xref: /linux/kernel/audit.c (revision aa13b709)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* audit.c -- Auditing support
3  * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
4  * System-call specific features have moved to auditsc.c
5  *
6  * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
7  * All Rights Reserved.
8  *
9  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
10  *
11  * Goals: 1) Integrate fully with Security Modules.
12  *	  2) Minimal run-time overhead:
13  *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
14  *	     b) Small when syscall auditing is enabled and no audit record
15  *		is generated (defer as much work as possible to record
16  *		generation time):
17  *		i) context is allocated,
18  *		ii) names from getname are stored without a copy, and
19  *		iii) inode information stored from path_lookup.
20  *	  3) Ability to disable syscall auditing at boot time (audit=0).
21  *	  4) Usable by other parts of the kernel (if audit_log* is called,
22  *	     then a syscall record will be generated automatically for the
23  *	     current syscall).
24  *	  5) Netlink interface to user-space.
25  *	  6) Support low-overhead kernel-based filtering to minimize the
26  *	     information that must be passed to user-space.
27  *
28  * Audit userspace, documentation, tests, and bug/issue trackers:
29  * 	https://github.com/linux-audit
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #include <linux/file.h>
35 #include <linux/init.h>
36 #include <linux/types.h>
37 #include <linux/atomic.h>
38 #include <linux/mm.h>
39 #include <linux/export.h>
40 #include <linux/slab.h>
41 #include <linux/err.h>
42 #include <linux/kthread.h>
43 #include <linux/kernel.h>
44 #include <linux/syscalls.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/mutex.h>
48 #include <linux/gfp.h>
49 #include <linux/pid.h>
50 
51 #include <linux/audit.h>
52 
53 #include <net/sock.h>
54 #include <net/netlink.h>
55 #include <linux/skbuff.h>
56 #include <linux/security.h>
57 #include <linux/freezer.h>
58 #include <linux/pid_namespace.h>
59 #include <net/netns/generic.h>
60 
61 #include "audit.h"
62 
63 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
64  * (Initialization happens after skb_init is called.) */
65 #define AUDIT_DISABLED		-1
66 #define AUDIT_UNINITIALIZED	0
67 #define AUDIT_INITIALIZED	1
68 static int	audit_initialized = AUDIT_UNINITIALIZED;
69 
70 u32		audit_enabled = AUDIT_OFF;
71 bool		audit_ever_enabled = !!AUDIT_OFF;
72 
73 EXPORT_SYMBOL_GPL(audit_enabled);
74 
75 /* Default state when kernel boots without any parameters. */
76 static u32	audit_default = AUDIT_OFF;
77 
78 /* If auditing cannot proceed, audit_failure selects what happens. */
79 static u32	audit_failure = AUDIT_FAIL_PRINTK;
80 
81 /* private audit network namespace index */
82 static unsigned int audit_net_id;
83 
84 /**
85  * struct audit_net - audit private network namespace data
86  * @sk: communication socket
87  */
88 struct audit_net {
89 	struct sock *sk;
90 };
91 
92 /**
93  * struct auditd_connection - kernel/auditd connection state
94  * @pid: auditd PID
95  * @portid: netlink portid
96  * @net: the associated network namespace
97  * @rcu: RCU head
98  *
99  * Description:
100  * This struct is RCU protected; you must either hold the RCU lock for reading
101  * or the associated spinlock for writing.
102  */
103 struct auditd_connection {
104 	struct pid *pid;
105 	u32 portid;
106 	struct net *net;
107 	struct rcu_head rcu;
108 };
109 static struct auditd_connection __rcu *auditd_conn;
110 static DEFINE_SPINLOCK(auditd_conn_lock);
111 
112 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
113  * to that number per second.  This prevents DoS attacks, but results in
114  * audit records being dropped. */
115 static u32	audit_rate_limit;
116 
117 /* Number of outstanding audit_buffers allowed.
118  * When set to zero, this means unlimited. */
119 static u32	audit_backlog_limit = 64;
120 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
121 static u32	audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
122 
123 /* The identity of the user shutting down the audit system. */
124 static kuid_t		audit_sig_uid = INVALID_UID;
125 static pid_t		audit_sig_pid = -1;
126 static u32		audit_sig_sid;
127 
128 /* Records can be lost in several ways:
129    0) [suppressed in audit_alloc]
130    1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
131    2) out of memory in audit_log_move [alloc_skb]
132    3) suppressed due to audit_rate_limit
133    4) suppressed due to audit_backlog_limit
134 */
135 static atomic_t	audit_lost = ATOMIC_INIT(0);
136 
137 /* Monotonically increasing sum of time the kernel has spent
138  * waiting while the backlog limit is exceeded.
