1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 /* 82562G 10/100 Network Connection
5  * 82562G-2 10/100 Network Connection
6  * 82562GT 10/100 Network Connection
7  * 82562GT-2 10/100 Network Connection
8  * 82562V 10/100 Network Connection
9  * 82562V-2 10/100 Network Connection
10  * 82566DC-2 Gigabit Network Connection
11  * 82566DC Gigabit Network Connection
12  * 82566DM-2 Gigabit Network Connection
13  * 82566DM Gigabit Network Connection
14  * 82566MC Gigabit Network Connection
15  * 82566MM Gigabit Network Connection
16  * 82567LM Gigabit Network Connection
17  * 82567LF Gigabit Network Connection
18  * 82567V Gigabit Network Connection
19  * 82567LM-2 Gigabit Network Connection
20  * 82567LF-2 Gigabit Network Connection
21  * 82567V-2 Gigabit Network Connection
22  * 82567LF-3 Gigabit Network Connection
23  * 82567LM-3 Gigabit Network Connection
24  * 82567LM-4 Gigabit Network Connection
25  * 82577LM Gigabit Network Connection
26  * 82577LC Gigabit Network Connection
27  * 82578DM Gigabit Network Connection
28  * 82578DC Gigabit Network Connection
29  * 82579LM Gigabit Network Connection
30  * 82579V Gigabit Network Connection
31  * Ethernet Connection I217-LM
32  * Ethernet Connection I217-V
33  * Ethernet Connection I218-V
34  * Ethernet Connection I218-LM
35  * Ethernet Connection (2) I218-LM
36  * Ethernet Connection (2) I218-V
37  * Ethernet Connection (3) I218-LM
38  * Ethernet Connection (3) I218-V
39  */
40 
41 #include "e1000.h"
42 
43 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
44 /* Offset 04h HSFSTS */
45 union ich8_hws_flash_status {
46 	struct ich8_hsfsts {
47 		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
48 		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
49 		u16 dael:1;	/* bit 2 Direct Access error Log */
50 		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
51 		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
52 		u16 reserved1:2;	/* bit 13:6 Reserved */
53 		u16 reserved2:6;	/* bit 13:6 Reserved */
54 		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
55 		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
56 	} hsf_status;
57 	u16 regval;
58 };
59 
60 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
61 /* Offset 06h FLCTL */
62 union ich8_hws_flash_ctrl {
63 	struct ich8_hsflctl {
64 		u16 flcgo:1;	/* 0 Flash Cycle Go */
65 		u16 flcycle:2;	/* 2:1 Flash Cycle */
66 		u16 reserved:5;	/* 7:3 Reserved  */
67 		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
68 		u16 flockdn:6;	/* 15:10 Reserved */
69 	} hsf_ctrl;
70 	u16 regval;
71 };
72 
73 /* ICH Flash Region Access Permissions */
74 union ich8_hws_flash_regacc {
75 	struct ich8_flracc {
76 		u32 grra:8;	/* 0:7 GbE region Read Access */
77 		u32 grwa:8;	/* 8:15 GbE region Write Access */
78 		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
79 		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
80 	} hsf_flregacc;
81 	u16 regval;
82 };
83 
84 /* ICH Flash Protected Region */
85 union ich8_flash_protected_range {
86 	struct ich8_pr {
87 		u32 base:13;	/* 0:12 Protected Range Base */
88 		u32 reserved1:2;	/* 13:14 Reserved */
89 		u32 rpe:1;	/* 15 Read Protection Enable */
90 		u32 limit:13;	/* 16:28 Protected Range Limit */
91 		u32 reserved2:2;	/* 29:30 Reserved */
92 		u32 wpe:1;	/* 31 Write Protection Enable */
93 	} range;
94 	u32 regval;
95 };
96 
97 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
98 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
99 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
100 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
101 						u32 offset, u8 byte);
102 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
103 					 u8 *data);
104 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
105 					 u16 *data);
106 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
107 					 u8 size, u16 *data);
108 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
109 					   u32 *data);
110 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
111 					  u32 offset, u32 *data);
112 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
113 					    u32 offset, u32 data);
114 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
115 						 u32 offset, u32 dword);
116 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
118 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
119 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
120 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
121 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
122 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
123 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
124 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
125 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
126 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
127 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
128 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
129 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
130 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
131 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
132 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
133 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
134 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
135 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
136 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
137 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
138 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
139 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
140 
141 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
142 {
143 	return readw(hw->flash_address + reg);
144 }
145 
146 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
147 {
148 	return readl(hw->flash_address + reg);
149 }
150 
151 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
152 {
153 	writew(val, hw->flash_address + reg);
154 }
155 
156 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
157 {
158 	writel(val, hw->flash_address + reg);
159 }
160 
161 #define er16flash(reg)		__er16flash(hw, (reg))
162 #define er32flash(reg)		__er32flash(hw, (reg))
163 #define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
164 #define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
165 
166 /**
167  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
168  *  @hw: pointer to the HW structure
169  *
170  *  Test access to the PHY registers by reading the PHY ID registers.  If
171  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
172  *  otherwise assume the read PHY ID is correct if it is valid.
173  *
174  *  Assumes the sw/fw/hw semaphore is already acquired.
175  **/
176 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
177 {
178 	u16 phy_reg = 0;
179 	u32 phy_id = 0;
180 	s32 ret_val = 0;
181 	u16 retry_count;
182 	u32 mac_reg = 0;
183 
184 	for (retry_count = 0; retry_count < 2; retry_count++) {
185 		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
186 		if (ret_val || (phy_reg == 0xFFFF))
187 			continue;
188 		phy_id = (u32)(phy_reg << 16);
189 
190 		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
191 		if (ret_val || (phy_reg == 0xFFFF)) {
192 			phy_id = 0;
193 			continue;
194 		}
195 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
196 		break;
197 	}
198 
199 	if (hw->phy.id) {
200 		if (hw->phy.id == phy_id)
201 			goto out;
202 	} else if (phy_id) {
203 		hw->phy.id = phy_id;
204 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
205 		goto out;
206 	}
207 
208 	/* In case the PHY needs to be in mdio slow mode,
209 	 * set slow mode and try to get the PHY id again.
210 	 */
211 	if (hw->mac.type < e1000_pch_lpt) {
212 		hw->phy.ops.release(hw);
213 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
214 		if (!ret_val)
215 			ret_val = e1000e_get_phy_id(hw);
216 		hw->phy.ops.acquire(hw);
217 	}
218 
219 	if (ret_val)
220 		return false;
221 out:
222 	if (hw->mac.type >= e1000_pch_lpt) {
223 		/* Only unforce SMBus if ME is not active */
224 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
225 			/* Unforce SMBus mode in PHY */
226 			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
227 			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
228 			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
229 
230 			/* Unforce SMBus mode in MAC */
231 			mac_reg = er32(CTRL_EXT);
232 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
233 			ew32(CTRL_EXT, mac_reg);
234 		}
235 	}
236 
237 	return true;
238 }
239 
240 /**
241  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
242  *  @hw: pointer to the HW structure
243  *
244  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
245  *  used to reset the PHY to a quiescent state when necessary.
246  **/
247 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
248 {
249 	u32 mac_reg;
250 
251 	/* Set Phy Config Counter to 50msec */
252 	mac_reg = er32(FEXTNVM3);
253 	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
254 	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
255 	ew32(FEXTNVM3, mac_reg);
256 
257 	/* Toggle LANPHYPC Value bit */
258 	mac_reg = er32(CTRL);
259 	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
260 	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
261 	ew32(CTRL, mac_reg);
262 	e1e_flush();
263 	usleep_range(10, 20);
264 	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
265 	ew32(CTRL, mac_reg);
266 	e1e_flush();
267 
268 	if (hw->mac.type < e1000_pch_lpt) {
269 		msleep(50);
270 	} else {
271 		u16 count = 20;
272 
273 		do {
274 			usleep_range(5000, 6000);
275 		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
276 
277 		msleep(30);
278 	}
279 }
280 
281 /**
282  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
283  *  @hw: pointer to the HW structure
284  *
285  *  Workarounds/flow necessary for PHY initialization during driver load
286  *  and resume paths.
287  **/
288 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
289 {
290 	struct e1000_adapter *adapter = hw->adapter;
291 	u32 mac_reg, fwsm = er32(FWSM);
292 	s32 ret_val;
293 
294 	/* Gate automatic PHY configuration by hardware on managed and
295 	 * non-managed 82579 and newer adapters.
296 	 */
297 	e1000_gate_hw_phy_config_ich8lan(hw, true);
298 
299 	/* It is not possible to be certain of the current state of ULP
300 	 * so forcibly disable it.
301 	 */
302 	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
303 	ret_val = e1000_disable_ulp_lpt_lp(hw, true);
304 	if (ret_val)
305 		e_warn("Failed to disable ULP\n");
306 
307 	ret_val = hw->phy.ops.acquire(hw);
308 	if (ret_val) {
309 		e_dbg("Failed to initialize PHY flow\n");
310 		goto out;
311 	}
312 
313 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
314 	 * inaccessible and resetting the PHY is not blocked, toggle the
315 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
316 	 */
317 	switch (hw->mac.type) {
318 	case e1000_pch_lpt:
319 	case e1000_pch_spt:
320 	case e1000_pch_cnp:
321 	case e1000_pch_tgp:
322 	case e1000_pch_adp:
323 	case e1000_pch_mtp:
324 	case e1000_pch_lnp:
325 	case e1000_pch_ptp:
326 		if (e1000_phy_is_accessible_pchlan(hw))
327 			break;
328 
329 		/* Before toggling LANPHYPC, see if PHY is accessible by
330 		 * forcing MAC to SMBus mode first.
331 		 */
332 		mac_reg = er32(CTRL_EXT);
333 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
334 		ew32(CTRL_EXT, mac_reg);
335 
336 		/* Wait 50 milliseconds for MAC to finish any retries
337 		 * that it might be trying to perform from previous
338 		 * attempts to acknowledge any phy read requests.
339 		 */
340 		msleep(50);
341 
342 		fallthrough;
343 	case e1000_pch2lan:
344 		if (e1000_phy_is_accessible_pchlan(hw))
345 			break;
346 
347 		fallthrough;
348 	case e1000_pchlan:
349 		if ((hw->mac.type == e1000_pchlan) &&
350 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
351 			break;
352 
353 		if (hw->phy.ops.check_reset_block(hw)) {
354 			e_dbg("Required LANPHYPC toggle blocked by ME\n");
355 			ret_val = -E1000_ERR_PHY;
356 			break;
357 		}
358 
359 		/* Toggle LANPHYPC Value bit */
360 		e1000_toggle_lanphypc_pch_lpt(hw);
361 		if (hw->mac.type >= e1000_pch_lpt) {
362 			if (e1000_phy_is_accessible_pchlan(hw))
363 				break;
364 
365 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
366 			 * so ensure that the MAC is also out of SMBus mode
367 			 */
368 			mac_reg = er32(CTRL_EXT);
369 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
370 			ew32(CTRL_EXT, mac_reg);
371 
372 			if (e1000_phy_is_accessible_pchlan(hw))
373 				break;
374 
375 			ret_val = -E1000_ERR_PHY;
376 		}
377 		break;
378 	default:
379 		break;
380 	}
381 
382 	hw->phy.ops.release(hw);
383 	if (!ret_val) {
384 
385 		/* Check to see if able to reset PHY.  Print error if not */
386 		if (hw->phy.ops.check_reset_block(hw)) {
387 			e_err("Reset blocked by ME\n");
388 			goto out;
389 		}
390 
391 		/* Reset the PHY before any access to it.  Doing so, ensures
392 		 * that the PHY is in a known good state before we read/write
393 		 * PHY registers.  The generic reset is sufficient here,
394 		 * because we haven't determined the PHY type yet.
395 		 */
396 		ret_val = e1000e_phy_hw_reset_generic(hw);
397 		if (ret_val)
398 			goto out;
399 
400 		/* On a successful reset, possibly need to wait for the PHY
401 		 * to quiesce to an accessible state before returning control
402 		 * to the calling function.  If the PHY does not quiesce, then
403 		 * return E1000E_BLK_PHY_RESET, as this is the condition that
404 		 *  the PHY is in.
405 		 */
406 		ret_val = hw->phy.ops.check_reset_block(hw);
407 		if (ret_val)
408 			e_err("ME blocked access to PHY after reset\n");
409 	}
410 
411 out:
412 	/* Ungate automatic PHY configuration on non-managed 82579 */
413 	if ((hw->mac.type == e1000_pch2lan) &&
414 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
415 		usleep_range(10000, 11000);
416 		e1000_gate_hw_phy_config_ich8lan(hw, false);
417 	}
418 
419 	return ret_val;
420 }
421 
422 /**
423  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
424  *  @hw: pointer to the HW structure
425  *
426  *  Initialize family-specific PHY parameters and function pointers.
427  **/
428 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
429 {
430 	struct e1000_phy_info *phy = &hw->phy;
431 	s32 ret_val;
432 
433 	phy->addr = 1;
434 	phy->reset_delay_us = 100;
435 
436 	phy->ops.set_page = e1000_set_page_igp;
437 	phy->ops.read_reg = e1000_read_phy_reg_hv;
438 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
439 	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
440 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
441 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
442 	phy->ops.write_reg = e1000_write_phy_reg_hv;
443 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
444 	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
445 	phy->ops.power_up = e1000_power_up_phy_copper;
446 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
447 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
448 
449 	phy->id = e1000_phy_unknown;
450 
451 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
452 	if (ret_val)
453 		return ret_val;
454 
455 	if (phy->id == e1000_phy_unknown)
456 		switch (hw->mac.type) {
457 		default:
458 			ret_val = e1000e_get_phy_id(hw);
459 			if (ret_val)
460 				return ret_val;
461 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
462 				break;
463 			fallthrough;
464 		case e1000_pch2lan:
465 		case e1000_pch_lpt:
466 		case e1000_pch_spt:
467 		case e1000_pch_cnp:
468 		case e1000_pch_tgp:
469 		case e1000_pch_adp:
470 		case e1000_pch_mtp:
471 		case e1000_pch_lnp:
472 		case e1000_pch_ptp:
473 			/* In case the PHY needs to be in mdio slow mode,
474 			 * set slow mode and try to get the PHY id again.
475 			 */
476 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
477 			if (ret_val)
478 				return ret_val;
479 			ret_val = e1000e_get_phy_id(hw);
480 			if (ret_val)
481 				return ret_val;
482 			break;
483 		}
484 	phy->type = e1000e_get_phy_type_from_id(phy->id);
485 
486 	switch (phy->type) {
487 	case e1000_phy_82577:
488 	case e1000_phy_82579:
489 	case e1000_phy_i217:
490 		phy->ops.check_polarity = e1000_check_polarity_82577;
491 		phy->ops.force_speed_duplex =
492 		    e1000_phy_force_speed_duplex_82577;
493 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
494 		phy->ops.get_info = e1000_get_phy_info_82577;
495 		phy->ops.commit = e1000e_phy_sw_reset;
496 		break;
497 	case e1000_phy_82578:
498 		phy->ops.check_polarity = e1000_check_polarity_m88;
499 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
500 		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
501 		phy->ops.get_info = e1000e_get_phy_info_m88;
502 		break;
503 	default:
504 		ret_val = -E1000_ERR_PHY;
505 		break;
506 	}
507 
508 	return ret_val;
509 }
510 
511 /**
512  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
513  *  @hw: pointer to the HW structure
514  *
515  *  Initialize family-specific PHY parameters and function pointers.
516  **/
517 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
518 {
519 	struct e1000_phy_info *phy = &hw->phy;
520 	s32 ret_val;
521 	u16 i = 0;
522 
523 	phy->addr = 1;
524 	phy->reset_delay_us = 100;
525 
526 	phy->ops.power_up = e1000_power_up_phy_copper;
527 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
528 
529 	/* We may need to do this twice - once for IGP and if that fails,
530 	 * we'll set BM func pointers and try again
531 	 */
532 	ret_val = e1000e_determine_phy_address(hw);
533 	if (ret_val) {
534 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
535 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
536 		ret_val = e1000e_determine_phy_address(hw);
537 		if (ret_val) {
538 			e_dbg("Cannot determine PHY addr. Erroring out\n");
539 			return ret_val;
540 		}
541 	}
542 
543 	phy->id = 0;
544 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
545 	       (i++ < 100)) {
546 		usleep_range(1000, 1100);
547 		ret_val = e1000e_get_phy_id(hw);
548 		if (ret_val)
549 			return ret_val;
550 	}
551 
552 	/* Verify phy id */
553 	switch (phy->id) {
554 	case IGP03E1000_E_PHY_ID:
555 		phy->type = e1000_phy_igp_3;
556 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
557 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
558 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
559 		phy->ops.get_info = e1000e_get_phy_info_igp;
560 		phy->ops.check_polarity = e1000_check_polarity_igp;
561 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
562 		break;
563 	case IFE_E_PHY_ID:
564 	case IFE_PLUS_E_PHY_ID:
565 	case IFE_C_E_PHY_ID:
566 		phy->type = e1000_phy_ife;
567 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
568 		phy->ops.get_info = e1000_get_phy_info_ife;
569 		phy->ops.check_polarity = e1000_check_polarity_ife;
570 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
571 		break;
572 	case BME1000_E_PHY_ID:
573 		phy->type = e1000_phy_bm;
574 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
575 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
576 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
577 		phy->ops.commit = e1000e_phy_sw_reset;
578 		phy->ops.get_info = e1000e_get_phy_info_m88;
579 		phy->ops.check_polarity = e1000_check_polarity_m88;
580 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
581 		break;
582 	default:
583 		return -E1000_ERR_PHY;
584 	}
585 
586 	return 0;
587 }
588 
589 /**
590  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
591  *  @hw: pointer to the HW structure
592  *
593  *  Initialize family-specific NVM parameters and function
594  *  pointers.
595  **/
596 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
597 {
598 	struct e1000_nvm_info *nvm = &hw->nvm;
599 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
600 	u32 gfpreg, sector_base_addr, sector_end_addr;
601 	u16 i;
602 	u32 nvm_size;
603 
604 	nvm->type = e1000_nvm_flash_sw;
605 
606 	if (hw->mac.type >= e1000_pch_spt) {
607 		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
608 		 * STRAP register. This is because in SPT the GbE Flash region
609 		 * is no longer accessed through the flash registers. Instead,
610 		 * the mechanism has changed, and the Flash region access
611 		 * registers are now implemented in GbE memory space.
612 		 */
613 		nvm->flash_base_addr = 0;
614 		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
615 		    * NVM_SIZE_MULTIPLIER;
616 		nvm->flash_bank_size = nvm_size / 2;
617 		/* Adjust to word count */
618 		nvm->flash_bank_size /= sizeof(u16);
619 		/* Set the base address for flash register access */
620 		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
621 	} else {
622 		/* Can't read flash registers if register set isn't mapped. */
623 		if (!hw->flash_address) {
624 			e_dbg("ERROR: Flash registers not mapped\n");
625 			return -E1000_ERR_CONFIG;
626 		}
627 
628 		gfpreg = er32flash(ICH_FLASH_GFPREG);
629 
630 		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
631 		 * Add 1 to sector_end_addr since this sector is included in
632 		 * the overall size.
633 		 */
634 		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
635 		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
636 
637 		/* flash_base_addr is byte-aligned */
638 		nvm->flash_base_addr = sector_base_addr
639 		    << FLASH_SECTOR_ADDR_SHIFT;
640 
641 		/* find total size of the NVM, then cut in half since the total
642 		 * size represents two separate NVM banks.
643 		 */
644 		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
645 					<< FLASH_SECTOR_ADDR_SHIFT);
646 		nvm->flash_bank_size /= 2;
647 		/* Adjust to word count */
648 		nvm->flash_bank_size /= sizeof(u16);
649 	}
650 
651 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
652 
653 	/* Clear shadow ram */
654 	for (i = 0; i < nvm->word_size; i++) {
655 		dev_spec->shadow_ram[i].modified = false;
656 		dev_spec->shadow_ram[i].value = 0xFFFF;
657 	}
658 
659 	return 0;
660 }
661 
662 /**
663  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
664  *  @hw: pointer to the HW structure
665  *
666  *  Initialize family-specific MAC parameters and function
667  *  pointers.
668  **/
669 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
670 {
671 	struct e1000_mac_info *mac = &hw->mac;
672 
673 	/* Set media type function pointer */
674 	hw->phy.media_type = e1000_media_type_copper;
675 
676 	/* Set mta register count */
677 	mac->mta_reg_count = 32;
678 	/* Set rar entry count */
679 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
680 	if (mac->type == e1000_ich8lan)
681 		mac->rar_entry_count--;
682 	/* FWSM register */
683 	mac->has_fwsm = true;
684 	/* ARC subsystem not supported */
685 	mac->arc_subsystem_valid = false;
686 	/* Adaptive IFS supported */
687 	mac->adaptive_ifs = true;
688 
689 	/* LED and other operations */
690 	switch (mac->type) {
691 	case e1000_ich8lan:
692 	case e1000_ich9lan:
693 	case e1000_ich10lan:
694 		/* check management mode */
695 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
696 		/* ID LED init */
697 		mac->ops.id_led_init = e1000e_id_led_init_generic;
698 		/* blink LED */
699 		mac->ops.blink_led = e1000e_blink_led_generic;
700 		/* setup LED */
701 		mac->ops.setup_led = e1000e_setup_led_generic;
702 		/* cleanup LED */
703 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
704 		/* turn on/off LED */
705 		mac->ops.led_on = e1000_led_on_ich8lan;
706 		mac->ops.led_off = e1000_led_off_ich8lan;
707 		break;
708 	case e1000_pch2lan:
709 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
710 		mac->ops.rar_set = e1000_rar_set_pch2lan;
711 		fallthrough;
712 	case e1000_pch_lpt:
713 	case e1000_pch_spt:
714 	case e1000_pch_cnp:
715 	case e1000_pch_tgp:
716 	case e1000_pch_adp:
717 	case e1000_pch_mtp:
718 	case e1000_pch_lnp:
719 	case e1000_pch_ptp:
720 	case e1000_pchlan:
721 		/* check management mode */
722 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
723 		/* ID LED init */
724 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
725 		/* setup LED */
726 		mac->ops.setup_led = e1000_setup_led_pchlan;
727 		/* cleanup LED */
728 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
729 		/* turn on/off LED */
730 		mac->ops.led_on = e1000_led_on_pchlan;
731 		mac->ops.led_off = e1000_led_off_pchlan;
732 		break;
733 	default:
734 		break;
735 	}
736 
737 	if (mac->type >= e1000_pch_lpt) {
738 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
739 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
740 		mac->ops.setup_physical_interface =
741 		    e1000_setup_copper_link_pch_lpt;
742 		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
743 	}
744 
745 	/* Enable PCS Lock-loss workaround for ICH8 */
746 	if (mac->type == e1000_ich8lan)
747 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
748 
749 	return 0;
750 }
751 
752 /**
753  *  __e1000_access_emi_reg_locked - Read/write EMI register
754  *  @hw: pointer to the HW structure
755  *  @address: EMI address to program
756  *  @data: pointer to value to read/write from/to the EMI address
757  *  @read: boolean flag to indicate read or write
758  *
759  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
760  **/
761 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
762 					 u16 *data, bool read)
763 {
764 	s32 ret_val;
765 
766 	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
767 	if (ret_val)
768 		return ret_val;
769 
770 	if (read)
771 		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
772 	else
773 		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
774 
775 	return ret_val;
776 }
777 
778 /**
779  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
780  *  @hw: pointer to the HW structure
781  *  @addr: EMI address to program
782  *  @data: value to be read from the EMI address
783  *
784  *  Assumes the SW/FW/HW Semaphore is already acquired.
