1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 /* 82562G 10/100 Network Connection
5  * 82562G-2 10/100 Network Connection
6  * 82562GT 10/100 Network Connection
7  * 82562GT-2 10/100 Network Connection
8  * 82562V 10/100 Network Connection
9  * 82562V-2 10/100 Network Connection
10  * 82566DC-2 Gigabit Network Connection
11  * 82566DC Gigabit Network Connection
12  * 82566DM-2 Gigabit Network Connection
13  * 82566DM Gigabit Network Connection
14  * 82566MC Gigabit Network Connection
15  * 82566MM Gigabit Network Connection
16  * 82567LM Gigabit Network Connection
17  * 82567LF Gigabit Network Connection
18  * 82567V Gigabit Network Connection
19  * 82567LM-2 Gigabit Network Connection
20  * 82567LF-2 Gigabit Network Connection
21  * 82567V-2 Gigabit Network Connection
22  * 82567LF-3 Gigabit Network Connection
23  * 82567LM-3 Gigabit Network Connection
24  * 82567LM-4 Gigabit Network Connection
25  * 82577LM Gigabit Network Connection
26  * 82577LC Gigabit Network Connection
27  * 82578DM Gigabit Network Connection
28  * 82578DC Gigabit Network Connection
29  * 82579LM Gigabit Network Connection
30  * 82579V Gigabit Network Connection
31  * Ethernet Connection I217-LM
32  * Ethernet Connection I217-V
33  * Ethernet Connection I218-V
34  * Ethernet Connection I218-LM
35  * Ethernet Connection (2) I218-LM
36  * Ethernet Connection (2) I218-V
37  * Ethernet Connection (3) I218-LM
38  * Ethernet Connection (3) I218-V
39  */
40 
41 #include "e1000.h"
42 
43 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
44 /* Offset 04h HSFSTS */
45 union ich8_hws_flash_status {
46 	struct ich8_hsfsts {
47 		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
48 		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
49 		u16 dael:1;	/* bit 2 Direct Access error Log */
50 		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
51 		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
52 		u16 reserved1:2;	/* bit 13:6 Reserved */
53 		u16 reserved2:6;	/* bit 13:6 Reserved */
54 		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
55 		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
56 	} hsf_status;
57 	u16 regval;
58 };
59 
60 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
61 /* Offset 06h FLCTL */
62 union ich8_hws_flash_ctrl {
63 	struct ich8_hsflctl {
64 		u16 flcgo:1;	/* 0 Flash Cycle Go */
65 		u16 flcycle:2;	/* 2:1 Flash Cycle */
66 		u16 reserved:5;	/* 7:3 Reserved  */
67 		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
68 		u16 flockdn:6;	/* 15:10 Reserved */
69 	} hsf_ctrl;
70 	u16 regval;
71 };
72 
73 /* ICH Flash Region Access Permissions */
74 union ich8_hws_flash_regacc {
75 	struct ich8_flracc {
76 		u32 grra:8;	/* 0:7 GbE region Read Access */
77 		u32 grwa:8;	/* 8:15 GbE region Write Access */
78 		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
79 		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
80 	} hsf_flregacc;
81 	u16 regval;
82 };
83 
84 /* ICH Flash Protected Region */
85 union ich8_flash_protected_range {
86 	struct ich8_pr {
87 		u32 base:13;	/* 0:12 Protected Range Base */
88 		u32 reserved1:2;	/* 13:14 Reserved */
89 		u32 rpe:1;	/* 15 Read Protection Enable */
90 		u32 limit:13;	/* 16:28 Protected Range Limit */
91 		u32 reserved2:2;	/* 29:30 Reserved */
92 		u32 wpe:1;	/* 31 Write Protection Enable */
93 	} range;
94 	u32 regval;
95 };
96 
97 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
98 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
99 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
100 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
101 						u32 offset, u8 byte);
102 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
103 					 u8 *data);
104 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
105 					 u16 *data);
106 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
107 					 u8 size, u16 *data);
108 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
109 					   u32 *data);
110 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
111 					  u32 offset, u32 *data);
112 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
113 					    u32 offset, u32 data);
114 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
115 						 u32 offset, u32 dword);
116 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
118 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
119 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
120 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
121 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
122 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
123 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
124 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
125 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
126 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
127 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
128 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
129 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
130 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
131 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
132 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
133 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
134 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
135 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
136 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
137 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
138 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
139 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
140 
__er16flash(struct e1000_hw * hw,unsigned long reg)141 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
142 {
143 	return readw(hw->flash_address + reg);
144 }
145 
__er32flash(struct e1000_hw * hw,unsigned long reg)146 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
147 {
148 	return readl(hw->flash_address + reg);
149 }
150 
__ew16flash(struct e1000_hw * hw,unsigned long reg,u16 val)151 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
152 {
153 	writew(val, hw->flash_address + reg);
154 }
155 
__ew32flash(struct e1000_hw * hw,unsigned long reg,u32 val)156 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
157 {
158 	writel(val, hw->flash_address + reg);
159 }
160 
161 #define er16flash(reg)		__er16flash(hw, (reg))
162 #define er32flash(reg)		__er32flash(hw, (reg))
163 #define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
164 #define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
165 
166 /**
167  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
168  *  @hw: pointer to the HW structure
169  *
170  *  Test access to the PHY registers by reading the PHY ID registers.  If
171  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
172  *  otherwise assume the read PHY ID is correct if it is valid.
173  *
174  *  Assumes the sw/fw/hw semaphore is already acquired.
175  **/
e1000_phy_is_accessible_pchlan(struct e1000_hw * hw)176 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
177 {
178 	u16 phy_reg = 0;
179 	u32 phy_id = 0;
180 	s32 ret_val = 0;
181 	u16 retry_count;
182 	u32 mac_reg = 0;
183 
184 	for (retry_count = 0; retry_count < 2; retry_count++) {
185 		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
186 		if (ret_val || (phy_reg == 0xFFFF))
187 			continue;
188 		phy_id = (u32)(phy_reg << 16);
189 
190 		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
191 		if (ret_val || (phy_reg == 0xFFFF)) {
192 			phy_id = 0;
193 			continue;
194 		}
195 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
196 		break;
197 	}
198 
199 	if (hw->phy.id) {
200 		if (hw->phy.id == phy_id)
201 			goto out;
202 	} else if (phy_id) {
203 		hw->phy.id = phy_id;
204 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
205 		goto out;
206 	}
207 
208 	/* In case the PHY needs to be in mdio slow mode,
209 	 * set slow mode and try to get the PHY id again.
210 	 */
211 	if (hw->mac.type < e1000_pch_lpt) {
212 		hw->phy.ops.release(hw);
213 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
214 		if (!ret_val)
215 			ret_val = e1000e_get_phy_id(hw);
216 		hw->phy.ops.acquire(hw);
217 	}
218 
219 	if (ret_val)
220 		return false;
221 out:
222 	if (hw->mac.type >= e1000_pch_lpt) {
223 		/* Only unforce SMBus if ME is not active */
224 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
225 			/* Switching PHY interface always returns MDI error
226 			 * so disable retry mechanism to avoid wasting time
227 			 */
228 			e1000e_disable_phy_retry(hw);
229 
230 			/* Unforce SMBus mode in PHY */
231 			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
232 			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
233 			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
234 
235 			e1000e_enable_phy_retry(hw);
236 
237 			/* Unforce SMBus mode in MAC */
238 			mac_reg = er32(CTRL_EXT);
239 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
240 			ew32(CTRL_EXT, mac_reg);
241 		}
242 	}
243 
244 	return true;
245 }
246 
247 /**
248  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
249  *  @hw: pointer to the HW structure
250  *
251  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
252  *  used to reset the PHY to a quiescent state when necessary.
253  **/
e1000_toggle_lanphypc_pch_lpt(struct e1000_hw * hw)254 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
255 {
256 	u32 mac_reg;
257 
258 	/* Set Phy Config Counter to 50msec */
259 	mac_reg = er32(FEXTNVM3);
260 	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
261 	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
262 	ew32(FEXTNVM3, mac_reg);
263 
264 	/* Toggle LANPHYPC Value bit */
265 	mac_reg = er32(CTRL);
266 	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
267 	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
268 	ew32(CTRL, mac_reg);
269 	e1e_flush();
270 	usleep_range(10, 20);
271 	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
272 	ew32(CTRL, mac_reg);
273 	e1e_flush();
274 
275 	if (hw->mac.type < e1000_pch_lpt) {
276 		msleep(50);
277 	} else {
278 		u16 count = 20;
279 
280 		do {
281 			usleep_range(5000, 6000);
282 		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
283 
284 		msleep(30);
285 	}
286 }
287 
288 /**
289  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
290  *  @hw: pointer to the HW structure
291  *
292  *  Workarounds/flow necessary for PHY initialization during driver load
293  *  and resume paths.
294  **/
e1000_init_phy_workarounds_pchlan(struct e1000_hw * hw)295 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
296 {
297 	struct e1000_adapter *adapter = hw->adapter;
298 	u32 mac_reg, fwsm = er32(FWSM);
299 	s32 ret_val;
300 
301 	/* Gate automatic PHY configuration by hardware on managed and
302 	 * non-managed 82579 and newer adapters.
303 	 */
304 	e1000_gate_hw_phy_config_ich8lan(hw, true);
305 
306 	/* It is not possible to be certain of the current state of ULP
307 	 * so forcibly disable it.
308 	 */
309 	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
310 	ret_val = e1000_disable_ulp_lpt_lp(hw, true);
311 	if (ret_val)
312 		e_warn("Failed to disable ULP\n");
313 
314 	ret_val = hw->phy.ops.acquire(hw);
315 	if (ret_val) {
316 		e_dbg("Failed to initialize PHY flow\n");
317 		goto out;
318 	}
319 
320 	/* There is no guarantee that the PHY is accessible at this time
321 	 * so disable retry mechanism to avoid wasting time
322 	 */
323 	e1000e_disable_phy_retry(hw);
324 
325 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
326 	 * inaccessible and resetting the PHY is not blocked, toggle the
327 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
328 	 */
329 	switch (hw->mac.type) {
330 	case e1000_pch_lpt:
331 	case e1000_pch_spt:
332 	case e1000_pch_cnp:
333 	case e1000_pch_tgp:
334 	case e1000_pch_adp:
335 	case e1000_pch_mtp:
336 	case e1000_pch_lnp:
337 	case e1000_pch_ptp:
338 	case e1000_pch_nvp:
339 		if (e1000_phy_is_accessible_pchlan(hw))
340 			break;
341 
342 		/* Before toggling LANPHYPC, see if PHY is accessible by
343 		 * forcing MAC to SMBus mode first.
344 		 */
345 		mac_reg = er32(CTRL_EXT);
346 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
347 		ew32(CTRL_EXT, mac_reg);
348 
349 		/* Wait 50 milliseconds for MAC to finish any retries
350 		 * that it might be trying to perform from previous
351 		 * attempts to acknowledge any phy read requests.
352 		 */
353 		msleep(50);
354 
355 		fallthrough;
356 	case e1000_pch2lan:
357 		if (e1000_phy_is_accessible_pchlan(hw))
358 			break;
359 
360 		fallthrough;
361 	case e1000_pchlan:
362 		if ((hw->mac.type == e1000_pchlan) &&
363 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
364 			break;
365 
366 		if (hw->phy.ops.check_reset_block(hw)) {
367 			e_dbg("Required LANPHYPC toggle blocked by ME\n");
368 			ret_val = -E1000_ERR_PHY;
369 			break;
370 		}
371 
372 		/* Toggle LANPHYPC Value bit */
373 		e1000_toggle_lanphypc_pch_lpt(hw);
374 		if (hw->mac.type >= e1000_pch_lpt) {
375 			if (e1000_phy_is_accessible_pchlan(hw))
376 				break;
377 
378 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
379 			 * so ensure that the MAC is also out of SMBus mode
380 			 */
381 			mac_reg = er32(CTRL_EXT);
382 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
383 			ew32(CTRL_EXT, mac_reg);
384 
385 			if (e1000_phy_is_accessible_pchlan(hw))
386 				break;
387 
388 			ret_val = -E1000_ERR_PHY;
389 		}
390 		break;
391 	default:
392 		break;
393 	}
394 
395 	e1000e_enable_phy_retry(hw);
396 
397 	hw->phy.ops.release(hw);
398 	if (!ret_val) {
399 
400 		/* Check to see if able to reset PHY.  Print error if not */
401 		if (hw->phy.ops.check_reset_block(hw)) {
402 			e_err("Reset blocked by ME\n");
403 			goto out;
404 		}
405 
406 		/* Reset the PHY before any access to it.  Doing so, ensures
407 		 * that the PHY is in a known good state before we read/write
408 		 * PHY registers.  The generic reset is sufficient here,
409 		 * because we haven't determined the PHY type yet.
410 		 */
411 		ret_val = e1000e_phy_hw_reset_generic(hw);
412 		if (ret_val)
413 			goto out;
414 
415 		/* On a successful reset, possibly need to wait for the PHY
416 		 * to quiesce to an accessible state before returning control
417 		 * to the calling function.  If the PHY does not quiesce, then
418 		 * return E1000E_BLK_PHY_RESET, as this is the condition that
419 		 *  the PHY is in.
420 		 */
421 		ret_val = hw->phy.ops.check_reset_block(hw);
422 		if (ret_val)
423 			e_err("ME blocked access to PHY after reset\n");
424 	}
425 
426 out:
427 	/* Ungate automatic PHY configuration on non-managed 82579 */
428 	if ((hw->mac.type == e1000_pch2lan) &&
429 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
430 		usleep_range(10000, 11000);
431 		e1000_gate_hw_phy_config_ich8lan(hw, false);
432 	}
433 
434 	return ret_val;
435 }
436 
437 /**
438  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
439  *  @hw: pointer to the HW structure
440  *
441  *  Initialize family-specific PHY parameters and function pointers.
442  **/
e1000_init_phy_params_pchlan(struct e1000_hw * hw)443 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
444 {
445 	struct e1000_phy_info *phy = &hw->phy;
446 	s32 ret_val;
447 
448 	phy->addr = 1;
449 	phy->reset_delay_us = 100;
450 
451 	phy->ops.set_page = e1000_set_page_igp;
452 	phy->ops.read_reg = e1000_read_phy_reg_hv;
453 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
454 	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
455 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
456 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
457 	phy->ops.write_reg = e1000_write_phy_reg_hv;
458 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
459 	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
460 	phy->ops.power_up = e1000_power_up_phy_copper;
461 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
462 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
463 
464 	phy->id = e1000_phy_unknown;
465 
466 	if (hw->mac.type == e1000_pch_mtp) {
467 		phy->retry_count = 2;
468 		e1000e_enable_phy_retry(hw);
469 	}
470 
471 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
472 	if (ret_val)
473 		return ret_val;
474 
475 	if (phy->id == e1000_phy_unknown)
476 		switch (hw->mac.type) {
477 		default:
478 			ret_val = e1000e_get_phy_id(hw);
479 			if (ret_val)
480 				return ret_val;
481 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
482 				break;
483 			fallthrough;
484 		case e1000_pch2lan:
485 		case e1000_pch_lpt:
486 		case e1000_pch_spt:
487 		case e1000_pch_cnp:
488 		case e1000_pch_tgp:
489 		case e1000_pch_adp:
490 		case e1000_pch_mtp:
491 		case e1000_pch_lnp:
492 		case e1000_pch_ptp:
493 		case e1000_pch_nvp:
494 			/* In case the PHY needs to be in mdio slow mode,
495 			 * set slow mode and try to get the PHY id again.
496 			 */
497 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
498 			if (ret_val)
499 				return ret_val;
500 			ret_val = e1000e_get_phy_id(hw);
501 			if (ret_val)
502 				return ret_val;
503 			break;
504 		}
505 	phy->type = e1000e_get_phy_type_from_id(phy->id);
506 
507 	switch (phy->type) {
508 	case e1000_phy_82577:
509 	case e1000_phy_82579:
510 	case e1000_phy_i217:
511 		phy->ops.check_polarity = e1000_check_polarity_82577;
512 		phy->ops.force_speed_duplex =
513 		    e1000_phy_force_speed_duplex_82577;
514 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
515 		phy->ops.get_info = e1000_get_phy_info_82577;
516 		phy->ops.commit = e1000e_phy_sw_reset;
517 		break;
518 	case e1000_phy_82578:
519 		phy->ops.check_polarity = e1000_check_polarity_m88;
520 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
521 		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
522 		phy->ops.get_info = e1000e_get_phy_info_m88;
523 		break;
524 	default:
525 		ret_val = -E1000_ERR_PHY;
526 		break;
527 	}
528 
529 	return ret_val;
530 }
531 
532 /**
533  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
534  *  @hw: pointer to the HW structure
535  *
536  *  Initialize family-specific PHY parameters and function pointers.
537  **/
e1000_init_phy_params_ich8lan(struct e1000_hw * hw)538 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
539 {
540 	struct e1000_phy_info *phy = &hw->phy;
541 	s32 ret_val;
542 	u16 i = 0;
543 
544 	phy->addr = 1;
545 	phy->reset_delay_us = 100;
546 
547 	phy->ops.power_up = e1000_power_up_phy_copper;
548 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
549 
550 	/* We may need to do this twice - once for IGP and if that fails,
551 	 * we'll set BM func pointers and try again
552 	 */
553 	ret_val = e1000e_determine_phy_address(hw);
554 	if (ret_val) {
555 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
556 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
557 		ret_val = e1000e_determine_phy_address(hw);
558 		if (ret_val) {
559 			e_dbg("Cannot determine PHY addr. Erroring out\n");
560 			return ret_val;
561 		}
562 	}
563 
564 	phy->id = 0;
565 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
566 	       (i++ < 100)) {
567 		usleep_range(1000, 1100);
568 		ret_val = e1000e_get_phy_id(hw);
569 		if (ret_val)
570 			return ret_val;
571 	}
572 
573 	/* Verify phy id */
574 	switch (phy->id) {
575 	case IGP03E1000_E_PHY_ID:
576 		phy->type = e1000_phy_igp_3;
577 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
578 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
579 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
580 		phy->ops.get_info = e1000e_get_phy_info_igp;
581 		phy->ops.check_polarity = e1000_check_polarity_igp;
582 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
583 		break;
584 	case IFE_E_PHY_ID:
585 	case IFE_PLUS_E_PHY_ID:
586 	case IFE_C_E_PHY_ID:
587 		phy->type = e1000_phy_ife;
588 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
589 		phy->ops.get_info = e1000_get_phy_info_ife;
590 		phy->ops.check_polarity = e1000_check_polarity_ife;
591 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
592 		break;
593 	case BME1000_E_PHY_ID:
594 		phy->type = e1000_phy_bm;
595 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
596 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
597 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
598 		phy->ops.commit = e1000e_phy_sw_reset;
599 		phy->ops.get_info = e1000e_get_phy_info_m88;
600 		phy->ops.check_polarity = e1000_check_polarity_m88;
601 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
602 		break;
603 	default:
604 		return -E1000_ERR_PHY;
605 	}
606 
607 	return 0;
608 }
609 
610 /**
611  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
612  *  @hw: pointer to the HW structure
613  *
614  *  Initialize family-specific NVM parameters and function
615  *  pointers.
616  **/
e1000_init_nvm_params_ich8lan(struct e1000_hw * hw)617 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
618 {
619 	struct e1000_nvm_info *nvm = &hw->nvm;
620 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
621 	u32 gfpreg, sector_base_addr, sector_end_addr;
622 	u16 i;
623 	u32 nvm_size;
624 
625 	nvm->type = e1000_nvm_flash_sw;
626 
627 	if (hw->mac.type >= e1000_pch_spt) {
628 		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
629 		 * STRAP register. This is because in SPT the GbE Flash region
630 		 * is no longer accessed through the flash registers. Instead,
631 		 * the mechanism has changed, and the Flash region access
632 		 * registers are now implemented in GbE memory space.
633 		 */
634 		nvm->flash_base_addr = 0;
635 		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
636 		    * NVM_SIZE_MULTIPLIER;
637 		nvm->flash_bank_size = nvm_size / 2;
638 		/* Adjust to word count */
639 		nvm->flash_bank_size /= sizeof(u16);
640 		/* Set the base address for flash register access */
641 		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
642 	} else {
643 		/* Can't read flash registers if register set isn't mapped. */
644 		if (!hw->flash_address) {
645 			e_dbg("ERROR: Flash registers not mapped\n");
646 			return -E1000_ERR_CONFIG;
647 		}
648 
649 		gfpreg = er32flash(ICH_FLASH_GFPREG);
650 
651 		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
652 		 * Add 1 to sector_end_addr since this sector is included in
653 		 * the overall size.
654 		 */
655 		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
656 		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
657 
658 		/* flash_base_addr is byte-aligned */
659 		nvm->flash_base_addr = sector_base_addr
660 		    << FLASH_SECTOR_ADDR_SHIFT;
661 
662 		/* find total size of the NVM, then cut in half since the total
663 		 * size represents two separate NVM banks.
664 		 */
665 		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
666 					<< FLASH_SECTOR_ADDR_SHIFT);
667 		nvm->flash_bank_size /= 2;
668 		/* Adjust to word count */
669 		nvm->flash_bank_size /= sizeof(u16);
670 	}
671 
672 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
673 
674 	/* Clear shadow ram */
675 	for (i = 0; i < nvm->word_size; i++) {
676 		dev_spec->shadow_ram[i].modified = false;
677 		dev_spec->shadow_ram[i].value = 0xFFFF;
678 	}
679 
680 	return 0;
681 }
682 
683 /**
684  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
685  *  @hw: pointer to the HW structure
686  *
687  *  Initialize family-specific MAC parameters and function
688  *  pointers.
689  **/
e1000_init_mac_params_ich8lan(struct e1000_hw * hw)690 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
691 {
692 	struct e1000_mac_info *mac = &hw->mac;
693 
694 	/* Set media type function pointer */
695 	hw->phy.media_type = e1000_media_type_copper;
696 
697 	/* Set mta register count */
698 	mac->mta_reg_count = 32;
699 	/* Set rar entry count */
700 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
701 	if (mac->type == e1000_ich8lan)
702 		mac->rar_entry_count--;
703 	/* FWSM register */
704 	mac->has_fwsm = true;
705 	/* ARC subsystem not supported */
706 	mac->arc_subsystem_valid = false;
707 	/* Adaptive IFS supported */
708 	mac->adaptive_ifs = true;
709 
710 	/* LED and other operations */
711 	switch (mac->type) {
712 	case e1000_ich8lan:
713 	case e1000_ich9lan:
714 	case e1000_ich10lan:
715 		/* check management mode */
716 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
717 		/* ID LED init */
718 		mac->ops.id_led_init = e1000e_id_led_init_generic;
719 		/* blink LED */
720 		mac->ops.blink_led = e1000e_blink_led_generic;
721 		/* setup LED */
722 		mac->ops.setup_led = e1000e_setup_led_generic;
723 		/* cleanup LED */
724 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
725 		/* turn on/off LED */
726 		mac->ops.led_on = e1000_led_on_ich8lan;
727 		mac->ops.led_off = e1000_led_off_ich8lan;
728 		break;
729 	case e1000_pch2lan:
730 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
731 		mac->ops.rar_set = e1000_rar_set_pch2lan;
732 		fallthrough;
733 	case e1000_pch_lpt:
734 	case e1000_pch_spt:
735 	case e1000_pch_cnp:
736 	case e1000_pch_tgp:
737 	case e1000_pch_adp:
738 	case e1000_pch_mtp:
739 	case e1000_pch_lnp:
740 	case e1000_pch_ptp:
741 	case e1000_pch_nvp:
742 	case e1000_pchlan:
743 		/* check management mode */
744 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
745 		/* ID LED init */
746 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
747 		/* setup LED */
748 		mac->ops.setup_led = e1000_setup_led_pchlan;
749 		/* cleanup LED */
750 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
751 		/* turn on/off LED */
752 		mac->ops.led_on = e1000_led_on_pchlan;
753 		mac->ops.led_off = e1000_led_off_pchlan;
754 		break;
755 	default:
756 		break;
757 	}
758 
759 	if (mac->type >= e1000_pch_lpt) {
760 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
761 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
762 		mac->ops.setup_physical_interface =
763 		    e1000_setup_copper_link_pch_lpt;
764 		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
765 	}
766 
767 	/* Enable PCS Lock-loss workaround for ICH8 */
768 	if (mac->type == e1000_ich8lan)
769 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
770 
771 	return 0;
772 }
773 
774 /**
775  *  __e1000_access_emi_reg_locked - Read/write EMI register
776  *  @hw: pointer to the HW structure
777  *  @address: EMI address to program
778  *  @data: pointer to value to read/write from/to the EMI address
779  *  @read: boolean flag to indicate read or write
780  *
781  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
782  **/
__e1000_access_emi_reg_locked(struct e1000_hw * hw,u16 address,u16 * data,bool read)783 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
784 					 u16 *data, bool read)
785 {
786 	s32 ret_val;
787 
788 	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
789 	if (ret_val)
790 		return ret_val;
791 
792 	if (read)
793 		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
794 	else
795 		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
796 
797 	return ret_val;
798 }
799 
800 /**
801  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
802  *  @hw: pointer to the HW structure
803  *  @addr: EMI address to program
804  *  @data: value to be read from the EMI address
805  *
806  *  Assumes the SW/FW/HW Semaphore is already acquired.
