xref: /linux/drivers/gpu/drm/xe/xe_pt.c (revision 021bc4b9)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "xe_pt.h"
7 
8 #include "xe_bo.h"
9 #include "xe_device.h"
10 #include "xe_drm_client.h"
11 #include "xe_gt.h"
12 #include "xe_gt_tlb_invalidation.h"
13 #include "xe_migrate.h"
14 #include "xe_pt_types.h"
15 #include "xe_pt_walk.h"
16 #include "xe_res_cursor.h"
17 #include "xe_trace.h"
18 #include "xe_ttm_stolen_mgr.h"
19 #include "xe_vm.h"
20 
21 struct xe_pt_dir {
22 	struct xe_pt pt;
23 	/** @dir: Directory structure for the xe_pt_walk functionality */
24 	struct xe_ptw_dir dir;
25 };
26 
27 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM)
28 #define xe_pt_set_addr(__xe_pt, __addr) ((__xe_pt)->addr = (__addr))
29 #define xe_pt_addr(__xe_pt) ((__xe_pt)->addr)
30 #else
31 #define xe_pt_set_addr(__xe_pt, __addr)
32 #define xe_pt_addr(__xe_pt) 0ull
33 #endif
34 
35 static const u64 xe_normal_pt_shifts[] = {12, 21, 30, 39, 48};
36 static const u64 xe_compact_pt_shifts[] = {16, 21, 30, 39, 48};
37 
38 #define XE_PT_HIGHEST_LEVEL (ARRAY_SIZE(xe_normal_pt_shifts) - 1)
39 
40 static struct xe_pt_dir *as_xe_pt_dir(struct xe_pt *pt)
41 {
42 	return container_of(pt, struct xe_pt_dir, pt);
43 }
44 
45 static struct xe_pt *xe_pt_entry(struct xe_pt_dir *pt_dir, unsigned int index)
46 {
47 	return container_of(pt_dir->dir.entries[index], struct xe_pt, base);
48 }
49 
50 static u64 __xe_pt_empty_pte(struct xe_tile *tile, struct xe_vm *vm,
51 			     unsigned int level)
52 {
53 	struct xe_device *xe = tile_to_xe(tile);
54 	u16 pat_index = xe->pat.idx[XE_CACHE_WB];
55 	u8 id = tile->id;
56 
57 	if (!xe_vm_has_scratch(vm))
58 		return 0;
59 
60 	if (level > MAX_HUGEPTE_LEVEL)
61 		return vm->pt_ops->pde_encode_bo(vm->scratch_pt[id][level - 1]->bo,
62 						 0, pat_index);
63 
64 	return vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level, IS_DGFX(xe), 0) |
65 		XE_PTE_NULL;
66 }
67 
68 /**
69  * xe_pt_create() - Create a page-table.
70  * @vm: The vm to create for.
71  * @tile: The tile to create for.
72  * @level: The page-table level.
73  *
74  * Allocate and initialize a single struct xe_pt metadata structure. Also
75  * create the corresponding page-table bo, but don't initialize it. If the
76  * level is grater than zero, then it's assumed to be a directory page-
77  * table and the directory structure is also allocated and initialized to
78  * NULL pointers.
79  *
80  * Return: A valid struct xe_pt pointer on success, Pointer error code on
81  * error.
82  */
83 struct xe_pt *xe_pt_create(struct xe_vm *vm, struct xe_tile *tile,
84 			   unsigned int level)
85 {
86 	struct xe_pt *pt;
87 	struct xe_bo *bo;
88 	size_t size;
89 	int err;
90 
91 	size = !level ?  sizeof(struct xe_pt) : sizeof(struct xe_pt_dir) +
92 		XE_PDES * sizeof(struct xe_ptw *);
93 	pt = kzalloc(size, GFP_KERNEL);
94 	if (!pt)
95 		return ERR_PTR(-ENOMEM);
96 
97 	bo = xe_bo_create_pin_map(vm->xe, tile, vm, SZ_4K,
98 				  ttm_bo_type_kernel,
99 				  XE_BO_CREATE_VRAM_IF_DGFX(tile) |
100 				  XE_BO_CREATE_IGNORE_MIN_PAGE_SIZE_BIT |
101 				  XE_BO_CREATE_PINNED_BIT |
102 				  XE_BO_CREATE_NO_RESV_EVICT |
103 				  XE_BO_PAGETABLE);
104 	if (IS_ERR(bo)) {
105 		err = PTR_ERR(bo);
106 		goto err_kfree;
107 	}
108 	pt->bo = bo;
109 	pt->level = level;
110 	pt->base.dir = level ? &as_xe_pt_dir(pt)->dir : NULL;
111 
112 	if (vm->xef)
113 		xe_drm_client_add_bo(vm->xef->client, pt->bo);
114 	xe_tile_assert(tile, level <= XE_VM_MAX_LEVEL);
115 
116 	return pt;
117 
118 err_kfree:
119 	kfree(pt);
120 	return ERR_PTR(err);
121 }
122 
123 /**
124  * xe_pt_populate_empty() - Populate a page-table bo with scratch- or zero
125  * entries.
126  * @tile: The tile the scratch pagetable of which to use.
127  * @vm: The vm we populate for.
128  * @pt: The pagetable the bo of which to initialize.
129  *
130  * Populate the page-table bo of @pt with entries pointing into the tile's
131  * scratch page-table tree if any. Otherwise populate with zeros.
132  */
133 void xe_pt_populate_empty(struct xe_tile *tile, struct xe_vm *vm,
134 			  struct xe_pt *pt)
135 {
136 	struct iosys_map *map = &pt->bo->vmap;
137 	u64 empty;
138 	int i;
139 
140 	if (!xe_vm_has_scratch(vm)) {
141 		/*
142 		 * FIXME: Some memory is allocated already allocated to zero?
143 		 * Find out which memory that is and avoid this memset...
144 		 */
145 		xe_map_memset(vm->xe, map, 0, 0, SZ_4K);
146 	} else {
147 		empty = __xe_pt_empty_pte(tile, vm, pt->level);
148 		for (i = 0; i < XE_PDES; i++)
149 			xe_pt_write(vm->xe, map, i, empty);
150 	}
151 }
152 
153 /**
154  * xe_pt_shift() - Return the ilog2 value of the size of the address range of
155  * a page-table at a certain level.
156  * @level: The level.
157  *
158  * Return: The ilog2 value of the size of the address range of a page-table
159  * at level @level.
160  */
161 unsigned int xe_pt_shift(unsigned int level)
162 {
163 	return XE_PTE_SHIFT + XE_PDE_SHIFT * level;
164 }
165 
166 /**
167  * xe_pt_destroy() - Destroy a page-table tree.
168  * @pt: The root of the page-table tree to destroy.
169  * @flags: vm flags. Currently unused.
170  * @deferred: List head of lockless list for deferred putting. NULL for
171  *            immediate putting.
172  *
173  * Puts the page-table bo, recursively calls xe_pt_destroy on all children
174  * and finally frees @pt. TODO: Can we remove the @flags argument?
175  */
176 void xe_pt_destroy(struct xe_pt *pt, u32 flags, struct llist_head *deferred)
177 {
178 	int i;
179 
180 	if (!pt)
181 		return;
182 
183 	XE_WARN_ON(!list_empty(&pt->bo->ttm.base.gpuva.list));
184 	xe_bo_unpin(pt->bo);
185 	xe_bo_put_deferred(pt->bo, deferred);
186 
187 	if (pt->level > 0 && pt->num_live) {
188 		struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt);
189 
190 		for (i = 0; i < XE_PDES; i++) {
191 			if (xe_pt_entry(pt_dir, i))
192 				xe_pt_destroy(xe_pt_entry(pt_dir, i), flags,
193 					      deferred);
194 		}
195 	}
196 	kfree(pt);
197 }
198 
199 /**
200  * DOC: Pagetable building
201  *
202  * Below we use the term "page-table" for both page-directories, containing
203  * pointers to lower level page-directories or page-tables, and level 0
204  * page-tables that contain only page-table-entries pointing to memory pages.
205  *
206  * When inserting an address range in an already existing page-table tree
207  * there will typically be a set of page-tables that are shared with other
208  * address ranges, and a set that are private to this address range.
209  * The set of shared page-tables can be at most two per level,
210  * and those can't be updated immediately because the entries of those
211  * page-tables may still be in use by the gpu for other mappings. Therefore
212  * when inserting entries into those, we instead stage those insertions by
213  * adding insertion data into struct xe_vm_pgtable_update structures. This
214  * data, (subtrees for the cpu and page-table-entries for the gpu) is then
215  * added in a separate commit step. CPU-data is committed while still under the
216  * vm lock, the object lock and for userptr, the notifier lock in read mode.
