1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2015 - 2016 Cavium, Inc.
4  */
5 
6 #include <linux/bitfield.h>
7 #include <linux/kernel.h>
8 #include <linux/init.h>
9 #include <linux/pci.h>
10 #include <linux/of_address.h>
11 #include <linux/of_pci.h>
12 #include <linux/pci-acpi.h>
13 #include <linux/pci-ecam.h>
14 #include <linux/platform_device.h>
15 #include <linux/io-64-nonatomic-lo-hi.h>
16 #include "../pci.h"
17 
18 #if defined(CONFIG_PCI_HOST_THUNDER_PEM) || (defined(CONFIG_ACPI) && defined(CONFIG_PCI_QUIRKS))
19 
20 #define PEM_CFG_WR 0x28
21 #define PEM_CFG_RD 0x30
22 
23 /*
24  * Enhanced Configuration Access Mechanism (ECAM)
25  *
26  * N.B. This is a non-standard platform-specific ECAM bus shift value.  For
27  * standard values defined in the PCI Express Base Specification see
28  * include/linux/pci-ecam.h.
29  */
30 #define THUNDER_PCIE_ECAM_BUS_SHIFT	24
31 
32 struct thunder_pem_pci {
33 	u32		ea_entry[3];
34 	void __iomem	*pem_reg_base;
35 };
36 
thunder_pem_bridge_read(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 * val)37 static int thunder_pem_bridge_read(struct pci_bus *bus, unsigned int devfn,
38 				   int where, int size, u32 *val)
39 {
40 	u64 read_val, tmp_val;
41 	struct pci_config_window *cfg = bus->sysdata;
42 	struct thunder_pem_pci *pem_pci = (struct thunder_pem_pci *)cfg->priv;
43 
44 	if (devfn != 0 || where >= 2048)
45 		return PCIBIOS_DEVICE_NOT_FOUND;
46 
47 	/*
48 	 * 32-bit accesses only.  Write the address to the low order
49 	 * bits of PEM_CFG_RD, then trigger the read by reading back.
50 	 * The config data lands in the upper 32-bits of PEM_CFG_RD.
51 	 */
52 	read_val = where & ~3ull;
53 	writeq(read_val, pem_pci->pem_reg_base + PEM_CFG_RD);
54 	read_val = readq(pem_pci->pem_reg_base + PEM_CFG_RD);
55 	read_val >>= 32;
56 
57 	/*
58 	 * The config space contains some garbage, fix it up.  Also
59 	 * synthesize an EA capability for the BAR used by MSI-X.
60 	 */
61 	switch (where & ~3) {
62 	case 0x40:
63 		read_val &= 0xffff00ff;
64 		read_val |= 0x00007000; /* Skip MSI CAP */
65 		break;
66 	case 0x70: /* Express Cap */
67 		/*
68 		 * Change PME interrupt to vector 2 on T88 where it
69 		 * reads as 0, else leave it alone.
70 		 */
71 		if (!(read_val & (0x1f << 25)))
72 			read_val |= (2u << 25);
73 		break;
74 	case 0xb0: /* MSI-X Cap */
75 		/* TableSize=2 or 4, Next Cap is EA */
76 		read_val &= 0xc00000ff;
77 		/*
78 		 * If Express Cap(0x70) raw PME vector reads as 0 we are on
79 		 * T88 and TableSize is reported as 4, else TableSize
80 		 * is 2.
