xref: /linux/include/linux/damon.h (revision 2dbb60f7)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * DAMON api
4  *
5  * Author: SeongJae Park <sj@kernel.org>
6  */
7 
8 #ifndef _DAMON_H_
9 #define _DAMON_H_
10 
11 #include <linux/memcontrol.h>
12 #include <linux/mutex.h>
13 #include <linux/time64.h>
14 #include <linux/types.h>
15 #include <linux/random.h>
16 
17 /* Minimal region size.  Every damon_region is aligned by this. */
18 #define DAMON_MIN_REGION	PAGE_SIZE
19 /* Max priority score for DAMON-based operation schemes */
20 #define DAMOS_MAX_SCORE		(99)
21 
22 /* Get a random number in [l, r) */
damon_rand(unsigned long l,unsigned long r)23 static inline unsigned long damon_rand(unsigned long l, unsigned long r)
24 {
25 	return l + get_random_u32_below(r - l);
26 }
27 
28 /**
29  * struct damon_addr_range - Represents an address region of [@start, @end).
30  * @start:	Start address of the region (inclusive).
31  * @end:	End address of the region (exclusive).
32  */
33 struct damon_addr_range {
34 	unsigned long start;
35 	unsigned long end;
36 };
37 
38 /**
39  * struct damon_region - Represents a monitoring target region.
40  * @ar:			The address range of the region.
41  * @sampling_addr:	Address of the sample for the next access check.
42  * @nr_accesses:	Access frequency of this region.
43  * @nr_accesses_bp:	@nr_accesses in basis point (0.01%) that updated for
44  *			each sampling interval.
45  * @list:		List head for siblings.
46  * @age:		Age of this region.
47  *
48  * @nr_accesses is reset to zero for every &damon_attrs->aggr_interval and be
49  * increased for every &damon_attrs->sample_interval if an access to the region
50  * during the last sampling interval is found.  The update of this field should
51  * not be done with direct access but with the helper function,
52  * damon_update_region_access_rate().
53  *
54  * @nr_accesses_bp is another representation of @nr_accesses in basis point
55  * (1 in 10,000) that updated for every &damon_attrs->sample_interval in a
56  * manner similar to moving sum.  By the algorithm, this value becomes
57  * @nr_accesses * 10000 for every &struct damon_attrs->aggr_interval.  This can
58  * be used when the aggregation interval is too huge and therefore cannot wait
59  * for it before getting the access monitoring results.
60  *
61  * @age is initially zero, increased for each aggregation interval, and reset
62  * to zero again if the access frequency is significantly changed.  If two
63  * regions are merged into a new region, both @nr_accesses and @age of the new
64  * region are set as region size-weighted average of those of the two regions.
65  */
66 struct damon_region {
67 	struct damon_addr_range ar;
68 	unsigned long sampling_addr;
69 	unsigned int nr_accesses;
70 	unsigned int nr_accesses_bp;
71 	struct list_head list;
72 
73 	unsigned int age;
74 /* private: Internal value for age calculation. */
75 	unsigned int last_nr_accesses;
76 };
77 
78 /**
79  * struct damon_target - Represents a monitoring target.
80  * @pid:		The PID of the virtual address space to monitor.
81  * @nr_regions:		Number of monitoring target regions of this target.
82  * @regions_list:	Head of the monitoring target regions of this target.
83  * @list:		List head for siblings.
84  *
85  * Each monitoring context could have multiple targets.  For example, a context
86  * for virtual memory address spaces could have multiple target processes.  The
87  * @pid should be set for appropriate &struct damon_operations including the
88  * virtual address spaces monitoring operations.
89  */
90 struct damon_target {
91 	struct pid *pid;
92 	unsigned int nr_regions;
93 	struct list_head regions_list;
94 	struct list_head list;
95 };
96 
97 /**
98  * enum damos_action - Represents an action of a Data Access Monitoring-based
99  * Operation Scheme.
100  *
101  * @DAMOS_WILLNEED:	Call ``madvise()`` for the region with MADV_WILLNEED.
102  * @DAMOS_COLD:		Call ``madvise()`` for the region with MADV_COLD.
103  * @DAMOS_PAGEOUT:	Call ``madvise()`` for the region with MADV_PAGEOUT.
104  * @DAMOS_HUGEPAGE:	Call ``madvise()`` for the region with MADV_HUGEPAGE.
