xref: /linux/drivers/gpu/drm/xe/xe_pt.c (revision 48651e18)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "xe_pt.h"
7 
8 #include "regs/xe_gtt_defs.h"
9 #include "xe_bo.h"
10 #include "xe_device.h"
11 #include "xe_drm_client.h"
12 #include "xe_gt.h"
13 #include "xe_gt_tlb_invalidation.h"
14 #include "xe_migrate.h"
15 #include "xe_pt_types.h"
16 #include "xe_pt_walk.h"
17 #include "xe_res_cursor.h"
18 #include "xe_trace.h"
19 #include "xe_ttm_stolen_mgr.h"
20 #include "xe_vm.h"
21 
22 struct xe_pt_dir {
23 	struct xe_pt pt;
24 	/** @children: Array of page-table child nodes */
25 	struct xe_ptw *children[XE_PDES];
26 };
27 
28 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM)
29 #define xe_pt_set_addr(__xe_pt, __addr) ((__xe_pt)->addr = (__addr))
30 #define xe_pt_addr(__xe_pt) ((__xe_pt)->addr)
31 #else
32 #define xe_pt_set_addr(__xe_pt, __addr)
33 #define xe_pt_addr(__xe_pt) 0ull
34 #endif
35 
36 static const u64 xe_normal_pt_shifts[] = {12, 21, 30, 39, 48};
37 static const u64 xe_compact_pt_shifts[] = {16, 21, 30, 39, 48};
38 
39 #define XE_PT_HIGHEST_LEVEL (ARRAY_SIZE(xe_normal_pt_shifts) - 1)
40 
as_xe_pt_dir(struct xe_pt * pt)41 static struct xe_pt_dir *as_xe_pt_dir(struct xe_pt *pt)
42 {
43 	return container_of(pt, struct xe_pt_dir, pt);
44 }
45 
xe_pt_entry(struct xe_pt_dir * pt_dir,unsigned int index)46 static struct xe_pt *xe_pt_entry(struct xe_pt_dir *pt_dir, unsigned int index)
47 {
48 	return container_of(pt_dir->children[index], struct xe_pt, base);
49 }
50 
__xe_pt_empty_pte(struct xe_tile * tile,struct xe_vm * vm,unsigned int level)51 static u64 __xe_pt_empty_pte(struct xe_tile *tile, struct xe_vm *vm,
52 			     unsigned int level)
53 {
54 	struct xe_device *xe = tile_to_xe(tile);
55 	u16 pat_index = xe->pat.idx[XE_CACHE_WB];
56 	u8 id = tile->id;
57 
58 	if (!xe_vm_has_scratch(vm))
59 		return 0;
60 
61 	if (level > MAX_HUGEPTE_LEVEL)
62 		return vm->pt_ops->pde_encode_bo(vm->scratch_pt[id][level - 1]->bo,
63 						 0, pat_index);
64 
65 	return vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level, IS_DGFX(xe), 0) |
66 		XE_PTE_NULL;
67 }
68 
xe_pt_free(struct xe_pt * pt)69 static void xe_pt_free(struct xe_pt *pt)
70 {
71 	if (pt->level)
72 		kfree(as_xe_pt_dir(pt));
73 	else
74 		kfree(pt);
75 }
76 
77 /**
78  * xe_pt_create() - Create a page-table.
79  * @vm: The vm to create for.
80  * @tile: The tile to create for.
81  * @level: The page-table level.
82  *
83  * Allocate and initialize a single struct xe_pt metadata structure. Also
84  * create the corresponding page-table bo, but don't initialize it. If the
85  * level is grater than zero, then it's assumed to be a directory page-
86  * table and the directory structure is also allocated and initialized to
87  * NULL pointers.
88  *
89  * Return: A valid struct xe_pt pointer on success, Pointer error code on
90  * error.
91  */
xe_pt_create(struct xe_vm * vm,struct xe_tile * tile,unsigned int level)92 struct xe_pt *xe_pt_create(struct xe_vm *vm, struct xe_tile *tile,
93 			   unsigned int level)
94 {
95 	struct xe_pt *pt;
96 	struct xe_bo *bo;
97 	int err;
98 
99 	if (level) {
100 		struct xe_pt_dir *dir = kzalloc(sizeof(*dir), GFP_KERNEL);
101 
102 		pt = (dir) ? &dir->pt : NULL;
103 	} else {
104 		pt = kzalloc(sizeof(*pt), GFP_KERNEL);
105 	}
106 	if (!pt)
107 		return ERR_PTR(-ENOMEM);
108 
109 	pt->level = level;
110 	bo = xe_bo_create_pin_map(vm->xe, tile, vm, SZ_4K,
111 				  ttm_bo_type_kernel,
112 				  XE_BO_FLAG_VRAM_IF_DGFX(tile) |
113 				  XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE |
114 				  XE_BO_FLAG_PINNED |
115 				  XE_BO_FLAG_NO_RESV_EVICT |
116 				  XE_BO_FLAG_PAGETABLE);
117 	if (IS_ERR(bo)) {
118 		err = PTR_ERR(bo);
119 		goto err_kfree;
120 	}
121 	pt->bo = bo;
122 	pt->base.children = level ? as_xe_pt_dir(pt)->children : NULL;
123 
124 	if (vm->xef)
125 		xe_drm_client_add_bo(vm->xef->client, pt->bo);
126 	xe_tile_assert(tile, level <= XE_VM_MAX_LEVEL);
127 
128 	return pt;
129 
130 err_kfree:
131 	xe_pt_free(pt);
132 	return ERR_PTR(err);
133 }
134 
135 /**
136  * xe_pt_populate_empty() - Populate a page-table bo with scratch- or zero
137  * entries.
138  * @tile: The tile the scratch pagetable of which to use.
139  * @vm: The vm we populate for.
140  * @pt: The pagetable the bo of which to initialize.
141  *
142  * Populate the page-table bo of @pt with entries pointing into the tile's
143  * scratch page-table tree if any. Otherwise populate with zeros.
144  */
xe_pt_populate_empty(struct xe_tile * tile,struct xe_vm * vm,struct xe_pt * pt)145 void xe_pt_populate_empty(struct xe_tile *tile, struct xe_vm *vm,
146 			  struct xe_pt *pt)
147 {
148 	struct iosys_map *map = &pt->bo->vmap;
149 	u64 empty;
150 	int i;
151 
152 	if (!xe_vm_has_scratch(vm)) {
153 		/*
154 		 * FIXME: Some memory is allocated already allocated to zero?
155 		 * Find out which memory that is and avoid this memset...
156 		 */
157 		xe_map_memset(vm->xe, map, 0, 0, SZ_4K);
158 	} else {
159 		empty = __xe_pt_empty_pte(tile, vm, pt->level);
160 		for (i = 0; i < XE_PDES; i++)
161 			xe_pt_write(vm->xe, map, i, empty);
162 	}
163 }
164 
165 /**
166  * xe_pt_shift() - Return the ilog2 value of the size of the address range of
167  * a page-table at a certain level.
168  * @level: The level.
169  *
170  * Return: The ilog2 value of the size of the address range of a page-table
171  * at level @level.
172  */
xe_pt_shift(unsigned int level)173 unsigned int xe_pt_shift(unsigned int level)
174 {
175 	return XE_PTE_SHIFT + XE_PDE_SHIFT * level;
176 }
177 
178 /**
179  * xe_pt_destroy() - Destroy a page-table tree.
180  * @pt: The root of the page-table tree to destroy.
181  * @flags: vm flags. Currently unused.
182  * @deferred: List head of lockless list for deferred putting. NULL for
183  *            immediate putting.
184  *
185  * Puts the page-table bo, recursively calls xe_pt_destroy on all children
186  * and finally frees @pt. TODO: Can we remove the @flags argument?
187  */
xe_pt_destroy(struct xe_pt * pt,u32 flags,struct llist_head * deferred)188 void xe_pt_destroy(struct xe_pt *pt, u32 flags, struct llist_head *deferred)
189 {
190 	int i;
191 
192 	if (!pt)
193 		return;
194 
195 	XE_WARN_ON(!list_empty(&pt->bo->ttm.base.gpuva.list));
196 	xe_bo_unpin(pt->bo);
197 	xe_bo_put_deferred(pt->bo, deferred);
198 
199 	if (pt->level > 0 && pt->num_live) {
200 		struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt);
201 
202 		for (i = 0; i < XE_PDES; i++) {
203 			if (xe_pt_entry(pt_dir, i))
204 				xe_pt_destroy(xe_pt_entry(pt_dir, i), flags,
205 					      deferred);
206 		}
207 	}
208 	xe_pt_free(pt);
209 }
210 
211 /**
212  * DOC: Pagetable building
213  *
214  * Below we use the term "page-table" for both page-directories, containing
215  * pointers to lower level page-directories or page-tables, and level 0
216  * page-tables that contain only page-table-entries pointing to memory pages.
217  *
218  * When inserting an address range in an already existing page-table tree
219  * there will typically be a set of page-tables that are shared with other
220  * address ranges, and a set that are private to this address range.
221  * The set of shared page-tables can be at most two per level,
222  * and those can't be updated immediately because the entries of those
223  * page-tables may still be in use by the gpu for other mappings. Therefore
224  * when inserting entries into those, we instead stage those insertions by
225  * adding insertion data into struct xe_vm_pgtable_update structures. This
226  * data, (subtrees for the cpu and page-table-entries for the gpu) is then
227  * added in a separate commit step. CPU-data is committed while still under the
228  * vm lock, the object lock and for userptr, the notifier lock in read mode.