81 		 */
82 		writeq(0x70, pem_pci->pem_reg_base + PEM_CFG_RD);
83 		tmp_val = readq(pem_pci->pem_reg_base + PEM_CFG_RD);
84 		tmp_val >>= 32;
85 		if (!(tmp_val & (0x1f << 25)))
86 			read_val |= 0x0003bc00;
87 		else
88 			read_val |= 0x0001bc00;
89 		break;
90 	case 0xb4:
91 		/* Table offset=0, BIR=0 */
92 		read_val = 0x00000000;
93 		break;
94 	case 0xb8:
95 		/* BPA offset=0xf0000, BIR=0 */
96 		read_val = 0x000f0000;
97 		break;
98 	case 0xbc:
99 		/* EA, 1 entry, no next Cap */
100 		read_val = 0x00010014;
101 		break;
102 	case 0xc0:
103 		/* DW2 for type-1 */
104 		read_val = 0x00000000;
105 		break;
106 	case 0xc4:
107 		/* Entry BEI=0, PP=0x00, SP=0xff, ES=3 */
108 		read_val = 0x80ff0003;
109 		break;
110 	case 0xc8:
111 		read_val = pem_pci->ea_entry[0];
112 		break;
113 	case 0xcc:
114 		read_val = pem_pci->ea_entry[1];
115 		break;
116 	case 0xd0:
117 		read_val = pem_pci->ea_entry[2];
118 		break;
119 	default:
120 		break;
121 	}
122 	read_val >>= (8 * (where & 3));
123 	switch (size) {
124 	case 1:
125 		read_val &= 0xff;
126 		break;
127 	case 2:
128 		read_val &= 0xffff;
129 		break;
130 	default:
131 		break;
132 	}
133 	*val = read_val;
134 	return PCIBIOS_SUCCESSFUL;
135 }
136 
thunder_pem_config_read(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 * val)137 static int thunder_pem_config_read(struct pci_bus *bus, unsigned int devfn,
138 				   int where, int size, u32 *val)
139 {
140 	struct pci_config_window *cfg = bus->sysdata;
141 
142 	if (bus->number < cfg->busr.start ||
143 	    bus->number > cfg->busr.end)
144 		return PCIBIOS_DEVICE_NOT_FOUND;
145 
146 	/*
147 	 * The first device on the bus is the PEM PCIe bridge.
148 	 * Special case its config access.
149 	 */
150 	if (bus->number == cfg->busr.start)
151 		return thunder_pem_bridge_read(bus, devfn, where, size, val);
152 
153 	return pci_generic_config_read(bus, devfn, where, size, val);
154 }
155 
156 /*
157  * Some of the w1c_bits below also include read-only or non-writable
158  * reserved bits, this makes the code simpler and is OK as the bits
159  * are not affected by writing zeros to them.
160  */
thunder_pem_bridge_w1c_bits(u64 where_aligned)161 static u32 thunder_pem_bridge_w1c_bits(u64 where_aligned)
162 {
163 	u32 w1c_bits = 0;
164 
165 	switch (where_aligned) {
166 	case 0x04: /* Command/Status */
167 	case 0x1c: /* Base and I/O Limit/Secondary Status */
168 		w1c_bits = 0xff000000;
169 		break;
170 	case 0x44: /* Power Management Control and Status */
171 		w1c_bits = 0xfffffe00;
172 		break;
173 	case 0x78: /* Device Control/Device Status */
174 	case 0x80: /* Link Control/Link Status */
175 	case 0x88: /* Slot Control/Slot Status */
176 	case 0x90: /* Root Status */
177 	case 0xa0: /* Link Control 2 Registers/Link Status 2 */
178 		w1c_bits = 0xffff0000;
179 		break;
180 	case 0x104: /* Uncorrectable Error Status */
181 	case 0x110: /* Correctable Error Status */
182 	case 0x130: /* Error Status */
183 	case 0x160: /* Link Control 4 */
184 		w1c_bits = 0xffffffff;
185 		break;
186 	default:
187 		break;
188 	}
189 	return w1c_bits;
190 }
191 
192 /* Some bits must be written to one so they appear to be read-only. */
thunder_pem_bridge_w1_bits(u64 where_aligned)193 static u32 thunder_pem_bridge_w1_bits(u64 where_aligned)
194 {