217  * The GPU async data is committed either by the GPU or CPU after fulfilling
218  * relevant dependencies.
219  * For non-shared page-tables (and, in fact, for shared ones that aren't
220  * existing at the time of staging), we add the data in-place without the
221  * special update structures. This private part of the page-table tree will
222  * remain disconnected from the vm page-table tree until data is committed to
223  * the shared page tables of the vm tree in the commit phase.
224  */
225 
226 struct xe_pt_update {
227 	/** @update: The update structure we're building for this parent. */
228 	struct xe_vm_pgtable_update *update;
229 	/** @parent: The parent. Used to detect a parent change. */
230 	struct xe_pt *parent;
231 	/** @preexisting: Whether the parent was pre-existing or allocated */
232 	bool preexisting;
233 };
234 
235 struct xe_pt_stage_bind_walk {
236 	/** base: The base class. */
237 	struct xe_pt_walk base;
238 
239 	/* Input parameters for the walk */
240 	/** @vm: The vm we're building for. */
241 	struct xe_vm *vm;
242 	/** @tile: The tile we're building for. */
243 	struct xe_tile *tile;
244 	/** @default_pte: PTE flag only template. No address is associated */
245 	u64 default_pte;
246 	/** @dma_offset: DMA offset to add to the PTE. */
247 	u64 dma_offset;
248 	/**
249 	 * @needs_64k: This address range enforces 64K alignment and
250 	 * granularity.
251 	 */
252 	bool needs_64K;
253 	/**
254 	 * @vma: VMA being mapped
255 	 */
256 	struct xe_vma *vma;
257 
258 	/* Also input, but is updated during the walk*/
259 	/** @curs: The DMA address cursor. */
260 	struct xe_res_cursor *curs;
261 	/** @va_curs_start: The Virtual address coresponding to @curs->start */
262 	u64 va_curs_start;
263 
264 	/* Output */
265 	struct xe_walk_update {
266 		/** @wupd.entries: Caller provided storage. */
267 		struct xe_vm_pgtable_update *entries;
268 		/** @wupd.num_used_entries: Number of update @entries used. */
269 		unsigned int num_used_entries;
270 		/** @wupd.updates: Tracks the update entry at a given level */
271 		struct xe_pt_update updates[XE_VM_MAX_LEVEL + 1];
272 	} wupd;
273 
274 	/* Walk state */
275 	/**
276 	 * @l0_end_addr: The end address of the current l0 leaf. Used for
277 	 * 64K granularity detection.
278 	 */
279 	u64 l0_end_addr;
280 	/** @addr_64K: The start address of the current 64K chunk. */
281 	u64 addr_64K;
282 	/** @found_64: Whether @add_64K actually points to a 64K chunk. */
283 	bool found_64K;
284 };
285 
286 static int
287 xe_pt_new_shared(struct xe_walk_update *wupd, struct xe_pt *parent,
288 		 pgoff_t offset, bool alloc_entries)
289 {
290 	struct xe_pt_update *upd = &wupd->updates[parent->level];
291 	struct xe_vm_pgtable_update *entry;
292 
293 	/*
294 	 * For *each level*, we could only have one active
295 	 * struct xt_pt_update at any one time. Once we move on to a
296 	 * new parent and page-directory, the old one is complete, and
297 	 * updates are either already stored in the build tree or in
298 	 * @wupd->entries
299 	 */
300 	if (likely(upd->parent == parent))
301 		return 0;
302 
303 	upd->parent = parent;
304 	upd->preexisting = true;
305 
306 	if (wupd->num_used_entries == XE_VM_MAX_LEVEL * 2 + 1)
307 		return -EINVAL;
308 
309 	entry = wupd->entries + wupd->num_used_entries++;
310 	upd->update = entry;
311 	entry->ofs = offset;
312 	entry->pt_bo = parent->bo;
313 	entry->pt = parent;
314 	entry->flags = 0;
315 	entry->qwords = 0;
316 
317 	if (alloc_entries) {
318 		entry->pt_entries = kmalloc_array(XE_PDES,
319 						  sizeof(*entry->pt_entries),
320 						  GFP_KERNEL);
321 		if (!entry->pt_entries)
322 			return -ENOMEM;
323 	}
324 
325 	return 0;
326 }
327 
328 /*
329  * NOTE: This is a very frequently called function so we allow ourselves
330  * to annotate (using branch prediction hints) the fastpath of updating a
331  * non-pre-existing pagetable with leaf ptes.
332  */
333 static int
334 xe_pt_insert_entry(struct xe_pt_stage_bind_walk *xe_walk, struct xe_pt *parent,
335 		   pgoff_t offset, struct xe_pt *xe_child, u64 pte)
336 {
337 	struct xe_pt_update *upd = &xe_walk->wupd.updates[parent->level];
338 	struct xe_pt_update *child_upd = xe_child ?
339 		&xe_walk->wupd.updates[xe_child->level] : NULL;
340 	int ret;
341 
342 	ret = xe_pt_new_shared(&xe_walk->wupd, parent, offset, true);
343 	if (unlikely(ret))
344 		return ret;
345 
346 	/*
347 	 * Register this new pagetable so that it won't be recognized as
348 	 * a shared pagetable by a subsequent insertion.
349 	 */
350 	if (unlikely(child_upd)) {
351 		child_upd->update = NULL;
352 		child_upd->parent = xe_child;
353 		child_upd->preexisting = false;
354 	}
355 
356 	if (likely(!upd->preexisting)) {
357 		/* Continue building a non-connected subtree. */
358 		struct iosys_map *map = &parent->bo->vmap;
359 
360 		if (unlikely(xe_child))
361 			parent->base.dir->entries[offset] = &xe_child->base;
362 
363 		xe_pt_write(xe_walk->vm->xe, map, offset, pte);
364 		parent->num_live++;
365 	} else {
366 		/* Shared pt. Stage update. */
367 		unsigned int idx;
368 		struct xe_vm_pgtable_update *entry = upd->update;
369 
370 		idx = offset - entry->ofs;
371 		entry->pt_entries[idx].pt = xe_child;
372 		entry->pt_entries[idx].pte = pte;
373 		entry->qwords++;
374 	}
375 
376 	return 0;
377 }
378 
379 static bool xe_pt_hugepte_possible(u64 addr, u64 next, unsigned int level,
380 				   struct xe_pt_stage_bind_walk *xe_walk)
381 {
382 	u64 size, dma;
383 
384 	if (level > MAX_HUGEPTE_LEVEL)
385 		return false;
386 
387 	/* Does the virtual range requested cover a huge pte? */
388 	if (!xe_pt_covers(addr, next, level, &xe_walk->base))
389 		return false;
390 
391 	/* Does the DMA segment cover the whole pte? */
392 	if (next - xe_walk->va_curs_start > xe_walk->curs->size)
393 		return false;
394 
395 	/* null VMA's do not have dma addresses */
396 	if (xe_vma_is_null(xe_walk->vma))
397 		return true;
398 
399 	/* Is the DMA address huge PTE size aligned? */
400 	size = next - addr;
401 	dma = addr - xe_walk->va_curs_start + xe_res_dma(xe_walk->curs);
402 
403 	return IS_ALIGNED(dma, size);
404 }
405 
406 /*
407  * Scan the requested mapping to check whether it can be done entirely
408  * with 64K PTEs.
409  */
410 static bool
411 xe_pt_scan_64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk)
412 {
413 	struct xe_res_cursor curs = *xe_walk->curs;
414 
415 	if (!IS_ALIGNED(addr, SZ_64K))
416 		return false;
417 
418 	if (next > xe_walk->l0_end_addr)
419 		return false;
420 
421 	/* null VMA's do not have dma addresses */
422 	if (xe_vma_is_null(xe_walk->vma))
423 		return true;
424 
425 	xe_res_next(&curs, addr - xe_walk->va_curs_start);
426 	for (; addr < next; addr += SZ_64K) {
427 		if (!IS_ALIGNED(xe_res_dma(&curs), SZ_64K) || curs.size < SZ_64K)
428 			return false;
429 
430 		xe_res_next(&curs, SZ_64K);
431 	}
432 
433 	return addr == next;
434 }
435 
436 /*
437  * For non-compact "normal" 4K level-0 pagetables, we want to try to group
438  * addresses together in 64K-contigous regions to add a 64K TLB hint for the
439  * device to the PTE.