139  */
140 static atomic_t audit_backlog_wait_time_actual = ATOMIC_INIT(0);
141 
142 /* Hash for inode-based rules */
143 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
144 
145 static struct kmem_cache *audit_buffer_cache;
146 
147 /* queue msgs to send via kauditd_task */
148 static struct sk_buff_head audit_queue;
149 /* queue msgs due to temporary unicast send problems */
150 static struct sk_buff_head audit_retry_queue;
151 /* queue msgs waiting for new auditd connection */
152 static struct sk_buff_head audit_hold_queue;
153 
154 /* queue servicing thread */
155 static struct task_struct *kauditd_task;
156 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
157 
158 /* waitqueue for callers who are blocked on the audit backlog */
159 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
160 
161 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
162 				   .mask = -1,
163 				   .features = 0,
164 				   .lock = 0,};
165 
166 static char *audit_feature_names[2] = {
167 	"only_unset_loginuid",
168 	"loginuid_immutable",
169 };
170 
171 /**
172  * struct audit_ctl_mutex - serialize requests from userspace
173  * @lock: the mutex used for locking
174  * @owner: the task which owns the lock
175  *
176  * Description:
177  * This is the lock struct used to ensure we only process userspace requests
178  * in an orderly fashion.  We can't simply use a mutex/lock here because we
179  * need to track lock ownership so we don't end up blocking the lock owner in
180  * audit_log_start() or similar.
181  */
182 static struct audit_ctl_mutex {
183 	struct mutex lock;
184 	void *owner;
185 } audit_cmd_mutex;
186 
187 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
188  * audit records.  Since printk uses a 1024 byte buffer, this buffer
189  * should be at least that large. */
190 #define AUDIT_BUFSIZ 1024
191 
192 /* The audit_buffer is used when formatting an audit record.  The caller
193  * locks briefly to get the record off the freelist or to allocate the
194  * buffer, and locks briefly to send the buffer to the netlink layer or
195  * to place it on a transmit queue.  Multiple audit_buffers can be in
196  * use simultaneously. */
197 struct audit_buffer {
198 	struct sk_buff       *skb;	/* formatted skb ready to send */
199 	struct audit_context *ctx;	/* NULL or associated context */
200 	gfp_t		     gfp_mask;
201 };
202 
203 struct audit_reply {
204 	__u32 portid;
205 	struct net *net;
206 	struct sk_buff *skb;
207 };
208 
209 /**
210  * auditd_test_task - Check to see if a given task is an audit daemon
211  * @task: the task to check
212  *
213  * Description:
214  * Return 1 if the task is a registered audit daemon, 0 otherwise.
215  */
auditd_test_task(struct task_struct * task)216 int auditd_test_task(struct task_struct *task)
217 {
218 	int rc;
219 	struct auditd_connection *ac;
220 
221 	rcu_read_lock();
222 	ac = rcu_dereference(auditd_conn);
223 	rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
224 	rcu_read_unlock();
225 
226 	return rc;
227 }
228 
229 /**
230  * audit_ctl_lock - Take the audit control lock
231  */
audit_ctl_lock(void)232 void audit_ctl_lock(void)
233 {
234 	mutex_lock(&audit_cmd_mutex.lock);
235 	audit_cmd_mutex.owner = current;
236 }
237 
238 /**
239  * audit_ctl_unlock - Drop the audit control lock
240  */
audit_ctl_unlock(void)241 void audit_ctl_unlock(void)
242 {
243 	audit_cmd_mutex.owner = NULL;
244 	mutex_unlock(&audit_cmd_mutex.lock);
245 }
246 
247 /**
248  * audit_ctl_owner_current - Test to see if the current task owns the lock
249  *
250  * Description:
251  * Return true if the current task owns the audit control lock, false if it
252  * doesn't own the lock.
253  */
audit_ctl_owner_current(void)254 static bool audit_ctl_owner_current(void)
255 {
256 	return (current == audit_cmd_mutex.owner);
257 }
258 
259 /**
260  * auditd_pid_vnr - Return the auditd PID relative to the namespace
261  *
262  * Description:
263  * Returns the PID in relation to the namespace, 0 on failure.
264  */
auditd_pid_vnr(void)265 static pid_t auditd_pid_vnr(void)
266 {
267 	pid_t pid;
268 	const struct auditd_connection *ac;
269 
270 	rcu_read_lock();
271 	ac = rcu_dereference(auditd_conn);
272 	if (!ac || !ac->pid)
273 		pid = 0;
274 	else
275 		pid = pid_vnr(ac->pid);
276 	rcu_read_unlock();
277 
278 	return pid;
279 }
280 
281 /**
282  * audit_get_sk - Return the audit socket for the given network namespace
283  * @net: the destination network namespace
284  *
285  * Description:
286  * Returns the sock pointer if valid, NULL otherwise.  The caller must ensure
287  * that a reference is held for the network namespace while the sock is in use.