195 	u32 w1_bits;
196 
197 	switch (where_aligned) {
198 	case 0x1c: /* I/O Base / I/O Limit, Secondary Status */
199 		/* Force 32-bit I/O addressing. */
200 		w1_bits = 0x0101;
201 		break;
202 	case 0x24: /* Prefetchable Memory Base / Prefetchable Memory Limit */
203 		/* Force 64-bit addressing */
204 		w1_bits = 0x00010001;
205 		break;
206 	default:
207 		w1_bits = 0;
208 		break;
209 	}
210 	return w1_bits;
211 }
212 
thunder_pem_bridge_write(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 val)213 static int thunder_pem_bridge_write(struct pci_bus *bus, unsigned int devfn,
214 				    int where, int size, u32 val)
215 {
216 	struct pci_config_window *cfg = bus->sysdata;
217 	struct thunder_pem_pci *pem_pci = (struct thunder_pem_pci *)cfg->priv;
218 	u64 write_val, read_val;
219 	u64 where_aligned = where & ~3ull;
220 	u32 mask = 0;
221 
222 
223 	if (devfn != 0 || where >= 2048)
224 		return PCIBIOS_DEVICE_NOT_FOUND;
225 
226 	/*
227 	 * 32-bit accesses only.  If the write is for a size smaller
228 	 * than 32-bits, we must first read the 32-bit value and merge
229 	 * in the desired bits and then write the whole 32-bits back
230 	 * out.
231 	 */
232 	switch (size) {
233 	case 1:
234 		writeq(where_aligned, pem_pci->pem_reg_base + PEM_CFG_RD);
235 		read_val = readq(pem_pci->pem_reg_base + PEM_CFG_RD);
236 		read_val >>= 32;
237 		mask = ~(0xff << (8 * (where & 3)));
238 		read_val &= mask;
239 		val = (val & 0xff) << (8 * (where & 3));
240 		val |= (u32)read_val;
241 		break;
242 	case 2:
243 		writeq(where_aligned, pem_pci->pem_reg_base + PEM_CFG_RD);
244 		read_val = readq(pem_pci->pem_reg_base + PEM_CFG_RD);
245 		read_val >>= 32;
246 		mask = ~(0xffff << (8 * (where & 3)));
247 		read_val &= mask;
248 		val = (val & 0xffff) << (8 * (where & 3));
249 		val |= (u32)read_val;
250 		break;
251 	default:
252 		break;
253 	}
254 
255 	/*
256 	 * By expanding the write width to 32 bits, we may
257 	 * inadvertently hit some W1C bits that were not intended to
258 	 * be written.  Calculate the mask that must be applied to the
259 	 * data to be written to avoid these cases.
260 	 */
261 	if (mask) {
262 		u32 w1c_bits = thunder_pem_bridge_w1c_bits(where);
263 
264 		if (w1c_bits) {
265 			mask &= w1c_bits;
266 			val &= ~mask;
267 		}
268 	}
269 
270 	/*
271 	 * Some bits must be read-only with value of one.  Since the
272 	 * access method allows these to be cleared if a zero is
273 	 * written, force them to one before writing.
274 	 */
275 	val |= thunder_pem_bridge_w1_bits(where_aligned);
276 
277 	/*
278 	 * Low order bits are the config address, the high order 32
279 	 * bits are the data to be written.
280 	 */
281 	write_val = (((u64)val) << 32) | where_aligned;
282 	writeq(write_val, pem_pci->pem_reg_base + PEM_CFG_WR);
283 	return PCIBIOS_SUCCESSFUL;
284 }
285 
thunder_pem_config_write(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 val)286 static int thunder_pem_config_write(struct pci_bus *bus, unsigned int devfn,
287 				    int where, int size, u32 val)
288 {
289 	struct pci_config_window *cfg = bus->sysdata;
290 
291 	if (bus->number < cfg->busr.start ||
292 	    bus->number > cfg->busr.end)
293 		return PCIBIOS_DEVICE_NOT_FOUND;
294 	/*
295 	 * The first device on the bus is the PEM PCIe bridge.