807  **/
e1000_read_emi_reg_locked(struct e1000_hw * hw,u16 addr,u16 * data)808 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
809 {
810 	return __e1000_access_emi_reg_locked(hw, addr, data, true);
811 }
812 
813 /**
814  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
815  *  @hw: pointer to the HW structure
816  *  @addr: EMI address to program
817  *  @data: value to be written to the EMI address
818  *
819  *  Assumes the SW/FW/HW Semaphore is already acquired.
820  **/
e1000_write_emi_reg_locked(struct e1000_hw * hw,u16 addr,u16 data)821 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
822 {
823 	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
824 }
825 
826 /**
827  *  e1000_set_eee_pchlan - Enable/disable EEE support
828  *  @hw: pointer to the HW structure
829  *
830  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
831  *  the link and the EEE capabilities of the link partner.  The LPI Control
832  *  register bits will remain set only if/when link is up.
833  *
834  *  EEE LPI must not be asserted earlier than one second after link is up.
835  *  On 82579, EEE LPI should not be enabled until such time otherwise there
836  *  can be link issues with some switches.  Other devices can have EEE LPI
837  *  enabled immediately upon link up since they have a timer in hardware which
838  *  prevents LPI from being asserted too early.
839  **/
e1000_set_eee_pchlan(struct e1000_hw * hw)840 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
841 {
842 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
843 	s32 ret_val;
844 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
845 
846 	switch (hw->phy.type) {
847 	case e1000_phy_82579:
848 		lpa = I82579_EEE_LP_ABILITY;
849 		pcs_status = I82579_EEE_PCS_STATUS;
850 		adv_addr = I82579_EEE_ADVERTISEMENT;
851 		break;
852 	case e1000_phy_i217:
853 		lpa = I217_EEE_LP_ABILITY;
854 		pcs_status = I217_EEE_PCS_STATUS;
855 		adv_addr = I217_EEE_ADVERTISEMENT;
856 		break;
857 	default:
858 		return 0;
859 	}
860 
861 	ret_val = hw->phy.ops.acquire(hw);
862 	if (ret_val)
863 		return ret_val;
864 
865 	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
866 	if (ret_val)
867 		goto release;
868 
869 	/* Clear bits that enable EEE in various speeds */
870 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
871 
872 	/* Enable EEE if not disabled by user */
873 	if (!dev_spec->eee_disable) {
874 		/* Save off link partner's EEE ability */
875 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
876 						    &dev_spec->eee_lp_ability);
877 		if (ret_val)
878 			goto release;
879 
880 		/* Read EEE advertisement */
881 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
882 		if (ret_val)
883 			goto release;
884 
885 		/* Enable EEE only for speeds in which the link partner is
886 		 * EEE capable and for which we advertise EEE.
887 		 */
888 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
889 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
890 
891 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
892 			e1e_rphy_locked(hw, MII_LPA, &data);
893 			if (data & LPA_100FULL)
894 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
895 			else
896 				/* EEE is not supported in 100Half, so ignore
897 				 * partner's EEE in 100 ability if full-duplex
898 				 * is not advertised.
899 				 */
900 				dev_spec->eee_lp_ability &=
901 				    ~I82579_EEE_100_SUPPORTED;
902 		}
903 	}
904 
905 	if (hw->phy.type == e1000_phy_82579) {
906 		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
907 						    &data);
908 		if (ret_val)
909 			goto release;
910 
911 		data &= ~I82579_LPI_100_PLL_SHUT;
912 		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
913 						     data);
914 	}
915 
916 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
917 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
918 	if (ret_val)
919 		goto release;
920 
921 	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
922 release:
923 	hw->phy.ops.release(hw);
924 
925 	return ret_val;
926 }
927 
928 /**
929  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
930  *  @hw:   pointer to the HW structure
931  *  @link: link up bool flag
932  *
933  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
934  *  preventing further DMA write requests.  Workaround the issue by disabling
935  *  the de-assertion of the clock request when in 1Gpbs mode.
936  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
937  *  speeds in order to avoid Tx hangs.
938  **/
e1000_k1_workaround_lpt_lp(struct e1000_hw * hw,bool link)939 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
940 {
941 	u32 fextnvm6 = er32(FEXTNVM6);
942 	u32 status = er32(STATUS);
943 	s32 ret_val = 0;
944 	u16 reg;
945 
946 	if (link && (status & E1000_STATUS_SPEED_1000)) {
947 		ret_val = hw->phy.ops.acquire(hw);
948 		if (ret_val)
949 			return ret_val;
950 
951 		ret_val =
952 		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
953 						&reg);
954 		if (ret_val)
955 			goto release;
956 
957 		ret_val =
958 		    e1000e_write_kmrn_reg_locked(hw,
959 						 E1000_KMRNCTRLSTA_K1_CONFIG,
960 						 reg &
961 						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
962 		if (ret_val)
963 			goto release;
964 
965 		usleep_range(10, 20);
966 
967 		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
968 
969 		ret_val =
970 		    e1000e_write_kmrn_reg_locked(hw,
971 						 E1000_KMRNCTRLSTA_K1_CONFIG,
972 						 reg);
973 release:
974 		hw->phy.ops.release(hw);
975 	} else {
976 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
977 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
978 
979 		if ((hw->phy.revision > 5) || !link ||
980 		    ((status & E1000_STATUS_SPEED_100) &&
981 		     (status & E1000_STATUS_FD)))
982 			goto update_fextnvm6;
983 
984 		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
985 		if (ret_val)
986 			return ret_val;
987 
988 		/* Clear link status transmit timeout */
989 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
990 
991 		if (status & E1000_STATUS_SPEED_100) {
992 			/* Set inband Tx timeout to 5x10us for 100Half */
993 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
994 
995 			/* Do not extend the K1 entry latency for 100Half */
996 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
997 		} else {
998 			/* Set inband Tx timeout to 50x10us for 10Full/Half */
999 			reg |= 50 <<
1000 			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1001 
1002 			/* Extend the K1 entry latency for 10 Mbps */
1003 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1004 		}
1005 
1006 		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
1007 		if (ret_val)
1008 			return ret_val;
1009 
1010 update_fextnvm6:
1011 		ew32(FEXTNVM6, fextnvm6);
1012 	}
1013 
1014 	return ret_val;
1015 }
1016 
1017 /**
1018  *  e1000_platform_pm_pch_lpt - Set platform power management values
1019  *  @hw: pointer to the HW structure
1020  *  @link: bool indicating link status
1021  *
1022  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1023  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1024  *  when link is up (which must not exceed the maximum latency supported
1025  *  by the platform), otherwise specify there is no LTR requirement.
1026  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1027  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1028  *  Capability register set, on this device LTR is set by writing the
1029  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1030  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1031  *  message to the PMC.
1032  **/
e1000_platform_pm_pch_lpt(struct e1000_hw * hw,bool link)1033 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1034 {
1035 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1036 	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1037 	u32 max_ltr_enc_d = 0;	/* maximum LTR decoded by platform */
1038 	u32 lat_enc_d = 0;	/* latency decoded */
1039 	u16 lat_enc = 0;	/* latency encoded */
1040 
1041 	if (link) {
1042 		u16 speed, duplex, scale = 0;
1043 		u16 max_snoop, max_nosnoop;
1044 		u16 max_ltr_enc;	/* max LTR latency encoded */
1045 		u64 value;
1046 		u32 rxa;
1047 
1048 		if (!hw->adapter->max_frame_size) {
1049 			e_dbg("max_frame_size not set.\n");
1050 			return -E1000_ERR_CONFIG;
1051 		}
1052 
1053 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1054 		if (!speed) {
1055 			e_dbg("Speed not set.\n");
1056 			return -E1000_ERR_CONFIG;
1057 		}
1058 
1059 		/* Rx Packet Buffer Allocation size (KB) */
1060 		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1061 
1062 		/* Determine the maximum latency tolerated by the device.
1063 		 *
1064 		 * Per the PCIe spec, the tolerated latencies are encoded as
1065 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1066 		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1067 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1068 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1069 		 */
1070 		rxa *= 512;
1071 		value = (rxa > hw->adapter->max_frame_size) ?
1072 			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1073 			0;
1074 
1075 		while (value > PCI_LTR_VALUE_MASK) {
1076 			scale++;
1077 			value = DIV_ROUND_UP(value, BIT(5));
1078 		}
1079 		if (scale > E1000_LTRV_SCALE_MAX) {
1080 			e_dbg("Invalid LTR latency scale %d\n", scale);
1081 			return -E1000_ERR_CONFIG;
1082 		}
1083 		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1084 
1085 		/* Determine the maximum latency tolerated by the platform */
1086 		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1087 				     &max_snoop);
1088 		pci_read_config_word(hw->adapter->pdev,
1089 				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1090 		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1091 
1092 		lat_enc_d = (lat_enc & E1000_LTRV_VALUE_MASK) *
1093 			     (1U << (E1000_LTRV_SCALE_FACTOR *
1094 			     FIELD_GET(E1000_LTRV_SCALE_MASK, lat_enc)));
1095 
1096 		max_ltr_enc_d = (max_ltr_enc & E1000_LTRV_VALUE_MASK) *
1097 			(1U << (E1000_LTRV_SCALE_FACTOR *
1098 				FIELD_GET(E1000_LTRV_SCALE_MASK, max_ltr_enc)));
1099 
1100 		if (lat_enc_d > max_ltr_enc_d)
1101 			lat_enc = max_ltr_enc;
1102 	}
1103 
1104 	/* Set Snoop and No-Snoop latencies the same */
1105 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1106 	ew32(LTRV, reg);
1107 
1108 	return 0;
1109 }
1110 
1111 /**
1112  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1113  *  @hw: pointer to the HW structure
1114  *  @to_sx: boolean indicating a system power state transition to Sx
1115  *
1116  *  When link is down, configure ULP mode to significantly reduce the power
1117  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1118  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1119  *  system, configure the ULP mode by software.
1120  */
e1000_enable_ulp_lpt_lp(struct e1000_hw * hw,bool to_sx)1121 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1122 {
1123 	u32 mac_reg;
1124 	s32 ret_val = 0;
1125 	u16 phy_reg;
1126 	u16 oem_reg = 0;
1127 
1128 	if ((hw->mac.type < e1000_pch_lpt) ||
1129 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1130 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1131 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1132 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1133 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1134 		return 0;
1135 
1136 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1137 		/* Request ME configure ULP mode in the PHY */
1138 		mac_reg = er32(H2ME);
1139 		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1140 		ew32(H2ME, mac_reg);
1141 
1142 		goto out;
1143 	}
1144 
1145 	if (!to_sx) {
1146 		int i = 0;
1147 
1148 		/* Poll up to 5 seconds for Cable Disconnected indication */
1149 		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1150 			/* Bail if link is re-acquired */
1151 			if (er32(STATUS) & E1000_STATUS_LU)
1152 				return -E1000_ERR_PHY;
1153 
1154 			if (i++ == 100)
1155 				break;
1156 
1157 			msleep(50);
1158 		}
1159 		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1160 		      (er32(FEXT) &
1161 		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1162 	}
1163 
1164 	ret_val = hw->phy.ops.acquire(hw);
1165 	if (ret_val)
1166 		goto out;
1167 
1168 	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1169 	 * LPLU and disable Gig speed when entering ULP
1170 	 */
1171 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1172 		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1173 						       &oem_reg);
1174 		if (ret_val)
1175 			goto release;
1176 
1177 		phy_reg = oem_reg;
1178 		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1179 
1180 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1181 							phy_reg);
1182 
1183 		if (ret_val)
1184 			goto release;
1185 	}
1186 
1187 	/* Set Inband ULP Exit, Reset to SMBus mode and
1188 	 * Disable SMBus Release on PERST# in PHY
1189 	 */
1190 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1191 	if (ret_val)
1192 		goto release;
1193 	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1194 		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1195 	if (to_sx) {
1196 		if (er32(WUFC) & E1000_WUFC_LNKC)
1197 			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1198 		else
1199 			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1200 
1201 		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1202 		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1203 	} else {
1204 		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1205 		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1206 		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1207 	}
1208 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1209 
1210 	/* Set Disable SMBus Release on PERST# in MAC */
1211 	mac_reg = er32(FEXTNVM7);
1212 	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1213 	ew32(FEXTNVM7, mac_reg);
1214 
1215 	/* Commit ULP changes in PHY by starting auto ULP configuration */
1216 	phy_reg |= I218_ULP_CONFIG1_START;
1217 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1218 
1219 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1220 	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1221 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1222 							oem_reg);
1223 		if (ret_val)
1224 			goto release;
1225 	}
1226 
1227 release:
1228 	/* Switching PHY interface always returns MDI error
1229 	 * so disable retry mechanism to avoid wasting time
1230 	 */
1231 	e1000e_disable_phy_retry(hw);
1232 
1233 	/* Force SMBus mode in PHY */
1234 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1235 	if (ret_val) {
1236 		e1000e_enable_phy_retry(hw);
1237 		hw->phy.ops.release(hw);
1238 		goto out;
1239 	}
1240 	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1241 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1242 
1243 	e1000e_enable_phy_retry(hw);
1244 
1245 	/* Force SMBus mode in MAC */
1246 	mac_reg = er32(CTRL_EXT);
1247 	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1248 	ew32(CTRL_EXT, mac_reg);
1249 
1250 	hw->phy.ops.release(hw);
1251 out:
1252 	if (ret_val)
1253 		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1254 	else
1255 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1256 
1257 	return ret_val;
1258 }
1259 
1260 /**
1261  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1262  *  @hw: pointer to the HW structure
1263  *  @force: boolean indicating whether or not to force disabling ULP
1264  *
1265  *  Un-configure ULP mode when link is up, the system is transitioned from
1266  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1267  *  system, poll for an indication from ME that ULP has been un-configured.
1268  *  If not on an ME enabled system, un-configure the ULP mode by software.
1269  *
1270  *  During nominal operation, this function is called when link is acquired
1271  *  to disable ULP mode (force=false); otherwise, for example when unloading
1272  *  the driver or during Sx->S0 transitions, this is called with force=true
1273  *  to forcibly disable ULP.
1274  */
e1000_disable_ulp_lpt_lp(struct e1000_hw * hw,bool force)1275 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1276 {
1277 	s32 ret_val = 0;
1278 	u32 mac_reg;
1279 	u16 phy_reg;
1280 	int i = 0;
1281 
1282 	if ((hw->mac.type < e1000_pch_lpt) ||
1283 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1284 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1285 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1286 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1287 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1288 		return 0;
1289 
1290 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1291 		struct e1000_adapter *adapter = hw->adapter;
1292 		bool firmware_bug = false;
1293 
1294 		if (force) {
1295 			/* Request ME un-configure ULP mode in the PHY */
1296 			mac_reg = er32(H2ME);
1297 			mac_reg &= ~E1000_H2ME_ULP;
1298 			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1299 			ew32(H2ME, mac_reg);
1300 		}
1301 
1302 		/* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE.
1303 		 * If this takes more than 1 second, show a warning indicating a
1304 		 * firmware bug
1305 		 */
1306 		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1307 			if (i++ == 250) {
1308 				ret_val = -E1000_ERR_PHY;
1309 				goto out;
1310 			}
1311 			if (i > 100 && !firmware_bug)
1312 				firmware_bug = true;
1313 
1314 			usleep_range(10000, 11000);
1315 		}
1316 		if (firmware_bug)
1317 			e_warn("ULP_CONFIG_DONE took %d msec. This is a firmware bug\n",
1318 			       i * 10);
1319 		else
1320 			e_dbg("ULP_CONFIG_DONE cleared after %d msec\n",
1321 			      i * 10);
1322 
1323 		if (force) {
1324 			mac_reg = er32(H2ME);
1325 			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1326 			ew32(H2ME, mac_reg);
1327 		} else {
1328 			/* Clear H2ME.ULP after ME ULP configuration */
1329 			mac_reg = er32(H2ME);
1330 			mac_reg &= ~E1000_H2ME_ULP;
1331 			ew32(H2ME, mac_reg);
1332 		}
1333 
1334 		goto out;
1335 	}
1336 
1337 	ret_val = hw->phy.ops.acquire(hw);
1338 	if (ret_val)
1339 		goto out;
1340 
1341 	if (force)
1342 		/* Toggle LANPHYPC Value bit */
1343 		e1000_toggle_lanphypc_pch_lpt(hw);
1344 
1345 	/* Switching PHY interface always returns MDI error
1346 	 * so disable retry mechanism to avoid wasting time
1347 	 */
1348 	e1000e_disable_phy_retry(hw);
1349 
1350 	/* Unforce SMBus mode in PHY */
1351 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1352 	if (ret_val) {
1353 		/* The MAC might be in PCIe mode, so temporarily force to
1354 		 * SMBus mode in order to access the PHY.
1355 		 */
1356 		mac_reg = er32(CTRL_EXT);
1357 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1358 		ew32(CTRL_EXT, mac_reg);
1359 
1360 		msleep(50);
1361 
1362 		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1363 						       &phy_reg);
1364 		if (ret_val)
1365 			goto release;
1366 	}
1367 	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1368 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1369 
1370 	e1000e_enable_phy_retry(hw);
1371 
1372 	/* Unforce SMBus mode in MAC */
1373 	mac_reg = er32(CTRL_EXT);
1374 	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1375 	ew32(CTRL_EXT, mac_reg);
1376 
1377 	/* When ULP mode was previously entered, K1 was disabled by the
1378 	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1379 	 */
1380 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1381 	if (ret_val)
1382 		goto release;
1383 	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1384 	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1385 
1386 	/* Clear ULP enabled configuration */
1387 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1388 	if (ret_val)
1389 		goto release;
1390 	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1391 		     I218_ULP_CONFIG1_STICKY_ULP |
1392 		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1393 		     I218_ULP_CONFIG1_WOL_HOST |
1394 		     I218_ULP_CONFIG1_INBAND_EXIT |
1395 		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1396 		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1397 		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1398 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1399 
1400 	/* Commit ULP changes by starting auto ULP configuration */
1401 	phy_reg |= I218_ULP_CONFIG1_START;
1402 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1403 
1404 	/* Clear Disable SMBus Release on PERST# in MAC */
1405 	mac_reg = er32(FEXTNVM7);
1406 	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1407 	ew32(FEXTNVM7, mac_reg);
1408 
1409 release:
1410 	hw->phy.ops.release(hw);
1411 	if (force) {
1412 		e1000_phy_hw_reset(hw);
1413 		msleep(50);
1414 	}
1415 out:
1416 	if (ret_val)
1417 		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1418 	else
1419 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1420 
1421 	return ret_val;
1422 }
1423 
1424 /**
1425  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1426  *  @hw: pointer to the HW structure
1427  *
1428  *  Checks to see of the link status of the hardware has changed.  If a
1429  *  change in link status has been detected, then we read the PHY registers
1430  *  to get the current speed/duplex if link exists.
1431  **/
e1000_check_for_copper_link_ich8lan(struct e1000_hw * hw)1432 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1433 {
1434 	struct e1000_mac_info *mac = &hw->mac;
1435 	s32 ret_val, tipg_reg = 0;
1436 	u16 emi_addr, emi_val = 0;
1437 	bool link;
1438 	u16 phy_reg;
1439 
1440 	/* We only want to go out to the PHY registers to see if Auto-Neg
1441 	 * has completed and/or if our link status has changed.  The
1442 	 * get_link_status flag is set upon receiving a Link Status
1443 	 * Change or Rx Sequence Error interrupt.
1444 	 */
1445 	if (!mac->get_link_status)
1446 		return 0;
1447 	mac->get_link_status = false;
1448 
1449 	/* First we want to see if the MII Status Register reports
1450 	 * link.  If so, then we want to get the current speed/duplex
1451 	 * of the PHY.
1452 	 */
1453 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1454 	if (ret_val)
1455 		goto out;
1456 
1457 	if (hw->mac.type == e1000_pchlan) {
1458 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1459 		if (ret_val)
1460 			goto out;
1461 	}
1462 
1463 	/* When connected at 10Mbps half-duplex, some parts are excessively
1464 	 * aggressive resulting in many collisions. To avoid this, increase
1465 	 * the IPG and reduce Rx latency in the PHY.
1466 	 */
1467 	if ((hw->mac.type >= e1000_pch2lan) && link) {
1468 		u16 speed, duplex;
1469 
1470 		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1471 		tipg_reg = er32(TIPG);
1472 		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1473 
1474 		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1475 			tipg_reg |= 0xFF;
1476 			/* Reduce Rx latency in analog PHY */
1477 			emi_val = 0;
1478 		} else if (hw->mac.type >= e1000_pch_spt &&
1479 			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1480 			tipg_reg |= 0xC;
1481 			emi_val = 1;
1482 		} else {
1483 
1484 			/* Roll back the default values */
1485 			tipg_reg |= 0x08;
1486 			emi_val = 1;
1487 		}
1488 
1489 		ew32(TIPG, tipg_reg);
1490 
1491 		ret_val = hw->phy.ops.acquire(hw);
1492 		if (ret_val)
1493 			goto out;
1494 
1495 		if (hw->mac.type == e1000_pch2lan)
1496 			emi_addr = I82579_RX_CONFIG;
1497 		else
1498 			emi_addr = I217_RX_CONFIG;
1499 		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1500 
1501 		if (hw->mac.type >= e1000_pch_lpt) {
1502 			u16 phy_reg;
1503 
1504 			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1505 			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1506 			if (speed == SPEED_100 || speed == SPEED_10)
1507 				phy_reg |= 0x3E8;
1508 			else
1509 				phy_reg |= 0xFA;
1510 			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1511 
1512 			if (speed == SPEED_1000) {
1513 				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1514 							    &phy_reg);
1515 
1516 				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1517 
1518 				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1519 							     phy_reg);
1520 			}
1521 		}
1522 		hw->phy.ops.release(hw);
1523 
1524 		if (ret_val)
1525 			goto out;
1526 
1527 		if (hw->mac.type >= e1000_pch_spt) {
1528 			u16 data;
1529 			u16 ptr_gap;
1530 
1531 			if (speed == SPEED_1000) {
1532 				ret_val = hw->phy.ops.acquire(hw);
1533 				if (ret_val)
1534 					goto out;
1535 
1536 				ret_val = e1e_rphy_locked(hw,
1537 							  PHY_REG(776, 20),
1538 							  &data);
1539 				if (ret_val) {
1540 					hw->phy.ops.release(hw);
1541 					goto out;
1542 				}
1543 
1544 				ptr_gap = (data & (0x3FF << 2)) >> 2;
1545 				if (ptr_gap < 0x18) {
1546 					data &= ~(0x3FF << 2);
1547 					data |= (0x18 << 2);
1548 					ret_val =
1549 					    e1e_wphy_locked(hw,
1550 							    PHY_REG(776, 20),
1551 							    data);
1552 				}
1553 				hw->phy.ops.release(hw);
1554 				if (ret_val)
1555 					goto out;
1556 			} else {
1557 				ret_val = hw->phy.ops.acquire(hw);
1558 				if (ret_val)
1559 					goto out;
1560 
1561 				ret_val = e1e_wphy_locked(hw,
1562 							  PHY_REG(776, 20),
1563 							  0xC023);
1564 				hw->phy.ops.release(hw);
1565 				if (ret_val)
1566 					goto out;
1567 
1568 			}
1569 		}
1570 	}
1571 
1572 	/* I217 Packet Loss issue:
1573 	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1574 	 * on power up.