288  */
audit_get_sk(const struct net * net)289 static struct sock *audit_get_sk(const struct net *net)
290 {
291 	struct audit_net *aunet;
292 
293 	if (!net)
294 		return NULL;
295 
296 	aunet = net_generic(net, audit_net_id);
297 	return aunet->sk;
298 }
299 
audit_panic(const char * message)300 void audit_panic(const char *message)
301 {
302 	switch (audit_failure) {
303 	case AUDIT_FAIL_SILENT:
304 		break;
305 	case AUDIT_FAIL_PRINTK:
306 		if (printk_ratelimit())
307 			pr_err("%s\n", message);
308 		break;
309 	case AUDIT_FAIL_PANIC:
310 		panic("audit: %s\n", message);
311 		break;
312 	}
313 }
314 
audit_rate_check(void)315 static inline int audit_rate_check(void)
316 {
317 	static unsigned long	last_check = 0;
318 	static int		messages   = 0;
319 	static DEFINE_SPINLOCK(lock);
320 	unsigned long		flags;
321 	unsigned long		now;
322 	int			retval	   = 0;
323 
324 	if (!audit_rate_limit)
325 		return 1;
326 
327 	spin_lock_irqsave(&lock, flags);
328 	if (++messages < audit_rate_limit) {
329 		retval = 1;
330 	} else {
331 		now = jiffies;
332 		if (time_after(now, last_check + HZ)) {
333 			last_check = now;
334 			messages   = 0;
335 			retval     = 1;
336 		}
337 	}
338 	spin_unlock_irqrestore(&lock, flags);
339 
340 	return retval;
341 }
342 
343 /**
344  * audit_log_lost - conditionally log lost audit message event
345  * @message: the message stating reason for lost audit message
346  *
347  * Emit at least 1 message per second, even if audit_rate_check is
348  * throttling.
349  * Always increment the lost messages counter.
350 */
audit_log_lost(const char * message)351 void audit_log_lost(const char *message)
352 {
353 	static unsigned long	last_msg = 0;
354 	static DEFINE_SPINLOCK(lock);
355 	unsigned long		flags;
356 	unsigned long		now;
357 	int			print;
358 
359 	atomic_inc(&audit_lost);
360 
361 	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
362 
363 	if (!print) {
364 		spin_lock_irqsave(&lock, flags);
365 		now = jiffies;
366 		if (time_after(now, last_msg + HZ)) {
367 			print = 1;
368 			last_msg = now;
369 		}
370 		spin_unlock_irqrestore(&lock, flags);
371 	}
372 
373 	if (print) {
374 		if (printk_ratelimit())
375 			pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
376 				atomic_read(&audit_lost),
377 				audit_rate_limit,
378 				audit_backlog_limit);
379 		audit_panic(message);
380 	}
381 }
382 
audit_log_config_change(char * function_name,u32 new,u32 old,int allow_changes)383 static int audit_log_config_change(char *function_name, u32 new, u32 old,
384 				   int allow_changes)
385 {
386 	struct audit_buffer *ab;
387 	int rc = 0;
388 
389 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE);
390 	if (unlikely(!ab))
391 		return rc;
392 	audit_log_format(ab, "op=set %s=%u old=%u ", function_name, new, old);
393 	audit_log_session_info(ab);
394 	rc = audit_log_task_context(ab);
395 	if (rc)
396 		allow_changes = 0; /* Something weird, deny request */
397 	audit_log_format(ab, " res=%d", allow_changes);
398 	audit_log_end(ab);
399 	return rc;
400 }
401 
audit_do_config_change(char * function_name,u32 * to_change,u32 new)402 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
403 {
404 	int allow_changes, rc = 0;
405 	u32 old = *to_change;
406 
407 	/* check if we are locked */
408 	if (audit_enabled == AUDIT_LOCKED)
409 		allow_changes = 0;
410 	else
411 		allow_changes = 1;
412 
413 	if (audit_enabled != AUDIT_OFF) {
414 		rc = audit_log_config_change(function_name, new, old, allow_changes);
415 		if (rc)
416 			allow_changes = 0;
417 	}
418 
419 	/* If we are allowed, make the change */
420 	if (allow_changes == 1)
421 		*to_change = new;
422 	/* Not allowed, update reason */
423 	else if (rc == 0)
424 		rc = -EPERM;
425 	return rc;
426 }
427 
audit_set_rate_limit(u32 limit)428 static int audit_set_rate_limit(u32 limit)
429 {
430 	return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
431 }
432 
audit_set_backlog_limit(u32 limit)433 static int audit_set_backlog_limit(u32 limit)
434 {
435 	return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
436 }
437 
audit_set_backlog_wait_time(u32 timeout)438 static int audit_set_backlog_wait_time(u32 timeout)
439 {
440 	return audit_do_config_change("audit_backlog_wait_time",
441 				      &audit_backlog_wait_time, timeout);
442 }
443 
audit_set_enabled(u32 state)444 static int audit_set_enabled(u32 state)
445 {
446 	int rc;
447 	if (state > AUDIT_LOCKED)
448 		return -EINVAL;
449 
450 	rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
451 	if (!rc)
452 		audit_ever_enabled |= !!state;
453 
454 	return rc;
455 }
456 
audit_set_failure(u32 state)457 static int audit_set_failure(u32 state)
458 {
459 	if (state != AUDIT_FAIL_SILENT
460 	    && state != AUDIT_FAIL_PRINTK
461 	    && state != AUDIT_FAIL_PANIC)
462 		return -EINVAL;
463 
464 	return audit_do_config_change("audit_failure", &audit_failure, state);
465 }
466 
467 /**
468  * auditd_conn_free - RCU helper to release an auditd connection struct
469  * @rcu: RCU head
470  *
471  * Description:
472  * Drop any references inside the auditd connection tracking struct and free
473  * the memory.