440  * This function determines whether the address is part of such a
441  * segment. For VRAM in normal pagetables, this is strictly necessary on
442  * some devices.
443  */
444 static bool
445 xe_pt_is_pte_ps64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk)
446 {
447 	/* Address is within an already found 64k region */
448 	if (xe_walk->found_64K && addr - xe_walk->addr_64K < SZ_64K)
449 		return true;
450 
451 	xe_walk->found_64K = xe_pt_scan_64K(addr, addr + SZ_64K, xe_walk);
452 	xe_walk->addr_64K = addr;
453 
454 	return xe_walk->found_64K;
455 }
456 
457 static int
458 xe_pt_stage_bind_entry(struct xe_ptw *parent, pgoff_t offset,
459 		       unsigned int level, u64 addr, u64 next,
460 		       struct xe_ptw **child,
461 		       enum page_walk_action *action,
462 		       struct xe_pt_walk *walk)
463 {
464 	struct xe_pt_stage_bind_walk *xe_walk =
465 		container_of(walk, typeof(*xe_walk), base);
466 	u16 pat_index = xe_walk->vma->pat_index;
467 	struct xe_pt *xe_parent = container_of(parent, typeof(*xe_parent), base);
468 	struct xe_vm *vm = xe_walk->vm;
469 	struct xe_pt *xe_child;
470 	bool covers;
471 	int ret = 0;
472 	u64 pte;
473 
474 	/* Is this a leaf entry ?*/
475 	if (level == 0 || xe_pt_hugepte_possible(addr, next, level, xe_walk)) {
476 		struct xe_res_cursor *curs = xe_walk->curs;
477 		bool is_null = xe_vma_is_null(xe_walk->vma);
478 
479 		XE_WARN_ON(xe_walk->va_curs_start != addr);
480 
481 		pte = vm->pt_ops->pte_encode_vma(is_null ? 0 :
482 						 xe_res_dma(curs) + xe_walk->dma_offset,
483 						 xe_walk->vma, pat_index, level);
484 		pte |= xe_walk->default_pte;
485 
486 		/*
487 		 * Set the XE_PTE_PS64 hint if possible, otherwise if
488 		 * this device *requires* 64K PTE size for VRAM, fail.
489 		 */
490 		if (level == 0 && !xe_parent->is_compact) {
491 			if (xe_pt_is_pte_ps64K(addr, next, xe_walk))
492 				pte |= XE_PTE_PS64;
493 			else if (XE_WARN_ON(xe_walk->needs_64K))
494 				return -EINVAL;
495 		}
496 
497 		ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, NULL, pte);
498 		if (unlikely(ret))
499 			return ret;
500 
501 		if (!is_null)
502 			xe_res_next(curs, next - addr);
503 		xe_walk->va_curs_start = next;
504 		xe_walk->vma->gpuva.flags |= (XE_VMA_PTE_4K << level);
505 		*action = ACTION_CONTINUE;
506 
507 		return ret;
508 	}
509 
510 	/*
511 	 * Descending to lower level. Determine if we need to allocate a
512 	 * new page table or -directory, which we do if there is no
513 	 * previous one or there is one we can completely replace.
514 	 */
515 	if (level == 1) {
516 		walk->shifts = xe_normal_pt_shifts;
517 		xe_walk->l0_end_addr = next;
518 	}
519 
520 	covers = xe_pt_covers(addr, next, level, &xe_walk->base);
521 	if (covers || !*child) {
522 		u64 flags = 0;
523 
524 		xe_child = xe_pt_create(xe_walk->vm, xe_walk->tile, level - 1);
525 		if (IS_ERR(xe_child))
526 			return PTR_ERR(xe_child);
527 
528 		xe_pt_set_addr(xe_child,
529 			       round_down(addr, 1ull << walk->shifts[level]));
530 
531 		if (!covers)
532 			xe_pt_populate_empty(xe_walk->tile, xe_walk->vm, xe_child);
533 
534 		*child = &xe_child->base;
535 
536 		/*
537 		 * Prefer the compact pagetable layout for L0 if possible.
538 		 * TODO: Suballocate the pt bo to avoid wasting a lot of
539 		 * memory.
540 		 */
541 		if (GRAPHICS_VERx100(tile_to_xe(xe_walk->tile)) >= 1250 && level == 1 &&
542 		    covers && xe_pt_scan_64K(addr, next, xe_walk)) {
543 			walk->shifts = xe_compact_pt_shifts;
544 			flags |= XE_PDE_64K;
545 			xe_child->is_compact = true;
546 		}
547 
548 		pte = vm->pt_ops->pde_encode_bo(xe_child->bo, 0, pat_index) | flags;
549 		ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, xe_child,
550 					 pte);
551 	}
552 
553 	*action = ACTION_SUBTREE;
554 	return ret;
555 }
556 
557 static const struct xe_pt_walk_ops xe_pt_stage_bind_ops = {
558 	.pt_entry = xe_pt_stage_bind_entry,
559 };
560 
561 /**
562  * xe_pt_stage_bind() - Build a disconnected page-table tree for a given address
563  * range.
564  * @tile: The tile we're building for.
565  * @vma: The vma indicating the address range.
566  * @entries: Storage for the update entries used for connecting the tree to
567  * the main tree at commit time.
568  * @num_entries: On output contains the number of @entries used.
569  *
570  * This function builds a disconnected page-table tree for a given address
571  * range. The tree is connected to the main vm tree for the gpu using
572  * xe_migrate_update_pgtables() and for the cpu using xe_pt_commit_bind().
573  * The function builds xe_vm_pgtable_update structures for already existing
574  * shared page-tables, and non-existing shared and non-shared page-tables
575  * are built and populated directly.
576  *
577  * Return 0 on success, negative error code on error.
578  */
579 static int
580 xe_pt_stage_bind(struct xe_tile *tile, struct xe_vma *vma,
581 		 struct xe_vm_pgtable_update *entries, u32 *num_entries)
582 {
583 	struct xe_device *xe = tile_to_xe(tile);
584 	struct xe_bo *bo = xe_vma_bo(vma);
585 	bool is_devmem = !xe_vma_is_userptr(vma) && bo &&
586 		(xe_bo_is_vram(bo) || xe_bo_is_stolen_devmem(bo));
587 	struct xe_res_cursor curs;
588 	struct xe_pt_stage_bind_walk xe_walk = {
589 		.base = {
590 			.ops = &xe_pt_stage_bind_ops,
591 			.shifts = xe_normal_pt_shifts,
592 			.max_level = XE_PT_HIGHEST_LEVEL,
593 		},
594 		.vm = xe_vma_vm(vma),
595 		.tile = tile,
596 		.curs = &curs,
597 		.va_curs_start = xe_vma_start(vma),
598 		.vma = vma,
599 		.wupd.entries = entries,
600 		.needs_64K = (xe_vma_vm(vma)->flags & XE_VM_FLAG_64K) && is_devmem,
601 	};
602 	struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id];
603 	int ret;
604 
605 	if (vma && (vma->gpuva.flags & XE_VMA_ATOMIC_PTE_BIT) &&
606 	    (is_devmem || !IS_DGFX(xe)))
607 		xe_walk.default_pte |= XE_USM_PPGTT_PTE_AE;
608 
609 	if (is_devmem) {
610 		xe_walk.default_pte |= XE_PPGTT_PTE_DM;
611 		xe_walk.dma_offset = vram_region_gpu_offset(bo->ttm.resource);
612 	}
613 
614 	if (!xe_vma_has_no_bo(vma) && xe_bo_is_stolen(bo))
615 		xe_walk.dma_offset = xe_ttm_stolen_gpu_offset(xe_bo_device(bo));
616 
617 	xe_bo_assert_held(bo);
618 
619 	if (!xe_vma_is_null(vma)) {
620 		if (xe_vma_is_userptr(vma))
621 			xe_res_first_sg(to_userptr_vma(vma)->userptr.sg, 0,
622 					xe_vma_size(vma), &curs);
623 		else if (xe_bo_is_vram(bo) || xe_bo_is_stolen(bo))
624 			xe_res_first(bo->ttm.resource, xe_vma_bo_offset(vma),
625 				     xe_vma_size(vma), &curs);
626 		else
627 			xe_res_first_sg(xe_bo_sg(bo), xe_vma_bo_offset(vma),
628 					xe_vma_size(vma), &curs);
629 	} else {
630 		curs.size = xe_vma_size(vma);
631 	}
632 
633 	ret = xe_pt_walk_range(&pt->base, pt->level, xe_vma_start(vma),
634 			       xe_vma_end(vma), &xe_walk.base);
635 
636 	*num_entries = xe_walk.wupd.num_used_entries;
637 	return ret;
638 }
639 
640 /**
641  * xe_pt_nonshared_offsets() - Determine the non-shared entry offsets of a
642  * shared pagetable.