1575 	 * Set the Beacon Duration for I217 to 8 usec
1576 	 */
1577 	if (hw->mac.type >= e1000_pch_lpt) {
1578 		u32 mac_reg;
1579 
1580 		mac_reg = er32(FEXTNVM4);
1581 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1582 		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1583 		ew32(FEXTNVM4, mac_reg);
1584 	}
1585 
1586 	/* Work-around I218 hang issue */
1587 	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1588 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1589 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1590 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1591 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1592 		if (ret_val)
1593 			goto out;
1594 	}
1595 	if (hw->mac.type >= e1000_pch_lpt) {
1596 		/* Set platform power management values for
1597 		 * Latency Tolerance Reporting (LTR)
1598 		 */
1599 		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1600 		if (ret_val)
1601 			goto out;
1602 	}
1603 
1604 	/* Clear link partner's EEE ability */
1605 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1606 
1607 	if (hw->mac.type >= e1000_pch_lpt) {
1608 		u32 fextnvm6 = er32(FEXTNVM6);
1609 
1610 		if (hw->mac.type == e1000_pch_spt) {
1611 			/* FEXTNVM6 K1-off workaround - for SPT only */
1612 			u32 pcieanacfg = er32(PCIEANACFG);
1613 
1614 			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1615 				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1616 			else
1617 				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1618 		}
1619 
1620 		ew32(FEXTNVM6, fextnvm6);
1621 	}
1622 
1623 	if (!link)
1624 		goto out;
1625 
1626 	switch (hw->mac.type) {
1627 	case e1000_pch2lan:
1628 		ret_val = e1000_k1_workaround_lv(hw);
1629 		if (ret_val)
1630 			return ret_val;
1631 		fallthrough;
1632 	case e1000_pchlan:
1633 		if (hw->phy.type == e1000_phy_82578) {
1634 			ret_val = e1000_link_stall_workaround_hv(hw);
1635 			if (ret_val)
1636 				return ret_val;
1637 		}
1638 
1639 		/* Workaround for PCHx parts in half-duplex:
1640 		 * Set the number of preambles removed from the packet
1641 		 * when it is passed from the PHY to the MAC to prevent
1642 		 * the MAC from misinterpreting the packet type.
1643 		 */
1644 		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1645 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1646 
1647 		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1648 			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1649 
1650 		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1651 		break;
1652 	default:
1653 		break;
1654 	}
1655 
1656 	/* Check if there was DownShift, must be checked
1657 	 * immediately after link-up
1658 	 */
1659 	e1000e_check_downshift(hw);
1660 
1661 	/* Enable/Disable EEE after link up */
1662 	if (hw->phy.type > e1000_phy_82579) {
1663 		ret_val = e1000_set_eee_pchlan(hw);
1664 		if (ret_val)
1665 			return ret_val;
1666 	}
1667 
1668 	/* If we are forcing speed/duplex, then we simply return since
1669 	 * we have already determined whether we have link or not.
1670 	 */
1671 	if (!mac->autoneg)
1672 		return -E1000_ERR_CONFIG;
1673 
1674 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1675 	 * of MAC speed/duplex configuration.  So we only need to
1676 	 * configure Collision Distance in the MAC.
1677 	 */
1678 	mac->ops.config_collision_dist(hw);
1679 
1680 	/* Configure Flow Control now that Auto-Neg has completed.
1681 	 * First, we need to restore the desired flow control
1682 	 * settings because we may have had to re-autoneg with a
1683 	 * different link partner.
1684 	 */
1685 	ret_val = e1000e_config_fc_after_link_up(hw);
1686 	if (ret_val)
1687 		e_dbg("Error configuring flow control\n");
1688 
1689 	return ret_val;
1690 
1691 out:
1692 	mac->get_link_status = true;
1693 	return ret_val;
1694 }
1695 
e1000_get_variants_ich8lan(struct e1000_adapter * adapter)1696 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1697 {
1698 	struct e1000_hw *hw = &adapter->hw;
1699 	s32 rc;
1700 
1701 	rc = e1000_init_mac_params_ich8lan(hw);
1702 	if (rc)
1703 		return rc;
1704 
1705 	rc = e1000_init_nvm_params_ich8lan(hw);
1706 	if (rc)
1707 		return rc;
1708 
1709 	switch (hw->mac.type) {
1710 	case e1000_ich8lan:
1711 	case e1000_ich9lan:
1712 	case e1000_ich10lan:
1713 		rc = e1000_init_phy_params_ich8lan(hw);
1714 		break;
1715 	case e1000_pchlan:
1716 	case e1000_pch2lan:
1717 	case e1000_pch_lpt:
1718 	case e1000_pch_spt:
1719 	case e1000_pch_cnp:
1720 	case e1000_pch_tgp:
1721 	case e1000_pch_adp:
1722 	case e1000_pch_mtp:
1723 	case e1000_pch_lnp:
1724 	case e1000_pch_ptp:
1725 	case e1000_pch_nvp:
1726 		rc = e1000_init_phy_params_pchlan(hw);
1727 		break;
1728 	default:
1729 		break;
1730 	}
1731 	if (rc)
1732 		return rc;
1733 
1734 	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1735 	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1736 	 */
1737 	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1738 	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1739 	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1740 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1741 		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1742 
1743 		hw->mac.ops.blink_led = NULL;
1744 	}
1745 
1746 	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1747 	    (adapter->hw.phy.type != e1000_phy_ife))
1748 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1749 
1750 	/* Enable workaround for 82579 w/ ME enabled */
1751 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1752 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1753 		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1754 
1755 	return 0;
1756 }
1757 
1758 static DEFINE_MUTEX(nvm_mutex);
1759 
1760 /**
1761  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1762  *  @hw: pointer to the HW structure
1763  *
1764  *  Acquires the mutex for performing NVM operations.
1765  **/
e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused * hw)1766 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1767 {
1768 	mutex_lock(&nvm_mutex);
1769 
1770 	return 0;
1771 }
1772 
1773 /**
1774  *  e1000_release_nvm_ich8lan - Release NVM mutex
1775  *  @hw: pointer to the HW structure
1776  *
1777  *  Releases the mutex used while performing NVM operations.
1778  **/
e1000_release_nvm_ich8lan(struct e1000_hw __always_unused * hw)1779 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1780 {
1781 	mutex_unlock(&nvm_mutex);
1782 }
1783 
1784 /**
1785  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1786  *  @hw: pointer to the HW structure
1787  *
1788  *  Acquires the software control flag for performing PHY and select
1789  *  MAC CSR accesses.
1790  **/
e1000_acquire_swflag_ich8lan(struct e1000_hw * hw)1791 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1792 {
1793 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1794 	s32 ret_val = 0;
1795 
1796 	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1797 			     &hw->adapter->state)) {
1798 		e_dbg("contention for Phy access\n");
1799 		return -E1000_ERR_PHY;
1800 	}
1801 
1802 	while (timeout) {
1803 		extcnf_ctrl = er32(EXTCNF_CTRL);
1804 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1805 			break;
1806 
1807 		mdelay(1);
1808 		timeout--;
1809 	}
1810 
1811 	if (!timeout) {
1812 		e_dbg("SW has already locked the resource.\n");
1813 		ret_val = -E1000_ERR_CONFIG;
1814 		goto out;
1815 	}
1816 
1817 	timeout = SW_FLAG_TIMEOUT;
1818 
1819 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1820 	ew32(EXTCNF_CTRL, extcnf_ctrl);
1821 
1822 	while (timeout) {
1823 		extcnf_ctrl = er32(EXTCNF_CTRL);
1824 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1825 			break;
1826 
1827 		mdelay(1);
1828 		timeout--;
1829 	}
1830 
1831 	if (!timeout) {
1832 		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1833 		      er32(FWSM), extcnf_ctrl);
1834 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1835 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1836 		ret_val = -E1000_ERR_CONFIG;
1837 		goto out;
1838 	}
1839 
1840 out:
1841 	if (ret_val)
1842 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1843 
1844 	return ret_val;
1845 }
1846 
1847 /**
1848  *  e1000_release_swflag_ich8lan - Release software control flag
1849  *  @hw: pointer to the HW structure
1850  *
1851  *  Releases the software control flag for performing PHY and select
1852  *  MAC CSR accesses.
1853  **/
e1000_release_swflag_ich8lan(struct e1000_hw * hw)1854 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1855 {
1856 	u32 extcnf_ctrl;
1857 
1858 	extcnf_ctrl = er32(EXTCNF_CTRL);
1859 
1860 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1861 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1862 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1863 	} else {
1864 		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1865 	}
1866 
1867 	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1868 }
1869 
1870 /**
1871  *  e1000_check_mng_mode_ich8lan - Checks management mode
1872  *  @hw: pointer to the HW structure
1873  *
1874  *  This checks if the adapter has any manageability enabled.
1875  *  This is a function pointer entry point only called by read/write
1876  *  routines for the PHY and NVM parts.
1877  **/
e1000_check_mng_mode_ich8lan(struct e1000_hw * hw)1878 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1879 {
1880 	u32 fwsm;
1881 
1882 	fwsm = er32(FWSM);
1883 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1884 		((fwsm & E1000_FWSM_MODE_MASK) ==
1885 		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1886 }
1887 
1888 /**
1889  *  e1000_check_mng_mode_pchlan - Checks management mode
1890  *  @hw: pointer to the HW structure
1891  *
1892  *  This checks if the adapter has iAMT enabled.
1893  *  This is a function pointer entry point only called by read/write
1894  *  routines for the PHY and NVM parts.
1895  **/
e1000_check_mng_mode_pchlan(struct e1000_hw * hw)1896 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1897 {
1898 	u32 fwsm;
1899 
1900 	fwsm = er32(FWSM);
1901 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1902 	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1903 }
1904 
1905 /**
1906  *  e1000_rar_set_pch2lan - Set receive address register
1907  *  @hw: pointer to the HW structure
1908  *  @addr: pointer to the receive address
1909  *  @index: receive address array register
1910  *
1911  *  Sets the receive address array register at index to the address passed
1912  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1913  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1914  *  Use SHRA[0-3] in place of those reserved for ME.
1915  **/
e1000_rar_set_pch2lan(struct e1000_hw * hw,u8 * addr,u32 index)1916 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1917 {
1918 	u32 rar_low, rar_high;
1919 
1920 	/* HW expects these in little endian so we reverse the byte order
1921 	 * from network order (big endian) to little endian
1922 	 */
1923 	rar_low = ((u32)addr[0] |
1924 		   ((u32)addr[1] << 8) |
1925 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1926 
1927 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1928 
1929 	/* If MAC address zero, no need to set the AV bit */
1930 	if (rar_low || rar_high)
1931 		rar_high |= E1000_RAH_AV;
1932 
1933 	if (index == 0) {
1934 		ew32(RAL(index), rar_low);
1935 		e1e_flush();
1936 		ew32(RAH(index), rar_high);
1937 		e1e_flush();
1938 		return 0;
1939 	}
1940 
1941 	/* RAR[1-6] are owned by manageability.  Skip those and program the
1942 	 * next address into the SHRA register array.
1943 	 */
1944 	if (index < (u32)(hw->mac.rar_entry_count)) {
1945 		s32 ret_val;
1946 
1947 		ret_val = e1000_acquire_swflag_ich8lan(hw);
1948 		if (ret_val)
1949 			goto out;
1950 
1951 		ew32(SHRAL(index - 1), rar_low);
1952 		e1e_flush();
1953 		ew32(SHRAH(index - 1), rar_high);
1954 		e1e_flush();
1955 
1956 		e1000_release_swflag_ich8lan(hw);
1957 
1958 		/* verify the register updates */
1959 		if ((er32(SHRAL(index - 1)) == rar_low) &&
1960 		    (er32(SHRAH(index - 1)) == rar_high))
1961 			return 0;
1962 
1963 		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1964 		      (index - 1), er32(FWSM));
1965 	}
1966 
1967 out:
1968 	e_dbg("Failed to write receive address at index %d\n", index);
1969 	return -E1000_ERR_CONFIG;
1970 }
1971 
1972 /**
1973  *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1974  *  @hw: pointer to the HW structure
1975  *
1976  *  Get the number of available receive registers that the Host can
1977  *  program. SHRA[0-10] are the shared receive address registers
1978  *  that are shared between the Host and manageability engine (ME).
1979  *  ME can reserve any number of addresses and the host needs to be
1980  *  able to tell how many available registers it has access to.
1981  **/
e1000_rar_get_count_pch_lpt(struct e1000_hw * hw)1982 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1983 {
1984 	u32 wlock_mac;
1985 	u32 num_entries;
1986 
1987 	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1988 	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1989 
1990 	switch (wlock_mac) {
1991 	case 0:
1992 		/* All SHRA[0..10] and RAR[0] available */
1993 		num_entries = hw->mac.rar_entry_count;
1994 		break;
1995 	case 1:
1996 		/* Only RAR[0] available */
1997 		num_entries = 1;
1998 		break;
1999 	default:
2000 		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
2001 		num_entries = wlock_mac + 1;
2002 		break;
2003 	}
2004 
2005 	return num_entries;
2006 }
2007 
2008 /**
2009  *  e1000_rar_set_pch_lpt - Set receive address registers
2010  *  @hw: pointer to the HW structure
2011  *  @addr: pointer to the receive address
2012  *  @index: receive address array register
2013  *
2014  *  Sets the receive address register array at index to the address passed
2015  *  in by addr. For LPT, RAR[0] is the base address register that is to
2016  *  contain the MAC address. SHRA[0-10] are the shared receive address
2017  *  registers that are shared between the Host and manageability engine (ME).
2018  **/
e1000_rar_set_pch_lpt(struct e1000_hw * hw,u8 * addr,u32 index)2019 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
2020 {
2021 	u32 rar_low, rar_high;
2022 	u32 wlock_mac;
2023 
2024 	/* HW expects these in little endian so we reverse the byte order
2025 	 * from network order (big endian) to little endian
2026 	 */
2027 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
2028 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
2029 
2030 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
2031 
2032 	/* If MAC address zero, no need to set the AV bit */
2033 	if (rar_low || rar_high)
2034 		rar_high |= E1000_RAH_AV;
2035 
2036 	if (index == 0) {
2037 		ew32(RAL(index), rar_low);
2038 		e1e_flush();
2039 		ew32(RAH(index), rar_high);
2040 		e1e_flush();
2041 		return 0;
2042 	}
2043 
2044 	/* The manageability engine (ME) can lock certain SHRAR registers that
2045 	 * it is using - those registers are unavailable for use.
2046 	 */
2047 	if (index < hw->mac.rar_entry_count) {
2048 		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
2049 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2050 
2051 		/* Check if all SHRAR registers are locked */
2052 		if (wlock_mac == 1)
2053 			goto out;
2054 
2055 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
2056 			s32 ret_val;
2057 
2058 			ret_val = e1000_acquire_swflag_ich8lan(hw);
2059 
2060 			if (ret_val)
2061 				goto out;
2062 
2063 			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
2064 			e1e_flush();
2065 			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
2066 			e1e_flush();
2067 
2068 			e1000_release_swflag_ich8lan(hw);
2069 
2070 			/* verify the register updates */
2071 			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2072 			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
2073 				return 0;
2074 		}
2075 	}
2076 
2077 out:
2078 	e_dbg("Failed to write receive address at index %d\n", index);
2079 	return -E1000_ERR_CONFIG;
2080 }
2081 
2082 /**
2083  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2084  *  @hw: pointer to the HW structure
2085  *
2086  *  Checks if firmware is blocking the reset of the PHY.
2087  *  This is a function pointer entry point only called by
2088  *  reset routines.
2089  **/
e1000_check_reset_block_ich8lan(struct e1000_hw * hw)2090 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2091 {
2092 	bool blocked = false;
2093 	int i = 0;
2094 
2095 	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2096 	       (i++ < 30))
2097 		usleep_range(10000, 11000);
2098 	return blocked ? E1000_BLK_PHY_RESET : 0;
2099 }
2100 
2101 /**
2102  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2103  *  @hw: pointer to the HW structure
2104  *
2105  *  Assumes semaphore already acquired.
2106  *
2107  **/
e1000_write_smbus_addr(struct e1000_hw * hw)2108 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2109 {
2110 	u16 phy_data;
2111 	u32 strap = er32(STRAP);
2112 	u32 freq = FIELD_GET(E1000_STRAP_SMT_FREQ_MASK, strap);
2113 	s32 ret_val;
2114 
2115 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2116 
2117 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2118 	if (ret_val)
2119 		return ret_val;
2120 
2121 	phy_data &= ~HV_SMB_ADDR_MASK;
2122 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2123 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2124 
2125 	if (hw->phy.type == e1000_phy_i217) {
2126 		/* Restore SMBus frequency */
2127 		if (freq--) {
2128 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2129 			phy_data |= (freq & BIT(0)) <<
2130 			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2131 			phy_data |= (freq & BIT(1)) <<
2132 			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2133 		} else {
2134 			e_dbg("Unsupported SMB frequency in PHY\n");
2135 		}
2136 	}
2137 
2138 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2139 }
2140 
2141 /**
2142  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2143  *  @hw:   pointer to the HW structure
2144  *
2145  *  SW should configure the LCD from the NVM extended configuration region
2146  *  as a workaround for certain parts.
2147  **/
e1000_sw_lcd_config_ich8lan(struct e1000_hw * hw)2148 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2149 {
2150 	struct e1000_phy_info *phy = &hw->phy;
2151 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2152 	s32 ret_val = 0;
2153 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2154 
2155 	/* Initialize the PHY from the NVM on ICH platforms.  This
2156 	 * is needed due to an issue where the NVM configuration is
2157 	 * not properly autoloaded after power transitions.
2158 	 * Therefore, after each PHY reset, we will load the
2159 	 * configuration data out of the NVM manually.
2160 	 */
2161 	switch (hw->mac.type) {
2162 	case e1000_ich8lan:
2163 		if (phy->type != e1000_phy_igp_3)
2164 			return ret_val;
2165 
2166 		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2167 		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2168 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2169 			break;
2170 		}
2171 		fallthrough;
2172 	case e1000_pchlan:
2173 	case e1000_pch2lan:
2174 	case e1000_pch_lpt:
2175 	case e1000_pch_spt:
2176 	case e1000_pch_cnp:
2177 	case e1000_pch_tgp:
2178 	case e1000_pch_adp:
2179 	case e1000_pch_mtp:
2180 	case e1000_pch_lnp:
2181 	case e1000_pch_ptp:
2182 	case e1000_pch_nvp:
2183 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2184 		break;
2185 	default:
2186 		return ret_val;
2187 	}
2188 
2189 	ret_val = hw->phy.ops.acquire(hw);
2190 	if (ret_val)
2191 		return ret_val;
2192 
2193 	data = er32(FEXTNVM);
2194 	if (!(data & sw_cfg_mask))
2195 		goto release;
2196 
2197 	/* Make sure HW does not configure LCD from PHY
2198 	 * extended configuration before SW configuration
2199 	 */
2200 	data = er32(EXTCNF_CTRL);
2201 	if ((hw->mac.type < e1000_pch2lan) &&
2202 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2203 		goto release;
2204 
2205 	cnf_size = er32(EXTCNF_SIZE);
2206 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2207 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2208 	if (!cnf_size)
2209 		goto release;
2210 
2211 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2212 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2213 
2214 	if (((hw->mac.type == e1000_pchlan) &&
2215 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2216 	    (hw->mac.type > e1000_pchlan)) {
2217 		/* HW configures the SMBus address and LEDs when the
2218 		 * OEM and LCD Write Enable bits are set in the NVM.
2219 		 * When both NVM bits are cleared, SW will configure
2220 		 * them instead.
2221 		 */
2222 		ret_val = e1000_write_smbus_addr(hw);
2223 		if (ret_val)
2224 			goto release;
2225 
2226 		data = er32(LEDCTL);
2227 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2228 							(u16)data);
2229 		if (ret_val)
2230 			goto release;
2231 	}
2232 
2233 	/* Configure LCD from extended configuration region. */
2234 
2235 	/* cnf_base_addr is in DWORD */
2236 	word_addr = (u16)(cnf_base_addr << 1);
2237 
2238 	for (i = 0; i < cnf_size; i++) {
2239 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2240 		if (ret_val)
2241 			goto release;
2242 
2243 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2244 					 1, &reg_addr);
2245 		if (ret_val)
2246 			goto release;
2247 
2248 		/* Save off the PHY page for future writes. */
2249 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2250 			phy_page = reg_data;
2251 			continue;
2252 		}
2253 
2254 		reg_addr &= PHY_REG_MASK;
2255 		reg_addr |= phy_page;
2256 
2257 		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2258 		if (ret_val)
2259 			goto release;
2260 	}
2261 
2262 release:
2263 	hw->phy.ops.release(hw);
2264 	return ret_val;
2265 }
2266 
2267 /**
2268  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2269  *  @hw:   pointer to the HW structure
2270  *  @link: link up bool flag
2271  *
2272  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2273  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2274  *  If link is down, the function will restore the default K1 setting located
2275  *  in the NVM.
2276  **/
e1000_k1_gig_workaround_hv(struct e1000_hw * hw,bool link)2277 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2278 {
2279 	s32 ret_val = 0;
2280 	u16 status_reg = 0;
2281 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2282 
2283 	if (hw->mac.type != e1000_pchlan)
2284 		return 0;
2285 
2286 	/* Wrap the whole flow with the sw flag */
2287 	ret_val = hw->phy.ops.acquire(hw);
2288 	if (ret_val)
2289 		return ret_val;
2290 
2291 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2292 	if (link) {
2293 		if (hw->phy.type == e1000_phy_82578) {
2294 			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2295 						  &status_reg);
2296 			if (ret_val)
2297 				goto release;
2298 
2299 			status_reg &= (BM_CS_STATUS_LINK_UP |
2300 				       BM_CS_STATUS_RESOLVED |
2301 				       BM_CS_STATUS_SPEED_MASK);
2302 
2303 			if (status_reg == (BM_CS_STATUS_LINK_UP |
2304 					   BM_CS_STATUS_RESOLVED |
2305 					   BM_CS_STATUS_SPEED_1000))
2306 				k1_enable = false;
2307 		}
2308 
2309 		if (hw->phy.type == e1000_phy_82577) {
2310 			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2311 			if (ret_val)
2312 				goto release;
2313 
2314 			status_reg &= (HV_M_STATUS_LINK_UP |
2315 				       HV_M_STATUS_AUTONEG_COMPLETE |
2316 				       HV_M_STATUS_SPEED_MASK);
2317 
2318 			if (status_reg == (HV_M_STATUS_LINK_UP |
2319 					   HV_M_STATUS_AUTONEG_COMPLETE |
2320 					   HV_M_STATUS_SPEED_1000))
2321 				k1_enable = false;
2322 		}
2323 
2324 		/* Link stall fix for link up */
2325 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2326 		if (ret_val)
2327 			goto release;
2328 
2329 	} else {
2330 		/* Link stall fix for link down */
2331 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2332 		if (ret_val)
2333 			goto release;
2334 	}
2335 
2336 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2337 
2338 release:
2339 	hw->phy.ops.release(hw);
2340 
2341 	return ret_val;
2342 }
2343 
2344 /**
2345  *  e1000_configure_k1_ich8lan - Configure K1 power state
2346  *  @hw: pointer to the HW structure
2347  *  @k1_enable: K1 state to configure
2348  *
2349  *  Configure the K1 power state based on the provided parameter.
2350  *  Assumes semaphore already acquired.
