xref: /linux/drivers/perf/riscv_pmu.c (revision a8625217)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * RISC-V performance counter support.
4  *
5  * Copyright (C) 2021 Western Digital Corporation or its affiliates.
6  *
7  * This implementation is based on old RISC-V perf and ARM perf event code
8  * which are in turn based on sparc64 and x86 code.
9  */
10 
11 #include <linux/cpumask.h>
12 #include <linux/irq.h>
13 #include <linux/irqdesc.h>
14 #include <linux/perf/riscv_pmu.h>
15 #include <linux/printk.h>
16 #include <linux/smp.h>
17 #include <linux/sched_clock.h>
18 
19 #include <asm/sbi.h>
20 
riscv_perf_user_access(struct perf_event * event)21 static bool riscv_perf_user_access(struct perf_event *event)
22 {
23 	return ((event->attr.type == PERF_TYPE_HARDWARE) ||
24 		(event->attr.type == PERF_TYPE_HW_CACHE) ||
25 		(event->attr.type == PERF_TYPE_RAW)) &&
26 		!!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) &&
27 		(event->hw.idx != -1);
28 }
29 
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)30 void arch_perf_update_userpage(struct perf_event *event,
31 			       struct perf_event_mmap_page *userpg, u64 now)
32 {
33 	struct clock_read_data *rd;
34 	unsigned int seq;
35 	u64 ns;
36 
37 	userpg->cap_user_time = 0;
38 	userpg->cap_user_time_zero = 0;
39 	userpg->cap_user_time_short = 0;
40 	userpg->cap_user_rdpmc = riscv_perf_user_access(event);
41 
42 #ifdef CONFIG_RISCV_PMU
43 	/*
44 	 * The counters are 64-bit but the priv spec doesn't mandate all the
45 	 * bits to be implemented: that's why, counter width can vary based on
46 	 * the cpu vendor.
47 	 */
48 	if (userpg->cap_user_rdpmc)
49 		userpg->pmc_width = to_riscv_pmu(event->pmu)->ctr_get_width(event->hw.idx) + 1;
50 #endif
51 
52 	do {
53 		rd = sched_clock_read_begin(&seq);
54 
55 		userpg->time_mult = rd->mult;
56 		userpg->time_shift = rd->shift;
57 		userpg->time_zero = rd->epoch_ns;
58 		userpg->time_cycles = rd->epoch_cyc;
59 		userpg->time_mask = rd->sched_clock_mask;
60 
61 		/*
62 		 * Subtract the cycle base, such that software that
63 		 * doesn't know about cap_user_time_short still 'works'
64 		 * assuming no wraps.
65 		 */
66 		ns = mul_u64_u32_shr(rd->epoch_cyc, rd->mult, rd->shift);
67 		userpg->time_zero -= ns;
68 
69 	} while (sched_clock_read_retry(seq));
70 
71 	userpg->time_offset = userpg->time_zero - now;
72 
73 	/*
74 	 * time_shift is not expected to be greater than 31 due to
75 	 * the original published conversion algorithm shifting a
76 	 * 32-bit value (now specifies a 64-bit value) - refer
77 	 * perf_event_mmap_page documentation in perf_event.h.
78 	 */
79 	if (userpg->time_shift == 32) {
80 		userpg->time_shift = 31;
81 		userpg->time_mult >>= 1;
82 	}
83 
84 	/*
85 	 * Internal timekeeping for enabled/running/stopped times
86 	 * is always computed with the sched_clock.