296 	 * Special case its config access.
297 	 */
298 	if (bus->number == cfg->busr.start)
299 		return thunder_pem_bridge_write(bus, devfn, where, size, val);
300 
301 
302 	return pci_generic_config_write(bus, devfn, where, size, val);
303 }
304 
thunder_pem_init(struct device * dev,struct pci_config_window * cfg,struct resource * res_pem)305 static int thunder_pem_init(struct device *dev, struct pci_config_window *cfg,
306 			    struct resource *res_pem)
307 {
308 	struct thunder_pem_pci *pem_pci;
309 	resource_size_t bar4_start;
310 
311 	pem_pci = devm_kzalloc(dev, sizeof(*pem_pci), GFP_KERNEL);
312 	if (!pem_pci)
313 		return -ENOMEM;
314 
315 	pem_pci->pem_reg_base = devm_ioremap(dev, res_pem->start, 0x10000);
316 	if (!pem_pci->pem_reg_base)
317 		return -ENOMEM;
318 
319 	/*
320 	 * The MSI-X BAR for the PEM and AER interrupts is located at
321 	 * a fixed offset from the PEM register base.  Generate a
322 	 * fragment of the synthesized Enhanced Allocation capability
323 	 * structure here for the BAR.
324 	 */
325 	bar4_start = res_pem->start + 0xf00000;
326 	pem_pci->ea_entry[0] = lower_32_bits(bar4_start) | 2;
327 	pem_pci->ea_entry[1] = lower_32_bits(res_pem->end - bar4_start) & ~3u;
328 	pem_pci->ea_entry[2] = upper_32_bits(bar4_start);
329 
330 	cfg->priv = pem_pci;
331 	return 0;
332 }
333 
334 #if defined(CONFIG_ACPI) && defined(CONFIG_PCI_QUIRKS)
335 
336 #define PEM_RES_BASE		0x87e0c0000000ULL
337 #define PEM_NODE_MASK		GENMASK_ULL(45, 44)
338 #define PEM_INDX_MASK		GENMASK_ULL(26, 24)
339 #define PEM_MIN_DOM_IN_NODE	4
340 #define PEM_MAX_DOM_IN_NODE	10
341 
thunder_pem_reserve_range(struct device * dev,int seg,struct resource * r)342 static void thunder_pem_reserve_range(struct device *dev, int seg,
343 				      struct resource *r)
344 {
345 	resource_size_t start = r->start, end = r->end;
346 	struct resource *res;
347 	const char *regionid;
348 
349 	regionid = kasprintf(GFP_KERNEL, "PEM RC:%d", seg);
350 	if (!regionid)
351 		return;
352 
353 	res = request_mem_region(start, end - start + 1, regionid);
354 	if (res)
355 		res->flags &= ~IORESOURCE_BUSY;
356 	else
357 		kfree(regionid);
358 
359 	dev_info(dev, "%pR %s reserved\n", r,
360 		 res ? "has been" : "could not be");
361 }
362 
thunder_pem_legacy_fw(struct acpi_pci_root * root,struct resource * res_pem)363 static void thunder_pem_legacy_fw(struct acpi_pci_root *root,
364 				 struct resource *res_pem)
365 {
366 	int node = acpi_get_node(root->device->handle);
367 	int index;
368 
369 	if (node == NUMA_NO_NODE)
370 		node = 0;
371 
372 	index = root->segment - PEM_MIN_DOM_IN_NODE;
373 	index -= node * PEM_MAX_DOM_IN_NODE;
374 	res_pem->start = PEM_RES_BASE | FIELD_PREP(PEM_NODE_MASK, node) |
375 					FIELD_PREP(PEM_INDX_MASK, index);
376 	res_pem->flags = IORESOURCE_MEM;
377 }
378 
thunder_pem_acpi_init(struct pci_config_window * cfg)379 static int thunder_pem_acpi_init(struct pci_config_window *cfg)
380 {
381 	struct device *dev = cfg->parent;
382 	struct acpi_device *adev = to_acpi_device(dev);
383 	struct acpi_pci_root *root = acpi_driver_data(adev);
384 	struct resource *res_pem;
385 	int ret;
386 
387 	res_pem = devm_kzalloc(&adev->dev, sizeof(*res_pem), GFP_KERNEL);
388 	if (!res_pem)
389 		return -ENOMEM;
390 
391 	ret = acpi_get_rc_resources(dev, "CAVA02B", root->segment, res_pem);
392 
393 	/*
394 	 * If we fail to gather resources it means that we run with old
395 	 * FW where we need to calculate PEM-specific resources manually.
