_trusted(struct ata_device * dev)2460 static void ata_dev_config_trusted(struct ata_device *dev)
2461 {
2462 	struct ata_port *ap = dev->link->ap;
2463 	u64 trusted_cap;
2464 	unsigned int err;
2465 
2466 	if (!ata_id_has_trusted(dev->id))
2467 		return;
2468 
2469 	if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2470 		ata_dev_warn(dev,
2471 			     "Security Log not supported\n");
2472 		return;
2473 	}
2474 
2475 	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2476 			ap->sector_buf, 1);
2477 	if (err)
2478 		return;
2479 
2480 	trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2481 	if (!(trusted_cap & (1ULL << 63))) {
2482 		ata_dev_dbg(dev,
2483 			    "Trusted Computing capability qword not valid!\n");
2484 		return;
2485 	}
2486 
2487 	if (trusted_cap & (1 << 0))
2488 		dev->flags |= ATA_DFLAG_TRUSTED;
2489 }
2490 
ata_dev_config_cdl(struct ata_device * dev)2491 static void ata_dev_config_cdl(struct ata_device *dev)
2492 {
2493 	struct ata_port *ap = dev->link->ap;
2494 	unsigned int err_mask;
2495 	bool cdl_enabled;
2496 	u64 val;
2497 
2498 	if (ata_id_major_version(dev->id) < 11)
2499 		goto not_supported;
2500 
2501 	if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE) ||
2502 	    !ata_identify_page_supported(dev, ATA_LOG_SUPPORTED_CAPABILITIES) ||
2503 	    !ata_identify_page_supported(dev, ATA_LOG_CURRENT_SETTINGS))
2504 		goto not_supported;
2505 
2506 	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2507 				     ATA_LOG_SUPPORTED_CAPABILITIES,
2508 				     ap->sector_buf, 1);
2509 	if (err_mask)
2510 		goto not_supported;
2511 
2512 	/* Check Command Duration Limit Supported bits */
2513 	val = get_unaligned_le64(&ap->sector_buf[168]);
2514 	if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(0)))
2515 		goto not_supported;
2516 
2517 	/* Warn the user if command duration guideline is not supported */
2518 	if (!(val & BIT_ULL(1)))
2519 		ata_dev_warn(dev,
2520 			"Command duration guideline is not supported\n");
2521 
2522 	/*
2523 	 * We must have support for the sense data for successful NCQ commands
2524 	 * log indicated by the successful NCQ command sense data supported bit.
2525 	 */
2526 	val = get_unaligned_le64(&ap->sector_buf[8]);
2527 	if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(47))) {
2528 		ata_dev_warn(dev,
2529 			"CDL supported but Successful NCQ Command Sense Data is not supported\n");
2530 		goto not_supported;
2531 	}
2532 
2533 	/* Without NCQ autosense, the successful NCQ commands log is useless. */
2534 	if (!ata_id_has_ncq_autosense(dev->id)) {
2535 		ata_dev_warn(dev,
2536 			"CDL supported but NCQ autosense is not supported\n");
2537 		goto not_supported;
2538 	}
2539 
2540 	/*
2541 	 * If CDL is marked as enabled, make sure the feature is enabled too.
2542 	 * Conversely, if CDL is disabled, make sure the feature is turned off.
2543 	 */
2544 	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2545 				     ATA_LOG_CURRENT_SETTINGS,
2546 				     ap->sector_buf, 1);
2547 	if (err_mask)
2548 		goto not_supported;
2549 
2550 	val = get_unaligned_le64(&ap->sector_buf[8]);
2551 	cdl_enabled = val & BIT_ULL(63) && val & BIT_ULL(21);
2552 	if (dev->flags & ATA_DFLAG_CDL_ENABLED) {
2553 		if (!cdl_enabled) {
2554 			/* Enable CDL on the device */
2555 			err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 1);
2556 			if (err_mask) {
2557 				ata_dev_err(dev,
2558 					    "Enable CDL feature failed\n");
2559 				goto not_supported;
2560 			}
2561 		}
2562 	} else {
2563 		if (cdl_enabled) {
2564 			/* Disable CDL on the device */
2565 			err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 0);
2566 			if (err_mask) {
2567 				ata_dev_err(dev,
2568 					    "Disable CDL feature failed\n");
2569 				goto not_supported;
2570 			}
2571 		}
2572 	}
2573 
2574 	/*
2575 	 * While CDL itself has to be enabled using sysfs, CDL requires that
2576 	 * sense data for successful NCQ commands is enabled to work properly.
2577 	 * Just like ata_dev_config_sense_reporting(), enable it unconditionally
2578 	 * if supported.
2579 	 */
2580 	if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(18))) {
2581 		err_mask = ata_dev_set_feature(dev,
2582 					SETFEATURE_SENSE_DATA_SUCC_NCQ, 0x1);
2583 		if (err_mask) {
2584 			ata_dev_warn(dev,
2585 				     "failed to enable Sense Data for successful NCQ commands, Emask 0x%x\n",
2586 				     err_mask);
2587 			goto not_supported;
2588 		}
2589 	}
2590 
2591 	/*
2592 	 * Allocate a buffer to handle reading the sense data for successful
2593 	 * NCQ Commands log page for commands using a CDL with one of the limit
2594 	 * policy set to 0xD (successful completion with sense data available
2595 	 * bit set).
2596 	 */
2597 	if (!ap->ncq_sense_buf) {
2598 		ap->ncq_sense_buf = kmalloc(ATA_LOG_SENSE_NCQ_SIZE, GFP_KERNEL);
2599 		if (!ap->ncq_sense_buf)
2600 			goto not_supported;
2601 	}
2602 
2603 	/*
2604 	 * Command duration limits is supported: cache the CDL log page 18h
2605 	 * (command duration descriptors).
2606 	 */
2607 	err_mask = ata_read_log_page(dev, ATA_LOG_CDL, 0, ap->sector_buf, 1);
2608 	if (err_mask) {
2609 		ata_dev_warn(dev, "Read Command Duration Limits log failed\n");
2610 		goto not_supported;
2611 	}
2612 
2613 	memcpy(dev->cdl, ap->sector_buf, ATA_LOG_CDL_SIZE);
2614 	dev->flags |= ATA_DFLAG_CDL;
2615 
2616 	return;
2617 
2618 not_supported:
2619 	dev->flags &= ~(ATA_DFLAG_CDL | ATA_DFLAG_CDL_ENABLED);
2620 	kfree(ap->ncq_sense_buf);
2621 	ap->ncq_sense_buf = NULL;
2622 }
2623 
ata_dev_config_lba(struct ata_device * dev)2624 static int ata_dev_config_lba(struct ata_device *dev)
2625 {
2626 	const u16 *id = dev->id;
2627 	const char *lba_desc;
2628 	char ncq_desc[32];
2629 	int ret;
2630 
2631 	dev->flags |= ATA_DFLAG_LBA;
2632 
2633 	if (ata_id_has_lba48(id)) {
2634 		lba_desc = "LBA48";
2635 		dev->flags |= ATA_DFLAG_LBA48;
2636 		if (dev->n_sectors >= (1UL << 28) &&
2637 		    ata_id_has_flush_ext(id))
2638 			dev->flags |= ATA_DFLAG_FLUSH_EXT;
2639 	} else {
2640 		lba_desc = "LBA";
2641 	}
2642 
2643 	/* config NCQ */
2644 	ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2645 
2646 	/* print device info to dmesg */
2647 	if (ata_dev_print_info(dev))
2648 		ata_dev_info(dev,
2649 			     "%llu sectors, multi %u: %s %s\n",
2650 			     (unsigned long long)dev->n_sectors,
2651 			     dev->multi_count, lba_desc, ncq_desc);
2652 
2653 	return ret;
2654 }
2655 
ata_dev_config_chs(struct ata_device * dev)2656 static void ata_dev_config_chs(struct ata_device *dev)
2657 {
2658 	const u16 *id = dev->id;
2659 
2660 	if (ata_id_current_chs_valid(id)) {
2661 		/* Current CHS translation is valid. */
2662 		dev->cylinders = id[54];
2663 		dev->heads     = id[55];
2664 		dev->sectors   = id[56];
2665 	} else {
2666 		/* Default translation */
2667 		dev->cylinders	= id[1];
2668 		dev->heads	= id[3];
2669 		dev->sectors	= id[6];
2670 	}
2671 
2672 	/* print device info to dmesg */
2673 	if (ata_dev_print_info(dev))
2674 		ata_dev_info(dev,
2675 			     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2676 			     (unsigned long long)dev->n_sectors,
2677 			     dev->multi_count, dev->cylinders,
2678 			     dev->heads, dev->sectors);
2679 }
2680 
ata_dev_config_fua(struct ata_device * dev)2681 static void ata_dev_config_fua(struct ata_device *dev)
2682 {
2683 	/* Ignore FUA support if its use is disabled globally */
2684 	if (!libata_fua)
2685 		goto nofua;
2686 
2687 	/* Ignore devices without support for WRITE DMA FUA EXT */
2688 	if (!(dev->flags & ATA_DFLAG_LBA48) || !ata_id_has_fua(dev->id))
2689 		goto nofua;
2690 
2691 	/* Ignore known bad devices and devices that lack NCQ support */
2692 	if (!ata_ncq_supported(dev) || (dev->horkage & ATA_HORKAGE_NO_FUA))
2693 		goto nofua;
2694 
2695 	dev->flags |= ATA_DFLAG_FUA;
2696 
2697 	return;
2698 
2699 nofua:
2700 	dev->flags &= ~ATA_DFLAG_FUA;
2701 }
2702 
ata_dev_config_devslp(struct ata_device * dev)2703 static void ata_dev_config_devslp(struct ata_device *dev)
2704 {
2705 	u8 *sata_setting = dev->link->ap->sector_buf;
2706 	unsigned int err_mask;
2707 	int i, j;
2708 
2709 	/*
2710 	 * Check device sleep capability. Get DevSlp timing variables
2711 	 * from SATA Settings page of Identify Device Data Log.
2712 	 */
2713 	if (!ata_id_has_devslp(dev->id) ||
2714 	    !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2715 		return;
2716 
2717 	err_mask = ata_read_log_page(dev,
2718 				     ATA_LOG_IDENTIFY_DEVICE,
2719 				     ATA_LOG_SATA_SETTINGS,
2720 				     sata_setting, 1);
2721 	if (err_mask)
2722 		return;
2723 
2724 	dev->flags |= ATA_DFLAG_DEVSLP;
2725 	for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2726 		j = ATA_LOG_DEVSLP_OFFSET + i;
2727 		dev->devslp_timing[i] = sata_setting[j];
2728 	}
2729 }
2730 
ata_dev_config_cpr(struct ata_device * dev)2731 static void ata_dev_config_cpr(struct ata_device *dev)
2732 {
2733 	unsigned int err_mask;
2734 	size_t buf_len;
2735 	int i, nr_cpr = 0;
2736 	struct ata_cpr_log *cpr_log = NULL;
2737 	u8 *desc, *buf = NULL;
2738 
2739 	if (ata_id_major_version(dev->id) < 11)
2740 		goto out;
2741 
2742 	buf_len = ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES);
2743 	if (buf_len == 0)
2744 		goto out;
2745 
2746 	/*
2747 	 * Read the concurrent positioning ranges log (0x47). We can have at
2748 	 * most 255 32B range descriptors plus a 64B header. This log varies in
2749 	 * size, so use the size reported in the GPL directory. Reading beyond
2750 	 * the supported length will result in an error.
2751 	 */
2752 	buf_len <<= 9;
2753 	buf = kzalloc(buf_len, GFP_KERNEL);
2754 	if (!buf)
2755 		goto out;
2756 
2757 	err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES,
2758 				     0, buf, buf_len >> 9);
2759 	if (err_mask)
2760 		goto out;
2761 
2762 	nr_cpr = buf[0];
2763 	if (!nr_cpr)
2764 		goto out;
2765 
2766 	cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL);
2767 	if (!cpr_log)
2768 		goto out;
2769 
2770 	cpr_log->nr_cpr = nr_cpr;
2771 	desc = &buf[64];
2772 	for (i = 0; i < nr_cpr; i++, desc += 32) {
2773 		cpr_log->cpr[i].num = desc[0];
2774 		cpr_log->cpr[i].num_storage_elements = desc[1];
2775 		cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]);
2776 		cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]);
2777 	}
2778 
2779 out:
2780 	swap(dev->cpr_log, cpr_log);
2781 	kfree(cpr_log);
2782 	kfree(buf);
2783 }
2784 
ata_dev_print_features(struct ata_device * dev)2785 static void ata_dev_print_features(struct ata_device *dev)
2786 {
2787 	if (!(dev->flags & ATA_DFLAG_FEATURES_MASK))
2788 		return;
2789 
2790 	ata_dev_info(dev,
2791 		     "Features:%s%s%s%s%s%s%s%s\n",
2792 		     dev->flags & ATA_DFLAG_FUA ? " FUA" : "",
2793 		     dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "",
2794 		     dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "",
2795 		     dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "",
2796 		     dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "",
2797 		     dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "",
2798 		     dev->flags & ATA_DFLAG_CDL ? " CDL" : "",
2799 		     dev->cpr_log ? " CPR" : "");
2800 }
2801 
2802 /**
2803  *	ata_dev_configure - Configure the specified ATA/ATAPI device
2804  *	@dev: Target device to configure
2805  *
2806  *	Configure @dev according to @dev->id.  Generic and low-level
2807  *	driver specific fixups are also applied.
2808  *
2809  *	LOCKING:
2810  *	Kernel thread context (may sleep)
2811  *
2812  *	RETURNS:
2813  *	0 on success, -errno otherwise
2814  */
ata_dev_configure(struct ata_device * dev)2815 int ata_dev_configure(struct ata_device *dev)
2816 {
2817 	struct ata_port *ap = dev->link->ap;
2818 	bool print_info = ata_dev_print_info(dev);
2819 	const u16 *id = dev->id;
2820 	unsigned int xfer_mask;
2821 	unsigned int err_mask;
2822 	char revbuf[7];		/* XYZ-99\0 */
2823 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2824 	char modelbuf[ATA_ID_PROD_LEN+1];
2825 	int rc;
2826 
2827 	if (!ata_dev_enabled(dev)) {
2828 		ata_dev_dbg(dev, "no device\n");
2829 		return 0;
2830 	}
2831 
2832 	/* set horkage */
2833 	dev->horkage |= ata_dev_blacklisted(dev);
2834 	ata_force_horkage(dev);
2835 
2836 	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2837 		ata_dev_info(dev, "unsupported device, disabling\n");
2838 		ata_dev_disable(dev);
2839 		return 0;
2840 	}
2841 
2842 	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2843 	    dev->class == ATA_DEV_ATAPI) {
2844 		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2845 			     atapi_enabled ? "not supported with this driver"
2846 			     : "disabled");
2847 		ata_dev_disable(dev);
2848 		return 0;
2849 	}
2850 
2851 	rc = ata_do_link_spd_horkage(dev);
2852 	if (rc)
2853 		return rc;
2854 
2855 	/* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2856 	if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2857 	    (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2858 		dev->horkage |= ATA_HORKAGE_NOLPM;
2859 
2860 	if (ap->flags & ATA_FLAG_NO_LPM)
2861 		dev->horkage |= ATA_HORKAGE_NOLPM;
2862 
2863 	if (dev->horkage & ATA_HORKAGE_NOLPM) {
2864 		ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2865 		dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2866 	}
2867 
2868 	/* let ACPI work its magic */
2869 	rc = ata_acpi_on_devcfg(dev);
2870 	if (rc)
2871 		return rc;
2872 
2873 	/* massage HPA, do it early as it might change IDENTIFY data */
2874 	rc = ata_hpa_resize(dev);
2875 	if (rc)
2876 		return rc;
2877 
2878 	/* print device capabilities */
2879 	ata_dev_dbg(dev,
2880 		    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2881 		    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2882 		    __func__,
2883 		    id[49], id[82], id[83], id[84],
2884 		    id[85], id[86], id[87], id[88]);
2885 
2886 	/* initialize to-be-configured parameters */
2887 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2888 	dev->max_sectors = 0;
2889 	dev->cdb_len = 0;
2890 	dev->n_sectors = 0;
2891 	dev->cylinders = 0;
2892 	dev->heads = 0;
2893 	dev->sectors = 0;
2894 	dev->multi_count = 0;
2895 
2896 	/*
2897 	 * common ATA, ATAPI feature tests
2898 	 */
2899 
2900 	/* find max transfer mode; for printk only */
2901 	xfer_mask = ata_id_xfermask(id);
2902 
2903 	ata_dump_id(dev, id);
2904 
2905 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2906 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2907 			sizeof(fwrevbuf));
2908 
2909 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2910 			sizeof(modelbuf));
2911 
2912 	/* ATA-specific feature tests */
2913 	if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2914 		if (ata_id_is_cfa(id)) {
2915 			/* CPRM may make this media unusable */
2916 			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2917 				ata_dev_warn(dev,
2918 	"supports DRM functions and may not be fully accessible\n");
2919 			snprintf(revbuf, 7, "CFA");
2920 		} else {
2921 			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2922 			/* Warn the user if the device has TPM extensions */
2923 			if (ata_id_has_tpm(id))
2924 				ata_dev_warn(dev,
2925 	"supports DRM functions and may not be fully accessible\n");
2926 		}
2927 
2928 		dev->n_sectors = ata_id_n_sectors(id);
2929 
2930 		/* get current R/W Multiple count setting */
2931 		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2932 			unsigned int max = dev->id[47] & 0xff;
2933 			unsigned int cnt = dev->id[59] & 0xff;
2934 			/* only recognize/allow powers of two here */
2935 			if (is_power_of_2(max) && is_power_of_2(cnt))
2936 				if (cnt <= max)
2937 					dev->multi_count = cnt;
2938 		}
2939 
2940 		/* print device info to dmesg */
2941 		if (print_info)
2942 			ata_dev_info(dev, "%s: %s, %s, max %s\n",
2943 				     revbuf, modelbuf, fwrevbuf,
2944 				     ata_mode_string(xfer_mask));
2945 
2946 		if (ata_id_has_lba(id)) {
2947 			rc = ata_dev_config_lba(dev);
2948 			if (rc)
2949 				return rc;
2950 		} else {
2951 			ata_dev_config_chs(dev);
2952 		}
2953 
2954 		ata_dev_config_fua(dev);
2955 		ata_dev_config_devslp(dev);
2956 		ata_dev_config_sense_reporting(dev);
2957 		ata_dev_config_zac(dev);
2958 		ata_dev_config_trusted(dev);
2959 		ata_dev_config_cpr(dev);
2960 		ata_dev_config_cdl(dev);
2961 		dev->cdb_len = 32;
2962 
2963 		if (print_info)
2964 			ata_dev_print_features(dev);
2965 	}
2966 
2967 	/* ATAPI-specific feature tests */
2968 	else if (dev->class == ATA_DEV_ATAPI) {
2969 		const char *cdb_intr_string = "";
2970 		const char *atapi_an_string = "";
2971 		const char *dma_dir_string = "";
2972 		u32 sntf;
2973 
2974 		rc = atapi_cdb_len(id);
2975 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2976 			ata_dev_warn(dev, "unsupported CDB len %d\n", rc);
2977 			rc = -EINVAL;
2978 			goto err_out_nosup;
2979 		}
2980 		dev->cdb_len = (unsigned int) rc;
2981 
2982 		/* Enable ATAPI AN if both the host and device have
2983 		 * the support.  If PMP is attached, SNTF is required
2984 		 * to enable ATAPI AN to discern between PHY status
2985 		 * changed notifications and ATAPI ANs.
