xref: /linux/fs/pipe.c (revision 85f273a6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/pipe.c
4  *
5  *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/fs.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/pseudo_fs.h>
18 #include <linux/magic.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/uio.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/audit.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/memcontrol.h>
27 #include <linux/watch_queue.h>
28 #include <linux/sysctl.h>
29 
30 #include <linux/uaccess.h>
31 #include <asm/ioctls.h>
32 
33 #include "internal.h"
34 
35 /*
36  * New pipe buffers will be restricted to this size while the user is exceeding
37  * their pipe buffer quota. The general pipe use case needs at least two
38  * buffers: one for data yet to be read, and one for new data. If this is less
39  * than two, then a write to a non-empty pipe may block even if the pipe is not
40  * full. This can occur with GNU make jobserver or similar uses of pipes as
41  * semaphores: multiple processes may be waiting to write tokens back to the
42  * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/.
43  *
44  * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their
45  * own risk, namely: pipe writes to non-full pipes may block until the pipe is
46  * emptied.
47  */
48 #define PIPE_MIN_DEF_BUFFERS 2
49 
50 /*
51  * The max size that a non-root user is allowed to grow the pipe. Can
52  * be set by root in /proc/sys/fs/pipe-max-size
53  */
54 static unsigned int pipe_max_size = 1048576;
55 
56 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
57  * matches default values.
58  */
59 static unsigned long pipe_user_pages_hard;
60 static unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
61 
62 /*
63  * We use head and tail indices that aren't masked off, except at the point of
64  * dereference, but rather they're allowed to wrap naturally.  This means there
65  * isn't a dead spot in the buffer, but the ring has to be a power of two and
66  * <= 2^31.
67  * -- David Howells 2019-09-23.
68  *
69  * Reads with count = 0 should always return 0.
70  * -- Julian Bradfield 1999-06-07.
71  *
72  * FIFOs and Pipes now generate SIGIO for both readers and writers.
73  * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
74  *
75  * pipe_read & write cleanup
76  * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
77  */
78 
79 #define cmp_int(l, r)		((l > r) - (l < r))
80 
81 #ifdef CONFIG_PROVE_LOCKING
pipe_lock_cmp_fn(const struct lockdep_map * a,const struct lockdep_map * b)82 static int pipe_lock_cmp_fn(const struct lockdep_map *a,
83 			    const struct lockdep_map *b)
84 {
85 	return cmp_int((unsigned long) a, (unsigned long) b);
86 }
87 #endif
88 
pipe_lock(struct pipe_inode_info * pipe)89 void pipe_lock(struct pipe_inode_info *pipe)
90 {
91 	if (pipe->files)
92 		mutex_lock(&pipe->mutex);
93 }
94 EXPORT_SYMBOL(pipe_lock);
95 
pipe_unlock(struct pipe_inode_info * pipe)96 void pipe_unlock(struct pipe_inode_info *pipe)
97 {
98 	if (pipe->files)
99 		mutex_unlock(&pipe->mutex);
100 }
101 EXPORT_SYMBOL(pipe_unlock);
102 
pipe_double_lock(struct pipe_inode_info * pipe1,struct pipe_inode_info * pipe2)103 void pipe_double_lock(struct pipe_inode_info *pipe1,
104 		      struct pipe_inode_info *pipe2)
105 {
106 	BUG_ON(pipe1 == pipe2);
107 
108 	if (pipe1 > pipe2)
109 		swap(pipe1, pipe2);
110 
111 	pipe_lock(pipe1);
112 	pipe_lock(pipe2);
113 }
114 
anon_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)115 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
116 				  struct pipe_buffer *buf)
117 {
118 	struct page *page = buf->page;
119 
120 	/*
121 	 * If nobody else uses this page, and we don't already have a
122 	 * temporary page, let's keep track of it as a one-deep
123 	 * allocation cache. (Otherwise just release our reference to it)
124 	 */
125 	if (page_count(page) == 1 && !pipe->tmp_page)
126 		pipe->tmp_page = page;
127 	else
128 		put_page(page);
129 }
130 
anon_pipe_buf_try_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)131 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
132 		struct pipe_buffer *buf)
133 {
134 	struct page *page = buf->page;
135 
136 	if (page_count(page) != 1)
137 		return false;
138 	memcg_kmem_uncharge_page(page, 0);
139 	__SetPageLocked(page);
140 	return true;
141 }
142 
143 /**
144  * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
145  * @pipe:	the pipe that the buffer belongs to
146  * @buf:	the buffer to attempt to steal
147  *
148  * Description:
149  *	This function attempts to steal the &struct page attached to
150  *	@buf. If successful, this function returns 0 and returns with
151  *	the page locked. The caller may then reuse the page for whatever
152  *	he wishes; the typical use is insertion into a different file
153  *	page cache.
154  */
generic_pipe_buf_try_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)155 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
156 		struct pipe_buffer *buf)
157 {
158 	struct page *page = buf->page;
159 
160 	/*
161 	 * A reference of one is golden, that means that the owner of this
162 	 * page is the only one holding a reference to it. lock the page
163 	 * and return OK.
164 	 */
165 	if (page_count(page) == 1) {
166 		lock_page(page);
167 		return true;
168 	}
169 	return false;
170 }
171 EXPORT_SYMBOL(generic_pipe_buf_try_steal);
172 
173 /**
174  * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
175  * @pipe:	the pipe that the buffer belongs to
176  * @buf:	the buffer to get a reference to
177  *
178  * Description:
179  *	This function grabs an extra reference to @buf. It's used in
180  *	the tee() system call, when we duplicate the buffers in one
181  *	pipe into another.
182  */
generic_pipe_buf_get(struct pipe_inode_info * pipe,struct pipe_buffer * buf)183 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
184 {
185 	return try_get_page(buf->page);
186 }
187 EXPORT_SYMBOL(generic_pipe_buf_get);
188 
189 /**
190  * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
191  * @pipe:	the pipe that the buffer belongs to
192  * @buf:	the buffer to put a reference to
193  *
194  * Description:
195  *	This function releases a reference to @buf.