2351  *
2352  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2353  **/
e1000_configure_k1_ich8lan(struct e1000_hw * hw,bool k1_enable)2354 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2355 {
2356 	s32 ret_val;
2357 	u32 ctrl_reg = 0;
2358 	u32 ctrl_ext = 0;
2359 	u32 reg = 0;
2360 	u16 kmrn_reg = 0;
2361 
2362 	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2363 					      &kmrn_reg);
2364 	if (ret_val)
2365 		return ret_val;
2366 
2367 	if (k1_enable)
2368 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2369 	else
2370 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2371 
2372 	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2373 					       kmrn_reg);
2374 	if (ret_val)
2375 		return ret_val;
2376 
2377 	usleep_range(20, 40);
2378 	ctrl_ext = er32(CTRL_EXT);
2379 	ctrl_reg = er32(CTRL);
2380 
2381 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2382 	reg |= E1000_CTRL_FRCSPD;
2383 	ew32(CTRL, reg);
2384 
2385 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2386 	e1e_flush();
2387 	usleep_range(20, 40);
2388 	ew32(CTRL, ctrl_reg);
2389 	ew32(CTRL_EXT, ctrl_ext);
2390 	e1e_flush();
2391 	usleep_range(20, 40);
2392 
2393 	return 0;
2394 }
2395 
2396 /**
2397  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2398  *  @hw:       pointer to the HW structure
2399  *  @d0_state: boolean if entering d0 or d3 device state
2400  *
2401  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2402  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2403  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2404  **/
e1000_oem_bits_config_ich8lan(struct e1000_hw * hw,bool d0_state)2405 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2406 {
2407 	s32 ret_val = 0;
2408 	u32 mac_reg;
2409 	u16 oem_reg;
2410 
2411 	if (hw->mac.type < e1000_pchlan)
2412 		return ret_val;
2413 
2414 	ret_val = hw->phy.ops.acquire(hw);
2415 	if (ret_val)
2416 		return ret_val;
2417 
2418 	if (hw->mac.type == e1000_pchlan) {
2419 		mac_reg = er32(EXTCNF_CTRL);
2420 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2421 			goto release;
2422 	}
2423 
2424 	mac_reg = er32(FEXTNVM);
2425 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2426 		goto release;
2427 
2428 	mac_reg = er32(PHY_CTRL);
2429 
2430 	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2431 	if (ret_val)
2432 		goto release;
2433 
2434 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2435 
2436 	if (d0_state) {
2437 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2438 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2439 
2440 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2441 			oem_reg |= HV_OEM_BITS_LPLU;
2442 	} else {
2443 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2444 			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2445 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2446 
2447 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2448 			       E1000_PHY_CTRL_NOND0A_LPLU))
2449 			oem_reg |= HV_OEM_BITS_LPLU;
2450 	}
2451 
2452 	/* Set Restart auto-neg to activate the bits */
2453 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2454 	    !hw->phy.ops.check_reset_block(hw))
2455 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2456 
2457 	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2458 
2459 release:
2460 	hw->phy.ops.release(hw);
2461 
2462 	return ret_val;
2463 }
2464 
2465 /**
2466  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2467  *  @hw:   pointer to the HW structure
2468  **/
e1000_set_mdio_slow_mode_hv(struct e1000_hw * hw)2469 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2470 {
2471 	s32 ret_val;
2472 	u16 data;
2473 
2474 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2475 	if (ret_val)
2476 		return ret_val;
2477 
2478 	data |= HV_KMRN_MDIO_SLOW;
2479 
2480 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2481 
2482 	return ret_val;
2483 }
2484 
2485 /**
2486  *  e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds
2487  *  @hw: pointer to the HW structure
2488  *
2489  *  A series of PHY workarounds to be done after every PHY reset.
2490  **/
e1000_hv_phy_workarounds_ich8lan(struct e1000_hw * hw)2491 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2492 {
2493 	s32 ret_val = 0;
2494 	u16 phy_data;
2495 
2496 	if (hw->mac.type != e1000_pchlan)
2497 		return 0;
2498 
2499 	/* Set MDIO slow mode before any other MDIO access */
2500 	if (hw->phy.type == e1000_phy_82577) {
2501 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2502 		if (ret_val)
2503 			return ret_val;
2504 	}
2505 
2506 	if (((hw->phy.type == e1000_phy_82577) &&
2507 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2508 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2509 		/* Disable generation of early preamble */
2510 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2511 		if (ret_val)
2512 			return ret_val;
2513 
2514 		/* Preamble tuning for SSC */
2515 		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2516 		if (ret_val)
2517 			return ret_val;
2518 	}
2519 
2520 	if (hw->phy.type == e1000_phy_82578) {
2521 		/* Return registers to default by doing a soft reset then
2522 		 * writing 0x3140 to the control register.
2523 		 */
2524 		if (hw->phy.revision < 2) {
2525 			e1000e_phy_sw_reset(hw);
2526 			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2527 			if (ret_val)
2528 				return ret_val;
2529 		}
2530 	}
2531 
2532 	/* Select page 0 */
2533 	ret_val = hw->phy.ops.acquire(hw);
2534 	if (ret_val)
2535 		return ret_val;
2536 
2537 	hw->phy.addr = 1;
2538 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2539 	hw->phy.ops.release(hw);
2540 	if (ret_val)
2541 		return ret_val;
2542 
2543 	/* Configure the K1 Si workaround during phy reset assuming there is
2544 	 * link so that it disables K1 if link is in 1Gbps.
2545 	 */
2546 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2547 	if (ret_val)
2548 		return ret_val;
2549 
2550 	/* Workaround for link disconnects on a busy hub in half duplex */
2551 	ret_val = hw->phy.ops.acquire(hw);
2552 	if (ret_val)
2553 		return ret_val;
2554 	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2555 	if (ret_val)
2556 		goto release;
2557 	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2558 	if (ret_val)
2559 		goto release;
2560 
2561 	/* set MSE higher to enable link to stay up when noise is high */
2562 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2563 release:
2564 	hw->phy.ops.release(hw);
2565 
2566 	return ret_val;
2567 }
2568 
2569 /**
2570  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2571  *  @hw:   pointer to the HW structure
2572  **/
e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw * hw)2573 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2574 {
2575 	u32 mac_reg;
2576 	u16 i, phy_reg = 0;
2577 	s32 ret_val;
2578 
2579 	ret_val = hw->phy.ops.acquire(hw);
2580 	if (ret_val)
2581 		return;
2582 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2583 	if (ret_val)
2584 		goto release;
2585 
2586 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2587 	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2588 		mac_reg = er32(RAL(i));
2589 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2590 					   (u16)(mac_reg & 0xFFFF));
2591 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2592 					   (u16)((mac_reg >> 16) & 0xFFFF));
2593 
2594 		mac_reg = er32(RAH(i));
2595 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2596 					   (u16)(mac_reg & 0xFFFF));
2597 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2598 					   (u16)((mac_reg & E1000_RAH_AV) >> 16));
2599 	}
2600 
2601 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2602 
2603 release:
2604 	hw->phy.ops.release(hw);
2605 }
2606 
2607 /**
2608  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2609  *  with 82579 PHY
2610  *  @hw: pointer to the HW structure
2611  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2612  **/
e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw * hw,bool enable)2613 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2614 {
2615 	s32 ret_val = 0;
2616 	u16 phy_reg, data;
2617 	u32 mac_reg;
2618 	u16 i;
2619 
2620 	if (hw->mac.type < e1000_pch2lan)
2621 		return 0;
2622 
2623 	/* disable Rx path while enabling/disabling workaround */
2624 	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2625 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2626 	if (ret_val)
2627 		return ret_val;
2628 
2629 	if (enable) {
2630 		/* Write Rx addresses (rar_entry_count for RAL/H, and
2631 		 * SHRAL/H) and initial CRC values to the MAC
2632 		 */
2633 		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2634 			u8 mac_addr[ETH_ALEN] = { 0 };
2635 			u32 addr_high, addr_low;
2636 
2637 			addr_high = er32(RAH(i));
2638 			if (!(addr_high & E1000_RAH_AV))
2639 				continue;
2640 			addr_low = er32(RAL(i));
2641 			mac_addr[0] = (addr_low & 0xFF);
2642 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2643 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2644 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2645 			mac_addr[4] = (addr_high & 0xFF);
2646 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2647 
2648 			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2649 		}
2650 
2651 		/* Write Rx addresses to the PHY */
2652 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2653 
2654 		/* Enable jumbo frame workaround in the MAC */
2655 		mac_reg = er32(FFLT_DBG);
2656 		mac_reg &= ~BIT(14);
2657 		mac_reg |= (7 << 15);
2658 		ew32(FFLT_DBG, mac_reg);
2659 
2660 		mac_reg = er32(RCTL);
2661 		mac_reg |= E1000_RCTL_SECRC;
2662 		ew32(RCTL, mac_reg);
2663 
2664 		ret_val = e1000e_read_kmrn_reg(hw,
2665 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2666 					       &data);
2667 		if (ret_val)
2668 			return ret_val;
2669 		ret_val = e1000e_write_kmrn_reg(hw,
2670 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2671 						data | BIT(0));
2672 		if (ret_val)
2673 			return ret_val;
2674 		ret_val = e1000e_read_kmrn_reg(hw,
2675 					       E1000_KMRNCTRLSTA_HD_CTRL,
2676 					       &data);
2677 		if (ret_val)
2678 			return ret_val;
2679 		data &= ~(0xF << 8);
2680 		data |= (0xB << 8);
2681 		ret_val = e1000e_write_kmrn_reg(hw,
2682 						E1000_KMRNCTRLSTA_HD_CTRL,
2683 						data);
2684 		if (ret_val)
2685 			return ret_val;
2686 
2687 		/* Enable jumbo frame workaround in the PHY */
2688 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2689 		data &= ~(0x7F << 5);
2690 		data |= (0x37 << 5);
2691 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2692 		if (ret_val)
2693 			return ret_val;
2694 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2695 		data &= ~BIT(13);
2696 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2697 		if (ret_val)
2698 			return ret_val;
2699 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2700 		data &= ~(0x3FF << 2);
2701 		data |= (E1000_TX_PTR_GAP << 2);
2702 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2703 		if (ret_val)
2704 			return ret_val;
2705 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2706 		if (ret_val)
2707 			return ret_val;
2708 		e1e_rphy(hw, HV_PM_CTRL, &data);
2709 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2710 		if (ret_val)
2711 			return ret_val;
2712 	} else {
2713 		/* Write MAC register values back to h/w defaults */
2714 		mac_reg = er32(FFLT_DBG);
2715 		mac_reg &= ~(0xF << 14);
2716 		ew32(FFLT_DBG, mac_reg);
2717 
2718 		mac_reg = er32(RCTL);
2719 		mac_reg &= ~E1000_RCTL_SECRC;
2720 		ew32(RCTL, mac_reg);
2721 
2722 		ret_val = e1000e_read_kmrn_reg(hw,
2723 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2724 					       &data);
2725 		if (ret_val)
2726 			return ret_val;
2727 		ret_val = e1000e_write_kmrn_reg(hw,
2728 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2729 						data & ~BIT(0));
2730 		if (ret_val)
2731 			return ret_val;
2732 		ret_val = e1000e_read_kmrn_reg(hw,
2733 					       E1000_KMRNCTRLSTA_HD_CTRL,
2734 					       &data);
2735 		if (ret_val)
2736 			return ret_val;
2737 		data &= ~(0xF << 8);
2738 		data |= (0xB << 8);
2739 		ret_val = e1000e_write_kmrn_reg(hw,
2740 						E1000_KMRNCTRLSTA_HD_CTRL,
2741 						data);
2742 		if (ret_val)
2743 			return ret_val;
2744 
2745 		/* Write PHY register values back to h/w defaults */
2746 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2747 		data &= ~(0x7F << 5);
2748 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2749 		if (ret_val)
2750 			return ret_val;
2751 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2752 		data |= BIT(13);
2753 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2754 		if (ret_val)
2755 			return ret_val;
2756 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2757 		data &= ~(0x3FF << 2);
2758 		data |= (0x8 << 2);
2759 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2760 		if (ret_val)
2761 			return ret_val;
2762 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2763 		if (ret_val)
2764 			return ret_val;
2765 		e1e_rphy(hw, HV_PM_CTRL, &data);
2766 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2767 		if (ret_val)
2768 			return ret_val;
2769 	}
2770 
2771 	/* re-enable Rx path after enabling/disabling workaround */
2772 	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2773 }
2774 
2775 /**
2776  *  e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds
2777  *  @hw: pointer to the HW structure
2778  *
2779  *  A series of PHY workarounds to be done after every PHY reset.
2780  **/
e1000_lv_phy_workarounds_ich8lan(struct e1000_hw * hw)2781 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2782 {
2783 	s32 ret_val = 0;
2784 
2785 	if (hw->mac.type != e1000_pch2lan)
2786 		return 0;
2787 
2788 	/* Set MDIO slow mode before any other MDIO access */
2789 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2790 	if (ret_val)
2791 		return ret_val;
2792 
2793 	ret_val = hw->phy.ops.acquire(hw);
2794 	if (ret_val)
2795 		return ret_val;
2796 	/* set MSE higher to enable link to stay up when noise is high */
2797 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2798 	if (ret_val)
2799 		goto release;
2800 	/* drop link after 5 times MSE threshold was reached */
2801 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2802 release:
2803 	hw->phy.ops.release(hw);
2804 
2805 	return ret_val;
2806 }
2807 
2808 /**
2809  *  e1000_k1_workaround_lv - K1 Si workaround
2810  *  @hw:   pointer to the HW structure
2811  *
2812  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2813  *  Disable K1 in 1000Mbps and 100Mbps
2814  **/
e1000_k1_workaround_lv(struct e1000_hw * hw)2815 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2816 {
2817 	s32 ret_val = 0;
2818 	u16 status_reg = 0;
2819 
2820 	if (hw->mac.type != e1000_pch2lan)
2821 		return 0;
2822 
2823 	/* Set K1 beacon duration based on 10Mbs speed */
2824 	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2825 	if (ret_val)
2826 		return ret_val;
2827 
2828 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2829 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2830 		if (status_reg &
2831 		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2832 			u16 pm_phy_reg;
2833 
2834 			/* LV 1G/100 Packet drop issue wa  */
2835 			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2836 			if (ret_val)
2837 				return ret_val;
2838 			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2839 			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2840 			if (ret_val)
2841 				return ret_val;
2842 		} else {
2843 			u32 mac_reg;
2844 
2845 			mac_reg = er32(FEXTNVM4);
2846 			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2847 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2848 			ew32(FEXTNVM4, mac_reg);
2849 		}
2850 	}
2851 
2852 	return ret_val;
2853 }
2854 
2855 /**
2856  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2857  *  @hw:   pointer to the HW structure
2858  *  @gate: boolean set to true to gate, false to ungate
2859  *
2860  *  Gate/ungate the automatic PHY configuration via hardware; perform
2861  *  the configuration via software instead.
2862  **/
e1000_gate_hw_phy_config_ich8lan(struct e1000_hw * hw,bool gate)2863 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2864 {
2865 	u32 extcnf_ctrl;
2866 
2867 	if (hw->mac.type < e1000_pch2lan)
2868 		return;
2869 
2870 	extcnf_ctrl = er32(EXTCNF_CTRL);
2871 
2872 	if (gate)
2873 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2874 	else
2875 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2876 
2877 	ew32(EXTCNF_CTRL, extcnf_ctrl);
2878 }
2879 
2880 /**
2881  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2882  *  @hw: pointer to the HW structure
2883  *
2884  *  Check the appropriate indication the MAC has finished configuring the
2885  *  PHY after a software reset.
2886  **/
e1000_lan_init_done_ich8lan(struct e1000_hw * hw)2887 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2888 {
2889 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2890 
2891 	/* Wait for basic configuration completes before proceeding */
2892 	do {
2893 		data = er32(STATUS);
2894 		data &= E1000_STATUS_LAN_INIT_DONE;
2895 		usleep_range(100, 200);
2896 	} while ((!data) && --loop);
2897 
2898 	/* If basic configuration is incomplete before the above loop
2899 	 * count reaches 0, loading the configuration from NVM will
2900 	 * leave the PHY in a bad state possibly resulting in no link.
2901 	 */
2902 	if (loop == 0)
2903 		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2904 
2905 	/* Clear the Init Done bit for the next init event */
2906 	data = er32(STATUS);
2907 	data &= ~E1000_STATUS_LAN_INIT_DONE;
2908 	ew32(STATUS, data);
2909 }
2910 
2911 /**
2912  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2913  *  @hw: pointer to the HW structure
2914  **/
e1000_post_phy_reset_ich8lan(struct e1000_hw * hw)2915 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2916 {
2917 	s32 ret_val = 0;
2918 	u16 reg;
2919 
2920 	if (hw->phy.ops.check_reset_block(hw))
2921 		return 0;
2922 
2923 	/* Allow time for h/w to get to quiescent state after reset */
2924 	usleep_range(10000, 11000);
2925 
2926 	/* Perform any necessary post-reset workarounds */
2927 	switch (hw->mac.type) {
2928 	case e1000_pchlan:
2929 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2930 		if (ret_val)
2931 			return ret_val;
2932 		break;
2933 	case e1000_pch2lan:
2934 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2935 		if (ret_val)
2936 			return ret_val;
2937 		break;
2938 	default:
2939 		break;
2940 	}
2941 
2942 	/* Clear the host wakeup bit after lcd reset */
2943 	if (hw->mac.type >= e1000_pchlan) {
2944 		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2945 		reg &= ~BM_WUC_HOST_WU_BIT;
2946 		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2947 	}
2948 
2949 	/* Configure the LCD with the extended configuration region in NVM */
2950 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2951 	if (ret_val)
2952 		return ret_val;
2953 
2954 	/* Configure the LCD with the OEM bits in NVM */
2955 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2956 
2957 	if (hw->mac.type == e1000_pch2lan) {
2958 		/* Ungate automatic PHY configuration on non-managed 82579 */
2959 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2960 			usleep_range(10000, 11000);
2961 			e1000_gate_hw_phy_config_ich8lan(hw, false);
2962 		}
2963 
2964 		/* Set EEE LPI Update Timer to 200usec */
2965 		ret_val = hw->phy.ops.acquire(hw);
2966 		if (ret_val)
2967 			return ret_val;
2968 		ret_val = e1000_write_emi_reg_locked(hw,
2969 						     I82579_LPI_UPDATE_TIMER,
2970 						     0x1387);
2971 		hw->phy.ops.release(hw);
2972 	}
2973 
2974 	return ret_val;
2975 }
2976 
2977 /**
2978  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2979  *  @hw: pointer to the HW structure
2980  *
2981  *  Resets the PHY
2982  *  This is a function pointer entry point called by drivers
2983  *  or other shared routines.
2984  **/
e1000_phy_hw_reset_ich8lan(struct e1000_hw * hw)2985 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2986 {
2987 	s32 ret_val = 0;
2988 
2989 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2990 	if ((hw->mac.type == e1000_pch2lan) &&
2991 	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2992 		e1000_gate_hw_phy_config_ich8lan(hw, true);
2993 
2994 	ret_val = e1000e_phy_hw_reset_generic(hw);
2995 	if (ret_val)
2996 		return ret_val;
2997 
2998 	return e1000_post_phy_reset_ich8lan(hw);
2999 }
3000 
3001 /**
3002  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
3003  *  @hw: pointer to the HW structure
3004  *  @active: true to enable LPLU, false to disable
3005  *
3006  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
3007  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
3008  *  the phy speed. This function will manually set the LPLU bit and restart
3009  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
3010  *  since it configures the same bit.
3011  **/
e1000_set_lplu_state_pchlan(struct e1000_hw * hw,bool active)3012 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
3013 {
3014 	s32 ret_val;
3015 	u16 oem_reg;
3016 
3017 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
3018 	if (ret_val)
3019 		return ret_val;
3020 
3021 	if (active)
3022 		oem_reg |= HV_OEM_BITS_LPLU;
3023 	else
3024 		oem_reg &= ~HV_OEM_BITS_LPLU;
3025 
3026 	if (!hw->phy.ops.check_reset_block(hw))
3027 		oem_reg |= HV_OEM_BITS_RESTART_AN;
3028 
3029 	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
3030 }
3031 
3032 /**
3033  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
3034  *  @hw: pointer to the HW structure
3035  *  @active: true to enable LPLU, false to disable
3036  *
3037  *  Sets the LPLU D0 state according to the active flag.  When
3038  *  activating LPLU this function also disables smart speed
3039  *  and vice versa.  LPLU will not be activated unless the
3040  *  device autonegotiation advertisement meets standards of
3041  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3042  *  This is a function pointer entry point only called by
3043  *  PHY setup routines.
3044  **/
e1000_set_d0_lplu_state_ich8lan(struct e1000_hw * hw,bool active)3045 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3046 {
3047 	struct e1000_phy_info *phy = &hw->phy;
3048 	u32 phy_ctrl;
3049 	s32 ret_val = 0;
3050 	u16 data;
3051 
3052 	if (phy->type == e1000_phy_ife)
3053 		return 0;
3054 
3055 	phy_ctrl = er32(PHY_CTRL);
3056 
3057 	if (active) {
3058 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3059 		ew32(PHY_CTRL, phy_ctrl);
3060 
3061 		if (phy->type != e1000_phy_igp_3)
3062 			return 0;
3063 
3064 		/* Call gig speed drop workaround on LPLU before accessing
3065 		 * any PHY registers
3066 		 */
3067 		if (hw->mac.type == e1000_ich8lan)
3068 			e1000e_gig_downshift_workaround_ich8lan(hw);
3069 
3070 		/* When LPLU is enabled, we should disable SmartSpeed */
3071 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3072 		if (ret_val)
3073 			return ret_val;
3074 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3075 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3076 		if (ret_val)
3077 			return ret_val;
3078 	} else {
3079 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3080 		ew32(PHY_CTRL, phy_ctrl);
3081 
3082 		if (phy->type != e1000_phy_igp_3)
3083 			return 0;
3084 
3085 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3086 		 * during Dx states where the power conservation is most
3087 		 * important.  During driver activity we should enable
3088 		 * SmartSpeed, so performance is maintained.
3089 		 */
3090 		if (phy->smart_speed == e1000_smart_speed_on) {
3091 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3092 					   &data);
3093 			if (ret_val)
3094 				return ret_val;
3095 
3096 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3097 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3098 					   data);
3099 			if (ret_val)
3100 				return ret_val;
3101 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3102 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3103 					   &data);
3104 			if (ret_val)
3105 				return ret_val;
3106 
3107 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3108 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3109 					   data);
3110 			if (ret_val)
3111 				return ret_val;
3112 		}
3113 	}
3114 
3115 	return 0;
3116 }
3117 
3118 /**
3119  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3120  *  @hw: pointer to the HW structure
3121  *  @active: true to enable LPLU, false to disable
3122  *
3123  *  Sets the LPLU D3 state according to the active flag.  When
3124  *  activating LPLU this function also disables smart speed
3125  *  and vice versa.  LPLU will not be activated unless the
3126  *  device autonegotiation advertisement meets standards of
3127  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3128  *  This is a function pointer entry point only called by
3129  *  PHY setup routines.
3130  **/
e1000_set_d3_lplu_state_ich8lan(struct e1000_hw * hw,bool active)3131 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3132 {
3133 	struct e1000_phy_info *phy = &hw->phy;
3134 	u32 phy_ctrl;
3135 	s32 ret_val = 0;
3136 	u16 data;
3137 
3138 	phy_ctrl = er32(PHY_CTRL);
3139 
3140 	if (!active) {
3141 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3142 		ew32(PHY_CTRL, phy_ctrl);
3143 
3144 		if (phy->type != e1000_phy_igp_3)
3145 			return 0;
3146 
3147 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3148 		 * during Dx states where the power conservation is most
3149 		 * important.  During driver activity we should enable
3150 		 * SmartSpeed, so performance is maintained.
3151 		 */
3152 		if (phy->smart_speed == e1000_smart_speed_on) {
3153 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3154 					   &data);
3155 			if (ret_val)
3156 				return ret_val;
3157 
3158 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3159 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3160 					   data);
3161 			if (ret_val)
3162 				return ret_val;
3163 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3164 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3165 					   &data);
3166 			if (ret_val)
3167 				return ret_val;
3168 
3169 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3170 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3171 					   data);
3172 			if (ret_val)
3173 				return ret_val;
3174 		}
3175 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3176 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3177 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3178 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3179 		ew32(PHY_CTRL, phy_ctrl);
3180 
3181 		if (phy->type != e1000_phy_igp_3)
3182 			return 0;
3183 
3184 		/* Call gig speed drop workaround on LPLU before accessing
3185 		 * any PHY registers
3186 		 */
3187 		if (hw->mac.type == e1000_ich8lan)
3188 			e1000e_gig_downshift_workaround_ich8lan(hw);
3189 
3190 		/* When LPLU is enabled, we should disable SmartSpeed */
3191 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3192 		if (ret_val)
3193 			return ret_val;
3194 
3195 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3196 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3197 	}
3198 
3199 	return ret_val;
3200 }
3201 
3202 /**
3203  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3204  *  @hw: pointer to the HW structure
3205  *  @bank:  pointer to the variable that returns the active bank
3206  *
3207  *  Reads signature byte from the NVM using the flash access registers.