2986 		 */
2987 		if (atapi_an &&
2988 		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2989 		    (!sata_pmp_attached(ap) ||
2990 		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2991 			/* issue SET feature command to turn this on */
2992 			err_mask = ata_dev_set_feature(dev,
2993 					SETFEATURES_SATA_ENABLE, SATA_AN);
2994 			if (err_mask)
2995 				ata_dev_err(dev,
2996 					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2997 					    err_mask);
2998 			else {
2999 				dev->flags |= ATA_DFLAG_AN;
3000 				atapi_an_string = ", ATAPI AN";
3001 			}
3002 		}
3003 
3004 		if (ata_id_cdb_intr(dev->id)) {
3005 			dev->flags |= ATA_DFLAG_CDB_INTR;
3006 			cdb_intr_string = ", CDB intr";
3007 		}
3008 
3009 		if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
3010 			dev->flags |= ATA_DFLAG_DMADIR;
3011 			dma_dir_string = ", DMADIR";
3012 		}
3013 
3014 		if (ata_id_has_da(dev->id)) {
3015 			dev->flags |= ATA_DFLAG_DA;
3016 			zpodd_init(dev);
3017 		}
3018 
3019 		/* print device info to dmesg */
3020 		if (print_info)
3021 			ata_dev_info(dev,
3022 				     "ATAPI: %s, %s, max %s%s%s%s\n",
3023 				     modelbuf, fwrevbuf,
3024 				     ata_mode_string(xfer_mask),
3025 				     cdb_intr_string, atapi_an_string,
3026 				     dma_dir_string);
3027 	}
3028 
3029 	/* determine max_sectors */
3030 	dev->max_sectors = ATA_MAX_SECTORS;
3031 	if (dev->flags & ATA_DFLAG_LBA48)
3032 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
3033 
3034 	/* Limit PATA drive on SATA cable bridge transfers to udma5,
3035 	   200 sectors */
3036 	if (ata_dev_knobble(dev)) {
3037 		if (print_info)
3038 			ata_dev_info(dev, "applying bridge limits\n");
3039 		dev->udma_mask &= ATA_UDMA5;
3040 		dev->max_sectors = ATA_MAX_SECTORS;
3041 	}
3042 
3043 	if ((dev->class == ATA_DEV_ATAPI) &&
3044 	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
3045 		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
3046 		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
3047 	}
3048 
3049 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
3050 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
3051 					 dev->max_sectors);
3052 
3053 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
3054 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
3055 					 dev->max_sectors);
3056 
3057 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
3058 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
3059 
3060 	if (ap->ops->dev_config)
3061 		ap->ops->dev_config(dev);
3062 
3063 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
3064 		/* Let the user know. We don't want to disallow opens for
3065 		   rescue purposes, or in case the vendor is just a blithering
3066 		   idiot. Do this after the dev_config call as some controllers
3067 		   with buggy firmware may want to avoid reporting false device
3068 		   bugs */
3069 
3070 		if (print_info) {
3071 			ata_dev_warn(dev,
3072 "Drive reports diagnostics failure. This may indicate a drive\n");
3073 			ata_dev_warn(dev,
3074 "fault or invalid emulation. Contact drive vendor for information.\n");
3075 		}
3076 	}
3077 
3078 	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
3079 		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
3080 		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
3081 	}
3082 
3083 	return 0;
3084 
3085 err_out_nosup:
3086 	return rc;
3087 }
3088 
3089 /**
3090  *	ata_cable_40wire	-	return 40 wire cable type
3091  *	@ap: port
3092  *
3093  *	Helper method for drivers which want to hardwire 40 wire cable
3094  *	detection.
3095  */
3096 
ata_cable_40wire(struct ata_port * ap)3097 int ata_cable_40wire(struct ata_port *ap)
3098 {
3099 	return ATA_CBL_PATA40;
3100 }
3101 EXPORT_SYMBOL_GPL(ata_cable_40wire);
3102 
3103 /**
3104  *	ata_cable_80wire	-	return 80 wire cable type
3105  *	@ap: port
3106  *
3107  *	Helper method for drivers which want to hardwire 80 wire cable
3108  *	detection.
3109  */
3110 
ata_cable_80wire(struct ata_port * ap)3111 int ata_cable_80wire(struct ata_port *ap)
3112 {
3113 	return ATA_CBL_PATA80;
3114 }
3115 EXPORT_SYMBOL_GPL(ata_cable_80wire);
3116 
3117 /**
3118  *	ata_cable_unknown	-	return unknown PATA cable.
3119  *	@ap: port
3120  *
3121  *	Helper method for drivers which have no PATA cable detection.
3122  */
3123 
ata_cable_unknown(struct ata_port * ap)3124 int ata_cable_unknown(struct ata_port *ap)
3125 {
3126 	return ATA_CBL_PATA_UNK;
3127 }
3128 EXPORT_SYMBOL_GPL(ata_cable_unknown);
3129 
3130 /**
3131  *	ata_cable_ignore	-	return ignored PATA cable.
3132  *	@ap: port
3133  *
3134  *	Helper method for drivers which don't use cable type to limit
3135  *	transfer mode.
3136  */
ata_cable_ignore(struct ata_port * ap)3137 int ata_cable_ignore(struct ata_port *ap)
3138 {
3139 	return ATA_CBL_PATA_IGN;
3140 }
3141 EXPORT_SYMBOL_GPL(ata_cable_ignore);
3142 
3143 /**
3144  *	ata_cable_sata	-	return SATA cable type
3145  *	@ap: port
3146  *
3147  *	Helper method for drivers which have SATA cables
3148  */
3149 
ata_cable_sata(struct ata_port * ap)3150 int ata_cable_sata(struct ata_port *ap)
3151 {
3152 	return ATA_CBL_SATA;
3153 }
3154 EXPORT_SYMBOL_GPL(ata_cable_sata);
3155 
3156 /**
3157  *	sata_print_link_status - Print SATA link status
3158  *	@link: SATA link to printk link status about
3159  *
3160  *	This function prints link speed and status of a SATA link.
3161  *
3162  *	LOCKING:
3163  *	None.
3164  */
sata_print_link_status(struct ata_link * link)3165 static void sata_print_link_status(struct ata_link *link)
3166 {
3167 	u32 sstatus, scontrol, tmp;
3168 
3169 	if (sata_scr_read(link, SCR_STATUS, &sstatus))
3170 		return;
3171 	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3172 		return;
3173 
3174 	if (ata_phys_link_online(link)) {
3175 		tmp = (sstatus >> 4) & 0xf;
3176 		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3177 			      sata_spd_string(tmp), sstatus, scontrol);
3178 	} else {
3179 		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3180 			      sstatus, scontrol);
3181 	}
3182 }
3183 
3184 /**
3185  *	ata_dev_pair		-	return other device on cable
3186  *	@adev: device
3187  *
3188  *	Obtain the other device on the same cable, or if none is
3189  *	present NULL is returned
3190  */
3191 
ata_dev_pair(struct ata_device * adev)3192 struct ata_device *ata_dev_pair(struct ata_device *adev)
3193 {
3194 	struct ata_link *link = adev->link;
3195 	struct ata_device *pair = &link->device[1 - adev->devno];
3196 	if (!ata_dev_enabled(pair))
3197 		return NULL;
3198 	return pair;
3199 }
3200 EXPORT_SYMBOL_GPL(ata_dev_pair);
3201 
3202 /**
3203  *	sata_down_spd_limit - adjust SATA spd limit downward
3204  *	@link: Link to adjust SATA spd limit for
3205  *	@spd_limit: Additional limit
3206  *
3207  *	Adjust SATA spd limit of @link downward.  Note that this
3208  *	function only adjusts the limit.  The change must be applied
3209  *	using sata_set_spd().
3210  *
3211  *	If @spd_limit is non-zero, the speed is limited to equal to or
3212  *	lower than @spd_limit if such speed is supported.  If
3213  *	@spd_limit is slower than any supported speed, only the lowest
3214  *	supported speed is allowed.
3215  *
3216  *	LOCKING:
3217  *	Inherited from caller.
3218  *
3219  *	RETURNS:
3220  *	0 on success, negative errno on failure
3221  */
sata_down_spd_limit(struct ata_link * link,u32 spd_limit)3222 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3223 {
3224 	u32 sstatus, spd, mask;
3225 	int rc, bit;
3226 
3227 	if (!sata_scr_valid(link))
3228 		return -EOPNOTSUPP;
3229 
3230 	/* If SCR can be read, use it to determine the current SPD.
3231 	 * If not, use cached value in link->sata_spd.
3232 	 */
3233 	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3234 	if (rc == 0 && ata_sstatus_online(sstatus))
3235 		spd = (sstatus >> 4) & 0xf;
3236 	else
3237 		spd = link->sata_spd;
3238 
3239 	mask = link->sata_spd_limit;
3240 	if (mask <= 1)
3241 		return -EINVAL;
3242 
3243 	/* unconditionally mask off the highest bit */
3244 	bit = fls(mask) - 1;
3245 	mask &= ~(1 << bit);
3246 
3247 	/*
3248 	 * Mask off all speeds higher than or equal to the current one.  At
3249 	 * this point, if current SPD is not available and we previously
3250 	 * recorded the link speed from SStatus, the driver has already
3251 	 * masked off the highest bit so mask should already be 1 or 0.
3252 	 * Otherwise, we should not force 1.5Gbps on a link where we have
3253 	 * not previously recorded speed from SStatus.  Just return in this
3254 	 * case.
3255 	 */
3256 	if (spd > 1)
3257 		mask &= (1 << (spd - 1)) - 1;
3258 	else if (link->sata_spd)
3259 		return -EINVAL;
3260 
3261 	/* were we already at the bottom? */
3262 	if (!mask)
3263 		return -EINVAL;
3264 
3265 	if (spd_limit) {
3266 		if (mask & ((1 << spd_limit) - 1))
3267 			mask &= (1 << spd_limit) - 1;
3268 		else {
3269 			bit = ffs(mask) - 1;
3270 			mask = 1 << bit;
3271 		}
3272 	}
3273 
3274 	link->sata_spd_limit = mask;
3275 
3276 	ata_link_warn(link, "limiting SATA link speed to %s\n",
3277 		      sata_spd_string(fls(mask)));
3278 
3279 	return 0;
3280 }
3281 
3282 #ifdef CONFIG_ATA_ACPI
3283 /**
3284  *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3285  *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3286  *	@cycle: cycle duration in ns
3287  *
3288  *	Return matching xfer mode for @cycle.  The returned mode is of
3289  *	the transfer type specified by @xfer_shift.  If @cycle is too
3290  *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3291  *	than the fastest known mode, the fasted mode is returned.
3292  *
3293  *	LOCKING:
3294  *	None.
3295  *
3296  *	RETURNS:
3297  *	Matching xfer_mode, 0xff if no match found.
3298  */
ata_timing_cycle2mode(unsigned int xfer_shift,int cycle)3299 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3300 {
3301 	u8 base_mode = 0xff, last_mode = 0xff;
3302 	const struct ata_xfer_ent *ent;
3303 	const struct ata_timing *t;
3304 
3305 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3306 		if (ent->shift == xfer_shift)
3307 			base_mode = ent->base;
3308 
3309 	for (t = ata_timing_find_mode(base_mode);
3310 	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3311 		unsigned short this_cycle;
3312 
3313 		switch (xfer_shift) {
3314 		case ATA_SHIFT_PIO:
3315 		case ATA_SHIFT_MWDMA:
3316 			this_cycle = t->cycle;
3317 			break;
3318 		case ATA_SHIFT_UDMA:
3319 			this_cycle = t->udma;
3320 			break;
3321 		default:
3322 			return 0xff;
3323 		}
3324 
3325 		if (cycle > this_cycle)
3326 			break;
3327 
3328 		last_mode = t->mode;
3329 	}
3330 
3331 	return last_mode;
3332 }
3333 #endif
3334 
3335 /**
3336  *	ata_down_xfermask_limit - adjust dev xfer masks downward
3337  *	@dev: Device to adjust xfer masks
3338  *	@sel: ATA_DNXFER_* selector
3339  *
3340  *	Adjust xfer masks of @dev downward.  Note that this function
3341  *	does not apply the change.  Invoking ata_set_mode() afterwards
3342  *	will apply the limit.
3343  *
3344  *	LOCKING:
3345  *	Inherited from caller.
3346  *
3347  *	RETURNS:
3348  *	0 on success, negative errno on failure
3349  */
ata_down_xfermask_limit(struct ata_device * dev,unsigned int sel)3350 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3351 {
3352 	char buf[32];
3353 	unsigned int orig_mask, xfer_mask;
3354 	unsigned int pio_mask, mwdma_mask, udma_mask;
3355 	int quiet, highbit;
3356 
3357 	quiet = !!(sel & ATA_DNXFER_QUIET);
3358 	sel &= ~ATA_DNXFER_QUIET;
3359 
3360 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3361 						  dev->mwdma_mask,
3362 						  dev->udma_mask);
3363 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3364 
3365 	switch (sel) {
3366 	case ATA_DNXFER_PIO:
3367 		highbit = fls(pio_mask) - 1;
3368 		pio_mask &= ~(1 << highbit);
3369 		break;
3370 
3371 	case ATA_DNXFER_DMA:
3372 		if (udma_mask) {
3373 			highbit = fls(udma_mask) - 1;
3374 			udma_mask &= ~(1 << highbit);
3375 			if (!udma_mask)
3376 				return -ENOENT;
3377 		} else if (mwdma_mask) {
3378 			highbit = fls(mwdma_mask) - 1;
3379 			mwdma_mask &= ~(1 << highbit);
3380 			if (!mwdma_mask)
3381 				return -ENOENT;
3382 		}
3383 		break;
3384 
3385 	case ATA_DNXFER_40C:
3386 		udma_mask &= ATA_UDMA_MASK_40C;
3387 		break;
3388 
3389 	case ATA_DNXFER_FORCE_PIO0:
3390 		pio_mask &= 1;
3391 		fallthrough;
3392 	case ATA_DNXFER_FORCE_PIO:
3393 		mwdma_mask = 0;
3394 		udma_mask = 0;
3395 		break;
3396 
3397 	default:
3398 		BUG();
3399 	}
3400 
3401 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3402 
3403 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3404 		return -ENOENT;
3405 
3406 	if (!quiet) {
3407 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3408 			snprintf(buf, sizeof(buf), "%s:%s",
3409 				 ata_mode_string(xfer_mask),
3410 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3411 		else
3412 			snprintf(buf, sizeof(buf), "%s",
3413 				 ata_mode_string(xfer_mask));
3414 
3415 		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3416 	}
3417 
3418 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3419 			    &dev->udma_mask);
3420 
3421 	return 0;
3422 }
3423 
ata_dev_set_mode(struct ata_device * dev)3424 static int ata_dev_set_mode(struct ata_device *dev)
3425 {
3426 	struct ata_port *ap = dev->link->ap;
3427 	struct ata_eh_context *ehc = &dev->link->eh_context;
3428 	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3429 	const char *dev_err_whine = "";
3430 	int ign_dev_err = 0;
3431 	unsigned int err_mask = 0;
3432 	int rc;
3433 
3434 	dev->flags &= ~ATA_DFLAG_PIO;
3435 	if (dev->xfer_shift == ATA_SHIFT_PIO)
3436 		dev->flags |= ATA_DFLAG_PIO;
3437 
3438 	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3439 		dev_err_whine = " (SET_XFERMODE skipped)";
3440 	else {
3441 		if (nosetxfer)
3442 			ata_dev_warn(dev,
3443 				     "NOSETXFER but PATA detected - can't "
3444 				     "skip SETXFER, might malfunction\n");
3445 		err_mask = ata_dev_set_xfermode(dev);
3446 	}
3447 
3448 	if (err_mask & ~AC_ERR_DEV)
3449 		goto fail;
3450 
3451 	/* revalidate */
3452 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3453 	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3454 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3455 	if (rc)
3456 		return rc;
3457 
3458 	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3459 		/* Old CFA may refuse this command, which is just fine */
3460 		if (ata_id_is_cfa(dev->id))
3461 			ign_dev_err = 1;
3462 		/* Catch several broken garbage emulations plus some pre
3463 		   ATA devices */
3464 		if (ata_id_major_version(dev->id) == 0 &&
3465 					dev->pio_mode <= XFER_PIO_2)
3466 			ign_dev_err = 1;
3467 		/* Some very old devices and some bad newer ones fail
3468 		   any kind of SET_XFERMODE request but support PIO0-2
3469 		   timings and no IORDY */
3470 		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3471 			ign_dev_err = 1;
3472 	}
3473 	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3474 	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3475 	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3476 	    dev->dma_mode == XFER_MW_DMA_0 &&
3477 	    (dev->id[63] >> 8) & 1)
3478 		ign_dev_err = 1;
3479 
3480 	/* if the device is actually configured correctly, ignore dev err */
3481 	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3482 		ign_dev_err = 1;
3483 
3484 	if (err_mask & AC_ERR_DEV) {
3485 		if (!ign_dev_err)
3486 			goto fail;
3487 		else
3488 			dev_err_whine = " (device error ignored)";
3489 	}
3490 
3491 	ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n",
3492 		    dev->xfer_shift, (int)dev->xfer_mode);
3493 
3494 	if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3495 	    ehc->i.flags & ATA_EHI_DID_HARDRESET)
3496 		ata_dev_info(dev, "configured for %s%s\n",
3497 			     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3498 			     dev_err_whine);
3499 
3500 	return 0;
3501 
3502  fail:
3503 	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3504 	return -EIO;
3505 }
3506 
3507 /**
3508  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3509  *	@link: link on which timings will be programmed
3510  *	@r_failed_dev: out parameter for failed device
3511  *
3512  *	Standard implementation of the function used to tune and set
3513  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3514  *	ata_dev_set_mode() fails, pointer to the failing device is
3515  *	returned in @r_failed_dev.
3516  *
3517  *	LOCKING:
3518  *	PCI/etc. bus probe sem.