785  **/
786 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
787 {
788 	return __e1000_access_emi_reg_locked(hw, addr, data, true);
789 }
790 
791 /**
792  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
793  *  @hw: pointer to the HW structure
794  *  @addr: EMI address to program
795  *  @data: value to be written to the EMI address
796  *
797  *  Assumes the SW/FW/HW Semaphore is already acquired.
798  **/
799 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
800 {
801 	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
802 }
803 
804 /**
805  *  e1000_set_eee_pchlan - Enable/disable EEE support
806  *  @hw: pointer to the HW structure
807  *
808  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
809  *  the link and the EEE capabilities of the link partner.  The LPI Control
810  *  register bits will remain set only if/when link is up.
811  *
812  *  EEE LPI must not be asserted earlier than one second after link is up.
813  *  On 82579, EEE LPI should not be enabled until such time otherwise there
814  *  can be link issues with some switches.  Other devices can have EEE LPI
815  *  enabled immediately upon link up since they have a timer in hardware which
816  *  prevents LPI from being asserted too early.
817  **/
818 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
819 {
820 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
821 	s32 ret_val;
822 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
823 
824 	switch (hw->phy.type) {
825 	case e1000_phy_82579:
826 		lpa = I82579_EEE_LP_ABILITY;
827 		pcs_status = I82579_EEE_PCS_STATUS;
828 		adv_addr = I82579_EEE_ADVERTISEMENT;
829 		break;
830 	case e1000_phy_i217:
831 		lpa = I217_EEE_LP_ABILITY;
832 		pcs_status = I217_EEE_PCS_STATUS;
833 		adv_addr = I217_EEE_ADVERTISEMENT;
834 		break;
835 	default:
836 		return 0;
837 	}
838 
839 	ret_val = hw->phy.ops.acquire(hw);
840 	if (ret_val)
841 		return ret_val;
842 
843 	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
844 	if (ret_val)
845 		goto release;
846 
847 	/* Clear bits that enable EEE in various speeds */
848 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
849 
850 	/* Enable EEE if not disabled by user */
851 	if (!dev_spec->eee_disable) {
852 		/* Save off link partner's EEE ability */
853 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
854 						    &dev_spec->eee_lp_ability);
855 		if (ret_val)
856 			goto release;
857 
858 		/* Read EEE advertisement */
859 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
860 		if (ret_val)
861 			goto release;
862 
863 		/* Enable EEE only for speeds in which the link partner is
864 		 * EEE capable and for which we advertise EEE.
865 		 */
866 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
867 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
868 
869 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
870 			e1e_rphy_locked(hw, MII_LPA, &data);
871 			if (data & LPA_100FULL)
872 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
873 			else
874 				/* EEE is not supported in 100Half, so ignore
875 				 * partner's EEE in 100 ability if full-duplex
876 				 * is not advertised.
877 				 */
878 				dev_spec->eee_lp_ability &=
879 				    ~I82579_EEE_100_SUPPORTED;
880 		}
881 	}
882 
883 	if (hw->phy.type == e1000_phy_82579) {
884 		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
885 						    &data);
886 		if (ret_val)
887 			goto release;
888 
889 		data &= ~I82579_LPI_100_PLL_SHUT;
890 		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
891 						     data);
892 	}
893 
894 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
895 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
896 	if (ret_val)
897 		goto release;
898 
899 	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
900 release:
901 	hw->phy.ops.release(hw);
902 
903 	return ret_val;
904 }
905 
906 /**
907  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
908  *  @hw:   pointer to the HW structure
909  *  @link: link up bool flag
910  *
911  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
912  *  preventing further DMA write requests.  Workaround the issue by disabling
913  *  the de-assertion of the clock request when in 1Gpbs mode.
914  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
915  *  speeds in order to avoid Tx hangs.
916  **/
917 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
918 {
919 	u32 fextnvm6 = er32(FEXTNVM6);
920 	u32 status = er32(STATUS);
921 	s32 ret_val = 0;
922 	u16 reg;
923 
924 	if (link && (status & E1000_STATUS_SPEED_1000)) {
925 		ret_val = hw->phy.ops.acquire(hw);
926 		if (ret_val)
927 			return ret_val;
928 
929 		ret_val =
930 		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
931 						&reg);
932 		if (ret_val)
933 			goto release;
934 
935 		ret_val =
936 		    e1000e_write_kmrn_reg_locked(hw,
937 						 E1000_KMRNCTRLSTA_K1_CONFIG,
938 						 reg &
939 						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
940 		if (ret_val)
941 			goto release;
942 
943 		usleep_range(10, 20);
944 
945 		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
946 
947 		ret_val =
948 		    e1000e_write_kmrn_reg_locked(hw,
949 						 E1000_KMRNCTRLSTA_K1_CONFIG,
950 						 reg);
951 release:
952 		hw->phy.ops.release(hw);
953 	} else {
954 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
955 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
956 
957 		if ((hw->phy.revision > 5) || !link ||
958 		    ((status & E1000_STATUS_SPEED_100) &&
959 		     (status & E1000_STATUS_FD)))
960 			goto update_fextnvm6;
961 
962 		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
963 		if (ret_val)
964 			return ret_val;
965 
966 		/* Clear link status transmit timeout */
967 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
968 
969 		if (status & E1000_STATUS_SPEED_100) {
970 			/* Set inband Tx timeout to 5x10us for 100Half */
971 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
972 
973 			/* Do not extend the K1 entry latency for 100Half */
974 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
975 		} else {
976 			/* Set inband Tx timeout to 50x10us for 10Full/Half */
977 			reg |= 50 <<
978 			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
979 
980 			/* Extend the K1 entry latency for 10 Mbps */
981 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
982 		}
983 
984 		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
985 		if (ret_val)
986 			return ret_val;
987 
988 update_fextnvm6:
989 		ew32(FEXTNVM6, fextnvm6);
990 	}
991 
992 	return ret_val;
993 }
994 
995 /**
996  *  e1000_platform_pm_pch_lpt - Set platform power management values
997  *  @hw: pointer to the HW structure
998  *  @link: bool indicating link status
999  *
1000  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1001  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1002  *  when link is up (which must not exceed the maximum latency supported
1003  *  by the platform), otherwise specify there is no LTR requirement.
1004  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1005  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1006  *  Capability register set, on this device LTR is set by writing the
1007  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1008  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1009  *  message to the PMC.
1010  **/
1011 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1012 {
1013 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1014 	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1015 	u32 max_ltr_enc_d = 0;	/* maximum LTR decoded by platform */
1016 	u32 lat_enc_d = 0;	/* latency decoded */
1017 	u16 lat_enc = 0;	/* latency encoded */
1018 
1019 	if (link) {
1020 		u16 speed, duplex, scale = 0;
1021 		u16 max_snoop, max_nosnoop;
1022 		u16 max_ltr_enc;	/* max LTR latency encoded */
1023 		u64 value;
1024 		u32 rxa;
1025 
1026 		if (!hw->adapter->max_frame_size) {
1027 			e_dbg("max_frame_size not set.\n");
1028 			return -E1000_ERR_CONFIG;
1029 		}
1030 
1031 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1032 		if (!speed) {
1033 			e_dbg("Speed not set.\n");
1034 			return -E1000_ERR_CONFIG;
1035 		}
1036 
1037 		/* Rx Packet Buffer Allocation size (KB) */
1038 		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1039 
1040 		/* Determine the maximum latency tolerated by the device.
1041 		 *
1042 		 * Per the PCIe spec, the tolerated latencies are encoded as
1043 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1044 		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1045 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1046 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1047 		 */
1048 		rxa *= 512;
1049 		value = (rxa > hw->adapter->max_frame_size) ?
1050 			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1051 			0;
1052 
1053 		while (value > PCI_LTR_VALUE_MASK) {
1054 			scale++;
1055 			value = DIV_ROUND_UP(value, BIT(5));
1056 		}
1057 		if (scale > E1000_LTRV_SCALE_MAX) {
1058 			e_dbg("Invalid LTR latency scale %d\n", scale);
1059 			return -E1000_ERR_CONFIG;
1060 		}
1061 		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1062 
1063 		/* Determine the maximum latency tolerated by the platform */
1064 		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1065 				     &max_snoop);
1066 		pci_read_config_word(hw->adapter->pdev,
1067 				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1068 		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1069 
1070 		lat_enc_d = (lat_enc & E1000_LTRV_VALUE_MASK) *
1071 			     (1U << (E1000_LTRV_SCALE_FACTOR *
1072 			     ((lat_enc & E1000_LTRV_SCALE_MASK)
1073 			     >> E1000_LTRV_SCALE_SHIFT)));
1074 
1075 		max_ltr_enc_d = (max_ltr_enc & E1000_LTRV_VALUE_MASK) *
1076 				 (1U << (E1000_LTRV_SCALE_FACTOR *
1077 				 ((max_ltr_enc & E1000_LTRV_SCALE_MASK)
1078 				 >> E1000_LTRV_SCALE_SHIFT)));
1079 
1080 		if (lat_enc_d > max_ltr_enc_d)
1081 			lat_enc = max_ltr_enc;
1082 	}
1083 
1084 	/* Set Snoop and No-Snoop latencies the same */
1085 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1086 	ew32(LTRV, reg);
1087 
1088 	return 0;
1089 }
1090 
1091 /**
1092  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1093  *  @hw: pointer to the HW structure
1094  *  @to_sx: boolean indicating a system power state transition to Sx
1095  *
1096  *  When link is down, configure ULP mode to significantly reduce the power
1097  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1098  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1099  *  system, configure the ULP mode by software.
1100  */
1101 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1102 {
1103 	u32 mac_reg;
1104 	s32 ret_val = 0;
1105 	u16 phy_reg;
1106 	u16 oem_reg = 0;
1107 
1108 	if ((hw->mac.type < e1000_pch_lpt) ||
1109 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1110 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1111 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1112 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1113 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1114 		return 0;
1115 
1116 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1117 		/* Request ME configure ULP mode in the PHY */
1118 		mac_reg = er32(H2ME);
1119 		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1120 		ew32(H2ME, mac_reg);
1121 
1122 		goto out;
1123 	}
1124 
1125 	if (!to_sx) {
1126 		int i = 0;
1127 
1128 		/* Poll up to 5 seconds for Cable Disconnected indication */
1129 		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1130 			/* Bail if link is re-acquired */
1131 			if (er32(STATUS) & E1000_STATUS_LU)
1132 				return -E1000_ERR_PHY;
1133 
1134 			if (i++ == 100)
1135 				break;
1136 
1137 			msleep(50);
1138 		}
1139 		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1140 		      (er32(FEXT) &
1141 		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1142 	}
1143 
1144 	ret_val = hw->phy.ops.acquire(hw);
1145 	if (ret_val)
1146 		goto out;
1147 
1148 	/* Force SMBus mode in PHY */
1149 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1150 	if (ret_val)
1151 		goto release;
1152 	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1153 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1154 
1155 	/* Force SMBus mode in MAC */
1156 	mac_reg = er32(CTRL_EXT);
1157 	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1158 	ew32(CTRL_EXT, mac_reg);
1159 
1160 	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1161 	 * LPLU and disable Gig speed when entering ULP
1162 	 */
1163 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1164 		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1165 						       &oem_reg);
1166 		if (ret_val)
1167 			goto release;
1168 
1169 		phy_reg = oem_reg;
1170 		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1171 
1172 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1173 							phy_reg);
1174 
1175 		if (ret_val)
1176 			goto release;
1177 	}
1178 
1179 	/* Set Inband ULP Exit, Reset to SMBus mode and
1180 	 * Disable SMBus Release on PERST# in PHY
1181 	 */
1182 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1183 	if (ret_val)
1184 		goto release;
1185 	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1186 		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1187 	if (to_sx) {
1188 		if (er32(WUFC) & E1000_WUFC_LNKC)
1189 			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1190 		else
1191 			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1192 
1193 		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1194 		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1195 	} else {
1196 		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1197 		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1198 		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1199 	}
1200 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1201 
1202 	/* Set Disable SMBus Release on PERST# in MAC */
1203 	mac_reg = er32(FEXTNVM7);
1204 	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1205 	ew32(FEXTNVM7, mac_reg);
1206 
1207 	/* Commit ULP changes in PHY by starting auto ULP configuration */
1208 	phy_reg |= I218_ULP_CONFIG1_START;
1209 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1210 
1211 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1212 	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1213 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1214 							oem_reg);
1215 		if (ret_val)
1216 			goto release;
1217 	}
1218 
1219 release:
1220 	hw->phy.ops.release(hw);
1221 out:
1222 	if (ret_val)
1223 		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1224 	else
1225 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1226 
1227 	return ret_val;
1228 }
1229 
1230 /**
1231  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1232  *  @hw: pointer to the HW structure
1233  *  @force: boolean indicating whether or not to force disabling ULP
1234  *
1235  *  Un-configure ULP mode when link is up, the system is transitioned from
1236  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1237  *  system, poll for an indication from ME that ULP has been un-configured.
1238  *  If not on an ME enabled system, un-configure the ULP mode by software.
1239  *
1240  *  During nominal operation, this function is called when link is acquired
1241  *  to disable ULP mode (force=false); otherwise, for example when unloading
1242  *  the driver or during Sx->S0 transitions, this is called with force=true
1243  *  to forcibly disable ULP.
1244  */
1245 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1246 {
1247 	s32 ret_val = 0;
1248 	u32 mac_reg;
1249 	u16 phy_reg;
1250 	int i = 0;
1251 
1252 	if ((hw->mac.type < e1000_pch_lpt) ||
1253 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1254 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1255 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1256 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1257 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1258 		return 0;
1259 
1260 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1261 		struct e1000_adapter *adapter = hw->adapter;
1262 		bool firmware_bug = false;
1263 
1264 		if (force) {
1265 			/* Request ME un-configure ULP mode in the PHY */
1266 			mac_reg = er32(H2ME);
1267 			mac_reg &= ~E1000_H2ME_ULP;
1268 			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1269 			ew32(H2ME, mac_reg);
1270 		}
1271 
1272 		/* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE.
1273 		 * If this takes more than 1 second, show a warning indicating a
1274 		 * firmware bug
1275 		 */
1276 		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1277 			if (i++ == 250) {
1278 				ret_val = -E1000_ERR_PHY;
1279 				goto out;
1280 			}
1281 			if (i > 100 && !firmware_bug)
1282 				firmware_bug = true;
1283 
1284 			usleep_range(10000, 11000);
1285 		}
1286 		if (firmware_bug)
1287 			e_warn("ULP_CONFIG_DONE took %d msec. This is a firmware bug\n",
1288 			       i * 10);
1289 		else
1290 			e_dbg("ULP_CONFIG_DONE cleared after %d msec\n",
1291 			      i * 10);
1292 
1293 		if (force) {
1294 			mac_reg = er32(H2ME);
1295 			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1296 			ew32(H2ME, mac_reg);
1297 		} else {
1298 			/* Clear H2ME.ULP after ME ULP configuration */
1299 			mac_reg = er32(H2ME);
1300 			mac_reg &= ~E1000_H2ME_ULP;
1301 			ew32(H2ME, mac_reg);
1302 		}
1303 
1304 		goto out;
1305 	}
1306 
1307 	ret_val = hw->phy.ops.acquire(hw);
1308 	if (ret_val)
1309 		goto out;
1310 
1311 	if (force)
1312 		/* Toggle LANPHYPC Value bit */
1313 		e1000_toggle_lanphypc_pch_lpt(hw);
1314 
1315 	/* Unforce SMBus mode in PHY */
1316 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1317 	if (ret_val) {
1318 		/* The MAC might be in PCIe mode, so temporarily force to
1319 		 * SMBus mode in order to access the PHY.
1320 		 */
1321 		mac_reg = er32(CTRL_EXT);
1322 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1323 		ew32(CTRL_EXT, mac_reg);
1324 
1325 		msleep(50);
1326 
1327 		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1328 						       &phy_reg);
1329 		if (ret_val)
1330 			goto release;
1331 	}
1332 	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1333 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1334 
1335 	/* Unforce SMBus mode in MAC */
1336 	mac_reg = er32(CTRL_EXT);
1337 	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1338 	ew32(CTRL_EXT, mac_reg);
1339 
1340 	/* When ULP mode was previously entered, K1 was disabled by the
1341 	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1342 	 */
1343 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1344 	if (ret_val)
1345 		goto release;
1346 	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1347 	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1348 
1349 	/* Clear ULP enabled configuration */
1350 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1351 	if (ret_val)
1352 		goto release;
1353 	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1354 		     I218_ULP_CONFIG1_STICKY_ULP |
1355 		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1356 		     I218_ULP_CONFIG1_WOL_HOST |
1357 		     I218_ULP_CONFIG1_INBAND_EXIT |
1358 		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1359 		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1360 		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1361 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1362 
1363 	/* Commit ULP changes by starting auto ULP configuration */
1364 	phy_reg |= I218_ULP_CONFIG1_START;
1365 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1366 
1367 	/* Clear Disable SMBus Release on PERST# in MAC */
1368 	mac_reg = er32(FEXTNVM7);
1369 	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1370 	ew32(FEXTNVM7, mac_reg);
1371 
1372 release:
1373 	hw->phy.ops.release(hw);
1374 	if (force) {
1375 		e1000_phy_hw_reset(hw);
1376 		msleep(50);
1377 	}
1378 out:
1379 	if (ret_val)
1380 		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1381 	else
1382 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1383 
1384 	return ret_val;
1385 }
1386 
1387 /**
1388  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1389  *  @hw: pointer to the HW structure
1390  *
1391  *  Checks to see of the link status of the hardware has changed.  If a
1392  *  change in link status has been detected, then we read the PHY registers
1393  *  to get the current speed/duplex if link exists.
1394  **/
1395 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1396 {
1397 	struct e1000_mac_info *mac = &hw->mac;
1398 	s32 ret_val, tipg_reg = 0;
1399 	u16 emi_addr, emi_val = 0;
1400 	bool link;
1401 	u16 phy_reg;
1402 
1403 	/* We only want to go out to the PHY registers to see if Auto-Neg
1404 	 * has completed and/or if our link status has changed.  The
1405 	 * get_link_status flag is set upon receiving a Link Status
1406 	 * Change or Rx Sequence Error interrupt.
1407 	 */
1408 	if (!mac->get_link_status)
1409 		return 0;
1410 	mac->get_link_status = false;
1411 
1412 	/* First we want to see if the MII Status Register reports
1413 	 * link.  If so, then we want to get the current speed/duplex
1414 	 * of the PHY.
1415 	 */
1416 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1417 	if (ret_val)
1418 		goto out;
1419 
1420 	if (hw->mac.type == e1000_pchlan) {
1421 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1422 		if (ret_val)
1423 			goto out;
1424 	}
1425 
1426 	/* When connected at 10Mbps half-duplex, some parts are excessively
1427 	 * aggressive resulting in many collisions. To avoid this, increase
1428 	 * the IPG and reduce Rx latency in the PHY.
1429 	 */
1430 	if ((hw->mac.type >= e1000_pch2lan) && link) {
1431 		u16 speed, duplex;
1432 
1433 		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1434 		tipg_reg = er32(TIPG);
1435 		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1436 
1437 		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1438 			tipg_reg |= 0xFF;
1439 			/* Reduce Rx latency in analog PHY */
1440 			emi_val = 0;
1441 		} else if (hw->mac.type >= e1000_pch_spt &&
1442 			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1443 			tipg_reg |= 0xC;
1444 			emi_val = 1;
1445 		} else {
1446 
1447 			/* Roll back the default values */
1448 			tipg_reg |= 0x08;
1449 			emi_val = 1;
1450 		}
1451 
1452 		ew32(TIPG, tipg_reg);
1453 
1454 		ret_val = hw->phy.ops.acquire(hw);
1455 		if (ret_val)
1456 			goto out;
1457 
1458 		if (hw->mac.type == e1000_pch2lan)
1459 			emi_addr = I82579_RX_CONFIG;
1460 		else
1461 			emi_addr = I217_RX_CONFIG;
1462 		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1463 
1464 		if (hw->mac.type >= e1000_pch_lpt) {
1465 			u16 phy_reg;
1466 
1467 			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1468 			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1469 			if (speed == SPEED_100 || speed == SPEED_10)
1470 				phy_reg |= 0x3E8;
1471 			else
1472 				phy_reg |= 0xFA;
1473 			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1474 
1475 			if (speed == SPEED_1000) {
1476 				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1477 							    &phy_reg);
1478 
1479 				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1480 
1481 				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1482 							     phy_reg);
1483 			}
1484 		}
1485 		hw->phy.ops.release(hw);
1486 
1487 		if (ret_val)
1488 			goto out;
1489 
1490 		if (hw->mac.type >= e1000_pch_spt) {
1491 			u16 data;
1492 			u16 ptr_gap;
1493 
1494 			if (speed == SPEED_1000) {
1495 				ret_val = hw->phy.ops.acquire(hw);
1496 				if (ret_val)
1497 					goto out;
1498 
1499 				ret_val = e1e_rphy_locked(hw,
1500 							  PHY_REG(776, 20),
1501 							  &data);
1502 				if (ret_val) {
1503 					hw->phy.ops.release(hw);
1504 					goto out;
1505 				}
1506 
1507 				ptr_gap = (data & (0x3FF << 2)) >> 2;
1508 				if (ptr_gap < 0x18) {
1509 					data &= ~(0x3FF << 2);
1510 					data |= (0x18 << 2);
1511 					ret_val =
1512 					    e1e_wphy_locked(hw,
1513 							    PHY_REG(776, 20),
1514 							    data);
1515 				}
1516 				hw->phy.ops.release(hw);
1517 				if (ret_val)
1518 					goto out;
1519 			} else {
1520 				ret_val = hw->phy.ops.acquire(hw);
1521 				if (ret_val)
1522 					goto out;
1523 
1524 				ret_val = e1e_wphy_locked(hw,
1525 							  PHY_REG(776, 20),
1526 							  0xC023);
1527 				hw->phy.ops.release(hw);
1528 				if (ret_val)
1529 					goto out;
1530 
1531 			}
1532 		}
1533 	}
1534 
1535 	/* I217 Packet Loss issue:
1536 	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1537 	 * on power up.