196  */
generic_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)197 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
198 			      struct pipe_buffer *buf)
199 {
200 	put_page(buf->page);
201 }
202 EXPORT_SYMBOL(generic_pipe_buf_release);
203 
204 static const struct pipe_buf_operations anon_pipe_buf_ops = {
205 	.release	= anon_pipe_buf_release,
206 	.try_steal	= anon_pipe_buf_try_steal,
207 	.get		= generic_pipe_buf_get,
208 };
209 
210 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
pipe_readable(const struct pipe_inode_info * pipe)211 static inline bool pipe_readable(const struct pipe_inode_info *pipe)
212 {
213 	unsigned int head = READ_ONCE(pipe->head);
214 	unsigned int tail = READ_ONCE(pipe->tail);
215 	unsigned int writers = READ_ONCE(pipe->writers);
216 
217 	return !pipe_empty(head, tail) || !writers;
218 }
219 
pipe_update_tail(struct pipe_inode_info * pipe,struct pipe_buffer * buf,unsigned int tail)220 static inline unsigned int pipe_update_tail(struct pipe_inode_info *pipe,
221 					    struct pipe_buffer *buf,
222 					    unsigned int tail)
223 {
224 	pipe_buf_release(pipe, buf);
225 
226 	/*
227 	 * If the pipe has a watch_queue, we need additional protection
228 	 * by the spinlock because notifications get posted with only
229 	 * this spinlock, no mutex
230 	 */
231 	if (pipe_has_watch_queue(pipe)) {
232 		spin_lock_irq(&pipe->rd_wait.lock);
233 #ifdef CONFIG_WATCH_QUEUE
234 		if (buf->flags & PIPE_BUF_FLAG_LOSS)
235 			pipe->note_loss = true;
236 #endif
237 		pipe->tail = ++tail;
238 		spin_unlock_irq(&pipe->rd_wait.lock);
239 		return tail;
240 	}
241 
242 	/*
243 	 * Without a watch_queue, we can simply increment the tail
244 	 * without the spinlock - the mutex is enough.
245 	 */
246 	pipe->tail = ++tail;
247 	return tail;
248 }
249 
250 static ssize_t
pipe_read(struct kiocb * iocb,struct iov_iter * to)251 pipe_read(struct kiocb *iocb, struct iov_iter *to)
252 {
253 	size_t total_len = iov_iter_count(to);
254 	struct file *filp = iocb->ki_filp;
255 	struct pipe_inode_info *pipe = filp->private_data;
256 	bool was_full, wake_next_reader = false;
257 	ssize_t ret;
258 
259 	/* Null read succeeds. */
260 	if (unlikely(total_len == 0))
261 		return 0;
262 
263 	ret = 0;
264 	mutex_lock(&pipe->mutex);
265 
266 	/*
267 	 * We only wake up writers if the pipe was full when we started
268 	 * reading in order to avoid unnecessary wakeups.
269 	 *
270 	 * But when we do wake up writers, we do so using a sync wakeup
271 	 * (WF_SYNC), because we want them to get going and generate more
272 	 * data for us.
273 	 */
274 	was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
275 	for (;;) {
276 		/* Read ->head with a barrier vs post_one_notification() */
277 		unsigned int head = smp_load_acquire(&pipe->head);
278 		unsigned int tail = pipe->tail;
279 		unsigned int mask = pipe->ring_size - 1;
280 
281 #ifdef CONFIG_WATCH_QUEUE
282 		if (pipe->note_loss) {
283 			struct watch_notification n;
284 
285 			if (total_len < 8) {
286 				if (ret == 0)
287 					ret = -ENOBUFS;
288 				break;
289 			}
290 
291 			n.type = WATCH_TYPE_META;
292 			n.subtype = WATCH_META_LOSS_NOTIFICATION;
293 			n.info = watch_sizeof(n);
294 			if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) {
295 				if (ret == 0)
296 					ret = -EFAULT;
297 				break;
298 			}
299 			ret += sizeof(n);
300 			total_len -= sizeof(n);
301 			pipe->note_loss = false;
302 		}
303 #endif
304 
305 		if (!pipe_empty(head, tail)) {
306 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
307 			size_t chars = buf->len;
308 			size_t written;
309 			int error;
310 
311 			if (chars > total_len) {
312 				if (buf->flags & PIPE_BUF_FLAG_WHOLE) {
313 					if (ret == 0)
314 						ret = -ENOBUFS;
315 					break;
316 				}
317 				chars = total_len;
318 			}
319 
320 			error = pipe_buf_confirm(pipe, buf);
321 			if (error) {
322 				if (!ret)
323 					ret = error;
324 				break;
325 			}
326 
327 			written = copy_page_to_iter(buf->page, buf->offset, chars, to);
328 			if (unlikely(written < chars)) {
329 				if (!ret)
330 					ret = -EFAULT;
331 				break;
332 			}
333 			ret += chars;
334 			buf->offset += chars;
335 			buf->len -= chars;
336 
337 			/* Was it a packet buffer? Clean up and exit */
338 			if (buf->flags & PIPE_BUF_FLAG_PACKET) {
339 				total_len = chars;
340 				buf->len = 0;
341 			}
342 
343 			if (!buf->len)
344 				tail = pipe_update_tail(pipe, buf, tail);
345 			total_len -= chars;
346 			if (!total_len)
347 				break;	/* common path: read succeeded */
348 			if (!pipe_empty(head, tail))	/* More to do? */
349 				continue;
350 		}
351 
352 		if (!pipe->writers)
353 			break;
354 		if (ret)
355 			break;
356 		if ((filp->f_flags & O_NONBLOCK) ||
357 		    (iocb->ki_flags & IOCB_NOWAIT)) {
358 			ret = -EAGAIN;
359 			break;
360 		}
361 		mutex_unlock(&pipe->mutex);
362 
363 		/*
364 		 * We only get here if we didn't actually read anything.
365 		 *
366 		 * However, we could have seen (and removed) a zero-sized
367 		 * pipe buffer, and might have made space in the buffers
368 		 * that way.
369 		 *
370 		 * You can't make zero-sized pipe buffers by doing an empty
371 		 * write (not even in packet mode), but they can happen if
372 		 * the writer gets an EFAULT when trying to fill a buffer
373 		 * that already got allocated and inserted in the buffer
374 		 * array.
375 		 *
376 		 * So we still need to wake up any pending writers in the
377 		 * _very_ unlikely case that the pipe was full, but we got
378 		 * no data.
379 		 */
380 		if (unlikely(was_full))
381 			wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
382 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
383 
384 		/*
385 		 * But because we didn't read anything, at this point we can
386 		 * just return directly with -ERESTARTSYS if we're interrupted,
387 		 * since we've done any required wakeups and there's no need
388 		 * to mark anything accessed. And we've dropped the lock.