3208  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3209  **/
e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw * hw,u32 * bank)3210 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3211 {
3212 	u32 eecd;
3213 	struct e1000_nvm_info *nvm = &hw->nvm;
3214 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3215 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3216 	u32 nvm_dword = 0;
3217 	u8 sig_byte = 0;
3218 	s32 ret_val;
3219 
3220 	switch (hw->mac.type) {
3221 	case e1000_pch_spt:
3222 	case e1000_pch_cnp:
3223 	case e1000_pch_tgp:
3224 	case e1000_pch_adp:
3225 	case e1000_pch_mtp:
3226 	case e1000_pch_lnp:
3227 	case e1000_pch_ptp:
3228 	case e1000_pch_nvp:
3229 		bank1_offset = nvm->flash_bank_size;
3230 		act_offset = E1000_ICH_NVM_SIG_WORD;
3231 
3232 		/* set bank to 0 in case flash read fails */
3233 		*bank = 0;
3234 
3235 		/* Check bank 0 */
3236 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3237 							 &nvm_dword);
3238 		if (ret_val)
3239 			return ret_val;
3240 		sig_byte = FIELD_GET(0xFF00, nvm_dword);
3241 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3242 		    E1000_ICH_NVM_SIG_VALUE) {
3243 			*bank = 0;
3244 			return 0;
3245 		}
3246 
3247 		/* Check bank 1 */
3248 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3249 							 bank1_offset,
3250 							 &nvm_dword);
3251 		if (ret_val)
3252 			return ret_val;
3253 		sig_byte = FIELD_GET(0xFF00, nvm_dword);
3254 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3255 		    E1000_ICH_NVM_SIG_VALUE) {
3256 			*bank = 1;
3257 			return 0;
3258 		}
3259 
3260 		e_dbg("ERROR: No valid NVM bank present\n");
3261 		return -E1000_ERR_NVM;
3262 	case e1000_ich8lan:
3263 	case e1000_ich9lan:
3264 		eecd = er32(EECD);
3265 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3266 		    E1000_EECD_SEC1VAL_VALID_MASK) {
3267 			if (eecd & E1000_EECD_SEC1VAL)
3268 				*bank = 1;
3269 			else
3270 				*bank = 0;
3271 
3272 			return 0;
3273 		}
3274 		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3275 		fallthrough;
3276 	default:
3277 		/* set bank to 0 in case flash read fails */
3278 		*bank = 0;
3279 
3280 		/* Check bank 0 */
3281 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3282 							&sig_byte);
3283 		if (ret_val)
3284 			return ret_val;
3285 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3286 		    E1000_ICH_NVM_SIG_VALUE) {
3287 			*bank = 0;
3288 			return 0;
3289 		}
3290 
3291 		/* Check bank 1 */
3292 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3293 							bank1_offset,
3294 							&sig_byte);
3295 		if (ret_val)
3296 			return ret_val;
3297 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3298 		    E1000_ICH_NVM_SIG_VALUE) {
3299 			*bank = 1;
3300 			return 0;
3301 		}
3302 
3303 		e_dbg("ERROR: No valid NVM bank present\n");
3304 		return -E1000_ERR_NVM;
3305 	}
3306 }
3307 
3308 /**
3309  *  e1000_read_nvm_spt - NVM access for SPT
3310  *  @hw: pointer to the HW structure
3311  *  @offset: The offset (in bytes) of the word(s) to read.
3312  *  @words: Size of data to read in words.
3313  *  @data: pointer to the word(s) to read at offset.
3314  *
3315  *  Reads a word(s) from the NVM
3316  **/
e1000_read_nvm_spt(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)3317 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3318 			      u16 *data)
3319 {
3320 	struct e1000_nvm_info *nvm = &hw->nvm;
3321 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3322 	u32 act_offset;
3323 	s32 ret_val = 0;
3324 	u32 bank = 0;
3325 	u32 dword = 0;
3326 	u16 offset_to_read;
3327 	u16 i;
3328 
3329 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3330 	    (words == 0)) {
3331 		e_dbg("nvm parameter(s) out of bounds\n");
3332 		ret_val = -E1000_ERR_NVM;
3333 		goto out;
3334 	}
3335 
3336 	nvm->ops.acquire(hw);
3337 
3338 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3339 	if (ret_val) {
3340 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3341 		bank = 0;
3342 	}
3343 
3344 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3345 	act_offset += offset;
3346 
3347 	ret_val = 0;
3348 
3349 	for (i = 0; i < words; i += 2) {
3350 		if (words - i == 1) {
3351 			if (dev_spec->shadow_ram[offset + i].modified) {
3352 				data[i] =
3353 				    dev_spec->shadow_ram[offset + i].value;
3354 			} else {
3355 				offset_to_read = act_offset + i -
3356 				    ((act_offset + i) % 2);
3357 				ret_val =
3358 				  e1000_read_flash_dword_ich8lan(hw,
3359 								 offset_to_read,
3360 								 &dword);
3361 				if (ret_val)
3362 					break;
3363 				if ((act_offset + i) % 2 == 0)
3364 					data[i] = (u16)(dword & 0xFFFF);
3365 				else
3366 					data[i] = (u16)((dword >> 16) & 0xFFFF);
3367 			}
3368 		} else {
3369 			offset_to_read = act_offset + i;
3370 			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3371 			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3372 				ret_val =
3373 				  e1000_read_flash_dword_ich8lan(hw,
3374 								 offset_to_read,
3375 								 &dword);
3376 				if (ret_val)
3377 					break;
3378 			}
3379 			if (dev_spec->shadow_ram[offset + i].modified)
3380 				data[i] =
3381 				    dev_spec->shadow_ram[offset + i].value;
3382 			else
3383 				data[i] = (u16)(dword & 0xFFFF);
3384 			if (dev_spec->shadow_ram[offset + i].modified)
3385 				data[i + 1] =
3386 				    dev_spec->shadow_ram[offset + i + 1].value;
3387 			else
3388 				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3389 		}
3390 	}
3391 
3392 	nvm->ops.release(hw);
3393 
3394 out:
3395 	if (ret_val)
3396 		e_dbg("NVM read error: %d\n", ret_val);
3397 
3398 	return ret_val;
3399 }
3400 
3401 /**
3402  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3403  *  @hw: pointer to the HW structure
3404  *  @offset: The offset (in bytes) of the word(s) to read.
3405  *  @words: Size of data to read in words
3406  *  @data: Pointer to the word(s) to read at offset.
3407  *
3408  *  Reads a word(s) from the NVM using the flash access registers.
3409  **/
e1000_read_nvm_ich8lan(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)3410 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3411 				  u16 *data)
3412 {
3413 	struct e1000_nvm_info *nvm = &hw->nvm;
3414 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3415 	u32 act_offset;
3416 	s32 ret_val = 0;
3417 	u32 bank = 0;
3418 	u16 i, word;
3419 
3420 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3421 	    (words == 0)) {
3422 		e_dbg("nvm parameter(s) out of bounds\n");
3423 		ret_val = -E1000_ERR_NVM;
3424 		goto out;
3425 	}
3426 
3427 	nvm->ops.acquire(hw);
3428 
3429 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3430 	if (ret_val) {
3431 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3432 		bank = 0;
3433 	}
3434 
3435 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3436 	act_offset += offset;
3437 
3438 	ret_val = 0;
3439 	for (i = 0; i < words; i++) {
3440 		if (dev_spec->shadow_ram[offset + i].modified) {
3441 			data[i] = dev_spec->shadow_ram[offset + i].value;
3442 		} else {
3443 			ret_val = e1000_read_flash_word_ich8lan(hw,
3444 								act_offset + i,
3445 								&word);
3446 			if (ret_val)
3447 				break;
3448 			data[i] = word;
3449 		}
3450 	}
3451 
3452 	nvm->ops.release(hw);
3453 
3454 out:
3455 	if (ret_val)
3456 		e_dbg("NVM read error: %d\n", ret_val);
3457 
3458 	return ret_val;
3459 }
3460 
3461 /**
3462  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3463  *  @hw: pointer to the HW structure
3464  *
3465  *  This function does initial flash setup so that a new read/write/erase cycle
3466  *  can be started.
3467  **/
e1000_flash_cycle_init_ich8lan(struct e1000_hw * hw)3468 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3469 {
3470 	union ich8_hws_flash_status hsfsts;
3471 	s32 ret_val = -E1000_ERR_NVM;
3472 
3473 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3474 
3475 	/* Check if the flash descriptor is valid */
3476 	if (!hsfsts.hsf_status.fldesvalid) {
3477 		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3478 		return -E1000_ERR_NVM;
3479 	}
3480 
3481 	/* Clear FCERR and DAEL in hw status by writing 1 */
3482 	hsfsts.hsf_status.flcerr = 1;
3483 	hsfsts.hsf_status.dael = 1;
3484 	if (hw->mac.type >= e1000_pch_spt)
3485 		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3486 	else
3487 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3488 
3489 	/* Either we should have a hardware SPI cycle in progress
3490 	 * bit to check against, in order to start a new cycle or
3491 	 * FDONE bit should be changed in the hardware so that it
3492 	 * is 1 after hardware reset, which can then be used as an
3493 	 * indication whether a cycle is in progress or has been
3494 	 * completed.
3495 	 */
3496 
3497 	if (!hsfsts.hsf_status.flcinprog) {
3498 		/* There is no cycle running at present,
3499 		 * so we can start a cycle.
3500 		 * Begin by setting Flash Cycle Done.
3501 		 */
3502 		hsfsts.hsf_status.flcdone = 1;
3503 		if (hw->mac.type >= e1000_pch_spt)
3504 			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3505 		else
3506 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3507 		ret_val = 0;
3508 	} else {
3509 		s32 i;
3510 
3511 		/* Otherwise poll for sometime so the current
3512 		 * cycle has a chance to end before giving up.
3513 		 */
3514 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3515 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3516 			if (!hsfsts.hsf_status.flcinprog) {
3517 				ret_val = 0;
3518 				break;
3519 			}
3520 			udelay(1);
3521 		}
3522 		if (!ret_val) {
3523 			/* Successful in waiting for previous cycle to timeout,
3524 			 * now set the Flash Cycle Done.
3525 			 */
3526 			hsfsts.hsf_status.flcdone = 1;
3527 			if (hw->mac.type >= e1000_pch_spt)
3528 				ew32flash(ICH_FLASH_HSFSTS,
3529 					  hsfsts.regval & 0xFFFF);
3530 			else
3531 				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3532 		} else {
3533 			e_dbg("Flash controller busy, cannot get access\n");
3534 		}
3535 	}
3536 
3537 	return ret_val;
3538 }
3539 
3540 /**
3541  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3542  *  @hw: pointer to the HW structure
3543  *  @timeout: maximum time to wait for completion
3544  *
3545  *  This function starts a flash cycle and waits for its completion.
3546  **/
e1000_flash_cycle_ich8lan(struct e1000_hw * hw,u32 timeout)3547 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3548 {
3549 	union ich8_hws_flash_ctrl hsflctl;
3550 	union ich8_hws_flash_status hsfsts;
3551 	u32 i = 0;
3552 
3553 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3554 	if (hw->mac.type >= e1000_pch_spt)
3555 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3556 	else
3557 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3558 	hsflctl.hsf_ctrl.flcgo = 1;
3559 
3560 	if (hw->mac.type >= e1000_pch_spt)
3561 		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3562 	else
3563 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3564 
3565 	/* wait till FDONE bit is set to 1 */
3566 	do {
3567 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3568 		if (hsfsts.hsf_status.flcdone)
3569 			break;
3570 		udelay(1);
3571 	} while (i++ < timeout);
3572 
3573 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3574 		return 0;
3575 
3576 	return -E1000_ERR_NVM;
3577 }
3578 
3579 /**
3580  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3581  *  @hw: pointer to the HW structure
3582  *  @offset: offset to data location
3583  *  @data: pointer to the location for storing the data
3584  *
3585  *  Reads the flash dword at offset into data.  Offset is converted
3586  *  to bytes before read.
3587  **/
e1000_read_flash_dword_ich8lan(struct e1000_hw * hw,u32 offset,u32 * data)3588 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3589 					  u32 *data)
3590 {
3591 	/* Must convert word offset into bytes. */
3592 	offset <<= 1;
3593 	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3594 }
3595 
3596 /**
3597  *  e1000_read_flash_word_ich8lan - Read word from flash
3598  *  @hw: pointer to the HW structure
3599  *  @offset: offset to data location
3600  *  @data: pointer to the location for storing the data
3601  *
3602  *  Reads the flash word at offset into data.  Offset is converted
3603  *  to bytes before read.
3604  **/
e1000_read_flash_word_ich8lan(struct e1000_hw * hw,u32 offset,u16 * data)3605 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3606 					 u16 *data)
3607 {
3608 	/* Must convert offset into bytes. */
3609 	offset <<= 1;
3610 
3611 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3612 }
3613 
3614 /**
3615  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3616  *  @hw: pointer to the HW structure
3617  *  @offset: The offset of the byte to read.
3618  *  @data: Pointer to a byte to store the value read.
3619  *
3620  *  Reads a single byte from the NVM using the flash access registers.
3621  **/
e1000_read_flash_byte_ich8lan(struct e1000_hw * hw,u32 offset,u8 * data)3622 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3623 					 u8 *data)
3624 {
3625 	s32 ret_val;
3626 	u16 word = 0;
3627 
3628 	/* In SPT, only 32 bits access is supported,
3629 	 * so this function should not be called.
3630 	 */
3631 	if (hw->mac.type >= e1000_pch_spt)
3632 		return -E1000_ERR_NVM;
3633 	else
3634 		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3635 
3636 	if (ret_val)
3637 		return ret_val;
3638 
3639 	*data = (u8)word;
3640 
3641 	return 0;
3642 }
3643 
3644 /**
3645  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3646  *  @hw: pointer to the HW structure
3647  *  @offset: The offset (in bytes) of the byte or word to read.
3648  *  @size: Size of data to read, 1=byte 2=word
3649  *  @data: Pointer to the word to store the value read.
3650  *
3651  *  Reads a byte or word from the NVM using the flash access registers.
3652  **/
e1000_read_flash_data_ich8lan(struct e1000_hw * hw,u32 offset,u8 size,u16 * data)3653 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3654 					 u8 size, u16 *data)
3655 {
3656 	union ich8_hws_flash_status hsfsts;
3657 	union ich8_hws_flash_ctrl hsflctl;
3658 	u32 flash_linear_addr;
3659 	u32 flash_data = 0;
3660 	s32 ret_val = -E1000_ERR_NVM;
3661 	u8 count = 0;
3662 
3663 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3664 		return -E1000_ERR_NVM;
3665 
3666 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3667 			     hw->nvm.flash_base_addr);
3668 
3669 	do {
3670 		udelay(1);
3671 		/* Steps */
3672 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3673 		if (ret_val)
3674 			break;
3675 
3676 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3677 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3678 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3679 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3680 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3681 
3682 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3683 
3684 		ret_val =
3685 		    e1000_flash_cycle_ich8lan(hw,
3686 					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3687 
3688 		/* Check if FCERR is set to 1, if set to 1, clear it
3689 		 * and try the whole sequence a few more times, else
3690 		 * read in (shift in) the Flash Data0, the order is
3691 		 * least significant byte first msb to lsb
3692 		 */
3693 		if (!ret_val) {
3694 			flash_data = er32flash(ICH_FLASH_FDATA0);
3695 			if (size == 1)
3696 				*data = (u8)(flash_data & 0x000000FF);
3697 			else if (size == 2)
3698 				*data = (u16)(flash_data & 0x0000FFFF);
3699 			break;
3700 		} else {
3701 			/* If we've gotten here, then things are probably
3702 			 * completely hosed, but if the error condition is
3703 			 * detected, it won't hurt to give it another try...
3704 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3705 			 */
3706 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3707 			if (hsfsts.hsf_status.flcerr) {
3708 				/* Repeat for some time before giving up. */
3709 				continue;
3710 			} else if (!hsfsts.hsf_status.flcdone) {
3711 				e_dbg("Timeout error - flash cycle did not complete.\n");
3712 				break;
3713 			}
3714 		}
3715 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3716 
3717 	return ret_val;
3718 }
3719 
3720 /**
3721  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3722  *  @hw: pointer to the HW structure
3723  *  @offset: The offset (in bytes) of the dword to read.
3724  *  @data: Pointer to the dword to store the value read.
3725  *
3726  *  Reads a byte or word from the NVM using the flash access registers.
3727  **/
3728 
e1000_read_flash_data32_ich8lan(struct e1000_hw * hw,u32 offset,u32 * data)3729 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3730 					   u32 *data)
3731 {
3732 	union ich8_hws_flash_status hsfsts;
3733 	union ich8_hws_flash_ctrl hsflctl;
3734 	u32 flash_linear_addr;
3735 	s32 ret_val = -E1000_ERR_NVM;
3736 	u8 count = 0;
3737 
3738 	if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3739 		return -E1000_ERR_NVM;
3740 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3741 			     hw->nvm.flash_base_addr);
3742 
3743 	do {
3744 		udelay(1);
3745 		/* Steps */
3746 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3747 		if (ret_val)
3748 			break;
3749 		/* In SPT, This register is in Lan memory space, not flash.
3750 		 * Therefore, only 32 bit access is supported
3751 		 */
3752 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3753 
3754 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3755 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3756 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3757 		/* In SPT, This register is in Lan memory space, not flash.
3758 		 * Therefore, only 32 bit access is supported
3759 		 */
3760 		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3761 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3762 
3763 		ret_val =
3764 		   e1000_flash_cycle_ich8lan(hw,
3765 					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3766 
3767 		/* Check if FCERR is set to 1, if set to 1, clear it
3768 		 * and try the whole sequence a few more times, else
3769 		 * read in (shift in) the Flash Data0, the order is
3770 		 * least significant byte first msb to lsb
3771 		 */
3772 		if (!ret_val) {
3773 			*data = er32flash(ICH_FLASH_FDATA0);
3774 			break;
3775 		} else {
3776 			/* If we've gotten here, then things are probably
3777 			 * completely hosed, but if the error condition is
3778 			 * detected, it won't hurt to give it another try...
3779 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3780 			 */
3781 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3782 			if (hsfsts.hsf_status.flcerr) {
3783 				/* Repeat for some time before giving up. */
3784 				continue;
3785 			} else if (!hsfsts.hsf_status.flcdone) {
3786 				e_dbg("Timeout error - flash cycle did not complete.\n");
3787 				break;
3788 			}
3789 		}
3790 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3791 
3792 	return ret_val;
3793 }
3794 
3795 /**
3796  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3797  *  @hw: pointer to the HW structure
3798  *  @offset: The offset (in bytes) of the word(s) to write.
3799  *  @words: Size of data to write in words
3800  *  @data: Pointer to the word(s) to write at offset.
3801  *
3802  *  Writes a byte or word to the NVM using the flash access registers.
3803  **/
e1000_write_nvm_ich8lan(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)3804 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3805 				   u16 *data)
3806 {
3807 	struct e1000_nvm_info *nvm = &hw->nvm;
3808 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3809 	u16 i;
3810 
3811 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3812 	    (words == 0)) {
3813 		e_dbg("nvm parameter(s) out of bounds\n");
3814 		return -E1000_ERR_NVM;
3815 	}
3816 
3817 	nvm->ops.acquire(hw);
3818 
3819 	for (i = 0; i < words; i++) {
3820 		dev_spec->shadow_ram[offset + i].modified = true;
3821 		dev_spec->shadow_ram[offset + i].value = data[i];
3822 	}
3823 
3824 	nvm->ops.release(hw);
3825 
3826 	return 0;
3827 }
3828 
3829 /**
3830  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3831  *  @hw: pointer to the HW structure
3832  *
3833  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3834  *  which writes the checksum to the shadow ram.  The changes in the shadow
3835  *  ram are then committed to the EEPROM by processing each bank at a time
3836  *  checking for the modified bit and writing only the pending changes.
3837  *  After a successful commit, the shadow ram is cleared and is ready for
3838  *  future writes.
3839  **/
e1000_update_nvm_checksum_spt(struct e1000_hw * hw)3840 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3841 {
3842 	struct e1000_nvm_info *nvm = &hw->nvm;
3843 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3844 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3845 	s32 ret_val;
3846 	u32 dword = 0;
3847 
3848 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3849 	if (ret_val)
3850 		goto out;
3851 
3852 	if (nvm->type != e1000_nvm_flash_sw)
3853 		goto out;
3854 
3855 	nvm->ops.acquire(hw);
3856 
3857 	/* We're writing to the opposite bank so if we're on bank 1,
3858 	 * write to bank 0 etc.  We also need to erase the segment that
3859 	 * is going to be written
3860 	 */
3861 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3862 	if (ret_val) {
3863 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3864 		bank = 0;
3865 	}
3866 
3867 	if (bank == 0) {
3868 		new_bank_offset = nvm->flash_bank_size;
3869 		old_bank_offset = 0;
3870 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3871 		if (ret_val)
3872 			goto release;
3873 	} else {
3874 		old_bank_offset = nvm->flash_bank_size;
3875 		new_bank_offset = 0;
3876 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3877 		if (ret_val)
3878 			goto release;
3879 	}
3880 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3881 		/* Determine whether to write the value stored
3882 		 * in the other NVM bank or a modified value stored
3883 		 * in the shadow RAM
3884 		 */
3885 		ret_val = e1000_read_flash_dword_ich8lan(hw,
3886 							 i + old_bank_offset,
3887 							 &dword);
3888 
3889 		if (dev_spec->shadow_ram[i].modified) {
3890 			dword &= 0xffff0000;
3891 			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3892 		}
3893 		if (dev_spec->shadow_ram[i + 1].modified) {
3894 			dword &= 0x0000ffff;
3895 			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3896 				  << 16);
3897 		}
3898 		if (ret_val)
3899 			break;
3900 
3901 		/* If the word is 0x13, then make sure the signature bits
3902 		 * (15:14) are 11b until the commit has completed.
3903 		 * This will allow us to write 10b which indicates the
3904 		 * signature is valid.  We want to do this after the write
3905 		 * has completed so that we don't mark the segment valid
3906 		 * while the write is still in progress
3907 		 */
3908 		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3909 			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3910 
3911 		/* Convert offset to bytes. */
3912 		act_offset = (i + new_bank_offset) << 1;
3913 
3914 		usleep_range(100, 200);
3915 
3916 		/* Write the data to the new bank. Offset in words */
3917 		act_offset = i + new_bank_offset;
3918 		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3919 								dword);
3920 		if (ret_val)
3921 			break;
3922 	}
3923 
3924 	/* Don't bother writing the segment valid bits if sector
3925 	 * programming failed.
3926 	 */
3927 	if (ret_val) {
3928 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3929 		e_dbg("Flash commit failed.\n");
3930 		goto release;
3931 	}
3932 
3933 	/* Finally validate the new segment by setting bit 15:14
3934 	 * to 10b in word 0x13 , this can be done without an
3935 	 * erase as well since these bits are 11 to start with
3936 	 * and we need to change bit 14 to 0b
3937 	 */
3938 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3939 
3940 	/*offset in words but we read dword */
3941 	--act_offset;
3942 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3943 
3944 	if (ret_val)
3945 		goto release;
3946 
3947 	dword &= 0xBFFFFFFF;
3948 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3949 
3950 	if (ret_val)
3951 		goto release;
3952 
3953 	/* offset in words but we read dword */
3954 	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3955 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3956 
3957 	if (ret_val)
3958 		goto release;
3959 
3960 	dword &= 0x00FFFFFF;
3961 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3962 
3963 	if (ret_val)
3964 		goto release;
3965 
3966 	/* Great!  Everything worked, we can now clear the cached entries. */
3967 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3968 		dev_spec->shadow_ram[i].modified = false;
3969 		dev_spec->shadow_ram[i].value = 0xFFFF;
3970 	}
3971 
3972 release:
3973 	nvm->ops.release(hw);
3974 
3975 	/* Reload the EEPROM, or else modifications will not appear
3976 	 * until after the next adapter reset.
