xref: /linux/include/linux/damon.h (revision d642ef71)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * DAMON api
4  *
5  * Author: SeongJae Park <sjpark@amazon.de>
6  */
7 
8 #ifndef _DAMON_H_
9 #define _DAMON_H_
10 
11 #include <linux/memcontrol.h>
12 #include <linux/mutex.h>
13 #include <linux/time64.h>
14 #include <linux/types.h>
15 #include <linux/random.h>
16 
17 /* Minimal region size.  Every damon_region is aligned by this. */
18 #define DAMON_MIN_REGION	PAGE_SIZE
19 /* Max priority score for DAMON-based operation schemes */
20 #define DAMOS_MAX_SCORE		(99)
21 
22 /* Get a random number in [l, r) */
23 static inline unsigned long damon_rand(unsigned long l, unsigned long r)
24 {
25 	return l + get_random_u32_below(r - l);
26 }
27 
28 /**
29  * struct damon_addr_range - Represents an address region of [@start, @end).
30  * @start:	Start address of the region (inclusive).
31  * @end:	End address of the region (exclusive).
32  */
33 struct damon_addr_range {
34 	unsigned long start;
35 	unsigned long end;
36 };
37 
38 /**
39  * struct damon_region - Represents a monitoring target region.
40  * @ar:			The address range of the region.
41  * @sampling_addr:	Address of the sample for the next access check.
42  * @nr_accesses:	Access frequency of this region.
43  * @nr_accesses_bp:	@nr_accesses in basis point (0.01%) that updated for
44  *			each sampling interval.
45  * @list:		List head for siblings.
46  * @age:		Age of this region.
47  *
48  * @nr_accesses is reset to zero for every &damon_attrs->aggr_interval and be
49  * increased for every &damon_attrs->sample_interval if an access to the region
50  * during the last sampling interval is found.  The update of this field should
51  * not be done with direct access but with the helper function,
52  * damon_update_region_access_rate().
53  *
54  * @nr_accesses_bp is another representation of @nr_accesses in basis point
55  * (1 in 10,000) that updated for every &damon_attrs->sample_interval in a
56  * manner similar to moving sum.  By the algorithm, this value becomes
57  * @nr_accesses * 10000 for every &struct damon_attrs->aggr_interval.  This can
58  * be used when the aggregation interval is too huge and therefore cannot wait
59  * for it before getting the access monitoring results.
60  *
61  * @age is initially zero, increased for each aggregation interval, and reset
62  * to zero again if the access frequency is significantly changed.  If two
63  * regions are merged into a new region, both @nr_accesses and @age of the new
64  * region are set as region size-weighted average of those of the two regions.
65  */
66 struct damon_region {
67 	struct damon_addr_range ar;
68 	unsigned long sampling_addr;
69 	unsigned int nr_accesses;
70 	unsigned int nr_accesses_bp;
71 	struct list_head list;
72 
73 	unsigned int age;
74 /* private: Internal value for age calculation. */
75 	unsigned int last_nr_accesses;
76 };
77 
78 /**
79  * struct damon_target - Represents a monitoring target.
80  * @pid:		The PID of the virtual address space to monitor.
81  * @nr_regions:		Number of monitoring target regions of this target.
82  * @regions_list:	Head of the monitoring target regions of this target.
83  * @list:		List head for siblings.
84  *
85  * Each monitoring context could have multiple targets.  For example, a context
86  * for virtual memory address spaces could have multiple target processes.  The
87  * @pid should be set for appropriate &struct damon_operations including the
88  * virtual address spaces monitoring operations.
89  */
90 struct damon_target {
91 	struct pid *pid;
92 	unsigned int nr_regions;
93 	struct list_head regions_list;
94 	struct list_head list;
95 };
96 
97 /**
98  * enum damos_action - Represents an action of a Data Access Monitoring-based
99  * Operation Scheme.
100  *
101  * @DAMOS_WILLNEED:	Call ``madvise()`` for the region with MADV_WILLNEED.
102  * @DAMOS_COLD:		Call ``madvise()`` for the region with MADV_COLD.
103  * @DAMOS_PAGEOUT:	Call ``madvise()`` for the region with MADV_PAGEOUT.
104  * @DAMOS_HUGEPAGE:	Call ``madvise()`` for the region with MADV_HUGEPAGE.
105  * @DAMOS_NOHUGEPAGE:	Call ``madvise()`` for the region with MADV_NOHUGEPAGE.