389 		 */
390 		if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
391 			return -ERESTARTSYS;
392 
393 		mutex_lock(&pipe->mutex);
394 		was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
395 		wake_next_reader = true;
396 	}
397 	if (pipe_empty(pipe->head, pipe->tail))
398 		wake_next_reader = false;
399 	mutex_unlock(&pipe->mutex);
400 
401 	if (was_full)
402 		wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
403 	if (wake_next_reader)
404 		wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
405 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
406 	if (ret > 0)
407 		file_accessed(filp);
408 	return ret;
409 }
410 
is_packetized(struct file * file)411 static inline int is_packetized(struct file *file)
412 {
413 	return (file->f_flags & O_DIRECT) != 0;
414 }
415 
416 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
pipe_writable(const struct pipe_inode_info * pipe)417 static inline bool pipe_writable(const struct pipe_inode_info *pipe)
418 {
419 	unsigned int head = READ_ONCE(pipe->head);
420 	unsigned int tail = READ_ONCE(pipe->tail);
421 	unsigned int max_usage = READ_ONCE(pipe->max_usage);
422 
423 	return !pipe_full(head, tail, max_usage) ||
424 		!READ_ONCE(pipe->readers);
425 }
426 
427 static ssize_t
pipe_write(struct kiocb * iocb,struct iov_iter * from)428 pipe_write(struct kiocb *iocb, struct iov_iter *from)
429 {
430 	struct file *filp = iocb->ki_filp;
431 	struct pipe_inode_info *pipe = filp->private_data;
432 	unsigned int head;
433 	ssize_t ret = 0;
434 	size_t total_len = iov_iter_count(from);
435 	ssize_t chars;
436 	bool was_empty = false;
437 	bool wake_next_writer = false;
438 
439 	/*
440 	 * Reject writing to watch queue pipes before the point where we lock
441 	 * the pipe.
442 	 * Otherwise, lockdep would be unhappy if the caller already has another
443 	 * pipe locked.
444 	 * If we had to support locking a normal pipe and a notification pipe at
445 	 * the same time, we could set up lockdep annotations for that, but
446 	 * since we don't actually need that, it's simpler to just bail here.
447 	 */
448 	if (pipe_has_watch_queue(pipe))
449 		return -EXDEV;
450 
451 	/* Null write succeeds. */
452 	if (unlikely(total_len == 0))
453 		return 0;
454 
455 	mutex_lock(&pipe->mutex);
456 
457 	if (!pipe->readers) {
458 		send_sig(SIGPIPE, current, 0);
459 		ret = -EPIPE;
460 		goto out;
461 	}
462 
463 	/*
464 	 * If it wasn't empty we try to merge new data into
465 	 * the last buffer.
466 	 *
467 	 * That naturally merges small writes, but it also
468 	 * page-aligns the rest of the writes for large writes
469 	 * spanning multiple pages.
470 	 */
471 	head = pipe->head;
472 	was_empty = pipe_empty(head, pipe->tail);
473 	chars = total_len & (PAGE_SIZE-1);
474 	if (chars && !was_empty) {
475 		unsigned int mask = pipe->ring_size - 1;
476 		struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
477 		int offset = buf->offset + buf->len;
478 
479 		if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
480 		    offset + chars <= PAGE_SIZE) {
481 			ret = pipe_buf_confirm(pipe, buf);
482 			if (ret)
483 				goto out;
484 
485 			ret = copy_page_from_iter(buf->page, offset, chars, from);
486 			if (unlikely(ret < chars)) {
487 				ret = -EFAULT;
488 				goto out;
489 			}
490 
491 			buf->len += ret;
492 			if (!iov_iter_count(from))
493 				goto out;
494 		}
495 	}
496 
497 	for (;;) {
498 		if (!pipe->readers) {
499 			send_sig(SIGPIPE, current, 0);
500 			if (!ret)
501 				ret = -EPIPE;
502 			break;
503 		}
504 
505 		head = pipe->head;
506 		if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
507 			unsigned int mask = pipe->ring_size - 1;
508 			struct pipe_buffer *buf;
509 			struct page *page = pipe->tmp_page;
510 			int copied;
511 
512 			if (!page) {
513 				page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
514 				if (unlikely(!page)) {
515 					ret = ret ? : -ENOMEM;
516 					break;
517 				}
518 				pipe->tmp_page = page;
519 			}
520 
521 			/* Allocate a slot in the ring in advance and attach an
522 			 * empty buffer.  If we fault or otherwise fail to use
523 			 * it, either the reader will consume it or it'll still
524 			 * be there for the next write.
525 			 */
526 			pipe->head = head + 1;
527 
528 			/* Insert it into the buffer array */
529 			buf = &pipe->bufs[head & mask];
530 			buf->page = page;
531 			buf->ops = &anon_pipe_buf_ops;
532 			buf->offset = 0;
533 			buf->len = 0;
534 			if (is_packetized(filp))
535 				buf->flags = PIPE_BUF_FLAG_PACKET;
536 			else
537 				buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
538 			pipe->tmp_page = NULL;
539 
540 			copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
541 			if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
542 				if (!ret)
543 					ret = -EFAULT;
544 				break;
545 			}
546 			ret += copied;
547 			buf->len = copied;
548 
549 			if (!iov_iter_count(from))
550 				break;
551 		}
552 
553 		if (!pipe_full(head, pipe->tail, pipe->max_usage))
554 			continue;
555 
556 		/* Wait for buffer space to become available. */
557 		if ((filp->f_flags & O_NONBLOCK) ||
558 		    (iocb->ki_flags & IOCB_NOWAIT)) {
559 			if (!ret)
560 				ret = -EAGAIN;
561 			break;
562 		}
563 		if (signal_pending(current)) {
564 			if (!ret)
565 				ret = -ERESTARTSYS;
566 			break;
567 		}
568 
569 		/*
570 		 * We're going to release the pipe lock and wait for more
571 		 * space. We wake up any readers if necessary, and then
572 		 * after waiting we need to re-check whether the pipe
573 		 * become empty while we dropped the lock.
574 		 */
575 		mutex_unlock(&pipe->mutex);
576 		if (was_empty)
577 			wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
578 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
579 		wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
580 		mutex_lock(&pipe->mutex);
581 		was_empty = pipe_empty(pipe->head, pipe->tail);
582 		wake_next_writer = true;
583 	}
584 out:
585 	if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
586 		wake_next_writer = false;
587 	mutex_unlock(&pipe->mutex);
588 
589 	/*
590 	 * If we do do a wakeup event, we do a 'sync' wakeup, because we
591 	 * want the reader to start processing things asap, rather than
592 	 * leave the data pending.