1538 	 * Set the Beacon Duration for I217 to 8 usec
1539 	 */
1540 	if (hw->mac.type >= e1000_pch_lpt) {
1541 		u32 mac_reg;
1542 
1543 		mac_reg = er32(FEXTNVM4);
1544 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1545 		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1546 		ew32(FEXTNVM4, mac_reg);
1547 	}
1548 
1549 	/* Work-around I218 hang issue */
1550 	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1551 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1552 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1553 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1554 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1555 		if (ret_val)
1556 			goto out;
1557 	}
1558 	if (hw->mac.type >= e1000_pch_lpt) {
1559 		/* Set platform power management values for
1560 		 * Latency Tolerance Reporting (LTR)
1561 		 */
1562 		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1563 		if (ret_val)
1564 			goto out;
1565 	}
1566 
1567 	/* Clear link partner's EEE ability */
1568 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1569 
1570 	if (hw->mac.type >= e1000_pch_lpt) {
1571 		u32 fextnvm6 = er32(FEXTNVM6);
1572 
1573 		if (hw->mac.type == e1000_pch_spt) {
1574 			/* FEXTNVM6 K1-off workaround - for SPT only */
1575 			u32 pcieanacfg = er32(PCIEANACFG);
1576 
1577 			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1578 				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1579 			else
1580 				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1581 		}
1582 
1583 		ew32(FEXTNVM6, fextnvm6);
1584 	}
1585 
1586 	if (!link)
1587 		goto out;
1588 
1589 	switch (hw->mac.type) {
1590 	case e1000_pch2lan:
1591 		ret_val = e1000_k1_workaround_lv(hw);
1592 		if (ret_val)
1593 			return ret_val;
1594 		fallthrough;
1595 	case e1000_pchlan:
1596 		if (hw->phy.type == e1000_phy_82578) {
1597 			ret_val = e1000_link_stall_workaround_hv(hw);
1598 			if (ret_val)
1599 				return ret_val;
1600 		}
1601 
1602 		/* Workaround for PCHx parts in half-duplex:
1603 		 * Set the number of preambles removed from the packet
1604 		 * when it is passed from the PHY to the MAC to prevent
1605 		 * the MAC from misinterpreting the packet type.
1606 		 */
1607 		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1608 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1609 
1610 		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1611 			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1612 
1613 		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1614 		break;
1615 	default:
1616 		break;
1617 	}
1618 
1619 	/* Check if there was DownShift, must be checked
1620 	 * immediately after link-up
1621 	 */
1622 	e1000e_check_downshift(hw);
1623 
1624 	/* Enable/Disable EEE after link up */
1625 	if (hw->phy.type > e1000_phy_82579) {
1626 		ret_val = e1000_set_eee_pchlan(hw);
1627 		if (ret_val)
1628 			return ret_val;
1629 	}
1630 
1631 	/* If we are forcing speed/duplex, then we simply return since
1632 	 * we have already determined whether we have link or not.
1633 	 */
1634 	if (!mac->autoneg)
1635 		return -E1000_ERR_CONFIG;
1636 
1637 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1638 	 * of MAC speed/duplex configuration.  So we only need to
1639 	 * configure Collision Distance in the MAC.
1640 	 */
1641 	mac->ops.config_collision_dist(hw);
1642 
1643 	/* Configure Flow Control now that Auto-Neg has completed.
1644 	 * First, we need to restore the desired flow control
1645 	 * settings because we may have had to re-autoneg with a
1646 	 * different link partner.
1647 	 */
1648 	ret_val = e1000e_config_fc_after_link_up(hw);
1649 	if (ret_val)
1650 		e_dbg("Error configuring flow control\n");
1651 
1652 	return ret_val;
1653 
1654 out:
1655 	mac->get_link_status = true;
1656 	return ret_val;
1657 }
1658 
1659 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1660 {
1661 	struct e1000_hw *hw = &adapter->hw;
1662 	s32 rc;
1663 
1664 	rc = e1000_init_mac_params_ich8lan(hw);
1665 	if (rc)
1666 		return rc;
1667 
1668 	rc = e1000_init_nvm_params_ich8lan(hw);
1669 	if (rc)
1670 		return rc;
1671 
1672 	switch (hw->mac.type) {
1673 	case e1000_ich8lan:
1674 	case e1000_ich9lan:
1675 	case e1000_ich10lan:
1676 		rc = e1000_init_phy_params_ich8lan(hw);
1677 		break;
1678 	case e1000_pchlan:
1679 	case e1000_pch2lan:
1680 	case e1000_pch_lpt:
1681 	case e1000_pch_spt:
1682 	case e1000_pch_cnp:
1683 	case e1000_pch_tgp:
1684 	case e1000_pch_adp:
1685 	case e1000_pch_mtp:
1686 	case e1000_pch_lnp:
1687 	case e1000_pch_ptp:
1688 		rc = e1000_init_phy_params_pchlan(hw);
1689 		break;
1690 	default:
1691 		break;
1692 	}
1693 	if (rc)
1694 		return rc;
1695 
1696 	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1697 	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1698 	 */
1699 	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1700 	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1701 	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1702 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1703 		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1704 
1705 		hw->mac.ops.blink_led = NULL;
1706 	}
1707 
1708 	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1709 	    (adapter->hw.phy.type != e1000_phy_ife))
1710 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1711 
1712 	/* Enable workaround for 82579 w/ ME enabled */
1713 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1714 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1715 		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1716 
1717 	return 0;
1718 }
1719 
1720 static DEFINE_MUTEX(nvm_mutex);
1721 
1722 /**
1723  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1724  *  @hw: pointer to the HW structure
1725  *
1726  *  Acquires the mutex for performing NVM operations.
1727  **/
1728 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1729 {
1730 	mutex_lock(&nvm_mutex);
1731 
1732 	return 0;
1733 }
1734 
1735 /**
1736  *  e1000_release_nvm_ich8lan - Release NVM mutex
1737  *  @hw: pointer to the HW structure
1738  *
1739  *  Releases the mutex used while performing NVM operations.
1740  **/
1741 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1742 {
1743 	mutex_unlock(&nvm_mutex);
1744 }
1745 
1746 /**
1747  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1748  *  @hw: pointer to the HW structure
1749  *
1750  *  Acquires the software control flag for performing PHY and select
1751  *  MAC CSR accesses.
1752  **/
1753 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1754 {
1755 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1756 	s32 ret_val = 0;
1757 
1758 	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1759 			     &hw->adapter->state)) {
1760 		e_dbg("contention for Phy access\n");
1761 		return -E1000_ERR_PHY;
1762 	}
1763 
1764 	while (timeout) {
1765 		extcnf_ctrl = er32(EXTCNF_CTRL);
1766 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1767 			break;
1768 
1769 		mdelay(1);
1770 		timeout--;
1771 	}
1772 
1773 	if (!timeout) {
1774 		e_dbg("SW has already locked the resource.\n");
1775 		ret_val = -E1000_ERR_CONFIG;
1776 		goto out;
1777 	}
1778 
1779 	timeout = SW_FLAG_TIMEOUT;
1780 
1781 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1782 	ew32(EXTCNF_CTRL, extcnf_ctrl);
1783 
1784 	while (timeout) {
1785 		extcnf_ctrl = er32(EXTCNF_CTRL);
1786 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1787 			break;
1788 
1789 		mdelay(1);
1790 		timeout--;
1791 	}
1792 
1793 	if (!timeout) {
1794 		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1795 		      er32(FWSM), extcnf_ctrl);
1796 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1797 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1798 		ret_val = -E1000_ERR_CONFIG;
1799 		goto out;
1800 	}
1801 
1802 out:
1803 	if (ret_val)
1804 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1805 
1806 	return ret_val;
1807 }
1808 
1809 /**
1810  *  e1000_release_swflag_ich8lan - Release software control flag
1811  *  @hw: pointer to the HW structure
1812  *
1813  *  Releases the software control flag for performing PHY and select
1814  *  MAC CSR accesses.
1815  **/
1816 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1817 {
1818 	u32 extcnf_ctrl;
1819 
1820 	extcnf_ctrl = er32(EXTCNF_CTRL);
1821 
1822 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1823 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1824 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1825 	} else {
1826 		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1827 	}
1828 
1829 	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1830 }
1831 
1832 /**
1833  *  e1000_check_mng_mode_ich8lan - Checks management mode
1834  *  @hw: pointer to the HW structure
1835  *
1836  *  This checks if the adapter has any manageability enabled.
1837  *  This is a function pointer entry point only called by read/write
1838  *  routines for the PHY and NVM parts.
1839  **/
1840 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1841 {
1842 	u32 fwsm;
1843 
1844 	fwsm = er32(FWSM);
1845 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1846 		((fwsm & E1000_FWSM_MODE_MASK) ==
1847 		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1848 }
1849 
1850 /**
1851  *  e1000_check_mng_mode_pchlan - Checks management mode
1852  *  @hw: pointer to the HW structure
1853  *
1854  *  This checks if the adapter has iAMT enabled.
1855  *  This is a function pointer entry point only called by read/write
1856  *  routines for the PHY and NVM parts.
1857  **/
1858 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1859 {
1860 	u32 fwsm;
1861 
1862 	fwsm = er32(FWSM);
1863 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1864 	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1865 }
1866 
1867 /**
1868  *  e1000_rar_set_pch2lan - Set receive address register
1869  *  @hw: pointer to the HW structure
1870  *  @addr: pointer to the receive address
1871  *  @index: receive address array register
1872  *
1873  *  Sets the receive address array register at index to the address passed
1874  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1875  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1876  *  Use SHRA[0-3] in place of those reserved for ME.
1877  **/
1878 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1879 {
1880 	u32 rar_low, rar_high;
1881 
1882 	/* HW expects these in little endian so we reverse the byte order
1883 	 * from network order (big endian) to little endian
1884 	 */
1885 	rar_low = ((u32)addr[0] |
1886 		   ((u32)addr[1] << 8) |
1887 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1888 
1889 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1890 
1891 	/* If MAC address zero, no need to set the AV bit */
1892 	if (rar_low || rar_high)
1893 		rar_high |= E1000_RAH_AV;
1894 
1895 	if (index == 0) {
1896 		ew32(RAL(index), rar_low);
1897 		e1e_flush();
1898 		ew32(RAH(index), rar_high);
1899 		e1e_flush();
1900 		return 0;
1901 	}
1902 
1903 	/* RAR[1-6] are owned by manageability.  Skip those and program the
1904 	 * next address into the SHRA register array.
1905 	 */
1906 	if (index < (u32)(hw->mac.rar_entry_count)) {
1907 		s32 ret_val;
1908 
1909 		ret_val = e1000_acquire_swflag_ich8lan(hw);
1910 		if (ret_val)
1911 			goto out;
1912 
1913 		ew32(SHRAL(index - 1), rar_low);
1914 		e1e_flush();
1915 		ew32(SHRAH(index - 1), rar_high);
1916 		e1e_flush();
1917 
1918 		e1000_release_swflag_ich8lan(hw);
1919 
1920 		/* verify the register updates */
1921 		if ((er32(SHRAL(index - 1)) == rar_low) &&
1922 		    (er32(SHRAH(index - 1)) == rar_high))
1923 			return 0;
1924 
1925 		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1926 		      (index - 1), er32(FWSM));
1927 	}
1928 
1929 out:
1930 	e_dbg("Failed to write receive address at index %d\n", index);
1931 	return -E1000_ERR_CONFIG;
1932 }
1933 
1934 /**
1935  *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1936  *  @hw: pointer to the HW structure
1937  *
1938  *  Get the number of available receive registers that the Host can
1939  *  program. SHRA[0-10] are the shared receive address registers
1940  *  that are shared between the Host and manageability engine (ME).
1941  *  ME can reserve any number of addresses and the host needs to be
1942  *  able to tell how many available registers it has access to.
1943  **/
1944 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1945 {
1946 	u32 wlock_mac;
1947 	u32 num_entries;
1948 
1949 	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1950 	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1951 
1952 	switch (wlock_mac) {
1953 	case 0:
1954 		/* All SHRA[0..10] and RAR[0] available */
1955 		num_entries = hw->mac.rar_entry_count;
1956 		break;
1957 	case 1:
1958 		/* Only RAR[0] available */
1959 		num_entries = 1;
1960 		break;
1961 	default:
1962 		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1963 		num_entries = wlock_mac + 1;
1964 		break;
1965 	}
1966 
1967 	return num_entries;
1968 }
1969 
1970 /**
1971  *  e1000_rar_set_pch_lpt - Set receive address registers
1972  *  @hw: pointer to the HW structure
1973  *  @addr: pointer to the receive address
1974  *  @index: receive address array register
1975  *
1976  *  Sets the receive address register array at index to the address passed
1977  *  in by addr. For LPT, RAR[0] is the base address register that is to
1978  *  contain the MAC address. SHRA[0-10] are the shared receive address
1979  *  registers that are shared between the Host and manageability engine (ME).
1980  **/
1981 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1982 {
1983 	u32 rar_low, rar_high;
1984 	u32 wlock_mac;
1985 
1986 	/* HW expects these in little endian so we reverse the byte order
1987 	 * from network order (big endian) to little endian
1988 	 */
1989 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1990 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1991 
1992 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1993 
1994 	/* If MAC address zero, no need to set the AV bit */
1995 	if (rar_low || rar_high)
1996 		rar_high |= E1000_RAH_AV;
1997 
1998 	if (index == 0) {
1999 		ew32(RAL(index), rar_low);
2000 		e1e_flush();
2001 		ew32(RAH(index), rar_high);
2002 		e1e_flush();
2003 		return 0;
2004 	}
2005 
2006 	/* The manageability engine (ME) can lock certain SHRAR registers that
2007 	 * it is using - those registers are unavailable for use.
2008 	 */
2009 	if (index < hw->mac.rar_entry_count) {
2010 		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
2011 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2012 
2013 		/* Check if all SHRAR registers are locked */
2014 		if (wlock_mac == 1)
2015 			goto out;
2016 
2017 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
2018 			s32 ret_val;
2019 
2020 			ret_val = e1000_acquire_swflag_ich8lan(hw);
2021 
2022 			if (ret_val)
2023 				goto out;
2024 
2025 			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
2026 			e1e_flush();
2027 			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
2028 			e1e_flush();
2029 
2030 			e1000_release_swflag_ich8lan(hw);
2031 
2032 			/* verify the register updates */
2033 			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2034 			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
2035 				return 0;
2036 		}
2037 	}
2038 
2039 out:
2040 	e_dbg("Failed to write receive address at index %d\n", index);
2041 	return -E1000_ERR_CONFIG;
2042 }
2043 
2044 /**
2045  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2046  *  @hw: pointer to the HW structure
2047  *
2048  *  Checks if firmware is blocking the reset of the PHY.
2049  *  This is a function pointer entry point only called by
2050  *  reset routines.
2051  **/
2052 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2053 {
2054 	bool blocked = false;
2055 	int i = 0;
2056 
2057 	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2058 	       (i++ < 30))
2059 		usleep_range(10000, 11000);
2060 	return blocked ? E1000_BLK_PHY_RESET : 0;
2061 }
2062 
2063 /**
2064  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2065  *  @hw: pointer to the HW structure
2066  *
2067  *  Assumes semaphore already acquired.
2068  *
2069  **/
2070 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2071 {
2072 	u16 phy_data;
2073 	u32 strap = er32(STRAP);
2074 	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2075 	    E1000_STRAP_SMT_FREQ_SHIFT;
2076 	s32 ret_val;
2077 
2078 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2079 
2080 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2081 	if (ret_val)
2082 		return ret_val;
2083 
2084 	phy_data &= ~HV_SMB_ADDR_MASK;
2085 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2086 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2087 
2088 	if (hw->phy.type == e1000_phy_i217) {
2089 		/* Restore SMBus frequency */
2090 		if (freq--) {
2091 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2092 			phy_data |= (freq & BIT(0)) <<
2093 			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2094 			phy_data |= (freq & BIT(1)) <<
2095 			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2096 		} else {
2097 			e_dbg("Unsupported SMB frequency in PHY\n");
2098 		}
2099 	}
2100 
2101 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2102 }
2103 
2104 /**
2105  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2106  *  @hw:   pointer to the HW structure
2107  *
2108  *  SW should configure the LCD from the NVM extended configuration region
2109  *  as a workaround for certain parts.
2110  **/
2111 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2112 {
2113 	struct e1000_phy_info *phy = &hw->phy;
2114 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2115 	s32 ret_val = 0;
2116 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2117 
2118 	/* Initialize the PHY from the NVM on ICH platforms.  This
2119 	 * is needed due to an issue where the NVM configuration is
2120 	 * not properly autoloaded after power transitions.
2121 	 * Therefore, after each PHY reset, we will load the
2122 	 * configuration data out of the NVM manually.
2123 	 */
2124 	switch (hw->mac.type) {
2125 	case e1000_ich8lan:
2126 		if (phy->type != e1000_phy_igp_3)
2127 			return ret_val;
2128 
2129 		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2130 		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2131 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2132 			break;
2133 		}
2134 		fallthrough;
2135 	case e1000_pchlan:
2136 	case e1000_pch2lan:
2137 	case e1000_pch_lpt:
2138 	case e1000_pch_spt:
2139 	case e1000_pch_cnp:
2140 	case e1000_pch_tgp:
2141 	case e1000_pch_adp:
2142 	case e1000_pch_mtp:
2143 	case e1000_pch_lnp:
2144 	case e1000_pch_ptp:
2145 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2146 		break;
2147 	default:
2148 		return ret_val;
2149 	}
2150 
2151 	ret_val = hw->phy.ops.acquire(hw);
2152 	if (ret_val)
2153 		return ret_val;
2154 
2155 	data = er32(FEXTNVM);
2156 	if (!(data & sw_cfg_mask))
2157 		goto release;
2158 
2159 	/* Make sure HW does not configure LCD from PHY
2160 	 * extended configuration before SW configuration
2161 	 */
2162 	data = er32(EXTCNF_CTRL);
2163 	if ((hw->mac.type < e1000_pch2lan) &&
2164 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2165 		goto release;
2166 
2167 	cnf_size = er32(EXTCNF_SIZE);
2168 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2169 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2170 	if (!cnf_size)
2171 		goto release;
2172 
2173 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2174 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2175 
2176 	if (((hw->mac.type == e1000_pchlan) &&
2177 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2178 	    (hw->mac.type > e1000_pchlan)) {
2179 		/* HW configures the SMBus address and LEDs when the
2180 		 * OEM and LCD Write Enable bits are set in the NVM.
2181 		 * When both NVM bits are cleared, SW will configure
2182 		 * them instead.
2183 		 */
2184 		ret_val = e1000_write_smbus_addr(hw);
2185 		if (ret_val)
2186 			goto release;
2187 
2188 		data = er32(LEDCTL);
2189 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2190 							(u16)data);
2191 		if (ret_val)
2192 			goto release;
2193 	}
2194 
2195 	/* Configure LCD from extended configuration region. */
2196 
2197 	/* cnf_base_addr is in DWORD */
2198 	word_addr = (u16)(cnf_base_addr << 1);
2199 
2200 	for (i = 0; i < cnf_size; i++) {
2201 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2202 		if (ret_val)
2203 			goto release;
2204 
2205 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2206 					 1, &reg_addr);
2207 		if (ret_val)
2208 			goto release;
2209 
2210 		/* Save off the PHY page for future writes. */
2211 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2212 			phy_page = reg_data;
2213 			continue;
2214 		}
2215 
2216 		reg_addr &= PHY_REG_MASK;
2217 		reg_addr |= phy_page;
2218 
2219 		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2220 		if (ret_val)
2221 			goto release;
2222 	}
2223 
2224 release:
2225 	hw->phy.ops.release(hw);
2226 	return ret_val;
2227 }
2228 
2229 /**
2230  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2231  *  @hw:   pointer to the HW structure
2232  *  @link: link up bool flag
2233  *
2234  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2235  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2236  *  If link is down, the function will restore the default K1 setting located
2237  *  in the NVM.
2238  **/
2239 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2240 {
2241 	s32 ret_val = 0;
2242 	u16 status_reg = 0;
2243 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2244 
2245 	if (hw->mac.type != e1000_pchlan)
2246 		return 0;
2247 
2248 	/* Wrap the whole flow with the sw flag */
2249 	ret_val = hw->phy.ops.acquire(hw);
2250 	if (ret_val)
2251 		return ret_val;
2252 
2253 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2254 	if (link) {
2255 		if (hw->phy.type == e1000_phy_82578) {
2256 			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2257 						  &status_reg);
2258 			if (ret_val)
2259 				goto release;
2260 
2261 			status_reg &= (BM_CS_STATUS_LINK_UP |
2262 				       BM_CS_STATUS_RESOLVED |
2263 				       BM_CS_STATUS_SPEED_MASK);
2264 
2265 			if (status_reg == (BM_CS_STATUS_LINK_UP |
2266 					   BM_CS_STATUS_RESOLVED |
2267 					   BM_CS_STATUS_SPEED_1000))
2268 				k1_enable = false;
2269 		}
2270 
2271 		if (hw->phy.type == e1000_phy_82577) {
2272 			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2273 			if (ret_val)
2274 				goto release;
2275 
2276 			status_reg &= (HV_M_STATUS_LINK_UP |
2277 				       HV_M_STATUS_AUTONEG_COMPLETE |
2278 				       HV_M_STATUS_SPEED_MASK);
2279 
2280 			if (status_reg == (HV_M_STATUS_LINK_UP |
2281 					   HV_M_STATUS_AUTONEG_COMPLETE |
2282 					   HV_M_STATUS_SPEED_1000))
2283 				k1_enable = false;
2284 		}
2285 
2286 		/* Link stall fix for link up */
2287 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2288 		if (ret_val)
2289 			goto release;
2290 
2291 	} else {
2292 		/* Link stall fix for link down */
2293 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2294 		if (ret_val)
2295 			goto release;
2296 	}
2297 
2298 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2299 
2300 release:
2301 	hw->phy.ops.release(hw);
2302 
2303 	return ret_val;
2304 }
2305 
2306 /**
2307  *  e1000_configure_k1_ich8lan - Configure K1 power state
2308  *  @hw: pointer to the HW structure
2309  *  @k1_enable: K1 state to configure
2310  *
2311  *  Configure the K1 power state based on the provided parameter.
2312  *  Assumes semaphore already acquired.