3519  *
3520  *	RETURNS:
3521  *	0 on success, negative errno otherwise
3522  */
3523 
ata_do_set_mode(struct ata_link * link,struct ata_device ** r_failed_dev)3524 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3525 {
3526 	struct ata_port *ap = link->ap;
3527 	struct ata_device *dev;
3528 	int rc = 0, used_dma = 0, found = 0;
3529 
3530 	/* step 1: calculate xfer_mask */
3531 	ata_for_each_dev(dev, link, ENABLED) {
3532 		unsigned int pio_mask, dma_mask;
3533 		unsigned int mode_mask;
3534 
3535 		mode_mask = ATA_DMA_MASK_ATA;
3536 		if (dev->class == ATA_DEV_ATAPI)
3537 			mode_mask = ATA_DMA_MASK_ATAPI;
3538 		else if (ata_id_is_cfa(dev->id))
3539 			mode_mask = ATA_DMA_MASK_CFA;
3540 
3541 		ata_dev_xfermask(dev);
3542 		ata_force_xfermask(dev);
3543 
3544 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3545 
3546 		if (libata_dma_mask & mode_mask)
3547 			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3548 						     dev->udma_mask);
3549 		else
3550 			dma_mask = 0;
3551 
3552 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3553 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3554 
3555 		found = 1;
3556 		if (ata_dma_enabled(dev))
3557 			used_dma = 1;
3558 	}
3559 	if (!found)
3560 		goto out;
3561 
3562 	/* step 2: always set host PIO timings */
3563 	ata_for_each_dev(dev, link, ENABLED) {
3564 		if (dev->pio_mode == 0xff) {
3565 			ata_dev_warn(dev, "no PIO support\n");
3566 			rc = -EINVAL;
3567 			goto out;
3568 		}
3569 
3570 		dev->xfer_mode = dev->pio_mode;
3571 		dev->xfer_shift = ATA_SHIFT_PIO;
3572 		if (ap->ops->set_piomode)
3573 			ap->ops->set_piomode(ap, dev);
3574 	}
3575 
3576 	/* step 3: set host DMA timings */
3577 	ata_for_each_dev(dev, link, ENABLED) {
3578 		if (!ata_dma_enabled(dev))
3579 			continue;
3580 
3581 		dev->xfer_mode = dev->dma_mode;
3582 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3583 		if (ap->ops->set_dmamode)
3584 			ap->ops->set_dmamode(ap, dev);
3585 	}
3586 
3587 	/* step 4: update devices' xfer mode */
3588 	ata_for_each_dev(dev, link, ENABLED) {
3589 		rc = ata_dev_set_mode(dev);
3590 		if (rc)
3591 			goto out;
3592 	}
3593 
3594 	/* Record simplex status. If we selected DMA then the other
3595 	 * host channels are not permitted to do so.
3596 	 */
3597 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3598 		ap->host->simplex_claimed = ap;
3599 
3600  out:
3601 	if (rc)
3602 		*r_failed_dev = dev;
3603 	return rc;
3604 }
3605 EXPORT_SYMBOL_GPL(ata_do_set_mode);
3606 
3607 /**
3608  *	ata_wait_ready - wait for link to become ready
3609  *	@link: link to be waited on
3610  *	@deadline: deadline jiffies for the operation
3611  *	@check_ready: callback to check link readiness
3612  *
3613  *	Wait for @link to become ready.  @check_ready should return
3614  *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3615  *	link doesn't seem to be occupied, other errno for other error
3616  *	conditions.
3617  *
3618  *	Transient -ENODEV conditions are allowed for
3619  *	ATA_TMOUT_FF_WAIT.
3620  *
3621  *	LOCKING:
3622  *	EH context.
3623  *
3624  *	RETURNS:
3625  *	0 if @link is ready before @deadline; otherwise, -errno.
3626  */
ata_wait_ready(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3627 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3628 		   int (*check_ready)(struct ata_link *link))
3629 {
3630 	unsigned long start = jiffies;
3631 	unsigned long nodev_deadline;
3632 	int warned = 0;
3633 
3634 	/* choose which 0xff timeout to use, read comment in libata.h */
3635 	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3636 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3637 	else
3638 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3639 
3640 	/* Slave readiness can't be tested separately from master.  On
3641 	 * M/S emulation configuration, this function should be called
3642 	 * only on the master and it will handle both master and slave.
3643 	 */
3644 	WARN_ON(link == link->ap->slave_link);
3645 
3646 	if (time_after(nodev_deadline, deadline))
3647 		nodev_deadline = deadline;
3648 
3649 	while (1) {
3650 		unsigned long now = jiffies;
3651 		int ready, tmp;
3652 
3653 		ready = tmp = check_ready(link);
3654 		if (ready > 0)
3655 			return 0;
3656 
3657 		/*
3658 		 * -ENODEV could be transient.  Ignore -ENODEV if link
3659 		 * is online.  Also, some SATA devices take a long
3660 		 * time to clear 0xff after reset.  Wait for
3661 		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3662 		 * offline.
3663 		 *
3664 		 * Note that some PATA controllers (pata_ali) explode
3665 		 * if status register is read more than once when
3666 		 * there's no device attached.
3667 		 */
3668 		if (ready == -ENODEV) {
3669 			if (ata_link_online(link))
3670 				ready = 0;
3671 			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3672 				 !ata_link_offline(link) &&
3673 				 time_before(now, nodev_deadline))
3674 				ready = 0;
3675 		}
3676 
3677 		if (ready)
3678 			return ready;
3679 		if (time_after(now, deadline))
3680 			return -EBUSY;
3681 
3682 		if (!warned && time_after(now, start + 5 * HZ) &&
3683 		    (deadline - now > 3 * HZ)) {
3684 			ata_link_warn(link,
3685 				"link is slow to respond, please be patient "
3686 				"(ready=%d)\n", tmp);
3687 			warned = 1;
3688 		}
3689 
3690 		ata_msleep(link->ap, 50);
3691 	}
3692 }
3693 
3694 /**
3695  *	ata_wait_after_reset - wait for link to become ready after reset
3696  *	@link: link to be waited on
3697  *	@deadline: deadline jiffies for the operation
3698  *	@check_ready: callback to check link readiness
3699  *
3700  *	Wait for @link to become ready after reset.
3701  *
3702  *	LOCKING:
3703  *	EH context.
3704  *
3705  *	RETURNS:
3706  *	0 if @link is ready before @deadline; otherwise, -errno.
3707  */
ata_wait_after_reset(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3708 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3709 				int (*check_ready)(struct ata_link *link))
3710 {
3711 	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3712 
3713 	return ata_wait_ready(link, deadline, check_ready);
3714 }
3715 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3716 
3717 /**
3718  *	ata_std_prereset - prepare for reset
3719  *	@link: ATA link to be reset
3720  *	@deadline: deadline jiffies for the operation
3721  *
3722  *	@link is about to be reset.  Initialize it.  Failure from
3723  *	prereset makes libata abort whole reset sequence and give up
3724  *	that port, so prereset should be best-effort.  It does its
3725  *	best to prepare for reset sequence but if things go wrong, it
3726  *	should just whine, not fail.
3727  *
3728  *	LOCKING:
3729  *	Kernel thread context (may sleep)
3730  *
3731  *	RETURNS:
3732  *	Always 0.
3733  */
ata_std_prereset(struct ata_link * link,unsigned long deadline)3734 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3735 {
3736 	struct ata_port *ap = link->ap;
3737 	struct ata_eh_context *ehc = &link->eh_context;
3738 	const unsigned int *timing = sata_ehc_deb_timing(ehc);
3739 	int rc;
3740 
3741 	/* if we're about to do hardreset, nothing more to do */
3742 	if (ehc->i.action & ATA_EH_HARDRESET)
3743 		return 0;
3744 
3745 	/* if SATA, resume link */
3746 	if (ap->flags & ATA_FLAG_SATA) {
3747 		rc = sata_link_resume(link, timing, deadline);
3748 		/* whine about phy resume failure but proceed */
3749 		if (rc && rc != -EOPNOTSUPP)
3750 			ata_link_warn(link,
3751 				      "failed to resume link for reset (errno=%d)\n",
3752 				      rc);
3753 	}
3754 
3755 	/* no point in trying softreset on offline link */
3756 	if (ata_phys_link_offline(link))
3757 		ehc->i.action &= ~ATA_EH_SOFTRESET;
3758 
3759 	return 0;
3760 }
3761 EXPORT_SYMBOL_GPL(ata_std_prereset);
3762 
3763 /**
3764  *	sata_std_hardreset - COMRESET w/o waiting or classification
3765  *	@link: link to reset
3766  *	@class: resulting class of attached device
3767  *	@deadline: deadline jiffies for the operation
3768  *
3769  *	Standard SATA COMRESET w/o waiting or classification.
3770  *
3771  *	LOCKING:
3772  *	Kernel thread context (may sleep)
3773  *
3774  *	RETURNS:
3775  *	0 if link offline, -EAGAIN if link online, -errno on errors.
3776  */
sata_std_hardreset(struct ata_link * link,unsigned int * class,unsigned long deadline)3777 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3778 		       unsigned long deadline)
3779 {
3780 	const unsigned int *timing = sata_ehc_deb_timing(&link->eh_context);
3781 	bool online;
3782 	int rc;
3783 
3784 	/* do hardreset */
3785 	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3786 	return online ? -EAGAIN : rc;
3787 }
3788 EXPORT_SYMBOL_GPL(sata_std_hardreset);
3789 
3790 /**
3791  *	ata_std_postreset - standard postreset callback
3792  *	@link: the target ata_link
3793  *	@classes: classes of attached devices
3794  *
3795  *	This function is invoked after a successful reset.  Note that
3796  *	the device might have been reset more than once using
3797  *	different reset methods before postreset is invoked.
3798  *
3799  *	LOCKING:
3800  *	Kernel thread context (may sleep)
3801  */
ata_std_postreset(struct ata_link * link,unsigned int * classes)3802 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3803 {
3804 	u32 serror;
3805 
3806 	/* reset complete, clear SError */
3807 	if (!sata_scr_read(link, SCR_ERROR, &serror))
3808 		sata_scr_write(link, SCR_ERROR, serror);
3809 
3810 	/* print link status */
3811 	sata_print_link_status(link);
3812 }
3813 EXPORT_SYMBOL_GPL(ata_std_postreset);
3814 
3815 /**
3816  *	ata_dev_same_device - Determine whether new ID matches configured device
3817  *	@dev: device to compare against
3818  *	@new_class: class of the new device
3819  *	@new_id: IDENTIFY page of the new device
3820  *
3821  *	Compare @new_class and @new_id against @dev and determine
3822  *	whether @dev is the device indicated by @new_class and
3823  *	@new_id.
3824  *
3825  *	LOCKING:
3826  *	None.
3827  *
3828  *	RETURNS:
3829  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3830  */
ata_dev_same_device(struct ata_device * dev,unsigned int new_class,const u16 * new_id)3831 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3832 			       const u16 *new_id)
3833 {
3834 	const u16 *old_id = dev->id;
3835 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3836 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3837 
3838 	if (dev->class != new_class) {
3839 		ata_dev_info(dev, "class mismatch %d != %d\n",
3840 			     dev->class, new_class);
3841 		return 0;
3842 	}
3843 
3844 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3845 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3846 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3847 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3848 
3849 	if (strcmp(model[0], model[1])) {
3850 		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3851 			     model[0], model[1]);
3852 		return 0;
3853 	}
3854 
3855 	if (strcmp(serial[0], serial[1])) {
3856 		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3857 			     serial[0], serial[1]);
3858 		return 0;
3859 	}
3860 
3861 	return 1;
3862 }
3863 
3864 /**
3865  *	ata_dev_reread_id - Re-read IDENTIFY data
3866  *	@dev: target ATA device
3867  *	@readid_flags: read ID flags
3868  *
3869  *	Re-read IDENTIFY page and make sure @dev is still attached to
3870  *	the port.
3871  *
3872  *	LOCKING:
3873  *	Kernel thread context (may sleep)
3874  *
3875  *	RETURNS:
3876  *	0 on success, negative errno otherwise
3877  */
ata_dev_reread_id(struct ata_device * dev,unsigned int readid_flags)3878 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3879 {
3880 	unsigned int class = dev->class;
3881 	u16 *id = (void *)dev->link->ap->sector_buf;
3882 	int rc;
3883 
3884 	/* read ID data */
3885 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3886 	if (rc)
3887 		return rc;
3888 
3889 	/* is the device still there? */
3890 	if (!ata_dev_same_device(dev, class, id))
3891 		return -ENODEV;
3892 
3893 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3894 	return 0;
3895 }
3896 
3897 /**
3898  *	ata_dev_revalidate - Revalidate ATA device
3899  *	@dev: device to revalidate
3900  *	@new_class: new class code
3901  *	@readid_flags: read ID flags
3902  *
3903  *	Re-read IDENTIFY page, make sure @dev is still attached to the
3904  *	port and reconfigure it according to the new IDENTIFY page.
3905  *
3906  *	LOCKING:
3907  *	Kernel thread context (may sleep)
3908  *
3909  *	RETURNS:
3910  *	0 on success, negative errno otherwise
3911  */
ata_dev_revalidate(struct ata_device * dev,unsigned int new_class,unsigned int readid_flags)3912 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3913 		       unsigned int readid_flags)
3914 {
3915 	u64 n_sectors = dev->n_sectors;
3916 	u64 n_native_sectors = dev->n_native_sectors;
3917 	int rc;
3918 
3919 	if (!ata_dev_enabled(dev))
3920 		return -ENODEV;
3921 
3922 	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3923 	if (ata_class_enabled(new_class) && new_class == ATA_DEV_PMP) {
3924 		ata_dev_info(dev, "class mismatch %u != %u\n",
3925 			     dev->class, new_class);
3926 		rc = -ENODEV;
3927 		goto fail;
3928 	}
3929 
3930 	/* re-read ID */
3931 	rc = ata_dev_reread_id(dev, readid_flags);
3932 	if (rc)
3933 		goto fail;
3934 
3935 	/* configure device according to the new ID */
3936 	rc = ata_dev_configure(dev);
3937 	if (rc)
3938 		goto fail;
3939 
3940 	/* verify n_sectors hasn't changed */
3941 	if (dev->class != ATA_DEV_ATA || !n_sectors ||
3942 	    dev->n_sectors == n_sectors)
3943 		return 0;
3944 
3945 	/* n_sectors has changed */
3946 	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3947 		     (unsigned long long)n_sectors,
3948 		     (unsigned long long)dev->n_sectors);
3949 
3950 	/*
3951 	 * Something could have caused HPA to be unlocked
3952 	 * involuntarily.  If n_native_sectors hasn't changed and the
3953 	 * new size matches it, keep the device.
3954 	 */
3955 	if (dev->n_native_sectors == n_native_sectors &&
3956 	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3957 		ata_dev_warn(dev,
3958 			     "new n_sectors matches native, probably "
3959 			     "late HPA unlock, n_sectors updated\n");
3960 		/* use the larger n_sectors */
3961 		return 0;
3962 	}
3963 
3964 	/*
3965 	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
3966 	 * unlocking HPA in those cases.
3967 	 *
3968 	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3969 	 */
3970 	if (dev->n_native_sectors == n_native_sectors &&
3971 	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3972 	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
3973 		ata_dev_warn(dev,
3974 			     "old n_sectors matches native, probably "
3975 			     "late HPA lock, will try to unlock HPA\n");
3976 		/* try unlocking HPA */
3977 		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
3978 		rc = -EIO;
3979 	} else
3980 		rc = -ENODEV;
3981 
3982 	/* restore original n_[native_]sectors and fail */
3983 	dev->n_native_sectors = n_native_sectors;
3984 	dev->n_sectors = n_sectors;
3985  fail:
3986 	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
3987 	return rc;
3988 }
3989 
3990 struct ata_blacklist_entry {
3991 	const char *model_num;
3992 	const char *model_rev;
3993 	unsigned long horkage;
3994 };
3995 
3996 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3997 	/* Devices with DMA related problems under Linux */
3998 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
3999 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
4000 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
4001 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
4002 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
4003 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
4004 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
4005 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
4006 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
4007 	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
4008 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
4009 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
4010 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
4011 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
4012 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
4013 	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
4014 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
4015 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
4016 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
4017 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
4018 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
4019 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
4020 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
4021 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
4022 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4023 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
4024 	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
4025 	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
4026 	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_HORKAGE_NODMA },
4027 	{ "VRFDFC22048UCHC-TE*", NULL,		ATA_HORKAGE_NODMA },
4028 	/* Odd clown on sil3726/4726 PMPs */
4029 	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
4030 	/* Similar story with ASMedia 1092 */
4031 	{ "ASMT109x- Config",	NULL,		ATA_HORKAGE_DISABLE },
4032 
4033 	/* Weird ATAPI devices */
4034 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
4035 	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
4036 	{ "Slimtype DVD A  DS8A8SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4037 	{ "Slimtype DVD A  DS8A9SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4038 
4039 	/*
4040 	 * Causes silent data corruption with higher max sects.
4041 	 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4042 	 */
4043 	{ "ST380013AS",		"3.20",		ATA_HORKAGE_MAX_SEC_1024 },
4044 
4045 	/*
4046 	 * These devices time out with higher max sects.
4047 	 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4048 	 */
4049 	{ "LITEON CX1-JB*-HP",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
4050 	{ "LITEON EP1-*",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
4051 
4052 	/* Devices we expect to fail diagnostics */
4053 
4054 	/* Devices where NCQ should be avoided */
4055 	/* NCQ is slow */
4056 	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
4057 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ },
4058 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
4059 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
4060 	/* NCQ is broken */
4061 	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
4062 	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
4063 	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
4064 	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
4065 	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
4066 
4067 	/* Seagate NCQ + FLUSH CACHE firmware bug */
4068 	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4069 						ATA_HORKAGE_FIRMWARE_WARN },
4070 
4071 	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4072 						ATA_HORKAGE_FIRMWARE_WARN },
4073 
4074 	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4075 						ATA_HORKAGE_FIRMWARE_WARN },
4076 
4077 	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4078 						ATA_HORKAGE_FIRMWARE_WARN },
4079 
4080 	/* drives which fail FPDMA_AA activation (some may freeze afterwards)
4081 	   the ST disks also have LPM issues */
4082 	{ "ST1000LM024 HN-M101MBB", NULL,	ATA_HORKAGE_BROKEN_FPDMA_AA |
4083 						ATA_HORKAGE_NOLPM },
4084 	{ "VB0250EAVER",	"HPG7",		ATA_HORKAGE_BROKEN_FPDMA_AA },
4085 
4086 	/* Blacklist entries taken from Silicon Image 3124/3132
4087 	   Windows driver .inf file - also several Linux problem reports */
4088 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ },
4089 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ },
4090 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ },
4091 
4092 	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4093 	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ },
4094 
4095 	/* Sandisk SD7/8/9s lock up hard on large trims */
4096 	{ "SanDisk SD[789]*",	NULL,		ATA_HORKAGE_MAX_TRIM_128M },
4097 
4098 	/* devices which puke on READ_NATIVE_MAX */
4099 	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA },
4100 	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4101 	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4102 	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
4103 
4104 	/* this one allows HPA unlocking but fails IOs on the area */
4105 	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
4106 
4107 	/* Devices which report 1 sector over size HPA */
4108 	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE },
4109 	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE },
4110 	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE },
4111 
4112 	/* Devices which get the IVB wrong */
4113 	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB },
4114 	/* Maybe we should just blacklist TSSTcorp... */
4115 	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB },
4116 
4117 	/* Devices that do not need bridging limits applied */
4118 	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK },
4119 	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_HORKAGE_BRIDGE_OK },
4120 
4121 	/* Devices which aren't very happy with higher link speeds */
4122 	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS },
4123 	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_HORKAGE_1_5_GBPS },
4124 
4125 	/*
4126 	 * Devices which choke on SETXFER.  Applies only if both the
4127 	 * device and controller are SATA.