593 	 *
594 	 * This is particularly important for small writes, because of
595 	 * how (for example) the GNU make jobserver uses small writes to
596 	 * wake up pending jobs
597 	 *
598 	 * Epoll nonsensically wants a wakeup whether the pipe
599 	 * was already empty or not.
600 	 */
601 	if (was_empty || pipe->poll_usage)
602 		wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
603 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
604 	if (wake_next_writer)
605 		wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
606 	if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
607 		int err = file_update_time(filp);
608 		if (err)
609 			ret = err;
610 		sb_end_write(file_inode(filp)->i_sb);
611 	}
612 	return ret;
613 }
614 
pipe_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)615 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
616 {
617 	struct pipe_inode_info *pipe = filp->private_data;
618 	unsigned int count, head, tail, mask;
619 
620 	switch (cmd) {
621 	case FIONREAD:
622 		mutex_lock(&pipe->mutex);
623 		count = 0;
624 		head = pipe->head;
625 		tail = pipe->tail;
626 		mask = pipe->ring_size - 1;
627 
628 		while (tail != head) {
629 			count += pipe->bufs[tail & mask].len;
630 			tail++;
631 		}
632 		mutex_unlock(&pipe->mutex);
633 
634 		return put_user(count, (int __user *)arg);
635 
636 #ifdef CONFIG_WATCH_QUEUE
637 	case IOC_WATCH_QUEUE_SET_SIZE: {
638 		int ret;
639 		mutex_lock(&pipe->mutex);
640 		ret = watch_queue_set_size(pipe, arg);
641 		mutex_unlock(&pipe->mutex);
642 		return ret;
643 	}
644 
645 	case IOC_WATCH_QUEUE_SET_FILTER:
646 		return watch_queue_set_filter(
647 			pipe, (struct watch_notification_filter __user *)arg);
648 #endif
649 
650 	default:
651 		return -ENOIOCTLCMD;
652 	}
653 }
654 
655 /* No kernel lock held - fine */
656 static __poll_t
pipe_poll(struct file * filp,poll_table * wait)657 pipe_poll(struct file *filp, poll_table *wait)
658 {
659 	__poll_t mask;
660 	struct pipe_inode_info *pipe = filp->private_data;
661 	unsigned int head, tail;
662 
663 	/* Epoll has some historical nasty semantics, this enables them */
664 	WRITE_ONCE(pipe->poll_usage, true);
665 
666 	/*
667 	 * Reading pipe state only -- no need for acquiring the semaphore.
668 	 *
669 	 * But because this is racy, the code has to add the
670 	 * entry to the poll table _first_ ..
671 	 */
672 	if (filp->f_mode & FMODE_READ)
673 		poll_wait(filp, &pipe->rd_wait, wait);
674 	if (filp->f_mode & FMODE_WRITE)
675 		poll_wait(filp, &pipe->wr_wait, wait);
676 
677 	/*
678 	 * .. and only then can you do the racy tests. That way,
679 	 * if something changes and you got it wrong, the poll
680 	 * table entry will wake you up and fix it.
681 	 */
682 	head = READ_ONCE(pipe->head);
683 	tail = READ_ONCE(pipe->tail);
684 
685 	mask = 0;
686 	if (filp->f_mode & FMODE_READ) {
687 		if (!pipe_empty(head, tail))
688 			mask |= EPOLLIN | EPOLLRDNORM;
689 		if (!pipe->writers && filp->f_version != pipe->w_counter)
690 			mask |= EPOLLHUP;
691 	}
692 
693 	if (filp->f_mode & FMODE_WRITE) {
694 		if (!pipe_full(head, tail, pipe->max_usage))
695 			mask |= EPOLLOUT | EPOLLWRNORM;
696 		/*
697 		 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
698 		 * behave exactly like pipes for poll().
699 		 */
700 		if (!pipe->readers)
701 			mask |= EPOLLERR;
702 	}
703 
704 	return mask;
705 }
706 
put_pipe_info(struct inode * inode,struct pipe_inode_info * pipe)707 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
708 {
709 	int kill = 0;
710 
711 	spin_lock(&inode->i_lock);
712 	if (!--pipe->files) {
713 		inode->i_pipe = NULL;
714 		kill = 1;
715 	}
716 	spin_unlock(&inode->i_lock);
717 
718 	if (kill)
719 		free_pipe_info(pipe);
720 }
721 
722 static int
pipe_release(struct inode * inode,struct file * file)723 pipe_release(struct inode *inode, struct file *file)
724 {
725 	struct pipe_inode_info *pipe = file->private_data;
726 
727 	mutex_lock(&pipe->mutex);
728 	if (file->f_mode & FMODE_READ)
729 		pipe->readers--;
730 	if (file->f_mode & FMODE_WRITE)
731 		pipe->writers--;
732 
733 	/* Was that the last reader or writer, but not the other side? */
734 	if (!pipe->readers != !pipe->writers) {
735 		wake_up_interruptible_all(&pipe->rd_wait);
736 		wake_up_interruptible_all(&pipe->wr_wait);
737 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
738 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
739 	}
740 	mutex_unlock(&pipe->mutex);
741 
742 	put_pipe_info(inode, pipe);
743 	return 0;
744 }
745 
746 static int
pipe_fasync(int fd,struct file * filp,int on)747 pipe_fasync(int fd, struct file *filp, int on)
748 {
749 	struct pipe_inode_info *pipe = filp->private_data;
750 	int retval = 0;
751 
752 	mutex_lock(&pipe->mutex);
753 	if (filp->f_mode & FMODE_READ)
754 		retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
755 	if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
756 		retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
757 		if (retval < 0 && (filp->f_mode & FMODE_READ))
758 			/* this can happen only if on == T */
759 			fasync_helper(-1, filp, 0, &pipe->fasync_readers);
760 	}
761 	mutex_unlock(&pipe->mutex);
762 	return retval;
763 }
764 
account_pipe_buffers(struct user_struct * user,unsigned long old,unsigned long new)765 unsigned long account_pipe_buffers(struct user_struct *user,
766 				   unsigned long old, unsigned long new)
767 {
768 	return atomic_long_add_return(new - old, &user->pipe_bufs);
769 }
770 
too_many_pipe_buffers_soft(unsigned long user_bufs)771 bool too_many_pipe_buffers_soft(unsigned long user_bufs)
772 {
773 	unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
774 
775 	return soft_limit && user_bufs > soft_limit;
776 }
777 
too_many_pipe_buffers_hard(unsigned long user_bufs)778 bool too_many_pipe_buffers_hard(unsigned long user_bufs)
779 {
780 	unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
781 
782 	return hard_limit && user_bufs > hard_limit;
783 }
784 
pipe_is_unprivileged_user(void)785 bool pipe_is_unprivileged_user(void)
786 {
787 	return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
788 }
789 