643  * @addr: The start address within the non-shared pagetable.
644  * @end: The end address within the non-shared pagetable.
645  * @level: The level of the non-shared pagetable.
646  * @walk: Walk info. The function adjusts the walk action.
647  * @action: next action to perform (see enum page_walk_action)
648  * @offset: Ignored on input, First non-shared entry on output.
649  * @end_offset: Ignored on input, Last non-shared entry + 1 on output.
650  *
651  * A non-shared page-table has some entries that belong to the address range
652  * and others that don't. This function determines the entries that belong
653  * fully to the address range. Depending on level, some entries may
654  * partially belong to the address range (that can't happen at level 0).
655  * The function detects that and adjust those offsets to not include those
656  * partial entries. Iff it does detect partial entries, we know that there must
657  * be shared page tables also at lower levels, so it adjusts the walk action
658  * accordingly.
659  *
660  * Return: true if there were non-shared entries, false otherwise.
661  */
662 static bool xe_pt_nonshared_offsets(u64 addr, u64 end, unsigned int level,
663 				    struct xe_pt_walk *walk,
664 				    enum page_walk_action *action,
665 				    pgoff_t *offset, pgoff_t *end_offset)
666 {
667 	u64 size = 1ull << walk->shifts[level];
668 
669 	*offset = xe_pt_offset(addr, level, walk);
670 	*end_offset = xe_pt_num_entries(addr, end, level, walk) + *offset;
671 
672 	if (!level)
673 		return true;
674 
675 	/*
676 	 * If addr or next are not size aligned, there are shared pts at lower
677 	 * level, so in that case traverse down the subtree
678 	 */
679 	*action = ACTION_CONTINUE;
680 	if (!IS_ALIGNED(addr, size)) {
681 		*action = ACTION_SUBTREE;
682 		(*offset)++;
683 	}
684 
685 	if (!IS_ALIGNED(end, size)) {
686 		*action = ACTION_SUBTREE;
687 		(*end_offset)--;
688 	}
689 
690 	return *end_offset > *offset;
691 }
692 
693 struct xe_pt_zap_ptes_walk {
694 	/** @base: The walk base-class */
695 	struct xe_pt_walk base;
696 
697 	/* Input parameters for the walk */
698 	/** @tile: The tile we're building for */
699 	struct xe_tile *tile;
700 
701 	/* Output */
702 	/** @needs_invalidate: Whether we need to invalidate TLB*/
703 	bool needs_invalidate;
704 };
705 
706 static int xe_pt_zap_ptes_entry(struct xe_ptw *parent, pgoff_t offset,
707 				unsigned int level, u64 addr, u64 next,
708 				struct xe_ptw **child,
709 				enum page_walk_action *action,
710 				struct xe_pt_walk *walk)
711 {
712 	struct xe_pt_zap_ptes_walk *xe_walk =
713 		container_of(walk, typeof(*xe_walk), base);
714 	struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base);
715 	pgoff_t end_offset;
716 
717 	XE_WARN_ON(!*child);
718 	XE_WARN_ON(!level && xe_child->is_compact);
719 
720 	/*
721 	 * Note that we're called from an entry callback, and we're dealing
722 	 * with the child of that entry rather than the parent, so need to
723 	 * adjust level down.
724 	 */
725 	if (xe_pt_nonshared_offsets(addr, next, --level, walk, action, &offset,
726 				    &end_offset)) {
727 		xe_map_memset(tile_to_xe(xe_walk->tile), &xe_child->bo->vmap,
728 			      offset * sizeof(u64), 0,
729 			      (end_offset - offset) * sizeof(u64));
730 		xe_walk->needs_invalidate = true;
731 	}
732 
733 	return 0;
734 }
735 
736 static const struct xe_pt_walk_ops xe_pt_zap_ptes_ops = {
737 	.pt_entry = xe_pt_zap_ptes_entry,
738 };
739 
740 /**
741  * xe_pt_zap_ptes() - Zap (zero) gpu ptes of an address range
742  * @tile: The tile we're zapping for.
743  * @vma: GPU VMA detailing address range.
744  *
745  * Eviction and Userptr invalidation needs to be able to zap the
746  * gpu ptes of a given address range in pagefaulting mode.
747  * In order to be able to do that, that function needs access to the shared
748  * page-table entrieaso it can either clear the leaf PTEs or
749  * clear the pointers to lower-level page-tables. The caller is required
750  * to hold the necessary locks to ensure neither the page-table connectivity
751  * nor the page-table entries of the range is updated from under us.
752  *
753  * Return: Whether ptes were actually updated and a TLB invalidation is
754  * required.
755  */
756 bool xe_pt_zap_ptes(struct xe_tile *tile, struct xe_vma *vma)
757 {
758 	struct xe_pt_zap_ptes_walk xe_walk = {
759 		.base = {
760 			.ops = &xe_pt_zap_ptes_ops,
761 			.shifts = xe_normal_pt_shifts,
762 			.max_level = XE_PT_HIGHEST_LEVEL,
763 		},
764 		.tile = tile,
765 	};
766 	struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id];
767 
768 	if (!(vma->tile_present & BIT(tile->id)))
769 		return false;
770 
771 	(void)xe_pt_walk_shared(&pt->base, pt->level, xe_vma_start(vma),
772 				xe_vma_end(vma), &xe_walk.base);
773 
774 	return xe_walk.needs_invalidate;
775 }
776 
777 static void
778 xe_vm_populate_pgtable(struct xe_migrate_pt_update *pt_update, struct xe_tile *tile,
779 		       struct iosys_map *map, void *data,
780 		       u32 qword_ofs, u32 num_qwords,
781 		       const struct xe_vm_pgtable_update *update)
782 {
783 	struct xe_pt_entry *ptes = update->pt_entries;
784 	u64 *ptr = data;
785 	u32 i;
786 
787 	for (i = 0; i < num_qwords; i++) {
788 		if (map)
789 			xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) *
790 				  sizeof(u64), u64, ptes[i].pte);
791 		else
792 			ptr[i] = ptes[i].pte;
793 	}
794 }
795 
796 static void xe_pt_abort_bind(struct xe_vma *vma,
797 			     struct xe_vm_pgtable_update *entries,
798 			     u32 num_entries)
799 {
800 	u32 i, j;
801 
802 	for (i = 0; i < num_entries; i++) {
803 		if (!entries[i].pt_entries)
804 			continue;
805 
806 		for (j = 0; j < entries[i].qwords; j++)
807 			xe_pt_destroy(entries[i].pt_entries[j].pt, xe_vma_vm(vma)->flags, NULL);
808 		kfree(entries[i].pt_entries);
809 	}
810 }
811 
812 static void xe_pt_commit_locks_assert(struct xe_vma *vma)
813 {
814 	struct xe_vm *vm = xe_vma_vm(vma);
815 
816 	lockdep_assert_held(&vm->lock);
817 
818 	if (xe_vma_is_userptr(vma))
819 		lockdep_assert_held_read(&vm->userptr.notifier_lock);
820 	else if (!xe_vma_is_null(vma))