4128 	 */
4129 	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
4130 	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER },
4131 	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER },
4132 	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
4133 	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
4134 
4135 	/* These specific Pioneer models have LPM issues */
4136 	{ "PIONEER BD-RW   BDR-207M",	NULL,	ATA_HORKAGE_NOLPM },
4137 	{ "PIONEER BD-RW   BDR-205",	NULL,	ATA_HORKAGE_NOLPM },
4138 
4139 	/* Crucial BX100 SSD 500GB has broken LPM support */
4140 	{ "CT500BX100SSD1",		NULL,	ATA_HORKAGE_NOLPM },
4141 
4142 	/* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4143 	{ "Crucial_CT512MX100*",	"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4144 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4145 						ATA_HORKAGE_NOLPM },
4146 	/* 512GB MX100 with newer firmware has only LPM issues */
4147 	{ "Crucial_CT512MX100*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM |
4148 						ATA_HORKAGE_NOLPM },
4149 
4150 	/* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4151 	{ "Crucial_CT480M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4152 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4153 						ATA_HORKAGE_NOLPM },
4154 	{ "Crucial_CT960M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4155 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4156 						ATA_HORKAGE_NOLPM },
4157 
4158 	/* These specific Samsung models/firmware-revs do not handle LPM well */
4159 	{ "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM },
4160 	{ "SAMSUNG SSD PM830 mSATA *",  "CXM13D1Q", ATA_HORKAGE_NOLPM },
4161 	{ "SAMSUNG MZ7TD256HAFV-000L9", NULL,       ATA_HORKAGE_NOLPM },
4162 	{ "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM },
4163 
4164 	/* devices that don't properly handle queued TRIM commands */
4165 	{ "Micron_M500IT_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4166 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4167 	{ "Micron_M500_*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4168 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4169 	{ "Micron_M5[15]0_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4170 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4171 	{ "Micron_1100_*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4172 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4173 	{ "Crucial_CT*M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4174 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4175 	{ "Crucial_CT*M550*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4176 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4177 	{ "Crucial_CT*MX100*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4178 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4179 	{ "Samsung SSD 840 EVO*",	NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4180 						ATA_HORKAGE_NO_DMA_LOG |
4181 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4182 	{ "Samsung SSD 840*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4183 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4184 	{ "Samsung SSD 850*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4185 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4186 	{ "Samsung SSD 860*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4187 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4188 						ATA_HORKAGE_NO_NCQ_ON_ATI },
4189 	{ "Samsung SSD 870*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4190 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4191 						ATA_HORKAGE_NO_NCQ_ON_ATI },
4192 	{ "SAMSUNG*MZ7LH*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4193 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4194 						ATA_HORKAGE_NO_NCQ_ON_ATI, },
4195 	{ "FCCT*M500*",			NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4196 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4197 
4198 	/* devices that don't properly handle TRIM commands */
4199 	{ "SuperSSpeed S238*",		NULL,	ATA_HORKAGE_NOTRIM },
4200 	{ "M88V29*",			NULL,	ATA_HORKAGE_NOTRIM },
4201 
4202 	/*
4203 	 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4204 	 * (Return Zero After Trim) flags in the ATA Command Set are
4205 	 * unreliable in the sense that they only define what happens if
4206 	 * the device successfully executed the DSM TRIM command. TRIM
4207 	 * is only advisory, however, and the device is free to silently
4208 	 * ignore all or parts of the request.
4209 	 *
4210 	 * Whitelist drives that are known to reliably return zeroes
4211 	 * after TRIM.
4212 	 */
4213 
4214 	/*
4215 	 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4216 	 * that model before whitelisting all other intel SSDs.
4217 	 */
4218 	{ "INTEL*SSDSC2MH*",		NULL,	0 },
4219 
4220 	{ "Micron*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4221 	{ "Crucial*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4222 	{ "INTEL*SSD*", 		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4223 	{ "SSD*INTEL*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4224 	{ "Samsung*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4225 	{ "SAMSUNG*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4226 	{ "SAMSUNG*MZ7KM*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4227 	{ "ST[1248][0248]0[FH]*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4228 
4229 	/*
4230 	 * Some WD SATA-I drives spin up and down erratically when the link
4231 	 * is put into the slumber mode.  We don't have full list of the
4232 	 * affected devices.  Disable LPM if the device matches one of the
4233 	 * known prefixes and is SATA-1.  As a side effect LPM partial is
4234 	 * lost too.
4235 	 *
4236 	 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4237 	 */
4238 	{ "WDC WD800JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4239 	{ "WDC WD1200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4240 	{ "WDC WD1600JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4241 	{ "WDC WD2000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4242 	{ "WDC WD2500JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4243 	{ "WDC WD3000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4244 	{ "WDC WD3200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4245 
4246 	/*
4247 	 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY
4248 	 * log page is accessed. Ensure we never ask for this log page with
4249 	 * these devices.
4250 	 */
4251 	{ "SATADOM-ML 3ME",		NULL,	ATA_HORKAGE_NO_LOG_DIR },
4252 
4253 	/* Buggy FUA */
4254 	{ "Maxtor",		"BANC1G10",	ATA_HORKAGE_NO_FUA },
4255 	{ "WDC*WD2500J*",	NULL,		ATA_HORKAGE_NO_FUA },
4256 	{ "OCZ-VERTEX*",	NULL,		ATA_HORKAGE_NO_FUA },
4257 	{ "INTEL*SSDSC2CT*",	NULL,		ATA_HORKAGE_NO_FUA },
4258 
4259 	/* End Marker */
4260 	{ }
4261 };
4262 
ata_dev_blacklisted(const struct ata_device * dev)4263 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4264 {
4265 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4266 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4267 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4268 
4269 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4270 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4271 
4272 	while (ad->model_num) {
4273 		if (glob_match(ad->model_num, model_num)) {
4274 			if (ad->model_rev == NULL)
4275 				return ad->horkage;
4276 			if (glob_match(ad->model_rev, model_rev))
4277 				return ad->horkage;
4278 		}
4279 		ad++;
4280 	}
4281 	return 0;
4282 }
4283 
ata_dma_blacklisted(const struct ata_device * dev)4284 static int ata_dma_blacklisted(const struct ata_device *dev)
4285 {
4286 	/* We don't support polling DMA.
4287 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4288 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4289 	 */
4290 	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4291 	    (dev->flags & ATA_DFLAG_CDB_INTR))
4292 		return 1;
4293 	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4294 }
4295 
4296 /**
4297  *	ata_is_40wire		-	check drive side detection
4298  *	@dev: device
4299  *
4300  *	Perform drive side detection decoding, allowing for device vendors
4301  *	who can't follow the documentation.
4302  */
4303 
ata_is_40wire(struct ata_device * dev)4304 static int ata_is_40wire(struct ata_device *dev)
4305 {
4306 	if (dev->horkage & ATA_HORKAGE_IVB)
4307 		return ata_drive_40wire_relaxed(dev->id);
4308 	return ata_drive_40wire(dev->id);
4309 }
4310 
4311 /**
4312  *	cable_is_40wire		-	40/80/SATA decider
4313  *	@ap: port to consider
4314  *
4315  *	This function encapsulates the policy for speed management
4316  *	in one place. At the moment we don't cache the result but
4317  *	there is a good case for setting ap->cbl to the result when
4318  *	we are called with unknown cables (and figuring out if it
4319  *	impacts hotplug at all).
4320  *
4321  *	Return 1 if the cable appears to be 40 wire.
4322  */
4323 
cable_is_40wire(struct ata_port * ap)4324 static int cable_is_40wire(struct ata_port *ap)
4325 {
4326 	struct ata_link *link;
4327 	struct ata_device *dev;
4328 
4329 	/* If the controller thinks we are 40 wire, we are. */
4330 	if (ap->cbl == ATA_CBL_PATA40)
4331 		return 1;
4332 
4333 	/* If the controller thinks we are 80 wire, we are. */
4334 	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4335 		return 0;
4336 
4337 	/* If the system is known to be 40 wire short cable (eg
4338 	 * laptop), then we allow 80 wire modes even if the drive
4339 	 * isn't sure.
4340 	 */
4341 	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4342 		return 0;
4343 
4344 	/* If the controller doesn't know, we scan.
4345 	 *
4346 	 * Note: We look for all 40 wire detects at this point.  Any
4347 	 *       80 wire detect is taken to be 80 wire cable because
4348 	 * - in many setups only the one drive (slave if present) will
4349 	 *   give a valid detect
4350 	 * - if you have a non detect capable drive you don't want it
4351 	 *   to colour the choice
4352 	 */
4353 	ata_for_each_link(link, ap, EDGE) {
4354 		ata_for_each_dev(dev, link, ENABLED) {
4355 			if (!ata_is_40wire(dev))
4356 				return 0;
4357 		}
4358 	}
4359 	return 1;
4360 }
4361 
4362 /**
4363  *	ata_dev_xfermask - Compute supported xfermask of the given device
4364  *	@dev: Device to compute xfermask for
4365  *
4366  *	Compute supported xfermask of @dev and store it in
4367  *	dev->*_mask.  This function is responsible for applying all
4368  *	known limits including host controller limits, device
4369  *	blacklist, etc...
4370  *
4371  *	LOCKING:
4372  *	None.
4373  */
ata_dev_xfermask(struct ata_device * dev)4374 static void ata_dev_xfermask(struct ata_device *dev)
4375 {
4376 	struct ata_link *link = dev->link;
4377 	struct ata_port *ap = link->ap;
4378 	struct ata_host *host = ap->host;
4379 	unsigned int xfer_mask;
4380 
4381 	/* controller modes available */
4382 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4383 				      ap->mwdma_mask, ap->udma_mask);
4384 
4385 	/* drive modes available */
4386 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4387 				       dev->mwdma_mask, dev->udma_mask);
4388 	xfer_mask &= ata_id_xfermask(dev->id);
4389 
4390 	/*
4391 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4392 	 *	cable
4393 	 */
4394 	if (ata_dev_pair(dev)) {
4395 		/* No PIO5 or PIO6 */
4396 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4397 		/* No MWDMA3 or MWDMA 4 */
4398 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4399 	}
4400 
4401 	if (ata_dma_blacklisted(dev)) {
4402 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4403 		ata_dev_warn(dev,
4404 			     "device is on DMA blacklist, disabling DMA\n");
4405 	}
4406 
4407 	if ((host->flags & ATA_HOST_SIMPLEX) &&
4408 	    host->simplex_claimed && host->simplex_claimed != ap) {
4409 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4410 		ata_dev_warn(dev,
4411 			     "simplex DMA is claimed by other device, disabling DMA\n");
4412 	}
4413 
4414 	if (ap->flags & ATA_FLAG_NO_IORDY)
4415 		xfer_mask &= ata_pio_mask_no_iordy(dev);
4416 
4417 	if (ap->ops->mode_filter)
4418 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4419 
4420 	/* Apply cable rule here.  Don't apply it early because when
4421 	 * we handle hot plug the cable type can itself change.
4422 	 * Check this last so that we know if the transfer rate was
4423 	 * solely limited by the cable.
4424 	 * Unknown or 80 wire cables reported host side are checked
4425 	 * drive side as well. Cases where we know a 40wire cable
4426 	 * is used safely for 80 are not checked here.
4427 	 */
4428 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4429 		/* UDMA/44 or higher would be available */
4430 		if (cable_is_40wire(ap)) {
4431 			ata_dev_warn(dev,
4432 				     "limited to UDMA/33 due to 40-wire cable\n");
4433 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4434 		}
4435 
4436 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4437 			    &dev->mwdma_mask, &dev->udma_mask);
4438 }
4439 
4440 /**
4441  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4442  *	@dev: Device to which command will be sent
4443  *
4444  *	Issue SET FEATURES - XFER MODE command to device @dev
4445  *	on port @ap.
4446  *
4447  *	LOCKING:
4448  *	PCI/etc. bus probe sem.
4449  *
4450  *	RETURNS:
4451  *	0 on success, AC_ERR_* mask otherwise.
4452  */
4453 
ata_dev_set_xfermode(struct ata_device * dev)4454 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4455 {
4456 	struct ata_taskfile tf;
4457 
4458 	/* set up set-features taskfile */
4459 	ata_dev_dbg(dev, "set features - xfer mode\n");
4460 
4461 	/* Some controllers and ATAPI devices show flaky interrupt
4462 	 * behavior after setting xfer mode.  Use polling instead.
4463 	 */
4464 	ata_tf_init(dev, &tf);
4465 	tf.command = ATA_CMD_SET_FEATURES;
4466 	tf.feature = SETFEATURES_XFER;
4467 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4468 	tf.protocol = ATA_PROT_NODATA;
4469 	/* If we are using IORDY we must send the mode setting command */
4470 	if (ata_pio_need_iordy(dev))
4471 		tf.nsect = dev->xfer_mode;
4472 	/* If the device has IORDY and the controller does not - turn it off */
4473  	else if (ata_id_has_iordy(dev->id))
4474 		tf.nsect = 0x01;
4475 	else /* In the ancient relic department - skip all of this */
4476 		return 0;
4477 
4478 	/*
4479 	 * On some disks, this command causes spin-up, so we need longer
4480 	 * timeout.
4481 	 */
4482 	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4483 }
4484 
4485 /**
4486  *	ata_dev_set_feature - Issue SET FEATURES
4487  *	@dev: Device to which command will be sent
4488  *	@subcmd: The SET FEATURES subcommand to be sent
4489  *	@action: The sector count represents a subcommand specific action
4490  *
4491  *	Issue SET FEATURES command to device @dev on port @ap with sector count
4492  *
4493  *	LOCKING:
4494  *	PCI/etc. bus probe sem.
4495  *
4496  *	RETURNS:
4497  *	0 on success, AC_ERR_* mask otherwise.
4498  */
ata_dev_set_feature(struct ata_device * dev,u8 subcmd,u8 action)4499 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 subcmd, u8 action)
4500 {
4501 	struct ata_taskfile tf;
4502 	unsigned int timeout = 0;
4503 
4504 	/* set up set-features taskfile */
4505 	ata_dev_dbg(dev, "set features\n");
4506 
4507 	ata_tf_init(dev, &tf);
4508 	tf.command = ATA_CMD_SET_FEATURES;
4509 	tf.feature = subcmd;
4510 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4511 	tf.protocol = ATA_PROT_NODATA;
4512 	tf.nsect = action;
4513 
4514 	if (subcmd == SETFEATURES_SPINUP)
4515 		timeout = ata_probe_timeout ?
4516 			  ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4517 
4518 	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4519 }
4520 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4521 
4522 /**
4523  *	ata_dev_init_params - Issue INIT DEV PARAMS command
4524  *	@dev: Device to which command will be sent
4525  *	@heads: Number of heads (taskfile parameter)
4526  *	@sectors: Number of sectors (taskfile parameter)
4527  *
4528  *	LOCKING:
4529  *	Kernel thread context (may sleep)
4530  *
4531  *	RETURNS:
4532  *	0 on success, AC_ERR_* mask otherwise.
4533  */
ata_dev_init_params(struct ata_device * dev,u16 heads,u16 sectors)4534 static unsigned int ata_dev_init_params(struct ata_device *dev,
4535 					u16 heads, u16 sectors)
4536 {
4537 	struct ata_taskfile tf;
4538 	unsigned int err_mask;
4539 
4540 	/* Number of sectors per track 1-255. Number of heads 1-16 */
4541 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4542 		return AC_ERR_INVALID;
4543 
4544 	/* set up init dev params taskfile */
4545 	ata_dev_dbg(dev, "init dev params \n");
4546 
4547 	ata_tf_init(dev, &tf);
4548 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4549 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4550 	tf.protocol = ATA_PROT_NODATA;
4551 	tf.nsect = sectors;
4552 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4553 
4554 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4555 	/* A clean abort indicates an original or just out of spec drive
4556 	   and we should continue as we issue the setup based on the
4557 	   drive reported working geometry */
4558 	if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
4559 		err_mask = 0;
4560 
4561 	return err_mask;
4562 }
4563 
4564 /**
4565  *	atapi_check_dma - Check whether ATAPI DMA can be supported
4566  *	@qc: Metadata associated with taskfile to check
4567  *
4568  *	Allow low-level driver to filter ATA PACKET commands, returning
4569  *	a status indicating whether or not it is OK to use DMA for the
4570  *	supplied PACKET command.
4571  *
4572  *	LOCKING:
4573  *	spin_lock_irqsave(host lock)
4574  *
4575  *	RETURNS: 0 when ATAPI DMA can be used
4576  *               nonzero otherwise
4577  */
atapi_check_dma(struct ata_queued_cmd * qc)4578 int atapi_check_dma(struct ata_queued_cmd *qc)
4579 {
4580 	struct ata_port *ap = qc->ap;
4581 
4582 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4583 	 * few ATAPI devices choke on such DMA requests.
4584 	 */
4585 	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4586 	    unlikely(qc->nbytes & 15))
4587 		return 1;
4588 
4589 	if (ap->ops->check_atapi_dma)
4590 		return ap->ops->check_atapi_dma(qc);
4591 
4592 	return 0;
4593 }
4594 
4595 /**
4596  *	ata_std_qc_defer - Check whether a qc needs to be deferred
4597  *	@qc: ATA command in question
4598  *
4599  *	Non-NCQ commands cannot run with any other command, NCQ or
4600  *	not.  As upper layer only knows the queue depth, we are
4601  *	responsible for maintaining exclusion.  This function checks
4602  *	whether a new command @qc can be issued.
4603  *
4604  *	LOCKING:
4605  *	spin_lock_irqsave(host lock)
4606  *
4607  *	RETURNS:
4608  *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4609  */
ata_std_qc_defer(struct ata_queued_cmd * qc)4610 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4611 {
4612 	struct ata_link *link = qc->dev->link;
4613 
4614 	if (ata_is_ncq(qc->tf.protocol)) {
4615 		if (!ata_tag_valid(link->active_tag))
4616 			return 0;
4617 	} else {
4618 		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4619 			return 0;
4620 	}
4621 
4622 	return ATA_DEFER_LINK;
4623 }
4624 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4625 
ata_noop_qc_prep(struct ata_queued_cmd * qc)4626 enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc)
4627 {
4628 	return AC_ERR_OK;
4629 }
4630 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
4631 
4632 /**
4633  *	ata_sg_init - Associate command with scatter-gather table.