106  * @DAMOS_LRU_PRIO:	Prioritize the region on its LRU lists.
107  * @DAMOS_LRU_DEPRIO:	Deprioritize the region on its LRU lists.
108  * @DAMOS_STAT:		Do nothing but count the stat.
109  * @NR_DAMOS_ACTIONS:	Total number of DAMOS actions
110  *
111  * The support of each action is up to running &struct damon_operations.
112  * &enum DAMON_OPS_VADDR and &enum DAMON_OPS_FVADDR supports all actions except
113  * &enum DAMOS_LRU_PRIO and &enum DAMOS_LRU_DEPRIO.  &enum DAMON_OPS_PADDR
114  * supports only &enum DAMOS_PAGEOUT, &enum DAMOS_LRU_PRIO, &enum
115  * DAMOS_LRU_DEPRIO, and &DAMOS_STAT.
116  */
117 enum damos_action {
118 	DAMOS_WILLNEED,
119 	DAMOS_COLD,
120 	DAMOS_PAGEOUT,
121 	DAMOS_HUGEPAGE,
122 	DAMOS_NOHUGEPAGE,
123 	DAMOS_LRU_PRIO,
124 	DAMOS_LRU_DEPRIO,
125 	DAMOS_STAT,		/* Do nothing but only record the stat */
126 	NR_DAMOS_ACTIONS,
127 };
128 
129 /**
130  * struct damos_quota - Controls the aggressiveness of the given scheme.
131  * @ms:			Maximum milliseconds that the scheme can use.
132  * @sz:			Maximum bytes of memory that the action can be applied.
133  * @reset_interval:	Charge reset interval in milliseconds.
134  *
135  * @weight_sz:		Weight of the region's size for prioritization.
136  * @weight_nr_accesses:	Weight of the region's nr_accesses for prioritization.
137  * @weight_age:		Weight of the region's age for prioritization.
138  *
139  * To avoid consuming too much CPU time or IO resources for applying the
140  * &struct damos->action to large memory, DAMON allows users to set time and/or
141  * size quotas.  The quotas can be set by writing non-zero values to &ms and
142  * &sz, respectively.  If the time quota is set, DAMON tries to use only up to
143  * &ms milliseconds within &reset_interval for applying the action.  If the
144  * size quota is set, DAMON tries to apply the action only up to &sz bytes
145  * within &reset_interval.
146  *
147  * Internally, the time quota is transformed to a size quota using estimated
148  * throughput of the scheme's action.  DAMON then compares it against &sz and
149  * uses smaller one as the effective quota.
150  *
151  * For selecting regions within the quota, DAMON prioritizes current scheme's
152  * target memory regions using the &struct damon_operations->get_scheme_score.
153  * You could customize the prioritization logic by setting &weight_sz,
154  * &weight_nr_accesses, and &weight_age, because monitoring operations are
155  * encouraged to respect those.
156  */
157 struct damos_quota {
158 	unsigned long ms;
159 	unsigned long sz;
160 	unsigned long reset_interval;
161 
162 	unsigned int weight_sz;
163 	unsigned int weight_nr_accesses;
164 	unsigned int weight_age;
165 
166 /* private: */
167 	/* For throughput estimation */
168 	unsigned long total_charged_sz;
169 	unsigned long total_charged_ns;
170 
171 	unsigned long esz;	/* Effective size quota in bytes */
172 
173 	/* For charging the quota */
174 	unsigned long charged_sz;
175 	unsigned long charged_from;
176 	struct damon_target *charge_target_from;
177 	unsigned long charge_addr_from;
178 
179 	/* For prioritization */
180 	unsigned long histogram[DAMOS_MAX_SCORE + 1];
181 	unsigned int min_score;
182 };
183 
184 /**
185  * enum damos_wmark_metric - Represents the watermark metric.
186  *
187  * @DAMOS_WMARK_NONE:		Ignore the watermarks of the given scheme.
188  * @DAMOS_WMARK_FREE_MEM_RATE:	Free memory rate of the system in [0,1000].
189  * @NR_DAMOS_WMARK_METRICS:	Total number of DAMOS watermark metrics
190  */
191 enum damos_wmark_metric {
192 	DAMOS_WMARK_NONE,
193 	DAMOS_WMARK_FREE_MEM_RATE,
194 	NR_DAMOS_WMARK_METRICS,
195 };
196 
197 /**
198  * struct damos_watermarks - Controls when a given scheme should be activated.