474  */
auditd_conn_free(struct rcu_head * rcu)475 static void auditd_conn_free(struct rcu_head *rcu)
476 {
477 	struct auditd_connection *ac;
478 
479 	ac = container_of(rcu, struct auditd_connection, rcu);
480 	put_pid(ac->pid);
481 	put_net(ac->net);
482 	kfree(ac);
483 }
484 
485 /**
486  * auditd_set - Set/Reset the auditd connection state
487  * @pid: auditd PID
488  * @portid: auditd netlink portid
489  * @net: auditd network namespace pointer
490  * @skb: the netlink command from the audit daemon
491  * @ack: netlink ack flag, cleared if ack'd here
492  *
493  * Description:
494  * This function will obtain and drop network namespace references as
495  * necessary.  Returns zero on success, negative values on failure.
496  */
auditd_set(struct pid * pid,u32 portid,struct net * net,struct sk_buff * skb,bool * ack)497 static int auditd_set(struct pid *pid, u32 portid, struct net *net,
498 		      struct sk_buff *skb, bool *ack)
499 {
500 	unsigned long flags;
501 	struct auditd_connection *ac_old, *ac_new;
502 	struct nlmsghdr *nlh;
503 
504 	if (!pid || !net)
505 		return -EINVAL;
506 
507 	ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
508 	if (!ac_new)
509 		return -ENOMEM;
510 	ac_new->pid = get_pid(pid);
511 	ac_new->portid = portid;
512 	ac_new->net = get_net(net);
513 
514 	/* send the ack now to avoid a race with the queue backlog */
515 	if (*ack) {
516 		nlh = nlmsg_hdr(skb);
517 		netlink_ack(skb, nlh, 0, NULL);
518 		*ack = false;
519 	}
520 
521 	spin_lock_irqsave(&auditd_conn_lock, flags);
522 	ac_old = rcu_dereference_protected(auditd_conn,
523 					   lockdep_is_held(&auditd_conn_lock));
524 	rcu_assign_pointer(auditd_conn, ac_new);
525 	spin_unlock_irqrestore(&auditd_conn_lock, flags);
526 
527 	if (ac_old)
528 		call_rcu(&ac_old->rcu, auditd_conn_free);
529 
530 	return 0;
531 }
532 
533 /**
534  * kauditd_printk_skb - Print the audit record to the ring buffer
535  * @skb: audit record
536  *
537  * Whatever the reason, this packet may not make it to the auditd connection
538  * so write it via printk so the information isn't completely lost.
539  */
kauditd_printk_skb(struct sk_buff * skb)540 static void kauditd_printk_skb(struct sk_buff *skb)
541 {
542 	struct nlmsghdr *nlh = nlmsg_hdr(skb);
543 	char *data = nlmsg_data(nlh);
544 
545 	if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
546 		pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
547 }
548 
549 /**
550  * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
551  * @skb: audit record
552  * @error: error code (unused)
553  *
554  * Description:
555  * This should only be used by the kauditd_thread when it fails to flush the
556  * hold queue.
557  */
kauditd_rehold_skb(struct sk_buff * skb,__always_unused int error)558 static void kauditd_rehold_skb(struct sk_buff *skb, __always_unused int error)
559 {
560 	/* put the record back in the queue */
561 	skb_queue_tail(&audit_hold_queue, skb);
562 }
563 
564 /**
565  * kauditd_hold_skb - Queue an audit record, waiting for auditd
566  * @skb: audit record
567  * @error: error code
568  *
569  * Description:
570  * Queue the audit record, waiting for an instance of auditd.  When this
571  * function is called we haven't given up yet on sending the record, but things
572  * are not looking good.  The first thing we want to do is try to write the
573  * record via printk and then see if we want to try and hold on to the record
574  * and queue it, if we have room.  If we want to hold on to the record, but we
575  * don't have room, record a record lost message.