4634  *	@qc: Command to be associated
4635  *	@sg: Scatter-gather table.
4636  *	@n_elem: Number of elements in s/g table.
4637  *
4638  *	Initialize the data-related elements of queued_cmd @qc
4639  *	to point to a scatter-gather table @sg, containing @n_elem
4640  *	elements.
4641  *
4642  *	LOCKING:
4643  *	spin_lock_irqsave(host lock)
4644  */
ata_sg_init(struct ata_queued_cmd * qc,struct scatterlist * sg,unsigned int n_elem)4645 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4646 		 unsigned int n_elem)
4647 {
4648 	qc->sg = sg;
4649 	qc->n_elem = n_elem;
4650 	qc->cursg = qc->sg;
4651 }
4652 
4653 #ifdef CONFIG_HAS_DMA
4654 
4655 /**
4656  *	ata_sg_clean - Unmap DMA memory associated with command
4657  *	@qc: Command containing DMA memory to be released
4658  *
4659  *	Unmap all mapped DMA memory associated with this command.
4660  *
4661  *	LOCKING:
4662  *	spin_lock_irqsave(host lock)
4663  */
ata_sg_clean(struct ata_queued_cmd * qc)4664 static void ata_sg_clean(struct ata_queued_cmd *qc)
4665 {
4666 	struct ata_port *ap = qc->ap;
4667 	struct scatterlist *sg = qc->sg;
4668 	int dir = qc->dma_dir;
4669 
4670 	WARN_ON_ONCE(sg == NULL);
4671 
4672 	if (qc->n_elem)
4673 		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4674 
4675 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4676 	qc->sg = NULL;
4677 }
4678 
4679 /**
4680  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4681  *	@qc: Command with scatter-gather table to be mapped.
4682  *
4683  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4684  *
4685  *	LOCKING:
4686  *	spin_lock_irqsave(host lock)
4687  *
4688  *	RETURNS:
4689  *	Zero on success, negative on error.
4690  *
4691  */
ata_sg_setup(struct ata_queued_cmd * qc)4692 static int ata_sg_setup(struct ata_queued_cmd *qc)
4693 {
4694 	struct ata_port *ap = qc->ap;
4695 	unsigned int n_elem;
4696 
4697 	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4698 	if (n_elem < 1)
4699 		return -1;
4700 
4701 	qc->orig_n_elem = qc->n_elem;
4702 	qc->n_elem = n_elem;
4703 	qc->flags |= ATA_QCFLAG_DMAMAP;
4704 
4705 	return 0;
4706 }
4707 
4708 #else /* !CONFIG_HAS_DMA */
4709 
ata_sg_clean(struct ata_queued_cmd * qc)4710 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
ata_sg_setup(struct ata_queued_cmd * qc)4711 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4712 
4713 #endif /* !CONFIG_HAS_DMA */
4714 
4715 /**
4716  *	swap_buf_le16 - swap halves of 16-bit words in place
4717  *	@buf:  Buffer to swap
4718  *	@buf_words:  Number of 16-bit words in buffer.
4719  *
4720  *	Swap halves of 16-bit words if needed to convert from
4721  *	little-endian byte order to native cpu byte order, or
4722  *	vice-versa.
4723  *
4724  *	LOCKING:
4725  *	Inherited from caller.
4726  */
swap_buf_le16(u16 * buf,unsigned int buf_words)4727 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4728 {
4729 #ifdef __BIG_ENDIAN
4730 	unsigned int i;
4731 
4732 	for (i = 0; i < buf_words; i++)
4733 		buf[i] = le16_to_cpu(buf[i]);
4734 #endif /* __BIG_ENDIAN */
4735 }
4736 
4737 /**
4738  *	ata_qc_free - free unused ata_queued_cmd
4739  *	@qc: Command to complete
4740  *
4741  *	Designed to free unused ata_queued_cmd object
4742  *	in case something prevents using it.
4743  *
4744  *	LOCKING:
4745  *	spin_lock_irqsave(host lock)
4746  */
ata_qc_free(struct ata_queued_cmd * qc)4747 void ata_qc_free(struct ata_queued_cmd *qc)
4748 {
4749 	qc->flags = 0;
4750 	if (ata_tag_valid(qc->tag))
4751 		qc->tag = ATA_TAG_POISON;
4752 }
4753 
__ata_qc_complete(struct ata_queued_cmd * qc)4754 void __ata_qc_complete(struct ata_queued_cmd *qc)
4755 {
4756 	struct ata_port *ap;
4757 	struct ata_link *link;
4758 
4759 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4760 	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4761 	ap = qc->ap;
4762 	link = qc->dev->link;
4763 
4764 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4765 		ata_sg_clean(qc);
4766 
4767 	/* command should be marked inactive atomically with qc completion */
4768 	if (ata_is_ncq(qc->tf.protocol)) {
4769 		link->sactive &= ~(1 << qc->hw_tag);
4770 		if (!link->sactive)
4771 			ap->nr_active_links--;
4772 	} else {
4773 		link->active_tag = ATA_TAG_POISON;
4774 		ap->nr_active_links--;
4775 	}
4776 
4777 	/* clear exclusive status */
4778 	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4779 		     ap->excl_link == link))
4780 		ap->excl_link = NULL;
4781 
4782 	/* atapi: mark qc as inactive to prevent the interrupt handler
4783 	 * from completing the command twice later, before the error handler
4784 	 * is called. (when rc != 0 and atapi request sense is needed)
4785 	 */
4786 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4787 	ap->qc_active &= ~(1ULL << qc->tag);
4788 
4789 	/* call completion callback */
4790 	qc->complete_fn(qc);
4791 }
4792 
fill_result_tf(struct ata_queued_cmd * qc)4793 static void fill_result_tf(struct ata_queued_cmd *qc)
4794 {
4795 	struct ata_port *ap = qc->ap;
4796 
4797 	qc->result_tf.flags = qc->tf.flags;
4798 	ap->ops->qc_fill_rtf(qc);
4799 }
4800 
ata_verify_xfer(struct ata_queued_cmd * qc)4801 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4802 {
4803 	struct ata_device *dev = qc->dev;
4804 
4805 	if (!ata_is_data(qc->tf.protocol))
4806 		return;
4807 
4808 	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4809 		return;
4810 
4811 	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4812 }
4813 
4814 /**
4815  *	ata_qc_complete - Complete an active ATA command
4816  *	@qc: Command to complete
4817  *
4818  *	Indicate to the mid and upper layers that an ATA command has
4819  *	completed, with either an ok or not-ok status.
4820  *
4821  *	Refrain from calling this function multiple times when
4822  *	successfully completing multiple NCQ commands.
4823  *	ata_qc_complete_multiple() should be used instead, which will
4824  *	properly update IRQ expect state.
4825  *
4826  *	LOCKING:
4827  *	spin_lock_irqsave(host lock)
4828  */
ata_qc_complete(struct ata_queued_cmd * qc)4829 void ata_qc_complete(struct ata_queued_cmd *qc)
4830 {
4831 	struct ata_port *ap = qc->ap;
4832 	struct ata_device *dev = qc->dev;
4833 	struct ata_eh_info *ehi = &dev->link->eh_info;
4834 
4835 	/* Trigger the LED (if available) */
4836 	ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4837 
4838 	/*
4839 	 * In order to synchronize EH with the regular execution path, a qc that
4840 	 * is owned by EH is marked with ATA_QCFLAG_EH.
4841 	 *
4842 	 * The normal execution path is responsible for not accessing a qc owned
4843 	 * by EH.  libata core enforces the rule by returning NULL from
4844 	 * ata_qc_from_tag() for qcs owned by EH.
4845 	 */
4846 	if (unlikely(qc->err_mask))
4847 		qc->flags |= ATA_QCFLAG_EH;
4848 
4849 	/*
4850 	 * Finish internal commands without any further processing and always
4851 	 * with the result TF filled.
4852 	 */
4853 	if (unlikely(ata_tag_internal(qc->tag))) {
4854 		fill_result_tf(qc);
4855 		trace_ata_qc_complete_internal(qc);
4856 		__ata_qc_complete(qc);
4857 		return;
4858 	}
4859 
4860 	/* Non-internal qc has failed.  Fill the result TF and summon EH. */
4861 	if (unlikely(qc->flags & ATA_QCFLAG_EH)) {
4862 		fill_result_tf(qc);
4863 		trace_ata_qc_complete_failed(qc);
4864 		ata_qc_schedule_eh(qc);
4865 		return;
4866 	}
4867 
4868 	WARN_ON_ONCE(ata_port_is_frozen(ap));
4869 
4870 	/* read result TF if requested */
4871 	if (qc->flags & ATA_QCFLAG_RESULT_TF)
4872 		fill_result_tf(qc);
4873 
4874 	trace_ata_qc_complete_done(qc);
4875 
4876 	/*
4877 	 * For CDL commands that completed without an error, check if we have
4878 	 * sense data (ATA_SENSE is set). If we do, then the command may have
4879 	 * been aborted by the device due to a limit timeout using the policy
4880 	 * 0xD. For these commands, invoke EH to get the command sense data.
4881 	 */
4882 	if (qc->flags & ATA_QCFLAG_HAS_CDL &&
4883 	    qc->result_tf.status & ATA_SENSE) {
4884 		/*
4885 		 * Tell SCSI EH to not overwrite scmd->result even if this
4886 		 * command is finished with result SAM_STAT_GOOD.
4887 		 */
4888 		qc->scsicmd->flags |= SCMD_FORCE_EH_SUCCESS;
4889 		qc->flags |= ATA_QCFLAG_EH_SUCCESS_CMD;
4890 		ehi->dev_action[dev->devno] |= ATA_EH_GET_SUCCESS_SENSE;
4891 
4892 		/*
4893 		 * set pending so that ata_qc_schedule_eh() does not trigger
4894 		 * fast drain, and freeze the port.
4895 		 */
4896 		ap->pflags |= ATA_PFLAG_EH_PENDING;
4897 		ata_qc_schedule_eh(qc);
4898 		return;
4899 	}
4900 
4901 	/* Some commands need post-processing after successful completion. */
4902 	switch (qc->tf.command) {
4903 	case ATA_CMD_SET_FEATURES:
4904 		if (qc->tf.feature != SETFEATURES_WC_ON &&
4905 		    qc->tf.feature != SETFEATURES_WC_OFF &&
4906 		    qc->tf.feature != SETFEATURES_RA_ON &&
4907 		    qc->tf.feature != SETFEATURES_RA_OFF)
4908 			break;
4909 		fallthrough;
4910 	case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4911 	case ATA_CMD_SET_MULTI: /* multi_count changed */
4912 		/* revalidate device */
4913 		ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4914 		ata_port_schedule_eh(ap);
4915 		break;
4916 
4917 	case ATA_CMD_SLEEP:
4918 		dev->flags |= ATA_DFLAG_SLEEPING;
4919 		break;
4920 	}
4921 
4922 	if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4923 		ata_verify_xfer(qc);
4924 
4925 	__ata_qc_complete(qc);
4926 }
4927 EXPORT_SYMBOL_GPL(ata_qc_complete);
4928 
4929 /**
4930  *	ata_qc_get_active - get bitmask of active qcs
4931  *	@ap: port in question
4932  *
4933  *	LOCKING:
4934  *	spin_lock_irqsave(host lock)
4935  *
4936  *	RETURNS:
4937  *	Bitmask of active qcs
4938  */
ata_qc_get_active(struct ata_port * ap)4939 u64 ata_qc_get_active(struct ata_port *ap)
4940 {
4941 	u64 qc_active = ap->qc_active;
4942 
4943 	/* ATA_TAG_INTERNAL is sent to hw as tag 0 */
4944 	if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
4945 		qc_active |= (1 << 0);
4946 		qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
4947 	}
4948 
4949 	return qc_active;
4950 }
4951 EXPORT_SYMBOL_GPL(ata_qc_get_active);
4952 
4953 /**
4954  *	ata_qc_issue - issue taskfile to device
4955  *	@qc: command to issue to device
4956  *
4957  *	Prepare an ATA command to submission to device.
4958  *	This includes mapping the data into a DMA-able
4959  *	area, filling in the S/G table, and finally
4960  *	writing the taskfile to hardware, starting the command.
4961  *
4962  *	LOCKING:
4963  *	spin_lock_irqsave(host lock)
4964  */
ata_qc_issue(struct ata_queued_cmd * qc)4965 void ata_qc_issue(struct ata_queued_cmd *qc)
4966 {
4967 	struct ata_port *ap = qc->ap;
4968 	struct ata_link *link = qc->dev->link;
4969 	u8 prot = qc->tf.protocol;
4970 
4971 	/* Make sure only one non-NCQ command is outstanding. */
4972 	WARN_ON_ONCE(ata_tag_valid(link->active_tag));
4973 
4974 	if (ata_is_ncq(prot)) {
4975 		WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
4976 
4977 		if (!link->sactive)
4978 			ap->nr_active_links++;
4979 		link->sactive |= 1 << qc->hw_tag;
4980 	} else {
4981 		WARN_ON_ONCE(link->sactive);
4982 
4983 		ap->nr_active_links++;
4984 		link->active_tag = qc->tag;
4985 	}
4986 
4987 	qc->flags |= ATA_QCFLAG_ACTIVE;
4988 	ap->qc_active |= 1ULL << qc->tag;
4989 
4990 	/*
4991 	 * We guarantee to LLDs that they will have at least one
4992 	 * non-zero sg if the command is a data command.
4993 	 */
4994 	if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
4995 		goto sys_err;
4996 
4997 	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4998 				 (ap->flags & ATA_FLAG_PIO_DMA)))
4999 		if (ata_sg_setup(qc))
5000 			goto sys_err;
5001 
5002 	/* if device is sleeping, schedule reset and abort the link */
5003 	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5004 		link->eh_info.action |= ATA_EH_RESET;
5005 		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5006 		ata_link_abort(link);
5007 		return;
5008 	}
5009 
5010 	trace_ata_qc_prep(qc);
5011 	qc->err_mask |= ap->ops->qc_prep(qc);
5012 	if (unlikely(qc->err_mask))
5013 		goto err;
5014 	trace_ata_qc_issue(qc);
5015 	qc->err_mask |= ap->ops->qc_issue(qc);
5016 	if (unlikely(qc->err_mask))
5017 		goto err;
5018 	return;
5019 
5020 sys_err:
5021 	qc->err_mask |= AC_ERR_SYSTEM;
5022 err:
5023 	ata_qc_complete(qc);
5024 }
5025 
5026 /**
5027  *	ata_phys_link_online - test whether the given link is online
5028  *	@link: ATA link to test
5029  *
5030  *	Test whether @link is online.  Note that this function returns
5031  *	0 if online status of @link cannot be obtained, so
5032  *	ata_link_online(link) != !ata_link_offline(link).
5033  *
5034  *	LOCKING:
5035  *	None.
5036  *
5037  *	RETURNS:
5038  *	True if the port online status is available and online.
5039  */
ata_phys_link_online(struct ata_link * link)5040 bool ata_phys_link_online(struct ata_link *link)
5041 {
5042 	u32 sstatus;
5043 
5044 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5045 	    ata_sstatus_online(sstatus))
5046 		return true;
5047 	return false;
5048 }
5049 
5050 /**
5051  *	ata_phys_link_offline - test whether the given link is offline
5052  *	@link: ATA link to test
5053  *
5054  *	Test whether @link is offline.  Note that this function
5055  *	returns 0 if offline status of @link cannot be obtained, so
5056  *	ata_link_online(link) != !ata_link_offline(link).
5057  *
5058  *	LOCKING:
5059  *	None.
5060  *
5061  *	RETURNS:
5062  *	True if the port offline status is available and offline.
5063  */
ata_phys_link_offline(struct ata_link * link)5064 bool ata_phys_link_offline(struct ata_link *link)
5065 {
5066 	u32 sstatus;
5067 
5068 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5069 	    !ata_sstatus_online(sstatus))
5070 		return true;
5071 	return false;
5072 }
5073 
5074 /**
5075  *	ata_link_online - test whether the given link is online
5076  *	@link: ATA link to test
5077  *
5078  *	Test whether @link is online.  This is identical to
5079  *	ata_phys_link_online() when there's no slave link.  When
5080  *	there's a slave link, this function should only be called on
5081  *	the master link and will return true if any of M/S links is
5082  *	online.
5083  *
5084  *	LOCKING:
5085  *	None.
5086  *
5087  *	RETURNS:
5088  *	True if the port online status is available and online.
5089  */
ata_link_online(struct ata_link * link)5090 bool ata_link_online(struct ata_link *link)
5091 {
5092 	struct ata_link *slave = link->ap->slave_link;
5093 
5094 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5095 
5096 	return ata_phys_link_online(link) ||
5097 		(slave && ata_phys_link_online(slave));
5098 }
5099 EXPORT_SYMBOL_GPL(ata_link_online);
5100 
5101 /**
5102  *	ata_link_offline - test whether the given link is offline
5103  *	@link: ATA link to test
5104  *
5105  *	Test whether @link is offline.  This is identical to
5106  *	ata_phys_link_offline() when there's no slave link.  When
5107  *	there's a slave link, this function should only be called on
5108  *	the master link and will return true if both M/S links are
5109  *	offline.
5110  *
5111  *	LOCKING:
5112  *	None.
5113  *
5114  *	RETURNS:
5115  *	True if the port offline status is available and offline.
5116  */
ata_link_offline(struct ata_link * link)5117 bool ata_link_offline(struct ata_link *link)
5118 {
5119 	struct ata_link *slave = link->ap->slave_link;
5120 
5121 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5122 
5123 	return ata_phys_link_offline(link) &&
5124 		(!slave || ata_phys_link_offline(slave));
5125 }
5126 EXPORT_SYMBOL_GPL(ata_link_offline);
5127 
5128 #ifdef CONFIG_PM
ata_port_request_pm(struct ata_port * ap,pm_message_t mesg,unsigned int action,unsigned int ehi_flags,bool async)5129 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5130 				unsigned int action, unsigned int ehi_flags,
5131 				bool async)
5132 {
5133 	struct ata_link *link;
5134 	unsigned long flags;
5135 
5136 	spin_lock_irqsave(ap->lock, flags);
5137 
5138 	/*
5139 	 * A previous PM operation might still be in progress. Wait for
5140 	 * ATA_PFLAG_PM_PENDING to clear.