229  * The GPU async data is committed either by the GPU or CPU after fulfilling
230  * relevant dependencies.
231  * For non-shared page-tables (and, in fact, for shared ones that aren't
232  * existing at the time of staging), we add the data in-place without the
233  * special update structures. This private part of the page-table tree will
234  * remain disconnected from the vm page-table tree until data is committed to
235  * the shared page tables of the vm tree in the commit phase.
236  */
237 
238 struct xe_pt_update {
239 	/** @update: The update structure we're building for this parent. */
240 	struct xe_vm_pgtable_update *update;
241 	/** @parent: The parent. Used to detect a parent change. */
242 	struct xe_pt *parent;
243 	/** @preexisting: Whether the parent was pre-existing or allocated */
244 	bool preexisting;
245 };
246 
247 struct xe_pt_stage_bind_walk {
248 	/** base: The base class. */
249 	struct xe_pt_walk base;
250 
251 	/* Input parameters for the walk */
252 	/** @vm: The vm we're building for. */
253 	struct xe_vm *vm;
254 	/** @tile: The tile we're building for. */
255 	struct xe_tile *tile;
256 	/** @default_pte: PTE flag only template. No address is associated */
257 	u64 default_pte;
258 	/** @dma_offset: DMA offset to add to the PTE. */
259 	u64 dma_offset;
260 	/**
261 	 * @needs_64k: This address range enforces 64K alignment and
262 	 * granularity.
263 	 */
264 	bool needs_64K;
265 	/**
266 	 * @vma: VMA being mapped
267 	 */
268 	struct xe_vma *vma;
269 
270 	/* Also input, but is updated during the walk*/
271 	/** @curs: The DMA address cursor. */
272 	struct xe_res_cursor *curs;
273 	/** @va_curs_start: The Virtual address coresponding to @curs->start */
274 	u64 va_curs_start;
275 
276 	/* Output */
277 	struct xe_walk_update {
278 		/** @wupd.entries: Caller provided storage. */
279 		struct xe_vm_pgtable_update *entries;
280 		/** @wupd.num_used_entries: Number of update @entries used. */
281 		unsigned int num_used_entries;
282 		/** @wupd.updates: Tracks the update entry at a given level */
283 		struct xe_pt_update updates[XE_VM_MAX_LEVEL + 1];
284 	} wupd;
285 
286 	/* Walk state */
287 	/**
288 	 * @l0_end_addr: The end address of the current l0 leaf. Used for
289 	 * 64K granularity detection.
290 	 */
291 	u64 l0_end_addr;
292 	/** @addr_64K: The start address of the current 64K chunk. */
293 	u64 addr_64K;
294 	/** @found_64: Whether @add_64K actually points to a 64K chunk. */
295 	bool found_64K;
296 };
297 
298 static int
xe_pt_new_shared(struct xe_walk_update * wupd,struct xe_pt * parent,pgoff_t offset,bool alloc_entries)299 xe_pt_new_shared(struct xe_walk_update *wupd, struct xe_pt *parent,
300 		 pgoff_t offset, bool alloc_entries)
301 {
302 	struct xe_pt_update *upd = &wupd->updates[parent->level];
303 	struct xe_vm_pgtable_update *entry;
304 
305 	/*
306 	 * For *each level*, we could only have one active
307 	 * struct xt_pt_update at any one time. Once we move on to a
308 	 * new parent and page-directory, the old one is complete, and
309 	 * updates are either already stored in the build tree or in
310 	 * @wupd->entries
311 	 */
312 	if (likely(upd->parent == parent))
313 		return 0;
314 
315 	upd->parent = parent;
316 	upd->preexisting = true;
317 
318 	if (wupd->num_used_entries == XE_VM_MAX_LEVEL * 2 + 1)
319 		return -EINVAL;
320 
321 	entry = wupd->entries + wupd->num_used_entries++;
322 	upd->update = entry;
323 	entry->ofs = offset;
324 	entry->pt_bo = parent->bo;
325 	entry->pt = parent;
326 	entry->flags = 0;
327 	entry->qwords = 0;
328 
329 	if (alloc_entries) {
330 		entry->pt_entries = kmalloc_array(XE_PDES,
331 						  sizeof(*entry->pt_entries),
332 						  GFP_KERNEL);
333 		if (!entry->pt_entries)
334 			return -ENOMEM;
335 	}
336 
337 	return 0;
338 }
339 
340 /*
341  * NOTE: This is a very frequently called function so we allow ourselves
342  * to annotate (using branch prediction hints) the fastpath of updating a
343  * non-pre-existing pagetable with leaf ptes.
344  */
345 static int
xe_pt_insert_entry(struct xe_pt_stage_bind_walk * xe_walk,struct xe_pt * parent,pgoff_t offset,struct xe_pt * xe_child,u64 pte)346 xe_pt_insert_entry(struct xe_pt_stage_bind_walk *xe_walk, struct xe_pt *parent,
347 		   pgoff_t offset, struct xe_pt *xe_child, u64 pte)
348 {
349 	struct xe_pt_update *upd = &xe_walk->wupd.updates[parent->level];
350 	struct xe_pt_update *child_upd = xe_child ?
351 		&xe_walk->wupd.updates[xe_child->level] : NULL;
352 	int ret;
353 
354 	ret = xe_pt_new_shared(&xe_walk->wupd, parent, offset, true);
355 	if (unlikely(ret))
356 		return ret;
357 
358 	/*
359 	 * Register this new pagetable so that it won't be recognized as
360 	 * a shared pagetable by a subsequent insertion.
361 	 */
362 	if (unlikely(child_upd)) {
363 		child_upd->update = NULL;
364 		child_upd->parent = xe_child;
365 		child_upd->preexisting = false;
366 	}
367 
368 	if (likely(!upd->preexisting)) {
369 		/* Continue building a non-connected subtree. */
370 		struct iosys_map *map = &parent->bo->vmap;
371 
372 		if (unlikely(xe_child))
373 			parent->base.children[offset] = &xe_child->base;
374 
375 		xe_pt_write(xe_walk->vm->xe, map, offset, pte);
376 		parent->num_live++;
377 	} else {
378 		/* Shared pt. Stage update. */
379 		unsigned int idx;
380 		struct xe_vm_pgtable_update *entry = upd->update;
381 
382 		idx = offset - entry->ofs;
383 		entry->pt_entries[idx].pt = xe_child;
384 		entry->pt_entries[idx].pte = pte;
385 		entry->qwords++;
386 	}
387 
388 	return 0;
389 }
390 
xe_pt_hugepte_possible(u64 addr,u64 next,unsigned int level,struct xe_pt_stage_bind_walk * xe_walk)391 static bool xe_pt_hugepte_possible(u64 addr, u64 next, unsigned int level,
392 				   struct xe_pt_stage_bind_walk *xe_walk)
393 {
394 	u64 size, dma;
395 
396 	if (level > MAX_HUGEPTE_LEVEL)
397 		return false;
398 
399 	/* Does the virtual range requested cover a huge pte? */
400 	if (!xe_pt_covers(addr, next, level, &xe_walk->base))
401 		return false;
402 
403 	/* Does the DMA segment cover the whole pte? */
404 	if (next - xe_walk->va_curs_start > xe_walk->curs->size)
405 		return false;
406 
407 	/* null VMA's do not have dma addresses */
408 	if (xe_vma_is_null(xe_walk->vma))
409 		return true;
410 
411 	/* Is the DMA address huge PTE size aligned? */
412 	size = next - addr;
413 	dma = addr - xe_walk->va_curs_start + xe_res_dma(xe_walk->curs);
414 
415 	return IS_ALIGNED(dma, size);
416 }
417 
418 /*
419  * Scan the requested mapping to check whether it can be done entirely
420  * with 64K PTEs.
421  */
422 static bool
xe_pt_scan_64K(u64 addr,u64 next,struct xe_pt_stage_bind_walk * xe_walk)423 xe_pt_scan_64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk)
424 {
425 	struct xe_res_cursor curs = *xe_walk->curs;
426 
427 	if (!IS_ALIGNED(addr, SZ_64K))
428 		return false;
429 
430 	if (next > xe_walk->l0_end_addr)
431 		return false;
432 
433 	/* null VMA's do not have dma addresses */
434 	if (xe_vma_is_null(xe_walk->vma))
435 		return true;
436 
437 	xe_res_next(&curs, addr - xe_walk->va_curs_start);
438 	for (; addr < next; addr += SZ_64K) {
439 		if (!IS_ALIGNED(xe_res_dma(&curs), SZ_64K) || curs.size < SZ_64K)
440 			return false;
441 
442 		xe_res_next(&curs, SZ_64K);
443 	}
444 
445 	return addr == next;
446 }
447 
448 /*
449  * For non-compact "normal" 4K level-0 pagetables, we want to try to group
450  * addresses together in 64K-contigous regions to add a 64K TLB hint for the
451  * device to the PTE.
452  * This function determines whether the address is part of such a
453  * segment. For VRAM in normal pagetables, this is strictly necessary on
454  * some devices.