105  * @DAMOS_NOHUGEPAGE:	Call ``madvise()`` for the region with MADV_NOHUGEPAGE.
106  * @DAMOS_LRU_PRIO:	Prioritize the region on its LRU lists.
107  * @DAMOS_LRU_DEPRIO:	Deprioritize the region on its LRU lists.
108  * @DAMOS_STAT:		Do nothing but count the stat.
109  * @NR_DAMOS_ACTIONS:	Total number of DAMOS actions
110  *
111  * The support of each action is up to running &struct damon_operations.
112  * &enum DAMON_OPS_VADDR and &enum DAMON_OPS_FVADDR supports all actions except
113  * &enum DAMOS_LRU_PRIO and &enum DAMOS_LRU_DEPRIO.  &enum DAMON_OPS_PADDR
114  * supports only &enum DAMOS_PAGEOUT, &enum DAMOS_LRU_PRIO, &enum
115  * DAMOS_LRU_DEPRIO, and &DAMOS_STAT.
116  */
117 enum damos_action {
118 	DAMOS_WILLNEED,
119 	DAMOS_COLD,
120 	DAMOS_PAGEOUT,
121 	DAMOS_HUGEPAGE,
122 	DAMOS_NOHUGEPAGE,
123 	DAMOS_LRU_PRIO,
124 	DAMOS_LRU_DEPRIO,
125 	DAMOS_STAT,		/* Do nothing but only record the stat */
126 	NR_DAMOS_ACTIONS,
127 };
128 
129 /**
130  * enum damos_quota_goal_metric - Represents the metric to be used as the goal
131  *
132  * @DAMOS_QUOTA_USER_INPUT:	User-input value.
133  * @DAMOS_QUOTA_SOME_MEM_PSI_US:	System level some memory PSI in us.
134  * @NR_DAMOS_QUOTA_GOAL_METRICS:	Number of DAMOS quota goal metrics.
135  *
136  * Metrics equal to larger than @NR_DAMOS_QUOTA_GOAL_METRICS are unsupported.
137  */
138 enum damos_quota_goal_metric {
139 	DAMOS_QUOTA_USER_INPUT,
140 	DAMOS_QUOTA_SOME_MEM_PSI_US,
141 	NR_DAMOS_QUOTA_GOAL_METRICS,
142 };
143 
144 /**
145  * struct damos_quota_goal - DAMOS scheme quota auto-tuning goal.
146  * @metric:		Metric to be used for representing the goal.
147  * @target_value:	Target value of @metric to achieve with the tuning.
148  * @current_value:	Current value of @metric.
149  * @last_psi_total:	Last measured total PSI
150  * @list:		List head for siblings.
151  *
152  * Data structure for getting the current score of the quota tuning goal.  The
153  * score is calculated by how close @current_value and @target_value are.  Then
154  * the score is entered to DAMON's internal feedback loop mechanism to get the
155  * auto-tuned quota.
156  *
157  * If @metric is DAMOS_QUOTA_USER_INPUT, @current_value should be manually
158  * entered by the user, probably inside the kdamond callbacks.  Otherwise,
159  * DAMON sets @current_value with self-measured value of @metric.
160  */
161 struct damos_quota_goal {
162 	enum damos_quota_goal_metric metric;
163 	unsigned long target_value;
164 	unsigned long current_value;
165 	/* metric-dependent fields */
166 	union {
167 		u64 last_psi_total;
168 	};
169 	struct list_head list;
170 };
171 
172 /**
173  * struct damos_quota - Controls the aggressiveness of the given scheme.
174  * @reset_interval:	Charge reset interval in milliseconds.
175  * @ms:			Maximum milliseconds that the scheme can use.
176  * @sz:			Maximum bytes of memory that the action can be applied.
177  * @goals:		Head of quota tuning goals (&damos_quota_goal) list.
178  * @esz:		Effective size quota in bytes.
179  *
180  * @weight_sz:		Weight of the region's size for prioritization.
181  * @weight_nr_accesses:	Weight of the region's nr_accesses for prioritization.
182  * @weight_age:		Weight of the region's age for prioritization.