alloc_pipe_info(void)790 struct pipe_inode_info *alloc_pipe_info(void)
791 {
792 	struct pipe_inode_info *pipe;
793 	unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
794 	struct user_struct *user = get_current_user();
795 	unsigned long user_bufs;
796 	unsigned int max_size = READ_ONCE(pipe_max_size);
797 
798 	pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
799 	if (pipe == NULL)
800 		goto out_free_uid;
801 
802 	if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
803 		pipe_bufs = max_size >> PAGE_SHIFT;
804 
805 	user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
806 
807 	if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
808 		user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS);
809 		pipe_bufs = PIPE_MIN_DEF_BUFFERS;
810 	}
811 
812 	if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
813 		goto out_revert_acct;
814 
815 	pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
816 			     GFP_KERNEL_ACCOUNT);
817 
818 	if (pipe->bufs) {
819 		init_waitqueue_head(&pipe->rd_wait);
820 		init_waitqueue_head(&pipe->wr_wait);
821 		pipe->r_counter = pipe->w_counter = 1;
822 		pipe->max_usage = pipe_bufs;
823 		pipe->ring_size = pipe_bufs;
824 		pipe->nr_accounted = pipe_bufs;
825 		pipe->user = user;
826 		mutex_init(&pipe->mutex);
827 		lock_set_cmp_fn(&pipe->mutex, pipe_lock_cmp_fn, NULL);
828 		return pipe;
829 	}
830 
831 out_revert_acct:
832 	(void) account_pipe_buffers(user, pipe_bufs, 0);
833 	kfree(pipe);
834 out_free_uid:
835 	free_uid(user);
836 	return NULL;
837 }
838 
free_pipe_info(struct pipe_inode_info * pipe)839 void free_pipe_info(struct pipe_inode_info *pipe)
840 {
841 	unsigned int i;
842 
843 #ifdef CONFIG_WATCH_QUEUE
844 	if (pipe->watch_queue)
845 		watch_queue_clear(pipe->watch_queue);
846 #endif
847 
848 	(void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0);
849 	free_uid(pipe->user);
850 	for (i = 0; i < pipe->ring_size; i++) {
851 		struct pipe_buffer *buf = pipe->bufs + i;
852 		if (buf->ops)
853 			pipe_buf_release(pipe, buf);
854 	}
855 #ifdef CONFIG_WATCH_QUEUE
856 	if (pipe->watch_queue)
857 		put_watch_queue(pipe->watch_queue);
858 #endif
859 	if (pipe->tmp_page)
860 		__free_page(pipe->tmp_page);
861 	kfree(pipe->bufs);
862 	kfree(pipe);
863 }
864 
865 static struct vfsmount *pipe_mnt __ro_after_init;
866 
867 /*
868  * pipefs_dname() is called from d_path().
869  */
pipefs_dname(struct dentry * dentry,char * buffer,int buflen)870 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
871 {
872 	return dynamic_dname(buffer, buflen, "pipe:[%lu]",
873 				d_inode(dentry)->i_ino);
874 }
875 
876 static const struct dentry_operations pipefs_dentry_operations = {
877 	.d_dname	= pipefs_dname,
878 };
879 
get_pipe_inode(void)880 static struct inode * get_pipe_inode(void)
881 {
882 	struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
883 	struct pipe_inode_info *pipe;
884 
885 	if (!inode)
886 		goto fail_inode;
887 
888 	inode->i_ino = get_next_ino();
889 
890 	pipe = alloc_pipe_info();
891 	if (!pipe)
892 		goto fail_iput;
893 
894 	inode->i_pipe = pipe;
895 	pipe->files = 2;
896 	pipe->readers = pipe->writers = 1;
897 	inode->i_fop = &pipefifo_fops;
898 
899 	/*
900 	 * Mark the inode dirty from the very beginning,
901 	 * that way it will never be moved to the dirty
902 	 * list because "mark_inode_dirty()" will think
903 	 * that it already _is_ on the dirty list.
904 	 */
905 	inode->i_state = I_DIRTY;
906 	inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
907 	inode->i_uid = current_fsuid();
908 	inode->i_gid = current_fsgid();
909 	simple_inode_init_ts(inode);
910 
911 	return inode;
912 
913 fail_iput:
914 	iput(inode);
915 
916 fail_inode:
917 	return NULL;
918 }
919 
create_pipe_files(struct file ** res,int flags)920 int create_pipe_files(struct file **res, int flags)
921 {
922 	struct inode *inode = get_pipe_inode();
923 	struct file *f;
924 	int error;
925 
926 	if (!inode)
927 		return -ENFILE;
928 
929 	if (flags & O_NOTIFICATION_PIPE) {
930 		error = watch_queue_init(inode->i_pipe);
931 		if (error) {
932 			free_pipe_info(inode->i_pipe);
933 			iput(inode);
934 			return error;
935 		}
936 	}
937 
938 	f = alloc_file_pseudo(inode, pipe_mnt, "",
939 				O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
940 				&pipefifo_fops);
941 	if (IS_ERR(f)) {
942 		free_pipe_info(inode->i_pipe);
943 		iput(inode);
944 		return PTR_ERR(f);
945 	}
946 
947 	f->private_data = inode->i_pipe;
948 
949 	res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
950 				  &pipefifo_fops);
951 	if (IS_ERR(res[0])) {
952 		put_pipe_info(inode, inode->i_pipe);
953 		fput(f);
954 		return PTR_ERR(res[0]);
955 	}
956 	res[0]->private_data = inode->i_pipe;
957 	res[1] = f;
958 	stream_open(inode, res[0]);
959 	stream_open(inode, res[1]);
960 	return 0;
961 }
962 
__do_pipe_flags(int * fd,struct file ** files,int flags)963 static int __do_pipe_flags(int *fd, struct file **files, int flags)
964 {
965 	int error;
966 	int fdw, fdr;
967 
968 	if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
969 		return -EINVAL;
970 
971 	error = create_pipe_files(files, flags);
972 	if (error)
973 		return error;
974 
975 	error = get_unused_fd_flags(flags);
976 	if (error < 0)
977 		goto err_read_pipe;
978 	fdr = error;
979 
980 	error = get_unused_fd_flags(flags);
981 	if (error < 0)
982 		goto err_fdr;
983 	fdw = error;
984 
985 	audit_fd_pair(fdr, fdw);
986 	fd[0] = fdr;
987 	fd[1] = fdw;
988 	/* pipe groks IOCB_NOWAIT */
989 	files[0]->f_mode |= FMODE_NOWAIT;
990 	files[1]->f_mode |= FMODE_NOWAIT;
991 	return 0;
992 
993  err_fdr:
994 	put_unused_fd(fdr);
995  err_read_pipe:
996 	fput(files[0]);
997 	fput(files[1]);
998 	return error;
999 }
1000 
do_pipe_flags(int * fd,int flags)1001 int do_pipe_flags(int *fd, int flags)
1002 {
1003 	struct file *files[2];
1004 	int error = __do_pipe_flags(fd, files, flags);
1005 	if (!error) {
1006 		fd_install(fd[0], files[0]);
1007 		fd_install(fd[1], files[1]);
1008 	}
1009 	return error;
1010 }
1011 
1012 /*
1013  * sys_pipe() is the normal C calling standard for creating
1014  * a pipe. It's not the way Unix traditionally does this, though.