2313  *
2314  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2315  **/
2316 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2317 {
2318 	s32 ret_val;
2319 	u32 ctrl_reg = 0;
2320 	u32 ctrl_ext = 0;
2321 	u32 reg = 0;
2322 	u16 kmrn_reg = 0;
2323 
2324 	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2325 					      &kmrn_reg);
2326 	if (ret_val)
2327 		return ret_val;
2328 
2329 	if (k1_enable)
2330 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2331 	else
2332 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2333 
2334 	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2335 					       kmrn_reg);
2336 	if (ret_val)
2337 		return ret_val;
2338 
2339 	usleep_range(20, 40);
2340 	ctrl_ext = er32(CTRL_EXT);
2341 	ctrl_reg = er32(CTRL);
2342 
2343 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2344 	reg |= E1000_CTRL_FRCSPD;
2345 	ew32(CTRL, reg);
2346 
2347 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2348 	e1e_flush();
2349 	usleep_range(20, 40);
2350 	ew32(CTRL, ctrl_reg);
2351 	ew32(CTRL_EXT, ctrl_ext);
2352 	e1e_flush();
2353 	usleep_range(20, 40);
2354 
2355 	return 0;
2356 }
2357 
2358 /**
2359  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2360  *  @hw:       pointer to the HW structure
2361  *  @d0_state: boolean if entering d0 or d3 device state
2362  *
2363  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2364  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2365  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2366  **/
2367 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2368 {
2369 	s32 ret_val = 0;
2370 	u32 mac_reg;
2371 	u16 oem_reg;
2372 
2373 	if (hw->mac.type < e1000_pchlan)
2374 		return ret_val;
2375 
2376 	ret_val = hw->phy.ops.acquire(hw);
2377 	if (ret_val)
2378 		return ret_val;
2379 
2380 	if (hw->mac.type == e1000_pchlan) {
2381 		mac_reg = er32(EXTCNF_CTRL);
2382 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2383 			goto release;
2384 	}
2385 
2386 	mac_reg = er32(FEXTNVM);
2387 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2388 		goto release;
2389 
2390 	mac_reg = er32(PHY_CTRL);
2391 
2392 	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2393 	if (ret_val)
2394 		goto release;
2395 
2396 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2397 
2398 	if (d0_state) {
2399 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2400 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2401 
2402 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2403 			oem_reg |= HV_OEM_BITS_LPLU;
2404 	} else {
2405 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2406 			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2407 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2408 
2409 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2410 			       E1000_PHY_CTRL_NOND0A_LPLU))
2411 			oem_reg |= HV_OEM_BITS_LPLU;
2412 	}
2413 
2414 	/* Set Restart auto-neg to activate the bits */
2415 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2416 	    !hw->phy.ops.check_reset_block(hw))
2417 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2418 
2419 	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2420 
2421 release:
2422 	hw->phy.ops.release(hw);
2423 
2424 	return ret_val;
2425 }
2426 
2427 /**
2428  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2429  *  @hw:   pointer to the HW structure
2430  **/
2431 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2432 {
2433 	s32 ret_val;
2434 	u16 data;
2435 
2436 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2437 	if (ret_val)
2438 		return ret_val;
2439 
2440 	data |= HV_KMRN_MDIO_SLOW;
2441 
2442 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2443 
2444 	return ret_val;
2445 }
2446 
2447 /**
2448  *  e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds
2449  *  @hw: pointer to the HW structure
2450  *
2451  *  A series of PHY workarounds to be done after every PHY reset.
2452  **/
2453 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2454 {
2455 	s32 ret_val = 0;
2456 	u16 phy_data;
2457 
2458 	if (hw->mac.type != e1000_pchlan)
2459 		return 0;
2460 
2461 	/* Set MDIO slow mode before any other MDIO access */
2462 	if (hw->phy.type == e1000_phy_82577) {
2463 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2464 		if (ret_val)
2465 			return ret_val;
2466 	}
2467 
2468 	if (((hw->phy.type == e1000_phy_82577) &&
2469 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2470 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2471 		/* Disable generation of early preamble */
2472 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2473 		if (ret_val)
2474 			return ret_val;
2475 
2476 		/* Preamble tuning for SSC */
2477 		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2478 		if (ret_val)
2479 			return ret_val;
2480 	}
2481 
2482 	if (hw->phy.type == e1000_phy_82578) {
2483 		/* Return registers to default by doing a soft reset then
2484 		 * writing 0x3140 to the control register.
2485 		 */
2486 		if (hw->phy.revision < 2) {
2487 			e1000e_phy_sw_reset(hw);
2488 			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2489 			if (ret_val)
2490 				return ret_val;
2491 		}
2492 	}
2493 
2494 	/* Select page 0 */
2495 	ret_val = hw->phy.ops.acquire(hw);
2496 	if (ret_val)
2497 		return ret_val;
2498 
2499 	hw->phy.addr = 1;
2500 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2501 	hw->phy.ops.release(hw);
2502 	if (ret_val)
2503 		return ret_val;
2504 
2505 	/* Configure the K1 Si workaround during phy reset assuming there is
2506 	 * link so that it disables K1 if link is in 1Gbps.
2507 	 */
2508 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2509 	if (ret_val)
2510 		return ret_val;
2511 
2512 	/* Workaround for link disconnects on a busy hub in half duplex */
2513 	ret_val = hw->phy.ops.acquire(hw);
2514 	if (ret_val)
2515 		return ret_val;
2516 	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2517 	if (ret_val)
2518 		goto release;
2519 	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2520 	if (ret_val)
2521 		goto release;
2522 
2523 	/* set MSE higher to enable link to stay up when noise is high */
2524 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2525 release:
2526 	hw->phy.ops.release(hw);
2527 
2528 	return ret_val;
2529 }
2530 
2531 /**
2532  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2533  *  @hw:   pointer to the HW structure
2534  **/
2535 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2536 {
2537 	u32 mac_reg;
2538 	u16 i, phy_reg = 0;
2539 	s32 ret_val;
2540 
2541 	ret_val = hw->phy.ops.acquire(hw);
2542 	if (ret_val)
2543 		return;
2544 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2545 	if (ret_val)
2546 		goto release;
2547 
2548 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2549 	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2550 		mac_reg = er32(RAL(i));
2551 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2552 					   (u16)(mac_reg & 0xFFFF));
2553 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2554 					   (u16)((mac_reg >> 16) & 0xFFFF));
2555 
2556 		mac_reg = er32(RAH(i));
2557 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2558 					   (u16)(mac_reg & 0xFFFF));
2559 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2560 					   (u16)((mac_reg & E1000_RAH_AV)
2561 						 >> 16));
2562 	}
2563 
2564 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2565 
2566 release:
2567 	hw->phy.ops.release(hw);
2568 }
2569 
2570 /**
2571  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2572  *  with 82579 PHY
2573  *  @hw: pointer to the HW structure
2574  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2575  **/
2576 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2577 {
2578 	s32 ret_val = 0;
2579 	u16 phy_reg, data;
2580 	u32 mac_reg;
2581 	u16 i;
2582 
2583 	if (hw->mac.type < e1000_pch2lan)
2584 		return 0;
2585 
2586 	/* disable Rx path while enabling/disabling workaround */
2587 	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2588 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2589 	if (ret_val)
2590 		return ret_val;
2591 
2592 	if (enable) {
2593 		/* Write Rx addresses (rar_entry_count for RAL/H, and
2594 		 * SHRAL/H) and initial CRC values to the MAC
2595 		 */
2596 		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2597 			u8 mac_addr[ETH_ALEN] = { 0 };
2598 			u32 addr_high, addr_low;
2599 
2600 			addr_high = er32(RAH(i));
2601 			if (!(addr_high & E1000_RAH_AV))
2602 				continue;
2603 			addr_low = er32(RAL(i));
2604 			mac_addr[0] = (addr_low & 0xFF);
2605 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2606 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2607 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2608 			mac_addr[4] = (addr_high & 0xFF);
2609 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2610 
2611 			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2612 		}
2613 
2614 		/* Write Rx addresses to the PHY */
2615 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2616 
2617 		/* Enable jumbo frame workaround in the MAC */
2618 		mac_reg = er32(FFLT_DBG);
2619 		mac_reg &= ~BIT(14);
2620 		mac_reg |= (7 << 15);
2621 		ew32(FFLT_DBG, mac_reg);
2622 
2623 		mac_reg = er32(RCTL);
2624 		mac_reg |= E1000_RCTL_SECRC;
2625 		ew32(RCTL, mac_reg);
2626 
2627 		ret_val = e1000e_read_kmrn_reg(hw,
2628 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2629 					       &data);
2630 		if (ret_val)
2631 			return ret_val;
2632 		ret_val = e1000e_write_kmrn_reg(hw,
2633 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2634 						data | BIT(0));
2635 		if (ret_val)
2636 			return ret_val;
2637 		ret_val = e1000e_read_kmrn_reg(hw,
2638 					       E1000_KMRNCTRLSTA_HD_CTRL,
2639 					       &data);
2640 		if (ret_val)
2641 			return ret_val;
2642 		data &= ~(0xF << 8);
2643 		data |= (0xB << 8);
2644 		ret_val = e1000e_write_kmrn_reg(hw,
2645 						E1000_KMRNCTRLSTA_HD_CTRL,
2646 						data);
2647 		if (ret_val)
2648 			return ret_val;
2649 
2650 		/* Enable jumbo frame workaround in the PHY */
2651 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2652 		data &= ~(0x7F << 5);
2653 		data |= (0x37 << 5);
2654 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2655 		if (ret_val)
2656 			return ret_val;
2657 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2658 		data &= ~BIT(13);
2659 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2660 		if (ret_val)
2661 			return ret_val;
2662 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2663 		data &= ~(0x3FF << 2);
2664 		data |= (E1000_TX_PTR_GAP << 2);
2665 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2666 		if (ret_val)
2667 			return ret_val;
2668 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2669 		if (ret_val)
2670 			return ret_val;
2671 		e1e_rphy(hw, HV_PM_CTRL, &data);
2672 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2673 		if (ret_val)
2674 			return ret_val;
2675 	} else {
2676 		/* Write MAC register values back to h/w defaults */
2677 		mac_reg = er32(FFLT_DBG);
2678 		mac_reg &= ~(0xF << 14);
2679 		ew32(FFLT_DBG, mac_reg);
2680 
2681 		mac_reg = er32(RCTL);
2682 		mac_reg &= ~E1000_RCTL_SECRC;
2683 		ew32(RCTL, mac_reg);
2684 
2685 		ret_val = e1000e_read_kmrn_reg(hw,
2686 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2687 					       &data);
2688 		if (ret_val)
2689 			return ret_val;
2690 		ret_val = e1000e_write_kmrn_reg(hw,
2691 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2692 						data & ~BIT(0));
2693 		if (ret_val)
2694 			return ret_val;
2695 		ret_val = e1000e_read_kmrn_reg(hw,
2696 					       E1000_KMRNCTRLSTA_HD_CTRL,
2697 					       &data);
2698 		if (ret_val)
2699 			return ret_val;
2700 		data &= ~(0xF << 8);
2701 		data |= (0xB << 8);
2702 		ret_val = e1000e_write_kmrn_reg(hw,
2703 						E1000_KMRNCTRLSTA_HD_CTRL,
2704 						data);
2705 		if (ret_val)
2706 			return ret_val;
2707 
2708 		/* Write PHY register values back to h/w defaults */
2709 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2710 		data &= ~(0x7F << 5);
2711 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2712 		if (ret_val)
2713 			return ret_val;
2714 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2715 		data |= BIT(13);
2716 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2717 		if (ret_val)
2718 			return ret_val;
2719 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2720 		data &= ~(0x3FF << 2);
2721 		data |= (0x8 << 2);
2722 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2723 		if (ret_val)
2724 			return ret_val;
2725 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2726 		if (ret_val)
2727 			return ret_val;
2728 		e1e_rphy(hw, HV_PM_CTRL, &data);
2729 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2730 		if (ret_val)
2731 			return ret_val;
2732 	}
2733 
2734 	/* re-enable Rx path after enabling/disabling workaround */
2735 	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2736 }
2737 
2738 /**
2739  *  e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds
2740  *  @hw: pointer to the HW structure
2741  *
2742  *  A series of PHY workarounds to be done after every PHY reset.
2743  **/
2744 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2745 {
2746 	s32 ret_val = 0;
2747 
2748 	if (hw->mac.type != e1000_pch2lan)
2749 		return 0;
2750 
2751 	/* Set MDIO slow mode before any other MDIO access */
2752 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2753 	if (ret_val)
2754 		return ret_val;
2755 
2756 	ret_val = hw->phy.ops.acquire(hw);
2757 	if (ret_val)
2758 		return ret_val;
2759 	/* set MSE higher to enable link to stay up when noise is high */
2760 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2761 	if (ret_val)
2762 		goto release;
2763 	/* drop link after 5 times MSE threshold was reached */
2764 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2765 release:
2766 	hw->phy.ops.release(hw);
2767 
2768 	return ret_val;
2769 }
2770 
2771 /**
2772  *  e1000_k1_workaround_lv - K1 Si workaround
2773  *  @hw:   pointer to the HW structure
2774  *
2775  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2776  *  Disable K1 in 1000Mbps and 100Mbps
2777  **/
2778 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2779 {
2780 	s32 ret_val = 0;
2781 	u16 status_reg = 0;
2782 
2783 	if (hw->mac.type != e1000_pch2lan)
2784 		return 0;
2785 
2786 	/* Set K1 beacon duration based on 10Mbs speed */
2787 	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2788 	if (ret_val)
2789 		return ret_val;
2790 
2791 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2792 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2793 		if (status_reg &
2794 		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2795 			u16 pm_phy_reg;
2796 
2797 			/* LV 1G/100 Packet drop issue wa  */
2798 			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2799 			if (ret_val)
2800 				return ret_val;
2801 			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2802 			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2803 			if (ret_val)
2804 				return ret_val;
2805 		} else {
2806 			u32 mac_reg;
2807 
2808 			mac_reg = er32(FEXTNVM4);
2809 			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2810 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2811 			ew32(FEXTNVM4, mac_reg);
2812 		}
2813 	}
2814 
2815 	return ret_val;
2816 }
2817 
2818 /**
2819  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2820  *  @hw:   pointer to the HW structure
2821  *  @gate: boolean set to true to gate, false to ungate
2822  *
2823  *  Gate/ungate the automatic PHY configuration via hardware; perform
2824  *  the configuration via software instead.
2825  **/
2826 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2827 {
2828 	u32 extcnf_ctrl;
2829 
2830 	if (hw->mac.type < e1000_pch2lan)
2831 		return;
2832 
2833 	extcnf_ctrl = er32(EXTCNF_CTRL);
2834 
2835 	if (gate)
2836 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2837 	else
2838 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2839 
2840 	ew32(EXTCNF_CTRL, extcnf_ctrl);
2841 }
2842 
2843 /**
2844  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2845  *  @hw: pointer to the HW structure
2846  *
2847  *  Check the appropriate indication the MAC has finished configuring the
2848  *  PHY after a software reset.
2849  **/
2850 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2851 {
2852 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2853 
2854 	/* Wait for basic configuration completes before proceeding */
2855 	do {
2856 		data = er32(STATUS);
2857 		data &= E1000_STATUS_LAN_INIT_DONE;
2858 		usleep_range(100, 200);
2859 	} while ((!data) && --loop);
2860 
2861 	/* If basic configuration is incomplete before the above loop
2862 	 * count reaches 0, loading the configuration from NVM will
2863 	 * leave the PHY in a bad state possibly resulting in no link.
2864 	 */
2865 	if (loop == 0)
2866 		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2867 
2868 	/* Clear the Init Done bit for the next init event */
2869 	data = er32(STATUS);
2870 	data &= ~E1000_STATUS_LAN_INIT_DONE;
2871 	ew32(STATUS, data);
2872 }
2873 
2874 /**
2875  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2876  *  @hw: pointer to the HW structure
2877  **/
2878 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2879 {
2880 	s32 ret_val = 0;
2881 	u16 reg;
2882 
2883 	if (hw->phy.ops.check_reset_block(hw))
2884 		return 0;
2885 
2886 	/* Allow time for h/w to get to quiescent state after reset */
2887 	usleep_range(10000, 11000);
2888 
2889 	/* Perform any necessary post-reset workarounds */
2890 	switch (hw->mac.type) {
2891 	case e1000_pchlan:
2892 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2893 		if (ret_val)
2894 			return ret_val;
2895 		break;
2896 	case e1000_pch2lan:
2897 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2898 		if (ret_val)
2899 			return ret_val;
2900 		break;
2901 	default:
2902 		break;
2903 	}
2904 
2905 	/* Clear the host wakeup bit after lcd reset */
2906 	if (hw->mac.type >= e1000_pchlan) {
2907 		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2908 		reg &= ~BM_WUC_HOST_WU_BIT;
2909 		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2910 	}
2911 
2912 	/* Configure the LCD with the extended configuration region in NVM */
2913 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2914 	if (ret_val)
2915 		return ret_val;
2916 
2917 	/* Configure the LCD with the OEM bits in NVM */
2918 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2919 
2920 	if (hw->mac.type == e1000_pch2lan) {
2921 		/* Ungate automatic PHY configuration on non-managed 82579 */
2922 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2923 			usleep_range(10000, 11000);
2924 			e1000_gate_hw_phy_config_ich8lan(hw, false);
2925 		}
2926 
2927 		/* Set EEE LPI Update Timer to 200usec */
2928 		ret_val = hw->phy.ops.acquire(hw);
2929 		if (ret_val)
2930 			return ret_val;
2931 		ret_val = e1000_write_emi_reg_locked(hw,
2932 						     I82579_LPI_UPDATE_TIMER,
2933 						     0x1387);
2934 		hw->phy.ops.release(hw);
2935 	}
2936 
2937 	return ret_val;
2938 }
2939 
2940 /**
2941  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2942  *  @hw: pointer to the HW structure
2943  *
2944  *  Resets the PHY
2945  *  This is a function pointer entry point called by drivers
2946  *  or other shared routines.
2947  **/
2948 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2949 {
2950 	s32 ret_val = 0;
2951 
2952 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2953 	if ((hw->mac.type == e1000_pch2lan) &&
2954 	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2955 		e1000_gate_hw_phy_config_ich8lan(hw, true);
2956 
2957 	ret_val = e1000e_phy_hw_reset_generic(hw);
2958 	if (ret_val)
2959 		return ret_val;
2960 
2961 	return e1000_post_phy_reset_ich8lan(hw);
2962 }
2963 
2964 /**
2965  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2966  *  @hw: pointer to the HW structure
2967  *  @active: true to enable LPLU, false to disable
2968  *
2969  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2970  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2971  *  the phy speed. This function will manually set the LPLU bit and restart
2972  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2973  *  since it configures the same bit.
2974  **/
2975 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2976 {
2977 	s32 ret_val;
2978 	u16 oem_reg;
2979 
2980 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2981 	if (ret_val)
2982 		return ret_val;
2983 
2984 	if (active)
2985 		oem_reg |= HV_OEM_BITS_LPLU;
2986 	else
2987 		oem_reg &= ~HV_OEM_BITS_LPLU;
2988 
2989 	if (!hw->phy.ops.check_reset_block(hw))
2990 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2991 
2992 	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2993 }
2994 
2995 /**
2996  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2997  *  @hw: pointer to the HW structure
2998  *  @active: true to enable LPLU, false to disable
2999  *
3000  *  Sets the LPLU D0 state according to the active flag.  When
3001  *  activating LPLU this function also disables smart speed
3002  *  and vice versa.  LPLU will not be activated unless the
3003  *  device autonegotiation advertisement meets standards of
3004  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3005  *  This is a function pointer entry point only called by
3006  *  PHY setup routines.
3007  **/
3008 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3009 {
3010 	struct e1000_phy_info *phy = &hw->phy;
3011 	u32 phy_ctrl;
3012 	s32 ret_val = 0;
3013 	u16 data;
3014 
3015 	if (phy->type == e1000_phy_ife)
3016 		return 0;
3017 
3018 	phy_ctrl = er32(PHY_CTRL);
3019 
3020 	if (active) {
3021 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3022 		ew32(PHY_CTRL, phy_ctrl);
3023 
3024 		if (phy->type != e1000_phy_igp_3)
3025 			return 0;
3026 
3027 		/* Call gig speed drop workaround on LPLU before accessing
3028 		 * any PHY registers
3029 		 */
3030 		if (hw->mac.type == e1000_ich8lan)
3031 			e1000e_gig_downshift_workaround_ich8lan(hw);
3032 
3033 		/* When LPLU is enabled, we should disable SmartSpeed */
3034 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3035 		if (ret_val)
3036 			return ret_val;
3037 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3038 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3039 		if (ret_val)
3040 			return ret_val;
3041 	} else {
3042 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3043 		ew32(PHY_CTRL, phy_ctrl);
3044 
3045 		if (phy->type != e1000_phy_igp_3)
3046 			return 0;
3047 
3048 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3049 		 * during Dx states where the power conservation is most
3050 		 * important.  During driver activity we should enable
3051 		 * SmartSpeed, so performance is maintained.
3052 		 */
3053 		if (phy->smart_speed == e1000_smart_speed_on) {
3054 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3055 					   &data);
3056 			if (ret_val)
3057 				return ret_val;
3058 
3059 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3060 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3061 					   data);
3062 			if (ret_val)
3063 				return ret_val;
3064 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3065 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3066 					   &data);
3067 			if (ret_val)
3068 				return ret_val;
3069 
3070 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3071 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3072 					   data);
3073 			if (ret_val)
3074 				return ret_val;
3075 		}
3076 	}
3077 
3078 	return 0;
3079 }
3080 
3081 /**
3082  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3083  *  @hw: pointer to the HW structure
3084  *  @active: true to enable LPLU, false to disable
3085  *
3086  *  Sets the LPLU D3 state according to the active flag.  When
3087  *  activating LPLU this function also disables smart speed
3088  *  and vice versa.  LPLU will not be activated unless the
3089  *  device autonegotiation advertisement meets standards of
3090  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3091  *  This is a function pointer entry point only called by
3092  *  PHY setup routines.
3093  **/
3094 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3095 {
3096 	struct e1000_phy_info *phy = &hw->phy;
3097 	u32 phy_ctrl;
3098 	s32 ret_val = 0;
3099 	u16 data;
3100 
3101 	phy_ctrl = er32(PHY_CTRL);
3102 
3103 	if (!active) {
3104 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3105 		ew32(PHY_CTRL, phy_ctrl);
3106 
3107 		if (phy->type != e1000_phy_igp_3)
3108 			return 0;
3109 
3110 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3111 		 * during Dx states where the power conservation is most
3112 		 * important.  During driver activity we should enable
3113 		 * SmartSpeed, so performance is maintained.
3114 		 */
3115 		if (phy->smart_speed == e1000_smart_speed_on) {
3116 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3117 					   &data);
3118 			if (ret_val)
3119 				return ret_val;
3120 
3121 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3122 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3123 					   data);
3124 			if (ret_val)
3125 				return ret_val;
3126 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3127 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3128 					   &data);
3129 			if (ret_val)
3130 				return ret_val;
3131 
3132 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3133 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3134 					   data);
3135 			if (ret_val)
3136 				return ret_val;
3137 		}
3138 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3139 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3140 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3141 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3142 		ew32(PHY_CTRL, phy_ctrl);
3143 
3144 		if (phy->type != e1000_phy_igp_3)
3145 			return 0;
3146 
3147 		/* Call gig speed drop workaround on LPLU before accessing
3148 		 * any PHY registers
3149 		 */
3150 		if (hw->mac.type == e1000_ich8lan)
3151 			e1000e_gig_downshift_workaround_ich8lan(hw);
3152 
3153 		/* When LPLU is enabled, we should disable SmartSpeed */
3154 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3155 		if (ret_val)
3156 			return ret_val;
3157 
3158 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3159 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3160 	}
3161 
3162 	return ret_val;
3163 }
3164 
3165 /**
3166  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3167  *  @hw: pointer to the HW structure
3168  *  @bank:  pointer to the variable that returns the active bank
3169  *
3170  *  Reads signature byte from the NVM using the flash access registers.