183  *
184  * To avoid consuming too much CPU time or IO resources for applying the
185  * &struct damos->action to large memory, DAMON allows users to set time and/or
186  * size quotas.  The quotas can be set by writing non-zero values to &ms and
187  * &sz, respectively.  If the time quota is set, DAMON tries to use only up to
188  * &ms milliseconds within &reset_interval for applying the action.  If the
189  * size quota is set, DAMON tries to apply the action only up to &sz bytes
190  * within &reset_interval.
191  *
192  * Internally, the time quota is transformed to a size quota using estimated
193  * throughput of the scheme's action.  DAMON then compares it against &sz and
194  * uses smaller one as the effective quota.
195  *
196  * If @goals is not empt, DAMON calculates yet another size quota based on the
197  * goals using its internal feedback loop algorithm, for every @reset_interval.
198  * Then, if the new size quota is smaller than the effective quota, it uses the
199  * new size quota as the effective quota.
200  *
201  * The resulting effective size quota in bytes is set to @esz.
202  *
203  * For selecting regions within the quota, DAMON prioritizes current scheme's
204  * target memory regions using the &struct damon_operations->get_scheme_score.
205  * You could customize the prioritization logic by setting &weight_sz,
206  * &weight_nr_accesses, and &weight_age, because monitoring operations are
207  * encouraged to respect those.
208  */
209 struct damos_quota {
210 	unsigned long reset_interval;
211 	unsigned long ms;
212 	unsigned long sz;
213 	struct list_head goals;
214 	unsigned long esz;
215 
216 	unsigned int weight_sz;
217 	unsigned int weight_nr_accesses;
218 	unsigned int weight_age;
219 
220 /* private: */
221 	/* For throughput estimation */
222 	unsigned long total_charged_sz;
223 	unsigned long total_charged_ns;
224 
225 	/* For charging the quota */
226 	unsigned long charged_sz;
227 	unsigned long charged_from;
228 	struct damon_target *charge_target_from;
229 	unsigned long charge_addr_from;
230 
231 	/* For prioritization */
232 	unsigned long histogram[DAMOS_MAX_SCORE + 1];
233 	unsigned int min_score;
234 
235 	/* For feedback loop */
236 	unsigned long esz_bp;
237 };
238 
239 /**
240  * enum damos_wmark_metric - Represents the watermark metric.
241  *
242  * @DAMOS_WMARK_NONE:		Ignore the watermarks of the given scheme.
243  * @DAMOS_WMARK_FREE_MEM_RATE:	Free memory rate of the system in [0,1000].
244  * @NR_DAMOS_WMARK_METRICS:	Total number of DAMOS watermark metrics
245  */
246 enum damos_wmark_metric {
247 	DAMOS_WMARK_NONE,
248 	DAMOS_WMARK_FREE_MEM_RATE,
249 	NR_DAMOS_WMARK_METRICS,
250 };
251 
252 /**
253  * struct damos_watermarks - Controls when a given scheme should be activated.
254  * @metric:	Metric for the watermarks.
255  * @interval:	Watermarks check time interval in microseconds.
256  * @high:	High watermark.
257  * @mid:	Middle watermark.
258  * @low:	Low watermark.
259  *
260  * If &metric is &DAMOS_WMARK_NONE, the scheme is always active.  Being active
261  * means DAMON does monitoring and applying the action of the scheme to
262  * appropriate memory regions.  Else, DAMON checks &metric of the system for at
263  * least every &interval microseconds and works as below.
264  *
265  * If &metric is higher than &high, the scheme is inactivated.  If &metric is
266  * between &mid and &low, the scheme is activated.  If &metric is lower than
267  * &low, the scheme is inactivated.
268  */
269 struct damos_watermarks {
270 	enum damos_wmark_metric metric;
271 	unsigned long interval;
272 	unsigned long high;
273 	unsigned long mid;
274 	unsigned long low;
275 
276 /* private: */
277 	bool activated;
278 };
279 
280 /**
281  * struct damos_stat - Statistics on a given scheme.
282  * @nr_tried:	Total number of regions that the scheme is tried to be applied.
283  * @sz_tried:	Total size of regions that the scheme is tried to be applied.
284  * @nr_applied:	Total number of regions that the scheme is applied.
285  * @sz_applied:	Total size of regions that the scheme is applied.
286  * @qt_exceeds: Total number of times the quota of the scheme has exceeded.