3977 	 */
3978 	if (!ret_val) {
3979 		nvm->ops.reload(hw);
3980 		usleep_range(10000, 11000);
3981 	}
3982 
3983 out:
3984 	if (ret_val)
3985 		e_dbg("NVM update error: %d\n", ret_val);
3986 
3987 	return ret_val;
3988 }
3989 
3990 /**
3991  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3992  *  @hw: pointer to the HW structure
3993  *
3994  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3995  *  which writes the checksum to the shadow ram.  The changes in the shadow
3996  *  ram are then committed to the EEPROM by processing each bank at a time
3997  *  checking for the modified bit and writing only the pending changes.
3998  *  After a successful commit, the shadow ram is cleared and is ready for
3999  *  future writes.
4000  **/
e1000_update_nvm_checksum_ich8lan(struct e1000_hw * hw)4001 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
4002 {
4003 	struct e1000_nvm_info *nvm = &hw->nvm;
4004 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4005 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
4006 	s32 ret_val;
4007 	u16 data = 0;
4008 
4009 	ret_val = e1000e_update_nvm_checksum_generic(hw);
4010 	if (ret_val)
4011 		goto out;
4012 
4013 	if (nvm->type != e1000_nvm_flash_sw)
4014 		goto out;
4015 
4016 	nvm->ops.acquire(hw);
4017 
4018 	/* We're writing to the opposite bank so if we're on bank 1,
4019 	 * write to bank 0 etc.  We also need to erase the segment that
4020 	 * is going to be written
4021 	 */
4022 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
4023 	if (ret_val) {
4024 		e_dbg("Could not detect valid bank, assuming bank 0\n");
4025 		bank = 0;
4026 	}
4027 
4028 	if (bank == 0) {
4029 		new_bank_offset = nvm->flash_bank_size;
4030 		old_bank_offset = 0;
4031 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4032 		if (ret_val)
4033 			goto release;
4034 	} else {
4035 		old_bank_offset = nvm->flash_bank_size;
4036 		new_bank_offset = 0;
4037 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4038 		if (ret_val)
4039 			goto release;
4040 	}
4041 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4042 		if (dev_spec->shadow_ram[i].modified) {
4043 			data = dev_spec->shadow_ram[i].value;
4044 		} else {
4045 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
4046 								old_bank_offset,
4047 								&data);
4048 			if (ret_val)
4049 				break;
4050 		}
4051 
4052 		/* If the word is 0x13, then make sure the signature bits
4053 		 * (15:14) are 11b until the commit has completed.
4054 		 * This will allow us to write 10b which indicates the
4055 		 * signature is valid.  We want to do this after the write
4056 		 * has completed so that we don't mark the segment valid
4057 		 * while the write is still in progress
4058 		 */
4059 		if (i == E1000_ICH_NVM_SIG_WORD)
4060 			data |= E1000_ICH_NVM_SIG_MASK;
4061 
4062 		/* Convert offset to bytes. */
4063 		act_offset = (i + new_bank_offset) << 1;
4064 
4065 		usleep_range(100, 200);
4066 		/* Write the bytes to the new bank. */
4067 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4068 							       act_offset,
4069 							       (u8)data);
4070 		if (ret_val)
4071 			break;
4072 
4073 		usleep_range(100, 200);
4074 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4075 							       act_offset + 1,
4076 							       (u8)(data >> 8));
4077 		if (ret_val)
4078 			break;
4079 	}
4080 
4081 	/* Don't bother writing the segment valid bits if sector
4082 	 * programming failed.
4083 	 */
4084 	if (ret_val) {
4085 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4086 		e_dbg("Flash commit failed.\n");
4087 		goto release;
4088 	}
4089 
4090 	/* Finally validate the new segment by setting bit 15:14
4091 	 * to 10b in word 0x13 , this can be done without an
4092 	 * erase as well since these bits are 11 to start with
4093 	 * and we need to change bit 14 to 0b
4094 	 */
4095 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4096 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4097 	if (ret_val)
4098 		goto release;
4099 
4100 	data &= 0xBFFF;
4101 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4102 						       act_offset * 2 + 1,
4103 						       (u8)(data >> 8));
4104 	if (ret_val)
4105 		goto release;
4106 
4107 	/* And invalidate the previously valid segment by setting
4108 	 * its signature word (0x13) high_byte to 0b. This can be
4109 	 * done without an erase because flash erase sets all bits
4110 	 * to 1's. We can write 1's to 0's without an erase
4111 	 */
4112 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4113 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4114 	if (ret_val)
4115 		goto release;
4116 
4117 	/* Great!  Everything worked, we can now clear the cached entries. */
4118 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4119 		dev_spec->shadow_ram[i].modified = false;
4120 		dev_spec->shadow_ram[i].value = 0xFFFF;
4121 	}
4122 
4123 release:
4124 	nvm->ops.release(hw);
4125 
4126 	/* Reload the EEPROM, or else modifications will not appear
4127 	 * until after the next adapter reset.
4128 	 */
4129 	if (!ret_val) {
4130 		nvm->ops.reload(hw);
4131 		usleep_range(10000, 11000);
4132 	}
4133 
4134 out:
4135 	if (ret_val)
4136 		e_dbg("NVM update error: %d\n", ret_val);
4137 
4138 	return ret_val;
4139 }
4140 
4141 /**
4142  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4143  *  @hw: pointer to the HW structure
4144  *
4145  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4146  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4147  *  calculated, in which case we need to calculate the checksum and set bit 6.
4148  **/
e1000_validate_nvm_checksum_ich8lan(struct e1000_hw * hw)4149 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4150 {
4151 	s32 ret_val;
4152 	u16 data;
4153 	u16 word;
4154 	u16 valid_csum_mask;
4155 
4156 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4157 	 * the checksum needs to be fixed.  This bit is an indication that
4158 	 * the NVM was prepared by OEM software and did not calculate
4159 	 * the checksum...a likely scenario.
4160 	 */
4161 	switch (hw->mac.type) {
4162 	case e1000_pch_lpt:
4163 	case e1000_pch_spt:
4164 	case e1000_pch_cnp:
4165 	case e1000_pch_tgp:
4166 	case e1000_pch_adp:
4167 	case e1000_pch_mtp:
4168 	case e1000_pch_lnp:
4169 	case e1000_pch_ptp:
4170 	case e1000_pch_nvp:
4171 		word = NVM_COMPAT;
4172 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4173 		break;
4174 	default:
4175 		word = NVM_FUTURE_INIT_WORD1;
4176 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4177 		break;
4178 	}
4179 
4180 	ret_val = e1000_read_nvm(hw, word, 1, &data);
4181 	if (ret_val)
4182 		return ret_val;
4183 
4184 	if (!(data & valid_csum_mask)) {
4185 		e_dbg("NVM Checksum valid bit not set\n");
4186 
4187 		if (hw->mac.type < e1000_pch_tgp) {
4188 			data |= valid_csum_mask;
4189 			ret_val = e1000_write_nvm(hw, word, 1, &data);
4190 			if (ret_val)
4191 				return ret_val;
4192 			ret_val = e1000e_update_nvm_checksum(hw);
4193 			if (ret_val)
4194 				return ret_val;
4195 		}
4196 	}
4197 
4198 	return e1000e_validate_nvm_checksum_generic(hw);
4199 }
4200 
4201 /**
4202  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4203  *  @hw: pointer to the HW structure
4204  *
4205  *  To prevent malicious write/erase of the NVM, set it to be read-only
4206  *  so that the hardware ignores all write/erase cycles of the NVM via
4207  *  the flash control registers.  The shadow-ram copy of the NVM will
4208  *  still be updated, however any updates to this copy will not stick
4209  *  across driver reloads.
4210  **/
e1000e_write_protect_nvm_ich8lan(struct e1000_hw * hw)4211 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4212 {
4213 	struct e1000_nvm_info *nvm = &hw->nvm;
4214 	union ich8_flash_protected_range pr0;
4215 	union ich8_hws_flash_status hsfsts;
4216 	u32 gfpreg;
4217 
4218 	nvm->ops.acquire(hw);
4219 
4220 	gfpreg = er32flash(ICH_FLASH_GFPREG);
4221 
4222 	/* Write-protect GbE Sector of NVM */
4223 	pr0.regval = er32flash(ICH_FLASH_PR0);
4224 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4225 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4226 	pr0.range.wpe = true;
4227 	ew32flash(ICH_FLASH_PR0, pr0.regval);
4228 
4229 	/* Lock down a subset of GbE Flash Control Registers, e.g.
4230 	 * PR0 to prevent the write-protection from being lifted.
4231 	 * Once FLOCKDN is set, the registers protected by it cannot
4232 	 * be written until FLOCKDN is cleared by a hardware reset.
4233 	 */
4234 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4235 	hsfsts.hsf_status.flockdn = true;
4236 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4237 
4238 	nvm->ops.release(hw);
4239 }
4240 
4241 /**
4242  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4243  *  @hw: pointer to the HW structure
4244  *  @offset: The offset (in bytes) of the byte/word to read.
4245  *  @size: Size of data to read, 1=byte 2=word
4246  *  @data: The byte(s) to write to the NVM.
4247  *
4248  *  Writes one/two bytes to the NVM using the flash access registers.
4249  **/
e1000_write_flash_data_ich8lan(struct e1000_hw * hw,u32 offset,u8 size,u16 data)4250 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4251 					  u8 size, u16 data)
4252 {
4253 	union ich8_hws_flash_status hsfsts;
4254 	union ich8_hws_flash_ctrl hsflctl;
4255 	u32 flash_linear_addr;
4256 	u32 flash_data = 0;
4257 	s32 ret_val;
4258 	u8 count = 0;
4259 
4260 	if (hw->mac.type >= e1000_pch_spt) {
4261 		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4262 			return -E1000_ERR_NVM;
4263 	} else {
4264 		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4265 			return -E1000_ERR_NVM;
4266 	}
4267 
4268 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4269 			     hw->nvm.flash_base_addr);
4270 
4271 	do {
4272 		udelay(1);
4273 		/* Steps */
4274 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4275 		if (ret_val)
4276 			break;
4277 		/* In SPT, This register is in Lan memory space, not
4278 		 * flash.  Therefore, only 32 bit access is supported
4279 		 */
4280 		if (hw->mac.type >= e1000_pch_spt)
4281 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4282 		else
4283 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4284 
4285 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4286 		hsflctl.hsf_ctrl.fldbcount = size - 1;
4287 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4288 		/* In SPT, This register is in Lan memory space,
4289 		 * not flash.  Therefore, only 32 bit access is
4290 		 * supported
4291 		 */
4292 		if (hw->mac.type >= e1000_pch_spt)
4293 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4294 		else
4295 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4296 
4297 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4298 
4299 		if (size == 1)
4300 			flash_data = (u32)data & 0x00FF;
4301 		else
4302 			flash_data = (u32)data;
4303 
4304 		ew32flash(ICH_FLASH_FDATA0, flash_data);
4305 
4306 		/* check if FCERR is set to 1 , if set to 1, clear it
4307 		 * and try the whole sequence a few more times else done
4308 		 */
4309 		ret_val =
4310 		    e1000_flash_cycle_ich8lan(hw,
4311 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4312 		if (!ret_val)
4313 			break;
4314 
4315 		/* If we're here, then things are most likely
4316 		 * completely hosed, but if the error condition
4317 		 * is detected, it won't hurt to give it another
4318 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4319 		 */
4320 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4321 		if (hsfsts.hsf_status.flcerr)
4322 			/* Repeat for some time before giving up. */
4323 			continue;
4324 		if (!hsfsts.hsf_status.flcdone) {
4325 			e_dbg("Timeout error - flash cycle did not complete.\n");
4326 			break;
4327 		}
4328 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4329 
4330 	return ret_val;
4331 }
4332 
4333 /**
4334 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4335 *  @hw: pointer to the HW structure
4336 *  @offset: The offset (in bytes) of the dwords to read.
4337 *  @data: The 4 bytes to write to the NVM.
4338 *
4339 *  Writes one/two/four bytes to the NVM using the flash access registers.
4340 **/
e1000_write_flash_data32_ich8lan(struct e1000_hw * hw,u32 offset,u32 data)4341 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4342 					    u32 data)
4343 {
4344 	union ich8_hws_flash_status hsfsts;
4345 	union ich8_hws_flash_ctrl hsflctl;
4346 	u32 flash_linear_addr;
4347 	s32 ret_val;
4348 	u8 count = 0;
4349 
4350 	if (hw->mac.type >= e1000_pch_spt) {
4351 		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4352 			return -E1000_ERR_NVM;
4353 	}
4354 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4355 			     hw->nvm.flash_base_addr);
4356 	do {
4357 		udelay(1);
4358 		/* Steps */
4359 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4360 		if (ret_val)
4361 			break;
4362 
4363 		/* In SPT, This register is in Lan memory space, not
4364 		 * flash.  Therefore, only 32 bit access is supported
4365 		 */
4366 		if (hw->mac.type >= e1000_pch_spt)
4367 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4368 			    >> 16;
4369 		else
4370 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4371 
4372 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4373 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4374 
4375 		/* In SPT, This register is in Lan memory space,
4376 		 * not flash.  Therefore, only 32 bit access is
4377 		 * supported
4378 		 */
4379 		if (hw->mac.type >= e1000_pch_spt)
4380 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4381 		else
4382 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4383 
4384 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4385 
4386 		ew32flash(ICH_FLASH_FDATA0, data);
4387 
4388 		/* check if FCERR is set to 1 , if set to 1, clear it
4389 		 * and try the whole sequence a few more times else done
4390 		 */
4391 		ret_val =
4392 		   e1000_flash_cycle_ich8lan(hw,
4393 					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4394 
4395 		if (!ret_val)
4396 			break;
4397 
4398 		/* If we're here, then things are most likely
4399 		 * completely hosed, but if the error condition
4400 		 * is detected, it won't hurt to give it another
4401 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4402 		 */
4403 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4404 
4405 		if (hsfsts.hsf_status.flcerr)
4406 			/* Repeat for some time before giving up. */
4407 			continue;
4408 		if (!hsfsts.hsf_status.flcdone) {
4409 			e_dbg("Timeout error - flash cycle did not complete.\n");
4410 			break;
4411 		}
4412 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4413 
4414 	return ret_val;
4415 }
4416 
4417 /**
4418  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4419  *  @hw: pointer to the HW structure
4420  *  @offset: The index of the byte to read.
4421  *  @data: The byte to write to the NVM.
4422  *
4423  *  Writes a single byte to the NVM using the flash access registers.
4424  **/
e1000_write_flash_byte_ich8lan(struct e1000_hw * hw,u32 offset,u8 data)4425 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4426 					  u8 data)
4427 {
4428 	u16 word = (u16)data;
4429 
4430 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4431 }
4432 
4433 /**
4434 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4435 *  @hw: pointer to the HW structure
4436 *  @offset: The offset of the word to write.
4437 *  @dword: The dword to write to the NVM.
4438 *
4439 *  Writes a single dword to the NVM using the flash access registers.
4440 *  Goes through a retry algorithm before giving up.
4441 **/
e1000_retry_write_flash_dword_ich8lan(struct e1000_hw * hw,u32 offset,u32 dword)4442 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4443 						 u32 offset, u32 dword)
4444 {
4445 	s32 ret_val;
4446 	u16 program_retries;
4447 
4448 	/* Must convert word offset into bytes. */
4449 	offset <<= 1;
4450 	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4451 
4452 	if (!ret_val)
4453 		return ret_val;
4454 	for (program_retries = 0; program_retries < 100; program_retries++) {
4455 		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4456 		usleep_range(100, 200);
4457 		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4458 		if (!ret_val)
4459 			break;
4460 	}
4461 	if (program_retries == 100)
4462 		return -E1000_ERR_NVM;
4463 
4464 	return 0;
4465 }
4466 
4467 /**
4468  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4469  *  @hw: pointer to the HW structure
4470  *  @offset: The offset of the byte to write.
4471  *  @byte: The byte to write to the NVM.
4472  *
4473  *  Writes a single byte to the NVM using the flash access registers.
4474  *  Goes through a retry algorithm before giving up.
4475  **/
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw * hw,u32 offset,u8 byte)4476 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4477 						u32 offset, u8 byte)
4478 {
4479 	s32 ret_val;
4480 	u16 program_retries;
4481 
4482 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4483 	if (!ret_val)
4484 		return ret_val;
4485 
4486 	for (program_retries = 0; program_retries < 100; program_retries++) {
4487 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4488 		usleep_range(100, 200);
4489 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4490 		if (!ret_val)
4491 			break;
4492 	}
4493 	if (program_retries == 100)
4494 		return -E1000_ERR_NVM;
4495 
4496 	return 0;
4497 }
4498 
4499 /**
4500  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4501  *  @hw: pointer to the HW structure
4502  *  @bank: 0 for first bank, 1 for second bank, etc.
4503  *
4504  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4505  *  bank N is 4096 * N + flash_reg_addr.
4506  **/
e1000_erase_flash_bank_ich8lan(struct e1000_hw * hw,u32 bank)4507 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4508 {
4509 	struct e1000_nvm_info *nvm = &hw->nvm;
4510 	union ich8_hws_flash_status hsfsts;
4511 	union ich8_hws_flash_ctrl hsflctl;
4512 	u32 flash_linear_addr;
4513 	/* bank size is in 16bit words - adjust to bytes */
4514 	u32 flash_bank_size = nvm->flash_bank_size * 2;
4515 	s32 ret_val;
4516 	s32 count = 0;
4517 	s32 j, iteration, sector_size;
4518 
4519 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4520 
4521 	/* Determine HW Sector size: Read BERASE bits of hw flash status
4522 	 * register
4523 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4524 	 *     consecutive sectors.  The start index for the nth Hw sector
4525 	 *     can be calculated as = bank * 4096 + n * 256
4526 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4527 	 *     The start index for the nth Hw sector can be calculated
4528 	 *     as = bank * 4096
4529 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4530 	 *     (ich9 only, otherwise error condition)
4531 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4532 	 */
4533 	switch (hsfsts.hsf_status.berasesz) {
4534 	case 0:
4535 		/* Hw sector size 256 */
4536 		sector_size = ICH_FLASH_SEG_SIZE_256;
4537 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4538 		break;
4539 	case 1:
4540 		sector_size = ICH_FLASH_SEG_SIZE_4K;
4541 		iteration = 1;
4542 		break;
4543 	case 2:
4544 		sector_size = ICH_FLASH_SEG_SIZE_8K;
4545 		iteration = 1;
4546 		break;
4547 	case 3:
4548 		sector_size = ICH_FLASH_SEG_SIZE_64K;
4549 		iteration = 1;
4550 		break;
4551 	default:
4552 		return -E1000_ERR_NVM;
4553 	}
4554 
4555 	/* Start with the base address, then add the sector offset. */
4556 	flash_linear_addr = hw->nvm.flash_base_addr;
4557 	flash_linear_addr += (bank) ? flash_bank_size : 0;
4558 
4559 	for (j = 0; j < iteration; j++) {
4560 		do {
4561 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4562 
4563 			/* Steps */
4564 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4565 			if (ret_val)
4566 				return ret_val;
4567 
4568 			/* Write a value 11 (block Erase) in Flash
4569 			 * Cycle field in hw flash control
4570 			 */
4571 			if (hw->mac.type >= e1000_pch_spt)
4572 				hsflctl.regval =
4573 				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4574 			else
4575 				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4576 
4577 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4578 			if (hw->mac.type >= e1000_pch_spt)
4579 				ew32flash(ICH_FLASH_HSFSTS,
4580 					  hsflctl.regval << 16);
4581 			else
4582 				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4583 
4584 			/* Write the last 24 bits of an index within the
4585 			 * block into Flash Linear address field in Flash
4586 			 * Address.
4587 			 */
4588 			flash_linear_addr += (j * sector_size);
4589 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4590 
4591 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4592 			if (!ret_val)
4593 				break;
4594 
4595 			/* Check if FCERR is set to 1.  If 1,
4596 			 * clear it and try the whole sequence
4597 			 * a few more times else Done
4598 			 */
4599 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4600 			if (hsfsts.hsf_status.flcerr)
4601 				/* repeat for some time before giving up */
4602 				continue;
4603 			else if (!hsfsts.hsf_status.flcdone)
4604 				return ret_val;
4605 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4606 	}
4607 
4608 	return 0;
4609 }
4610 
4611 /**
4612  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4613  *  @hw: pointer to the HW structure
4614  *  @data: Pointer to the LED settings
4615  *
4616  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4617  *  settings is all 0's or F's, set the LED default to a valid LED default
4618  *  setting.
4619  **/
e1000_valid_led_default_ich8lan(struct e1000_hw * hw,u16 * data)4620 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4621 {
4622 	s32 ret_val;
4623 
4624 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4625 	if (ret_val) {
4626 		e_dbg("NVM Read Error\n");
4627 		return ret_val;
4628 	}
4629 
4630 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4631 		*data = ID_LED_DEFAULT_ICH8LAN;
4632 
4633 	return 0;
4634 }
4635 
4636 /**
4637  *  e1000_id_led_init_pchlan - store LED configurations
4638  *  @hw: pointer to the HW structure
4639  *
4640  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4641  *  the PHY LED configuration register.
4642  *
4643  *  PCH also does not have an "always on" or "always off" mode which
4644  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4645  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4646  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4647  *  link based on logic in e1000_led_[on|off]_pchlan().
4648  **/
e1000_id_led_init_pchlan(struct e1000_hw * hw)4649 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4650 {
4651 	struct e1000_mac_info *mac = &hw->mac;
4652 	s32 ret_val;
4653 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4654 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4655 	u16 data, i, temp, shift;
4656 
4657 	/* Get default ID LED modes */
4658 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4659 	if (ret_val)
4660 		return ret_val;
4661 
4662 	mac->ledctl_default = er32(LEDCTL);
4663 	mac->ledctl_mode1 = mac->ledctl_default;
4664 	mac->ledctl_mode2 = mac->ledctl_default;
4665 
4666 	for (i = 0; i < 4; i++) {
4667 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4668 		shift = (i * 5);
4669 		switch (temp) {
4670 		case ID_LED_ON1_DEF2:
4671 		case ID_LED_ON1_ON2:
4672 		case ID_LED_ON1_OFF2:
4673 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4674 			mac->ledctl_mode1 |= (ledctl_on << shift);
4675 			break;
4676 		case ID_LED_OFF1_DEF2:
4677 		case ID_LED_OFF1_ON2:
4678 		case ID_LED_OFF1_OFF2:
4679 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4680 			mac->ledctl_mode1 |= (ledctl_off << shift);
4681 			break;
4682 		default:
4683 			/* Do nothing */
4684 			break;
4685 		}
4686 		switch (temp) {
4687 		case ID_LED_DEF1_ON2:
4688 		case ID_LED_ON1_ON2:
4689 		case ID_LED_OFF1_ON2:
4690 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4691 			mac->ledctl_mode2 |= (ledctl_on << shift);
4692 			break;
4693 		case ID_LED_DEF1_OFF2:
4694 		case ID_LED_ON1_OFF2:
4695 		case ID_LED_OFF1_OFF2:
4696 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4697 			mac->ledctl_mode2 |= (ledctl_off << shift);
4698 			break;
4699 		default:
4700 			/* Do nothing */
4701 			break;
4702 		}
4703 	}
4704 
4705 	return 0;
4706 }
4707 
4708 /**
4709  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4710  *  @hw: pointer to the HW structure
4711  *
4712  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4713  *  register, so the bus width is hard coded.
4714  **/
e1000_get_bus_info_ich8lan(struct e1000_hw * hw)4715 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4716 {
4717 	struct e1000_bus_info *bus = &hw->bus;
4718 	s32 ret_val;
4719 
4720 	ret_val = e1000e_get_bus_info_pcie(hw);
4721 
4722 	/* ICH devices are "PCI Express"-ish.  They have
4723 	 * a configuration space, but do not contain
4724 	 * PCI Express Capability registers, so bus width
4725 	 * must be hardcoded.
4726 	 */
4727 	if (bus->width == e1000_bus_width_unknown)
4728 		bus->width = e1000_bus_width_pcie_x1;
4729 
4730 	return ret_val;
4731 }
4732 
4733 /**
4734  *  e1000_reset_hw_ich8lan - Reset the hardware
4735  *  @hw: pointer to the HW structure
4736  *
4737  *  Does a full reset of the hardware which includes a reset of the PHY and
4738  *  MAC.