199  * @metric:	Metric for the watermarks.
200  * @interval:	Watermarks check time interval in microseconds.
201  * @high:	High watermark.
202  * @mid:	Middle watermark.
203  * @low:	Low watermark.
204  *
205  * If &metric is &DAMOS_WMARK_NONE, the scheme is always active.  Being active
206  * means DAMON does monitoring and applying the action of the scheme to
207  * appropriate memory regions.  Else, DAMON checks &metric of the system for at
208  * least every &interval microseconds and works as below.
209  *
210  * If &metric is higher than &high, the scheme is inactivated.  If &metric is
211  * between &mid and &low, the scheme is activated.  If &metric is lower than
212  * &low, the scheme is inactivated.
213  */
214 struct damos_watermarks {
215 	enum damos_wmark_metric metric;
216 	unsigned long interval;
217 	unsigned long high;
218 	unsigned long mid;
219 	unsigned long low;
220 
221 /* private: */
222 	bool activated;
223 };
224 
225 /**
226  * struct damos_stat - Statistics on a given scheme.
227  * @nr_tried:	Total number of regions that the scheme is tried to be applied.
228  * @sz_tried:	Total size of regions that the scheme is tried to be applied.
229  * @nr_applied:	Total number of regions that the scheme is applied.
230  * @sz_applied:	Total size of regions that the scheme is applied.
231  * @qt_exceeds: Total number of times the quota of the scheme has exceeded.
232  */
233 struct damos_stat {
234 	unsigned long nr_tried;
235 	unsigned long sz_tried;
236 	unsigned long nr_applied;
237 	unsigned long sz_applied;
238 	unsigned long qt_exceeds;
239 };
240 
241 /**
242  * enum damos_filter_type - Type of memory for &struct damos_filter
243  * @DAMOS_FILTER_TYPE_ANON:	Anonymous pages.
244  * @DAMOS_FILTER_TYPE_MEMCG:	Specific memcg's pages.
245  * @DAMOS_FILTER_TYPE_ADDR:	Address range.
246  * @DAMOS_FILTER_TYPE_TARGET:	Data Access Monitoring target.
247  * @NR_DAMOS_FILTER_TYPES:	Number of filter types.
248  *
249  * The anon pages type and memcg type filters are handled by underlying
250  * &struct damon_operations as a part of scheme action trying, and therefore
251  * accounted as 'tried'.  In contrast, other types are handled by core layer
252  * before trying of the action and therefore not accounted as 'tried'.
253  *
254  * The support of the filters that handled by &struct damon_operations depend
255  * on the running &struct damon_operations.
256  * &enum DAMON_OPS_PADDR supports both anon pages type and memcg type filters,
257  * while &enum DAMON_OPS_VADDR and &enum DAMON_OPS_FVADDR don't support any of
258  * the two types.
259  */
260 enum damos_filter_type {
261 	DAMOS_FILTER_TYPE_ANON,
262 	DAMOS_FILTER_TYPE_MEMCG,
263 	DAMOS_FILTER_TYPE_ADDR,
264 	DAMOS_FILTER_TYPE_TARGET,
265 	NR_DAMOS_FILTER_TYPES,
266 };
267 
268 /**
269  * struct damos_filter - DAMOS action target memory filter.
270  * @type:	Type of the page.
271  * @matching:	If the matching page should filtered out or in.
272  * @memcg_id:	Memcg id of the question if @type is DAMOS_FILTER_MEMCG.
273  * @addr_range:	Address range if @type is DAMOS_FILTER_TYPE_ADDR.
274  * @target_idx:	Index of the &struct damon_target of
275  *		&damon_ctx->adaptive_targets if @type is
276  *		DAMOS_FILTER_TYPE_TARGET.
277  * @list:	List head for siblings.
278  *
279  * Before applying the &damos->action to a memory region, DAMOS checks if each
280  * page of the region matches to this and avoid applying the action if so.
281  * Support of each filter type depends on the running &struct damon_operations
282  * and the type.  Refer to &enum damos_filter_type for more detai.
283  */
284 struct damos_filter {
285 	enum damos_filter_type type;
286 	bool matching;
287 	union {
288 		unsigned short memcg_id;
289 		struct damon_addr_range addr_range;
290 		int target_idx;
291 	};
292 	struct list_head list;
293 };
294 
295 /**
296  * struct damos_access_pattern - Target access pattern of the given scheme.