287  */
288 struct damos_stat {
289 	unsigned long nr_tried;
290 	unsigned long sz_tried;
291 	unsigned long nr_applied;
292 	unsigned long sz_applied;
293 	unsigned long qt_exceeds;
294 };
295 
296 /**
297  * enum damos_filter_type - Type of memory for &struct damos_filter
298  * @DAMOS_FILTER_TYPE_ANON:	Anonymous pages.
299  * @DAMOS_FILTER_TYPE_MEMCG:	Specific memcg's pages.
300  * @DAMOS_FILTER_TYPE_ADDR:	Address range.
301  * @DAMOS_FILTER_TYPE_TARGET:	Data Access Monitoring target.
302  * @NR_DAMOS_FILTER_TYPES:	Number of filter types.
303  *
304  * The anon pages type and memcg type filters are handled by underlying
305  * &struct damon_operations as a part of scheme action trying, and therefore
306  * accounted as 'tried'.  In contrast, other types are handled by core layer
307  * before trying of the action and therefore not accounted as 'tried'.
308  *
309  * The support of the filters that handled by &struct damon_operations depend
310  * on the running &struct damon_operations.
311  * &enum DAMON_OPS_PADDR supports both anon pages type and memcg type filters,
312  * while &enum DAMON_OPS_VADDR and &enum DAMON_OPS_FVADDR don't support any of
313  * the two types.
314  */
315 enum damos_filter_type {
316 	DAMOS_FILTER_TYPE_ANON,
317 	DAMOS_FILTER_TYPE_MEMCG,
318 	DAMOS_FILTER_TYPE_ADDR,
319 	DAMOS_FILTER_TYPE_TARGET,
320 	NR_DAMOS_FILTER_TYPES,
321 };
322 
323 /**
324  * struct damos_filter - DAMOS action target memory filter.
325  * @type:	Type of the page.
326  * @matching:	If the matching page should filtered out or in.
327  * @memcg_id:	Memcg id of the question if @type is DAMOS_FILTER_MEMCG.
328  * @addr_range:	Address range if @type is DAMOS_FILTER_TYPE_ADDR.
329  * @target_idx:	Index of the &struct damon_target of
330  *		&damon_ctx->adaptive_targets if @type is
331  *		DAMOS_FILTER_TYPE_TARGET.
332  * @list:	List head for siblings.
333  *
334  * Before applying the &damos->action to a memory region, DAMOS checks if each
335  * page of the region matches to this and avoid applying the action if so.
336  * Support of each filter type depends on the running &struct damon_operations
337  * and the type.  Refer to &enum damos_filter_type for more detai.
338  */
339 struct damos_filter {
340 	enum damos_filter_type type;
341 	bool matching;
342 	union {
343 		unsigned short memcg_id;
344 		struct damon_addr_range addr_range;
345 		int target_idx;
346 	};
347 	struct list_head list;
348 };
349 
350 /**
351  * struct damos_access_pattern - Target access pattern of the given scheme.
352  * @min_sz_region:	Minimum size of target regions.
353  * @max_sz_region:	Maximum size of target regions.
354  * @min_nr_accesses:	Minimum ``->nr_accesses`` of target regions.
355  * @max_nr_accesses:	Maximum ``->nr_accesses`` of target regions.
356  * @min_age_region:	Minimum age of target regions.
357  * @max_age_region:	Maximum age of target regions.
358  */
359 struct damos_access_pattern {
360 	unsigned long min_sz_region;
361 	unsigned long max_sz_region;
362 	unsigned int min_nr_accesses;
363 	unsigned int max_nr_accesses;
364 	unsigned int min_age_region;
365 	unsigned int max_age_region;
366 };
367 
368 /**
369  * struct damos - Represents a Data Access Monitoring-based Operation Scheme.
370  * @pattern:		Access pattern of target regions.
371  * @action:		&damo_action to be applied to the target regions.
372  * @apply_interval_us:	The time between applying the @action.
373  * @quota:		Control the aggressiveness of this scheme.
374  * @wmarks:		Watermarks for automated (in)activation of this scheme.
375  * @filters:		Additional set of &struct damos_filter for &action.
376  * @stat:		Statistics of this scheme.
377  * @list:		List head for siblings.
378  *
379  * For each @apply_interval_us, DAMON finds regions which fit in the
380  * &pattern and applies &action to those. To avoid consuming too much
381  * CPU time or IO resources for the &action, &quota is used.