576  */
kauditd_hold_skb(struct sk_buff * skb,int error)577 static void kauditd_hold_skb(struct sk_buff *skb, int error)
578 {
579 	/* at this point it is uncertain if we will ever send this to auditd so
580 	 * try to send the message via printk before we go any further */
581 	kauditd_printk_skb(skb);
582 
583 	/* can we just silently drop the message? */
584 	if (!audit_default)
585 		goto drop;
586 
587 	/* the hold queue is only for when the daemon goes away completely,
588 	 * not -EAGAIN failures; if we are in a -EAGAIN state requeue the
589 	 * record on the retry queue unless it's full, in which case drop it
590 	 */
591 	if (error == -EAGAIN) {
592 		if (!audit_backlog_limit ||
593 		    skb_queue_len(&audit_retry_queue) < audit_backlog_limit) {
594 			skb_queue_tail(&audit_retry_queue, skb);
595 			return;
596 		}
597 		audit_log_lost("kauditd retry queue overflow");
598 		goto drop;
599 	}
600 
601 	/* if we have room in the hold queue, queue the message */
602 	if (!audit_backlog_limit ||
603 	    skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
604 		skb_queue_tail(&audit_hold_queue, skb);
605 		return;
606 	}
607 
608 	/* we have no other options - drop the message */
609 	audit_log_lost("kauditd hold queue overflow");
610 drop:
611 	kfree_skb(skb);
612 }
613 
614 /**
615  * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
616  * @skb: audit record
617  * @error: error code (unused)
618  *
619  * Description:
620  * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
621  * but for some reason we are having problems sending it audit records so
622  * queue the given record and attempt to resend.
623  */
kauditd_retry_skb(struct sk_buff * skb,__always_unused int error)624 static void kauditd_retry_skb(struct sk_buff *skb, __always_unused int error)
625 {
626 	if (!audit_backlog_limit ||
627 	    skb_queue_len(&audit_retry_queue) < audit_backlog_limit) {
628 		skb_queue_tail(&audit_retry_queue, skb);
629 		return;
630 	}
631 
632 	/* we have to drop the record, send it via printk as a last effort */
633 	kauditd_printk_skb(skb);
634 	audit_log_lost("kauditd retry queue overflow");
635 	kfree_skb(skb);
636 }
637 
638 /**
639  * auditd_reset - Disconnect the auditd connection
640  * @ac: auditd connection state
641  *
642  * Description:
643  * Break the auditd/kauditd connection and move all the queued records into the
644  * hold queue in case auditd reconnects.  It is important to note that the @ac
645  * pointer should never be dereferenced inside this function as it may be NULL
646  * or invalid, you can only compare the memory address!  If @ac is NULL then
647  * the connection will always be reset.
648  */
auditd_reset(const struct auditd_connection * ac)649 static void auditd_reset(const struct auditd_connection *ac)
650 {
651 	unsigned long flags;
652 	struct sk_buff *skb;
653 	struct auditd_connection *ac_old;
654 
655 	/* if it isn't already broken, break the connection */
656 	spin_lock_irqsave(&auditd_conn_lock, flags);
657 	ac_old = rcu_dereference_protected(auditd_conn,
658 					   lockdep_is_held(&auditd_conn_lock));
659 	if (ac && ac != ac_old) {
660 		/* someone already registered a new auditd connection */
661 		spin_unlock_irqrestore(&auditd_conn_lock, flags);
662 		return;
663 	}
664 	rcu_assign_pointer(auditd_conn, NULL);
665 	spin_unlock_irqrestore(&auditd_conn_lock, flags);
666 
667 	if (ac_old)
668 		call_rcu(&ac_old->rcu, auditd_conn_free);
669 
670 	/* flush the retry queue to the hold queue, but don't touch the main
671 	 * queue since we need to process that normally for multicast */
672 	while ((skb = skb_dequeue(&audit_retry_queue)))
673 		kauditd_hold_skb(skb, -ECONNREFUSED);
674 }
675 
676 /**
677  * auditd_send_unicast_skb - Send a record via unicast to auditd
678  * @skb: audit record
679  *
680  * Description:
681  * Send a skb to the audit daemon, returns positive/zero values on success and
682  * negative values on failure; in all cases the skb will be consumed by this
683  * function.  If the send results in -ECONNREFUSED the connection with auditd
684  * will be reset.  This function may sleep so callers should not hold any locks
685  * where this would cause a problem.
686  */
auditd_send_unicast_skb(struct sk_buff * skb)687 static int auditd_send_unicast_skb(struct sk_buff *skb)
688 {
689 	int rc;
690 	u32 portid;
691 	struct net *net;
692 	struct sock *sk;
693 	struct auditd_connection *ac;
694 
695 	/* NOTE: we can't call netlink_unicast while in the RCU section so
696 	 *       take a reference to the network namespace and grab local
697 	 *       copies of the namespace, the sock, and the portid; the
698 	 *       namespace and sock aren't going to go away while we hold a
699 	 *       reference and if the portid does become invalid after the RCU
700 	 *       section netlink_unicast() should safely return an error */
701 
702 	rcu_read_lock();
703 	ac = rcu_dereference(auditd_conn);
704 	if (!ac) {
705 		rcu_read_unlock();
706 		kfree_skb(skb);
707 		rc = -ECONNREFUSED;
708 		goto err;
709 	}
710 	net = get_net(ac->net);
711 	sk = audit_get_sk(net);
712 	portid = ac->portid;
713 	rcu_read_unlock();
714 
715 	rc = netlink_unicast(sk, skb, portid, 0);
716 	put_net(net);
717 	if (rc < 0)
718 		goto err;
719 
720 	return rc;
721 
722 err:
723 	if (ac && rc == -ECONNREFUSED)
724 		auditd_reset(ac);
725 	return rc;
726 }
727 
728 /**
729  * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
730  * @sk: the sending sock
731  * @portid: the netlink destination
732  * @queue: the skb queue to process
733  * @retry_limit: limit on number of netlink unicast failures
734  * @skb_hook: per-skb hook for additional processing
735  * @err_hook: hook called if the skb fails the netlink unicast send
736  *
737  * Description:
738  * Run through the given queue and attempt to send the audit records to auditd,
739  * returns zero on success, negative values on failure.  It is up to the caller
740  * to ensure that the @sk is valid for the duration of this function.