455  */
456 static bool
xe_pt_is_pte_ps64K(u64 addr,u64 next,struct xe_pt_stage_bind_walk * xe_walk)457 xe_pt_is_pte_ps64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk)
458 {
459 	/* Address is within an already found 64k region */
460 	if (xe_walk->found_64K && addr - xe_walk->addr_64K < SZ_64K)
461 		return true;
462 
463 	xe_walk->found_64K = xe_pt_scan_64K(addr, addr + SZ_64K, xe_walk);
464 	xe_walk->addr_64K = addr;
465 
466 	return xe_walk->found_64K;
467 }
468 
469 static int
xe_pt_stage_bind_entry(struct xe_ptw * parent,pgoff_t offset,unsigned int level,u64 addr,u64 next,struct xe_ptw ** child,enum page_walk_action * action,struct xe_pt_walk * walk)470 xe_pt_stage_bind_entry(struct xe_ptw *parent, pgoff_t offset,
471 		       unsigned int level, u64 addr, u64 next,
472 		       struct xe_ptw **child,
473 		       enum page_walk_action *action,
474 		       struct xe_pt_walk *walk)
475 {
476 	struct xe_pt_stage_bind_walk *xe_walk =
477 		container_of(walk, typeof(*xe_walk), base);
478 	u16 pat_index = xe_walk->vma->pat_index;
479 	struct xe_pt *xe_parent = container_of(parent, typeof(*xe_parent), base);
480 	struct xe_vm *vm = xe_walk->vm;
481 	struct xe_pt *xe_child;
482 	bool covers;
483 	int ret = 0;
484 	u64 pte;
485 
486 	/* Is this a leaf entry ?*/
487 	if (level == 0 || xe_pt_hugepte_possible(addr, next, level, xe_walk)) {
488 		struct xe_res_cursor *curs = xe_walk->curs;
489 		bool is_null = xe_vma_is_null(xe_walk->vma);
490 
491 		XE_WARN_ON(xe_walk->va_curs_start != addr);
492 
493 		pte = vm->pt_ops->pte_encode_vma(is_null ? 0 :
494 						 xe_res_dma(curs) + xe_walk->dma_offset,
495 						 xe_walk->vma, pat_index, level);
496 		pte |= xe_walk->default_pte;
497 
498 		/*
499 		 * Set the XE_PTE_PS64 hint if possible, otherwise if
500 		 * this device *requires* 64K PTE size for VRAM, fail.
501 		 */
502 		if (level == 0 && !xe_parent->is_compact) {
503 			if (xe_pt_is_pte_ps64K(addr, next, xe_walk)) {
504 				xe_walk->vma->gpuva.flags |= XE_VMA_PTE_64K;
505 				pte |= XE_PTE_PS64;
506 			} else if (XE_WARN_ON(xe_walk->needs_64K)) {
507 				return -EINVAL;
508 			}
509 		}
510 
511 		ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, NULL, pte);
512 		if (unlikely(ret))
513 			return ret;
514 
515 		if (!is_null)
516 			xe_res_next(curs, next - addr);
517 		xe_walk->va_curs_start = next;
518 		xe_walk->vma->gpuva.flags |= (XE_VMA_PTE_4K << level);
519 		*action = ACTION_CONTINUE;
520 
521 		return ret;
522 	}
523 
524 	/*
525 	 * Descending to lower level. Determine if we need to allocate a
526 	 * new page table or -directory, which we do if there is no
527 	 * previous one or there is one we can completely replace.
528 	 */
529 	if (level == 1) {
530 		walk->shifts = xe_normal_pt_shifts;
531 		xe_walk->l0_end_addr = next;
532 	}
533 
534 	covers = xe_pt_covers(addr, next, level, &xe_walk->base);
535 	if (covers || !*child) {
536 		u64 flags = 0;
537 
538 		xe_child = xe_pt_create(xe_walk->vm, xe_walk->tile, level - 1);
539 		if (IS_ERR(xe_child))
540 			return PTR_ERR(xe_child);
541 
542 		xe_pt_set_addr(xe_child,
543 			       round_down(addr, 1ull << walk->shifts[level]));
544 
545 		if (!covers)
546 			xe_pt_populate_empty(xe_walk->tile, xe_walk->vm, xe_child);
547 
548 		*child = &xe_child->base;
549 
550 		/*
551 		 * Prefer the compact pagetable layout for L0 if possible. Only
552 		 * possible if VMA covers entire 2MB region as compact 64k and
553 		 * 4k pages cannot be mixed within a 2MB region.
554 		 * TODO: Suballocate the pt bo to avoid wasting a lot of
555 		 * memory.
556 		 */
557 		if (GRAPHICS_VERx100(tile_to_xe(xe_walk->tile)) >= 1250 && level == 1 &&
558 		    covers && xe_pt_scan_64K(addr, next, xe_walk)) {
559 			walk->shifts = xe_compact_pt_shifts;
560 			xe_walk->vma->gpuva.flags |= XE_VMA_PTE_COMPACT;
561 			flags |= XE_PDE_64K;
562 			xe_child->is_compact = true;
563 		}
564 
565 		pte = vm->pt_ops->pde_encode_bo(xe_child->bo, 0, pat_index) | flags;
566 		ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, xe_child,
567 					 pte);
568 	}
569 
570 	*action = ACTION_SUBTREE;
571 	return ret;
572 }
573 
574 static const struct xe_pt_walk_ops xe_pt_stage_bind_ops = {
575 	.pt_entry = xe_pt_stage_bind_entry,
576 };
577 
578 /**
579  * xe_pt_stage_bind() - Build a disconnected page-table tree for a given address
580  * range.
581  * @tile: The tile we're building for.
582  * @vma: The vma indicating the address range.
583  * @entries: Storage for the update entries used for connecting the tree to
584  * the main tree at commit time.
585  * @num_entries: On output contains the number of @entries used.
586  *
587  * This function builds a disconnected page-table tree for a given address
588  * range. The tree is connected to the main vm tree for the gpu using
589  * xe_migrate_update_pgtables() and for the cpu using xe_pt_commit_bind().
590  * The function builds xe_vm_pgtable_update structures for already existing
591  * shared page-tables, and non-existing shared and non-shared page-tables
592  * are built and populated directly.
593  *
594  * Return 0 on success, negative error code on error.
595  */
596 static int
xe_pt_stage_bind(struct xe_tile * tile,struct xe_vma * vma,struct xe_vm_pgtable_update * entries,u32 * num_entries)597 xe_pt_stage_bind(struct xe_tile *tile, struct xe_vma *vma,
598 		 struct xe_vm_pgtable_update *entries, u32 *num_entries)
599 {
600 	struct xe_device *xe = tile_to_xe(tile);
601 	struct xe_bo *bo = xe_vma_bo(vma);
602 	bool is_devmem = !xe_vma_is_userptr(vma) && bo &&
603 		(xe_bo_is_vram(bo) || xe_bo_is_stolen_devmem(bo));
604 	struct xe_res_cursor curs;
605 	struct xe_pt_stage_bind_walk xe_walk = {
606 		.base = {
607 			.ops = &xe_pt_stage_bind_ops,
608 			.shifts = xe_normal_pt_shifts,
609 			.max_level = XE_PT_HIGHEST_LEVEL,
610 		},
611 		.vm = xe_vma_vm(vma),
612 		.tile = tile,
613 		.curs = &curs,
614 		.va_curs_start = xe_vma_start(vma),
615 		.vma = vma,
616 		.wupd.entries = entries,
617 		.needs_64K = (xe_vma_vm(vma)->flags & XE_VM_FLAG_64K) && is_devmem,
618 	};
619 	struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id];
620 	int ret;
621 
622 	if ((vma->gpuva.flags & XE_VMA_ATOMIC_PTE_BIT) &&
623 	    (is_devmem || !IS_DGFX(xe)))
624 		xe_walk.default_pte |= XE_USM_PPGTT_PTE_AE;
625 
626 	if (is_devmem) {
627 		xe_walk.default_pte |= XE_PPGTT_PTE_DM;
628 		xe_walk.dma_offset = vram_region_gpu_offset(bo->ttm.resource);
629 	}
630 
631 	if (!xe_vma_has_no_bo(vma) && xe_bo_is_stolen(bo))
632 		xe_walk.dma_offset = xe_ttm_stolen_gpu_offset(xe_bo_device(bo));
633 
634 	xe_bo_assert_held(bo);
635 
636 	if (!xe_vma_is_null(vma)) {
637 		if (xe_vma_is_userptr(vma))
638 			xe_res_first_sg(to_userptr_vma(vma)->userptr.sg, 0,
639 					xe_vma_size(vma), &curs);
640 		else if (xe_bo_is_vram(bo) || xe_bo_is_stolen(bo))
641 			xe_res_first(bo->ttm.resource, xe_vma_bo_offset(vma),
642 				     xe_vma_size(vma), &curs);
643 		else
644 			xe_res_first_sg(xe_bo_sg(bo), xe_vma_bo_offset(vma),
645 					xe_vma_size(vma), &curs);
646 	} else {
647 		curs.size = xe_vma_size(vma);
648 	}
649 
650 	ret = xe_pt_walk_range(&pt->base, pt->level, xe_vma_start(vma),
651 			       xe_vma_end(vma), &xe_walk.base);
652 
653 	*num_entries = xe_walk.wupd.num_used_entries;
654 	return ret;
655 }
656 
657 /**
658  * xe_pt_nonshared_offsets() - Determine the non-shared entry offsets of a
659  * shared pagetable.