396 	 */
397 	if (ret) {
398 		thunder_pem_legacy_fw(root, res_pem);
399 		/*
400 		 * Reserve 64K size PEM specific resources. The full 16M range
401 		 * size is required for thunder_pem_init() call.
402 		 */
403 		res_pem->end = res_pem->start + SZ_64K - 1;
404 		thunder_pem_reserve_range(dev, root->segment, res_pem);
405 		res_pem->end = res_pem->start + SZ_16M - 1;
406 
407 		/* Reserve PCI configuration space as well. */
408 		thunder_pem_reserve_range(dev, root->segment, &cfg->res);
409 	}
410 
411 	return thunder_pem_init(dev, cfg, res_pem);
412 }
413 
414 const struct pci_ecam_ops thunder_pem_ecam_ops = {
415 	.bus_shift	= THUNDER_PCIE_ECAM_BUS_SHIFT,
416 	.init		= thunder_pem_acpi_init,
417 	.pci_ops	= {
418 		.map_bus	= pci_ecam_map_bus,
419 		.read		= thunder_pem_config_read,
420 		.write		= thunder_pem_config_write,
421 	}
422 };
423 
424 #endif
425 
426 #ifdef CONFIG_PCI_HOST_THUNDER_PEM
427 
thunder_pem_platform_init(struct pci_config_window * cfg)428 static int thunder_pem_platform_init(struct pci_config_window *cfg)
429 {
430 	struct device *dev = cfg->parent;
431 	struct platform_device *pdev = to_platform_device(dev);
432 	struct resource *res_pem;
433 
434 	if (!dev->of_node)
435 		return -EINVAL;
436 
437 	/*
438 	 * The second register range is the PEM bridge to the PCIe
439 	 * bus.  It has a different config access method than those
440 	 * devices behind the bridge.
441 	 */
442 	res_pem = platform_get_resource(pdev, IORESOURCE_MEM, 1);
443 	if (!res_pem) {
444 		dev_err(dev, "missing \"reg[1]\"property\n");
445 		return -EINVAL;
446 	}
447 
448 	return thunder_pem_init(dev, cfg, res_pem);
449 }
450 
451 static const struct pci_ecam_ops pci_thunder_pem_ops = {
452 	.bus_shift	= THUNDER_PCIE_ECAM_BUS_SHIFT,
453 	.init		= thunder_pem_platform_init,
454 	.pci_ops	= {
455 		.map_bus	= pci_ecam_map_bus,
456 		.read		= thunder_pem_config_read,
457 		.write		= thunder_pem_config_write,
458 	}
459 };
460 
461 static const struct of_device_id thunder_pem_of_match[] = {
462 	{
463 		.compatible = "cavium,pci-host-thunder-pem",
464 		.data = &pci_thunder_pem_ops,
465 	},
466 	{ },
467 };
468 
469 static struct platform_driver thunder_pem_driver = {
470 	.driver = {
471 		.name = KBUILD_MODNAME,
472 		.of_match_table = thunder_pem_of_match,
473 		.suppress_bind_attrs = true,
474 	},
475 	.probe = pci_host_common_probe,
476 };
477 builtin_platform_driver(thunder_pem_driver);
478 
479 #endif
480 #endif
481