87 	 */
88 	userpg->cap_user_time = 1;
89 	userpg->cap_user_time_zero = 1;
90 	userpg->cap_user_time_short = 1;
91 }
92 
csr_read_num(int csr_num)93 static unsigned long csr_read_num(int csr_num)
94 {
95 #define switchcase_csr_read(__csr_num, __val)		{\
96 	case __csr_num:					\
97 		__val = csr_read(__csr_num);		\
98 		break; }
99 #define switchcase_csr_read_2(__csr_num, __val)		{\
100 	switchcase_csr_read(__csr_num + 0, __val)	 \
101 	switchcase_csr_read(__csr_num + 1, __val)}
102 #define switchcase_csr_read_4(__csr_num, __val)		{\
103 	switchcase_csr_read_2(__csr_num + 0, __val)	 \
104 	switchcase_csr_read_2(__csr_num + 2, __val)}
105 #define switchcase_csr_read_8(__csr_num, __val)		{\
106 	switchcase_csr_read_4(__csr_num + 0, __val)	 \
107 	switchcase_csr_read_4(__csr_num + 4, __val)}
108 #define switchcase_csr_read_16(__csr_num, __val)	{\
109 	switchcase_csr_read_8(__csr_num + 0, __val)	 \
110 	switchcase_csr_read_8(__csr_num + 8, __val)}
111 #define switchcase_csr_read_32(__csr_num, __val)	{\
112 	switchcase_csr_read_16(__csr_num + 0, __val)	 \
113 	switchcase_csr_read_16(__csr_num + 16, __val)}
114 
115 	unsigned long ret = 0;
116 
117 	switch (csr_num) {
118 	switchcase_csr_read_32(CSR_CYCLE, ret)
119 	switchcase_csr_read_32(CSR_CYCLEH, ret)
120 	default :
121 		break;
122 	}
123 
124 	return ret;
125 #undef switchcase_csr_read_32
126 #undef switchcase_csr_read_16
127 #undef switchcase_csr_read_8
128 #undef switchcase_csr_read_4
129 #undef switchcase_csr_read_2
130 #undef switchcase_csr_read
131 }
132 
133 /*
134  * Read the CSR of a corresponding counter.
135  */
riscv_pmu_ctr_read_csr(unsigned long csr)136 unsigned long riscv_pmu_ctr_read_csr(unsigned long csr)
137 {
138 	if (csr < CSR_CYCLE || csr > CSR_HPMCOUNTER31H ||
139 	   (csr > CSR_HPMCOUNTER31 && csr < CSR_CYCLEH)) {
140 		pr_err("Invalid performance counter csr %lx\n", csr);
141 		return -EINVAL;
142 	}
143 
144 	return csr_read_num(csr);
145 }
146 
riscv_pmu_ctr_get_width_mask(struct perf_event * event)147 u64 riscv_pmu_ctr_get_width_mask(struct perf_event *event)
148 {
149 	int cwidth;
150 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
151 	struct hw_perf_event *hwc = &event->hw;
152 
153 	if (hwc->idx == -1)
154 		/* Handle init case where idx is not initialized yet */
155 		cwidth = rvpmu->ctr_get_width(0);
156 	else
157 		cwidth = rvpmu->ctr_get_width(hwc->idx);
158 
159 	return GENMASK_ULL(cwidth, 0);
160 }
161 
riscv_pmu_event_update(struct perf_event * event)162 u64 riscv_pmu_event_update(struct perf_event *event)
163 {
164 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
165 	struct hw_perf_event *hwc = &event->hw;
166 	u64 prev_raw_count, new_raw_count;
167 	unsigned long cmask;
168 	u64 oldval, delta;
169 
170 	if (!rvpmu->ctr_read)
171 		return 0;
172 
173 	cmask = riscv_pmu_ctr_get_width_mask(event);
174 
175 	do {
176 		prev_raw_count = local64_read(&hwc->prev_count);
177 		new_raw_count = rvpmu->ctr_read(event);
178 		oldval = local64_cmpxchg(&hwc->prev_count, prev_raw_count,
179 					 new_raw_count);
180 	} while (oldval != prev_raw_count);
181 
182 	delta = (new_raw_count - prev_raw_count) & cmask;
183 	local64_add(delta, &event->count);
184 	local64_sub(delta, &hwc->period_left);
185 
186 	return delta;
187 }
188 
riscv_pmu_stop(struct perf_event * event,int flags)189 void riscv_pmu_stop(struct perf_event *event, int flags)
190 {
191 	struct hw_perf_event *hwc = &event->hw;
192 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
193 
194 	if (!(hwc->state & PERF_HES_STOPPED)) {
195 		if (rvpmu->ctr_stop) {
196 			rvpmu->ctr_stop(event, 0);
197 			hwc->state |= PERF_HES_STOPPED;
198 		}
199 		riscv_pmu_event_update(event);
200 		hwc->state |= PERF_HES_UPTODATE;
201 	}
202 }
203 
riscv_pmu_event_set_period(struct perf_event * event)204 int riscv_pmu_event_set_period(struct perf_event *event)
205 {
206 	struct hw_perf_event *hwc = &event->hw;
207 	s64 left = local64_read(&hwc->period_left);
208 	s64 period = hwc->sample_period;
209 	int overflow = 0;
210 	uint64_t max_period = riscv_pmu_ctr_get_width_mask(event);
211 
212 	if (unlikely(left <= -period)) {
213 		left = period;
214 		local64_set(&hwc->period_left, left);
215 		hwc->last_period = period;
216 		overflow = 1;
217 	}
218 
219 	if (unlikely(left <= 0)) {
220 		left += period;
221 		local64_set(&hwc->period_left, left);
222 		hwc->last_period = period;
223 		overflow = 1;
224 	}
225 
226 	/*
227 	 * Limit the maximum period to prevent the counter value
228 	 * from overtaking the one we are about to program. In
229 	 * effect we are reducing max_period to account for
230 	 * interrupt latency (and we are being very conservative).