741  *
742  */
kauditd_send_queue(struct sock * sk,u32 portid,struct sk_buff_head * queue,unsigned int retry_limit,void (* skb_hook)(struct sk_buff * skb),void (* err_hook)(struct sk_buff * skb,int error))743 static int kauditd_send_queue(struct sock *sk, u32 portid,
744 			      struct sk_buff_head *queue,
745 			      unsigned int retry_limit,
746 			      void (*skb_hook)(struct sk_buff *skb),
747 			      void (*err_hook)(struct sk_buff *skb, int error))
748 {
749 	int rc = 0;
750 	struct sk_buff *skb = NULL;
751 	struct sk_buff *skb_tail;
752 	unsigned int failed = 0;
753 
754 	/* NOTE: kauditd_thread takes care of all our locking, we just use
755 	 *       the netlink info passed to us (e.g. sk and portid) */
756 
757 	skb_tail = skb_peek_tail(queue);
758 	while ((skb != skb_tail) && (skb = skb_dequeue(queue))) {
759 		/* call the skb_hook for each skb we touch */
760 		if (skb_hook)
761 			(*skb_hook)(skb);
762 
763 		/* can we send to anyone via unicast? */
764 		if (!sk) {
765 			if (err_hook)
766 				(*err_hook)(skb, -ECONNREFUSED);
767 			continue;
768 		}
769 
770 retry:
771 		/* grab an extra skb reference in case of error */
772 		skb_get(skb);
773 		rc = netlink_unicast(sk, skb, portid, 0);
774 		if (rc < 0) {
775 			/* send failed - try a few times unless fatal error */
776 			if (++failed >= retry_limit ||
777 			    rc == -ECONNREFUSED || rc == -EPERM) {
778 				sk = NULL;
779 				if (err_hook)
780 					(*err_hook)(skb, rc);
781 				if (rc == -EAGAIN)
782 					rc = 0;
783 				/* continue to drain the queue */
784 				continue;
785 			} else
786 				goto retry;
787 		} else {
788 			/* skb sent - drop the extra reference and continue */
789 			consume_skb(skb);
790 			failed = 0;
791 		}
792 	}
793 
794 	return (rc >= 0 ? 0 : rc);
795 }
796 
797 /*
798  * kauditd_send_multicast_skb - Send a record to any multicast listeners
799  * @skb: audit record
800  *
801  * Description:
802  * Write a multicast message to anyone listening in the initial network
803  * namespace.  This function doesn't consume an skb as might be expected since
804  * it has to copy it anyways.
805  */
kauditd_send_multicast_skb(struct sk_buff * skb)806 static void kauditd_send_multicast_skb(struct sk_buff *skb)
807 {
808 	struct sk_buff *copy;
809 	struct sock *sock = audit_get_sk(&init_net);
810 	struct nlmsghdr *nlh;
811 
812 	/* NOTE: we are not taking an additional reference for init_net since
813 	 *       we don't have to worry about it going away */
814 
815 	if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
816 		return;
817 
818 	/*
819 	 * The seemingly wasteful skb_copy() rather than bumping the refcount
820 	 * using skb_get() is necessary because non-standard mods are made to
821 	 * the skb by the original kaudit unicast socket send routine.  The
822 	 * existing auditd daemon assumes this breakage.  Fixing this would
823 	 * require co-ordinating a change in the established protocol between
824 	 * the kaudit kernel subsystem and the auditd userspace code.  There is
825 	 * no reason for new multicast clients to continue with this
826 	 * non-compliance.