297  * @min_sz_region:	Minimum size of target regions.
298  * @max_sz_region:	Maximum size of target regions.
299  * @min_nr_accesses:	Minimum ``->nr_accesses`` of target regions.
300  * @max_nr_accesses:	Maximum ``->nr_accesses`` of target regions.
301  * @min_age_region:	Minimum age of target regions.
302  * @max_age_region:	Maximum age of target regions.
303  */
304 struct damos_access_pattern {
305 	unsigned long min_sz_region;
306 	unsigned long max_sz_region;
307 	unsigned int min_nr_accesses;
308 	unsigned int max_nr_accesses;
309 	unsigned int min_age_region;
310 	unsigned int max_age_region;
311 };
312 
313 /**
314  * struct damos - Represents a Data Access Monitoring-based Operation Scheme.
315  * @pattern:		Access pattern of target regions.
316  * @action:		&damo_action to be applied to the target regions.
317  * @apply_interval_us:	The time between applying the @action.
318  * @quota:		Control the aggressiveness of this scheme.
319  * @wmarks:		Watermarks for automated (in)activation of this scheme.
320  * @filters:		Additional set of &struct damos_filter for &action.
321  * @stat:		Statistics of this scheme.
322  * @list:		List head for siblings.
323  *
324  * For each @apply_interval_us, DAMON finds regions which fit in the
325  * &pattern and applies &action to those. To avoid consuming too much
326  * CPU time or IO resources for the &action, &quota is used.
327  *
328  * If @apply_interval_us is zero, &damon_attrs->aggr_interval is used instead.
329  *
330  * To do the work only when needed, schemes can be activated for specific
331  * system situations using &wmarks.  If all schemes that registered to the
332  * monitoring context are inactive, DAMON stops monitoring either, and just
333  * repeatedly checks the watermarks.
334  *
335  * Before applying the &action to a memory region, &struct damon_operations
336  * implementation could check pages of the region and skip &action to respect
337  * &filters
338  *
339  * After applying the &action to each region, &stat_count and &stat_sz is
340  * updated to reflect the number of regions and total size of regions that the
341  * &action is applied.
342  */
343 struct damos {
344 	struct damos_access_pattern pattern;
345 	enum damos_action action;
346 	unsigned long apply_interval_us;
347 /* private: internal use only */
348 	/*
349 	 * number of sample intervals that should be passed before applying
350 	 * @action
351 	 */
352 	unsigned long next_apply_sis;
353 /* public: */
354 	struct damos_quota quota;
355 	struct damos_watermarks wmarks;
356 	struct list_head filters;
357 	struct damos_stat stat;
358 	struct list_head list;
359 };
360 
361 /**
362  * enum damon_ops_id - Identifier for each monitoring operations implementation
363  *
364  * @DAMON_OPS_VADDR:	Monitoring operations for virtual address spaces
365  * @DAMON_OPS_FVADDR:	Monitoring operations for only fixed ranges of virtual
366  *			address spaces
367  * @DAMON_OPS_PADDR:	Monitoring operations for the physical address space
368  * @NR_DAMON_OPS:	Number of monitoring operations implementations
369  */
370 enum damon_ops_id {
371 	DAMON_OPS_VADDR,
372 	DAMON_OPS_FVADDR,
373 	DAMON_OPS_PADDR,
374 	NR_DAMON_OPS,
375 };
376 
377 struct damon_ctx;
378 
379 /**
380  * struct damon_operations - Monitoring operations for given use cases.
381  *
382  * @id:				Identifier of this operations set.
383  * @init:			Initialize operations-related data structures.
384  * @update:			Update operations-related data structures.
385  * @prepare_access_checks:	Prepare next access check of target regions.
386  * @check_accesses:		Check the accesses to target regions.
387  * @reset_aggregated:		Reset aggregated accesses monitoring results.
388  * @get_scheme_score:		Get the score of a region for a scheme.
389  * @apply_scheme:		Apply a DAMON-based operation scheme.
390  * @target_valid:		Determine if the target is valid.
391  * @cleanup:			Clean up the context.
392  *
393  * DAMON can be extended for various address spaces and usages.  For this,
394  * users should register the low level operations for their target address
395  * space and usecase via the &damon_ctx.ops.  Then, the monitoring thread
396  * (&damon_ctx.kdamond) calls @init and @prepare_access_checks before starting
397  * the monitoring, @update after each &damon_attrs.ops_update_interval, and
398  * @check_accesses, @target_valid and @prepare_access_checks after each
399  * &damon_attrs.sample_interval.  Finally, @reset_aggregated is called after
400  * each &damon_attrs.aggr_interval.
