xref: /linux/drivers/s390/char/zcore.c (revision 340750c1)
1 // SPDX-License-Identifier: GPL-1.0+
2 /*
3  * zcore module to export memory content and register sets for creating system
4  * dumps on SCSI/NVMe disks (zfcp/nvme dump).
5  *
6  * For more information please refer to Documentation/arch/s390/zfcpdump.rst
7  *
8  * Copyright IBM Corp. 2003, 2008
9  * Author(s): Michael Holzheu
10  */
11 
12 #define KMSG_COMPONENT "zdump"
13 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
14 
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/debugfs.h>
18 #include <linux/panic_notifier.h>
19 #include <linux/reboot.h>
20 #include <linux/uio.h>
21 
22 #include <asm/asm-offsets.h>
23 #include <asm/ipl.h>
24 #include <asm/sclp.h>
25 #include <asm/setup.h>
26 #include <linux/uaccess.h>
27 #include <asm/debug.h>
28 #include <asm/processor.h>
29 #include <asm/irqflags.h>
30 #include <asm/checksum.h>
31 #include <asm/os_info.h>
32 #include <asm/maccess.h>
33 #include "sclp.h"
34 
35 #define TRACE(x...) debug_sprintf_event(zcore_dbf, 1, x)
36 
37 enum arch_id {
38 	ARCH_S390	= 0,
39 	ARCH_S390X	= 1,
40 };
41 
42 struct ipib_info {
43 	unsigned long	ipib;
44 	u32		checksum;
45 }  __attribute__((packed));
46 
47 static struct debug_info *zcore_dbf;
48 static int hsa_available;
49 static struct dentry *zcore_dir;
50 static struct dentry *zcore_reipl_file;
51 static struct dentry *zcore_hsa_file;
52 static struct ipl_parameter_block *zcore_ipl_block;
53 static unsigned long os_info_flags;
54 
55 static DEFINE_MUTEX(hsa_buf_mutex);
56 static char hsa_buf[PAGE_SIZE] __aligned(PAGE_SIZE);
57 
58 /*
59  * Copy memory from HSA to iterator (not reentrant):
60  *
61  * @iter:  Iterator where memory should be copied to
62  * @src:   Start address within HSA where data should be copied
63  * @count: Size of buffer, which should be copied
64  */
memcpy_hsa_iter(struct iov_iter * iter,unsigned long src,size_t count)65 size_t memcpy_hsa_iter(struct iov_iter *iter, unsigned long src, size_t count)
66 {
67 	size_t bytes, copied, res = 0;
68 	unsigned long offset;
69 
70 	if (!hsa_available)
71 		return 0;
72 
73 	mutex_lock(&hsa_buf_mutex);
74 	while (count) {
75 		if (sclp_sdias_copy(hsa_buf, src / PAGE_SIZE + 2, 1)) {
76 			TRACE("sclp_sdias_copy() failed\n");
77 			break;
78 		}
79 		offset = src % PAGE_SIZE;
80 		bytes = min(PAGE_SIZE - offset, count);
81 		copied = copy_to_iter(hsa_buf + offset, bytes, iter);
82 		count -= copied;
83 		src += copied;
84 		res += copied;
85 		if (copied < bytes)
86 			break;
87 	}
88 	mutex_unlock(&hsa_buf_mutex);
89 	return res;
90 }
91 
92 /*
93  * Copy memory from HSA to kernel memory (not reentrant):
94  *
95  * @dest:  Kernel or user buffer where memory should be copied to
96  * @src:   Start address within HSA where data should be copied
97  * @count: Size of buffer, which should be copied
98  */
memcpy_hsa_kernel(void * dst,unsigned long src,size_t count)99 static inline int memcpy_hsa_kernel(void *dst, unsigned long src, size_t count)
100 {
101 	struct iov_iter iter;
102 	struct kvec kvec;
103 
104 	kvec.iov_base = dst;
105 	kvec.iov_len = count;
106 	iov_iter_kvec(&iter, ITER_DEST, &kvec, 1, count);
107 	if (memcpy_hsa_iter(&iter, src, count) < count)
108 		return -EIO;
109 	return 0;
110 }
111 
init_cpu_info(void)112 static int __init init_cpu_info(void)
113 {
114 	struct save_area *sa;
115 
116 	/* get info for boot cpu from lowcore, stored in the HSA */
117 	sa = save_area_boot_cpu();
118 	if (!sa)
119 		return -ENOMEM;
120 	if (memcpy_hsa_kernel(hsa_buf, __LC_FPREGS_SAVE_AREA, 512) < 0) {
121 		TRACE("could not copy from HSA\n");
122 		return -EIO;
123 	}
124 	save_area_add_regs(sa, hsa_buf); /* vx registers are saved in smp.c */
125 	return 0;
126 }
127 
128 /*
129  * Release the HSA
130  */
release_hsa(void)131 static void release_hsa(void)
132 {
133 	diag308(DIAG308_REL_HSA, NULL);