660  * @addr: The start address within the non-shared pagetable.
661  * @end: The end address within the non-shared pagetable.
662  * @level: The level of the non-shared pagetable.
663  * @walk: Walk info. The function adjusts the walk action.
664  * @action: next action to perform (see enum page_walk_action)
665  * @offset: Ignored on input, First non-shared entry on output.
666  * @end_offset: Ignored on input, Last non-shared entry + 1 on output.
667  *
668  * A non-shared page-table has some entries that belong to the address range
669  * and others that don't. This function determines the entries that belong
670  * fully to the address range. Depending on level, some entries may
671  * partially belong to the address range (that can't happen at level 0).
672  * The function detects that and adjust those offsets to not include those
673  * partial entries. Iff it does detect partial entries, we know that there must
674  * be shared page tables also at lower levels, so it adjusts the walk action
675  * accordingly.
676  *
677  * Return: true if there were non-shared entries, false otherwise.
678  */
xe_pt_nonshared_offsets(u64 addr,u64 end,unsigned int level,struct xe_pt_walk * walk,enum page_walk_action * action,pgoff_t * offset,pgoff_t * end_offset)679 static bool xe_pt_nonshared_offsets(u64 addr, u64 end, unsigned int level,
680 				    struct xe_pt_walk *walk,
681 				    enum page_walk_action *action,
682 				    pgoff_t *offset, pgoff_t *end_offset)
683 {
684 	u64 size = 1ull << walk->shifts[level];
685 
686 	*offset = xe_pt_offset(addr, level, walk);
687 	*end_offset = xe_pt_num_entries(addr, end, level, walk) + *offset;
688 
689 	if (!level)
690 		return true;
691 
692 	/*
693 	 * If addr or next are not size aligned, there are shared pts at lower
694 	 * level, so in that case traverse down the subtree
695 	 */
696 	*action = ACTION_CONTINUE;
697 	if (!IS_ALIGNED(addr, size)) {
698 		*action = ACTION_SUBTREE;
699 		(*offset)++;
700 	}
701 
702 	if (!IS_ALIGNED(end, size)) {
703 		*action = ACTION_SUBTREE;
704 		(*end_offset)--;
705 	}
706 
707 	return *end_offset > *offset;
708 }
709 
710 struct xe_pt_zap_ptes_walk {
711 	/** @base: The walk base-class */
712 	struct xe_pt_walk base;
713 
714 	/* Input parameters for the walk */
715 	/** @tile: The tile we're building for */
716 	struct xe_tile *tile;
717 
718 	/* Output */
719 	/** @needs_invalidate: Whether we need to invalidate TLB*/
720 	bool needs_invalidate;
721 };
722 
xe_pt_zap_ptes_entry(struct xe_ptw * parent,pgoff_t offset,unsigned int level,u64 addr,u64 next,struct xe_ptw ** child,enum page_walk_action * action,struct xe_pt_walk * walk)723 static int xe_pt_zap_ptes_entry(struct xe_ptw *parent, pgoff_t offset,
724 				unsigned int level, u64 addr, u64 next,
725 				struct xe_ptw **child,
726 				enum page_walk_action *action,
727 				struct xe_pt_walk *walk)
728 {
729 	struct xe_pt_zap_ptes_walk *xe_walk =
730 		container_of(walk, typeof(*xe_walk), base);
731 	struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base);
732 	pgoff_t end_offset;
733 
734 	XE_WARN_ON(!*child);
735 	XE_WARN_ON(!level && xe_child->is_compact);
736 
737 	/*
738 	 * Note that we're called from an entry callback, and we're dealing
739 	 * with the child of that entry rather than the parent, so need to
740 	 * adjust level down.
741 	 */
742 	if (xe_pt_nonshared_offsets(addr, next, --level, walk, action, &offset,
743 				    &end_offset)) {
744 		xe_map_memset(tile_to_xe(xe_walk->tile), &xe_child->bo->vmap,
745 			      offset * sizeof(u64), 0,
746 			      (end_offset - offset) * sizeof(u64));
747 		xe_walk->needs_invalidate = true;
748 	}
749 
750 	return 0;
751 }
752 
753 static const struct xe_pt_walk_ops xe_pt_zap_ptes_ops = {
754 	.pt_entry = xe_pt_zap_ptes_entry,
755 };
756 
757 /**
758  * xe_pt_zap_ptes() - Zap (zero) gpu ptes of an address range
759  * @tile: The tile we're zapping for.
760  * @vma: GPU VMA detailing address range.
761  *
762  * Eviction and Userptr invalidation needs to be able to zap the
763  * gpu ptes of a given address range in pagefaulting mode.
764  * In order to be able to do that, that function needs access to the shared
765  * page-table entrieaso it can either clear the leaf PTEs or
766  * clear the pointers to lower-level page-tables. The caller is required
767  * to hold the necessary locks to ensure neither the page-table connectivity
768  * nor the page-table entries of the range is updated from under us.
769  *
770  * Return: Whether ptes were actually updated and a TLB invalidation is
771  * required.
772  */
xe_pt_zap_ptes(struct xe_tile * tile,struct xe_vma * vma)773 bool xe_pt_zap_ptes(struct xe_tile *tile, struct xe_vma *vma)
774 {
775 	struct xe_pt_zap_ptes_walk xe_walk = {
776 		.base = {
777 			.ops = &xe_pt_zap_ptes_ops,
778 			.shifts = xe_normal_pt_shifts,
779 			.max_level = XE_PT_HIGHEST_LEVEL,
780 		},
781 		.tile = tile,
782 	};
783 	struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id];
784 
785 	if (!(vma->tile_present & BIT(tile->id)))
786 		return false;
787 
788 	(void)xe_pt_walk_shared(&pt->base, pt->level, xe_vma_start(vma),
789 				xe_vma_end(vma), &xe_walk.base);
790 
791 	return xe_walk.needs_invalidate;
792 }
793 
794 static void
xe_vm_populate_pgtable(struct xe_migrate_pt_update * pt_update,struct xe_tile * tile,struct iosys_map * map,void * data,u32 qword_ofs,u32 num_qwords,const struct xe_vm_pgtable_update * update)795 xe_vm_populate_pgtable(struct xe_migrate_pt_update *pt_update, struct xe_tile *tile,
796 		       struct iosys_map *map, void *data,
797 		       u32 qword_ofs, u32 num_qwords,
798 		       const struct xe_vm_pgtable_update *update)
799 {
800 	struct xe_pt_entry *ptes = update->pt_entries;
801 	u64 *ptr = data;
802 	u32 i;
803 
804 	for (i = 0; i < num_qwords; i++) {
805 		if (map)
806 			xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) *
807 				  sizeof(u64), u64, ptes[i].pte);
808 		else
809 			ptr[i] = ptes[i].pte;
810 	}
811 }
812 
xe_pt_abort_bind(struct xe_vma * vma,struct xe_vm_pgtable_update * entries,u32 num_entries)813 static void xe_pt_abort_bind(struct xe_vma *vma,
814 			     struct xe_vm_pgtable_update *entries,
815 			     u32 num_entries)
816 {
817 	u32 i, j;
818 
819 	for (i = 0; i < num_entries; i++) {
820 		if (!entries[i].pt_entries)
821 			continue;
822 
823 		for (j = 0; j < entries[i].qwords; j++)
824 			xe_pt_destroy(entries[i].pt_entries[j].pt, xe_vma_vm(vma)->flags, NULL);
825 		kfree(entries[i].pt_entries);
826 	}
827 }
828 
xe_pt_commit_locks_assert(struct xe_vma * vma)829 static void xe_pt_commit_locks_assert(struct xe_vma *vma)
830 {
831 	struct xe_vm *vm = xe_vma_vm(vma);
832 
833 	lockdep_assert_held(&vm->lock);
834 
835 	if (xe_vma_is_userptr(vma))
836 		lockdep_assert_held_read(&vm->userptr.notifier_lock);
837 	else if (!xe_vma_is_null(vma))