5141 	 */
5142 	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5143 		spin_unlock_irqrestore(ap->lock, flags);
5144 		ata_port_wait_eh(ap);
5145 		spin_lock_irqsave(ap->lock, flags);
5146 	}
5147 
5148 	/* Request PM operation to EH */
5149 	ap->pm_mesg = mesg;
5150 	ap->pflags |= ATA_PFLAG_PM_PENDING;
5151 	ata_for_each_link(link, ap, HOST_FIRST) {
5152 		link->eh_info.action |= action;
5153 		link->eh_info.flags |= ehi_flags;
5154 	}
5155 
5156 	ata_port_schedule_eh(ap);
5157 
5158 	spin_unlock_irqrestore(ap->lock, flags);
5159 
5160 	if (!async)
5161 		ata_port_wait_eh(ap);
5162 }
5163 
ata_port_suspend(struct ata_port * ap,pm_message_t mesg,bool async)5164 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg,
5165 			     bool async)
5166 {
5167 	/*
5168 	 * We are about to suspend the port, so we do not care about
5169 	 * scsi_rescan_device() calls scheduled by previous resume operations.
5170 	 * The next resume will schedule the rescan again. So cancel any rescan
5171 	 * that is not done yet.
5172 	 */
5173 	cancel_delayed_work_sync(&ap->scsi_rescan_task);
5174 
5175 	/*
5176 	 * On some hardware, device fails to respond after spun down for
5177 	 * suspend. As the device will not be used until being resumed, we
5178 	 * do not need to touch the device. Ask EH to skip the usual stuff
5179 	 * and proceed directly to suspend.
5180 	 *
5181 	 * http://thread.gmane.org/gmane.linux.ide/46764
5182 	 */
5183 	ata_port_request_pm(ap, mesg, 0,
5184 			    ATA_EHI_QUIET | ATA_EHI_NO_AUTOPSY |
5185 			    ATA_EHI_NO_RECOVERY,
5186 			    async);
5187 }
5188 
ata_port_pm_suspend(struct device * dev)5189 static int ata_port_pm_suspend(struct device *dev)
5190 {
5191 	struct ata_port *ap = to_ata_port(dev);
5192 
5193 	if (pm_runtime_suspended(dev))
5194 		return 0;
5195 
5196 	ata_port_suspend(ap, PMSG_SUSPEND, false);
5197 	return 0;
5198 }
5199 
ata_port_pm_freeze(struct device * dev)5200 static int ata_port_pm_freeze(struct device *dev)
5201 {
5202 	struct ata_port *ap = to_ata_port(dev);
5203 
5204 	if (pm_runtime_suspended(dev))
5205 		return 0;
5206 
5207 	ata_port_suspend(ap, PMSG_FREEZE, false);
5208 	return 0;
5209 }
5210 
ata_port_pm_poweroff(struct device * dev)5211 static int ata_port_pm_poweroff(struct device *dev)
5212 {
5213 	if (!pm_runtime_suspended(dev))
5214 		ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE, false);
5215 	return 0;
5216 }
5217 
ata_port_resume(struct ata_port * ap,pm_message_t mesg,bool async)5218 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg,
5219 			    bool async)
5220 {
5221 	ata_port_request_pm(ap, mesg, ATA_EH_RESET,
5222 			    ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET,
5223 			    async);
5224 }
5225 
ata_port_pm_resume(struct device * dev)5226 static int ata_port_pm_resume(struct device *dev)
5227 {
5228 	if (!pm_runtime_suspended(dev))
5229 		ata_port_resume(to_ata_port(dev), PMSG_RESUME, true);
5230 	return 0;
5231 }
5232 
5233 /*
5234  * For ODDs, the upper layer will poll for media change every few seconds,
5235  * which will make it enter and leave suspend state every few seconds. And
5236  * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5237  * is very little and the ODD may malfunction after constantly being reset.
5238  * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5239  * ODD is attached to the port.
5240  */
ata_port_runtime_idle(struct device * dev)5241 static int ata_port_runtime_idle(struct device *dev)
5242 {
5243 	struct ata_port *ap = to_ata_port(dev);
5244 	struct ata_link *link;
5245 	struct ata_device *adev;
5246 
5247 	ata_for_each_link(link, ap, HOST_FIRST) {
5248 		ata_for_each_dev(adev, link, ENABLED)
5249 			if (adev->class == ATA_DEV_ATAPI &&
5250 			    !zpodd_dev_enabled(adev))
5251 				return -EBUSY;
5252 	}
5253 
5254 	return 0;
5255 }
5256 
ata_port_runtime_suspend(struct device * dev)5257 static int ata_port_runtime_suspend(struct device *dev)
5258 {
5259 	ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND, false);
5260 	return 0;
5261 }
5262 
ata_port_runtime_resume(struct device * dev)5263 static int ata_port_runtime_resume(struct device *dev)
5264 {
5265 	ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME, false);
5266 	return 0;
5267 }
5268 
5269 static const struct dev_pm_ops ata_port_pm_ops = {
5270 	.suspend = ata_port_pm_suspend,
5271 	.resume = ata_port_pm_resume,
5272 	.freeze = ata_port_pm_freeze,
5273 	.thaw = ata_port_pm_resume,
5274 	.poweroff = ata_port_pm_poweroff,
5275 	.restore = ata_port_pm_resume,
5276 
5277 	.runtime_suspend = ata_port_runtime_suspend,
5278 	.runtime_resume = ata_port_runtime_resume,
5279 	.runtime_idle = ata_port_runtime_idle,
5280 };
5281 
5282 /* sas ports don't participate in pm runtime management of ata_ports,
5283  * and need to resume ata devices at the domain level, not the per-port
5284  * level. sas suspend/resume is async to allow parallel port recovery
5285  * since sas has multiple ata_port instances per Scsi_Host.
5286  */
ata_sas_port_suspend(struct ata_port * ap)5287 void ata_sas_port_suspend(struct ata_port *ap)
5288 {
5289 	ata_port_suspend(ap, PMSG_SUSPEND, true);
5290 }
5291 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5292 
ata_sas_port_resume(struct ata_port * ap)5293 void ata_sas_port_resume(struct ata_port *ap)
5294 {
5295 	ata_port_resume(ap, PMSG_RESUME, true);
5296 }
5297 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5298 
5299 /**
5300  *	ata_host_suspend - suspend host
5301  *	@host: host to suspend
5302  *	@mesg: PM message
5303  *
5304  *	Suspend @host.  Actual operation is performed by port suspend.
5305  */
ata_host_suspend(struct ata_host * host,pm_message_t mesg)5306 void ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5307 {
5308 	host->dev->power.power_state = mesg;
5309 }
5310 EXPORT_SYMBOL_GPL(ata_host_suspend);
5311 
5312 /**
5313  *	ata_host_resume - resume host
5314  *	@host: host to resume
5315  *
5316  *	Resume @host.  Actual operation is performed by port resume.
5317  */
ata_host_resume(struct ata_host * host)5318 void ata_host_resume(struct ata_host *host)
5319 {
5320 	host->dev->power.power_state = PMSG_ON;
5321 }
5322 EXPORT_SYMBOL_GPL(ata_host_resume);
5323 #endif
5324 
5325 const struct device_type ata_port_type = {
5326 	.name = ATA_PORT_TYPE_NAME,
5327 #ifdef CONFIG_PM
5328 	.pm = &ata_port_pm_ops,
5329 #endif
5330 };
5331 
5332 /**
5333  *	ata_dev_init - Initialize an ata_device structure
5334  *	@dev: Device structure to initialize
5335  *
5336  *	Initialize @dev in preparation for probing.
5337  *
5338  *	LOCKING:
5339  *	Inherited from caller.
5340  */
ata_dev_init(struct ata_device * dev)5341 void ata_dev_init(struct ata_device *dev)
5342 {
5343 	struct ata_link *link = ata_dev_phys_link(dev);
5344 	struct ata_port *ap = link->ap;
5345 	unsigned long flags;
5346 
5347 	/* SATA spd limit is bound to the attached device, reset together */
5348 	link->sata_spd_limit = link->hw_sata_spd_limit;
5349 	link->sata_spd = 0;
5350 
5351 	/* High bits of dev->flags are used to record warm plug
5352 	 * requests which occur asynchronously.  Synchronize using
5353 	 * host lock.
5354 	 */
5355 	spin_lock_irqsave(ap->lock, flags);
5356 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5357 	dev->horkage = 0;
5358 	spin_unlock_irqrestore(ap->lock, flags);
5359 
5360 	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5361 	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5362 	dev->pio_mask = UINT_MAX;
5363 	dev->mwdma_mask = UINT_MAX;
5364 	dev->udma_mask = UINT_MAX;
5365 }
5366 
5367 /**
5368  *	ata_link_init - Initialize an ata_link structure
5369  *	@ap: ATA port link is attached to
5370  *	@link: Link structure to initialize
5371  *	@pmp: Port multiplier port number
5372  *
5373  *	Initialize @link.
5374  *
5375  *	LOCKING:
5376  *	Kernel thread context (may sleep)
5377  */
ata_link_init(struct ata_port * ap,struct ata_link * link,int pmp)5378 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5379 {
5380 	int i;
5381 
5382 	/* clear everything except for devices */
5383 	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5384 	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5385 
5386 	link->ap = ap;
5387 	link->pmp = pmp;
5388 	link->active_tag = ATA_TAG_POISON;
5389 	link->hw_sata_spd_limit = UINT_MAX;
5390 
5391 	/* can't use iterator, ap isn't initialized yet */
5392 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5393 		struct ata_device *dev = &link->device[i];
5394 
5395 		dev->link = link;
5396 		dev->devno = dev - link->device;
5397 #ifdef CONFIG_ATA_ACPI
5398 		dev->gtf_filter = ata_acpi_gtf_filter;
5399 #endif
5400 		ata_dev_init(dev);
5401 	}
5402 }
5403 
5404 /**
5405  *	sata_link_init_spd - Initialize link->sata_spd_limit
5406  *	@link: Link to configure sata_spd_limit for
5407  *
5408  *	Initialize ``link->[hw_]sata_spd_limit`` to the currently
5409  *	configured value.
5410  *
5411  *	LOCKING:
5412  *	Kernel thread context (may sleep).
5413  *
5414  *	RETURNS:
5415  *	0 on success, -errno on failure.
5416  */
sata_link_init_spd(struct ata_link * link)5417 int sata_link_init_spd(struct ata_link *link)
5418 {
5419 	u8 spd;
5420 	int rc;
5421 
5422 	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5423 	if (rc)
5424 		return rc;
5425 
5426 	spd = (link->saved_scontrol >> 4) & 0xf;
5427 	if (spd)
5428 		link->hw_sata_spd_limit &= (1 << spd) - 1;
5429 
5430 	ata_force_link_limits(link);
5431 
5432 	link->sata_spd_limit = link->hw_sata_spd_limit;
5433 
5434 	return 0;
5435 }
5436 
5437 /**
5438  *	ata_port_alloc - allocate and initialize basic ATA port resources
5439  *	@host: ATA host this allocated port belongs to
5440  *
5441  *	Allocate and initialize basic ATA port resources.
5442  *
5443  *	RETURNS:
5444  *	Allocate ATA port on success, NULL on failure.
5445  *
5446  *	LOCKING:
5447  *	Inherited from calling layer (may sleep).
5448  */
ata_port_alloc(struct ata_host * host)5449 struct ata_port *ata_port_alloc(struct ata_host *host)
5450 {
5451 	struct ata_port *ap;
5452 
5453 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5454 	if (!ap)
5455 		return NULL;
5456 
5457 	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5458 	ap->lock = &host->lock;
5459 	ap->print_id = -1;
5460 	ap->local_port_no = -1;
5461 	ap->host = host;
5462 	ap->dev = host->dev;
5463 
5464 	mutex_init(&ap->scsi_scan_mutex);
5465 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5466 	INIT_DELAYED_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5467 	INIT_LIST_HEAD(&ap->eh_done_q);
5468 	init_waitqueue_head(&ap->eh_wait_q);
5469 	init_completion(&ap->park_req_pending);
5470 	timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5471 		    TIMER_DEFERRABLE);
5472 
5473 	ap->cbl = ATA_CBL_NONE;
5474 
5475 	ata_link_init(ap, &ap->link, 0);
5476 
5477 #ifdef ATA_IRQ_TRAP
5478 	ap->stats.unhandled_irq = 1;
5479 	ap->stats.idle_irq = 1;
5480 #endif
5481 	ata_sff_port_init(ap);
5482 
5483 	return ap;
5484 }
5485 
ata_devres_release(struct device * gendev,void * res)5486 static void ata_devres_release(struct device *gendev, void *res)
5487 {
5488 	struct ata_host *host = dev_get_drvdata(gendev);
5489 	int i;
5490 
5491 	for (i = 0; i < host->n_ports; i++) {
5492 		struct ata_port *ap = host->ports[i];
5493 
5494 		if (!ap)
5495 			continue;
5496 
5497 		if (ap->scsi_host)
5498 			scsi_host_put(ap->scsi_host);
5499 
5500 	}
5501 
5502 	dev_set_drvdata(gendev, NULL);
5503 	ata_host_put(host);
5504 }
5505 
ata_host_release(struct kref * kref)5506 static void ata_host_release(struct kref *kref)
5507 {
5508 	struct ata_host *host = container_of(kref, struct ata_host, kref);
5509 	int i;
5510 
5511 	for (i = 0; i < host->n_ports; i++) {
5512 		struct ata_port *ap = host->ports[i];
5513 
5514 		kfree(ap->pmp_link);
5515 		kfree(ap->slave_link);
5516 		kfree(ap->ncq_sense_buf);
5517 		kfree(ap);
5518 		host->ports[i] = NULL;
5519 	}
5520 	kfree(host);
5521 }
5522 
ata_host_get(struct ata_host * host)5523 void ata_host_get(struct ata_host *host)
5524 {
5525 	kref_get(&host->kref);
5526 }
5527 
ata_host_put(struct ata_host * host)5528 void ata_host_put(struct ata_host *host)
5529 {
5530 	kref_put(&host->kref, ata_host_release);
5531 }
5532 EXPORT_SYMBOL_GPL(ata_host_put);
5533 
5534 /**
5535  *	ata_host_alloc - allocate and init basic ATA host resources
5536  *	@dev: generic device this host is associated with
5537  *	@max_ports: maximum number of ATA ports associated with this host
5538  *
5539  *	Allocate and initialize basic ATA host resources.  LLD calls
5540  *	this function to allocate a host, initializes it fully and
5541  *	attaches it using ata_host_register().
5542  *
5543  *	@max_ports ports are allocated and host->n_ports is
5544  *	initialized to @max_ports.  The caller is allowed to decrease
5545  *	host->n_ports before calling ata_host_register().  The unused
5546  *	ports will be automatically freed on registration.
5547  *
5548  *	RETURNS:
5549  *	Allocate ATA host on success, NULL on failure.
5550  *
5551  *	LOCKING:
5552  *	Inherited from calling layer (may sleep).
5553  */
ata_host_alloc(struct device * dev,int max_ports)5554 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5555 {
5556 	struct ata_host *host;
5557 	size_t sz;
5558 	int i;
5559 	void *dr;
5560 
5561 	/* alloc a container for our list of ATA ports (buses) */
5562 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5563 	host = kzalloc(sz, GFP_KERNEL);
5564 	if (!host)
5565 		return NULL;
5566 
5567 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
5568 		goto err_free;
5569 
5570 	dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5571 	if (!dr)
5572 		goto err_out;
5573 
5574 	devres_add(dev, dr);
5575 	dev_set_drvdata(dev, host);
5576 
5577 	spin_lock_init(&host->lock);
5578 	mutex_init(&host->eh_mutex);
5579 	host->dev = dev;
5580 	host->n_ports = max_ports;
5581 	kref_init(&host->kref);
5582 
5583 	/* allocate ports bound to this host */
5584 	for (i = 0; i < max_ports; i++) {
5585 		struct ata_port *ap;
5586 
5587 		ap = ata_port_alloc(host);
5588 		if (!ap)
5589 			goto err_out;
5590 
5591 		ap->port_no = i;
5592 		host->ports[i] = ap;
5593 	}
5594 
5595 	devres_remove_group(dev, NULL);
5596 	return host;
5597 
5598  err_out:
5599 	devres_release_group(dev, NULL);
5600  err_free:
5601 	kfree(host);
5602 	return NULL;
5603 }
5604 EXPORT_SYMBOL_GPL(ata_host_alloc);
5605 
5606 /**
5607  *	ata_host_alloc_pinfo - alloc host and init with port_info array
5608  *	@dev: generic device this host is associated with
5609  *	@ppi: array of ATA port_info to initialize host with
5610  *	@n_ports: number of ATA ports attached to this host
5611  *
5612  *	Allocate ATA host and initialize with info from @ppi.  If NULL
5613  *	terminated, @ppi may contain fewer entries than @n_ports.  The
5614  *	last entry will be used for the remaining ports.
5615  *
5616  *	RETURNS:
5617  *	Allocate ATA host on success, NULL on failure.
5618  *
5619  *	LOCKING:
5620  *	Inherited from calling layer (may sleep).
5621  */
ata_host_alloc_pinfo(struct device * dev,const struct ata_port_info * const * ppi,int n_ports)5622 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5623 				      const struct ata_port_info * const * ppi,
5624 				      int n_ports)
5625 {
5626 	const struct ata_port_info *pi = &ata_dummy_port_info;
5627 	struct ata_host *host;
5628 	int i, j;
5629 
5630 	host = ata_host_alloc(dev, n_ports);
5631 	if (!host)
5632 		return NULL;
5633 
5634 	for (i = 0, j = 0; i < host->n_ports; i++) {
5635 		struct ata_port *ap = host->ports[i];
5636 
5637 		if (ppi[j])
5638 			pi = ppi[j++];
5639 
5640 		ap->pio_mask = pi->pio_mask;
5641 		ap->mwdma_mask = pi->mwdma_mask;
5642 		ap->udma_mask = pi->udma_mask;
5643 		ap->flags |= pi->flags;
5644 		ap->link.flags |= pi->link_flags;
5645 		ap->ops = pi->port_ops;
5646 
5647 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5648 			host->ops = pi->port_ops;
5649 	}
5650 
5651 	return host;
5652 }
5653 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5654 
ata_host_stop(struct device * gendev,void * res)5655 static void ata_host_stop(struct device *gendev, void *res)
5656 {
5657 	struct ata_host *host = dev_get_drvdata(gendev);
5658 	int i;
5659 
5660 	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5661 
5662 	for (i = 0; i < host->n_ports; i++) {
5663 		struct ata_port *ap = host->ports[i];
5664 
5665 		if (ap->ops->port_stop)
5666 			ap->ops->port_stop(ap);
5667 	}
5668 
5669 	if (host->ops->host_stop)
5670 		host->ops->host_stop(host);
5671 }
5672 
5673 /**
5674  *	ata_finalize_port_ops - finalize ata_port_operations
5675  *	@ops: ata_port_operations to finalize
5676  *
5677  *	An ata_port_operations can inherit from another ops and that
5678  *	ops can again inherit from another.  This can go on as many
5679  *	times as necessary as long as there is no loop in the
5680  *	inheritance chain.