382  *
383  * If @apply_interval_us is zero, &damon_attrs->aggr_interval is used instead.
384  *
385  * To do the work only when needed, schemes can be activated for specific
386  * system situations using &wmarks.  If all schemes that registered to the
387  * monitoring context are inactive, DAMON stops monitoring either, and just
388  * repeatedly checks the watermarks.
389  *
390  * Before applying the &action to a memory region, &struct damon_operations
391  * implementation could check pages of the region and skip &action to respect
392  * &filters
393  *
394  * After applying the &action to each region, &stat_count and &stat_sz is
395  * updated to reflect the number of regions and total size of regions that the
396  * &action is applied.
397  */
398 struct damos {
399 	struct damos_access_pattern pattern;
400 	enum damos_action action;
401 	unsigned long apply_interval_us;
402 /* private: internal use only */
403 	/*
404 	 * number of sample intervals that should be passed before applying
405 	 * @action
406 	 */
407 	unsigned long next_apply_sis;
408 /* public: */
409 	struct damos_quota quota;
410 	struct damos_watermarks wmarks;
411 	struct list_head filters;
412 	struct damos_stat stat;
413 	struct list_head list;
414 };
415 
416 /**
417  * enum damon_ops_id - Identifier for each monitoring operations implementation
418  *
419  * @DAMON_OPS_VADDR:	Monitoring operations for virtual address spaces
420  * @DAMON_OPS_FVADDR:	Monitoring operations for only fixed ranges of virtual
421  *			address spaces
422  * @DAMON_OPS_PADDR:	Monitoring operations for the physical address space
423  * @NR_DAMON_OPS:	Number of monitoring operations implementations
424  */
425 enum damon_ops_id {
426 	DAMON_OPS_VADDR,
427 	DAMON_OPS_FVADDR,
428 	DAMON_OPS_PADDR,
429 	NR_DAMON_OPS,
430 };
431 
432 struct damon_ctx;
433 
434 /**
435  * struct damon_operations - Monitoring operations for given use cases.
436  *
437  * @id:				Identifier of this operations set.
438  * @init:			Initialize operations-related data structures.
439  * @update:			Update operations-related data structures.
440  * @prepare_access_checks:	Prepare next access check of target regions.
441  * @check_accesses:		Check the accesses to target regions.
442  * @reset_aggregated:		Reset aggregated accesses monitoring results.
443  * @get_scheme_score:		Get the score of a region for a scheme.
444  * @apply_scheme:		Apply a DAMON-based operation scheme.
445  * @target_valid:		Determine if the target is valid.
446  * @cleanup:			Clean up the context.
447  *
448  * DAMON can be extended for various address spaces and usages.  For this,
449  * users should register the low level operations for their target address
450  * space and usecase via the &damon_ctx.ops.  Then, the monitoring thread
451  * (&damon_ctx.kdamond) calls @init and @prepare_access_checks before starting
452  * the monitoring, @update after each &damon_attrs.ops_update_interval, and
453  * @check_accesses, @target_valid and @prepare_access_checks after each
454  * &damon_attrs.sample_interval.  Finally, @reset_aggregated is called after
455  * each &damon_attrs.aggr_interval.
456  *
457  * Each &struct damon_operations instance having valid @id can be registered
458  * via damon_register_ops() and selected by damon_select_ops() later.
459  * @init should initialize operations-related data structures.  For example,
460  * this could be used to construct proper monitoring target regions and link
461  * those to @damon_ctx.adaptive_targets.
462  * @update should update the operations-related data structures.  For example,
463  * this could be used to update monitoring target regions for current status.
464  * @prepare_access_checks should manipulate the monitoring regions to be
465  * prepared for the next access check.
466  * @check_accesses should check the accesses to each region that made after the
467  * last preparation and update the number of observed accesses of each region.
468  * It should also return max number of observed accesses that made as a result
469  * of its update.  The value will be used for regions adjustment threshold.
470  * @reset_aggregated should reset the access monitoring results that aggregated
471  * by @check_accesses.
472  * @get_scheme_score should return the priority score of a region for a scheme
473  * as an integer in [0, &DAMOS_MAX_SCORE].
474  * @apply_scheme is called from @kdamond when a region for user provided
475  * DAMON-based operation scheme is found.  It should apply the scheme's action
476  * to the region and return bytes of the region that the action is successfully
477  * applied.