134 	hsa_available = 0;
135 }
136 
zcore_reipl_write(struct file * filp,const char __user * buf,size_t count,loff_t * ppos)137 static ssize_t zcore_reipl_write(struct file *filp, const char __user *buf,
138 				 size_t count, loff_t *ppos)
139 {
140 	if (zcore_ipl_block) {
141 		diag308(DIAG308_SET, zcore_ipl_block);
142 		if (os_info_flags & OS_INFO_FLAG_REIPL_CLEAR)
143 			diag308(DIAG308_LOAD_CLEAR, NULL);
144 		/* Use special diag308 subcode for CCW normal ipl */
145 		if (zcore_ipl_block->pb0_hdr.pbt == IPL_PBT_CCW)
146 			diag308(DIAG308_LOAD_NORMAL_DUMP, NULL);
147 		else
148 			diag308(DIAG308_LOAD_NORMAL, NULL);
149 	}
150 	return count;
151 }
152 
zcore_reipl_open(struct inode * inode,struct file * filp)153 static int zcore_reipl_open(struct inode *inode, struct file *filp)
154 {
155 	return stream_open(inode, filp);
156 }
157 
zcore_reipl_release(struct inode * inode,struct file * filp)158 static int zcore_reipl_release(struct inode *inode, struct file *filp)
159 {
160 	return 0;
161 }
162 
163 static const struct file_operations zcore_reipl_fops = {
164 	.owner		= THIS_MODULE,
165 	.write		= zcore_reipl_write,
166 	.open		= zcore_reipl_open,
167 	.release	= zcore_reipl_release,
168 	.llseek		= no_llseek,
169 };
170 
zcore_hsa_read(struct file * filp,char __user * buf,size_t count,loff_t * ppos)171 static ssize_t zcore_hsa_read(struct file *filp, char __user *buf,
172 			      size_t count, loff_t *ppos)
173 {
174 	static char str[18];
175 
176 	if (hsa_available)
177 		snprintf(str, sizeof(str), "%lx\n", sclp.hsa_size);
178 	else
179 		snprintf(str, sizeof(str), "0\n");
180 	return simple_read_from_buffer(buf, count, ppos, str, strlen(str));
181 }
182 
zcore_hsa_write(struct file * filp,const char __user * buf,size_t count,loff_t * ppos)183 static ssize_t zcore_hsa_write(struct file *filp, const char __user *buf,
184 			       size_t count, loff_t *ppos)
185 {
186 	char value;
187 
188 	if (*ppos != 0)
189 		return -EPIPE;
190 	if (copy_from_user(&value, buf, 1))
191 		return -EFAULT;
192 	if (value != '0')
193 		return -EINVAL;
194 	release_hsa();
195 	return count;
196 }
197 
198 static const struct file_operations zcore_hsa_fops = {
199 	.owner		= THIS_MODULE,
200 	.write		= zcore_hsa_write,
201 	.read		= zcore_hsa_read,
202 	.open		= nonseekable_open,
203 	.llseek		= no_llseek,
204 };
205 
check_sdias(void)206 static int __init check_sdias(void)
207 {
208 	if (!sclp.hsa_size) {
209 		TRACE("Could not determine HSA size\n");
210 		return -ENODEV;
211 	}
212 	return 0;
213 }
214 
215 /*
216  * Provide IPL parameter information block from either HSA or memory
217  * for future reipl
218  */
zcore_reipl_init(void)219 static int __init zcore_reipl_init(void)
220 {
221 	struct os_info_entry *entry;
222 	struct ipib_info ipib_info;
223 	unsigned long os_info_addr;
224 	struct os_info *os_info;
225 	int rc;
226 
227 	rc = memcpy_hsa_kernel(&ipib_info, __LC_DUMP_REIPL, sizeof(ipib_info));
228 	if (rc)
229 		return rc;
230 	if (ipib_info.ipib == 0)
231 		return 0;
232 	zcore_ipl_block = (void *) __get_free_page(GFP_KERNEL);
233 	if (!zcore_ipl_block)
234 		return -ENOMEM;
235 	if (ipib_info.ipib < sclp.hsa_size)
236 		rc = memcpy_hsa_kernel(zcore_ipl_block, ipib_info.ipib,
237 				       PAGE_SIZE);
238 	else
239 		rc = memcpy_real(zcore_ipl_block, ipib_info.ipib, PAGE_SIZE);
240 	if (rc || (__force u32)csum_partial(zcore_ipl_block, zcore_ipl_block->hdr.len, 0) !=
241 	    ipib_info.checksum) {
242 		TRACE("Checksum does not match\n");
243 		free_page((unsigned long) zcore_ipl_block);
244 		zcore_ipl_block = NULL;
245 	}
246 	/*
247 	 * Read the bit-flags field from os_info flags entry.
248 	 * Return zero even for os_info read or entry checksum errors in order
249 	 * to continue dump processing, considering that os_info could be
250 	 * corrupted on the panicked system.