3171  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3172  **/
3173 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3174 {
3175 	u32 eecd;
3176 	struct e1000_nvm_info *nvm = &hw->nvm;
3177 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3178 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3179 	u32 nvm_dword = 0;
3180 	u8 sig_byte = 0;
3181 	s32 ret_val;
3182 
3183 	switch (hw->mac.type) {
3184 	case e1000_pch_spt:
3185 	case e1000_pch_cnp:
3186 	case e1000_pch_tgp:
3187 	case e1000_pch_adp:
3188 	case e1000_pch_mtp:
3189 	case e1000_pch_lnp:
3190 	case e1000_pch_ptp:
3191 		bank1_offset = nvm->flash_bank_size;
3192 		act_offset = E1000_ICH_NVM_SIG_WORD;
3193 
3194 		/* set bank to 0 in case flash read fails */
3195 		*bank = 0;
3196 
3197 		/* Check bank 0 */
3198 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3199 							 &nvm_dword);
3200 		if (ret_val)
3201 			return ret_val;
3202 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3203 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3204 		    E1000_ICH_NVM_SIG_VALUE) {
3205 			*bank = 0;
3206 			return 0;
3207 		}
3208 
3209 		/* Check bank 1 */
3210 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3211 							 bank1_offset,
3212 							 &nvm_dword);
3213 		if (ret_val)
3214 			return ret_val;
3215 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3216 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3217 		    E1000_ICH_NVM_SIG_VALUE) {
3218 			*bank = 1;
3219 			return 0;
3220 		}
3221 
3222 		e_dbg("ERROR: No valid NVM bank present\n");
3223 		return -E1000_ERR_NVM;
3224 	case e1000_ich8lan:
3225 	case e1000_ich9lan:
3226 		eecd = er32(EECD);
3227 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3228 		    E1000_EECD_SEC1VAL_VALID_MASK) {
3229 			if (eecd & E1000_EECD_SEC1VAL)
3230 				*bank = 1;
3231 			else
3232 				*bank = 0;
3233 
3234 			return 0;
3235 		}
3236 		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3237 		fallthrough;
3238 	default:
3239 		/* set bank to 0 in case flash read fails */
3240 		*bank = 0;
3241 
3242 		/* Check bank 0 */
3243 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3244 							&sig_byte);
3245 		if (ret_val)
3246 			return ret_val;
3247 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3248 		    E1000_ICH_NVM_SIG_VALUE) {
3249 			*bank = 0;
3250 			return 0;
3251 		}
3252 
3253 		/* Check bank 1 */
3254 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3255 							bank1_offset,
3256 							&sig_byte);
3257 		if (ret_val)
3258 			return ret_val;
3259 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3260 		    E1000_ICH_NVM_SIG_VALUE) {
3261 			*bank = 1;
3262 			return 0;
3263 		}
3264 
3265 		e_dbg("ERROR: No valid NVM bank present\n");
3266 		return -E1000_ERR_NVM;
3267 	}
3268 }
3269 
3270 /**
3271  *  e1000_read_nvm_spt - NVM access for SPT
3272  *  @hw: pointer to the HW structure
3273  *  @offset: The offset (in bytes) of the word(s) to read.
3274  *  @words: Size of data to read in words.
3275  *  @data: pointer to the word(s) to read at offset.
3276  *
3277  *  Reads a word(s) from the NVM
3278  **/
3279 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3280 			      u16 *data)
3281 {
3282 	struct e1000_nvm_info *nvm = &hw->nvm;
3283 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3284 	u32 act_offset;
3285 	s32 ret_val = 0;
3286 	u32 bank = 0;
3287 	u32 dword = 0;
3288 	u16 offset_to_read;
3289 	u16 i;
3290 
3291 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3292 	    (words == 0)) {
3293 		e_dbg("nvm parameter(s) out of bounds\n");
3294 		ret_val = -E1000_ERR_NVM;
3295 		goto out;
3296 	}
3297 
3298 	nvm->ops.acquire(hw);
3299 
3300 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3301 	if (ret_val) {
3302 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3303 		bank = 0;
3304 	}
3305 
3306 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3307 	act_offset += offset;
3308 
3309 	ret_val = 0;
3310 
3311 	for (i = 0; i < words; i += 2) {
3312 		if (words - i == 1) {
3313 			if (dev_spec->shadow_ram[offset + i].modified) {
3314 				data[i] =
3315 				    dev_spec->shadow_ram[offset + i].value;
3316 			} else {
3317 				offset_to_read = act_offset + i -
3318 				    ((act_offset + i) % 2);
3319 				ret_val =
3320 				  e1000_read_flash_dword_ich8lan(hw,
3321 								 offset_to_read,
3322 								 &dword);
3323 				if (ret_val)
3324 					break;
3325 				if ((act_offset + i) % 2 == 0)
3326 					data[i] = (u16)(dword & 0xFFFF);
3327 				else
3328 					data[i] = (u16)((dword >> 16) & 0xFFFF);
3329 			}
3330 		} else {
3331 			offset_to_read = act_offset + i;
3332 			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3333 			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3334 				ret_val =
3335 				  e1000_read_flash_dword_ich8lan(hw,
3336 								 offset_to_read,
3337 								 &dword);
3338 				if (ret_val)
3339 					break;
3340 			}
3341 			if (dev_spec->shadow_ram[offset + i].modified)
3342 				data[i] =
3343 				    dev_spec->shadow_ram[offset + i].value;
3344 			else
3345 				data[i] = (u16)(dword & 0xFFFF);
3346 			if (dev_spec->shadow_ram[offset + i].modified)
3347 				data[i + 1] =
3348 				    dev_spec->shadow_ram[offset + i + 1].value;
3349 			else
3350 				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3351 		}
3352 	}
3353 
3354 	nvm->ops.release(hw);
3355 
3356 out:
3357 	if (ret_val)
3358 		e_dbg("NVM read error: %d\n", ret_val);
3359 
3360 	return ret_val;
3361 }
3362 
3363 /**
3364  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3365  *  @hw: pointer to the HW structure
3366  *  @offset: The offset (in bytes) of the word(s) to read.
3367  *  @words: Size of data to read in words
3368  *  @data: Pointer to the word(s) to read at offset.
3369  *
3370  *  Reads a word(s) from the NVM using the flash access registers.
3371  **/
3372 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3373 				  u16 *data)
3374 {
3375 	struct e1000_nvm_info *nvm = &hw->nvm;
3376 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3377 	u32 act_offset;
3378 	s32 ret_val = 0;
3379 	u32 bank = 0;
3380 	u16 i, word;
3381 
3382 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3383 	    (words == 0)) {
3384 		e_dbg("nvm parameter(s) out of bounds\n");
3385 		ret_val = -E1000_ERR_NVM;
3386 		goto out;
3387 	}
3388 
3389 	nvm->ops.acquire(hw);
3390 
3391 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3392 	if (ret_val) {
3393 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3394 		bank = 0;
3395 	}
3396 
3397 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3398 	act_offset += offset;
3399 
3400 	ret_val = 0;
3401 	for (i = 0; i < words; i++) {
3402 		if (dev_spec->shadow_ram[offset + i].modified) {
3403 			data[i] = dev_spec->shadow_ram[offset + i].value;
3404 		} else {
3405 			ret_val = e1000_read_flash_word_ich8lan(hw,
3406 								act_offset + i,
3407 								&word);
3408 			if (ret_val)
3409 				break;
3410 			data[i] = word;
3411 		}
3412 	}
3413 
3414 	nvm->ops.release(hw);
3415 
3416 out:
3417 	if (ret_val)
3418 		e_dbg("NVM read error: %d\n", ret_val);
3419 
3420 	return ret_val;
3421 }
3422 
3423 /**
3424  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3425  *  @hw: pointer to the HW structure
3426  *
3427  *  This function does initial flash setup so that a new read/write/erase cycle
3428  *  can be started.
3429  **/
3430 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3431 {
3432 	union ich8_hws_flash_status hsfsts;
3433 	s32 ret_val = -E1000_ERR_NVM;
3434 
3435 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3436 
3437 	/* Check if the flash descriptor is valid */
3438 	if (!hsfsts.hsf_status.fldesvalid) {
3439 		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3440 		return -E1000_ERR_NVM;
3441 	}
3442 
3443 	/* Clear FCERR and DAEL in hw status by writing 1 */
3444 	hsfsts.hsf_status.flcerr = 1;
3445 	hsfsts.hsf_status.dael = 1;
3446 	if (hw->mac.type >= e1000_pch_spt)
3447 		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3448 	else
3449 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3450 
3451 	/* Either we should have a hardware SPI cycle in progress
3452 	 * bit to check against, in order to start a new cycle or
3453 	 * FDONE bit should be changed in the hardware so that it
3454 	 * is 1 after hardware reset, which can then be used as an
3455 	 * indication whether a cycle is in progress or has been
3456 	 * completed.
3457 	 */
3458 
3459 	if (!hsfsts.hsf_status.flcinprog) {
3460 		/* There is no cycle running at present,
3461 		 * so we can start a cycle.
3462 		 * Begin by setting Flash Cycle Done.
3463 		 */
3464 		hsfsts.hsf_status.flcdone = 1;
3465 		if (hw->mac.type >= e1000_pch_spt)
3466 			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3467 		else
3468 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3469 		ret_val = 0;
3470 	} else {
3471 		s32 i;
3472 
3473 		/* Otherwise poll for sometime so the current
3474 		 * cycle has a chance to end before giving up.
3475 		 */
3476 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3477 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3478 			if (!hsfsts.hsf_status.flcinprog) {
3479 				ret_val = 0;
3480 				break;
3481 			}
3482 			udelay(1);
3483 		}
3484 		if (!ret_val) {
3485 			/* Successful in waiting for previous cycle to timeout,
3486 			 * now set the Flash Cycle Done.
3487 			 */
3488 			hsfsts.hsf_status.flcdone = 1;
3489 			if (hw->mac.type >= e1000_pch_spt)
3490 				ew32flash(ICH_FLASH_HSFSTS,
3491 					  hsfsts.regval & 0xFFFF);
3492 			else
3493 				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3494 		} else {
3495 			e_dbg("Flash controller busy, cannot get access\n");
3496 		}
3497 	}
3498 
3499 	return ret_val;
3500 }
3501 
3502 /**
3503  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3504  *  @hw: pointer to the HW structure
3505  *  @timeout: maximum time to wait for completion
3506  *
3507  *  This function starts a flash cycle and waits for its completion.
3508  **/
3509 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3510 {
3511 	union ich8_hws_flash_ctrl hsflctl;
3512 	union ich8_hws_flash_status hsfsts;
3513 	u32 i = 0;
3514 
3515 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3516 	if (hw->mac.type >= e1000_pch_spt)
3517 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3518 	else
3519 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3520 	hsflctl.hsf_ctrl.flcgo = 1;
3521 
3522 	if (hw->mac.type >= e1000_pch_spt)
3523 		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3524 	else
3525 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3526 
3527 	/* wait till FDONE bit is set to 1 */
3528 	do {
3529 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3530 		if (hsfsts.hsf_status.flcdone)
3531 			break;
3532 		udelay(1);
3533 	} while (i++ < timeout);
3534 
3535 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3536 		return 0;
3537 
3538 	return -E1000_ERR_NVM;
3539 }
3540 
3541 /**
3542  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3543  *  @hw: pointer to the HW structure
3544  *  @offset: offset to data location
3545  *  @data: pointer to the location for storing the data
3546  *
3547  *  Reads the flash dword at offset into data.  Offset is converted
3548  *  to bytes before read.
3549  **/
3550 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3551 					  u32 *data)
3552 {
3553 	/* Must convert word offset into bytes. */
3554 	offset <<= 1;
3555 	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3556 }
3557 
3558 /**
3559  *  e1000_read_flash_word_ich8lan - Read word from flash
3560  *  @hw: pointer to the HW structure
3561  *  @offset: offset to data location
3562  *  @data: pointer to the location for storing the data
3563  *
3564  *  Reads the flash word at offset into data.  Offset is converted
3565  *  to bytes before read.
3566  **/
3567 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3568 					 u16 *data)
3569 {
3570 	/* Must convert offset into bytes. */
3571 	offset <<= 1;
3572 
3573 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3574 }
3575 
3576 /**
3577  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3578  *  @hw: pointer to the HW structure
3579  *  @offset: The offset of the byte to read.
3580  *  @data: Pointer to a byte to store the value read.
3581  *
3582  *  Reads a single byte from the NVM using the flash access registers.
3583  **/
3584 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3585 					 u8 *data)
3586 {
3587 	s32 ret_val;
3588 	u16 word = 0;
3589 
3590 	/* In SPT, only 32 bits access is supported,
3591 	 * so this function should not be called.
3592 	 */
3593 	if (hw->mac.type >= e1000_pch_spt)
3594 		return -E1000_ERR_NVM;
3595 	else
3596 		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3597 
3598 	if (ret_val)
3599 		return ret_val;
3600 
3601 	*data = (u8)word;
3602 
3603 	return 0;
3604 }
3605 
3606 /**
3607  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3608  *  @hw: pointer to the HW structure
3609  *  @offset: The offset (in bytes) of the byte or word to read.
3610  *  @size: Size of data to read, 1=byte 2=word
3611  *  @data: Pointer to the word to store the value read.
3612  *
3613  *  Reads a byte or word from the NVM using the flash access registers.
3614  **/
3615 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3616 					 u8 size, u16 *data)
3617 {
3618 	union ich8_hws_flash_status hsfsts;
3619 	union ich8_hws_flash_ctrl hsflctl;
3620 	u32 flash_linear_addr;
3621 	u32 flash_data = 0;
3622 	s32 ret_val = -E1000_ERR_NVM;
3623 	u8 count = 0;
3624 
3625 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3626 		return -E1000_ERR_NVM;
3627 
3628 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3629 			     hw->nvm.flash_base_addr);
3630 
3631 	do {
3632 		udelay(1);
3633 		/* Steps */
3634 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3635 		if (ret_val)
3636 			break;
3637 
3638 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3639 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3640 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3641 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3642 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3643 
3644 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3645 
3646 		ret_val =
3647 		    e1000_flash_cycle_ich8lan(hw,
3648 					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3649 
3650 		/* Check if FCERR is set to 1, if set to 1, clear it
3651 		 * and try the whole sequence a few more times, else
3652 		 * read in (shift in) the Flash Data0, the order is
3653 		 * least significant byte first msb to lsb
3654 		 */
3655 		if (!ret_val) {
3656 			flash_data = er32flash(ICH_FLASH_FDATA0);
3657 			if (size == 1)
3658 				*data = (u8)(flash_data & 0x000000FF);
3659 			else if (size == 2)
3660 				*data = (u16)(flash_data & 0x0000FFFF);
3661 			break;
3662 		} else {
3663 			/* If we've gotten here, then things are probably
3664 			 * completely hosed, but if the error condition is
3665 			 * detected, it won't hurt to give it another try...
3666 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3667 			 */
3668 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3669 			if (hsfsts.hsf_status.flcerr) {
3670 				/* Repeat for some time before giving up. */
3671 				continue;
3672 			} else if (!hsfsts.hsf_status.flcdone) {
3673 				e_dbg("Timeout error - flash cycle did not complete.\n");
3674 				break;
3675 			}
3676 		}
3677 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3678 
3679 	return ret_val;
3680 }
3681 
3682 /**
3683  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3684  *  @hw: pointer to the HW structure
3685  *  @offset: The offset (in bytes) of the dword to read.
3686  *  @data: Pointer to the dword to store the value read.
3687  *
3688  *  Reads a byte or word from the NVM using the flash access registers.
3689  **/
3690 
3691 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3692 					   u32 *data)
3693 {
3694 	union ich8_hws_flash_status hsfsts;
3695 	union ich8_hws_flash_ctrl hsflctl;
3696 	u32 flash_linear_addr;
3697 	s32 ret_val = -E1000_ERR_NVM;
3698 	u8 count = 0;
3699 
3700 	if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3701 		return -E1000_ERR_NVM;
3702 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3703 			     hw->nvm.flash_base_addr);
3704 
3705 	do {
3706 		udelay(1);
3707 		/* Steps */
3708 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3709 		if (ret_val)
3710 			break;
3711 		/* In SPT, This register is in Lan memory space, not flash.
3712 		 * Therefore, only 32 bit access is supported
3713 		 */
3714 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3715 
3716 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3717 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3718 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3719 		/* In SPT, This register is in Lan memory space, not flash.
3720 		 * Therefore, only 32 bit access is supported
3721 		 */
3722 		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3723 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3724 
3725 		ret_val =
3726 		   e1000_flash_cycle_ich8lan(hw,
3727 					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3728 
3729 		/* Check if FCERR is set to 1, if set to 1, clear it
3730 		 * and try the whole sequence a few more times, else
3731 		 * read in (shift in) the Flash Data0, the order is
3732 		 * least significant byte first msb to lsb
3733 		 */
3734 		if (!ret_val) {
3735 			*data = er32flash(ICH_FLASH_FDATA0);
3736 			break;
3737 		} else {
3738 			/* If we've gotten here, then things are probably
3739 			 * completely hosed, but if the error condition is
3740 			 * detected, it won't hurt to give it another try...
3741 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3742 			 */
3743 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3744 			if (hsfsts.hsf_status.flcerr) {
3745 				/* Repeat for some time before giving up. */
3746 				continue;
3747 			} else if (!hsfsts.hsf_status.flcdone) {
3748 				e_dbg("Timeout error - flash cycle did not complete.\n");
3749 				break;
3750 			}
3751 		}
3752 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3753 
3754 	return ret_val;
3755 }
3756 
3757 /**
3758  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3759  *  @hw: pointer to the HW structure
3760  *  @offset: The offset (in bytes) of the word(s) to write.
3761  *  @words: Size of data to write in words
3762  *  @data: Pointer to the word(s) to write at offset.
3763  *
3764  *  Writes a byte or word to the NVM using the flash access registers.
3765  **/
3766 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3767 				   u16 *data)
3768 {
3769 	struct e1000_nvm_info *nvm = &hw->nvm;
3770 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3771 	u16 i;
3772 
3773 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3774 	    (words == 0)) {
3775 		e_dbg("nvm parameter(s) out of bounds\n");
3776 		return -E1000_ERR_NVM;
3777 	}
3778 
3779 	nvm->ops.acquire(hw);
3780 
3781 	for (i = 0; i < words; i++) {
3782 		dev_spec->shadow_ram[offset + i].modified = true;
3783 		dev_spec->shadow_ram[offset + i].value = data[i];
3784 	}
3785 
3786 	nvm->ops.release(hw);
3787 
3788 	return 0;
3789 }
3790 
3791 /**
3792  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3793  *  @hw: pointer to the HW structure
3794  *
3795  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3796  *  which writes the checksum to the shadow ram.  The changes in the shadow
3797  *  ram are then committed to the EEPROM by processing each bank at a time
3798  *  checking for the modified bit and writing only the pending changes.
3799  *  After a successful commit, the shadow ram is cleared and is ready for
3800  *  future writes.
3801  **/
3802 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3803 {
3804 	struct e1000_nvm_info *nvm = &hw->nvm;
3805 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3806 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3807 	s32 ret_val;
3808 	u32 dword = 0;
3809 
3810 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3811 	if (ret_val)
3812 		goto out;
3813 
3814 	if (nvm->type != e1000_nvm_flash_sw)
3815 		goto out;
3816 
3817 	nvm->ops.acquire(hw);
3818 
3819 	/* We're writing to the opposite bank so if we're on bank 1,
3820 	 * write to bank 0 etc.  We also need to erase the segment that
3821 	 * is going to be written
3822 	 */
3823 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3824 	if (ret_val) {
3825 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3826 		bank = 0;
3827 	}
3828 
3829 	if (bank == 0) {
3830 		new_bank_offset = nvm->flash_bank_size;
3831 		old_bank_offset = 0;
3832 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3833 		if (ret_val)
3834 			goto release;
3835 	} else {
3836 		old_bank_offset = nvm->flash_bank_size;
3837 		new_bank_offset = 0;
3838 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3839 		if (ret_val)
3840 			goto release;
3841 	}
3842 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3843 		/* Determine whether to write the value stored
3844 		 * in the other NVM bank or a modified value stored
3845 		 * in the shadow RAM
3846 		 */
3847 		ret_val = e1000_read_flash_dword_ich8lan(hw,
3848 							 i + old_bank_offset,
3849 							 &dword);
3850 
3851 		if (dev_spec->shadow_ram[i].modified) {
3852 			dword &= 0xffff0000;
3853 			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3854 		}
3855 		if (dev_spec->shadow_ram[i + 1].modified) {
3856 			dword &= 0x0000ffff;
3857 			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3858 				  << 16);
3859 		}
3860 		if (ret_val)
3861 			break;
3862 
3863 		/* If the word is 0x13, then make sure the signature bits
3864 		 * (15:14) are 11b until the commit has completed.
3865 		 * This will allow us to write 10b which indicates the
3866 		 * signature is valid.  We want to do this after the write
3867 		 * has completed so that we don't mark the segment valid
3868 		 * while the write is still in progress
3869 		 */
3870 		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3871 			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3872 
3873 		/* Convert offset to bytes. */
3874 		act_offset = (i + new_bank_offset) << 1;
3875 
3876 		usleep_range(100, 200);
3877 
3878 		/* Write the data to the new bank. Offset in words */
3879 		act_offset = i + new_bank_offset;
3880 		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3881 								dword);
3882 		if (ret_val)
3883 			break;
3884 	}
3885 
3886 	/* Don't bother writing the segment valid bits if sector
3887 	 * programming failed.
3888 	 */
3889 	if (ret_val) {
3890 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3891 		e_dbg("Flash commit failed.\n");
3892 		goto release;
3893 	}
3894 
3895 	/* Finally validate the new segment by setting bit 15:14
3896 	 * to 10b in word 0x13 , this can be done without an
3897 	 * erase as well since these bits are 11 to start with
3898 	 * and we need to change bit 14 to 0b
3899 	 */
3900 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3901 
3902 	/*offset in words but we read dword */
3903 	--act_offset;
3904 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3905 
3906 	if (ret_val)
3907 		goto release;
3908 
3909 	dword &= 0xBFFFFFFF;
3910 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3911 
3912 	if (ret_val)
3913 		goto release;
3914 
3915 	/* offset in words but we read dword */
3916 	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3917 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3918 
3919 	if (ret_val)
3920 		goto release;
3921 
3922 	dword &= 0x00FFFFFF;
3923 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3924 
3925 	if (ret_val)
3926 		goto release;
3927 
3928 	/* Great!  Everything worked, we can now clear the cached entries. */
3929 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3930 		dev_spec->shadow_ram[i].modified = false;
3931 		dev_spec->shadow_ram[i].value = 0xFFFF;
3932 	}
3933 
3934 release:
3935 	nvm->ops.release(hw);
3936 
3937 	/* Reload the EEPROM, or else modifications will not appear
3938 	 * until after the next adapter reset.
3939 	 */
3940 	if (!ret_val) {
3941 		nvm->ops.reload(hw);
3942 		usleep_range(10000, 11000);
3943 	}
3944 
3945 out:
3946 	if (ret_val)
3947 		e_dbg("NVM update error: %d\n", ret_val);
3948 
3949 	return ret_val;
3950 }
3951 
3952 /**
3953  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3954  *  @hw: pointer to the HW structure
3955  *
3956  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3957  *  which writes the checksum to the shadow ram.  The changes in the shadow
3958  *  ram are then committed to the EEPROM by processing each bank at a time
3959  *  checking for the modified bit and writing only the pending changes.