401  *
402  * Each &struct damon_operations instance having valid @id can be registered
403  * via damon_register_ops() and selected by damon_select_ops() later.
404  * @init should initialize operations-related data structures.  For example,
405  * this could be used to construct proper monitoring target regions and link
406  * those to @damon_ctx.adaptive_targets.
407  * @update should update the operations-related data structures.  For example,
408  * this could be used to update monitoring target regions for current status.
409  * @prepare_access_checks should manipulate the monitoring regions to be
410  * prepared for the next access check.
411  * @check_accesses should check the accesses to each region that made after the
412  * last preparation and update the number of observed accesses of each region.
413  * It should also return max number of observed accesses that made as a result
414  * of its update.  The value will be used for regions adjustment threshold.
415  * @reset_aggregated should reset the access monitoring results that aggregated
416  * by @check_accesses.
417  * @get_scheme_score should return the priority score of a region for a scheme
418  * as an integer in [0, &DAMOS_MAX_SCORE].
419  * @apply_scheme is called from @kdamond when a region for user provided
420  * DAMON-based operation scheme is found.  It should apply the scheme's action
421  * to the region and return bytes of the region that the action is successfully
422  * applied.
423  * @target_valid should check whether the target is still valid for the
424  * monitoring.
425  * @cleanup is called from @kdamond just before its termination.
426  */
427 struct damon_operations {
428 	enum damon_ops_id id;
429 	void (*init)(struct damon_ctx *context);
430 	void (*update)(struct damon_ctx *context);
431 	void (*prepare_access_checks)(struct damon_ctx *context);
432 	unsigned int (*check_accesses)(struct damon_ctx *context);
433 	void (*reset_aggregated)(struct damon_ctx *context);
434 	int (*get_scheme_score)(struct damon_ctx *context,
435 			struct damon_target *t, struct damon_region *r,
436 			struct damos *scheme);
437 	unsigned long (*apply_scheme)(struct damon_ctx *context,
438 			struct damon_target *t, struct damon_region *r,
439 			struct damos *scheme);
440 	bool (*target_valid)(struct damon_target *t);
441 	void (*cleanup)(struct damon_ctx *context);
442 };
443 
444 /**
445  * struct damon_callback - Monitoring events notification callbacks.
446  *
447  * @before_start:	Called before starting the monitoring.
448  * @after_wmarks_check:	Called after each schemes' watermarks check.
449  * @after_sampling:	Called after each sampling.
450  * @after_aggregation:	Called after each aggregation.
451  * @before_damos_apply:	Called before applying DAMOS action.
452  * @before_terminate:	Called before terminating the monitoring.
453  * @private:		User private data.
454  *
455  * The monitoring thread (&damon_ctx.kdamond) calls @before_start and
456  * @before_terminate just before starting and finishing the monitoring,
457  * respectively.  Therefore, those are good places for installing and cleaning
458  * @private.
459  *
460  * The monitoring thread calls @after_wmarks_check after each DAMON-based
461  * operation schemes' watermarks check.  If users need to make changes to the
462  * attributes of the monitoring context while it's deactivated due to the
463  * watermarks, this is the good place to do.
464  *
465  * The monitoring thread calls @after_sampling and @after_aggregation for each
466  * of the sampling intervals and aggregation intervals, respectively.
467  * Therefore, users can safely access the monitoring results without additional
468  * protection.  For the reason, users are recommended to use these callback for
469  * the accesses to the results.
470  *
471  * If any callback returns non-zero, monitoring stops.
472  */
473 struct damon_callback {
474 	void *private;
475 
476 	int (*before_start)(struct damon_ctx *context);
477 	int (*after_wmarks_check)(struct damon_ctx *context);
478 	int (*after_sampling)(struct damon_ctx *context);
479 	int (*after_aggregation)(struct damon_ctx *context);
480 	int (*before_damos_apply)(struct damon_ctx *context,
481 			struct damon_target *target,
482 			struct damon_region *region,
483 			struct damos *scheme);
484 	void (*before_terminate)(struct damon_ctx *context);
485 };
486 
487 /**
488  * struct damon_attrs - Monitoring attributes for accuracy/overhead control.
489  *
490  * @sample_interval:		The time between access samplings.