251 	 */
252 	os_info = (void *)__get_free_page(GFP_KERNEL);
253 	if (!os_info)
254 		return -ENOMEM;
255 	rc = memcpy_hsa_kernel(&os_info_addr, __LC_OS_INFO, sizeof(os_info_addr));
256 	if (rc)
257 		goto out;
258 	if (os_info_addr < sclp.hsa_size)
259 		rc = memcpy_hsa_kernel(os_info, os_info_addr, PAGE_SIZE);
260 	else
261 		rc = memcpy_real(os_info, os_info_addr, PAGE_SIZE);
262 	if (rc || os_info_csum(os_info) != os_info->csum)
263 		goto out;
264 	entry = &os_info->entry[OS_INFO_FLAGS_ENTRY];
265 	if (entry->addr && entry->size) {
266 		if (entry->addr < sclp.hsa_size)
267 			rc = memcpy_hsa_kernel(&os_info_flags, entry->addr, sizeof(os_info_flags));
268 		else
269 			rc = memcpy_real(&os_info_flags, entry->addr, sizeof(os_info_flags));
270 		if (rc || (__force u32)csum_partial(&os_info_flags, entry->size, 0) != entry->csum)
271 			os_info_flags = 0;
272 	}
273 out:
274 	free_page((unsigned long)os_info);
275 	return 0;
276 }
277 
zcore_reboot_and_on_panic_handler(struct notifier_block * self,unsigned long event,void * data)278 static int zcore_reboot_and_on_panic_handler(struct notifier_block *self,
279 					     unsigned long	   event,
280 					     void		   *data)
281 {
282 	if (hsa_available)
283 		release_hsa();
284 
285 	return NOTIFY_OK;
286 }
287 
288 static struct notifier_block zcore_reboot_notifier = {
289 	.notifier_call	= zcore_reboot_and_on_panic_handler,
290 	/* we need to be notified before reipl and kdump */
291 	.priority	= INT_MAX,
292 };
293 
294 static struct notifier_block zcore_on_panic_notifier = {
295 	.notifier_call	= zcore_reboot_and_on_panic_handler,
296 	/* we need to be notified before reipl and kdump */
297 	.priority	= INT_MAX,
298 };
299 
zcore_init(void)300 static int __init zcore_init(void)
301 {
302 	unsigned char arch;
303 	int rc;
304 
305 	if (!is_ipl_type_dump())
306 		return -ENODATA;
307 	if (oldmem_data.start)
308 		return -ENODATA;
309 
310 	zcore_dbf = debug_register("zcore", 4, 1, 4 * sizeof(long));
311 	debug_register_view(zcore_dbf, &debug_sprintf_view);
312 	debug_set_level(zcore_dbf, 6);
313 
314 	if (ipl_info.type == IPL_TYPE_FCP_DUMP) {
315 		TRACE("type:   fcp\n");
316 		TRACE("devno:  %x\n", ipl_info.data.fcp.dev_id.devno);
317 		TRACE("wwpn:   %llx\n", (unsigned long long) ipl_info.data.fcp.wwpn);
318 		TRACE("lun:    %llx\n", (unsigned long long) ipl_info.data.fcp.lun);
319 	} else if (ipl_info.type == IPL_TYPE_NVME_DUMP) {
320 		TRACE("type:   nvme\n");
321 		TRACE("fid:    %x\n", ipl_info.data.nvme.fid);
322 		TRACE("nsid:   %x\n", ipl_info.data.nvme.nsid);
323 	} else if (ipl_info.type == IPL_TYPE_ECKD_DUMP) {
324 		TRACE("type:   eckd\n");
325 		TRACE("devno:  %x\n", ipl_info.data.eckd.dev_id.devno);
326 		TRACE("ssid:   %x\n", ipl_info.data.eckd.dev_id.ssid);
327 	}
328 
329 	rc = sclp_sdias_init();
330 	if (rc)
331 		goto fail;
332 
333 	rc = check_sdias();
334 	if (rc)
335 		goto fail;
336 	hsa_available = 1;
337 
338 	rc = memcpy_hsa_kernel(&arch, __LC_AR_MODE_ID, 1);
339 	if (rc)
340 		goto fail;
341 
342 	if (arch == ARCH_S390) {
343 		pr_alert("The 64-bit dump tool cannot be used for a "
344 			 "32-bit system\n");
345 		rc = -EINVAL;
346 		goto fail;
347 	}
348 
349 	pr_alert("The dump process started for a 64-bit operating system\n");
350 	rc = init_cpu_info();
351 	if (rc)
352 		goto fail;
353 
354 	rc = zcore_reipl_init();
355 	if (rc)
356 		goto fail;
357 
358 	zcore_dir = debugfs_create_dir("zcore" , NULL);
359 	zcore_reipl_file = debugfs_create_file("reipl", S_IRUSR, zcore_dir,
360 						NULL, &zcore_reipl_fops);
361 	zcore_hsa_file = debugfs_create_file("hsa", S_IRUSR|S_IWUSR, zcore_dir,
362 					     NULL, &zcore_hsa_fops);
363 
364 	register_reboot_notifier(&zcore_reboot_notifier);
365 	atomic_notifier_chain_register(&panic_notifier_list, &zcore_on_panic_notifier);
366 
367 	return 0;
368 fail:
369 	diag308(DIAG308_REL_HSA, NULL);
370 	return rc;
371 }
372 subsys_initcall(zcore_init);
373