478  * @target_valid should check whether the target is still valid for the
479  * monitoring.
480  * @cleanup is called from @kdamond just before its termination.
481  */
482 struct damon_operations {
483 	enum damon_ops_id id;
484 	void (*init)(struct damon_ctx *context);
485 	void (*update)(struct damon_ctx *context);
486 	void (*prepare_access_checks)(struct damon_ctx *context);
487 	unsigned int (*check_accesses)(struct damon_ctx *context);
488 	void (*reset_aggregated)(struct damon_ctx *context);
489 	int (*get_scheme_score)(struct damon_ctx *context,
490 			struct damon_target *t, struct damon_region *r,
491 			struct damos *scheme);
492 	unsigned long (*apply_scheme)(struct damon_ctx *context,
493 			struct damon_target *t, struct damon_region *r,
494 			struct damos *scheme);
495 	bool (*target_valid)(struct damon_target *t);
496 	void (*cleanup)(struct damon_ctx *context);
497 };
498 
499 /**
500  * struct damon_callback - Monitoring events notification callbacks.
501  *
502  * @before_start:	Called before starting the monitoring.
503  * @after_wmarks_check:	Called after each schemes' watermarks check.
504  * @after_sampling:	Called after each sampling.
505  * @after_aggregation:	Called after each aggregation.
506  * @before_damos_apply:	Called before applying DAMOS action.
507  * @before_terminate:	Called before terminating the monitoring.
508  * @private:		User private data.
509  *
510  * The monitoring thread (&damon_ctx.kdamond) calls @before_start and
511  * @before_terminate just before starting and finishing the monitoring,
512  * respectively.  Therefore, those are good places for installing and cleaning
513  * @private.
514  *
515  * The monitoring thread calls @after_wmarks_check after each DAMON-based
516  * operation schemes' watermarks check.  If users need to make changes to the
517  * attributes of the monitoring context while it's deactivated due to the
518  * watermarks, this is the good place to do.
519  *
520  * The monitoring thread calls @after_sampling and @after_aggregation for each
521  * of the sampling intervals and aggregation intervals, respectively.
522  * Therefore, users can safely access the monitoring results without additional
523  * protection.  For the reason, users are recommended to use these callback for
524  * the accesses to the results.
525  *
526  * If any callback returns non-zero, monitoring stops.
527  */
528 struct damon_callback {
529 	void *private;
530 
531 	int (*before_start)(struct damon_ctx *context);
532 	int (*after_wmarks_check)(struct damon_ctx *context);
533 	int (*after_sampling)(struct damon_ctx *context);
534 	int (*after_aggregation)(struct damon_ctx *context);
535 	int (*before_damos_apply)(struct damon_ctx *context,
536 			struct damon_target *target,
537 			struct damon_region *region,
538 			struct damos *scheme);
539 	void (*before_terminate)(struct damon_ctx *context);
540 };
541 
542 /**
543  * struct damon_attrs - Monitoring attributes for accuracy/overhead control.
544  *
545  * @sample_interval:		The time between access samplings.
546  * @aggr_interval:		The time between monitor results aggregations.
547  * @ops_update_interval:	The time between monitoring operations updates.
548  * @min_nr_regions:		The minimum number of adaptive monitoring
549  *				regions.
550  * @max_nr_regions:		The maximum number of adaptive monitoring
551  *				regions.
552  *
553  * For each @sample_interval, DAMON checks whether each region is accessed or
554  * not during the last @sample_interval.  If such access is found, DAMON
555  * aggregates the information by increasing &damon_region->nr_accesses for
556  * @aggr_interval time.  For each @aggr_interval, the count is reset.  DAMON
557  * also checks whether the target memory regions need update (e.g., by
558  * ``mmap()`` calls from the application, in case of virtual memory monitoring)
559  * and applies the changes for each @ops_update_interval.  All time intervals
560  * are in micro-seconds.  Please refer to &struct damon_operations and &struct
561  * damon_callback for more detail.
562  */
563 struct damon_attrs {
564 	unsigned long sample_interval;
565 	unsigned long aggr_interval;
566 	unsigned long ops_update_interval;
567 	unsigned long min_nr_regions;
568 	unsigned long max_nr_regions;
569 };
570 
571 /**
572  * struct damon_ctx - Represents a context for each monitoring.  This is the
573  * main interface that allows users to set the attributes and get the results
574  * of the monitoring.