5681  *
5682  *	Ops tables are finalized when the host is started.  NULL or
5683  *	unspecified entries are inherited from the closet ancestor
5684  *	which has the method and the entry is populated with it.
5685  *	After finalization, the ops table directly points to all the
5686  *	methods and ->inherits is no longer necessary and cleared.
5687  *
5688  *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5689  *
5690  *	LOCKING:
5691  *	None.
5692  */
ata_finalize_port_ops(struct ata_port_operations * ops)5693 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5694 {
5695 	static DEFINE_SPINLOCK(lock);
5696 	const struct ata_port_operations *cur;
5697 	void **begin = (void **)ops;
5698 	void **end = (void **)&ops->inherits;
5699 	void **pp;
5700 
5701 	if (!ops || !ops->inherits)
5702 		return;
5703 
5704 	spin_lock(&lock);
5705 
5706 	for (cur = ops->inherits; cur; cur = cur->inherits) {
5707 		void **inherit = (void **)cur;
5708 
5709 		for (pp = begin; pp < end; pp++, inherit++)
5710 			if (!*pp)
5711 				*pp = *inherit;
5712 	}
5713 
5714 	for (pp = begin; pp < end; pp++)
5715 		if (IS_ERR(*pp))
5716 			*pp = NULL;
5717 
5718 	ops->inherits = NULL;
5719 
5720 	spin_unlock(&lock);
5721 }
5722 
5723 /**
5724  *	ata_host_start - start and freeze ports of an ATA host
5725  *	@host: ATA host to start ports for
5726  *
5727  *	Start and then freeze ports of @host.  Started status is
5728  *	recorded in host->flags, so this function can be called
5729  *	multiple times.  Ports are guaranteed to get started only
5730  *	once.  If host->ops is not initialized yet, it is set to the
5731  *	first non-dummy port ops.
5732  *
5733  *	LOCKING:
5734  *	Inherited from calling layer (may sleep).
5735  *
5736  *	RETURNS:
5737  *	0 if all ports are started successfully, -errno otherwise.
5738  */
ata_host_start(struct ata_host * host)5739 int ata_host_start(struct ata_host *host)
5740 {
5741 	int have_stop = 0;
5742 	void *start_dr = NULL;
5743 	int i, rc;
5744 
5745 	if (host->flags & ATA_HOST_STARTED)
5746 		return 0;
5747 
5748 	ata_finalize_port_ops(host->ops);
5749 
5750 	for (i = 0; i < host->n_ports; i++) {
5751 		struct ata_port *ap = host->ports[i];
5752 
5753 		ata_finalize_port_ops(ap->ops);
5754 
5755 		if (!host->ops && !ata_port_is_dummy(ap))
5756 			host->ops = ap->ops;
5757 
5758 		if (ap->ops->port_stop)
5759 			have_stop = 1;
5760 	}
5761 
5762 	if (host->ops && host->ops->host_stop)
5763 		have_stop = 1;
5764 
5765 	if (have_stop) {
5766 		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5767 		if (!start_dr)
5768 			return -ENOMEM;
5769 	}
5770 
5771 	for (i = 0; i < host->n_ports; i++) {
5772 		struct ata_port *ap = host->ports[i];
5773 
5774 		if (ap->ops->port_start) {
5775 			rc = ap->ops->port_start(ap);
5776 			if (rc) {
5777 				if (rc != -ENODEV)
5778 					dev_err(host->dev,
5779 						"failed to start port %d (errno=%d)\n",
5780 						i, rc);
5781 				goto err_out;
5782 			}
5783 		}
5784 		ata_eh_freeze_port(ap);
5785 	}
5786 
5787 	if (start_dr)
5788 		devres_add(host->dev, start_dr);
5789 	host->flags |= ATA_HOST_STARTED;
5790 	return 0;
5791 
5792  err_out:
5793 	while (--i >= 0) {
5794 		struct ata_port *ap = host->ports[i];
5795 
5796 		if (ap->ops->port_stop)
5797 			ap->ops->port_stop(ap);
5798 	}
5799 	devres_free(start_dr);
5800 	return rc;
5801 }
5802 EXPORT_SYMBOL_GPL(ata_host_start);
5803 
5804 /**
5805  *	ata_host_init - Initialize a host struct for sas (ipr, libsas)
5806  *	@host:	host to initialize
5807  *	@dev:	device host is attached to
5808  *	@ops:	port_ops
5809  *
5810  */
ata_host_init(struct ata_host * host,struct device * dev,struct ata_port_operations * ops)5811 void ata_host_init(struct ata_host *host, struct device *dev,
5812 		   struct ata_port_operations *ops)
5813 {
5814 	spin_lock_init(&host->lock);
5815 	mutex_init(&host->eh_mutex);
5816 	host->n_tags = ATA_MAX_QUEUE;
5817 	host->dev = dev;
5818 	host->ops = ops;
5819 	kref_init(&host->kref);
5820 }
5821 EXPORT_SYMBOL_GPL(ata_host_init);
5822 
ata_port_probe(struct ata_port * ap)5823 void ata_port_probe(struct ata_port *ap)
5824 {
5825 	struct ata_eh_info *ehi = &ap->link.eh_info;
5826 	unsigned long flags;
5827 
5828 	/* kick EH for boot probing */
5829 	spin_lock_irqsave(ap->lock, flags);
5830 
5831 	ehi->probe_mask |= ATA_ALL_DEVICES;
5832 	ehi->action |= ATA_EH_RESET;
5833 	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5834 
5835 	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5836 	ap->pflags |= ATA_PFLAG_LOADING;
5837 	ata_port_schedule_eh(ap);
5838 
5839 	spin_unlock_irqrestore(ap->lock, flags);
5840 }
5841 EXPORT_SYMBOL_GPL(ata_port_probe);
5842 
async_port_probe(void * data,async_cookie_t cookie)5843 static void async_port_probe(void *data, async_cookie_t cookie)
5844 {
5845 	struct ata_port *ap = data;
5846 
5847 	/*
5848 	 * If we're not allowed to scan this host in parallel,
5849 	 * we need to wait until all previous scans have completed
5850 	 * before going further.
5851 	 * Jeff Garzik says this is only within a controller, so we
5852 	 * don't need to wait for port 0, only for later ports.
5853 	 */
5854 	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5855 		async_synchronize_cookie(cookie);
5856 
5857 	ata_port_probe(ap);
5858 	ata_port_wait_eh(ap);
5859 
5860 	/* in order to keep device order, we need to synchronize at this point */
5861 	async_synchronize_cookie(cookie);
5862 
5863 	ata_scsi_scan_host(ap, 1);
5864 }
5865 
5866 /**
5867  *	ata_host_register - register initialized ATA host
5868  *	@host: ATA host to register
5869  *	@sht: template for SCSI host
5870  *
5871  *	Register initialized ATA host.  @host is allocated using
5872  *	ata_host_alloc() and fully initialized by LLD.  This function
5873  *	starts ports, registers @host with ATA and SCSI layers and
5874  *	probe registered devices.
5875  *
5876  *	LOCKING:
5877  *	Inherited from calling layer (may sleep).
5878  *
5879  *	RETURNS:
5880  *	0 on success, -errno otherwise.
5881  */
ata_host_register(struct ata_host * host,const struct scsi_host_template * sht)5882 int ata_host_register(struct ata_host *host, const struct scsi_host_template *sht)
5883 {
5884 	int i, rc;
5885 
5886 	host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5887 
5888 	/* host must have been started */
5889 	if (!(host->flags & ATA_HOST_STARTED)) {
5890 		dev_err(host->dev, "BUG: trying to register unstarted host\n");
5891 		WARN_ON(1);
5892 		return -EINVAL;
5893 	}
5894 
5895 	/* Blow away unused ports.  This happens when LLD can't
5896 	 * determine the exact number of ports to allocate at
5897 	 * allocation time.
5898 	 */
5899 	for (i = host->n_ports; host->ports[i]; i++)
5900 		kfree(host->ports[i]);
5901 
5902 	/* give ports names and add SCSI hosts */
5903 	for (i = 0; i < host->n_ports; i++) {
5904 		host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
5905 		host->ports[i]->local_port_no = i + 1;
5906 	}
5907 
5908 	/* Create associated sysfs transport objects  */
5909 	for (i = 0; i < host->n_ports; i++) {
5910 		rc = ata_tport_add(host->dev,host->ports[i]);
5911 		if (rc) {
5912 			goto err_tadd;
5913 		}
5914 	}
5915 
5916 	rc = ata_scsi_add_hosts(host, sht);
5917 	if (rc)
5918 		goto err_tadd;
5919 
5920 	/* set cable, sata_spd_limit and report */
5921 	for (i = 0; i < host->n_ports; i++) {
5922 		struct ata_port *ap = host->ports[i];
5923 		unsigned int xfer_mask;
5924 
5925 		/* set SATA cable type if still unset */
5926 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5927 			ap->cbl = ATA_CBL_SATA;
5928 
5929 		/* init sata_spd_limit to the current value */
5930 		sata_link_init_spd(&ap->link);
5931 		if (ap->slave_link)
5932 			sata_link_init_spd(ap->slave_link);
5933 
5934 		/* print per-port info to dmesg */
5935 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5936 					      ap->udma_mask);
5937 
5938 		if (!ata_port_is_dummy(ap)) {
5939 			ata_port_info(ap, "%cATA max %s %s\n",
5940 				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5941 				      ata_mode_string(xfer_mask),
5942 				      ap->link.eh_info.desc);
5943 			ata_ehi_clear_desc(&ap->link.eh_info);
5944 		} else
5945 			ata_port_info(ap, "DUMMY\n");
5946 	}
5947 
5948 	/* perform each probe asynchronously */
5949 	for (i = 0; i < host->n_ports; i++) {
5950 		struct ata_port *ap = host->ports[i];
5951 		ap->cookie = async_schedule(async_port_probe, ap);
5952 	}
5953 
5954 	return 0;
5955 
5956  err_tadd:
5957 	while (--i >= 0) {
5958 		ata_tport_delete(host->ports[i]);
5959 	}
5960 	return rc;
5961 
5962 }
5963 EXPORT_SYMBOL_GPL(ata_host_register);
5964 
5965 /**
5966  *	ata_host_activate - start host, request IRQ and register it
5967  *	@host: target ATA host
5968  *	@irq: IRQ to request
5969  *	@irq_handler: irq_handler used when requesting IRQ
5970  *	@irq_flags: irq_flags used when requesting IRQ
5971  *	@sht: scsi_host_template to use when registering the host
5972  *
5973  *	After allocating an ATA host and initializing it, most libata
5974  *	LLDs perform three steps to activate the host - start host,
5975  *	request IRQ and register it.  This helper takes necessary
5976  *	arguments and performs the three steps in one go.
5977  *
5978  *	An invalid IRQ skips the IRQ registration and expects the host to
5979  *	have set polling mode on the port. In this case, @irq_handler
5980  *	should be NULL.
5981  *
5982  *	LOCKING:
5983  *	Inherited from calling layer (may sleep).
5984  *
5985  *	RETURNS:
5986  *	0 on success, -errno otherwise.
5987  */
ata_host_activate(struct ata_host * host,int irq,irq_handler_t irq_handler,unsigned long irq_flags,const struct scsi_host_template * sht)5988 int ata_host_activate(struct ata_host *host, int irq,
5989 		      irq_handler_t irq_handler, unsigned long irq_flags,
5990 		      const struct scsi_host_template *sht)
5991 {
5992 	int i, rc;
5993 	char *irq_desc;
5994 
5995 	rc = ata_host_start(host);
5996 	if (rc)
5997 		return rc;
5998 
5999 	/* Special case for polling mode */
6000 	if (!irq) {
6001 		WARN_ON(irq_handler);
6002 		return ata_host_register(host, sht);
6003 	}
6004 
6005 	irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6006 				  dev_driver_string(host->dev),
6007 				  dev_name(host->dev));
6008 	if (!irq_desc)
6009 		return -ENOMEM;
6010 
6011 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6012 			      irq_desc, host);
6013 	if (rc)
6014 		return rc;
6015 
6016 	for (i = 0; i < host->n_ports; i++)
6017 		ata_port_desc_misc(host->ports[i], irq);
6018 
6019 	rc = ata_host_register(host, sht);
6020 	/* if failed, just free the IRQ and leave ports alone */
6021 	if (rc)
6022 		devm_free_irq(host->dev, irq, host);
6023 
6024 	return rc;
6025 }
6026 EXPORT_SYMBOL_GPL(ata_host_activate);
6027 
6028 /**
6029  *	ata_port_detach - Detach ATA port in preparation of device removal
6030  *	@ap: ATA port to be detached
6031  *
6032  *	Detach all ATA devices and the associated SCSI devices of @ap;
6033  *	then, remove the associated SCSI host.  @ap is guaranteed to
6034  *	be quiescent on return from this function.
6035  *
6036  *	LOCKING:
6037  *	Kernel thread context (may sleep).
6038  */
ata_port_detach(struct ata_port * ap)6039 static void ata_port_detach(struct ata_port *ap)
6040 {
6041 	unsigned long flags;
6042 	struct ata_link *link;
6043 	struct ata_device *dev;
6044 
6045 	/* Ensure ata_port probe has completed */
6046 	async_synchronize_cookie(ap->cookie + 1);
6047 
6048 	/* Wait for any ongoing EH */
6049 	ata_port_wait_eh(ap);
6050 
6051 	mutex_lock(&ap->scsi_scan_mutex);
6052 	spin_lock_irqsave(ap->lock, flags);
6053 
6054 	/* Remove scsi devices */
6055 	ata_for_each_link(link, ap, HOST_FIRST) {
6056 		ata_for_each_dev(dev, link, ALL) {
6057 			if (dev->sdev) {
6058 				spin_unlock_irqrestore(ap->lock, flags);
6059 				scsi_remove_device(dev->sdev);
6060 				spin_lock_irqsave(ap->lock, flags);
6061 				dev->sdev = NULL;
6062 			}
6063 		}
6064 	}
6065 
6066 	/* Tell EH to disable all devices */
6067 	ap->pflags |= ATA_PFLAG_UNLOADING;
6068 	ata_port_schedule_eh(ap);
6069 
6070 	spin_unlock_irqrestore(ap->lock, flags);
6071 	mutex_unlock(&ap->scsi_scan_mutex);
6072 
6073 	/* wait till EH commits suicide */
6074 	ata_port_wait_eh(ap);
6075 
6076 	/* it better be dead now */
6077 	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6078 
6079 	cancel_delayed_work_sync(&ap->hotplug_task);
6080 	cancel_delayed_work_sync(&ap->scsi_rescan_task);
6081 
6082 	/* clean up zpodd on port removal */
6083 	ata_for_each_link(link, ap, HOST_FIRST) {
6084 		ata_for_each_dev(dev, link, ALL) {
6085 			if (zpodd_dev_enabled(dev))
6086 				zpodd_exit(dev);
6087 		}
6088 	}
6089 	if (ap->pmp_link) {
6090 		int i;
6091 		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6092 			ata_tlink_delete(&ap->pmp_link[i]);
6093 	}
6094 	/* remove the associated SCSI host */
6095 	scsi_remove_host(ap->scsi_host);
6096 	ata_tport_delete(ap);
6097 }
6098 
6099 /**
6100  *	ata_host_detach - Detach all ports of an ATA host
6101  *	@host: Host to detach
6102  *
6103  *	Detach all ports of @host.
6104  *
6105  *	LOCKING:
6106  *	Kernel thread context (may sleep).
6107  */
ata_host_detach(struct ata_host * host)6108 void ata_host_detach(struct ata_host *host)
6109 {
6110 	int i;
6111 
6112 	for (i = 0; i < host->n_ports; i++)
6113 		ata_port_detach(host->ports[i]);
6114 
6115 	/* the host is dead now, dissociate ACPI */
6116 	ata_acpi_dissociate(host);
6117 }
6118 EXPORT_SYMBOL_GPL(ata_host_detach);
6119 
6120 #ifdef CONFIG_PCI
6121 
6122 /**
6123  *	ata_pci_remove_one - PCI layer callback for device removal
6124  *	@pdev: PCI device that was removed
6125  *
6126  *	PCI layer indicates to libata via this hook that hot-unplug or
6127  *	module unload event has occurred.  Detach all ports.  Resource
6128  *	release is handled via devres.
6129  *
6130  *	LOCKING:
6131  *	Inherited from PCI layer (may sleep).
6132  */
ata_pci_remove_one(struct pci_dev * pdev)6133 void ata_pci_remove_one(struct pci_dev *pdev)
6134 {
6135 	struct ata_host *host = pci_get_drvdata(pdev);
6136 
6137 	ata_host_detach(host);
6138 }
6139 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6140 
ata_pci_shutdown_one(struct pci_dev * pdev)6141 void ata_pci_shutdown_one(struct pci_dev *pdev)
6142 {
6143 	struct ata_host *host = pci_get_drvdata(pdev);
6144 	int i;
6145 
6146 	for (i = 0; i < host->n_ports; i++) {
6147 		struct ata_port *ap = host->ports[i];
6148 
6149 		ap->pflags |= ATA_PFLAG_FROZEN;
6150 
6151 		/* Disable port interrupts */
6152 		if (ap->ops->freeze)
6153 			ap->ops->freeze(ap);
6154 
6155 		/* Stop the port DMA engines */
6156 		if (ap->ops->port_stop)
6157 			ap->ops->port_stop(ap);
6158 	}
6159 }
6160 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
6161 
6162 /* move to PCI subsystem */
pci_test_config_bits(struct pci_dev * pdev,const struct pci_bits * bits)6163 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6164 {
6165 	unsigned long tmp = 0;
6166 
6167 	switch (bits->width) {
6168 	case 1: {
6169 		u8 tmp8 = 0;
6170 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6171 		tmp = tmp8;
6172 		break;
6173 	}
6174 	case 2: {
6175 		u16 tmp16 = 0;
6176 		pci_read_config_word(pdev, bits->reg, &tmp16);
6177 		tmp = tmp16;
6178 		break;
6179 	}
6180 	case 4: {
6181 		u32 tmp32 = 0;
6182 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6183 		tmp = tmp32;
6184 		break;
6185 	}
6186 
6187 	default:
6188 		return -EINVAL;
6189 	}
6190 
6191 	tmp &= bits->mask;
6192 
6193 	return (tmp == bits->val) ? 1 : 0;
6194 }
6195 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6196 
6197 #ifdef CONFIG_PM
ata_pci_device_do_suspend(struct pci_dev * pdev,pm_message_t mesg)6198 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6199 {
6200 	pci_save_state(pdev);
6201 	pci_disable_device(pdev);
6202 
6203 	if (mesg.event & PM_EVENT_SLEEP)
6204 		pci_set_power_state(pdev, PCI_D3hot);
6205 }
6206 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6207 
ata_pci_device_do_resume(struct pci_dev * pdev)6208 int ata_pci_device_do_resume(struct pci_dev *pdev)
6209 {
6210 	int rc;
6211 
6212 	pci_set_power_state(pdev, PCI_D0);
6213 	pci_restore_state(pdev);
6214 
6215 	rc = pcim_enable_device(pdev);
6216 	if (rc) {
6217 		dev_err(&pdev->dev,
6218 			"failed to enable device after resume (%d)\n", rc);
6219 		return rc;
6220 	}
6221 
6222 	pci_set_master(pdev);
6223 	return 0;
6224 }
6225 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6226 
ata_pci_device_suspend(struct pci_dev * pdev,pm_message_t mesg)6227 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6228 {
6229 	struct ata_host *host = pci_get_drvdata(pdev);
6230 
6231 	ata_host_suspend(host, mesg);
6232 
6233 	ata_pci_device_do_suspend(pdev, mesg);
6234 
6235 	return 0;
6236 }
6237 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6238 
ata_pci_device_resume(struct pci_dev * pdev)6239 int ata_pci_device_resume(struct pci_dev *pdev)
6240 {
6241 	struct ata_host *host = pci_get_drvdata(pdev);
6242 	int rc;
6243 
6244 	rc = ata_pci_device_do_resume(pdev);
6245 	if (rc == 0)
6246 		ata_host_resume(host);
6247 	return rc;
6248 }
6249 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6250 #endif /* CONFIG_PM */
6251 #endif /* CONFIG_PCI */
6252 
6253 /**
6254  *	ata_platform_remove_one - Platform layer callback for device removal
6255  *	@pdev: Platform device that was removed
6256  *
6257  *	Platform layer indicates to libata via this hook that hot-unplug or
6258  *	module unload event has occurred.  Detach all ports.  Resource
6259  *	release is handled via devres.