1015  */
do_pipe2(int __user * fildes,int flags)1016 static int do_pipe2(int __user *fildes, int flags)
1017 {
1018 	struct file *files[2];
1019 	int fd[2];
1020 	int error;
1021 
1022 	error = __do_pipe_flags(fd, files, flags);
1023 	if (!error) {
1024 		if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
1025 			fput(files[0]);
1026 			fput(files[1]);
1027 			put_unused_fd(fd[0]);
1028 			put_unused_fd(fd[1]);
1029 			error = -EFAULT;
1030 		} else {
1031 			fd_install(fd[0], files[0]);
1032 			fd_install(fd[1], files[1]);
1033 		}
1034 	}
1035 	return error;
1036 }
1037 
SYSCALL_DEFINE2(pipe2,int __user *,fildes,int,flags)1038 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1039 {
1040 	return do_pipe2(fildes, flags);
1041 }
1042 
SYSCALL_DEFINE1(pipe,int __user *,fildes)1043 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1044 {
1045 	return do_pipe2(fildes, 0);
1046 }
1047 
1048 /*
1049  * This is the stupid "wait for pipe to be readable or writable"
1050  * model.
1051  *
1052  * See pipe_read/write() for the proper kind of exclusive wait,
1053  * but that requires that we wake up any other readers/writers
1054  * if we then do not end up reading everything (ie the whole
1055  * "wake_next_reader/writer" logic in pipe_read/write()).
1056  */
pipe_wait_readable(struct pipe_inode_info * pipe)1057 void pipe_wait_readable(struct pipe_inode_info *pipe)
1058 {
1059 	pipe_unlock(pipe);
1060 	wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe));
1061 	pipe_lock(pipe);
1062 }
1063 
pipe_wait_writable(struct pipe_inode_info * pipe)1064 void pipe_wait_writable(struct pipe_inode_info *pipe)
1065 {
1066 	pipe_unlock(pipe);
1067 	wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe));
1068 	pipe_lock(pipe);
1069 }
1070 
1071 /*
1072  * This depends on both the wait (here) and the wakeup (wake_up_partner)
1073  * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot
1074  * race with the count check and waitqueue prep.
1075  *
1076  * Normally in order to avoid races, you'd do the prepare_to_wait() first,
1077  * then check the condition you're waiting for, and only then sleep. But
1078  * because of the pipe lock, we can check the condition before being on
1079  * the wait queue.
1080  *
1081  * We use the 'rd_wait' waitqueue for pipe partner waiting.
1082  */
wait_for_partner(struct pipe_inode_info * pipe,unsigned int * cnt)1083 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1084 {
1085 	DEFINE_WAIT(rdwait);
1086 	int cur = *cnt;
1087 
1088 	while (cur == *cnt) {
1089 		prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
1090 		pipe_unlock(pipe);
1091 		schedule();
1092 		finish_wait(&pipe->rd_wait, &rdwait);
1093 		pipe_lock(pipe);
1094 		if (signal_pending(current))
1095 			break;
1096 	}
1097 	return cur == *cnt ? -ERESTARTSYS : 0;
1098 }
1099 
wake_up_partner(struct pipe_inode_info * pipe)1100 static void wake_up_partner(struct pipe_inode_info *pipe)
1101 {
1102 	wake_up_interruptible_all(&pipe->rd_wait);
1103 }
1104 
fifo_open(struct inode * inode,struct file * filp)1105 static int fifo_open(struct inode *inode, struct file *filp)
1106 {
1107 	struct pipe_inode_info *pipe;
1108 	bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1109 	int ret;
1110 
1111 	filp->f_version = 0;
1112 
1113 	spin_lock(&inode->i_lock);
1114 	if (inode->i_pipe) {
1115 		pipe = inode->i_pipe;
1116 		pipe->files++;
1117 		spin_unlock(&inode->i_lock);
1118 	} else {
1119 		spin_unlock(&inode->i_lock);
1120 		pipe = alloc_pipe_info();
1121 		if (!pipe)
1122 			return -ENOMEM;
1123 		pipe->files = 1;
1124 		spin_lock(&inode->i_lock);
1125 		if (unlikely(inode->i_pipe)) {
1126 			inode->i_pipe->files++;
1127 			spin_unlock(&inode->i_lock);
1128 			free_pipe_info(pipe);
1129 			pipe = inode->i_pipe;
1130 		} else {
1131 			inode->i_pipe = pipe;
1132 			spin_unlock(&inode->i_lock);
1133 		}
1134 	}
1135 	filp->private_data = pipe;
1136 	/* OK, we have a pipe and it's pinned down */
1137 
1138 	mutex_lock(&pipe->mutex);
1139 
1140 	/* We can only do regular read/write on fifos */
1141 	stream_open(inode, filp);
1142 
1143 	switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1144 	case FMODE_READ:
1145 	/*
1146 	 *  O_RDONLY
1147 	 *  POSIX.1 says that O_NONBLOCK means return with the FIFO
1148 	 *  opened, even when there is no process writing the FIFO.
1149 	 */
1150 		pipe->r_counter++;
1151 		if (pipe->readers++ == 0)
1152 			wake_up_partner(pipe);
1153 
1154 		if (!is_pipe && !pipe->writers) {
1155 			if ((filp->f_flags & O_NONBLOCK)) {
1156 				/* suppress EPOLLHUP until we have
1157 				 * seen a writer */
1158 				filp->f_version = pipe->w_counter;
1159 			} else {
1160 				if (wait_for_partner(pipe, &pipe->w_counter))
1161 					goto err_rd;
1162 			}
1163 		}
1164 		break;
1165 
1166 	case FMODE_WRITE:
1167 	/*
1168 	 *  O_WRONLY
1169 	 *  POSIX.1 says that O_NONBLOCK means return -1 with
1170 	 *  errno=ENXIO when there is no process reading the FIFO.