491  * @aggr_interval:		The time between monitor results aggregations.
492  * @ops_update_interval:	The time between monitoring operations updates.
493  * @min_nr_regions:		The minimum number of adaptive monitoring
494  *				regions.
495  * @max_nr_regions:		The maximum number of adaptive monitoring
496  *				regions.
497  *
498  * For each @sample_interval, DAMON checks whether each region is accessed or
499  * not during the last @sample_interval.  If such access is found, DAMON
500  * aggregates the information by increasing &damon_region->nr_accesses for
501  * @aggr_interval time.  For each @aggr_interval, the count is reset.  DAMON
502  * also checks whether the target memory regions need update (e.g., by
503  * ``mmap()`` calls from the application, in case of virtual memory monitoring)
504  * and applies the changes for each @ops_update_interval.  All time intervals
505  * are in micro-seconds.  Please refer to &struct damon_operations and &struct
506  * damon_callback for more detail.
507  */
508 struct damon_attrs {
509 	unsigned long sample_interval;
510 	unsigned long aggr_interval;
511 	unsigned long ops_update_interval;
512 	unsigned long min_nr_regions;
513 	unsigned long max_nr_regions;
514 };
515 
516 /**
517  * struct damon_ctx - Represents a context for each monitoring.  This is the
518  * main interface that allows users to set the attributes and get the results
519  * of the monitoring.
520  *
521  * @attrs:		Monitoring attributes for accuracy/overhead control.
522  * @kdamond:		Kernel thread who does the monitoring.
523  * @kdamond_lock:	Mutex for the synchronizations with @kdamond.
524  *
525  * For each monitoring context, one kernel thread for the monitoring is
526  * created.  The pointer to the thread is stored in @kdamond.
527  *
528  * Once started, the monitoring thread runs until explicitly required to be
529  * terminated or every monitoring target is invalid.  The validity of the
530  * targets is checked via the &damon_operations.target_valid of @ops.  The
531  * termination can also be explicitly requested by calling damon_stop().
532  * The thread sets @kdamond to NULL when it terminates. Therefore, users can
533  * know whether the monitoring is ongoing or terminated by reading @kdamond.
534  * Reads and writes to @kdamond from outside of the monitoring thread must
535  * be protected by @kdamond_lock.
536  *
537  * Note that the monitoring thread protects only @kdamond via @kdamond_lock.
538  * Accesses to other fields must be protected by themselves.
539  *
540  * @ops:	Set of monitoring operations for given use cases.
541  * @callback:	Set of callbacks for monitoring events notifications.
542  *
543  * @adaptive_targets:	Head of monitoring targets (&damon_target) list.
544  * @schemes:		Head of schemes (&damos) list.
545  */
546 struct damon_ctx {
547 	struct damon_attrs attrs;
548 
549 /* private: internal use only */
550 	/* number of sample intervals that passed since this context started */
551 	unsigned long passed_sample_intervals;
552 	/*
553 	 * number of sample intervals that should be passed before next
554 	 * aggregation
555 	 */
556 	unsigned long next_aggregation_sis;
557 	/*
558 	 * number of sample intervals that should be passed before next ops
559 	 * update
560 	 */
561 	unsigned long next_ops_update_sis;
562 
563 /* public: */
564 	struct task_struct *kdamond;
565 	struct mutex kdamond_lock;
566 
567 	struct damon_operations ops;
568 	struct damon_callback callback;
569 
570 	struct list_head adaptive_targets;
571 	struct list_head schemes;
572 };
573 
574 static inline struct damon_region *damon_next_region(struct damon_region *r)
575 {
576 	return container_of(r->list.next, struct damon_region, list);
577 }
578 
579 static inline struct damon_region *damon_prev_region(struct damon_region *r)
580 {
581 	return container_of(r->list.prev, struct damon_region, list);
582 }
583 
584 static inline struct damon_region *damon_last_region(struct damon_target *t)
585 {
586 	return list_last_entry(&t->regions_list, struct damon_region, list);
587 }
588 
589 static inline struct damon_region *damon_first_region(struct damon_target *t)
590 {