838 		dma_resv_assert_held(xe_vma_bo(vma)->ttm.base.resv);
839 
840 	xe_vm_assert_held(vm);
841 }
842 
xe_pt_commit_bind(struct xe_vma * vma,struct xe_vm_pgtable_update * entries,u32 num_entries,bool rebind,struct llist_head * deferred)843 static void xe_pt_commit_bind(struct xe_vma *vma,
844 			      struct xe_vm_pgtable_update *entries,
845 			      u32 num_entries, bool rebind,
846 			      struct llist_head *deferred)
847 {
848 	u32 i, j;
849 
850 	xe_pt_commit_locks_assert(vma);
851 
852 	for (i = 0; i < num_entries; i++) {
853 		struct xe_pt *pt = entries[i].pt;
854 		struct xe_pt_dir *pt_dir;
855 
856 		if (!rebind)
857 			pt->num_live += entries[i].qwords;
858 
859 		if (!pt->level) {
860 			kfree(entries[i].pt_entries);
861 			continue;
862 		}
863 
864 		pt_dir = as_xe_pt_dir(pt);
865 		for (j = 0; j < entries[i].qwords; j++) {
866 			u32 j_ = j + entries[i].ofs;
867 			struct xe_pt *newpte = entries[i].pt_entries[j].pt;
868 
869 			if (xe_pt_entry(pt_dir, j_))
870 				xe_pt_destroy(xe_pt_entry(pt_dir, j_),
871 					      xe_vma_vm(vma)->flags, deferred);
872 
873 			pt_dir->children[j_] = &newpte->base;
874 		}
875 		kfree(entries[i].pt_entries);
876 	}
877 }
878 
879 static int
xe_pt_prepare_bind(struct xe_tile * tile,struct xe_vma * vma,struct xe_vm_pgtable_update * entries,u32 * num_entries)880 xe_pt_prepare_bind(struct xe_tile *tile, struct xe_vma *vma,
881 		   struct xe_vm_pgtable_update *entries, u32 *num_entries)
882 {
883 	int err;
884 
885 	*num_entries = 0;
886 	err = xe_pt_stage_bind(tile, vma, entries, num_entries);
887 	if (!err)
888 		xe_tile_assert(tile, *num_entries);
889 	else /* abort! */
890 		xe_pt_abort_bind(vma, entries, *num_entries);
891 
892 	return err;
893 }
894 
xe_vm_dbg_print_entries(struct xe_device * xe,const struct xe_vm_pgtable_update * entries,unsigned int num_entries)895 static void xe_vm_dbg_print_entries(struct xe_device *xe,
896 				    const struct xe_vm_pgtable_update *entries,
897 				    unsigned int num_entries)
898 #if (IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM))
899 {
900 	unsigned int i;
901 
902 	vm_dbg(&xe->drm, "%u entries to update\n", num_entries);
903 	for (i = 0; i < num_entries; i++) {
904 		const struct xe_vm_pgtable_update *entry = &entries[i];
905 		struct xe_pt *xe_pt = entry->pt;
906 		u64 page_size = 1ull << xe_pt_shift(xe_pt->level);
907 		u64 end;
908 		u64 start;
909 
910 		xe_assert(xe, !entry->pt->is_compact);
911 		start = entry->ofs * page_size;
912 		end = start + page_size * entry->qwords;
913 		vm_dbg(&xe->drm,
914 		       "\t%u: Update level %u at (%u + %u) [%llx...%llx) f:%x\n",
915 		       i, xe_pt->level, entry->ofs, entry->qwords,
916 		       xe_pt_addr(xe_pt) + start, xe_pt_addr(xe_pt) + end, 0);
917 	}
918 }
919 #else
920 {}
921 #endif
922 
923 #ifdef CONFIG_DRM_XE_USERPTR_INVAL_INJECT
924 
xe_pt_userptr_inject_eagain(struct xe_userptr_vma * uvma)925 static int xe_pt_userptr_inject_eagain(struct xe_userptr_vma *uvma)
926 {
927 	u32 divisor = uvma->userptr.divisor ? uvma->userptr.divisor : 2;
928 	static u32 count;
929 
930 	if (count++ % divisor == divisor - 1) {
931 		struct xe_vm *vm = xe_vma_vm(&uvma->vma);
932 
933 		uvma->userptr.divisor = divisor << 1;
934 		spin_lock(&vm->userptr.invalidated_lock);
935 		list_move_tail(&uvma->userptr.invalidate_link,
936 			       &vm->userptr.invalidated);
937 		spin_unlock(&vm->userptr.invalidated_lock);
938 		return true;
939 	}
940 
941 	return false;
942 }
943 
944 #else
945 
xe_pt_userptr_inject_eagain(struct xe_userptr_vma * uvma)946 static bool xe_pt_userptr_inject_eagain(struct xe_userptr_vma *uvma)
947 {
948 	return false;
949 }
950 
951 #endif
952 
953 /**
954  * struct xe_pt_migrate_pt_update - Callback argument for pre-commit callbacks
955  * @base: Base we derive from.
956  * @bind: Whether this is a bind or an unbind operation. A bind operation
957  *        makes the pre-commit callback error with -EAGAIN if it detects a
958  *        pending invalidation.
959  * @locked: Whether the pre-commit callback locked the userptr notifier lock
960  *          and it needs unlocking.
961  */
962 struct xe_pt_migrate_pt_update {
963 	struct xe_migrate_pt_update base;
964 	bool bind;
965 	bool locked;
966 };
967 
968 /*
969  * This function adds the needed dependencies to a page-table update job
970  * to make sure racing jobs for separate bind engines don't race writing
971  * to the same page-table range, wreaking havoc. Initially use a single
972  * fence for the entire VM. An optimization would use smaller granularity.
973  */
xe_pt_vm_dependencies(struct xe_sched_job * job,struct xe_range_fence_tree * rftree,u64 start,u64 last)974 static int xe_pt_vm_dependencies(struct xe_sched_job *job,
975 				 struct xe_range_fence_tree *rftree,
976 				 u64 start, u64 last)
977 {
978 	struct xe_range_fence *rtfence;
979 	struct dma_fence *fence;
980 	int err;
981 
982 	rtfence = xe_range_fence_tree_first(rftree, start, last);
983 	while (rtfence) {
984 		fence = rtfence->fence;
985 
986 		if (!dma_fence_is_signaled(fence)) {
987 			/*
988 			 * Is this a CPU update? GPU is busy updating, so return
989 			 * an error
990 			 */
991 			if (!job)
992 				return -ETIME;
993 
994 			dma_fence_get(fence);
995 			err = drm_sched_job_add_dependency(&job->drm, fence);
996 			if (err)
997 				return err;
998 		}
999 
1000 		rtfence = xe_range_fence_tree_next(rtfence, start, last);
1001 	}
1002 
1003 	return 0;
1004 }
1005 
xe_pt_pre_commit(struct xe_migrate_pt_update * pt_update)1006 static int xe_pt_pre_commit(struct xe_migrate_pt_update *pt_update)
1007 {
1008 	struct xe_range_fence_tree *rftree =
1009 		&xe_vma_vm(pt_update->vma)->rftree[pt_update->tile_id];
1010 
1011 	return xe_pt_vm_dependencies(pt_update->job, rftree,
1012 				     pt_update->start, pt_update->last);
1013 }
1014 
xe_pt_userptr_pre_commit(struct xe_migrate_pt_update * pt_update)1015 static int xe_pt_userptr_pre_commit(struct xe_migrate_pt_update *pt_update)
1016 {
1017 	struct xe_pt_migrate_pt_update *userptr_update =
1018 		container_of(pt_update, typeof(*userptr_update), base);
1019 	struct xe_userptr_vma *uvma = to_userptr_vma(pt_update->vma);
1020 	unsigned long notifier_seq = uvma->userptr.notifier_seq;
1021 	struct xe_vm *vm = xe_vma_vm(&uvma->vma);
1022 	int err = xe_pt_vm_dependencies(pt_update->job,
1023 					&vm->rftree[pt_update->tile_id],
1024 					pt_update->start,
1025 					pt_update->last);
1026 
1027 	if (err)
1028 		return err;
1029 
1030 	userptr_update->locked = false;
1031 
1032 	/*
1033 	 * Wait until nobody is running the invalidation notifier, and
1034 	 * since we're exiting the loop holding the notifier lock,
1035 	 * nobody can proceed invalidating either.
1036 	 *
1037 	 * Note that we don't update the vma->userptr.notifier_seq since
1038 	 * we don't update the userptr pages.