3960  *  After a successful commit, the shadow ram is cleared and is ready for
3961  *  future writes.
3962  **/
3963 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3964 {
3965 	struct e1000_nvm_info *nvm = &hw->nvm;
3966 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3967 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3968 	s32 ret_val;
3969 	u16 data = 0;
3970 
3971 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3972 	if (ret_val)
3973 		goto out;
3974 
3975 	if (nvm->type != e1000_nvm_flash_sw)
3976 		goto out;
3977 
3978 	nvm->ops.acquire(hw);
3979 
3980 	/* We're writing to the opposite bank so if we're on bank 1,
3981 	 * write to bank 0 etc.  We also need to erase the segment that
3982 	 * is going to be written
3983 	 */
3984 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3985 	if (ret_val) {
3986 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3987 		bank = 0;
3988 	}
3989 
3990 	if (bank == 0) {
3991 		new_bank_offset = nvm->flash_bank_size;
3992 		old_bank_offset = 0;
3993 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3994 		if (ret_val)
3995 			goto release;
3996 	} else {
3997 		old_bank_offset = nvm->flash_bank_size;
3998 		new_bank_offset = 0;
3999 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4000 		if (ret_val)
4001 			goto release;
4002 	}
4003 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4004 		if (dev_spec->shadow_ram[i].modified) {
4005 			data = dev_spec->shadow_ram[i].value;
4006 		} else {
4007 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
4008 								old_bank_offset,
4009 								&data);
4010 			if (ret_val)
4011 				break;
4012 		}
4013 
4014 		/* If the word is 0x13, then make sure the signature bits
4015 		 * (15:14) are 11b until the commit has completed.
4016 		 * This will allow us to write 10b which indicates the
4017 		 * signature is valid.  We want to do this after the write
4018 		 * has completed so that we don't mark the segment valid
4019 		 * while the write is still in progress
4020 		 */
4021 		if (i == E1000_ICH_NVM_SIG_WORD)
4022 			data |= E1000_ICH_NVM_SIG_MASK;
4023 
4024 		/* Convert offset to bytes. */
4025 		act_offset = (i + new_bank_offset) << 1;
4026 
4027 		usleep_range(100, 200);
4028 		/* Write the bytes to the new bank. */
4029 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4030 							       act_offset,
4031 							       (u8)data);
4032 		if (ret_val)
4033 			break;
4034 
4035 		usleep_range(100, 200);
4036 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4037 							       act_offset + 1,
4038 							       (u8)(data >> 8));
4039 		if (ret_val)
4040 			break;
4041 	}
4042 
4043 	/* Don't bother writing the segment valid bits if sector
4044 	 * programming failed.
4045 	 */
4046 	if (ret_val) {
4047 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4048 		e_dbg("Flash commit failed.\n");
4049 		goto release;
4050 	}
4051 
4052 	/* Finally validate the new segment by setting bit 15:14
4053 	 * to 10b in word 0x13 , this can be done without an
4054 	 * erase as well since these bits are 11 to start with
4055 	 * and we need to change bit 14 to 0b
4056 	 */
4057 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4058 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4059 	if (ret_val)
4060 		goto release;
4061 
4062 	data &= 0xBFFF;
4063 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4064 						       act_offset * 2 + 1,
4065 						       (u8)(data >> 8));
4066 	if (ret_val)
4067 		goto release;
4068 
4069 	/* And invalidate the previously valid segment by setting
4070 	 * its signature word (0x13) high_byte to 0b. This can be
4071 	 * done without an erase because flash erase sets all bits
4072 	 * to 1's. We can write 1's to 0's without an erase
4073 	 */
4074 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4075 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4076 	if (ret_val)
4077 		goto release;
4078 
4079 	/* Great!  Everything worked, we can now clear the cached entries. */
4080 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4081 		dev_spec->shadow_ram[i].modified = false;
4082 		dev_spec->shadow_ram[i].value = 0xFFFF;
4083 	}
4084 
4085 release:
4086 	nvm->ops.release(hw);
4087 
4088 	/* Reload the EEPROM, or else modifications will not appear
4089 	 * until after the next adapter reset.
4090 	 */
4091 	if (!ret_val) {
4092 		nvm->ops.reload(hw);
4093 		usleep_range(10000, 11000);
4094 	}
4095 
4096 out:
4097 	if (ret_val)
4098 		e_dbg("NVM update error: %d\n", ret_val);
4099 
4100 	return ret_val;
4101 }
4102 
4103 /**
4104  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4105  *  @hw: pointer to the HW structure
4106  *
4107  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4108  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4109  *  calculated, in which case we need to calculate the checksum and set bit 6.
4110  **/
4111 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4112 {
4113 	s32 ret_val;
4114 	u16 data;
4115 	u16 word;
4116 	u16 valid_csum_mask;
4117 
4118 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4119 	 * the checksum needs to be fixed.  This bit is an indication that
4120 	 * the NVM was prepared by OEM software and did not calculate
4121 	 * the checksum...a likely scenario.
4122 	 */
4123 	switch (hw->mac.type) {
4124 	case e1000_pch_lpt:
4125 	case e1000_pch_spt:
4126 	case e1000_pch_cnp:
4127 	case e1000_pch_tgp:
4128 	case e1000_pch_adp:
4129 	case e1000_pch_mtp:
4130 	case e1000_pch_lnp:
4131 	case e1000_pch_ptp:
4132 		word = NVM_COMPAT;
4133 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4134 		break;
4135 	default:
4136 		word = NVM_FUTURE_INIT_WORD1;
4137 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4138 		break;
4139 	}
4140 
4141 	ret_val = e1000_read_nvm(hw, word, 1, &data);
4142 	if (ret_val)
4143 		return ret_val;
4144 
4145 	if (!(data & valid_csum_mask)) {
4146 		e_dbg("NVM Checksum valid bit not set\n");
4147 
4148 		if (hw->mac.type < e1000_pch_tgp) {
4149 			data |= valid_csum_mask;
4150 			ret_val = e1000_write_nvm(hw, word, 1, &data);
4151 			if (ret_val)
4152 				return ret_val;
4153 			ret_val = e1000e_update_nvm_checksum(hw);
4154 			if (ret_val)
4155 				return ret_val;
4156 		}
4157 	}
4158 
4159 	return e1000e_validate_nvm_checksum_generic(hw);
4160 }
4161 
4162 /**
4163  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4164  *  @hw: pointer to the HW structure
4165  *
4166  *  To prevent malicious write/erase of the NVM, set it to be read-only
4167  *  so that the hardware ignores all write/erase cycles of the NVM via
4168  *  the flash control registers.  The shadow-ram copy of the NVM will
4169  *  still be updated, however any updates to this copy will not stick
4170  *  across driver reloads.
4171  **/
4172 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4173 {
4174 	struct e1000_nvm_info *nvm = &hw->nvm;
4175 	union ich8_flash_protected_range pr0;
4176 	union ich8_hws_flash_status hsfsts;
4177 	u32 gfpreg;
4178 
4179 	nvm->ops.acquire(hw);
4180 
4181 	gfpreg = er32flash(ICH_FLASH_GFPREG);
4182 
4183 	/* Write-protect GbE Sector of NVM */
4184 	pr0.regval = er32flash(ICH_FLASH_PR0);
4185 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4186 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4187 	pr0.range.wpe = true;
4188 	ew32flash(ICH_FLASH_PR0, pr0.regval);
4189 
4190 	/* Lock down a subset of GbE Flash Control Registers, e.g.
4191 	 * PR0 to prevent the write-protection from being lifted.
4192 	 * Once FLOCKDN is set, the registers protected by it cannot
4193 	 * be written until FLOCKDN is cleared by a hardware reset.
4194 	 */
4195 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4196 	hsfsts.hsf_status.flockdn = true;
4197 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4198 
4199 	nvm->ops.release(hw);
4200 }
4201 
4202 /**
4203  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4204  *  @hw: pointer to the HW structure
4205  *  @offset: The offset (in bytes) of the byte/word to read.
4206  *  @size: Size of data to read, 1=byte 2=word
4207  *  @data: The byte(s) to write to the NVM.
4208  *
4209  *  Writes one/two bytes to the NVM using the flash access registers.
4210  **/
4211 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4212 					  u8 size, u16 data)
4213 {
4214 	union ich8_hws_flash_status hsfsts;
4215 	union ich8_hws_flash_ctrl hsflctl;
4216 	u32 flash_linear_addr;
4217 	u32 flash_data = 0;
4218 	s32 ret_val;
4219 	u8 count = 0;
4220 
4221 	if (hw->mac.type >= e1000_pch_spt) {
4222 		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4223 			return -E1000_ERR_NVM;
4224 	} else {
4225 		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4226 			return -E1000_ERR_NVM;
4227 	}
4228 
4229 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4230 			     hw->nvm.flash_base_addr);
4231 
4232 	do {
4233 		udelay(1);
4234 		/* Steps */
4235 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4236 		if (ret_val)
4237 			break;
4238 		/* In SPT, This register is in Lan memory space, not
4239 		 * flash.  Therefore, only 32 bit access is supported
4240 		 */
4241 		if (hw->mac.type >= e1000_pch_spt)
4242 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4243 		else
4244 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4245 
4246 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4247 		hsflctl.hsf_ctrl.fldbcount = size - 1;
4248 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4249 		/* In SPT, This register is in Lan memory space,
4250 		 * not flash.  Therefore, only 32 bit access is
4251 		 * supported
4252 		 */
4253 		if (hw->mac.type >= e1000_pch_spt)
4254 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4255 		else
4256 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4257 
4258 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4259 
4260 		if (size == 1)
4261 			flash_data = (u32)data & 0x00FF;
4262 		else
4263 			flash_data = (u32)data;
4264 
4265 		ew32flash(ICH_FLASH_FDATA0, flash_data);
4266 
4267 		/* check if FCERR is set to 1 , if set to 1, clear it
4268 		 * and try the whole sequence a few more times else done
4269 		 */
4270 		ret_val =
4271 		    e1000_flash_cycle_ich8lan(hw,
4272 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4273 		if (!ret_val)
4274 			break;
4275 
4276 		/* If we're here, then things are most likely
4277 		 * completely hosed, but if the error condition
4278 		 * is detected, it won't hurt to give it another
4279 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4280 		 */
4281 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4282 		if (hsfsts.hsf_status.flcerr)
4283 			/* Repeat for some time before giving up. */
4284 			continue;
4285 		if (!hsfsts.hsf_status.flcdone) {
4286 			e_dbg("Timeout error - flash cycle did not complete.\n");
4287 			break;
4288 		}
4289 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4290 
4291 	return ret_val;
4292 }
4293 
4294 /**
4295 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4296 *  @hw: pointer to the HW structure
4297 *  @offset: The offset (in bytes) of the dwords to read.
4298 *  @data: The 4 bytes to write to the NVM.
4299 *
4300 *  Writes one/two/four bytes to the NVM using the flash access registers.
4301 **/
4302 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4303 					    u32 data)
4304 {
4305 	union ich8_hws_flash_status hsfsts;
4306 	union ich8_hws_flash_ctrl hsflctl;
4307 	u32 flash_linear_addr;
4308 	s32 ret_val;
4309 	u8 count = 0;
4310 
4311 	if (hw->mac.type >= e1000_pch_spt) {
4312 		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4313 			return -E1000_ERR_NVM;
4314 	}
4315 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4316 			     hw->nvm.flash_base_addr);
4317 	do {
4318 		udelay(1);
4319 		/* Steps */
4320 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4321 		if (ret_val)
4322 			break;
4323 
4324 		/* In SPT, This register is in Lan memory space, not
4325 		 * flash.  Therefore, only 32 bit access is supported
4326 		 */
4327 		if (hw->mac.type >= e1000_pch_spt)
4328 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4329 			    >> 16;
4330 		else
4331 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4332 
4333 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4334 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4335 
4336 		/* In SPT, This register is in Lan memory space,
4337 		 * not flash.  Therefore, only 32 bit access is
4338 		 * supported
4339 		 */
4340 		if (hw->mac.type >= e1000_pch_spt)
4341 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4342 		else
4343 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4344 
4345 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4346 
4347 		ew32flash(ICH_FLASH_FDATA0, data);
4348 
4349 		/* check if FCERR is set to 1 , if set to 1, clear it
4350 		 * and try the whole sequence a few more times else done
4351 		 */
4352 		ret_val =
4353 		   e1000_flash_cycle_ich8lan(hw,
4354 					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4355 
4356 		if (!ret_val)
4357 			break;
4358 
4359 		/* If we're here, then things are most likely
4360 		 * completely hosed, but if the error condition
4361 		 * is detected, it won't hurt to give it another
4362 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4363 		 */
4364 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4365 
4366 		if (hsfsts.hsf_status.flcerr)
4367 			/* Repeat for some time before giving up. */
4368 			continue;
4369 		if (!hsfsts.hsf_status.flcdone) {
4370 			e_dbg("Timeout error - flash cycle did not complete.\n");
4371 			break;
4372 		}
4373 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4374 
4375 	return ret_val;
4376 }
4377 
4378 /**
4379  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4380  *  @hw: pointer to the HW structure
4381  *  @offset: The index of the byte to read.
4382  *  @data: The byte to write to the NVM.
4383  *
4384  *  Writes a single byte to the NVM using the flash access registers.
4385  **/
4386 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4387 					  u8 data)
4388 {
4389 	u16 word = (u16)data;
4390 
4391 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4392 }
4393 
4394 /**
4395 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4396 *  @hw: pointer to the HW structure
4397 *  @offset: The offset of the word to write.
4398 *  @dword: The dword to write to the NVM.
4399 *
4400 *  Writes a single dword to the NVM using the flash access registers.
4401 *  Goes through a retry algorithm before giving up.
4402 **/
4403 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4404 						 u32 offset, u32 dword)
4405 {
4406 	s32 ret_val;
4407 	u16 program_retries;
4408 
4409 	/* Must convert word offset into bytes. */
4410 	offset <<= 1;
4411 	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4412 
4413 	if (!ret_val)
4414 		return ret_val;
4415 	for (program_retries = 0; program_retries < 100; program_retries++) {
4416 		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4417 		usleep_range(100, 200);
4418 		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4419 		if (!ret_val)
4420 			break;
4421 	}
4422 	if (program_retries == 100)
4423 		return -E1000_ERR_NVM;
4424 
4425 	return 0;
4426 }
4427 
4428 /**
4429  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4430  *  @hw: pointer to the HW structure
4431  *  @offset: The offset of the byte to write.
4432  *  @byte: The byte to write to the NVM.
4433  *
4434  *  Writes a single byte to the NVM using the flash access registers.
4435  *  Goes through a retry algorithm before giving up.
4436  **/
4437 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4438 						u32 offset, u8 byte)
4439 {
4440 	s32 ret_val;
4441 	u16 program_retries;
4442 
4443 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4444 	if (!ret_val)
4445 		return ret_val;
4446 
4447 	for (program_retries = 0; program_retries < 100; program_retries++) {
4448 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4449 		usleep_range(100, 200);
4450 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4451 		if (!ret_val)
4452 			break;
4453 	}
4454 	if (program_retries == 100)
4455 		return -E1000_ERR_NVM;
4456 
4457 	return 0;
4458 }
4459 
4460 /**
4461  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4462  *  @hw: pointer to the HW structure
4463  *  @bank: 0 for first bank, 1 for second bank, etc.
4464  *
4465  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4466  *  bank N is 4096 * N + flash_reg_addr.
4467  **/
4468 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4469 {
4470 	struct e1000_nvm_info *nvm = &hw->nvm;
4471 	union ich8_hws_flash_status hsfsts;
4472 	union ich8_hws_flash_ctrl hsflctl;
4473 	u32 flash_linear_addr;
4474 	/* bank size is in 16bit words - adjust to bytes */
4475 	u32 flash_bank_size = nvm->flash_bank_size * 2;
4476 	s32 ret_val;
4477 	s32 count = 0;
4478 	s32 j, iteration, sector_size;
4479 
4480 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4481 
4482 	/* Determine HW Sector size: Read BERASE bits of hw flash status
4483 	 * register
4484 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4485 	 *     consecutive sectors.  The start index for the nth Hw sector
4486 	 *     can be calculated as = bank * 4096 + n * 256
4487 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4488 	 *     The start index for the nth Hw sector can be calculated
4489 	 *     as = bank * 4096
4490 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4491 	 *     (ich9 only, otherwise error condition)
4492 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4493 	 */
4494 	switch (hsfsts.hsf_status.berasesz) {
4495 	case 0:
4496 		/* Hw sector size 256 */
4497 		sector_size = ICH_FLASH_SEG_SIZE_256;
4498 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4499 		break;
4500 	case 1:
4501 		sector_size = ICH_FLASH_SEG_SIZE_4K;
4502 		iteration = 1;
4503 		break;
4504 	case 2:
4505 		sector_size = ICH_FLASH_SEG_SIZE_8K;
4506 		iteration = 1;
4507 		break;
4508 	case 3:
4509 		sector_size = ICH_FLASH_SEG_SIZE_64K;
4510 		iteration = 1;
4511 		break;
4512 	default:
4513 		return -E1000_ERR_NVM;
4514 	}
4515 
4516 	/* Start with the base address, then add the sector offset. */
4517 	flash_linear_addr = hw->nvm.flash_base_addr;
4518 	flash_linear_addr += (bank) ? flash_bank_size : 0;
4519 
4520 	for (j = 0; j < iteration; j++) {
4521 		do {
4522 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4523 
4524 			/* Steps */
4525 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4526 			if (ret_val)
4527 				return ret_val;
4528 
4529 			/* Write a value 11 (block Erase) in Flash
4530 			 * Cycle field in hw flash control
4531 			 */
4532 			if (hw->mac.type >= e1000_pch_spt)
4533 				hsflctl.regval =
4534 				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4535 			else
4536 				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4537 
4538 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4539 			if (hw->mac.type >= e1000_pch_spt)
4540 				ew32flash(ICH_FLASH_HSFSTS,
4541 					  hsflctl.regval << 16);
4542 			else
4543 				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4544 
4545 			/* Write the last 24 bits of an index within the
4546 			 * block into Flash Linear address field in Flash
4547 			 * Address.
4548 			 */
4549 			flash_linear_addr += (j * sector_size);
4550 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4551 
4552 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4553 			if (!ret_val)
4554 				break;
4555 
4556 			/* Check if FCERR is set to 1.  If 1,
4557 			 * clear it and try the whole sequence
4558 			 * a few more times else Done
4559 			 */
4560 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4561 			if (hsfsts.hsf_status.flcerr)
4562 				/* repeat for some time before giving up */
4563 				continue;
4564 			else if (!hsfsts.hsf_status.flcdone)
4565 				return ret_val;
4566 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4567 	}
4568 
4569 	return 0;
4570 }
4571 
4572 /**
4573  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4574  *  @hw: pointer to the HW structure
4575  *  @data: Pointer to the LED settings
4576  *
4577  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4578  *  settings is all 0's or F's, set the LED default to a valid LED default
4579  *  setting.
4580  **/
4581 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4582 {
4583 	s32 ret_val;
4584 
4585 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4586 	if (ret_val) {
4587 		e_dbg("NVM Read Error\n");
4588 		return ret_val;
4589 	}
4590 
4591 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4592 		*data = ID_LED_DEFAULT_ICH8LAN;
4593 
4594 	return 0;
4595 }
4596 
4597 /**
4598  *  e1000_id_led_init_pchlan - store LED configurations
4599  *  @hw: pointer to the HW structure
4600  *
4601  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4602  *  the PHY LED configuration register.
4603  *
4604  *  PCH also does not have an "always on" or "always off" mode which
4605  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4606  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4607  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4608  *  link based on logic in e1000_led_[on|off]_pchlan().
4609  **/
4610 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4611 {
4612 	struct e1000_mac_info *mac = &hw->mac;
4613 	s32 ret_val;
4614 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4615 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4616 	u16 data, i, temp, shift;
4617 
4618 	/* Get default ID LED modes */
4619 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4620 	if (ret_val)
4621 		return ret_val;
4622 
4623 	mac->ledctl_default = er32(LEDCTL);
4624 	mac->ledctl_mode1 = mac->ledctl_default;
4625 	mac->ledctl_mode2 = mac->ledctl_default;
4626 
4627 	for (i = 0; i < 4; i++) {
4628 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4629 		shift = (i * 5);
4630 		switch (temp) {
4631 		case ID_LED_ON1_DEF2:
4632 		case ID_LED_ON1_ON2:
4633 		case ID_LED_ON1_OFF2:
4634 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4635 			mac->ledctl_mode1 |= (ledctl_on << shift);
4636 			break;
4637 		case ID_LED_OFF1_DEF2:
4638 		case ID_LED_OFF1_ON2:
4639 		case ID_LED_OFF1_OFF2:
4640 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4641 			mac->ledctl_mode1 |= (ledctl_off << shift);
4642 			break;
4643 		default:
4644 			/* Do nothing */
4645 			break;
4646 		}
4647 		switch (temp) {
4648 		case ID_LED_DEF1_ON2:
4649 		case ID_LED_ON1_ON2:
4650 		case ID_LED_OFF1_ON2:
4651 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4652 			mac->ledctl_mode2 |= (ledctl_on << shift);
4653 			break;
4654 		case ID_LED_DEF1_OFF2:
4655 		case ID_LED_ON1_OFF2:
4656 		case ID_LED_OFF1_OFF2:
4657 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4658 			mac->ledctl_mode2 |= (ledctl_off << shift);
4659 			break;
4660 		default:
4661 			/* Do nothing */
4662 			break;
4663 		}
4664 	}
4665 
4666 	return 0;
4667 }
4668 
4669 /**
4670  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4671  *  @hw: pointer to the HW structure
4672  *
4673  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4674  *  register, so the bus width is hard coded.
4675  **/
4676 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4677 {
4678 	struct e1000_bus_info *bus = &hw->bus;
4679 	s32 ret_val;
4680 
4681 	ret_val = e1000e_get_bus_info_pcie(hw);
4682 
4683 	/* ICH devices are "PCI Express"-ish.  They have
4684 	 * a configuration space, but do not contain
4685 	 * PCI Express Capability registers, so bus width
4686 	 * must be hardcoded.
4687 	 */
4688 	if (bus->width == e1000_bus_width_unknown)
4689 		bus->width = e1000_bus_width_pcie_x1;
4690 
4691 	return ret_val;
4692 }
4693 
4694 /**
4695  *  e1000_reset_hw_ich8lan - Reset the hardware
4696  *  @hw: pointer to the HW structure
4697  *
4698  *  Does a full reset of the hardware which includes a reset of the PHY and
4699  *  MAC.
4700  **/
4701 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4702 {
4703 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4704 	u16 kum_cfg;
4705 	u32 ctrl, reg;
4706 	s32 ret_val;
4707 
4708 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4709 	 * on the last TLP read/write transaction when MAC is reset.
4710 	 */
4711 	ret_val = e1000e_disable_pcie_master(hw);
4712 	if (ret_val)
4713 		e_dbg("PCI-E Master disable polling has failed.\n");
4714 
4715 	e_dbg("Masking off all interrupts\n");
4716 	ew32(IMC, 0xffffffff);
4717 
4718 	/* Disable the Transmit and Receive units.  Then delay to allow
4719 	 * any pending transactions to complete before we hit the MAC
4720 	 * with the global reset.