821 		dma_resv_assert_held(xe_vma_bo(vma)->ttm.base.resv);
822 
823 	xe_vm_assert_held(vm);
824 }
825 
826 static void xe_pt_commit_bind(struct xe_vma *vma,
827 			      struct xe_vm_pgtable_update *entries,
828 			      u32 num_entries, bool rebind,
829 			      struct llist_head *deferred)
830 {
831 	u32 i, j;
832 
833 	xe_pt_commit_locks_assert(vma);
834 
835 	for (i = 0; i < num_entries; i++) {
836 		struct xe_pt *pt = entries[i].pt;
837 		struct xe_pt_dir *pt_dir;
838 
839 		if (!rebind)
840 			pt->num_live += entries[i].qwords;
841 
842 		if (!pt->level) {
843 			kfree(entries[i].pt_entries);
844 			continue;
845 		}
846 
847 		pt_dir = as_xe_pt_dir(pt);
848 		for (j = 0; j < entries[i].qwords; j++) {
849 			u32 j_ = j + entries[i].ofs;
850 			struct xe_pt *newpte = entries[i].pt_entries[j].pt;
851 
852 			if (xe_pt_entry(pt_dir, j_))
853 				xe_pt_destroy(xe_pt_entry(pt_dir, j_),
854 					      xe_vma_vm(vma)->flags, deferred);
855 
856 			pt_dir->dir.entries[j_] = &newpte->base;
857 		}
858 		kfree(entries[i].pt_entries);
859 	}
860 }
861 
862 static int
863 xe_pt_prepare_bind(struct xe_tile *tile, struct xe_vma *vma,
864 		   struct xe_vm_pgtable_update *entries, u32 *num_entries,
865 		   bool rebind)
866 {
867 	int err;
868 
869 	*num_entries = 0;
870 	err = xe_pt_stage_bind(tile, vma, entries, num_entries);
871 	if (!err)
872 		xe_tile_assert(tile, *num_entries);
873 	else /* abort! */
874 		xe_pt_abort_bind(vma, entries, *num_entries);
875 
876 	return err;
877 }
878 
879 static void xe_vm_dbg_print_entries(struct xe_device *xe,
880 				    const struct xe_vm_pgtable_update *entries,
881 				    unsigned int num_entries)
882 #if (IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM))
883 {
884 	unsigned int i;
885 
886 	vm_dbg(&xe->drm, "%u entries to update\n", num_entries);
887 	for (i = 0; i < num_entries; i++) {
888 		const struct xe_vm_pgtable_update *entry = &entries[i];
889 		struct xe_pt *xe_pt = entry->pt;
890 		u64 page_size = 1ull << xe_pt_shift(xe_pt->level);
891 		u64 end;
892 		u64 start;
893 
894 		xe_assert(xe, !entry->pt->is_compact);
895 		start = entry->ofs * page_size;
896 		end = start + page_size * entry->qwords;
897 		vm_dbg(&xe->drm,
898 		       "\t%u: Update level %u at (%u + %u) [%llx...%llx) f:%x\n",
899 		       i, xe_pt->level, entry->ofs, entry->qwords,
900 		       xe_pt_addr(xe_pt) + start, xe_pt_addr(xe_pt) + end, 0);
901 	}
902 }
903 #else
904 {}
905 #endif
906 
907 #ifdef CONFIG_DRM_XE_USERPTR_INVAL_INJECT
908 
909 static int xe_pt_userptr_inject_eagain(struct xe_userptr_vma *uvma)
910 {
911 	u32 divisor = uvma->userptr.divisor ? uvma->userptr.divisor : 2;
912 	static u32 count;
913 
914 	if (count++ % divisor == divisor - 1) {
915 		struct xe_vm *vm = xe_vma_vm(&uvma->vma);
916 
917 		uvma->userptr.divisor = divisor << 1;
918 		spin_lock(&vm->userptr.invalidated_lock);
919 		list_move_tail(&uvma->userptr.invalidate_link,
920 			       &vm->userptr.invalidated);
921 		spin_unlock(&vm->userptr.invalidated_lock);
922 		return true;
923 	}
924 
925 	return false;
926 }
927 
928 #else
929 
930 static bool xe_pt_userptr_inject_eagain(struct xe_userptr_vma *uvma)
931 {
932 	return false;
933 }
934 
935 #endif
936 
937 /**
938  * struct xe_pt_migrate_pt_update - Callback argument for pre-commit callbacks
939  * @base: Base we derive from.
940  * @bind: Whether this is a bind or an unbind operation. A bind operation
941  *        makes the pre-commit callback error with -EAGAIN if it detects a
942  *        pending invalidation.
943  * @locked: Whether the pre-commit callback locked the userptr notifier lock
944  *          and it needs unlocking.
945  */
946 struct xe_pt_migrate_pt_update {
947 	struct xe_migrate_pt_update base;
948 	bool bind;
949 	bool locked;
950 };
951 
952 /*
953  * This function adds the needed dependencies to a page-table update job
954  * to make sure racing jobs for separate bind engines don't race writing
955  * to the same page-table range, wreaking havoc. Initially use a single
956  * fence for the entire VM. An optimization would use smaller granularity.
957  */
958 static int xe_pt_vm_dependencies(struct xe_sched_job *job,
959 				 struct xe_range_fence_tree *rftree,
960 				 u64 start, u64 last)
961 {
962 	struct xe_range_fence *rtfence;
963 	struct dma_fence *fence;
964 	int err;
965 
966 	rtfence = xe_range_fence_tree_first(rftree, start, last);
967 	while (rtfence) {
968 		fence = rtfence->fence;
969 
970 		if (!dma_fence_is_signaled(fence)) {
971 			/*
972 			 * Is this a CPU update? GPU is busy updating, so return
973 			 * an error
974 			 */
975 			if (!job)
976 				return -ETIME;
977 
978 			dma_fence_get(fence);
979 			err = drm_sched_job_add_dependency(&job->drm, fence);
980 			if (err)
981 				return err;
982 		}
983 
984 		rtfence = xe_range_fence_tree_next(rtfence, start, last);
985 	}
986 
987 	return 0;
988 }
989 
990 static int xe_pt_pre_commit(struct xe_migrate_pt_update *pt_update)
991 {
992 	struct xe_range_fence_tree *rftree =
993 		&xe_vma_vm(pt_update->vma)->rftree[pt_update->tile_id];
994 
995 	return xe_pt_vm_dependencies(pt_update->job, rftree,
996 				     pt_update->start, pt_update->last);
997 }
998 
999 static int xe_pt_userptr_pre_commit(struct xe_migrate_pt_update *pt_update)
1000 {
1001 	struct xe_pt_migrate_pt_update *userptr_update =
1002 		container_of(pt_update, typeof(*userptr_update), base);
1003 	struct xe_userptr_vma *uvma = to_userptr_vma(pt_update->vma);
1004 	unsigned long notifier_seq = uvma->userptr.notifier_seq;
1005 	struct xe_vm *vm = xe_vma_vm(&uvma->vma);
1006 	int err = xe_pt_vm_dependencies(pt_update->job,
1007 					&vm->rftree[pt_update->tile_id],
1008 					pt_update->start,
1009 					pt_update->last);
1010 
1011 	if (err)
1012 		return err;
1013 
1014 	userptr_update->locked = false;
1015 
1016 	/*
1017 	 * Wait until nobody is running the invalidation notifier, and
1018 	 * since we're exiting the loop holding the notifier lock,
1019 	 * nobody can proceed invalidating either.
1020 	 *
1021 	 * Note that we don't update the vma->userptr.notifier_seq since
1022 	 * we don't update the userptr pages.