827 	 */
828 	copy = skb_copy(skb, GFP_KERNEL);
829 	if (!copy)
830 		return;
831 	nlh = nlmsg_hdr(copy);
832 	nlh->nlmsg_len = skb->len;
833 
834 	nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
835 }
836 
837 /**
838  * kauditd_thread - Worker thread to send audit records to userspace
839  * @dummy: unused
840  */
kauditd_thread(void * dummy)841 static int kauditd_thread(void *dummy)
842 {
843 	int rc;
844 	u32 portid = 0;
845 	struct net *net = NULL;
846 	struct sock *sk = NULL;
847 	struct auditd_connection *ac;
848 
849 #define UNICAST_RETRIES 5
850 
851 	set_freezable();
852 	while (!kthread_should_stop()) {
853 		/* NOTE: see the lock comments in auditd_send_unicast_skb() */
854 		rcu_read_lock();
855 		ac = rcu_dereference(auditd_conn);
856 		if (!ac) {
857 			rcu_read_unlock();
858 			goto main_queue;
859 		}
860 		net = get_net(ac->net);
861 		sk = audit_get_sk(net);
862 		portid = ac->portid;
863 		rcu_read_unlock();
864 
865 		/* attempt to flush the hold queue */
866 		rc = kauditd_send_queue(sk, portid,
867 					&audit_hold_queue, UNICAST_RETRIES,
868 					NULL, kauditd_rehold_skb);
869 		if (rc < 0) {
870 			sk = NULL;
871 			auditd_reset(ac);
872 			goto main_queue;
873 		}
874 
875 		/* attempt to flush the retry queue */
876 		rc = kauditd_send_queue(sk, portid,
877 					&audit_retry_queue, UNICAST_RETRIES,
878 					NULL, kauditd_hold_skb);
879 		if (rc < 0) {
880 			sk = NULL;
881 			auditd_reset(ac);
882 			goto main_queue;
883 		}
884 
885 main_queue:
886 		/* process the main queue - do the multicast send and attempt
887 		 * unicast, dump failed record sends to the retry queue; if
888 		 * sk == NULL due to previous failures we will just do the
889 		 * multicast send and move the record to the hold queue */
890 		rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
891 					kauditd_send_multicast_skb,
892 					(sk ?
893 					 kauditd_retry_skb : kauditd_hold_skb));
894 		if (ac && rc < 0)
895 			auditd_reset(ac);
896 		sk = NULL;
897 
898 		/* drop our netns reference, no auditd sends past this line */
899 		if (net) {
900 			put_net(net);
901 			net = NULL;
902 		}
903 
904 		/* we have processed all the queues so wake everyone */
905 		wake_up(&audit_backlog_wait);
906 
907 		/* NOTE: we want to wake up if there is anything on the queue,
908 		 *       regardless of if an auditd is connected, as we need to
909 		 *       do the multicast send and rotate records from the
910 		 *       main queue to the retry/hold queues */
911 		wait_event_freezable(kauditd_wait,
912 				     (skb_queue_len(&audit_queue) ? 1 : 0));
913 	}
914 
915 	return 0;
916 }
917 
audit_send_list_thread(void * _dest)918 int audit_send_list_thread(void *_dest)
919 {
920 	struct audit_netlink_list *dest = _dest;
921 	struct sk_buff *skb;
922 	struct sock *sk = audit_get_sk(dest->net);
923 
924 	/* wait for parent to finish and send an ACK */
925 	audit_ctl_lock();
926 	audit_ctl_unlock();
927 
928 	while ((skb = __skb_dequeue(&dest->q)) != NULL)
929 		netlink_unicast(sk, skb, dest->portid, 0);
930 
931 	put_net(dest->net);
932 	kfree(dest);
933 
934 	return 0;
935 }
936 
audit_make_reply(int seq,int type,int done,int multi,const void * payload,int size)937 struct sk_buff *audit_make_reply(int seq, int type, int done,
938 				 int multi, const void *payload, int size)
939 {
940 	struct sk_buff	*skb;
941 	struct nlmsghdr	*nlh;
942 	void		*data;
943 	int		flags = multi ? NLM_F_MULTI : 0;
944 	int		t     = done  ? NLMSG_DONE  : type;
945 
946 	skb = nlmsg_new(size, GFP_KERNEL);
947 	if (!skb)
948 		return NULL;
949 
950 	nlh	= nlmsg_put(skb, 0, seq, t, size, flags);
951 	if (!nlh)
952 		goto out_kfree_skb;
953 	data = nlmsg_data(nlh);
954 	memcpy(data, payload, size);
955 	return skb;
956 
957 out_kfree_skb:
958 	kfree_skb(skb);
959 	return NULL;
960 }
961 
audit_free_reply(struct audit_reply * reply)962 static void audit_free_reply(struct audit_reply *reply)
963 {
964 	if (!reply)
965 		return;
966 
967 	kfree_skb(reply->skb);
968 	if (reply->net)
969 		put_net(reply->net);
970 	kfree(reply);
971 }
972 
audit_send_reply_thread(void * arg)973 static int audit_send_reply_thread(void *arg)
974 {
975 	struct audit_reply *reply = (struct audit_reply *)arg;
976 
977 	audit_ctl_lock();
978 	audit_ctl_unlock();
979 
980 	/* Ignore failure. It'll only happen if the sender goes away,
981 	   because our timeout is set to infinite. */
982 	netlink_unicast(audit_get_sk(reply->net), reply->skb, reply->portid, 0);
983 	reply->skb = NULL;
984 	audit_free_reply(reply);
985 	return 0;
986 }
987 
988 /**
989  * audit_send_reply - send an audit reply message via netlink
990  * @request_skb: skb of request we are replying to (used to target the reply)
991  * @seq: sequence number
992  * @type: audit message type
993  * @done: done (last) flag
994  * @multi: multi-part message flag
995  * @payload: payload data
996  * @size: payload size
997  *
998  * Allocates a skb, builds the netlink message, and sends it to the port id.