4721 	 */
4722 	ew32(RCTL, 0);
4723 	ew32(TCTL, E1000_TCTL_PSP);
4724 	e1e_flush();
4725 
4726 	usleep_range(10000, 11000);
4727 
4728 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4729 	if (hw->mac.type == e1000_ich8lan) {
4730 		/* Set Tx and Rx buffer allocation to 8k apiece. */
4731 		ew32(PBA, E1000_PBA_8K);
4732 		/* Set Packet Buffer Size to 16k. */
4733 		ew32(PBS, E1000_PBS_16K);
4734 	}
4735 
4736 	if (hw->mac.type == e1000_pchlan) {
4737 		/* Save the NVM K1 bit setting */
4738 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4739 		if (ret_val)
4740 			return ret_val;
4741 
4742 		if (kum_cfg & E1000_NVM_K1_ENABLE)
4743 			dev_spec->nvm_k1_enabled = true;
4744 		else
4745 			dev_spec->nvm_k1_enabled = false;
4746 	}
4747 
4748 	ctrl = er32(CTRL);
4749 
4750 	if (!hw->phy.ops.check_reset_block(hw)) {
4751 		/* Full-chip reset requires MAC and PHY reset at the same
4752 		 * time to make sure the interface between MAC and the
4753 		 * external PHY is reset.
4754 		 */
4755 		ctrl |= E1000_CTRL_PHY_RST;
4756 
4757 		/* Gate automatic PHY configuration by hardware on
4758 		 * non-managed 82579
4759 		 */
4760 		if ((hw->mac.type == e1000_pch2lan) &&
4761 		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4762 			e1000_gate_hw_phy_config_ich8lan(hw, true);
4763 	}
4764 	ret_val = e1000_acquire_swflag_ich8lan(hw);
4765 	e_dbg("Issuing a global reset to ich8lan\n");
4766 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4767 	/* cannot issue a flush here because it hangs the hardware */
4768 	msleep(20);
4769 
4770 	/* Set Phy Config Counter to 50msec */
4771 	if (hw->mac.type == e1000_pch2lan) {
4772 		reg = er32(FEXTNVM3);
4773 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4774 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4775 		ew32(FEXTNVM3, reg);
4776 	}
4777 
4778 	if (!ret_val)
4779 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4780 
4781 	if (ctrl & E1000_CTRL_PHY_RST) {
4782 		ret_val = hw->phy.ops.get_cfg_done(hw);
4783 		if (ret_val)
4784 			return ret_val;
4785 
4786 		ret_val = e1000_post_phy_reset_ich8lan(hw);
4787 		if (ret_val)
4788 			return ret_val;
4789 	}
4790 
4791 	/* For PCH, this write will make sure that any noise
4792 	 * will be detected as a CRC error and be dropped rather than show up
4793 	 * as a bad packet to the DMA engine.
4794 	 */
4795 	if (hw->mac.type == e1000_pchlan)
4796 		ew32(CRC_OFFSET, 0x65656565);
4797 
4798 	ew32(IMC, 0xffffffff);
4799 	er32(ICR);
4800 
4801 	reg = er32(KABGTXD);
4802 	reg |= E1000_KABGTXD_BGSQLBIAS;
4803 	ew32(KABGTXD, reg);
4804 
4805 	return 0;
4806 }
4807 
4808 /**
4809  *  e1000_init_hw_ich8lan - Initialize the hardware
4810  *  @hw: pointer to the HW structure
4811  *
4812  *  Prepares the hardware for transmit and receive by doing the following:
4813  *   - initialize hardware bits
4814  *   - initialize LED identification
4815  *   - setup receive address registers
4816  *   - setup flow control
4817  *   - setup transmit descriptors
4818  *   - clear statistics
4819  **/
4820 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4821 {
4822 	struct e1000_mac_info *mac = &hw->mac;
4823 	u32 ctrl_ext, txdctl, snoop, fflt_dbg;
4824 	s32 ret_val;
4825 	u16 i;
4826 
4827 	e1000_initialize_hw_bits_ich8lan(hw);
4828 
4829 	/* Initialize identification LED */
4830 	ret_val = mac->ops.id_led_init(hw);
4831 	/* An error is not fatal and we should not stop init due to this */
4832 	if (ret_val)
4833 		e_dbg("Error initializing identification LED\n");
4834 
4835 	/* Setup the receive address. */
4836 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4837 
4838 	/* Zero out the Multicast HASH table */
4839 	e_dbg("Zeroing the MTA\n");
4840 	for (i = 0; i < mac->mta_reg_count; i++)
4841 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4842 
4843 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4844 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4845 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4846 	 */
4847 	if (hw->phy.type == e1000_phy_82578) {
4848 		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4849 		i &= ~BM_WUC_HOST_WU_BIT;
4850 		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4851 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4852 		if (ret_val)
4853 			return ret_val;
4854 	}
4855 
4856 	/* Setup link and flow control */
4857 	ret_val = mac->ops.setup_link(hw);
4858 
4859 	/* Set the transmit descriptor write-back policy for both queues */
4860 	txdctl = er32(TXDCTL(0));
4861 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4862 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4863 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4864 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4865 	ew32(TXDCTL(0), txdctl);
4866 	txdctl = er32(TXDCTL(1));
4867 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4868 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4869 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4870 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4871 	ew32(TXDCTL(1), txdctl);
4872 
4873 	/* ICH8 has opposite polarity of no_snoop bits.
4874 	 * By default, we should use snoop behavior.
4875 	 */
4876 	if (mac->type == e1000_ich8lan)
4877 		snoop = PCIE_ICH8_SNOOP_ALL;
4878 	else
4879 		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4880 	e1000e_set_pcie_no_snoop(hw, snoop);
4881 
4882 	/* Enable workaround for packet loss issue on TGP PCH
4883 	 * Do not gate DMA clock from the modPHY block
4884 	 */
4885 	if (mac->type >= e1000_pch_tgp) {
4886 		fflt_dbg = er32(FFLT_DBG);
4887 		fflt_dbg |= E1000_FFLT_DBG_DONT_GATE_WAKE_DMA_CLK;
4888 		ew32(FFLT_DBG, fflt_dbg);
4889 	}
4890 
4891 	ctrl_ext = er32(CTRL_EXT);
4892 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4893 	ew32(CTRL_EXT, ctrl_ext);
4894 
4895 	/* Clear all of the statistics registers (clear on read).  It is
4896 	 * important that we do this after we have tried to establish link
4897 	 * because the symbol error count will increment wildly if there
4898 	 * is no link.
4899 	 */
4900 	e1000_clear_hw_cntrs_ich8lan(hw);
4901 
4902 	return ret_val;
4903 }
4904 
4905 /**
4906  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4907  *  @hw: pointer to the HW structure
4908  *
4909  *  Sets/Clears required hardware bits necessary for correctly setting up the
4910  *  hardware for transmit and receive.
4911  **/
4912 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4913 {
4914 	u32 reg;
4915 
4916 	/* Extended Device Control */
4917 	reg = er32(CTRL_EXT);
4918 	reg |= BIT(22);
4919 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4920 	if (hw->mac.type >= e1000_pchlan)
4921 		reg |= E1000_CTRL_EXT_PHYPDEN;
4922 	ew32(CTRL_EXT, reg);
4923 
4924 	/* Transmit Descriptor Control 0 */
4925 	reg = er32(TXDCTL(0));
4926 	reg |= BIT(22);
4927 	ew32(TXDCTL(0), reg);
4928 
4929 	/* Transmit Descriptor Control 1 */
4930 	reg = er32(TXDCTL(1));
4931 	reg |= BIT(22);
4932 	ew32(TXDCTL(1), reg);
4933 
4934 	/* Transmit Arbitration Control 0 */
4935 	reg = er32(TARC(0));
4936 	if (hw->mac.type == e1000_ich8lan)
4937 		reg |= BIT(28) | BIT(29);
4938 	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4939 	ew32(TARC(0), reg);
4940 
4941 	/* Transmit Arbitration Control 1 */
4942 	reg = er32(TARC(1));
4943 	if (er32(TCTL) & E1000_TCTL_MULR)
4944 		reg &= ~BIT(28);
4945 	else
4946 		reg |= BIT(28);
4947 	reg |= BIT(24) | BIT(26) | BIT(30);
4948 	ew32(TARC(1), reg);
4949 
4950 	/* Device Status */
4951 	if (hw->mac.type == e1000_ich8lan) {
4952 		reg = er32(STATUS);
4953 		reg &= ~BIT(31);
4954 		ew32(STATUS, reg);
4955 	}
4956 
4957 	/* work-around descriptor data corruption issue during nfs v2 udp
4958 	 * traffic, just disable the nfs filtering capability
4959 	 */
4960 	reg = er32(RFCTL);
4961 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4962 
4963 	/* Disable IPv6 extension header parsing because some malformed
4964 	 * IPv6 headers can hang the Rx.
4965 	 */
4966 	if (hw->mac.type == e1000_ich8lan)
4967 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4968 	ew32(RFCTL, reg);
4969 
4970 	/* Enable ECC on Lynxpoint */
4971 	if (hw->mac.type >= e1000_pch_lpt) {
4972 		reg = er32(PBECCSTS);
4973 		reg |= E1000_PBECCSTS_ECC_ENABLE;
4974 		ew32(PBECCSTS, reg);
4975 
4976 		reg = er32(CTRL);
4977 		reg |= E1000_CTRL_MEHE;
4978 		ew32(CTRL, reg);
4979 	}
4980 }
4981 
4982 /**
4983  *  e1000_setup_link_ich8lan - Setup flow control and link settings
4984  *  @hw: pointer to the HW structure
4985  *
4986  *  Determines which flow control settings to use, then configures flow
4987  *  control.  Calls the appropriate media-specific link configuration
4988  *  function.  Assuming the adapter has a valid link partner, a valid link
4989  *  should be established.  Assumes the hardware has previously been reset
4990  *  and the transmitter and receiver are not enabled.
4991  **/
4992 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4993 {
4994 	s32 ret_val;
4995 
4996 	if (hw->phy.ops.check_reset_block(hw))
4997 		return 0;
4998 
4999 	/* ICH parts do not have a word in the NVM to determine
5000 	 * the default flow control setting, so we explicitly
5001 	 * set it to full.
5002 	 */
5003 	if (hw->fc.requested_mode == e1000_fc_default) {
5004 		/* Workaround h/w hang when Tx flow control enabled */
5005 		if (hw->mac.type == e1000_pchlan)
5006 			hw->fc.requested_mode = e1000_fc_rx_pause;
5007 		else
5008 			hw->fc.requested_mode = e1000_fc_full;
5009 	}
5010 
5011 	/* Save off the requested flow control mode for use later.  Depending
5012 	 * on the link partner's capabilities, we may or may not use this mode.
5013 	 */
5014 	hw->fc.current_mode = hw->fc.requested_mode;
5015 
5016 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
5017 
5018 	/* Continue to configure the copper link. */
5019 	ret_val = hw->mac.ops.setup_physical_interface(hw);
5020 	if (ret_val)
5021 		return ret_val;
5022 
5023 	ew32(FCTTV, hw->fc.pause_time);
5024 	if ((hw->phy.type == e1000_phy_82578) ||
5025 	    (hw->phy.type == e1000_phy_82579) ||
5026 	    (hw->phy.type == e1000_phy_i217) ||
5027 	    (hw->phy.type == e1000_phy_82577)) {
5028 		ew32(FCRTV_PCH, hw->fc.refresh_time);
5029 
5030 		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
5031 				   hw->fc.pause_time);
5032 		if (ret_val)
5033 			return ret_val;
5034 	}
5035 
5036 	return e1000e_set_fc_watermarks(hw);
5037 }
5038 
5039 /**
5040  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5041  *  @hw: pointer to the HW structure
5042  *
5043  *  Configures the kumeran interface to the PHY to wait the appropriate time
5044  *  when polling the PHY, then call the generic setup_copper_link to finish
5045  *  configuring the copper link.
5046  **/
5047 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5048 {
5049 	u32 ctrl;
5050 	s32 ret_val;
5051 	u16 reg_data;
5052 
5053 	ctrl = er32(CTRL);
5054 	ctrl |= E1000_CTRL_SLU;
5055 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5056 	ew32(CTRL, ctrl);
5057 
5058 	/* Set the mac to wait the maximum time between each iteration
5059 	 * and increase the max iterations when polling the phy;
5060 	 * this fixes erroneous timeouts at 10Mbps.
5061 	 */
5062 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5063 	if (ret_val)
5064 		return ret_val;
5065 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5066 				       &reg_data);
5067 	if (ret_val)
5068 		return ret_val;
5069 	reg_data |= 0x3F;
5070 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5071 					reg_data);
5072 	if (ret_val)
5073 		return ret_val;
5074 
5075 	switch (hw->phy.type) {
5076 	case e1000_phy_igp_3:
5077 		ret_val = e1000e_copper_link_setup_igp(hw);
5078 		if (ret_val)
5079 			return ret_val;
5080 		break;
5081 	case e1000_phy_bm:
5082 	case e1000_phy_82578:
5083 		ret_val = e1000e_copper_link_setup_m88(hw);
5084 		if (ret_val)
5085 			return ret_val;
5086 		break;
5087 	case e1000_phy_82577:
5088 	case e1000_phy_82579:
5089 		ret_val = e1000_copper_link_setup_82577(hw);
5090 		if (ret_val)
5091 			return ret_val;
5092 		break;
5093 	case e1000_phy_ife:
5094 		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5095 		if (ret_val)
5096 			return ret_val;
5097 
5098 		reg_data &= ~IFE_PMC_AUTO_MDIX;
5099 
5100 		switch (hw->phy.mdix) {
5101 		case 1:
5102 			reg_data &= ~IFE_PMC_FORCE_MDIX;
5103 			break;
5104 		case 2:
5105 			reg_data |= IFE_PMC_FORCE_MDIX;
5106 			break;
5107 		case 0:
5108 		default:
5109 			reg_data |= IFE_PMC_AUTO_MDIX;
5110 			break;
5111 		}
5112 		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5113 		if (ret_val)
5114 			return ret_val;
5115 		break;
5116 	default:
5117 		break;
5118 	}
5119 
5120 	return e1000e_setup_copper_link(hw);
5121 }
5122 
5123 /**
5124  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5125  *  @hw: pointer to the HW structure
5126  *
5127  *  Calls the PHY specific link setup function and then calls the
5128  *  generic setup_copper_link to finish configuring the link for
5129  *  Lynxpoint PCH devices
5130  **/
5131 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5132 {
5133 	u32 ctrl;
5134 	s32 ret_val;
5135 
5136 	ctrl = er32(CTRL);
5137 	ctrl |= E1000_CTRL_SLU;
5138 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5139 	ew32(CTRL, ctrl);
5140 
5141 	ret_val = e1000_copper_link_setup_82577(hw);
5142 	if (ret_val)
5143 		return ret_val;
5144 
5145 	return e1000e_setup_copper_link(hw);
5146 }
5147 
5148 /**
5149  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5150  *  @hw: pointer to the HW structure
5151  *  @speed: pointer to store current link speed
5152  *  @duplex: pointer to store the current link duplex
5153  *
5154  *  Calls the generic get_speed_and_duplex to retrieve the current link
5155  *  information and then calls the Kumeran lock loss workaround for links at
5156  *  gigabit speeds.
5157  **/
5158 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5159 					  u16 *duplex)
5160 {
5161 	s32 ret_val;
5162 
5163 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5164 	if (ret_val)
5165 		return ret_val;
5166 
5167 	if ((hw->mac.type == e1000_ich8lan) &&
5168 	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5169 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5170 	}
5171 
5172 	return ret_val;
5173 }
5174 
5175 /**
5176  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5177  *  @hw: pointer to the HW structure
5178  *
5179  *  Work-around for 82566 Kumeran PCS lock loss:
5180  *  On link status change (i.e. PCI reset, speed change) and link is up and
5181  *  speed is gigabit-
5182  *    0) if workaround is optionally disabled do nothing
5183  *    1) wait 1ms for Kumeran link to come up
5184  *    2) check Kumeran Diagnostic register PCS lock loss bit
5185  *    3) if not set the link is locked (all is good), otherwise...
5186  *    4) reset the PHY
5187  *    5) repeat up to 10 times
5188  *  Note: this is only called for IGP3 copper when speed is 1gb.
5189  **/
5190 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5191 {
5192 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5193 	u32 phy_ctrl;
5194 	s32 ret_val;
5195 	u16 i, data;
5196 	bool link;
5197 
5198 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5199 		return 0;
5200 
5201 	/* Make sure link is up before proceeding.  If not just return.
5202 	 * Attempting this while link is negotiating fouled up link
5203 	 * stability
5204 	 */
5205 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5206 	if (!link)
5207 		return 0;
5208 
5209 	for (i = 0; i < 10; i++) {
5210 		/* read once to clear */
5211 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5212 		if (ret_val)
5213 			return ret_val;
5214 		/* and again to get new status */
5215 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5216 		if (ret_val)
5217 			return ret_val;
5218 
5219 		/* check for PCS lock */
5220 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5221 			return 0;
5222 
5223 		/* Issue PHY reset */
5224 		e1000_phy_hw_reset(hw);
5225 		mdelay(5);
5226 	}
5227 	/* Disable GigE link negotiation */
5228 	phy_ctrl = er32(PHY_CTRL);
5229 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5230 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5231 	ew32(PHY_CTRL, phy_ctrl);
5232 
5233 	/* Call gig speed drop workaround on Gig disable before accessing
5234 	 * any PHY registers
5235 	 */
5236 	e1000e_gig_downshift_workaround_ich8lan(hw);
5237 
5238 	/* unable to acquire PCS lock */
5239 	return -E1000_ERR_PHY;
5240 }
5241 
5242 /**
5243  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5244  *  @hw: pointer to the HW structure
5245  *  @state: boolean value used to set the current Kumeran workaround state
5246  *
5247  *  If ICH8, set the current Kumeran workaround state (enabled - true
5248  *  /disabled - false).
5249  **/
5250 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5251 						  bool state)
5252 {
5253 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5254 
5255 	if (hw->mac.type != e1000_ich8lan) {
5256 		e_dbg("Workaround applies to ICH8 only.\n");
5257 		return;
5258 	}
5259 
5260 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5261 }
5262 
5263 /**
5264  *  e1000e_igp3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5265  *  @hw: pointer to the HW structure
5266  *
5267  *  Workaround for 82566 power-down on D3 entry:
5268  *    1) disable gigabit link
5269  *    2) write VR power-down enable
5270  *    3) read it back
5271  *  Continue if successful, else issue LCD reset and repeat
5272  **/
5273 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5274 {
5275 	u32 reg;
5276 	u16 data;
5277 	u8 retry = 0;
5278 
5279 	if (hw->phy.type != e1000_phy_igp_3)
5280 		return;
5281 
5282 	/* Try the workaround twice (if needed) */
5283 	do {
5284 		/* Disable link */
5285 		reg = er32(PHY_CTRL);
5286 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5287 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5288 		ew32(PHY_CTRL, reg);
5289 
5290 		/* Call gig speed drop workaround on Gig disable before
5291 		 * accessing any PHY registers
5292 		 */
5293 		if (hw->mac.type == e1000_ich8lan)
5294 			e1000e_gig_downshift_workaround_ich8lan(hw);
5295 
5296 		/* Write VR power-down enable */
5297 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5298 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5299 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5300 
5301 		/* Read it back and test */
5302 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5303 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5304 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5305 			break;
5306 
5307 		/* Issue PHY reset and repeat at most one more time */
5308 		reg = er32(CTRL);
5309 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5310 		retry++;
5311 	} while (retry);
5312 }
5313 
5314 /**
5315  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5316  *  @hw: pointer to the HW structure
5317  *
5318  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5319  *  LPLU, Gig disable, MDIC PHY reset):
5320  *    1) Set Kumeran Near-end loopback
5321  *    2) Clear Kumeran Near-end loopback
5322  *  Should only be called for ICH8[m] devices with any 1G Phy.
5323  **/
5324 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5325 {
5326 	s32 ret_val;
5327 	u16 reg_data;
5328 
5329 	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5330 		return;
5331 
5332 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5333 				       &reg_data);
5334 	if (ret_val)
5335 		return;
5336 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5337 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5338 					reg_data);
5339 	if (ret_val)
5340 		return;
5341 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5342 	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5343 }
5344 
5345 /**
5346  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5347  *  @hw: pointer to the HW structure
5348  *
5349  *  During S0 to Sx transition, it is possible the link remains at gig
5350  *  instead of negotiating to a lower speed.  Before going to Sx, set
5351  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5352  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5353  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5354  *  needs to be written.
5355  *  Parts that support (and are linked to a partner which support) EEE in
5356  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5357  *  than 10Mbps w/o EEE.
5358  **/
5359 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5360 {
5361 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5362 	u32 phy_ctrl;
5363 	s32 ret_val;
5364 
5365 	phy_ctrl = er32(PHY_CTRL);
5366 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5367 
5368 	if (hw->phy.type == e1000_phy_i217) {
5369 		u16 phy_reg, device_id = hw->adapter->pdev->device;
5370 
5371 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5372 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5373 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5374 		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5375 		    (hw->mac.type >= e1000_pch_spt)) {
5376 			u32 fextnvm6 = er32(FEXTNVM6);
5377 
5378 			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5379 		}
5380 
5381 		ret_val = hw->phy.ops.acquire(hw);
5382 		if (ret_val)
5383 			goto out;
5384 
5385 		if (!dev_spec->eee_disable) {
5386 			u16 eee_advert;
5387 
5388 			ret_val =
5389 			    e1000_read_emi_reg_locked(hw,
5390 						      I217_EEE_ADVERTISEMENT,
5391 						      &eee_advert);
5392 			if (ret_val)
5393 				goto release;
5394 
5395 			/* Disable LPLU if both link partners support 100BaseT
5396 			 * EEE and 100Full is advertised on both ends of the
5397 			 * link, and enable Auto Enable LPI since there will
5398 			 * be no driver to enable LPI while in Sx.
5399 			 */
5400 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5401 			    (dev_spec->eee_lp_ability &
5402 			     I82579_EEE_100_SUPPORTED) &&
5403 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5404 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5405 					      E1000_PHY_CTRL_NOND0A_LPLU);
5406 
5407 				/* Set Auto Enable LPI after link up */
5408 				e1e_rphy_locked(hw,
5409 						I217_LPI_GPIO_CTRL, &phy_reg);
5410 				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5411 				e1e_wphy_locked(hw,
5412 						I217_LPI_GPIO_CTRL, phy_reg);
5413 			}
5414 		}
5415 
5416 		/* For i217 Intel Rapid Start Technology support,
5417 		 * when the system is going into Sx and no manageability engine
5418 		 * is present, the driver must configure proxy to reset only on
5419 		 * power good.  LPI (Low Power Idle) state must also reset only
5420 		 * on power good, as well as the MTA (Multicast table array).
5421 		 * The SMBus release must also be disabled on LCD reset.
5422 		 */
5423 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5424 			/* Enable proxy to reset only on power good. */
5425 			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5426 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5427 			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5428 
5429 			/* Set bit enable LPI (EEE) to reset only on
5430 			 * power good.