1171 	 */
1172 		ret = -ENXIO;
1173 		if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1174 			goto err;
1175 
1176 		pipe->w_counter++;
1177 		if (!pipe->writers++)
1178 			wake_up_partner(pipe);
1179 
1180 		if (!is_pipe && !pipe->readers) {
1181 			if (wait_for_partner(pipe, &pipe->r_counter))
1182 				goto err_wr;
1183 		}
1184 		break;
1185 
1186 	case FMODE_READ | FMODE_WRITE:
1187 	/*
1188 	 *  O_RDWR
1189 	 *  POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1190 	 *  This implementation will NEVER block on a O_RDWR open, since
1191 	 *  the process can at least talk to itself.
1192 	 */
1193 
1194 		pipe->readers++;
1195 		pipe->writers++;
1196 		pipe->r_counter++;
1197 		pipe->w_counter++;
1198 		if (pipe->readers == 1 || pipe->writers == 1)
1199 			wake_up_partner(pipe);
1200 		break;
1201 
1202 	default:
1203 		ret = -EINVAL;
1204 		goto err;
1205 	}
1206 
1207 	/* Ok! */
1208 	mutex_unlock(&pipe->mutex);
1209 	return 0;
1210 
1211 err_rd:
1212 	if (!--pipe->readers)
1213 		wake_up_interruptible(&pipe->wr_wait);
1214 	ret = -ERESTARTSYS;
1215 	goto err;
1216 
1217 err_wr:
1218 	if (!--pipe->writers)
1219 		wake_up_interruptible_all(&pipe->rd_wait);
1220 	ret = -ERESTARTSYS;
1221 	goto err;
1222 
1223 err:
1224 	mutex_unlock(&pipe->mutex);
1225 
1226 	put_pipe_info(inode, pipe);
1227 	return ret;
1228 }
1229 
1230 const struct file_operations pipefifo_fops = {
1231 	.open		= fifo_open,
1232 	.llseek		= no_llseek,
1233 	.read_iter	= pipe_read,
1234 	.write_iter	= pipe_write,
1235 	.poll		= pipe_poll,
1236 	.unlocked_ioctl	= pipe_ioctl,
1237 	.release	= pipe_release,
1238 	.fasync		= pipe_fasync,
1239 	.splice_write	= iter_file_splice_write,
1240 };
1241 
1242 /*
1243  * Currently we rely on the pipe array holding a power-of-2 number
1244  * of pages. Returns 0 on error.
1245  */
round_pipe_size(unsigned int size)1246 unsigned int round_pipe_size(unsigned int size)
1247 {
1248 	if (size > (1U << 31))
1249 		return 0;
1250 
1251 	/* Minimum pipe size, as required by POSIX */
1252 	if (size < PAGE_SIZE)
1253 		return PAGE_SIZE;
1254 
1255 	return roundup_pow_of_two(size);
1256 }
1257 
1258 /*
1259  * Resize the pipe ring to a number of slots.
1260  *
1261  * Note the pipe can be reduced in capacity, but only if the current
1262  * occupancy doesn't exceed nr_slots; if it does, EBUSY will be
1263  * returned instead.
1264  */
pipe_resize_ring(struct pipe_inode_info * pipe,unsigned int nr_slots)1265 int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots)
1266 {
1267 	struct pipe_buffer *bufs;
1268 	unsigned int head, tail, mask, n;
1269 
1270 	bufs = kcalloc(nr_slots, sizeof(*bufs),
1271 		       GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1272 	if (unlikely(!bufs))
1273 		return -ENOMEM;
1274 
1275 	spin_lock_irq(&pipe->rd_wait.lock);
1276 	mask = pipe->ring_size - 1;
1277 	head = pipe->head;
1278 	tail = pipe->tail;
1279 
1280 	n = pipe_occupancy(head, tail);
1281 	if (nr_slots < n) {
1282 		spin_unlock_irq(&pipe->rd_wait.lock);
1283 		kfree(bufs);
1284 		return -EBUSY;
1285 	}
1286 
1287 	/*
1288 	 * The pipe array wraps around, so just start the new one at zero
1289 	 * and adjust the indices.
1290 	 */
1291 	if (n > 0) {
1292 		unsigned int h = head & mask;
1293 		unsigned int t = tail & mask;
1294 		if (h > t) {
1295 			memcpy(bufs, pipe->bufs + t,
1296 			       n * sizeof(struct pipe_buffer));
1297 		} else {
1298 			unsigned int tsize = pipe->ring_size - t;
1299 			if (h > 0)
1300 				memcpy(bufs + tsize, pipe->bufs,
1301 				       h * sizeof(struct pipe_buffer));
1302 			memcpy(bufs, pipe->bufs + t,
1303 			       tsize * sizeof(struct pipe_buffer));
1304 		}
1305 	}
1306 
1307 	head = n;
1308 	tail = 0;
1309 
1310 	kfree(pipe->bufs);
1311 	pipe->bufs = bufs;
1312 	pipe->ring_size = nr_slots;
1313 	if (pipe->max_usage > nr_slots)
1314 		pipe->max_usage = nr_slots;
1315 	pipe->tail = tail;
1316 	pipe->head = head;
1317 
1318 	if (!pipe_has_watch_queue(pipe)) {
1319 		pipe->max_usage = nr_slots;
1320 		pipe->nr_accounted = nr_slots;
1321 	}
1322 
1323 	spin_unlock_irq(&pipe->rd_wait.lock);
1324 
1325 	/* This might have made more room for writers */
1326 	wake_up_interruptible(&pipe->wr_wait);
1327 	return 0;
1328 }
1329 
1330 /*
1331  * Allocate a new array of pipe buffers and copy the info over. Returns the
1332  * pipe size if successful, or return -ERROR on error.
1333  */
pipe_set_size(struct pipe_inode_info * pipe,unsigned int arg)1334 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned int arg)
1335 {
1336 	unsigned long user_bufs;
1337 	unsigned int nr_slots, size;
1338 	long ret = 0;
1339 
1340 	if (pipe_has_watch_queue(pipe))
1341 		return -EBUSY;
1342 
1343 	size = round_pipe_size(arg);
1344 	nr_slots = size >> PAGE_SHIFT;
1345 
1346 	if (!nr_slots)
1347 		return -EINVAL;
1348 
1349 	/*
1350 	 * If trying to increase the pipe capacity, check that an
1351 	 * unprivileged user is not trying to exceed various limits
1352 	 * (soft limit check here, hard limit check just below).