591 	return list_first_entry(&t->regions_list, struct damon_region, list);
592 }
593 
594 static inline unsigned long damon_sz_region(struct damon_region *r)
595 {
596 	return r->ar.end - r->ar.start;
597 }
598 
599 
600 #define damon_for_each_region(r, t) \
601 	list_for_each_entry(r, &t->regions_list, list)
602 
603 #define damon_for_each_region_from(r, t) \
604 	list_for_each_entry_from(r, &t->regions_list, list)
605 
606 #define damon_for_each_region_safe(r, next, t) \
607 	list_for_each_entry_safe(r, next, &t->regions_list, list)
608 
609 #define damon_for_each_target(t, ctx) \
610 	list_for_each_entry(t, &(ctx)->adaptive_targets, list)
611 
612 #define damon_for_each_target_safe(t, next, ctx)	\
613 	list_for_each_entry_safe(t, next, &(ctx)->adaptive_targets, list)
614 
615 #define damon_for_each_scheme(s, ctx) \
616 	list_for_each_entry(s, &(ctx)->schemes, list)
617 
618 #define damon_for_each_scheme_safe(s, next, ctx) \
619 	list_for_each_entry_safe(s, next, &(ctx)->schemes, list)
620 
621 #define damos_for_each_filter(f, scheme) \
622 	list_for_each_entry(f, &(scheme)->filters, list)
623 
624 #define damos_for_each_filter_safe(f, next, scheme) \
625 	list_for_each_entry_safe(f, next, &(scheme)->filters, list)
626 
627 #ifdef CONFIG_DAMON
628 
629 struct damon_region *damon_new_region(unsigned long start, unsigned long end);
630 
631 /*
632  * Add a region between two other regions
633  */
634 static inline void damon_insert_region(struct damon_region *r,
635 		struct damon_region *prev, struct damon_region *next,
636 		struct damon_target *t)
637 {
638 	__list_add(&r->list, &prev->list, &next->list);
639 	t->nr_regions++;
640 }
641 
642 void damon_add_region(struct damon_region *r, struct damon_target *t);
643 void damon_destroy_region(struct damon_region *r, struct damon_target *t);
644 int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges,
645 		unsigned int nr_ranges);
646 void damon_update_region_access_rate(struct damon_region *r, bool accessed,
647 		struct damon_attrs *attrs);
648 
649 struct damos_filter *damos_new_filter(enum damos_filter_type type,
650 		bool matching);
651 void damos_add_filter(struct damos *s, struct damos_filter *f);
652 void damos_destroy_filter(struct damos_filter *f);
653 
654 struct damos *damon_new_scheme(struct damos_access_pattern *pattern,
655 			enum damos_action action,
656 			unsigned long apply_interval_us,
657 			struct damos_quota *quota,
658 			struct damos_watermarks *wmarks);
659 void damon_add_scheme(struct damon_ctx *ctx, struct damos *s);
660 void damon_destroy_scheme(struct damos *s);
661 
662 struct damon_target *damon_new_target(void);
663 void damon_add_target(struct damon_ctx *ctx, struct damon_target *t);
664 bool damon_targets_empty(struct damon_ctx *ctx);
665 void damon_free_target(struct damon_target *t);
666 void damon_destroy_target(struct damon_target *t);
667 unsigned int damon_nr_regions(struct damon_target *t);
668 
669 struct damon_ctx *damon_new_ctx(void);
670 void damon_destroy_ctx(struct damon_ctx *ctx);
671 int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs);
672 void damon_set_schemes(struct damon_ctx *ctx,
673 			struct damos **schemes, ssize_t nr_schemes);
674 int damon_nr_running_ctxs(void);
675 bool damon_is_registered_ops(enum damon_ops_id id);
676 int damon_register_ops(struct damon_operations *ops);
677 int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id);
678 
679 static inline bool damon_target_has_pid(const struct damon_ctx *ctx)
680 {
681 	return ctx->ops.id == DAMON_OPS_VADDR || ctx->ops.id == DAMON_OPS_FVADDR;
682 }
683 
684 static inline unsigned int damon_max_nr_accesses(const struct damon_attrs *attrs)
685 {
686 	/* {aggr,sample}_interval are unsigned long, hence could overflow */
687 	return min(attrs->aggr_interval / attrs->sample_interval,
688 			(unsigned long)UINT_MAX);
689 }
690 
691 
692 int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive);
693 int damon_stop(struct damon_ctx **ctxs, int nr_ctxs);
694 
695 int damon_set_region_biggest_system_ram_default(struct damon_target *t,
696 				unsigned long *start, unsigned long *end);
697 
698 #endif	/* CONFIG_DAMON */
699 
700 #endif	/* _DAMON_H */
701