5431 			 */
5432 			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5433 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5434 			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5435 
5436 			/* Disable the SMB release on LCD reset. */
5437 			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5438 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5439 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5440 		}
5441 
5442 		/* Enable MTA to reset for Intel Rapid Start Technology
5443 		 * Support
5444 		 */
5445 		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5446 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5447 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5448 
5449 release:
5450 		hw->phy.ops.release(hw);
5451 	}
5452 out:
5453 	ew32(PHY_CTRL, phy_ctrl);
5454 
5455 	if (hw->mac.type == e1000_ich8lan)
5456 		e1000e_gig_downshift_workaround_ich8lan(hw);
5457 
5458 	if (hw->mac.type >= e1000_pchlan) {
5459 		e1000_oem_bits_config_ich8lan(hw, false);
5460 
5461 		/* Reset PHY to activate OEM bits on 82577/8 */
5462 		if (hw->mac.type == e1000_pchlan)
5463 			e1000e_phy_hw_reset_generic(hw);
5464 
5465 		ret_val = hw->phy.ops.acquire(hw);
5466 		if (ret_val)
5467 			return;
5468 		e1000_write_smbus_addr(hw);
5469 		hw->phy.ops.release(hw);
5470 	}
5471 }
5472 
5473 /**
5474  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5475  *  @hw: pointer to the HW structure
5476  *
5477  *  During Sx to S0 transitions on non-managed devices or managed devices
5478  *  on which PHY resets are not blocked, if the PHY registers cannot be
5479  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5480  *  the PHY.
5481  *  On i217, setup Intel Rapid Start Technology.
5482  **/
5483 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5484 {
5485 	s32 ret_val;
5486 
5487 	if (hw->mac.type < e1000_pch2lan)
5488 		return;
5489 
5490 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5491 	if (ret_val) {
5492 		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5493 		return;
5494 	}
5495 
5496 	/* For i217 Intel Rapid Start Technology support when the system
5497 	 * is transitioning from Sx and no manageability engine is present
5498 	 * configure SMBus to restore on reset, disable proxy, and enable
5499 	 * the reset on MTA (Multicast table array).
5500 	 */
5501 	if (hw->phy.type == e1000_phy_i217) {
5502 		u16 phy_reg;
5503 
5504 		ret_val = hw->phy.ops.acquire(hw);
5505 		if (ret_val) {
5506 			e_dbg("Failed to setup iRST\n");
5507 			return;
5508 		}
5509 
5510 		/* Clear Auto Enable LPI after link up */
5511 		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5512 		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5513 		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5514 
5515 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5516 			/* Restore clear on SMB if no manageability engine
5517 			 * is present
5518 			 */
5519 			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5520 			if (ret_val)
5521 				goto release;
5522 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5523 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5524 
5525 			/* Disable Proxy */
5526 			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5527 		}
5528 		/* Enable reset on MTA */
5529 		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5530 		if (ret_val)
5531 			goto release;
5532 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5533 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5534 release:
5535 		if (ret_val)
5536 			e_dbg("Error %d in resume workarounds\n", ret_val);
5537 		hw->phy.ops.release(hw);
5538 	}
5539 }
5540 
5541 /**
5542  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5543  *  @hw: pointer to the HW structure
5544  *
5545  *  Return the LED back to the default configuration.
5546  **/
5547 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5548 {
5549 	if (hw->phy.type == e1000_phy_ife)
5550 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5551 
5552 	ew32(LEDCTL, hw->mac.ledctl_default);
5553 	return 0;
5554 }
5555 
5556 /**
5557  *  e1000_led_on_ich8lan - Turn LEDs on
5558  *  @hw: pointer to the HW structure
5559  *
5560  *  Turn on the LEDs.
5561  **/
5562 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5563 {
5564 	if (hw->phy.type == e1000_phy_ife)
5565 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5566 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5567 
5568 	ew32(LEDCTL, hw->mac.ledctl_mode2);
5569 	return 0;
5570 }
5571 
5572 /**
5573  *  e1000_led_off_ich8lan - Turn LEDs off
5574  *  @hw: pointer to the HW structure
5575  *
5576  *  Turn off the LEDs.
5577  **/
5578 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5579 {
5580 	if (hw->phy.type == e1000_phy_ife)
5581 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5582 				(IFE_PSCL_PROBE_MODE |
5583 				 IFE_PSCL_PROBE_LEDS_OFF));
5584 
5585 	ew32(LEDCTL, hw->mac.ledctl_mode1);
5586 	return 0;
5587 }
5588 
5589 /**
5590  *  e1000_setup_led_pchlan - Configures SW controllable LED
5591  *  @hw: pointer to the HW structure
5592  *
5593  *  This prepares the SW controllable LED for use.
5594  **/
5595 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5596 {
5597 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5598 }
5599 
5600 /**
5601  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5602  *  @hw: pointer to the HW structure
5603  *
5604  *  Return the LED back to the default configuration.
5605  **/
5606 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5607 {
5608 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5609 }
5610 
5611 /**
5612  *  e1000_led_on_pchlan - Turn LEDs on
5613  *  @hw: pointer to the HW structure
5614  *
5615  *  Turn on the LEDs.
5616  **/
5617 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5618 {
5619 	u16 data = (u16)hw->mac.ledctl_mode2;
5620 	u32 i, led;
5621 
5622 	/* If no link, then turn LED on by setting the invert bit
5623 	 * for each LED that's mode is "link_up" in ledctl_mode2.
5624 	 */
5625 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5626 		for (i = 0; i < 3; i++) {
5627 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5628 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5629 			    E1000_LEDCTL_MODE_LINK_UP)
5630 				continue;
5631 			if (led & E1000_PHY_LED0_IVRT)
5632 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5633 			else
5634 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5635 		}
5636 	}
5637 
5638 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5639 }
5640 
5641 /**
5642  *  e1000_led_off_pchlan - Turn LEDs off
5643  *  @hw: pointer to the HW structure
5644  *
5645  *  Turn off the LEDs.
5646  **/
5647 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5648 {
5649 	u16 data = (u16)hw->mac.ledctl_mode1;
5650 	u32 i, led;
5651 
5652 	/* If no link, then turn LED off by clearing the invert bit
5653 	 * for each LED that's mode is "link_up" in ledctl_mode1.
5654 	 */
5655 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5656 		for (i = 0; i < 3; i++) {
5657 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5658 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5659 			    E1000_LEDCTL_MODE_LINK_UP)
5660 				continue;
5661 			if (led & E1000_PHY_LED0_IVRT)
5662 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5663 			else
5664 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5665 		}
5666 	}
5667 
5668 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5669 }
5670 
5671 /**
5672  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5673  *  @hw: pointer to the HW structure
5674  *
5675  *  Read appropriate register for the config done bit for completion status
5676  *  and configure the PHY through s/w for EEPROM-less parts.
5677  *
5678  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5679  *  config done bit, so only an error is logged and continues.  If we were
5680  *  to return with error, EEPROM-less silicon would not be able to be reset
5681  *  or change link.
5682  **/
5683 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5684 {
5685 	s32 ret_val = 0;
5686 	u32 bank = 0;
5687 	u32 status;
5688 
5689 	e1000e_get_cfg_done_generic(hw);
5690 
5691 	/* Wait for indication from h/w that it has completed basic config */
5692 	if (hw->mac.type >= e1000_ich10lan) {
5693 		e1000_lan_init_done_ich8lan(hw);
5694 	} else {
5695 		ret_val = e1000e_get_auto_rd_done(hw);
5696 		if (ret_val) {
5697 			/* When auto config read does not complete, do not
5698 			 * return with an error. This can happen in situations
5699 			 * where there is no eeprom and prevents getting link.
5700 			 */
5701 			e_dbg("Auto Read Done did not complete\n");
5702 			ret_val = 0;
5703 		}
5704 	}
5705 
5706 	/* Clear PHY Reset Asserted bit */
5707 	status = er32(STATUS);
5708 	if (status & E1000_STATUS_PHYRA)
5709 		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5710 	else
5711 		e_dbg("PHY Reset Asserted not set - needs delay\n");
5712 
5713 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5714 	if (hw->mac.type <= e1000_ich9lan) {
5715 		if (!(er32(EECD) & E1000_EECD_PRES) &&
5716 		    (hw->phy.type == e1000_phy_igp_3)) {
5717 			e1000e_phy_init_script_igp3(hw);
5718 		}
5719 	} else {
5720 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5721 			/* Maybe we should do a basic PHY config */
5722 			e_dbg("EEPROM not present\n");
5723 			ret_val = -E1000_ERR_CONFIG;
5724 		}
5725 	}
5726 
5727 	return ret_val;
5728 }
5729 
5730 /**
5731  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5732  * @hw: pointer to the HW structure
5733  *
5734  * In the case of a PHY power down to save power, or to turn off link during a
5735  * driver unload, or wake on lan is not enabled, remove the link.
5736  **/
5737 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5738 {
5739 	/* If the management interface is not enabled, then power down */
5740 	if (!(hw->mac.ops.check_mng_mode(hw) ||
5741 	      hw->phy.ops.check_reset_block(hw)))
5742 		e1000_power_down_phy_copper(hw);
5743 }
5744 
5745 /**
5746  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5747  *  @hw: pointer to the HW structure
5748  *
5749  *  Clears hardware counters specific to the silicon family and calls
5750  *  clear_hw_cntrs_generic to clear all general purpose counters.
5751  **/
5752 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5753 {
5754 	u16 phy_data;
5755 	s32 ret_val;
5756 
5757 	e1000e_clear_hw_cntrs_base(hw);
5758 
5759 	er32(ALGNERRC);
5760 	er32(RXERRC);
5761 	er32(TNCRS);
5762 	er32(CEXTERR);
5763 	er32(TSCTC);
5764 	er32(TSCTFC);
5765 
5766 	er32(MGTPRC);
5767 	er32(MGTPDC);
5768 	er32(MGTPTC);
5769 
5770 	er32(IAC);
5771 	er32(ICRXOC);
5772 
5773 	/* Clear PHY statistics registers */
5774 	if ((hw->phy.type == e1000_phy_82578) ||
5775 	    (hw->phy.type == e1000_phy_82579) ||
5776 	    (hw->phy.type == e1000_phy_i217) ||
5777 	    (hw->phy.type == e1000_phy_82577)) {
5778 		ret_val = hw->phy.ops.acquire(hw);
5779 		if (ret_val)
5780 			return;
5781 		ret_val = hw->phy.ops.set_page(hw,
5782 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5783 		if (ret_val)
5784 			goto release;
5785 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5786 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5787 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5788 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5789 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5790 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5791 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5792 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5793 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5794 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5795 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5796 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5797 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5798 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5799 release:
5800 		hw->phy.ops.release(hw);
5801 	}
5802 }
5803 
5804 static const struct e1000_mac_operations ich8_mac_ops = {
5805 	/* check_mng_mode dependent on mac type */
5806 	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5807 	/* cleanup_led dependent on mac type */
5808 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5809 	.get_bus_info		= e1000_get_bus_info_ich8lan,
5810 	.set_lan_id		= e1000_set_lan_id_single_port,
5811 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5812 	/* led_on dependent on mac type */
5813 	/* led_off dependent on mac type */
5814 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5815 	.reset_hw		= e1000_reset_hw_ich8lan,
5816 	.init_hw		= e1000_init_hw_ich8lan,
5817 	.setup_link		= e1000_setup_link_ich8lan,
5818 	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5819 	/* id_led_init dependent on mac type */
5820 	.config_collision_dist	= e1000e_config_collision_dist_generic,
5821 	.rar_set		= e1000e_rar_set_generic,
5822 	.rar_get_count		= e1000e_rar_get_count_generic,
5823 };
5824 
5825 static const struct e1000_phy_operations ich8_phy_ops = {
5826 	.acquire		= e1000_acquire_swflag_ich8lan,
5827 	.check_reset_block	= e1000_check_reset_block_ich8lan,
5828 	.commit			= NULL,
5829 	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5830 	.get_cable_length	= e1000e_get_cable_length_igp_2,
5831 	.read_reg		= e1000e_read_phy_reg_igp,
5832 	.release		= e1000_release_swflag_ich8lan,
5833 	.reset			= e1000_phy_hw_reset_ich8lan,
5834 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5835 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5836 	.write_reg		= e1000e_write_phy_reg_igp,
5837 };
5838 
5839 static const struct e1000_nvm_operations ich8_nvm_ops = {
5840 	.acquire		= e1000_acquire_nvm_ich8lan,
5841 	.read			= e1000_read_nvm_ich8lan,
5842 	.release		= e1000_release_nvm_ich8lan,
5843 	.reload			= e1000e_reload_nvm_generic,
5844 	.update			= e1000_update_nvm_checksum_ich8lan,
5845 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5846 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5847 	.write			= e1000_write_nvm_ich8lan,
5848 };
5849 
5850 static const struct e1000_nvm_operations spt_nvm_ops = {
5851 	.acquire		= e1000_acquire_nvm_ich8lan,
5852 	.release		= e1000_release_nvm_ich8lan,
5853 	.read			= e1000_read_nvm_spt,
5854 	.update			= e1000_update_nvm_checksum_spt,
5855 	.reload			= e1000e_reload_nvm_generic,
5856 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5857 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5858 	.write			= e1000_write_nvm_ich8lan,
5859 };
5860 
5861 const struct e1000_info e1000_ich8_info = {
5862 	.mac			= e1000_ich8lan,
5863 	.flags			= FLAG_HAS_WOL
5864 				  | FLAG_IS_ICH
5865 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5866 				  | FLAG_HAS_AMT
5867 				  | FLAG_HAS_FLASH
5868 				  | FLAG_APME_IN_WUC,
5869 	.pba			= 8,
5870 	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5871 	.get_variants		= e1000_get_variants_ich8lan,
5872 	.mac_ops		= &ich8_mac_ops,
5873 	.phy_ops		= &ich8_phy_ops,
5874 	.nvm_ops		= &ich8_nvm_ops,
5875 };
5876 
5877 const struct e1000_info e1000_ich9_info = {
5878 	.mac			= e1000_ich9lan,
5879 	.flags			= FLAG_HAS_JUMBO_FRAMES
5880 				  | FLAG_IS_ICH
5881 				  | FLAG_HAS_WOL
5882 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5883 				  | FLAG_HAS_AMT
5884 				  | FLAG_HAS_FLASH
5885 				  | FLAG_APME_IN_WUC,
5886 	.pba			= 18,
5887 	.max_hw_frame_size	= DEFAULT_JUMBO,
5888 	.get_variants		= e1000_get_variants_ich8lan,
5889 	.mac_ops		= &ich8_mac_ops,
5890 	.phy_ops		= &ich8_phy_ops,
5891 	.nvm_ops		= &ich8_nvm_ops,
5892 };
5893 
5894 const struct e1000_info e1000_ich10_info = {
5895 	.mac			= e1000_ich10lan,
5896 	.flags			= FLAG_HAS_JUMBO_FRAMES
5897 				  | FLAG_IS_ICH
5898 				  | FLAG_HAS_WOL
5899 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5900 				  | FLAG_HAS_AMT
5901 				  | FLAG_HAS_FLASH
5902 				  | FLAG_APME_IN_WUC,
5903 	.pba			= 18,
5904 	.max_hw_frame_size	= DEFAULT_JUMBO,
5905 	.get_variants		= e1000_get_variants_ich8lan,
5906 	.mac_ops		= &ich8_mac_ops,
5907 	.phy_ops		= &ich8_phy_ops,
5908 	.nvm_ops		= &ich8_nvm_ops,
5909 };
5910 
5911 const struct e1000_info e1000_pch_info = {
5912 	.mac			= e1000_pchlan,
5913 	.flags			= FLAG_IS_ICH
5914 				  | FLAG_HAS_WOL
5915 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5916 				  | FLAG_HAS_AMT
5917 				  | FLAG_HAS_FLASH
5918 				  | FLAG_HAS_JUMBO_FRAMES
5919 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5920 				  | FLAG_APME_IN_WUC,
5921 	.flags2			= FLAG2_HAS_PHY_STATS,
5922 	.pba			= 26,
5923 	.max_hw_frame_size	= 4096,
5924 	.get_variants		= e1000_get_variants_ich8lan,
5925 	.mac_ops		= &ich8_mac_ops,
5926 	.phy_ops		= &ich8_phy_ops,
5927 	.nvm_ops		= &ich8_nvm_ops,
5928 };
5929 
5930 const struct e1000_info e1000_pch2_info = {
5931 	.mac			= e1000_pch2lan,
5932 	.flags			= FLAG_IS_ICH
5933 				  | FLAG_HAS_WOL
5934 				  | FLAG_HAS_HW_TIMESTAMP
5935 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5936 				  | FLAG_HAS_AMT
5937 				  | FLAG_HAS_FLASH
5938 				  | FLAG_HAS_JUMBO_FRAMES
5939 				  | FLAG_APME_IN_WUC,
5940 	.flags2			= FLAG2_HAS_PHY_STATS
5941 				  | FLAG2_HAS_EEE
5942 				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5943 	.pba			= 26,
5944 	.max_hw_frame_size	= 9022,
5945 	.get_variants		= e1000_get_variants_ich8lan,
5946 	.mac_ops		= &ich8_mac_ops,
5947 	.phy_ops		= &ich8_phy_ops,
5948 	.nvm_ops		= &ich8_nvm_ops,
5949 };
5950 
5951 const struct e1000_info e1000_pch_lpt_info = {
5952 	.mac			= e1000_pch_lpt,
5953 	.flags			= FLAG_IS_ICH
5954 				  | FLAG_HAS_WOL
5955 				  | FLAG_HAS_HW_TIMESTAMP
5956 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5957 				  | FLAG_HAS_AMT
5958 				  | FLAG_HAS_FLASH
5959 				  | FLAG_HAS_JUMBO_FRAMES
5960 				  | FLAG_APME_IN_WUC,
5961 	.flags2			= FLAG2_HAS_PHY_STATS
5962 				  | FLAG2_HAS_EEE
5963 				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5964 	.pba			= 26,
5965 	.max_hw_frame_size	= 9022,
5966 	.get_variants		= e1000_get_variants_ich8lan,
5967 	.mac_ops		= &ich8_mac_ops,
5968 	.phy_ops		= &ich8_phy_ops,
5969 	.nvm_ops		= &ich8_nvm_ops,
5970 };
5971 
5972 const struct e1000_info e1000_pch_spt_info = {
5973 	.mac			= e1000_pch_spt,
5974 	.flags			= FLAG_IS_ICH
5975 				  | FLAG_HAS_WOL
5976 				  | FLAG_HAS_HW_TIMESTAMP
5977 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5978 				  | FLAG_HAS_AMT
5979 				  | FLAG_HAS_FLASH
5980 				  | FLAG_HAS_JUMBO_FRAMES
5981 				  | FLAG_APME_IN_WUC,
5982 	.flags2			= FLAG2_HAS_PHY_STATS
5983 				  | FLAG2_HAS_EEE,
5984 	.pba			= 26,
5985 	.max_hw_frame_size	= 9022,
5986 	.get_variants		= e1000_get_variants_ich8lan,
5987 	.mac_ops		= &ich8_mac_ops,
5988 	.phy_ops		= &ich8_phy_ops,
5989 	.nvm_ops		= &spt_nvm_ops,
5990 };
5991 
5992 const struct e1000_info e1000_pch_cnp_info = {
5993 	.mac			= e1000_pch_cnp,
5994 	.flags			= FLAG_IS_ICH
5995 				  | FLAG_HAS_WOL
5996 				  | FLAG_HAS_HW_TIMESTAMP
5997 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5998 				  | FLAG_HAS_AMT
5999 				  | FLAG_HAS_FLASH
6000 				  | FLAG_HAS_JUMBO_FRAMES
6001 				  | FLAG_APME_IN_WUC,
6002 	.flags2			= FLAG2_HAS_PHY_STATS
6003 				  | FLAG2_HAS_EEE,
6004 	.pba			= 26,
6005 	.max_hw_frame_size	= 9022,
6006 	.get_variants		= e1000_get_variants_ich8lan,
6007 	.mac_ops		= &ich8_mac_ops,
6008 	.phy_ops		= &ich8_phy_ops,
6009 	.nvm_ops		= &spt_nvm_ops,
6010 };
6011 
6012 const struct e1000_info e1000_pch_tgp_info = {
6013 	.mac			= e1000_pch_tgp,
6014 	.flags			= FLAG_IS_ICH
6015 				  | FLAG_HAS_WOL
6016 				  | FLAG_HAS_HW_TIMESTAMP
6017 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6018 				  | FLAG_HAS_AMT
6019 				  | FLAG_HAS_FLASH
6020 				  | FLAG_HAS_JUMBO_FRAMES
6021 				  | FLAG_APME_IN_WUC,
6022 	.flags2			= FLAG2_HAS_PHY_STATS
6023 				  | FLAG2_HAS_EEE,
6024 	.pba			= 26,
6025 	.max_hw_frame_size	= 9022,
6026 	.get_variants		= e1000_get_variants_ich8lan,
6027 	.mac_ops		= &ich8_mac_ops,
6028 	.phy_ops		= &ich8_phy_ops,
6029 	.nvm_ops		= &spt_nvm_ops,
6030 };
6031 
6032 const struct e1000_info e1000_pch_adp_info = {
6033 	.mac			= e1000_pch_adp,
6034 	.flags			= FLAG_IS_ICH
6035 				  | FLAG_HAS_WOL
6036 				  | FLAG_HAS_HW_TIMESTAMP
6037 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6038 				  | FLAG_HAS_AMT
6039 				  | FLAG_HAS_FLASH
6040 				  | FLAG_HAS_JUMBO_FRAMES
6041 				  | FLAG_APME_IN_WUC,
6042 	.flags2			= FLAG2_HAS_PHY_STATS
6043 				  | FLAG2_HAS_EEE,
6044 	.pba			= 26,
6045 	.max_hw_frame_size	= 9022,
6046 	.get_variants		= e1000_get_variants_ich8lan,
6047 	.mac_ops		= &ich8_mac_ops,
6048 	.phy_ops		= &ich8_phy_ops,
6049 	.nvm_ops		= &spt_nvm_ops,
6050 };
6051 
6052 const struct e1000_info e1000_pch_mtp_info = {
6053 	.mac			= e1000_pch_mtp,
6054 	.flags			= FLAG_IS_ICH
6055 				  | FLAG_HAS_WOL
6056 				  | FLAG_HAS_HW_TIMESTAMP
6057 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6058 				  | FLAG_HAS_AMT
6059 				  | FLAG_HAS_FLASH
6060 				  | FLAG_HAS_JUMBO_FRAMES
6061 				  | FLAG_APME_IN_WUC,
6062 	.flags2			= FLAG2_HAS_PHY_STATS
6063 				  | FLAG2_HAS_EEE,
6064 	.pba			= 26,
6065 	.max_hw_frame_size	= 9022,
6066 	.get_variants		= e1000_get_variants_ich8lan,
6067 	.mac_ops		= &ich8_mac_ops,
6068 	.phy_ops		= &ich8_phy_ops,
6069 	.nvm_ops		= &spt_nvm_ops,
6070 };
6071