1039 	 */
1040 	do {
1041 		down_read(&vm->userptr.notifier_lock);
1042 		if (!mmu_interval_read_retry(&uvma->userptr.notifier,
1043 					     notifier_seq))
1044 			break;
1045 
1046 		up_read(&vm->userptr.notifier_lock);
1047 
1048 		if (userptr_update->bind)
1049 			return -EAGAIN;
1050 
1051 		notifier_seq = mmu_interval_read_begin(&uvma->userptr.notifier);
1052 	} while (true);
1053 
1054 	/* Inject errors to test_whether they are handled correctly */
1055 	if (userptr_update->bind && xe_pt_userptr_inject_eagain(uvma)) {
1056 		up_read(&vm->userptr.notifier_lock);
1057 		return -EAGAIN;
1058 	}
1059 
1060 	userptr_update->locked = true;
1061 
1062 	return 0;
1063 }
1064 
1065 static const struct xe_migrate_pt_update_ops bind_ops = {
1066 	.populate = xe_vm_populate_pgtable,
1067 	.pre_commit = xe_pt_pre_commit,
1068 };
1069 
1070 static const struct xe_migrate_pt_update_ops userptr_bind_ops = {
1071 	.populate = xe_vm_populate_pgtable,
1072 	.pre_commit = xe_pt_userptr_pre_commit,
1073 };
1074 
1075 struct invalidation_fence {
1076 	struct xe_gt_tlb_invalidation_fence base;
1077 	struct xe_gt *gt;
1078 	struct xe_vma *vma;
1079 	struct dma_fence *fence;
1080 	struct dma_fence_cb cb;
1081 	struct work_struct work;
1082 };
1083 
1084 static const char *
invalidation_fence_get_driver_name(struct dma_fence * dma_fence)1085 invalidation_fence_get_driver_name(struct dma_fence *dma_fence)
1086 {
1087 	return "xe";
1088 }
1089 
1090 static const char *
invalidation_fence_get_timeline_name(struct dma_fence * dma_fence)1091 invalidation_fence_get_timeline_name(struct dma_fence *dma_fence)
1092 {
1093 	return "invalidation_fence";
1094 }
1095 
1096 static const struct dma_fence_ops invalidation_fence_ops = {
1097 	.get_driver_name = invalidation_fence_get_driver_name,
1098 	.get_timeline_name = invalidation_fence_get_timeline_name,
1099 };
1100 
invalidation_fence_cb(struct dma_fence * fence,struct dma_fence_cb * cb)1101 static void invalidation_fence_cb(struct dma_fence *fence,
1102 				  struct dma_fence_cb *cb)
1103 {
1104 	struct invalidation_fence *ifence =
1105 		container_of(cb, struct invalidation_fence, cb);
1106 
1107 	trace_xe_gt_tlb_invalidation_fence_cb(&ifence->base);
1108 	if (!ifence->fence->error) {
1109 		queue_work(system_wq, &ifence->work);
1110 	} else {
1111 		ifence->base.base.error = ifence->fence->error;
1112 		dma_fence_signal(&ifence->base.base);
1113 		dma_fence_put(&ifence->base.base);
1114 	}
1115 	dma_fence_put(ifence->fence);
1116 }
1117 
invalidation_fence_work_func(struct work_struct * w)1118 static void invalidation_fence_work_func(struct work_struct *w)
1119 {
1120 	struct invalidation_fence *ifence =
1121 		container_of(w, struct invalidation_fence, work);
1122 
1123 	trace_xe_gt_tlb_invalidation_fence_work_func(&ifence->base);
1124 	xe_gt_tlb_invalidation_vma(ifence->gt, &ifence->base, ifence->vma);
1125 }
1126 
invalidation_fence_init(struct xe_gt * gt,struct invalidation_fence * ifence,struct dma_fence * fence,struct xe_vma * vma)1127 static int invalidation_fence_init(struct xe_gt *gt,
1128 				   struct invalidation_fence *ifence,
1129 				   struct dma_fence *fence,
1130 				   struct xe_vma *vma)
1131 {
1132 	int ret;
1133 
1134 	trace_xe_gt_tlb_invalidation_fence_create(&ifence->base);
1135 
1136 	spin_lock_irq(&gt->tlb_invalidation.lock);
1137 	dma_fence_init(&ifence->base.base, &invalidation_fence_ops,
1138 		       &gt->tlb_invalidation.lock,
1139 		       dma_fence_context_alloc(1), 1);
1140 	spin_unlock_irq(&gt->tlb_invalidation.lock);
1141 
1142 	INIT_LIST_HEAD(&ifence->base.link);
1143 
1144 	dma_fence_get(&ifence->base.base);	/* Ref for caller */
1145 	ifence->fence = fence;
1146 	ifence->gt = gt;
1147 	ifence->vma = vma;
1148 
1149 	INIT_WORK(&ifence->work, invalidation_fence_work_func);
1150 	ret = dma_fence_add_callback(fence, &ifence->cb, invalidation_fence_cb);
1151 	if (ret == -ENOENT) {
1152 		dma_fence_put(ifence->fence);	/* Usually dropped in CB */
1153 		invalidation_fence_work_func(&ifence->work);
1154 	} else if (ret) {
1155 		dma_fence_put(&ifence->base.base);	/* Caller ref */
1156 		dma_fence_put(&ifence->base.base);	/* Creation ref */
1157 	}
1158 
1159 	xe_gt_assert(gt, !ret || ret == -ENOENT);
1160 
1161 	return ret && ret != -ENOENT ? ret : 0;
1162 }
1163 
xe_pt_calc_rfence_interval(struct xe_vma * vma,struct xe_pt_migrate_pt_update * update,struct xe_vm_pgtable_update * entries,u32 num_entries)1164 static void xe_pt_calc_rfence_interval(struct xe_vma *vma,
1165 				       struct xe_pt_migrate_pt_update *update,
1166 				       struct xe_vm_pgtable_update *entries,
1167 				       u32 num_entries)
1168 {
1169 	int i, level = 0;
1170 
1171 	for (i = 0; i < num_entries; i++) {
1172 		const struct xe_vm_pgtable_update *entry = &entries[i];
1173 
1174 		if (entry->pt->level > level)
1175 			level = entry->pt->level;
1176 	}
1177 
1178 	/* Greedy (non-optimal) calculation but simple */
1179 	update->base.start = ALIGN_DOWN(xe_vma_start(vma),
1180 					0x1ull << xe_pt_shift(level));
1181 	update->base.last = ALIGN(xe_vma_end(vma),
1182 				  0x1ull << xe_pt_shift(level)) - 1;
1183 }
1184 
1185 /**
1186  * __xe_pt_bind_vma() - Build and connect a page-table tree for the vma
1187  * address range.
1188  * @tile: The tile to bind for.
1189  * @vma: The vma to bind.
1190  * @q: The exec_queue with which to do pipelined page-table updates.
1191  * @syncs: Entries to sync on before binding the built tree to the live vm tree.
1192  * @num_syncs: Number of @sync entries.
1193  * @rebind: Whether we're rebinding this vma to the same address range without
1194  * an unbind in-between.
1195  *
1196  * This function builds a page-table tree (see xe_pt_stage_bind() for more
1197  * information on page-table building), and the xe_vm_pgtable_update entries
1198  * abstracting the operations needed to attach it to the main vm tree. It
1199  * then takes the relevant locks and updates the metadata side of the main
1200  * vm tree and submits the operations for pipelined attachment of the
1201  * gpu page-table to the vm main tree, (which can be done either by the
1202  * cpu and the GPU).
1203  *
1204  * Return: A valid dma-fence representing the pipelined attachment operation
1205  * on success, an error pointer on error.
1206  */
1207 struct dma_fence *
__xe_pt_bind_vma(struct xe_tile * tile,struct xe_vma * vma,struct xe_exec_queue * q,struct xe_sync_entry * syncs,u32 num_syncs,bool rebind)1208 __xe_pt_bind_vma(struct xe_tile *tile, struct xe_vma *vma, struct xe_exec_queue *q,
1209 		 struct xe_sync_entry *syncs, u32 num_syncs,
1210 		 bool rebind)
1211 {
1212 	struct xe_vm_pgtable_update entries[XE_VM_MAX_LEVEL * 2 + 1];
1213 	struct xe_pt_migrate_pt_update bind_pt_update = {
1214 		.base = {
1215 			.ops = xe_vma_is_userptr(vma) ? &userptr_bind_ops : &bind_ops,
1216 			.vma = vma,
1217 			.tile_id = tile->id,
1218 		},
1219 		.bind = true,
1220 	};
1221 	struct xe_vm *vm = xe_vma_vm(vma);
1222 	u32 num_entries;
1223 	struct dma_fence *fence;
1224 	struct invalidation_fence *ifence = NULL;
1225 	struct xe_range_fence *rfence;
1226 	int err;
1227 
1228 	bind_pt_update.locked = false;
1229 	xe_bo_assert_held(xe_vma_bo(vma));
1230 	xe_vm_assert_held(vm);
1231 
1232 	vm_dbg(&xe_vma_vm(vma)->xe->drm,
1233 	       "Preparing bind, with range [%llx...%llx) engine %p.\n",
1234 	       xe_vma_start(vma), xe_vma_end(vma), q);
1235 
1236 	err = xe_pt_prepare_bind(tile, vma, entries, &num_entries);
1237 	if (err)
1238 		goto err;
1239 
1240 	err = dma_resv_reserve_fences(xe_vm_resv(vm), 1);
1241 	if (!err && !xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm)
1242 		err = dma_resv_reserve_fences(xe_vma_bo(vma)->ttm.base.resv, 1);
1243 	if (err)
1244 		goto err;
1245 
1246 	xe_tile_assert(tile, num_entries <= ARRAY_SIZE(entries));
1247 
1248 	xe_vm_dbg_print_entries(tile_to_xe(tile), entries, num_entries);
1249 	xe_pt_calc_rfence_interval(vma, &bind_pt_update, entries,
1250 				   num_entries);
1251 
1252 	/*
1253 	 * If rebind, we have to invalidate TLB on !LR vms to invalidate
1254 	 * cached PTEs point to freed memory. on LR vms this is done
1255 	 * automatically when the context is re-enabled by the rebind worker,
1256 	 * or in fault mode it was invalidated on PTE zapping.
1257 	 *
1258 	 * If !rebind, and scratch enabled VMs, there is a chance the scratch
1259 	 * PTE is already cached in the TLB so it needs to be invalidated.
1260 	 * on !LR VMs this is done in the ring ops preceding a batch, but on
1261 	 * non-faulting LR, in particular on user-space batch buffer chaining,
1262 	 * it needs to be done here.