4739  **/
e1000_reset_hw_ich8lan(struct e1000_hw * hw)4740 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4741 {
4742 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4743 	u16 kum_cfg;
4744 	u32 ctrl, reg;
4745 	s32 ret_val;
4746 
4747 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4748 	 * on the last TLP read/write transaction when MAC is reset.
4749 	 */
4750 	ret_val = e1000e_disable_pcie_master(hw);
4751 	if (ret_val)
4752 		e_dbg("PCI-E Master disable polling has failed.\n");
4753 
4754 	e_dbg("Masking off all interrupts\n");
4755 	ew32(IMC, 0xffffffff);
4756 
4757 	/* Disable the Transmit and Receive units.  Then delay to allow
4758 	 * any pending transactions to complete before we hit the MAC
4759 	 * with the global reset.
4760 	 */
4761 	ew32(RCTL, 0);
4762 	ew32(TCTL, E1000_TCTL_PSP);
4763 	e1e_flush();
4764 
4765 	usleep_range(10000, 11000);
4766 
4767 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4768 	if (hw->mac.type == e1000_ich8lan) {
4769 		/* Set Tx and Rx buffer allocation to 8k apiece. */
4770 		ew32(PBA, E1000_PBA_8K);
4771 		/* Set Packet Buffer Size to 16k. */
4772 		ew32(PBS, E1000_PBS_16K);
4773 	}
4774 
4775 	if (hw->mac.type == e1000_pchlan) {
4776 		/* Save the NVM K1 bit setting */
4777 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4778 		if (ret_val)
4779 			return ret_val;
4780 
4781 		if (kum_cfg & E1000_NVM_K1_ENABLE)
4782 			dev_spec->nvm_k1_enabled = true;
4783 		else
4784 			dev_spec->nvm_k1_enabled = false;
4785 	}
4786 
4787 	ctrl = er32(CTRL);
4788 
4789 	if (!hw->phy.ops.check_reset_block(hw)) {
4790 		/* Full-chip reset requires MAC and PHY reset at the same
4791 		 * time to make sure the interface between MAC and the
4792 		 * external PHY is reset.
4793 		 */
4794 		ctrl |= E1000_CTRL_PHY_RST;
4795 
4796 		/* Gate automatic PHY configuration by hardware on
4797 		 * non-managed 82579
4798 		 */
4799 		if ((hw->mac.type == e1000_pch2lan) &&
4800 		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4801 			e1000_gate_hw_phy_config_ich8lan(hw, true);
4802 	}
4803 	ret_val = e1000_acquire_swflag_ich8lan(hw);
4804 	e_dbg("Issuing a global reset to ich8lan\n");
4805 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4806 	/* cannot issue a flush here because it hangs the hardware */
4807 	msleep(20);
4808 
4809 	/* Set Phy Config Counter to 50msec */
4810 	if (hw->mac.type == e1000_pch2lan) {
4811 		reg = er32(FEXTNVM3);
4812 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4813 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4814 		ew32(FEXTNVM3, reg);
4815 	}
4816 
4817 	if (!ret_val)
4818 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4819 
4820 	if (ctrl & E1000_CTRL_PHY_RST) {
4821 		ret_val = hw->phy.ops.get_cfg_done(hw);
4822 		if (ret_val)
4823 			return ret_val;
4824 
4825 		ret_val = e1000_post_phy_reset_ich8lan(hw);
4826 		if (ret_val)
4827 			return ret_val;
4828 	}
4829 
4830 	/* For PCH, this write will make sure that any noise
4831 	 * will be detected as a CRC error and be dropped rather than show up
4832 	 * as a bad packet to the DMA engine.
4833 	 */
4834 	if (hw->mac.type == e1000_pchlan)
4835 		ew32(CRC_OFFSET, 0x65656565);
4836 
4837 	ew32(IMC, 0xffffffff);
4838 	er32(ICR);
4839 
4840 	reg = er32(KABGTXD);
4841 	reg |= E1000_KABGTXD_BGSQLBIAS;
4842 	ew32(KABGTXD, reg);
4843 
4844 	return 0;
4845 }
4846 
4847 /**
4848  *  e1000_init_hw_ich8lan - Initialize the hardware
4849  *  @hw: pointer to the HW structure
4850  *
4851  *  Prepares the hardware for transmit and receive by doing the following:
4852  *   - initialize hardware bits
4853  *   - initialize LED identification
4854  *   - setup receive address registers
4855  *   - setup flow control
4856  *   - setup transmit descriptors
4857  *   - clear statistics
4858  **/
e1000_init_hw_ich8lan(struct e1000_hw * hw)4859 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4860 {
4861 	struct e1000_mac_info *mac = &hw->mac;
4862 	u32 ctrl_ext, txdctl, snoop, fflt_dbg;
4863 	s32 ret_val;
4864 	u16 i;
4865 
4866 	e1000_initialize_hw_bits_ich8lan(hw);
4867 
4868 	/* Initialize identification LED */
4869 	ret_val = mac->ops.id_led_init(hw);
4870 	/* An error is not fatal and we should not stop init due to this */
4871 	if (ret_val)
4872 		e_dbg("Error initializing identification LED\n");
4873 
4874 	/* Setup the receive address. */
4875 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4876 
4877 	/* Zero out the Multicast HASH table */
4878 	e_dbg("Zeroing the MTA\n");
4879 	for (i = 0; i < mac->mta_reg_count; i++)
4880 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4881 
4882 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4883 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4884 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4885 	 */
4886 	if (hw->phy.type == e1000_phy_82578) {
4887 		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4888 		i &= ~BM_WUC_HOST_WU_BIT;
4889 		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4890 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4891 		if (ret_val)
4892 			return ret_val;
4893 	}
4894 
4895 	/* Setup link and flow control */
4896 	ret_val = mac->ops.setup_link(hw);
4897 
4898 	/* Set the transmit descriptor write-back policy for both queues */
4899 	txdctl = er32(TXDCTL(0));
4900 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4901 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4902 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4903 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4904 	ew32(TXDCTL(0), txdctl);
4905 	txdctl = er32(TXDCTL(1));
4906 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4907 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4908 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4909 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4910 	ew32(TXDCTL(1), txdctl);
4911 
4912 	/* ICH8 has opposite polarity of no_snoop bits.
4913 	 * By default, we should use snoop behavior.
4914 	 */
4915 	if (mac->type == e1000_ich8lan)
4916 		snoop = PCIE_ICH8_SNOOP_ALL;
4917 	else
4918 		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4919 	e1000e_set_pcie_no_snoop(hw, snoop);
4920 
4921 	/* Enable workaround for packet loss issue on TGP PCH
4922 	 * Do not gate DMA clock from the modPHY block
4923 	 */
4924 	if (mac->type >= e1000_pch_tgp) {
4925 		fflt_dbg = er32(FFLT_DBG);
4926 		fflt_dbg |= E1000_FFLT_DBG_DONT_GATE_WAKE_DMA_CLK;
4927 		ew32(FFLT_DBG, fflt_dbg);
4928 	}
4929 
4930 	ctrl_ext = er32(CTRL_EXT);
4931 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4932 	ew32(CTRL_EXT, ctrl_ext);
4933 
4934 	/* Clear all of the statistics registers (clear on read).  It is
4935 	 * important that we do this after we have tried to establish link
4936 	 * because the symbol error count will increment wildly if there
4937 	 * is no link.
4938 	 */
4939 	e1000_clear_hw_cntrs_ich8lan(hw);
4940 
4941 	return ret_val;
4942 }
4943 
4944 /**
4945  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4946  *  @hw: pointer to the HW structure
4947  *
4948  *  Sets/Clears required hardware bits necessary for correctly setting up the
4949  *  hardware for transmit and receive.
4950  **/
e1000_initialize_hw_bits_ich8lan(struct e1000_hw * hw)4951 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4952 {
4953 	u32 reg;
4954 
4955 	/* Extended Device Control */
4956 	reg = er32(CTRL_EXT);
4957 	reg |= BIT(22);
4958 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4959 	if (hw->mac.type >= e1000_pchlan)
4960 		reg |= E1000_CTRL_EXT_PHYPDEN;
4961 	ew32(CTRL_EXT, reg);
4962 
4963 	/* Transmit Descriptor Control 0 */
4964 	reg = er32(TXDCTL(0));
4965 	reg |= BIT(22);
4966 	ew32(TXDCTL(0), reg);
4967 
4968 	/* Transmit Descriptor Control 1 */
4969 	reg = er32(TXDCTL(1));
4970 	reg |= BIT(22);
4971 	ew32(TXDCTL(1), reg);
4972 
4973 	/* Transmit Arbitration Control 0 */
4974 	reg = er32(TARC(0));
4975 	if (hw->mac.type == e1000_ich8lan)
4976 		reg |= BIT(28) | BIT(29);
4977 	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4978 	ew32(TARC(0), reg);
4979 
4980 	/* Transmit Arbitration Control 1 */
4981 	reg = er32(TARC(1));
4982 	if (er32(TCTL) & E1000_TCTL_MULR)
4983 		reg &= ~BIT(28);
4984 	else
4985 		reg |= BIT(28);
4986 	reg |= BIT(24) | BIT(26) | BIT(30);
4987 	ew32(TARC(1), reg);
4988 
4989 	/* Device Status */
4990 	if (hw->mac.type == e1000_ich8lan) {
4991 		reg = er32(STATUS);
4992 		reg &= ~BIT(31);
4993 		ew32(STATUS, reg);
4994 	}
4995 
4996 	/* work-around descriptor data corruption issue during nfs v2 udp
4997 	 * traffic, just disable the nfs filtering capability
4998 	 */
4999 	reg = er32(RFCTL);
5000 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
5001 
5002 	/* Disable IPv6 extension header parsing because some malformed
5003 	 * IPv6 headers can hang the Rx.
5004 	 */
5005 	if (hw->mac.type == e1000_ich8lan)
5006 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
5007 	ew32(RFCTL, reg);
5008 
5009 	/* Enable ECC on Lynxpoint */
5010 	if (hw->mac.type >= e1000_pch_lpt) {
5011 		reg = er32(PBECCSTS);
5012 		reg |= E1000_PBECCSTS_ECC_ENABLE;
5013 		ew32(PBECCSTS, reg);
5014 
5015 		reg = er32(CTRL);
5016 		reg |= E1000_CTRL_MEHE;
5017 		ew32(CTRL, reg);
5018 	}
5019 }
5020 
5021 /**
5022  *  e1000_setup_link_ich8lan - Setup flow control and link settings
5023  *  @hw: pointer to the HW structure
5024  *
5025  *  Determines which flow control settings to use, then configures flow
5026  *  control.  Calls the appropriate media-specific link configuration
5027  *  function.  Assuming the adapter has a valid link partner, a valid link
5028  *  should be established.  Assumes the hardware has previously been reset
5029  *  and the transmitter and receiver are not enabled.
5030  **/
e1000_setup_link_ich8lan(struct e1000_hw * hw)5031 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
5032 {
5033 	s32 ret_val;
5034 
5035 	if (hw->phy.ops.check_reset_block(hw))
5036 		return 0;
5037 
5038 	/* ICH parts do not have a word in the NVM to determine
5039 	 * the default flow control setting, so we explicitly
5040 	 * set it to full.
5041 	 */
5042 	if (hw->fc.requested_mode == e1000_fc_default) {
5043 		/* Workaround h/w hang when Tx flow control enabled */
5044 		if (hw->mac.type == e1000_pchlan)
5045 			hw->fc.requested_mode = e1000_fc_rx_pause;
5046 		else
5047 			hw->fc.requested_mode = e1000_fc_full;
5048 	}
5049 
5050 	/* Save off the requested flow control mode for use later.  Depending
5051 	 * on the link partner's capabilities, we may or may not use this mode.
5052 	 */
5053 	hw->fc.current_mode = hw->fc.requested_mode;
5054 
5055 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
5056 
5057 	/* Continue to configure the copper link. */
5058 	ret_val = hw->mac.ops.setup_physical_interface(hw);
5059 	if (ret_val)
5060 		return ret_val;
5061 
5062 	ew32(FCTTV, hw->fc.pause_time);
5063 	if ((hw->phy.type == e1000_phy_82578) ||
5064 	    (hw->phy.type == e1000_phy_82579) ||
5065 	    (hw->phy.type == e1000_phy_i217) ||
5066 	    (hw->phy.type == e1000_phy_82577)) {
5067 		ew32(FCRTV_PCH, hw->fc.refresh_time);
5068 
5069 		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
5070 				   hw->fc.pause_time);
5071 		if (ret_val)
5072 			return ret_val;
5073 	}
5074 
5075 	return e1000e_set_fc_watermarks(hw);
5076 }
5077 
5078 /**
5079  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5080  *  @hw: pointer to the HW structure
5081  *
5082  *  Configures the kumeran interface to the PHY to wait the appropriate time
5083  *  when polling the PHY, then call the generic setup_copper_link to finish
5084  *  configuring the copper link.
5085  **/
e1000_setup_copper_link_ich8lan(struct e1000_hw * hw)5086 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5087 {
5088 	u32 ctrl;
5089 	s32 ret_val;
5090 	u16 reg_data;
5091 
5092 	ctrl = er32(CTRL);
5093 	ctrl |= E1000_CTRL_SLU;
5094 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5095 	ew32(CTRL, ctrl);
5096 
5097 	/* Set the mac to wait the maximum time between each iteration
5098 	 * and increase the max iterations when polling the phy;
5099 	 * this fixes erroneous timeouts at 10Mbps.
5100 	 */
5101 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5102 	if (ret_val)
5103 		return ret_val;
5104 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5105 				       &reg_data);
5106 	if (ret_val)
5107 		return ret_val;
5108 	reg_data |= 0x3F;
5109 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5110 					reg_data);
5111 	if (ret_val)
5112 		return ret_val;
5113 
5114 	switch (hw->phy.type) {
5115 	case e1000_phy_igp_3:
5116 		ret_val = e1000e_copper_link_setup_igp(hw);
5117 		if (ret_val)
5118 			return ret_val;
5119 		break;
5120 	case e1000_phy_bm:
5121 	case e1000_phy_82578:
5122 		ret_val = e1000e_copper_link_setup_m88(hw);
5123 		if (ret_val)
5124 			return ret_val;
5125 		break;
5126 	case e1000_phy_82577:
5127 	case e1000_phy_82579:
5128 		ret_val = e1000_copper_link_setup_82577(hw);
5129 		if (ret_val)
5130 			return ret_val;
5131 		break;
5132 	case e1000_phy_ife:
5133 		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5134 		if (ret_val)
5135 			return ret_val;
5136 
5137 		reg_data &= ~IFE_PMC_AUTO_MDIX;
5138 
5139 		switch (hw->phy.mdix) {
5140 		case 1:
5141 			reg_data &= ~IFE_PMC_FORCE_MDIX;
5142 			break;
5143 		case 2:
5144 			reg_data |= IFE_PMC_FORCE_MDIX;
5145 			break;
5146 		case 0:
5147 		default:
5148 			reg_data |= IFE_PMC_AUTO_MDIX;
5149 			break;
5150 		}
5151 		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5152 		if (ret_val)
5153 			return ret_val;
5154 		break;
5155 	default:
5156 		break;
5157 	}
5158 
5159 	return e1000e_setup_copper_link(hw);
5160 }
5161 
5162 /**
5163  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5164  *  @hw: pointer to the HW structure
5165  *
5166  *  Calls the PHY specific link setup function and then calls the
5167  *  generic setup_copper_link to finish configuring the link for
5168  *  Lynxpoint PCH devices
5169  **/
e1000_setup_copper_link_pch_lpt(struct e1000_hw * hw)5170 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5171 {
5172 	u32 ctrl;
5173 	s32 ret_val;
5174 
5175 	ctrl = er32(CTRL);
5176 	ctrl |= E1000_CTRL_SLU;
5177 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5178 	ew32(CTRL, ctrl);
5179 
5180 	ret_val = e1000_copper_link_setup_82577(hw);
5181 	if (ret_val)
5182 		return ret_val;
5183 
5184 	return e1000e_setup_copper_link(hw);
5185 }
5186 
5187 /**
5188  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5189  *  @hw: pointer to the HW structure
5190  *  @speed: pointer to store current link speed
5191  *  @duplex: pointer to store the current link duplex
5192  *
5193  *  Calls the generic get_speed_and_duplex to retrieve the current link
5194  *  information and then calls the Kumeran lock loss workaround for links at
5195  *  gigabit speeds.
5196  **/
e1000_get_link_up_info_ich8lan(struct e1000_hw * hw,u16 * speed,u16 * duplex)5197 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5198 					  u16 *duplex)
5199 {
5200 	s32 ret_val;
5201 
5202 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5203 	if (ret_val)
5204 		return ret_val;
5205 
5206 	if ((hw->mac.type == e1000_ich8lan) &&
5207 	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5208 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5209 	}
5210 
5211 	return ret_val;
5212 }
5213 
5214 /**
5215  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5216  *  @hw: pointer to the HW structure
5217  *
5218  *  Work-around for 82566 Kumeran PCS lock loss:
5219  *  On link status change (i.e. PCI reset, speed change) and link is up and
5220  *  speed is gigabit-
5221  *    0) if workaround is optionally disabled do nothing
5222  *    1) wait 1ms for Kumeran link to come up
5223  *    2) check Kumeran Diagnostic register PCS lock loss bit
5224  *    3) if not set the link is locked (all is good), otherwise...
5225  *    4) reset the PHY
5226  *    5) repeat up to 10 times
5227  *  Note: this is only called for IGP3 copper when speed is 1gb.
5228  **/
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw * hw)5229 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5230 {
5231 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5232 	u32 phy_ctrl;
5233 	s32 ret_val;
5234 	u16 i, data;
5235 	bool link;
5236 
5237 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5238 		return 0;
5239 
5240 	/* Make sure link is up before proceeding.  If not just return.
5241 	 * Attempting this while link is negotiating fouled up link
5242 	 * stability
5243 	 */
5244 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5245 	if (!link)
5246 		return 0;
5247 
5248 	for (i = 0; i < 10; i++) {
5249 		/* read once to clear */
5250 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5251 		if (ret_val)
5252 			return ret_val;
5253 		/* and again to get new status */
5254 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5255 		if (ret_val)
5256 			return ret_val;
5257 
5258 		/* check for PCS lock */
5259 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5260 			return 0;
5261 
5262 		/* Issue PHY reset */
5263 		e1000_phy_hw_reset(hw);
5264 		mdelay(5);
5265 	}
5266 	/* Disable GigE link negotiation */
5267 	phy_ctrl = er32(PHY_CTRL);
5268 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5269 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5270 	ew32(PHY_CTRL, phy_ctrl);
5271 
5272 	/* Call gig speed drop workaround on Gig disable before accessing
5273 	 * any PHY registers
5274 	 */
5275 	e1000e_gig_downshift_workaround_ich8lan(hw);
5276 
5277 	/* unable to acquire PCS lock */
5278 	return -E1000_ERR_PHY;
5279 }
5280 
5281 /**
5282  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5283  *  @hw: pointer to the HW structure
5284  *  @state: boolean value used to set the current Kumeran workaround state
5285  *
5286  *  If ICH8, set the current Kumeran workaround state (enabled - true
5287  *  /disabled - false).
5288  **/
e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw * hw,bool state)5289 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5290 						  bool state)
5291 {
5292 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5293 
5294 	if (hw->mac.type != e1000_ich8lan) {
5295 		e_dbg("Workaround applies to ICH8 only.\n");
5296 		return;
5297 	}
5298 
5299 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5300 }
5301 
5302 /**
5303  *  e1000e_igp3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5304  *  @hw: pointer to the HW structure
5305  *
5306  *  Workaround for 82566 power-down on D3 entry:
5307  *    1) disable gigabit link
5308  *    2) write VR power-down enable
5309  *    3) read it back
5310  *  Continue if successful, else issue LCD reset and repeat
5311  **/
e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw * hw)5312 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5313 {
5314 	u32 reg;
5315 	u16 data;
5316 	u8 retry = 0;
5317 
5318 	if (hw->phy.type != e1000_phy_igp_3)
5319 		return;
5320 
5321 	/* Try the workaround twice (if needed) */
5322 	do {
5323 		/* Disable link */
5324 		reg = er32(PHY_CTRL);
5325 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5326 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5327 		ew32(PHY_CTRL, reg);
5328 
5329 		/* Call gig speed drop workaround on Gig disable before
5330 		 * accessing any PHY registers
5331 		 */
5332 		if (hw->mac.type == e1000_ich8lan)
5333 			e1000e_gig_downshift_workaround_ich8lan(hw);
5334 
5335 		/* Write VR power-down enable */
5336 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5337 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5338 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5339 
5340 		/* Read it back and test */
5341 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5342 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5343 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5344 			break;
5345 
5346 		/* Issue PHY reset and repeat at most one more time */
5347 		reg = er32(CTRL);
5348 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5349 		retry++;
5350 	} while (retry);
5351 }
5352 
5353 /**
5354  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5355  *  @hw: pointer to the HW structure
5356  *
5357  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5358  *  LPLU, Gig disable, MDIC PHY reset):
5359  *    1) Set Kumeran Near-end loopback
5360  *    2) Clear Kumeran Near-end loopback
5361  *  Should only be called for ICH8[m] devices with any 1G Phy.
5362  **/
e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw * hw)5363 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5364 {
5365 	s32 ret_val;
5366 	u16 reg_data;
5367 
5368 	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5369 		return;
5370 
5371 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5372 				       &reg_data);
5373 	if (ret_val)
5374 		return;
5375 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5376 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5377 					reg_data);
5378 	if (ret_val)
5379 		return;
5380 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5381 	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5382 }
5383 
5384 /**
5385  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5386  *  @hw: pointer to the HW structure
5387  *
5388  *  During S0 to Sx transition, it is possible the link remains at gig
5389  *  instead of negotiating to a lower speed.  Before going to Sx, set
5390  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5391  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5392  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5393  *  needs to be written.
5394  *  Parts that support (and are linked to a partner which support) EEE in
5395  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5396  *  than 10Mbps w/o EEE.
5397  **/
e1000_suspend_workarounds_ich8lan(struct e1000_hw * hw)5398 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5399 {
5400 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5401 	u32 phy_ctrl;
5402 	s32 ret_val;
5403 
5404 	phy_ctrl = er32(PHY_CTRL);
5405 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5406 
5407 	if (hw->phy.type == e1000_phy_i217) {
5408 		u16 phy_reg, device_id = hw->adapter->pdev->device;
5409 
5410 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5411 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5412 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5413 		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5414 		    (hw->mac.type >= e1000_pch_spt)) {
5415 			u32 fextnvm6 = er32(FEXTNVM6);
5416 
5417 			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5418 		}
5419 
5420 		ret_val = hw->phy.ops.acquire(hw);
5421 		if (ret_val)
5422 			goto out;
5423 
5424 		if (!dev_spec->eee_disable) {
5425 			u16 eee_advert;
5426 
5427 			ret_val =
5428 			    e1000_read_emi_reg_locked(hw,
5429 						      I217_EEE_ADVERTISEMENT,
5430 						      &eee_advert);
5431 			if (ret_val)
5432 				goto release;
5433 
5434 			/* Disable LPLU if both link partners support 100BaseT
5435 			 * EEE and 100Full is advertised on both ends of the
5436 			 * link, and enable Auto Enable LPI since there will
5437 			 * be no driver to enable LPI while in Sx.
5438 			 */
5439 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5440 			    (dev_spec->eee_lp_ability &
5441 			     I82579_EEE_100_SUPPORTED) &&
5442 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5443 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5444 					      E1000_PHY_CTRL_NOND0A_LPLU);
5445 
5446 				/* Set Auto Enable LPI after link up */
5447 				e1e_rphy_locked(hw,
5448 						I217_LPI_GPIO_CTRL, &phy_reg);
5449 				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5450 				e1e_wphy_locked(hw,
5451 						I217_LPI_GPIO_CTRL, phy_reg);
5452 			}
5453 		}
5454 
5455 		/* For i217 Intel Rapid Start Technology support,
5456 		 * when the system is going into Sx and no manageability engine
5457 		 * is present, the driver must configure proxy to reset only on
5458 		 * power good.  LPI (Low Power Idle) state must also reset only
5459 		 * on power good, as well as the MTA (Multicast table array).