231 	 */
232 	if (left > (max_period >> 1))
233 		left = (max_period >> 1);
234 
235 	local64_set(&hwc->prev_count, (u64)-left);
236 
237 	perf_event_update_userpage(event);
238 
239 	return overflow;
240 }
241 
riscv_pmu_start(struct perf_event * event,int flags)242 void riscv_pmu_start(struct perf_event *event, int flags)
243 {
244 	struct hw_perf_event *hwc = &event->hw;
245 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
246 	uint64_t max_period = riscv_pmu_ctr_get_width_mask(event);
247 	u64 init_val;
248 
249 	if (flags & PERF_EF_RELOAD)
250 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
251 
252 	hwc->state = 0;
253 	riscv_pmu_event_set_period(event);
254 	init_val = local64_read(&hwc->prev_count) & max_period;
255 	rvpmu->ctr_start(event, init_val);
256 	perf_event_update_userpage(event);
257 }
258 
riscv_pmu_add(struct perf_event * event,int flags)259 static int riscv_pmu_add(struct perf_event *event, int flags)
260 {
261 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
262 	struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
263 	struct hw_perf_event *hwc = &event->hw;
264 	int idx;
265 
266 	idx = rvpmu->ctr_get_idx(event);
267 	if (idx < 0)
268 		return idx;
269 
270 	hwc->idx = idx;
271 	cpuc->events[idx] = event;
272 	cpuc->n_events++;
273 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
274 	if (flags & PERF_EF_START)
275 		riscv_pmu_start(event, PERF_EF_RELOAD);
276 
277 	/* Propagate our changes to the userspace mapping. */
278 	perf_event_update_userpage(event);
279 
280 	return 0;
281 }
282 
riscv_pmu_del(struct perf_event * event,int flags)283 static void riscv_pmu_del(struct perf_event *event, int flags)
284 {
285 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
286 	struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
287 	struct hw_perf_event *hwc = &event->hw;
288 
289 	riscv_pmu_stop(event, PERF_EF_UPDATE);
290 	cpuc->events[hwc->idx] = NULL;
291 	/* The firmware need to reset the counter mapping */
292 	if (rvpmu->ctr_stop)
293 		rvpmu->ctr_stop(event, RISCV_PMU_STOP_FLAG_RESET);
294 	cpuc->n_events--;
295 	if (rvpmu->ctr_clear_idx)
296 		rvpmu->ctr_clear_idx(event);
297 	perf_event_update_userpage(event);
298 	hwc->idx = -1;
299 }
300 
riscv_pmu_read(struct perf_event * event)301 static void riscv_pmu_read(struct perf_event *event)
302 {
303 	riscv_pmu_event_update(event);
304 }
305 
riscv_pmu_event_init(struct perf_event * event)306 static int riscv_pmu_event_init(struct perf_event *event)
307 {
308 	struct hw_perf_event *hwc = &event->hw;
309 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
310 	int mapped_event;
311 	u64 event_config = 0;
312 	uint64_t cmask;
313 
314 	/* driver does not support branch stack sampling */
315 	if (has_branch_stack(event))
316 		return -EOPNOTSUPP;
317 
318 	hwc->flags = 0;
319 	mapped_event = rvpmu->event_map(event, &event_config);
320 	if (mapped_event < 0) {
321 		pr_debug("event %x:%llx not supported\n", event->attr.type,
322 			 event->attr.config);
323 		return mapped_event;
324 	}
325 
326 	/*
327 	 * idx is set to -1 because the index of a general event should not be
328 	 * decided until binding to some counter in pmu->add().