1263 	 */
1264 	if ((!rebind && xe_vm_has_scratch(vm) && xe_vm_in_preempt_fence_mode(vm))) {
1265 		ifence = kzalloc(sizeof(*ifence), GFP_KERNEL);
1266 		if (!ifence)
1267 			return ERR_PTR(-ENOMEM);
1268 	} else if (rebind && !xe_vm_in_lr_mode(vm)) {
1269 		/* We bump also if batch_invalidate_tlb is true */
1270 		vm->tlb_flush_seqno++;
1271 	}
1272 
1273 	rfence = kzalloc(sizeof(*rfence), GFP_KERNEL);
1274 	if (!rfence) {
1275 		kfree(ifence);
1276 		return ERR_PTR(-ENOMEM);
1277 	}
1278 
1279 	fence = xe_migrate_update_pgtables(tile->migrate,
1280 					   vm, xe_vma_bo(vma), q,
1281 					   entries, num_entries,
1282 					   syncs, num_syncs,
1283 					   &bind_pt_update.base);
1284 	if (!IS_ERR(fence)) {
1285 		bool last_munmap_rebind = vma->gpuva.flags & XE_VMA_LAST_REBIND;
1286 		LLIST_HEAD(deferred);
1287 		int err;
1288 
1289 		err = xe_range_fence_insert(&vm->rftree[tile->id], rfence,
1290 					    &xe_range_fence_kfree_ops,
1291 					    bind_pt_update.base.start,
1292 					    bind_pt_update.base.last, fence);
1293 		if (err)
1294 			dma_fence_wait(fence, false);
1295 
1296 		/* TLB invalidation must be done before signaling rebind */
1297 		if (ifence) {
1298 			int err = invalidation_fence_init(tile->primary_gt, ifence, fence,
1299 							  vma);
1300 			if (err) {
1301 				dma_fence_put(fence);
1302 				kfree(ifence);
1303 				return ERR_PTR(err);
1304 			}
1305 			fence = &ifence->base.base;
1306 		}
1307 
1308 		/* add shared fence now for pagetable delayed destroy */
1309 		dma_resv_add_fence(xe_vm_resv(vm), fence, rebind ||
1310 				   last_munmap_rebind ?
1311 				   DMA_RESV_USAGE_KERNEL :
1312 				   DMA_RESV_USAGE_BOOKKEEP);
1313 
1314 		if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm)
1315 			dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence,
1316 					   DMA_RESV_USAGE_BOOKKEEP);
1317 		xe_pt_commit_bind(vma, entries, num_entries, rebind,
1318 				  bind_pt_update.locked ? &deferred : NULL);
1319 
1320 		/* This vma is live (again?) now */
1321 		vma->tile_present |= BIT(tile->id);
1322 
1323 		if (bind_pt_update.locked) {
1324 			to_userptr_vma(vma)->userptr.initial_bind = true;
1325 			up_read(&vm->userptr.notifier_lock);
1326 			xe_bo_put_commit(&deferred);
1327 		}
1328 		if (!rebind && last_munmap_rebind &&
1329 		    xe_vm_in_preempt_fence_mode(vm))
1330 			xe_vm_queue_rebind_worker(vm);
1331 	} else {
1332 		kfree(rfence);
1333 		kfree(ifence);
1334 		if (bind_pt_update.locked)
1335 			up_read(&vm->userptr.notifier_lock);
1336 		xe_pt_abort_bind(vma, entries, num_entries);
1337 	}
1338 
1339 	return fence;
1340 
1341 err:
1342 	return ERR_PTR(err);
1343 }
1344 
1345 struct xe_pt_stage_unbind_walk {
1346 	/** @base: The pagewalk base-class. */
1347 	struct xe_pt_walk base;
1348 
1349 	/* Input parameters for the walk */
1350 	/** @tile: The tile we're unbinding from. */
1351 	struct xe_tile *tile;
1352 
1353 	/**
1354 	 * @modified_start: Walk range start, modified to include any
1355 	 * shared pagetables that we're the only user of and can thus
1356 	 * treat as private.
1357 	 */
1358 	u64 modified_start;
1359 	/** @modified_end: Walk range start, modified like @modified_start. */
1360 	u64 modified_end;
1361 
1362 	/* Output */
1363 	/* @wupd: Structure to track the page-table updates we're building */
1364 	struct xe_walk_update wupd;
1365 };
1366 
1367 /*
1368  * Check whether this range is the only one populating this pagetable,
1369  * and in that case, update the walk range checks so that higher levels don't
1370  * view us as a shared pagetable.
1371  */
xe_pt_check_kill(u64 addr,u64 next,unsigned int level,const struct xe_pt * child,enum page_walk_action * action,struct xe_pt_walk * walk)1372 static bool xe_pt_check_kill(u64 addr, u64 next, unsigned int level,
1373 			     const struct xe_pt *child,
1374 			     enum page_walk_action *action,
1375 			     struct xe_pt_walk *walk)
1376 {
1377 	struct xe_pt_stage_unbind_walk *xe_walk =
1378 		container_of(walk, typeof(*xe_walk), base);
1379 	unsigned int shift = walk->shifts[level];
1380 	u64 size = 1ull << shift;
1381 
1382 	if (IS_ALIGNED(addr, size) && IS_ALIGNED(next, size) &&
1383 	    ((next - addr) >> shift) == child->num_live) {
1384 		u64 size = 1ull << walk->shifts[level + 1];
1385 
1386 		*action = ACTION_CONTINUE;
1387 
1388 		if (xe_walk->modified_start >= addr)
1389 			xe_walk->modified_start = round_down(addr, size);
1390 		if (xe_walk->modified_end <= next)
1391 			xe_walk->modified_end = round_up(next, size);
1392 
1393 		return true;
1394 	}
1395 
1396 	return false;
1397 }
1398 
xe_pt_stage_unbind_entry(struct xe_ptw * parent,pgoff_t offset,unsigned int level,u64 addr,u64 next,struct xe_ptw ** child,enum page_walk_action * action,struct xe_pt_walk * walk)1399 static int xe_pt_stage_unbind_entry(struct xe_ptw *parent, pgoff_t offset,
1400 				    unsigned int level, u64 addr, u64 next,
1401 				    struct xe_ptw **child,
1402 				    enum page_walk_action *action,
1403 				    struct xe_pt_walk *walk)
1404 {
1405 	struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base);
1406 
1407 	XE_WARN_ON(!*child);
1408 	XE_WARN_ON(!level && xe_child->is_compact);
1409 
1410 	xe_pt_check_kill(addr, next, level - 1, xe_child, action, walk);
1411 
1412 	return 0;
1413 }
1414 
1415 static int
xe_pt_stage_unbind_post_descend(struct xe_ptw * parent,pgoff_t offset,unsigned int level,u64 addr,u64 next,struct xe_ptw ** child,enum page_walk_action * action,struct xe_pt_walk * walk)1416 xe_pt_stage_unbind_post_descend(struct xe_ptw *parent, pgoff_t offset,
1417 				unsigned int level, u64 addr, u64 next,
1418 				struct xe_ptw **child,
1419 				enum page_walk_action *action,
1420 				struct xe_pt_walk *walk)
1421 {
1422 	struct xe_pt_stage_unbind_walk *xe_walk =
1423 		container_of(walk, typeof(*xe_walk), base);
1424 	struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base);
1425 	pgoff_t end_offset;
1426 	u64 size = 1ull << walk->shifts[--level];
1427 
1428 	if (!IS_ALIGNED(addr, size))
1429 		addr = xe_walk->modified_start;
1430 	if (!IS_ALIGNED(next, size))
1431 		next = xe_walk->modified_end;
1432 
1433 	/* Parent == *child is the root pt. Don't kill it. */
1434 	if (parent != *child &&
1435 	    xe_pt_check_kill(addr, next, level, xe_child, action, walk))
1436 		return 0;
1437 
1438 	if (!xe_pt_nonshared_offsets(addr, next, level, walk, action, &offset,
1439 				     &end_offset))
1440 		return 0;
1441 
1442 	(void)xe_pt_new_shared(&xe_walk->wupd, xe_child, offset, false);
1443 	xe_walk->wupd.updates[level].update->qwords = end_offset - offset;
1444 
1445 	return 0;
1446 }
1447 
1448 static const struct xe_pt_walk_ops xe_pt_stage_unbind_ops = {
1449 	.pt_entry = xe_pt_stage_unbind_entry,
1450 	.pt_post_descend = xe_pt_stage_unbind_post_descend,
1451 };
1452 
1453 /**
1454  * xe_pt_stage_unbind() - Build page-table update structures for an unbind
1455  * operation
1456  * @tile: The tile we're unbinding for.
1457  * @vma: The vma we're unbinding.
1458  * @entries: Caller-provided storage for the update structures.
1459  *
1460  * Builds page-table update structures for an unbind operation. The function
1461  * will attempt to remove all page-tables that we're the only user
1462  * of, and for that to work, the unbind operation must be committed in the
1463  * same critical section that blocks racing binds to the same page-table tree.
1464  *
1465  * Return: The number of entries used.