1353 	 * Decreasing the pipe capacity is always permitted, even
1354 	 * if the user is currently over a limit.
1355 	 */
1356 	if (nr_slots > pipe->max_usage &&
1357 			size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1358 		return -EPERM;
1359 
1360 	user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots);
1361 
1362 	if (nr_slots > pipe->max_usage &&
1363 			(too_many_pipe_buffers_hard(user_bufs) ||
1364 			 too_many_pipe_buffers_soft(user_bufs)) &&
1365 			pipe_is_unprivileged_user()) {
1366 		ret = -EPERM;
1367 		goto out_revert_acct;
1368 	}
1369 
1370 	ret = pipe_resize_ring(pipe, nr_slots);
1371 	if (ret < 0)
1372 		goto out_revert_acct;
1373 
1374 	return pipe->max_usage * PAGE_SIZE;
1375 
1376 out_revert_acct:
1377 	(void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted);
1378 	return ret;
1379 }
1380 
1381 /*
1382  * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is
1383  * not enough to verify that this is a pipe.
1384  */
get_pipe_info(struct file * file,bool for_splice)1385 struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
1386 {
1387 	struct pipe_inode_info *pipe = file->private_data;
1388 
1389 	if (file->f_op != &pipefifo_fops || !pipe)
1390 		return NULL;
1391 	if (for_splice && pipe_has_watch_queue(pipe))
1392 		return NULL;
1393 	return pipe;
1394 }
1395 
pipe_fcntl(struct file * file,unsigned int cmd,unsigned int arg)1396 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned int arg)
1397 {
1398 	struct pipe_inode_info *pipe;
1399 	long ret;
1400 
1401 	pipe = get_pipe_info(file, false);
1402 	if (!pipe)
1403 		return -EBADF;
1404 
1405 	mutex_lock(&pipe->mutex);
1406 
1407 	switch (cmd) {
1408 	case F_SETPIPE_SZ:
1409 		ret = pipe_set_size(pipe, arg);
1410 		break;
1411 	case F_GETPIPE_SZ:
1412 		ret = pipe->max_usage * PAGE_SIZE;
1413 		break;
1414 	default:
1415 		ret = -EINVAL;
1416 		break;
1417 	}
1418 
1419 	mutex_unlock(&pipe->mutex);
1420 	return ret;
1421 }
1422 
1423 static const struct super_operations pipefs_ops = {
1424 	.destroy_inode = free_inode_nonrcu,
1425 	.statfs = simple_statfs,
1426 };
1427 
1428 /*
1429  * pipefs should _never_ be mounted by userland - too much of security hassle,
1430  * no real gain from having the whole whorehouse mounted. So we don't need
1431  * any operations on the root directory. However, we need a non-trivial
1432  * d_name - pipe: will go nicely and kill the special-casing in procfs.
1433  */
1434 
pipefs_init_fs_context(struct fs_context * fc)1435 static int pipefs_init_fs_context(struct fs_context *fc)
1436 {
1437 	struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1438 	if (!ctx)
1439 		return -ENOMEM;
1440 	ctx->ops = &pipefs_ops;
1441 	ctx->dops = &pipefs_dentry_operations;
1442 	return 0;
1443 }
1444 
1445 static struct file_system_type pipe_fs_type = {
1446 	.name		= "pipefs",
1447 	.init_fs_context = pipefs_init_fs_context,
1448 	.kill_sb	= kill_anon_super,
1449 };
1450 
1451 #ifdef CONFIG_SYSCTL
do_proc_dopipe_max_size_conv(unsigned long * lvalp,unsigned int * valp,int write,void * data)1452 static int do_proc_dopipe_max_size_conv(unsigned long *lvalp,
1453 					unsigned int *valp,
1454 					int write, void *data)
1455 {
1456 	if (write) {
1457 		unsigned int val;
1458 
1459 		val = round_pipe_size(*lvalp);
1460 		if (val == 0)
1461 			return -EINVAL;
1462 
1463 		*valp = val;
1464 	} else {
1465 		unsigned int val = *valp;
1466 		*lvalp = (unsigned long) val;
1467 	}
1468 
1469 	return 0;
1470 }
1471 
proc_dopipe_max_size(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1472 static int proc_dopipe_max_size(struct ctl_table *table, int write,
1473 				void *buffer, size_t *lenp, loff_t *ppos)
1474 {
1475 	return do_proc_douintvec(table, write, buffer, lenp, ppos,
1476 				 do_proc_dopipe_max_size_conv, NULL);
1477 }
1478 
1479 static struct ctl_table fs_pipe_sysctls[] = {
1480 	{
1481 		.procname	= "pipe-max-size",
1482 		.data		= &pipe_max_size,
1483 		.maxlen		= sizeof(pipe_max_size),
1484 		.mode		= 0644,
1485 		.proc_handler	= proc_dopipe_max_size,
1486 	},
1487 	{
1488 		.procname	= "pipe-user-pages-hard",
1489 		.data		= &pipe_user_pages_hard,
1490 		.maxlen		= sizeof(pipe_user_pages_hard),
1491 		.mode		= 0644,
1492 		.proc_handler	= proc_doulongvec_minmax,
1493 	},
1494 	{
1495 		.procname	= "pipe-user-pages-soft",
1496 		.data		= &pipe_user_pages_soft,
1497 		.maxlen		= sizeof(pipe_user_pages_soft),
1498 		.mode		= 0644,
1499 		.proc_handler	= proc_doulongvec_minmax,
1500 	},
1501 };
1502 #endif
1503 
init_pipe_fs(void)1504 static int __init init_pipe_fs(void)
1505 {
1506 	int err = register_filesystem(&pipe_fs_type);
1507 
1508 	if (!err) {
1509 		pipe_mnt = kern_mount(&pipe_fs_type);
1510 		if (IS_ERR(pipe_mnt)) {
1511 			err = PTR_ERR(pipe_mnt);
1512 			unregister_filesystem(&pipe_fs_type);
1513 		}
1514 	}
1515 #ifdef CONFIG_SYSCTL
1516 	register_sysctl_init("fs", fs_pipe_sysctls);
1517 #endif
1518 	return err;
1519 }
1520 
1521 fs_initcall(init_pipe_fs);
1522