575  *
576  * @attrs:		Monitoring attributes for accuracy/overhead control.
577  * @kdamond:		Kernel thread who does the monitoring.
578  * @kdamond_lock:	Mutex for the synchronizations with @kdamond.
579  *
580  * For each monitoring context, one kernel thread for the monitoring is
581  * created.  The pointer to the thread is stored in @kdamond.
582  *
583  * Once started, the monitoring thread runs until explicitly required to be
584  * terminated or every monitoring target is invalid.  The validity of the
585  * targets is checked via the &damon_operations.target_valid of @ops.  The
586  * termination can also be explicitly requested by calling damon_stop().
587  * The thread sets @kdamond to NULL when it terminates. Therefore, users can
588  * know whether the monitoring is ongoing or terminated by reading @kdamond.
589  * Reads and writes to @kdamond from outside of the monitoring thread must
590  * be protected by @kdamond_lock.
591  *
592  * Note that the monitoring thread protects only @kdamond via @kdamond_lock.
593  * Accesses to other fields must be protected by themselves.
594  *
595  * @ops:	Set of monitoring operations for given use cases.
596  * @callback:	Set of callbacks for monitoring events notifications.
597  *
598  * @adaptive_targets:	Head of monitoring targets (&damon_target) list.
599  * @schemes:		Head of schemes (&damos) list.
600  */
601 struct damon_ctx {
602 	struct damon_attrs attrs;
603 
604 /* private: internal use only */
605 	/* number of sample intervals that passed since this context started */
606 	unsigned long passed_sample_intervals;
607 	/*
608 	 * number of sample intervals that should be passed before next
609 	 * aggregation
610 	 */
611 	unsigned long next_aggregation_sis;
612 	/*
613 	 * number of sample intervals that should be passed before next ops
614 	 * update
615 	 */
616 	unsigned long next_ops_update_sis;
617 	/* for waiting until the execution of the kdamond_fn is started */
618 	struct completion kdamond_started;
619 
620 /* public: */
621 	struct task_struct *kdamond;
622 	struct mutex kdamond_lock;
623 
624 	struct damon_operations ops;
625 	struct damon_callback callback;
626 
627 	struct list_head adaptive_targets;
628 	struct list_head schemes;
629 };
630 
damon_next_region(struct damon_region * r)631 static inline struct damon_region *damon_next_region(struct damon_region *r)
632 {
633 	return container_of(r->list.next, struct damon_region, list);
634 }
635 
damon_prev_region(struct damon_region * r)636 static inline struct damon_region *damon_prev_region(struct damon_region *r)
637 {
638 	return container_of(r->list.prev, struct damon_region, list);
639 }
640 
damon_last_region(struct damon_target * t)641 static inline struct damon_region *damon_last_region(struct damon_target *t)
642 {
643 	return list_last_entry(&t->regions_list, struct damon_region, list);
644 }
645 
damon_first_region(struct damon_target * t)646 static inline struct damon_region *damon_first_region(struct damon_target *t)
647 {
648 	return list_first_entry(&t->regions_list, struct damon_region, list);
649 }
650 
damon_sz_region(struct damon_region * r)651 static inline unsigned long damon_sz_region(struct damon_region *r)
652 {
653 	return r->ar.end - r->ar.start;
654 }
655 
656 
657 #define damon_for_each_region(r, t) \
658 	list_for_each_entry(r, &t->regions_list, list)
659 
660 #define damon_for_each_region_from(r, t) \
661 	list_for_each_entry_from(r, &t->regions_list, list)
662 
663 #define damon_for_each_region_safe(r, next, t) \
664 	list_for_each_entry_safe(r, next, &t->regions_list, list)
665 
666 #define damon_for_each_target(t, ctx) \
667 	list_for_each_entry(t, &(ctx)->adaptive_targets, list)
668 
669 #define damon_for_each_target_safe(t, next, ctx)	\
670 	list_for_each_entry_safe(t, next, &(ctx)->adaptive_targets, list)
671 
672 #define damon_for_each_scheme(s, ctx) \
673 	list_for_each_entry(s, &(ctx)->schemes, list)
674 
675 #define damon_for_each_scheme_safe(s, next, ctx) \