1466  */
xe_pt_stage_unbind(struct xe_tile * tile,struct xe_vma * vma,struct xe_vm_pgtable_update * entries)1467 static unsigned int xe_pt_stage_unbind(struct xe_tile *tile, struct xe_vma *vma,
1468 				       struct xe_vm_pgtable_update *entries)
1469 {
1470 	struct xe_pt_stage_unbind_walk xe_walk = {
1471 		.base = {
1472 			.ops = &xe_pt_stage_unbind_ops,
1473 			.shifts = xe_normal_pt_shifts,
1474 			.max_level = XE_PT_HIGHEST_LEVEL,
1475 		},
1476 		.tile = tile,
1477 		.modified_start = xe_vma_start(vma),
1478 		.modified_end = xe_vma_end(vma),
1479 		.wupd.entries = entries,
1480 	};
1481 	struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id];
1482 
1483 	(void)xe_pt_walk_shared(&pt->base, pt->level, xe_vma_start(vma),
1484 				xe_vma_end(vma), &xe_walk.base);
1485 
1486 	return xe_walk.wupd.num_used_entries;
1487 }
1488 
1489 static void
xe_migrate_clear_pgtable_callback(struct xe_migrate_pt_update * pt_update,struct xe_tile * tile,struct iosys_map * map,void * ptr,u32 qword_ofs,u32 num_qwords,const struct xe_vm_pgtable_update * update)1490 xe_migrate_clear_pgtable_callback(struct xe_migrate_pt_update *pt_update,
1491 				  struct xe_tile *tile, struct iosys_map *map,
1492 				  void *ptr, u32 qword_ofs, u32 num_qwords,
1493 				  const struct xe_vm_pgtable_update *update)
1494 {
1495 	struct xe_vma *vma = pt_update->vma;
1496 	u64 empty = __xe_pt_empty_pte(tile, xe_vma_vm(vma), update->pt->level);
1497 	int i;
1498 
1499 	if (map && map->is_iomem)
1500 		for (i = 0; i < num_qwords; ++i)
1501 			xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) *
1502 				  sizeof(u64), u64, empty);
1503 	else if (map)
1504 		memset64(map->vaddr + qword_ofs * sizeof(u64), empty,
1505 			 num_qwords);
1506 	else
1507 		memset64(ptr, empty, num_qwords);
1508 }
1509 
1510 static void
xe_pt_commit_unbind(struct xe_vma * vma,struct xe_vm_pgtable_update * entries,u32 num_entries,struct llist_head * deferred)1511 xe_pt_commit_unbind(struct xe_vma *vma,
1512 		    struct xe_vm_pgtable_update *entries, u32 num_entries,
1513 		    struct llist_head *deferred)
1514 {
1515 	u32 j;
1516 
1517 	xe_pt_commit_locks_assert(vma);
1518 
1519 	for (j = 0; j < num_entries; ++j) {
1520 		struct xe_vm_pgtable_update *entry = &entries[j];
1521 		struct xe_pt *pt = entry->pt;
1522 
1523 		pt->num_live -= entry->qwords;
1524 		if (pt->level) {
1525 			struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt);
1526 			u32 i;
1527 
1528 			for (i = entry->ofs; i < entry->ofs + entry->qwords;
1529 			     i++) {
1530 				if (xe_pt_entry(pt_dir, i))
1531 					xe_pt_destroy(xe_pt_entry(pt_dir, i),
1532 						      xe_vma_vm(vma)->flags, deferred);
1533 
1534 				pt_dir->children[i] = NULL;
1535 			}
1536 		}
1537 	}
1538 }
1539 
1540 static const struct xe_migrate_pt_update_ops unbind_ops = {
1541 	.populate = xe_migrate_clear_pgtable_callback,
1542 	.pre_commit = xe_pt_pre_commit,
1543 };
1544 
1545 static const struct xe_migrate_pt_update_ops userptr_unbind_ops = {
1546 	.populate = xe_migrate_clear_pgtable_callback,
1547 	.pre_commit = xe_pt_userptr_pre_commit,
1548 };
1549 
1550 /**
1551  * __xe_pt_unbind_vma() - Disconnect and free a page-table tree for the vma
1552  * address range.
1553  * @tile: The tile to unbind for.
1554  * @vma: The vma to unbind.
1555  * @q: The exec_queue with which to do pipelined page-table updates.
1556  * @syncs: Entries to sync on before disconnecting the tree to be destroyed.
1557  * @num_syncs: Number of @sync entries.
1558  *
1559  * This function builds a the xe_vm_pgtable_update entries abstracting the
1560  * operations needed to detach the page-table tree to be destroyed from the
1561  * man vm tree.
1562  * It then takes the relevant locks and submits the operations for
1563  * pipelined detachment of the gpu page-table from  the vm main tree,
1564  * (which can be done either by the cpu and the GPU), Finally it frees the
1565  * detached page-table tree.
1566  *
1567  * Return: A valid dma-fence representing the pipelined detachment operation
1568  * on success, an error pointer on error.
1569  */
1570 struct dma_fence *
__xe_pt_unbind_vma(struct xe_tile * tile,struct xe_vma * vma,struct xe_exec_queue * q,struct xe_sync_entry * syncs,u32 num_syncs)1571 __xe_pt_unbind_vma(struct xe_tile *tile, struct xe_vma *vma, struct xe_exec_queue *q,
1572 		   struct xe_sync_entry *syncs, u32 num_syncs)
1573 {
1574 	struct xe_vm_pgtable_update entries[XE_VM_MAX_LEVEL * 2 + 1];
1575 	struct xe_pt_migrate_pt_update unbind_pt_update = {
1576 		.base = {
1577 			.ops = xe_vma_is_userptr(vma) ? &userptr_unbind_ops :
1578 			&unbind_ops,
1579 			.vma = vma,
1580 			.tile_id = tile->id,
1581 		},
1582 	};
1583 	struct xe_vm *vm = xe_vma_vm(vma);
1584 	u32 num_entries;
1585 	struct dma_fence *fence = NULL;
1586 	struct invalidation_fence *ifence;
1587 	struct xe_range_fence *rfence;
1588 	int err;
1589 
1590 	LLIST_HEAD(deferred);
1591 
1592 	xe_bo_assert_held(xe_vma_bo(vma));
1593 	xe_vm_assert_held(vm);
1594 
1595 	vm_dbg(&xe_vma_vm(vma)->xe->drm,
1596 	       "Preparing unbind, with range [%llx...%llx) engine %p.\n",
1597 	       xe_vma_start(vma), xe_vma_end(vma), q);
1598 
1599 	num_entries = xe_pt_stage_unbind(tile, vma, entries);
1600 	xe_tile_assert(tile, num_entries <= ARRAY_SIZE(entries));
1601 
1602 	xe_vm_dbg_print_entries(tile_to_xe(tile), entries, num_entries);
1603 	xe_pt_calc_rfence_interval(vma, &unbind_pt_update, entries,
1604 				   num_entries);
1605 
1606 	err = dma_resv_reserve_fences(xe_vm_resv(vm), 1);
1607 	if (!err && !xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm)
1608 		err = dma_resv_reserve_fences(xe_vma_bo(vma)->ttm.base.resv, 1);
1609 	if (err)
1610 		return ERR_PTR(err);
1611 
1612 	ifence = kzalloc(sizeof(*ifence), GFP_KERNEL);
1613 	if (!ifence)
1614 		return ERR_PTR(-ENOMEM);
1615 
1616 	rfence = kzalloc(sizeof(*rfence), GFP_KERNEL);
1617 	if (!rfence) {
1618 		kfree(ifence);
1619 		return ERR_PTR(-ENOMEM);
1620 	}
1621 
1622 	/*
1623 	 * Even if we were already evicted and unbind to destroy, we need to
1624 	 * clear again here. The eviction may have updated pagetables at a
1625 	 * lower level, because it needs to be more conservative.
1626 	 */
1627 	fence = xe_migrate_update_pgtables(tile->migrate,
1628 					   vm, NULL, q ? q :
1629 					   vm->q[tile->id],
1630 					   entries, num_entries,
1631 					   syncs, num_syncs,
1632 					   &unbind_pt_update.base);
1633 	if (!IS_ERR(fence)) {
1634 		int err;
1635 
1636 		err = xe_range_fence_insert(&vm->rftree[tile->id], rfence,
1637 					    &xe_range_fence_kfree_ops,
1638 					    unbind_pt_update.base.start,
1639 					    unbind_pt_update.base.last, fence);
1640 		if (err)
1641 			dma_fence_wait(fence, false);
1642 
1643 		/* TLB invalidation must be done before signaling unbind */
1644 		err = invalidation_fence_init(tile->primary_gt, ifence, fence, vma);
1645 		if (err) {
1646 			dma_fence_put(fence);
1647 			kfree(ifence);
1648 			return ERR_PTR(err);
1649 		}
1650 		fence = &ifence->base.base;
1651 
1652 		/* add shared fence now for pagetable delayed destroy */
1653 		dma_resv_add_fence(xe_vm_resv(vm), fence,
1654 				   DMA_RESV_USAGE_BOOKKEEP);
1655 
1656 		/* This fence will be installed by caller when doing eviction */
1657 		if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm)
1658 			dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence,
1659 					   DMA_RESV_USAGE_BOOKKEEP);
1660 		xe_pt_commit_unbind(vma, entries, num_entries,
1661 				    unbind_pt_update.locked ? &deferred : NULL);
1662 		vma->tile_present &= ~BIT(tile->id);
1663 	} else {
1664 		kfree(rfence);
1665 		kfree(ifence);
1666 	}
1667 
1668 	if (!vma->tile_present)
1669 		list_del_init(&vma->combined_links.rebind);
1670 
1671 	if (unbind_pt_update.locked) {
1672 		xe_tile_assert(tile, xe_vma_is_userptr(vma));
1673 
1674 		if (!vma->tile_present) {
1675 			spin_lock(&vm->userptr.invalidated_lock);
1676 			list_del_init(&to_userptr_vma(vma)->userptr.invalidate_link);
1677 			spin_unlock(&vm->userptr.invalidated_lock);
1678 		}
1679 		up_read(&vm->userptr.notifier_lock);
1680 		xe_bo_put_commit(&deferred);
1681 	}
1682 
1683 	return fence;
1684 }
1685