329 	 * config will contain the information about counter CSR
330 	 * the idx will contain the counter index
331 	 */
332 	hwc->config = event_config;
333 	hwc->idx = -1;
334 	hwc->event_base = mapped_event;
335 
336 	if (rvpmu->event_init)
337 		rvpmu->event_init(event);
338 
339 	if (!is_sampling_event(event)) {
340 		/*
341 		 * For non-sampling runs, limit the sample_period to half
342 		 * of the counter width. That way, the new counter value
343 		 * is far less likely to overtake the previous one unless
344 		 * you have some serious IRQ latency issues.
345 		 */
346 		cmask = riscv_pmu_ctr_get_width_mask(event);
347 		hwc->sample_period  =  cmask >> 1;
348 		hwc->last_period    = hwc->sample_period;
349 		local64_set(&hwc->period_left, hwc->sample_period);
350 	}
351 
352 	return 0;
353 }
354 
riscv_pmu_event_idx(struct perf_event * event)355 static int riscv_pmu_event_idx(struct perf_event *event)
356 {
357 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
358 
359 	if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
360 		return 0;
361 
362 	if (rvpmu->csr_index)
363 		return rvpmu->csr_index(event) + 1;
364 
365 	return 0;
366 }
367 
riscv_pmu_event_mapped(struct perf_event * event,struct mm_struct * mm)368 static void riscv_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
369 {
370 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
371 
372 	if (rvpmu->event_mapped) {
373 		rvpmu->event_mapped(event, mm);
374 		perf_event_update_userpage(event);
375 	}
376 }
377 
riscv_pmu_event_unmapped(struct perf_event * event,struct mm_struct * mm)378 static void riscv_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
379 {
380 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
381 
382 	if (rvpmu->event_unmapped) {
383 		rvpmu->event_unmapped(event, mm);
384 		perf_event_update_userpage(event);
385 	}
386 }
387 
riscv_pmu_alloc(void)388 struct riscv_pmu *riscv_pmu_alloc(void)
389 {
390 	struct riscv_pmu *pmu;
391 	int cpuid, i;
392 	struct cpu_hw_events *cpuc;
393 
394 	pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
395 	if (!pmu)
396 		goto out;
397 
398 	pmu->hw_events = alloc_percpu_gfp(struct cpu_hw_events, GFP_KERNEL);
399 	if (!pmu->hw_events) {
400 		pr_info("failed to allocate per-cpu PMU data.\n");
401 		goto out_free_pmu;
402 	}
403 
404 	for_each_possible_cpu(cpuid) {
405 		cpuc = per_cpu_ptr(pmu->hw_events, cpuid);
406 		cpuc->n_events = 0;
407 		for (i = 0; i < RISCV_MAX_COUNTERS; i++)
408 			cpuc->events[i] = NULL;
409 		cpuc->snapshot_addr = NULL;
410 	}
411 	pmu->pmu = (struct pmu) {
412 		.event_init	= riscv_pmu_event_init,
413 		.event_mapped	= riscv_pmu_event_mapped,
414 		.event_unmapped	= riscv_pmu_event_unmapped,
415 		.event_idx	= riscv_pmu_event_idx,
416 		.add		= riscv_pmu_add,
417 		.del		= riscv_pmu_del,
418 		.start		= riscv_pmu_start,
419 		.stop		= riscv_pmu_stop,
420 		.read		= riscv_pmu_read,
421 	};
422 
423 	return pmu;
424 
425 out_free_pmu:
426 	kfree(pmu);
427 out:
428 	return NULL;
429 }
430