1023 	 */
1024 	do {
1025 		down_read(&vm->userptr.notifier_lock);
1026 		if (!mmu_interval_read_retry(&uvma->userptr.notifier,
1027 					     notifier_seq))
1028 			break;
1029 
1030 		up_read(&vm->userptr.notifier_lock);
1031 
1032 		if (userptr_update->bind)
1033 			return -EAGAIN;
1034 
1035 		notifier_seq = mmu_interval_read_begin(&uvma->userptr.notifier);
1036 	} while (true);
1037 
1038 	/* Inject errors to test_whether they are handled correctly */
1039 	if (userptr_update->bind && xe_pt_userptr_inject_eagain(uvma)) {
1040 		up_read(&vm->userptr.notifier_lock);
1041 		return -EAGAIN;
1042 	}
1043 
1044 	userptr_update->locked = true;
1045 
1046 	return 0;
1047 }
1048 
1049 static const struct xe_migrate_pt_update_ops bind_ops = {
1050 	.populate = xe_vm_populate_pgtable,
1051 	.pre_commit = xe_pt_pre_commit,
1052 };
1053 
1054 static const struct xe_migrate_pt_update_ops userptr_bind_ops = {
1055 	.populate = xe_vm_populate_pgtable,
1056 	.pre_commit = xe_pt_userptr_pre_commit,
1057 };
1058 
1059 struct invalidation_fence {
1060 	struct xe_gt_tlb_invalidation_fence base;
1061 	struct xe_gt *gt;
1062 	struct xe_vma *vma;
1063 	struct dma_fence *fence;
1064 	struct dma_fence_cb cb;
1065 	struct work_struct work;
1066 };
1067 
1068 static const char *
1069 invalidation_fence_get_driver_name(struct dma_fence *dma_fence)
1070 {
1071 	return "xe";
1072 }
1073 
1074 static const char *
1075 invalidation_fence_get_timeline_name(struct dma_fence *dma_fence)
1076 {
1077 	return "invalidation_fence";
1078 }
1079 
1080 static const struct dma_fence_ops invalidation_fence_ops = {
1081 	.get_driver_name = invalidation_fence_get_driver_name,
1082 	.get_timeline_name = invalidation_fence_get_timeline_name,
1083 };
1084 
1085 static void invalidation_fence_cb(struct dma_fence *fence,
1086 				  struct dma_fence_cb *cb)
1087 {
1088 	struct invalidation_fence *ifence =
1089 		container_of(cb, struct invalidation_fence, cb);
1090 
1091 	trace_xe_gt_tlb_invalidation_fence_cb(&ifence->base);
1092 	if (!ifence->fence->error) {
1093 		queue_work(system_wq, &ifence->work);
1094 	} else {
1095 		ifence->base.base.error = ifence->fence->error;
1096 		dma_fence_signal(&ifence->base.base);
1097 		dma_fence_put(&ifence->base.base);
1098 	}
1099 	dma_fence_put(ifence->fence);
1100 }
1101 
1102 static void invalidation_fence_work_func(struct work_struct *w)
1103 {
1104 	struct invalidation_fence *ifence =
1105 		container_of(w, struct invalidation_fence, work);
1106 
1107 	trace_xe_gt_tlb_invalidation_fence_work_func(&ifence->base);
1108 	xe_gt_tlb_invalidation_vma(ifence->gt, &ifence->base, ifence->vma);
1109 }
1110 
1111 static int invalidation_fence_init(struct xe_gt *gt,
1112 				   struct invalidation_fence *ifence,
1113 				   struct dma_fence *fence,
1114 				   struct xe_vma *vma)
1115 {
1116 	int ret;
1117 
1118 	trace_xe_gt_tlb_invalidation_fence_create(&ifence->base);
1119 
1120 	spin_lock_irq(&gt->tlb_invalidation.lock);
1121 	dma_fence_init(&ifence->base.base, &invalidation_fence_ops,
1122 		       &gt->tlb_invalidation.lock,
1123 		       gt->tlb_invalidation.fence_context,
1124 		       ++gt->tlb_invalidation.fence_seqno);
1125 	spin_unlock_irq(&gt->tlb_invalidation.lock);
1126 
1127 	INIT_LIST_HEAD(&ifence->base.link);
1128 
1129 	dma_fence_get(&ifence->base.base);	/* Ref for caller */
1130 	ifence->fence = fence;
1131 	ifence->gt = gt;
1132 	ifence->vma = vma;
1133 
1134 	INIT_WORK(&ifence->work, invalidation_fence_work_func);
1135 	ret = dma_fence_add_callback(fence, &ifence->cb, invalidation_fence_cb);
1136 	if (ret == -ENOENT) {
1137 		dma_fence_put(ifence->fence);	/* Usually dropped in CB */
1138 		invalidation_fence_work_func(&ifence->work);
1139 	} else if (ret) {
1140 		dma_fence_put(&ifence->base.base);	/* Caller ref */
1141 		dma_fence_put(&ifence->base.base);	/* Creation ref */
1142 	}
1143 
1144 	xe_gt_assert(gt, !ret || ret == -ENOENT);
1145 
1146 	return ret && ret != -ENOENT ? ret : 0;
1147 }
1148 
1149 static void xe_pt_calc_rfence_interval(struct xe_vma *vma,
1150 				       struct xe_pt_migrate_pt_update *update,
1151 				       struct xe_vm_pgtable_update *entries,
1152 				       u32 num_entries)
1153 {
1154 	int i, level = 0;
1155 
1156 	for (i = 0; i < num_entries; i++) {
1157 		const struct xe_vm_pgtable_update *entry = &entries[i];
1158 
1159 		if (entry->pt->level > level)
1160 			level = entry->pt->level;
1161 	}
1162 
1163 	/* Greedy (non-optimal) calculation but simple */
1164 	update->base.start = ALIGN_DOWN(xe_vma_start(vma),
1165 					0x1ull << xe_pt_shift(level));
1166 	update->base.last = ALIGN(xe_vma_end(vma),
1167 				  0x1ull << xe_pt_shift(level)) - 1;
1168 }
1169 
1170 /**
1171  * __xe_pt_bind_vma() - Build and connect a page-table tree for the vma
1172  * address range.
1173  * @tile: The tile to bind for.
1174  * @vma: The vma to bind.
1175  * @q: The exec_queue with which to do pipelined page-table updates.
1176  * @syncs: Entries to sync on before binding the built tree to the live vm tree.
1177  * @num_syncs: Number of @sync entries.
1178  * @rebind: Whether we're rebinding this vma to the same address range without
1179  * an unbind in-between.
1180  *
1181  * This function builds a page-table tree (see xe_pt_stage_bind() for more
1182  * information on page-table building), and the xe_vm_pgtable_update entries
1183  * abstracting the operations needed to attach it to the main vm tree. It
1184  * then takes the relevant locks and updates the metadata side of the main
1185  * vm tree and submits the operations for pipelined attachment of the
1186  * gpu page-table to the vm main tree, (which can be done either by the
1187  * cpu and the GPU).
1188  *
1189  * Return: A valid dma-fence representing the pipelined attachment operation
1190  * on success, an error pointer on error.
1191  */
1192 struct dma_fence *
1193 __xe_pt_bind_vma(struct xe_tile *tile, struct xe_vma *vma, struct xe_exec_queue *q,
1194 		 struct xe_sync_entry *syncs, u32 num_syncs,
1195 		 bool rebind)
1196 {
1197 	struct xe_vm_pgtable_update entries[XE_VM_MAX_LEVEL * 2 + 1];
1198 	struct xe_pt_migrate_pt_update bind_pt_update = {
1199 		.base = {
1200 			.ops = xe_vma_is_userptr(vma) ? &userptr_bind_ops : &bind_ops,
1201 			.vma = vma,
1202 			.tile_id = tile->id,
1203 		},
1204 		.bind = true,
1205 	};
1206 	struct xe_vm *vm = xe_vma_vm(vma);
1207 	u32 num_entries;
1208 	struct dma_fence *fence;
1209 	struct invalidation_fence *ifence = NULL;
1210 	struct xe_range_fence *rfence;
1211 	int err;
1212 
1213 	bind_pt_update.locked = false;
1214 	xe_bo_assert_held(xe_vma_bo(vma));
1215 	xe_vm_assert_held(vm);
1216 
1217 	vm_dbg(&xe_vma_vm(vma)->xe->drm,
1218 	       "Preparing bind, with range [%llx...%llx) engine %p.\n",
1219 	       xe_vma_start(vma), xe_vma_end(vma), q);
1220 
1221 	err = xe_pt_prepare_bind(tile, vma, entries, &num_entries, rebind);
1222 	if (err)
1223 		goto err;
1224 	xe_tile_assert(tile, num_entries <= ARRAY_SIZE(entries));
1225 
1226 	xe_vm_dbg_print_entries(tile_to_xe(tile), entries, num_entries);
1227 	xe_pt_calc_rfence_interval(vma, &bind_pt_update, entries,
1228 				   num_entries);
1229 
1230 	/*
1231 	 * If rebind, we have to invalidate TLB on !LR vms to invalidate
1232 	 * cached PTEs point to freed memory. on LR vms this is done
1233 	 * automatically when the context is re-enabled by the rebind worker,
1234 	 * or in fault mode it was invalidated on PTE zapping.
1235 	 *
1236 	 * If !rebind, and scratch enabled VMs, there is a chance the scratch
1237 	 * PTE is already cached in the TLB so it needs to be invalidated.
1238 	 * on !LR VMs this is done in the ring ops preceding a batch, but on
1239 	 * non-faulting LR, in particular on user-space batch buffer chaining,
1240 	 * it needs to be done here.