6260  *
6261  *	LOCKING:
6262  *	Inherited from platform layer (may sleep).
6263  */
ata_platform_remove_one(struct platform_device * pdev)6264 void ata_platform_remove_one(struct platform_device *pdev)
6265 {
6266 	struct ata_host *host = platform_get_drvdata(pdev);
6267 
6268 	ata_host_detach(host);
6269 }
6270 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6271 
6272 #ifdef CONFIG_ATA_FORCE
6273 
6274 #define force_cbl(name, flag)				\
6275 	{ #name,	.cbl		= (flag) }
6276 
6277 #define force_spd_limit(spd, val)			\
6278 	{ #spd,	.spd_limit		= (val) }
6279 
6280 #define force_xfer(mode, shift)				\
6281 	{ #mode,	.xfer_mask	= (1UL << (shift)) }
6282 
6283 #define force_lflag_on(name, flags)			\
6284 	{ #name,	.lflags_on	= (flags) }
6285 
6286 #define force_lflag_onoff(name, flags)			\
6287 	{ "no" #name,	.lflags_on	= (flags) },	\
6288 	{ #name,	.lflags_off	= (flags) }
6289 
6290 #define force_horkage_on(name, flag)			\
6291 	{ #name,	.horkage_on	= (flag) }
6292 
6293 #define force_horkage_onoff(name, flag)			\
6294 	{ "no" #name,	.horkage_on	= (flag) },	\
6295 	{ #name,	.horkage_off	= (flag) }
6296 
6297 static const struct ata_force_param force_tbl[] __initconst = {
6298 	force_cbl(40c,			ATA_CBL_PATA40),
6299 	force_cbl(80c,			ATA_CBL_PATA80),
6300 	force_cbl(short40c,		ATA_CBL_PATA40_SHORT),
6301 	force_cbl(unk,			ATA_CBL_PATA_UNK),
6302 	force_cbl(ign,			ATA_CBL_PATA_IGN),
6303 	force_cbl(sata,			ATA_CBL_SATA),
6304 
6305 	force_spd_limit(1.5Gbps,	1),
6306 	force_spd_limit(3.0Gbps,	2),
6307 
6308 	force_xfer(pio0,		ATA_SHIFT_PIO + 0),
6309 	force_xfer(pio1,		ATA_SHIFT_PIO + 1),
6310 	force_xfer(pio2,		ATA_SHIFT_PIO + 2),
6311 	force_xfer(pio3,		ATA_SHIFT_PIO + 3),
6312 	force_xfer(pio4,		ATA_SHIFT_PIO + 4),
6313 	force_xfer(pio5,		ATA_SHIFT_PIO + 5),
6314 	force_xfer(pio6,		ATA_SHIFT_PIO + 6),
6315 	force_xfer(mwdma0,		ATA_SHIFT_MWDMA + 0),
6316 	force_xfer(mwdma1,		ATA_SHIFT_MWDMA + 1),
6317 	force_xfer(mwdma2,		ATA_SHIFT_MWDMA + 2),
6318 	force_xfer(mwdma3,		ATA_SHIFT_MWDMA + 3),
6319 	force_xfer(mwdma4,		ATA_SHIFT_MWDMA + 4),
6320 	force_xfer(udma0,		ATA_SHIFT_UDMA + 0),
6321 	force_xfer(udma16,		ATA_SHIFT_UDMA + 0),
6322 	force_xfer(udma/16,		ATA_SHIFT_UDMA + 0),
6323 	force_xfer(udma1,		ATA_SHIFT_UDMA + 1),
6324 	force_xfer(udma25,		ATA_SHIFT_UDMA + 1),
6325 	force_xfer(udma/25,		ATA_SHIFT_UDMA + 1),
6326 	force_xfer(udma2,		ATA_SHIFT_UDMA + 2),
6327 	force_xfer(udma33,		ATA_SHIFT_UDMA + 2),
6328 	force_xfer(udma/33,		ATA_SHIFT_UDMA + 2),
6329 	force_xfer(udma3,		ATA_SHIFT_UDMA + 3),
6330 	force_xfer(udma44,		ATA_SHIFT_UDMA + 3),
6331 	force_xfer(udma/44,		ATA_SHIFT_UDMA + 3),
6332 	force_xfer(udma4,		ATA_SHIFT_UDMA + 4),
6333 	force_xfer(udma66,		ATA_SHIFT_UDMA + 4),
6334 	force_xfer(udma/66,		ATA_SHIFT_UDMA + 4),
6335 	force_xfer(udma5,		ATA_SHIFT_UDMA + 5),
6336 	force_xfer(udma100,		ATA_SHIFT_UDMA + 5),
6337 	force_xfer(udma/100,		ATA_SHIFT_UDMA + 5),
6338 	force_xfer(udma6,		ATA_SHIFT_UDMA + 6),
6339 	force_xfer(udma133,		ATA_SHIFT_UDMA + 6),
6340 	force_xfer(udma/133,		ATA_SHIFT_UDMA + 6),
6341 	force_xfer(udma7,		ATA_SHIFT_UDMA + 7),
6342 
6343 	force_lflag_on(nohrst,		ATA_LFLAG_NO_HRST),
6344 	force_lflag_on(nosrst,		ATA_LFLAG_NO_SRST),
6345 	force_lflag_on(norst,		ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST),
6346 	force_lflag_on(rstonce,		ATA_LFLAG_RST_ONCE),
6347 	force_lflag_onoff(dbdelay,	ATA_LFLAG_NO_DEBOUNCE_DELAY),
6348 
6349 	force_horkage_onoff(ncq,	ATA_HORKAGE_NONCQ),
6350 	force_horkage_onoff(ncqtrim,	ATA_HORKAGE_NO_NCQ_TRIM),
6351 	force_horkage_onoff(ncqati,	ATA_HORKAGE_NO_NCQ_ON_ATI),
6352 
6353 	force_horkage_onoff(trim,	ATA_HORKAGE_NOTRIM),
6354 	force_horkage_on(trim_zero,	ATA_HORKAGE_ZERO_AFTER_TRIM),
6355 	force_horkage_on(max_trim_128m, ATA_HORKAGE_MAX_TRIM_128M),
6356 
6357 	force_horkage_onoff(dma,	ATA_HORKAGE_NODMA),
6358 	force_horkage_on(atapi_dmadir,	ATA_HORKAGE_ATAPI_DMADIR),
6359 	force_horkage_on(atapi_mod16_dma, ATA_HORKAGE_ATAPI_MOD16_DMA),
6360 
6361 	force_horkage_onoff(dmalog,	ATA_HORKAGE_NO_DMA_LOG),
6362 	force_horkage_onoff(iddevlog,	ATA_HORKAGE_NO_ID_DEV_LOG),
6363 	force_horkage_onoff(logdir,	ATA_HORKAGE_NO_LOG_DIR),
6364 
6365 	force_horkage_on(max_sec_128,	ATA_HORKAGE_MAX_SEC_128),
6366 	force_horkage_on(max_sec_1024,	ATA_HORKAGE_MAX_SEC_1024),
6367 	force_horkage_on(max_sec_lba48,	ATA_HORKAGE_MAX_SEC_LBA48),
6368 
6369 	force_horkage_onoff(lpm,	ATA_HORKAGE_NOLPM),
6370 	force_horkage_onoff(setxfer,	ATA_HORKAGE_NOSETXFER),
6371 	force_horkage_on(dump_id,	ATA_HORKAGE_DUMP_ID),
6372 	force_horkage_onoff(fua,	ATA_HORKAGE_NO_FUA),
6373 
6374 	force_horkage_on(disable,	ATA_HORKAGE_DISABLE),
6375 };
6376 
ata_parse_force_one(char ** cur,struct ata_force_ent * force_ent,const char ** reason)6377 static int __init ata_parse_force_one(char **cur,
6378 				      struct ata_force_ent *force_ent,
6379 				      const char **reason)
6380 {
6381 	char *start = *cur, *p = *cur;
6382 	char *id, *val, *endp;
6383 	const struct ata_force_param *match_fp = NULL;
6384 	int nr_matches = 0, i;
6385 
6386 	/* find where this param ends and update *cur */
6387 	while (*p != '\0' && *p != ',')
6388 		p++;
6389 
6390 	if (*p == '\0')
6391 		*cur = p;
6392 	else
6393 		*cur = p + 1;
6394 
6395 	*p = '\0';
6396 
6397 	/* parse */
6398 	p = strchr(start, ':');
6399 	if (!p) {
6400 		val = strstrip(start);
6401 		goto parse_val;
6402 	}
6403 	*p = '\0';
6404 
6405 	id = strstrip(start);
6406 	val = strstrip(p + 1);
6407 
6408 	/* parse id */
6409 	p = strchr(id, '.');
6410 	if (p) {
6411 		*p++ = '\0';
6412 		force_ent->device = simple_strtoul(p, &endp, 10);
6413 		if (p == endp || *endp != '\0') {
6414 			*reason = "invalid device";
6415 			return -EINVAL;
6416 		}
6417 	}
6418 
6419 	force_ent->port = simple_strtoul(id, &endp, 10);
6420 	if (id == endp || *endp != '\0') {
6421 		*reason = "invalid port/link";
6422 		return -EINVAL;
6423 	}
6424 
6425  parse_val:
6426 	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6427 	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6428 		const struct ata_force_param *fp = &force_tbl[i];
6429 
6430 		if (strncasecmp(val, fp->name, strlen(val)))
6431 			continue;
6432 
6433 		nr_matches++;
6434 		match_fp = fp;
6435 
6436 		if (strcasecmp(val, fp->name) == 0) {
6437 			nr_matches = 1;
6438 			break;
6439 		}
6440 	}
6441 
6442 	if (!nr_matches) {
6443 		*reason = "unknown value";
6444 		return -EINVAL;
6445 	}
6446 	if (nr_matches > 1) {
6447 		*reason = "ambiguous value";
6448 		return -EINVAL;
6449 	}
6450 
6451 	force_ent->param = *match_fp;
6452 
6453 	return 0;
6454 }
6455 
ata_parse_force_param(void)6456 static void __init ata_parse_force_param(void)
6457 {
6458 	int idx = 0, size = 1;
6459 	int last_port = -1, last_device = -1;
6460 	char *p, *cur, *next;
6461 
6462 	/* Calculate maximum number of params and allocate ata_force_tbl */
6463 	for (p = ata_force_param_buf; *p; p++)
6464 		if (*p == ',')
6465 			size++;
6466 
6467 	ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6468 	if (!ata_force_tbl) {
6469 		printk(KERN_WARNING "ata: failed to extend force table, "
6470 		       "libata.force ignored\n");
6471 		return;
6472 	}
6473 
6474 	/* parse and populate the table */
6475 	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6476 		const char *reason = "";
6477 		struct ata_force_ent te = { .port = -1, .device = -1 };
6478 
6479 		next = cur;
6480 		if (ata_parse_force_one(&next, &te, &reason)) {
6481 			printk(KERN_WARNING "ata: failed to parse force "
6482 			       "parameter \"%s\" (%s)\n",
6483 			       cur, reason);
6484 			continue;
6485 		}
6486 
6487 		if (te.port == -1) {
6488 			te.port = last_port;
6489 			te.device = last_device;
6490 		}
6491 
6492 		ata_force_tbl[idx++] = te;
6493 
6494 		last_port = te.port;
6495 		last_device = te.device;
6496 	}
6497 
6498 	ata_force_tbl_size = idx;
6499 }
6500 
ata_free_force_param(void)6501 static void ata_free_force_param(void)
6502 {
6503 	kfree(ata_force_tbl);
6504 }
6505 #else
ata_parse_force_param(void)6506 static inline void ata_parse_force_param(void) { }
ata_free_force_param(void)6507 static inline void ata_free_force_param(void) { }
6508 #endif
6509 
ata_init(void)6510 static int __init ata_init(void)
6511 {
6512 	int rc;
6513 
6514 	ata_parse_force_param();
6515 
6516 	rc = ata_sff_init();
6517 	if (rc) {
6518 		ata_free_force_param();
6519 		return rc;
6520 	}
6521 
6522 	libata_transport_init();
6523 	ata_scsi_transport_template = ata_attach_transport();
6524 	if (!ata_scsi_transport_template) {
6525 		ata_sff_exit();
6526 		rc = -ENOMEM;
6527 		goto err_out;
6528 	}
6529 
6530 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6531 	return 0;
6532 
6533 err_out:
6534 	return rc;
6535 }
6536 
ata_exit(void)6537 static void __exit ata_exit(void)
6538 {
6539 	ata_release_transport(ata_scsi_transport_template);
6540 	libata_transport_exit();
6541 	ata_sff_exit();
6542 	ata_free_force_param();
6543 }
6544 
6545 subsys_initcall(ata_init);
6546 module_exit(ata_exit);
6547 
6548 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6549 
ata_ratelimit(void)6550 int ata_ratelimit(void)
6551 {
6552 	return __ratelimit(&ratelimit);
6553 }
6554 EXPORT_SYMBOL_GPL(ata_ratelimit);
6555 
6556 /**
6557  *	ata_msleep - ATA EH owner aware msleep
6558  *	@ap: ATA port to attribute the sleep to
6559  *	@msecs: duration to sleep in milliseconds
6560  *
6561  *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
6562  *	ownership is released before going to sleep and reacquired
6563  *	after the sleep is complete.  IOW, other ports sharing the
6564  *	@ap->host will be allowed to own the EH while this task is
6565  *	sleeping.
6566  *
6567  *	LOCKING:
6568  *	Might sleep.
6569  */
ata_msleep(struct ata_port * ap,unsigned int msecs)6570 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6571 {
6572 	bool owns_eh = ap && ap->host->eh_owner == current;
6573 
6574 	if (owns_eh)
6575 		ata_eh_release(ap);
6576 
6577 	if (msecs < 20) {
6578 		unsigned long usecs = msecs * USEC_PER_MSEC;
6579 		usleep_range(usecs, usecs + 50);
6580 	} else {
6581 		msleep(msecs);
6582 	}
6583 
6584 	if (owns_eh)
6585 		ata_eh_acquire(ap);
6586 }
6587 EXPORT_SYMBOL_GPL(ata_msleep);
6588 
6589 /**
6590  *	ata_wait_register - wait until register value changes
6591  *	@ap: ATA port to wait register for, can be NULL
6592  *	@reg: IO-mapped register
6593  *	@mask: Mask to apply to read register value
6594  *	@val: Wait condition
6595  *	@interval: polling interval in milliseconds
6596  *	@timeout: timeout in milliseconds
6597  *
6598  *	Waiting for some bits of register to change is a common
6599  *	operation for ATA controllers.  This function reads 32bit LE
6600  *	IO-mapped register @reg and tests for the following condition.
6601  *
6602  *	(*@reg & mask) != val
6603  *
6604  *	If the condition is met, it returns; otherwise, the process is
6605  *	repeated after @interval_msec until timeout.
6606  *
6607  *	LOCKING:
6608  *	Kernel thread context (may sleep)
6609  *
6610  *	RETURNS:
6611  *	The final register value.
6612  */
ata_wait_register(struct ata_port * ap,void __iomem * reg,u32 mask,u32 val,unsigned int interval,unsigned int timeout)6613 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6614 		      unsigned int interval, unsigned int timeout)
6615 {
6616 	unsigned long deadline;
6617 	u32 tmp;
6618 
6619 	tmp = ioread32(reg);
6620 
6621 	/* Calculate timeout _after_ the first read to make sure
6622 	 * preceding writes reach the controller before starting to
6623 	 * eat away the timeout.
6624 	 */
6625 	deadline = ata_deadline(jiffies, timeout);
6626 
6627 	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6628 		ata_msleep(ap, interval);
6629 		tmp = ioread32(reg);
6630 	}
6631 
6632 	return tmp;
6633 }
6634 EXPORT_SYMBOL_GPL(ata_wait_register);
6635 
6636 /*
6637  * Dummy port_ops
6638  */
ata_dummy_qc_issue(struct ata_queued_cmd * qc)6639 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6640 {
6641 	return AC_ERR_SYSTEM;
6642 }
6643 
ata_dummy_error_handler(struct ata_port * ap)6644 static void ata_dummy_error_handler(struct ata_port *ap)
6645 {
6646 	/* truly dummy */
6647 }
6648 
6649 struct ata_port_operations ata_dummy_port_ops = {
6650 	.qc_prep		= ata_noop_qc_prep,
6651 	.qc_issue		= ata_dummy_qc_issue,
6652 	.error_handler		= ata_dummy_error_handler,
6653 	.sched_eh		= ata_std_sched_eh,
6654 	.end_eh			= ata_std_end_eh,
6655 };
6656 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6657 
6658 const struct ata_port_info ata_dummy_port_info = {
6659 	.port_ops		= &ata_dummy_port_ops,
6660 };
6661 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6662 
ata_print_version(const struct device * dev,const char * version)6663 void ata_print_version(const struct device *dev, const char *version)
6664 {
6665 	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6666 }
6667 EXPORT_SYMBOL(ata_print_version);
6668 
6669 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load);
6670 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command);
6671 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup);
6672 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start);
6673 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status);
6674