5460 		 * The SMBus release must also be disabled on LCD reset.
5461 		 */
5462 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5463 			/* Enable proxy to reset only on power good. */
5464 			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5465 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5466 			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5467 
5468 			/* Set bit enable LPI (EEE) to reset only on
5469 			 * power good.
5470 			 */
5471 			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5472 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5473 			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5474 
5475 			/* Disable the SMB release on LCD reset. */
5476 			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5477 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5478 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5479 		}
5480 
5481 		/* Enable MTA to reset for Intel Rapid Start Technology
5482 		 * Support
5483 		 */
5484 		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5485 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5486 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5487 
5488 release:
5489 		hw->phy.ops.release(hw);
5490 	}
5491 out:
5492 	ew32(PHY_CTRL, phy_ctrl);
5493 
5494 	if (hw->mac.type == e1000_ich8lan)
5495 		e1000e_gig_downshift_workaround_ich8lan(hw);
5496 
5497 	if (hw->mac.type >= e1000_pchlan) {
5498 		e1000_oem_bits_config_ich8lan(hw, false);
5499 
5500 		/* Reset PHY to activate OEM bits on 82577/8 */
5501 		if (hw->mac.type == e1000_pchlan)
5502 			e1000e_phy_hw_reset_generic(hw);
5503 
5504 		ret_val = hw->phy.ops.acquire(hw);
5505 		if (ret_val)
5506 			return;
5507 		e1000_write_smbus_addr(hw);
5508 		hw->phy.ops.release(hw);
5509 	}
5510 }
5511 
5512 /**
5513  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5514  *  @hw: pointer to the HW structure
5515  *
5516  *  During Sx to S0 transitions on non-managed devices or managed devices
5517  *  on which PHY resets are not blocked, if the PHY registers cannot be
5518  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5519  *  the PHY.
5520  *  On i217, setup Intel Rapid Start Technology.
5521  **/
e1000_resume_workarounds_pchlan(struct e1000_hw * hw)5522 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5523 {
5524 	s32 ret_val;
5525 
5526 	if (hw->mac.type < e1000_pch2lan)
5527 		return;
5528 
5529 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5530 	if (ret_val) {
5531 		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5532 		return;
5533 	}
5534 
5535 	/* For i217 Intel Rapid Start Technology support when the system
5536 	 * is transitioning from Sx and no manageability engine is present
5537 	 * configure SMBus to restore on reset, disable proxy, and enable
5538 	 * the reset on MTA (Multicast table array).
5539 	 */
5540 	if (hw->phy.type == e1000_phy_i217) {
5541 		u16 phy_reg;
5542 
5543 		ret_val = hw->phy.ops.acquire(hw);
5544 		if (ret_val) {
5545 			e_dbg("Failed to setup iRST\n");
5546 			return;
5547 		}
5548 
5549 		/* Clear Auto Enable LPI after link up */
5550 		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5551 		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5552 		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5553 
5554 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5555 			/* Restore clear on SMB if no manageability engine
5556 			 * is present
5557 			 */
5558 			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5559 			if (ret_val)
5560 				goto release;
5561 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5562 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5563 
5564 			/* Disable Proxy */
5565 			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5566 		}
5567 		/* Enable reset on MTA */
5568 		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5569 		if (ret_val)
5570 			goto release;
5571 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5572 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5573 release:
5574 		if (ret_val)
5575 			e_dbg("Error %d in resume workarounds\n", ret_val);
5576 		hw->phy.ops.release(hw);
5577 	}
5578 }
5579 
5580 /**
5581  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5582  *  @hw: pointer to the HW structure
5583  *
5584  *  Return the LED back to the default configuration.
5585  **/
e1000_cleanup_led_ich8lan(struct e1000_hw * hw)5586 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5587 {
5588 	if (hw->phy.type == e1000_phy_ife)
5589 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5590 
5591 	ew32(LEDCTL, hw->mac.ledctl_default);
5592 	return 0;
5593 }
5594 
5595 /**
5596  *  e1000_led_on_ich8lan - Turn LEDs on
5597  *  @hw: pointer to the HW structure
5598  *
5599  *  Turn on the LEDs.
5600  **/
e1000_led_on_ich8lan(struct e1000_hw * hw)5601 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5602 {
5603 	if (hw->phy.type == e1000_phy_ife)
5604 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5605 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5606 
5607 	ew32(LEDCTL, hw->mac.ledctl_mode2);
5608 	return 0;
5609 }
5610 
5611 /**
5612  *  e1000_led_off_ich8lan - Turn LEDs off
5613  *  @hw: pointer to the HW structure
5614  *
5615  *  Turn off the LEDs.
5616  **/
e1000_led_off_ich8lan(struct e1000_hw * hw)5617 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5618 {
5619 	if (hw->phy.type == e1000_phy_ife)
5620 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5621 				(IFE_PSCL_PROBE_MODE |
5622 				 IFE_PSCL_PROBE_LEDS_OFF));
5623 
5624 	ew32(LEDCTL, hw->mac.ledctl_mode1);
5625 	return 0;
5626 }
5627 
5628 /**
5629  *  e1000_setup_led_pchlan - Configures SW controllable LED
5630  *  @hw: pointer to the HW structure
5631  *
5632  *  This prepares the SW controllable LED for use.
5633  **/
e1000_setup_led_pchlan(struct e1000_hw * hw)5634 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5635 {
5636 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5637 }
5638 
5639 /**
5640  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5641  *  @hw: pointer to the HW structure
5642  *
5643  *  Return the LED back to the default configuration.
5644  **/
e1000_cleanup_led_pchlan(struct e1000_hw * hw)5645 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5646 {
5647 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5648 }
5649 
5650 /**
5651  *  e1000_led_on_pchlan - Turn LEDs on
5652  *  @hw: pointer to the HW structure
5653  *
5654  *  Turn on the LEDs.
5655  **/
e1000_led_on_pchlan(struct e1000_hw * hw)5656 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5657 {
5658 	u16 data = (u16)hw->mac.ledctl_mode2;
5659 	u32 i, led;
5660 
5661 	/* If no link, then turn LED on by setting the invert bit
5662 	 * for each LED that's mode is "link_up" in ledctl_mode2.
5663 	 */
5664 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5665 		for (i = 0; i < 3; i++) {
5666 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5667 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5668 			    E1000_LEDCTL_MODE_LINK_UP)
5669 				continue;
5670 			if (led & E1000_PHY_LED0_IVRT)
5671 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5672 			else
5673 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5674 		}
5675 	}
5676 
5677 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5678 }
5679 
5680 /**
5681  *  e1000_led_off_pchlan - Turn LEDs off
5682  *  @hw: pointer to the HW structure
5683  *
5684  *  Turn off the LEDs.
5685  **/
e1000_led_off_pchlan(struct e1000_hw * hw)5686 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5687 {
5688 	u16 data = (u16)hw->mac.ledctl_mode1;
5689 	u32 i, led;
5690 
5691 	/* If no link, then turn LED off by clearing the invert bit
5692 	 * for each LED that's mode is "link_up" in ledctl_mode1.
5693 	 */
5694 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5695 		for (i = 0; i < 3; i++) {
5696 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5697 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5698 			    E1000_LEDCTL_MODE_LINK_UP)
5699 				continue;
5700 			if (led & E1000_PHY_LED0_IVRT)
5701 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5702 			else
5703 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5704 		}
5705 	}
5706 
5707 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5708 }
5709 
5710 /**
5711  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5712  *  @hw: pointer to the HW structure
5713  *
5714  *  Read appropriate register for the config done bit for completion status
5715  *  and configure the PHY through s/w for EEPROM-less parts.
5716  *
5717  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5718  *  config done bit, so only an error is logged and continues.  If we were
5719  *  to return with error, EEPROM-less silicon would not be able to be reset
5720  *  or change link.
5721  **/
e1000_get_cfg_done_ich8lan(struct e1000_hw * hw)5722 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5723 {
5724 	s32 ret_val = 0;
5725 	u32 bank = 0;
5726 	u32 status;
5727 
5728 	e1000e_get_cfg_done_generic(hw);
5729 
5730 	/* Wait for indication from h/w that it has completed basic config */
5731 	if (hw->mac.type >= e1000_ich10lan) {
5732 		e1000_lan_init_done_ich8lan(hw);
5733 	} else {
5734 		ret_val = e1000e_get_auto_rd_done(hw);
5735 		if (ret_val) {
5736 			/* When auto config read does not complete, do not
5737 			 * return with an error. This can happen in situations
5738 			 * where there is no eeprom and prevents getting link.
5739 			 */
5740 			e_dbg("Auto Read Done did not complete\n");
5741 			ret_val = 0;
5742 		}
5743 	}
5744 
5745 	/* Clear PHY Reset Asserted bit */
5746 	status = er32(STATUS);
5747 	if (status & E1000_STATUS_PHYRA)
5748 		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5749 	else
5750 		e_dbg("PHY Reset Asserted not set - needs delay\n");
5751 
5752 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5753 	if (hw->mac.type <= e1000_ich9lan) {
5754 		if (!(er32(EECD) & E1000_EECD_PRES) &&
5755 		    (hw->phy.type == e1000_phy_igp_3)) {
5756 			e1000e_phy_init_script_igp3(hw);
5757 		}
5758 	} else {
5759 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5760 			/* Maybe we should do a basic PHY config */
5761 			e_dbg("EEPROM not present\n");
5762 			ret_val = -E1000_ERR_CONFIG;
5763 		}
5764 	}
5765 
5766 	return ret_val;
5767 }
5768 
5769 /**
5770  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5771  * @hw: pointer to the HW structure
5772  *
5773  * In the case of a PHY power down to save power, or to turn off link during a
5774  * driver unload, or wake on lan is not enabled, remove the link.
5775  **/
e1000_power_down_phy_copper_ich8lan(struct e1000_hw * hw)5776 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5777 {
5778 	/* If the management interface is not enabled, then power down */
5779 	if (!(hw->mac.ops.check_mng_mode(hw) ||
5780 	      hw->phy.ops.check_reset_block(hw)))
5781 		e1000_power_down_phy_copper(hw);
5782 }
5783 
5784 /**
5785  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5786  *  @hw: pointer to the HW structure
5787  *
5788  *  Clears hardware counters specific to the silicon family and calls
5789  *  clear_hw_cntrs_generic to clear all general purpose counters.
5790  **/
e1000_clear_hw_cntrs_ich8lan(struct e1000_hw * hw)5791 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5792 {
5793 	u16 phy_data;
5794 	s32 ret_val;
5795 
5796 	e1000e_clear_hw_cntrs_base(hw);
5797 
5798 	er32(ALGNERRC);
5799 	er32(RXERRC);
5800 	er32(TNCRS);
5801 	er32(CEXTERR);
5802 	er32(TSCTC);
5803 	er32(TSCTFC);
5804 
5805 	er32(MGTPRC);
5806 	er32(MGTPDC);
5807 	er32(MGTPTC);
5808 
5809 	er32(IAC);
5810 	er32(ICRXOC);
5811 
5812 	/* Clear PHY statistics registers */
5813 	if ((hw->phy.type == e1000_phy_82578) ||
5814 	    (hw->phy.type == e1000_phy_82579) ||
5815 	    (hw->phy.type == e1000_phy_i217) ||
5816 	    (hw->phy.type == e1000_phy_82577)) {
5817 		ret_val = hw->phy.ops.acquire(hw);
5818 		if (ret_val)
5819 			return;
5820 		ret_val = hw->phy.ops.set_page(hw,
5821 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5822 		if (ret_val)
5823 			goto release;
5824 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5825 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5826 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5827 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5828 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5829 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5830 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5831 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5832 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5833 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5834 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5835 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5836 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5837 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5838 release:
5839 		hw->phy.ops.release(hw);
5840 	}
5841 }
5842 
5843 static const struct e1000_mac_operations ich8_mac_ops = {
5844 	/* check_mng_mode dependent on mac type */
5845 	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5846 	/* cleanup_led dependent on mac type */
5847 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5848 	.get_bus_info		= e1000_get_bus_info_ich8lan,
5849 	.set_lan_id		= e1000_set_lan_id_single_port,
5850 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5851 	/* led_on dependent on mac type */
5852 	/* led_off dependent on mac type */
5853 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5854 	.reset_hw		= e1000_reset_hw_ich8lan,
5855 	.init_hw		= e1000_init_hw_ich8lan,
5856 	.setup_link		= e1000_setup_link_ich8lan,
5857 	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5858 	/* id_led_init dependent on mac type */
5859 	.config_collision_dist	= e1000e_config_collision_dist_generic,
5860 	.rar_set		= e1000e_rar_set_generic,
5861 	.rar_get_count		= e1000e_rar_get_count_generic,
5862 };
5863 
5864 static const struct e1000_phy_operations ich8_phy_ops = {
5865 	.acquire		= e1000_acquire_swflag_ich8lan,
5866 	.check_reset_block	= e1000_check_reset_block_ich8lan,
5867 	.commit			= NULL,
5868 	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5869 	.get_cable_length	= e1000e_get_cable_length_igp_2,
5870 	.read_reg		= e1000e_read_phy_reg_igp,
5871 	.release		= e1000_release_swflag_ich8lan,
5872 	.reset			= e1000_phy_hw_reset_ich8lan,
5873 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5874 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5875 	.write_reg		= e1000e_write_phy_reg_igp,
5876 };
5877 
5878 static const struct e1000_nvm_operations ich8_nvm_ops = {
5879 	.acquire		= e1000_acquire_nvm_ich8lan,
5880 	.read			= e1000_read_nvm_ich8lan,
5881 	.release		= e1000_release_nvm_ich8lan,
5882 	.reload			= e1000e_reload_nvm_generic,
5883 	.update			= e1000_update_nvm_checksum_ich8lan,
5884 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5885 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5886 	.write			= e1000_write_nvm_ich8lan,
5887 };
5888 
5889 static const struct e1000_nvm_operations spt_nvm_ops = {
5890 	.acquire		= e1000_acquire_nvm_ich8lan,
5891 	.release		= e1000_release_nvm_ich8lan,
5892 	.read			= e1000_read_nvm_spt,
5893 	.update			= e1000_update_nvm_checksum_spt,
5894 	.reload			= e1000e_reload_nvm_generic,
5895 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5896 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5897 	.write			= e1000_write_nvm_ich8lan,
5898 };
5899 
5900 const struct e1000_info e1000_ich8_info = {
5901 	.mac			= e1000_ich8lan,
5902 	.flags			= FLAG_HAS_WOL
5903 				  | FLAG_IS_ICH
5904 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5905 				  | FLAG_HAS_AMT
5906 				  | FLAG_HAS_FLASH
5907 				  | FLAG_APME_IN_WUC,
5908 	.pba			= 8,
5909 	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5910 	.get_variants		= e1000_get_variants_ich8lan,
5911 	.mac_ops		= &ich8_mac_ops,
5912 	.phy_ops		= &ich8_phy_ops,
5913 	.nvm_ops		= &ich8_nvm_ops,
5914 };
5915 
5916 const struct e1000_info e1000_ich9_info = {
5917 	.mac			= e1000_ich9lan,
5918 	.flags			= FLAG_HAS_JUMBO_FRAMES
5919 				  | FLAG_IS_ICH
5920 				  | FLAG_HAS_WOL
5921 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5922 				  | FLAG_HAS_AMT
5923 				  | FLAG_HAS_FLASH
5924 				  | FLAG_APME_IN_WUC,
5925 	.pba			= 18,
5926 	.max_hw_frame_size	= DEFAULT_JUMBO,
5927 	.get_variants		= e1000_get_variants_ich8lan,
5928 	.mac_ops		= &ich8_mac_ops,
5929 	.phy_ops		= &ich8_phy_ops,
5930 	.nvm_ops		= &ich8_nvm_ops,
5931 };
5932 
5933 const struct e1000_info e1000_ich10_info = {
5934 	.mac			= e1000_ich10lan,
5935 	.flags			= FLAG_HAS_JUMBO_FRAMES
5936 				  | FLAG_IS_ICH
5937 				  | FLAG_HAS_WOL
5938 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5939 				  | FLAG_HAS_AMT
5940 				  | FLAG_HAS_FLASH
5941 				  | FLAG_APME_IN_WUC,
5942 	.pba			= 18,
5943 	.max_hw_frame_size	= DEFAULT_JUMBO,
5944 	.get_variants		= e1000_get_variants_ich8lan,
5945 	.mac_ops		= &ich8_mac_ops,
5946 	.phy_ops		= &ich8_phy_ops,
5947 	.nvm_ops		= &ich8_nvm_ops,
5948 };
5949 
5950 const struct e1000_info e1000_pch_info = {
5951 	.mac			= e1000_pchlan,
5952 	.flags			= FLAG_IS_ICH
5953 				  | FLAG_HAS_WOL
5954 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5955 				  | FLAG_HAS_AMT
5956 				  | FLAG_HAS_FLASH
5957 				  | FLAG_HAS_JUMBO_FRAMES
5958 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5959 				  | FLAG_APME_IN_WUC,
5960 	.flags2			= FLAG2_HAS_PHY_STATS,
5961 	.pba			= 26,
5962 	.max_hw_frame_size	= 4096,
5963 	.get_variants		= e1000_get_variants_ich8lan,
5964 	.mac_ops		= &ich8_mac_ops,
5965 	.phy_ops		= &ich8_phy_ops,
5966 	.nvm_ops		= &ich8_nvm_ops,
5967 };
5968 
5969 const struct e1000_info e1000_pch2_info = {
5970 	.mac			= e1000_pch2lan,
5971 	.flags			= FLAG_IS_ICH
5972 				  | FLAG_HAS_WOL
5973 				  | FLAG_HAS_HW_TIMESTAMP
5974 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5975 				  | FLAG_HAS_AMT
5976 				  | FLAG_HAS_FLASH
5977 				  | FLAG_HAS_JUMBO_FRAMES
5978 				  | FLAG_APME_IN_WUC,
5979 	.flags2			= FLAG2_HAS_PHY_STATS
5980 				  | FLAG2_HAS_EEE
5981 				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5982 	.pba			= 26,
5983 	.max_hw_frame_size	= 9022,
5984 	.get_variants		= e1000_get_variants_ich8lan,
5985 	.mac_ops		= &ich8_mac_ops,
5986 	.phy_ops		= &ich8_phy_ops,
5987 	.nvm_ops		= &ich8_nvm_ops,
5988 };
5989 
5990 const struct e1000_info e1000_pch_lpt_info = {
5991 	.mac			= e1000_pch_lpt,
5992 	.flags			= FLAG_IS_ICH
5993 				  | FLAG_HAS_WOL
5994 				  | FLAG_HAS_HW_TIMESTAMP
5995 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5996 				  | FLAG_HAS_AMT
5997 				  | FLAG_HAS_FLASH
5998 				  | FLAG_HAS_JUMBO_FRAMES
5999 				  | FLAG_APME_IN_WUC,
6000 	.flags2			= FLAG2_HAS_PHY_STATS
6001 				  | FLAG2_HAS_EEE
6002 				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
6003 	.pba			= 26,
6004 	.max_hw_frame_size	= 9022,
6005 	.get_variants		= e1000_get_variants_ich8lan,
6006 	.mac_ops		= &ich8_mac_ops,
6007 	.phy_ops		= &ich8_phy_ops,
6008 	.nvm_ops		= &ich8_nvm_ops,
6009 };
6010 
6011 const struct e1000_info e1000_pch_spt_info = {
6012 	.mac			= e1000_pch_spt,
6013 	.flags			= FLAG_IS_ICH
6014 				  | FLAG_HAS_WOL
6015 				  | FLAG_HAS_HW_TIMESTAMP
6016 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6017 				  | FLAG_HAS_AMT
6018 				  | FLAG_HAS_FLASH
6019 				  | FLAG_HAS_JUMBO_FRAMES
6020 				  | FLAG_APME_IN_WUC,
6021 	.flags2			= FLAG2_HAS_PHY_STATS
6022 				  | FLAG2_HAS_EEE,
6023 	.pba			= 26,
6024 	.max_hw_frame_size	= 9022,
6025 	.get_variants		= e1000_get_variants_ich8lan,
6026 	.mac_ops		= &ich8_mac_ops,
6027 	.phy_ops		= &ich8_phy_ops,
6028 	.nvm_ops		= &spt_nvm_ops,
6029 };
6030 
6031 const struct e1000_info e1000_pch_cnp_info = {
6032 	.mac			= e1000_pch_cnp,
6033 	.flags			= FLAG_IS_ICH
6034 				  | FLAG_HAS_WOL
6035 				  | FLAG_HAS_HW_TIMESTAMP
6036 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6037 				  | FLAG_HAS_AMT
6038 				  | FLAG_HAS_FLASH
6039 				  | FLAG_HAS_JUMBO_FRAMES
6040 				  | FLAG_APME_IN_WUC,
6041 	.flags2			= FLAG2_HAS_PHY_STATS
6042 				  | FLAG2_HAS_EEE,
6043 	.pba			= 26,
6044 	.max_hw_frame_size	= 9022,
6045 	.get_variants		= e1000_get_variants_ich8lan,
6046 	.mac_ops		= &ich8_mac_ops,
6047 	.phy_ops		= &ich8_phy_ops,
6048 	.nvm_ops		= &spt_nvm_ops,
6049 };
6050 
6051 const struct e1000_info e1000_pch_tgp_info = {
6052 	.mac			= e1000_pch_tgp,
6053 	.flags			= FLAG_IS_ICH
6054 				  | FLAG_HAS_WOL
6055 				  | FLAG_HAS_HW_TIMESTAMP
6056 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6057 				  | FLAG_HAS_AMT
6058 				  | FLAG_HAS_FLASH
6059 				  | FLAG_HAS_JUMBO_FRAMES
6060 				  | FLAG_APME_IN_WUC,
6061 	.flags2			= FLAG2_HAS_PHY_STATS
6062 				  | FLAG2_HAS_EEE,
6063 	.pba			= 26,
6064 	.max_hw_frame_size	= 9022,
6065 	.get_variants		= e1000_get_variants_ich8lan,
6066 	.mac_ops		= &ich8_mac_ops,
6067 	.phy_ops		= &ich8_phy_ops,
6068 	.nvm_ops		= &spt_nvm_ops,
6069 };
6070 
6071 const struct e1000_info e1000_pch_adp_info = {
6072 	.mac			= e1000_pch_adp,
6073 	.flags			= FLAG_IS_ICH
6074 				  | FLAG_HAS_WOL
6075 				  | FLAG_HAS_HW_TIMESTAMP
6076 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6077 				  | FLAG_HAS_AMT
6078 				  | FLAG_HAS_FLASH
6079 				  | FLAG_HAS_JUMBO_FRAMES
6080 				  | FLAG_APME_IN_WUC,
6081 	.flags2			= FLAG2_HAS_PHY_STATS
6082 				  | FLAG2_HAS_EEE,
6083 	.pba			= 26,
6084 	.max_hw_frame_size	= 9022,
6085 	.get_variants		= e1000_get_variants_ich8lan,
6086 	.mac_ops		= &ich8_mac_ops,
6087 	.phy_ops		= &ich8_phy_ops,
6088 	.nvm_ops		= &spt_nvm_ops,
6089 };
6090 
6091 const struct e1000_info e1000_pch_mtp_info = {
6092 	.mac			= e1000_pch_mtp,
6093 	.flags			= FLAG_IS_ICH
6094 				  | FLAG_HAS_WOL
6095 				  | FLAG_HAS_HW_TIMESTAMP
6096 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6097 				  | FLAG_HAS_AMT
6098 				  | FLAG_HAS_FLASH
6099 				  | FLAG_HAS_JUMBO_FRAMES
6100 				  | FLAG_APME_IN_WUC,
6101 	.flags2			= FLAG2_HAS_PHY_STATS
6102 				  | FLAG2_HAS_EEE,
6103 	.pba			= 26,
6104 	.max_hw_frame_size	= 9022,
6105 	.get_variants		= e1000_get_variants_ich8lan,
6106 	.mac_ops		= &ich8_mac_ops,
6107 	.phy_ops		= &ich8_phy_ops,
6108 	.nvm_ops		= &spt_nvm_ops,
6109 };
6110