1241 	 */
1242 	if ((rebind && !xe_vm_in_lr_mode(vm) && !vm->batch_invalidate_tlb) ||
1243 	    (!rebind && xe_vm_has_scratch(vm) && xe_vm_in_preempt_fence_mode(vm))) {
1244 		ifence = kzalloc(sizeof(*ifence), GFP_KERNEL);
1245 		if (!ifence)
1246 			return ERR_PTR(-ENOMEM);
1247 	}
1248 
1249 	rfence = kzalloc(sizeof(*rfence), GFP_KERNEL);
1250 	if (!rfence) {
1251 		kfree(ifence);
1252 		return ERR_PTR(-ENOMEM);
1253 	}
1254 
1255 	fence = xe_migrate_update_pgtables(tile->migrate,
1256 					   vm, xe_vma_bo(vma), q,
1257 					   entries, num_entries,
1258 					   syncs, num_syncs,
1259 					   &bind_pt_update.base);
1260 	if (!IS_ERR(fence)) {
1261 		bool last_munmap_rebind = vma->gpuva.flags & XE_VMA_LAST_REBIND;
1262 		LLIST_HEAD(deferred);
1263 		int err;
1264 
1265 		err = xe_range_fence_insert(&vm->rftree[tile->id], rfence,
1266 					    &xe_range_fence_kfree_ops,
1267 					    bind_pt_update.base.start,
1268 					    bind_pt_update.base.last, fence);
1269 		if (err)
1270 			dma_fence_wait(fence, false);
1271 
1272 		/* TLB invalidation must be done before signaling rebind */
1273 		if (ifence) {
1274 			int err = invalidation_fence_init(tile->primary_gt, ifence, fence,
1275 							  vma);
1276 			if (err) {
1277 				dma_fence_put(fence);
1278 				kfree(ifence);
1279 				return ERR_PTR(err);
1280 			}
1281 			fence = &ifence->base.base;
1282 		}
1283 
1284 		/* add shared fence now for pagetable delayed destroy */
1285 		dma_resv_add_fence(xe_vm_resv(vm), fence, !rebind &&
1286 				   last_munmap_rebind ?
1287 				   DMA_RESV_USAGE_KERNEL :
1288 				   DMA_RESV_USAGE_BOOKKEEP);
1289 
1290 		if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm)
1291 			dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence,
1292 					   DMA_RESV_USAGE_BOOKKEEP);
1293 		xe_pt_commit_bind(vma, entries, num_entries, rebind,
1294 				  bind_pt_update.locked ? &deferred : NULL);
1295 
1296 		/* This vma is live (again?) now */
1297 		vma->tile_present |= BIT(tile->id);
1298 
1299 		if (bind_pt_update.locked) {
1300 			to_userptr_vma(vma)->userptr.initial_bind = true;
1301 			up_read(&vm->userptr.notifier_lock);
1302 			xe_bo_put_commit(&deferred);
1303 		}
1304 		if (!rebind && last_munmap_rebind &&
1305 		    xe_vm_in_preempt_fence_mode(vm))
1306 			xe_vm_queue_rebind_worker(vm);
1307 	} else {
1308 		kfree(rfence);
1309 		kfree(ifence);
1310 		if (bind_pt_update.locked)
1311 			up_read(&vm->userptr.notifier_lock);
1312 		xe_pt_abort_bind(vma, entries, num_entries);
1313 	}
1314 
1315 	return fence;
1316 
1317 err:
1318 	return ERR_PTR(err);
1319 }
1320 
1321 struct xe_pt_stage_unbind_walk {
1322 	/** @base: The pagewalk base-class. */
1323 	struct xe_pt_walk base;
1324 
1325 	/* Input parameters for the walk */
1326 	/** @tile: The tile we're unbinding from. */
1327 	struct xe_tile *tile;
1328 
1329 	/**
1330 	 * @modified_start: Walk range start, modified to include any
1331 	 * shared pagetables that we're the only user of and can thus
1332 	 * treat as private.
1333 	 */
1334 	u64 modified_start;
1335 	/** @modified_end: Walk range start, modified like @modified_start. */
1336 	u64 modified_end;
1337 
1338 	/* Output */
1339 	/* @wupd: Structure to track the page-table updates we're building */
1340 	struct xe_walk_update wupd;
1341 };
1342 
1343 /*
1344  * Check whether this range is the only one populating this pagetable,
1345  * and in that case, update the walk range checks so that higher levels don't
1346  * view us as a shared pagetable.
1347  */
1348 static bool xe_pt_check_kill(u64 addr, u64 next, unsigned int level,
1349 			     const struct xe_pt *child,
1350 			     enum page_walk_action *action,
1351 			     struct xe_pt_walk *walk)
1352 {
1353 	struct xe_pt_stage_unbind_walk *xe_walk =
1354 		container_of(walk, typeof(*xe_walk), base);
1355 	unsigned int shift = walk->shifts[level];
1356 	u64 size = 1ull << shift;
1357 
1358 	if (IS_ALIGNED(addr, size) && IS_ALIGNED(next, size) &&
1359 	    ((next - addr) >> shift) == child->num_live) {
1360 		u64 size = 1ull << walk->shifts[level + 1];
1361 
1362 		*action = ACTION_CONTINUE;
1363 
1364 		if (xe_walk->modified_start >= addr)
1365 			xe_walk->modified_start = round_down(addr, size);
1366 		if (xe_walk->modified_end <= next)
1367 			xe_walk->modified_end = round_up(next, size);
1368 
1369 		return true;
1370 	}
1371 
1372 	return false;
1373 }
1374 
1375 static int xe_pt_stage_unbind_entry(struct xe_ptw *parent, pgoff_t offset,
1376 				    unsigned int level, u64 addr, u64 next,
1377 				    struct xe_ptw **child,
1378 				    enum page_walk_action *action,
1379 				    struct xe_pt_walk *walk)
1380 {
1381 	struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base);
1382 
1383 	XE_WARN_ON(!*child);
1384 	XE_WARN_ON(!level && xe_child->is_compact);
1385 
1386 	xe_pt_check_kill(addr, next, level - 1, xe_child, action, walk);
1387 
1388 	return 0;
1389 }
1390 
1391 static int
1392 xe_pt_stage_unbind_post_descend(struct xe_ptw *parent, pgoff_t offset,
1393 				unsigned int level, u64 addr, u64 next,
1394 				struct xe_ptw **child,
1395 				enum page_walk_action *action,
1396 				struct xe_pt_walk *walk)
1397 {
1398 	struct xe_pt_stage_unbind_walk *xe_walk =
1399 		container_of(walk, typeof(*xe_walk), base);
1400 	struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base);
1401 	pgoff_t end_offset;
1402 	u64 size = 1ull << walk->shifts[--level];
1403 
1404 	if (!IS_ALIGNED(addr, size))
1405 		addr = xe_walk->modified_start;
1406 	if (!IS_ALIGNED(next, size))
1407 		next = xe_walk->modified_end;
1408 
1409 	/* Parent == *child is the root pt. Don't kill it. */
1410 	if (parent != *child &&
1411 	    xe_pt_check_kill(addr, next, level, xe_child, action, walk))
1412 		return 0;
1413 
1414 	if (!xe_pt_nonshared_offsets(addr, next, level, walk, action, &offset,
1415 				     &end_offset))
1416 		return 0;
1417 
1418 	(void)xe_pt_new_shared(&xe_walk->wupd, xe_child, offset, false);
1419 	xe_walk->wupd.updates[level].update->qwords = end_offset - offset;
1420 
1421 	return 0;
1422 }
1423 
1424 static const struct xe_pt_walk_ops xe_pt_stage_unbind_ops = {
1425 	.pt_entry = xe_pt_stage_unbind_entry,
1426 	.pt_post_descend = xe_pt_stage_unbind_post_descend,
1427 };
1428 
1429 /**
1430  * xe_pt_stage_unbind() - Build page-table update structures for an unbind
1431  * operation
1432  * @tile: The tile we're unbinding for.
1433  * @vma: The vma we're unbinding.
1434  * @entries: Caller-provided storage for the update structures.
1435  *
1436  * Builds page-table update structures for an unbind operation. The function
1437  * will attempt to remove all page-tables that we're the only user
1438  * of, and for that to work, the unbind operation must be committed in the
1439  * same critical section that blocks racing binds to the same page-table tree.
1440  *
1441  * Return: The number of entries used.