676 	list_for_each_entry_safe(s, next, &(ctx)->schemes, list)
677 
678 #define damos_for_each_quota_goal(goal, quota) \
679 	list_for_each_entry(goal, &quota->goals, list)
680 
681 #define damos_for_each_quota_goal_safe(goal, next, quota) \
682 	list_for_each_entry_safe(goal, next, &(quota)->goals, list)
683 
684 #define damos_for_each_filter(f, scheme) \
685 	list_for_each_entry(f, &(scheme)->filters, list)
686 
687 #define damos_for_each_filter_safe(f, next, scheme) \
688 	list_for_each_entry_safe(f, next, &(scheme)->filters, list)
689 
690 #ifdef CONFIG_DAMON
691 
692 struct damon_region *damon_new_region(unsigned long start, unsigned long end);
693 
694 /*
695  * Add a region between two other regions
696  */
damon_insert_region(struct damon_region * r,struct damon_region * prev,struct damon_region * next,struct damon_target * t)697 static inline void damon_insert_region(struct damon_region *r,
698 		struct damon_region *prev, struct damon_region *next,
699 		struct damon_target *t)
700 {
701 	__list_add(&r->list, &prev->list, &next->list);
702 	t->nr_regions++;
703 }
704 
705 void damon_add_region(struct damon_region *r, struct damon_target *t);
706 void damon_destroy_region(struct damon_region *r, struct damon_target *t);
707 int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges,
708 		unsigned int nr_ranges);
709 void damon_update_region_access_rate(struct damon_region *r, bool accessed,
710 		struct damon_attrs *attrs);
711 
712 struct damos_filter *damos_new_filter(enum damos_filter_type type,
713 		bool matching);
714 void damos_add_filter(struct damos *s, struct damos_filter *f);
715 void damos_destroy_filter(struct damos_filter *f);
716 
717 struct damos_quota_goal *damos_new_quota_goal(
718 		enum damos_quota_goal_metric metric,
719 		unsigned long target_value);
720 void damos_add_quota_goal(struct damos_quota *q, struct damos_quota_goal *g);
721 void damos_destroy_quota_goal(struct damos_quota_goal *goal);
722 
723 struct damos *damon_new_scheme(struct damos_access_pattern *pattern,
724 			enum damos_action action,
725 			unsigned long apply_interval_us,
726 			struct damos_quota *quota,
727 			struct damos_watermarks *wmarks);
728 void damon_add_scheme(struct damon_ctx *ctx, struct damos *s);
729 void damon_destroy_scheme(struct damos *s);
730 
731 struct damon_target *damon_new_target(void);
732 void damon_add_target(struct damon_ctx *ctx, struct damon_target *t);
733 bool damon_targets_empty(struct damon_ctx *ctx);
734 void damon_free_target(struct damon_target *t);
735 void damon_destroy_target(struct damon_target *t);
736 unsigned int damon_nr_regions(struct damon_target *t);
737 
738 struct damon_ctx *damon_new_ctx(void);
739 void damon_destroy_ctx(struct damon_ctx *ctx);
740 int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs);
741 void damon_set_schemes(struct damon_ctx *ctx,
742 			struct damos **schemes, ssize_t nr_schemes);
743 int damon_nr_running_ctxs(void);
744 bool damon_is_registered_ops(enum damon_ops_id id);
745 int damon_register_ops(struct damon_operations *ops);
746 int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id);
747 
damon_target_has_pid(const struct damon_ctx * ctx)748 static inline bool damon_target_has_pid(const struct damon_ctx *ctx)
749 {
750 	return ctx->ops.id == DAMON_OPS_VADDR || ctx->ops.id == DAMON_OPS_FVADDR;
751 }
752 
damon_max_nr_accesses(const struct damon_attrs * attrs)753 static inline unsigned int damon_max_nr_accesses(const struct damon_attrs *attrs)
754 {
755 	/* {aggr,sample}_interval are unsigned long, hence could overflow */
756 	return min(attrs->aggr_interval / attrs->sample_interval,
757 			(unsigned long)UINT_MAX);
758 }
759 
760 
761 int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive);
762 int damon_stop(struct damon_ctx **ctxs, int nr_ctxs);
763 
764 int damon_set_region_biggest_system_ram_default(struct damon_target *t,
765 				unsigned long *start, unsigned long *end);
766 
767 #endif	/* CONFIG_DAMON */
768 
769 #endif	/* _DAMON_H */
770