1442  */
1443 static unsigned int xe_pt_stage_unbind(struct xe_tile *tile, struct xe_vma *vma,
1444 				       struct xe_vm_pgtable_update *entries)
1445 {
1446 	struct xe_pt_stage_unbind_walk xe_walk = {
1447 		.base = {
1448 			.ops = &xe_pt_stage_unbind_ops,
1449 			.shifts = xe_normal_pt_shifts,
1450 			.max_level = XE_PT_HIGHEST_LEVEL,
1451 		},
1452 		.tile = tile,
1453 		.modified_start = xe_vma_start(vma),
1454 		.modified_end = xe_vma_end(vma),
1455 		.wupd.entries = entries,
1456 	};
1457 	struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id];
1458 
1459 	(void)xe_pt_walk_shared(&pt->base, pt->level, xe_vma_start(vma),
1460 				xe_vma_end(vma), &xe_walk.base);
1461 
1462 	return xe_walk.wupd.num_used_entries;
1463 }
1464 
1465 static void
1466 xe_migrate_clear_pgtable_callback(struct xe_migrate_pt_update *pt_update,
1467 				  struct xe_tile *tile, struct iosys_map *map,
1468 				  void *ptr, u32 qword_ofs, u32 num_qwords,
1469 				  const struct xe_vm_pgtable_update *update)
1470 {
1471 	struct xe_vma *vma = pt_update->vma;
1472 	u64 empty = __xe_pt_empty_pte(tile, xe_vma_vm(vma), update->pt->level);
1473 	int i;
1474 
1475 	if (map && map->is_iomem)
1476 		for (i = 0; i < num_qwords; ++i)
1477 			xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) *
1478 				  sizeof(u64), u64, empty);
1479 	else if (map)
1480 		memset64(map->vaddr + qword_ofs * sizeof(u64), empty,
1481 			 num_qwords);
1482 	else
1483 		memset64(ptr, empty, num_qwords);
1484 }
1485 
1486 static void
1487 xe_pt_commit_unbind(struct xe_vma *vma,
1488 		    struct xe_vm_pgtable_update *entries, u32 num_entries,
1489 		    struct llist_head *deferred)
1490 {
1491 	u32 j;
1492 
1493 	xe_pt_commit_locks_assert(vma);
1494 
1495 	for (j = 0; j < num_entries; ++j) {
1496 		struct xe_vm_pgtable_update *entry = &entries[j];
1497 		struct xe_pt *pt = entry->pt;
1498 
1499 		pt->num_live -= entry->qwords;
1500 		if (pt->level) {
1501 			struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt);
1502 			u32 i;
1503 
1504 			for (i = entry->ofs; i < entry->ofs + entry->qwords;
1505 			     i++) {
1506 				if (xe_pt_entry(pt_dir, i))
1507 					xe_pt_destroy(xe_pt_entry(pt_dir, i),
1508 						      xe_vma_vm(vma)->flags, deferred);
1509 
1510 				pt_dir->dir.entries[i] = NULL;
1511 			}
1512 		}
1513 	}
1514 }
1515 
1516 static const struct xe_migrate_pt_update_ops unbind_ops = {
1517 	.populate = xe_migrate_clear_pgtable_callback,
1518 	.pre_commit = xe_pt_pre_commit,
1519 };
1520 
1521 static const struct xe_migrate_pt_update_ops userptr_unbind_ops = {
1522 	.populate = xe_migrate_clear_pgtable_callback,
1523 	.pre_commit = xe_pt_userptr_pre_commit,
1524 };
1525 
1526 /**
1527  * __xe_pt_unbind_vma() - Disconnect and free a page-table tree for the vma
1528  * address range.
1529  * @tile: The tile to unbind for.
1530  * @vma: The vma to unbind.
1531  * @q: The exec_queue with which to do pipelined page-table updates.
1532  * @syncs: Entries to sync on before disconnecting the tree to be destroyed.
1533  * @num_syncs: Number of @sync entries.
1534  *
1535  * This function builds a the xe_vm_pgtable_update entries abstracting the
1536  * operations needed to detach the page-table tree to be destroyed from the
1537  * man vm tree.
1538  * It then takes the relevant locks and submits the operations for
1539  * pipelined detachment of the gpu page-table from  the vm main tree,
1540  * (which can be done either by the cpu and the GPU), Finally it frees the
1541  * detached page-table tree.
1542  *
1543  * Return: A valid dma-fence representing the pipelined detachment operation
1544  * on success, an error pointer on error.
1545  */
1546 struct dma_fence *
1547 __xe_pt_unbind_vma(struct xe_tile *tile, struct xe_vma *vma, struct xe_exec_queue *q,
1548 		   struct xe_sync_entry *syncs, u32 num_syncs)
1549 {
1550 	struct xe_vm_pgtable_update entries[XE_VM_MAX_LEVEL * 2 + 1];
1551 	struct xe_pt_migrate_pt_update unbind_pt_update = {
1552 		.base = {
1553 			.ops = xe_vma_is_userptr(vma) ? &userptr_unbind_ops :
1554 			&unbind_ops,
1555 			.vma = vma,
1556 			.tile_id = tile->id,
1557 		},
1558 	};
1559 	struct xe_vm *vm = xe_vma_vm(vma);
1560 	u32 num_entries;
1561 	struct dma_fence *fence = NULL;
1562 	struct invalidation_fence *ifence;
1563 	struct xe_range_fence *rfence;
1564 
1565 	LLIST_HEAD(deferred);
1566 
1567 	xe_bo_assert_held(xe_vma_bo(vma));
1568 	xe_vm_assert_held(vm);
1569 
1570 	vm_dbg(&xe_vma_vm(vma)->xe->drm,
1571 	       "Preparing unbind, with range [%llx...%llx) engine %p.\n",
1572 	       xe_vma_start(vma), xe_vma_end(vma), q);
1573 
1574 	num_entries = xe_pt_stage_unbind(tile, vma, entries);
1575 	xe_tile_assert(tile, num_entries <= ARRAY_SIZE(entries));
1576 
1577 	xe_vm_dbg_print_entries(tile_to_xe(tile), entries, num_entries);
1578 	xe_pt_calc_rfence_interval(vma, &unbind_pt_update, entries,
1579 				   num_entries);
1580 
1581 	ifence = kzalloc(sizeof(*ifence), GFP_KERNEL);
1582 	if (!ifence)
1583 		return ERR_PTR(-ENOMEM);
1584 
1585 	rfence = kzalloc(sizeof(*rfence), GFP_KERNEL);
1586 	if (!rfence) {
1587 		kfree(ifence);
1588 		return ERR_PTR(-ENOMEM);
1589 	}
1590 
1591 	/*
1592 	 * Even if we were already evicted and unbind to destroy, we need to
1593 	 * clear again here. The eviction may have updated pagetables at a
1594 	 * lower level, because it needs to be more conservative.
1595 	 */
1596 	fence = xe_migrate_update_pgtables(tile->migrate,
1597 					   vm, NULL, q ? q :
1598 					   vm->q[tile->id],
1599 					   entries, num_entries,
1600 					   syncs, num_syncs,
1601 					   &unbind_pt_update.base);
1602 	if (!IS_ERR(fence)) {
1603 		int err;
1604 
1605 		err = xe_range_fence_insert(&vm->rftree[tile->id], rfence,
1606 					    &xe_range_fence_kfree_ops,
1607 					    unbind_pt_update.base.start,
1608 					    unbind_pt_update.base.last, fence);
1609 		if (err)
1610 			dma_fence_wait(fence, false);
1611 
1612 		/* TLB invalidation must be done before signaling unbind */
1613 		err = invalidation_fence_init(tile->primary_gt, ifence, fence, vma);
1614 		if (err) {
1615 			dma_fence_put(fence);
1616 			kfree(ifence);
1617 			return ERR_PTR(err);
1618 		}
1619 		fence = &ifence->base.base;
1620 
1621 		/* add shared fence now for pagetable delayed destroy */
1622 		dma_resv_add_fence(xe_vm_resv(vm), fence,
1623 				   DMA_RESV_USAGE_BOOKKEEP);
1624 
1625 		/* This fence will be installed by caller when doing eviction */
1626 		if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm)
1627 			dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence,
1628 					   DMA_RESV_USAGE_BOOKKEEP);
1629 		xe_pt_commit_unbind(vma, entries, num_entries,
1630 				    unbind_pt_update.locked ? &deferred : NULL);
1631 		vma->tile_present &= ~BIT(tile->id);
1632 	} else {
1633 		kfree(rfence);
1634 		kfree(ifence);
1635 	}
1636 
1637 	if (!vma->tile_present)
1638 		list_del_init(&vma->combined_links.rebind);
1639 
1640 	if (unbind_pt_update.locked) {
1641 		xe_tile_assert(tile, xe_vma_is_userptr(vma));
1642 
1643 		if (!vma->tile_present) {
1644 			spin_lock(&vm->userptr.invalidated_lock);
1645 			list_del_init(&to_userptr_vma(vma)->userptr.invalidate_link);
1646 			spin_unlock(&vm->userptr.invalidated_lock);
1647 		}
1648 		up_read(&vm->userptr.notifier_lock);
1649 		xe_bo_put_commit(&deferred);
1650 	}
1651 
1652 	return fence;
1653 }
1654