999  */
audit_send_reply(struct sk_buff * request_skb,int seq,int type,int done,int multi,const void * payload,int size)1000 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
1001 			     int multi, const void *payload, int size)
1002 {
1003 	struct task_struct *tsk;
1004 	struct audit_reply *reply;
1005 
1006 	reply = kzalloc(sizeof(*reply), GFP_KERNEL);
1007 	if (!reply)
1008 		return;
1009 
1010 	reply->skb = audit_make_reply(seq, type, done, multi, payload, size);
1011 	if (!reply->skb)
1012 		goto err;
1013 	reply->net = get_net(sock_net(NETLINK_CB(request_skb).sk));
1014 	reply->portid = NETLINK_CB(request_skb).portid;
1015 
1016 	tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
1017 	if (IS_ERR(tsk))
1018 		goto err;
1019 
1020 	return;
1021 
1022 err:
1023 	audit_free_reply(reply);
1024 }
1025 
1026 /*
1027  * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
1028  * control messages.
1029  */
audit_netlink_ok(struct sk_buff * skb,u16 msg_type)1030 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
1031 {
1032 	int err = 0;
1033 
1034 	/* Only support initial user namespace for now. */
1035 	/*
1036 	 * We return ECONNREFUSED because it tricks userspace into thinking
1037 	 * that audit was not configured into the kernel.  Lots of users
1038 	 * configure their PAM stack (because that's what the distro does)
1039 	 * to reject login if unable to send messages to audit.  If we return
1040 	 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
1041 	 * configured in and will let login proceed.  If we return EPERM
1042 	 * userspace will reject all logins.  This should be removed when we
1043 	 * support non init namespaces!!
1044 	 */
1045 	if (current_user_ns() != &init_user_ns)
1046 		return -ECONNREFUSED;
1047 
1048 	switch (msg_type) {
1049 	case AUDIT_LIST:
1050 	case AUDIT_ADD:
1051 	case AUDIT_DEL:
1052 		return -EOPNOTSUPP;
1053 	case AUDIT_GET:
1054 	case AUDIT_SET:
1055 	case AUDIT_GET_FEATURE:
1056 	case AUDIT_SET_FEATURE:
1057 	case AUDIT_LIST_RULES:
1058 	case AUDIT_ADD_RULE:
1059 	case AUDIT_DEL_RULE:
1060 	case AUDIT_SIGNAL_INFO:
1061 	case AUDIT_TTY_GET:
1062 	case AUDIT_TTY_SET:
1063 	case AUDIT_TRIM:
1064 	case AUDIT_MAKE_EQUIV:
1065 		/* Only support auditd and auditctl in initial pid namespace
1066 		 * for now. */
1067 		if (task_active_pid_ns(current) != &init_pid_ns)
1068 			return -EPERM;
1069 
1070 		if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1071 			err = -EPERM;
1072 		break;
1073 	case AUDIT_USER:
1074 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1075 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1076 		if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1077 			err = -EPERM;
1078 		break;
1079 	default:  /* bad msg */
1080 		err = -EINVAL;
1081 	}
1082 
1083 	return err;
1084 }
1085 
audit_log_common_recv_msg(struct audit_context * context,struct audit_buffer ** ab,u16 msg_type)1086 static void audit_log_common_recv_msg(struct audit_context *context,
1087 					struct audit_buffer **ab, u16 msg_type)
1088 {
1089 	uid_t uid = from_kuid(&init_user_ns, current_uid());
1090 	pid_t pid = task_tgid_nr(current);
1091 
1092 	if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1093 		*ab = NULL;
1094 		return;
1095 	}
1096 
1097 	*ab = audit_log_start(context, GFP_KERNEL, msg_type);
1098 	if (unlikely(!*ab))
1099 		return;
1100 	audit_log_format(*ab, "pid=%d uid=%u ", pid, uid);
1101 	audit_log_session_info(*ab);
1102 	audit_log_task_context(*ab);
1103 }
1104 
audit_log_user_recv_msg(struct audit_buffer ** ab,u16 msg_type)1105 static inline void audit_log_user_recv_msg(struct audit_buffer **ab,
1106 					   u16 msg_type)
1107 {
1108 	audit_log_common_recv_msg(NULL, ab, msg_type);
1109 }
1110 
is_audit_feature_set(int i)1111 static int is_audit_feature_set(int i)
1112 {
1113 	return af.features & AUDIT_FEATURE_TO_MASK(i);
1114 }
1115 
1116 
audit_get_feature(struct sk_buff * skb)1117 static int audit_get_feature(struct sk_buff *skb)
1118 {
1119 	u32 seq;
1120 
1121 	seq = nlmsg_hdr(skb)->nlmsg_seq;
1122 
1123 	audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1124 
1125 	return 0;
1126 }
1127 
audit_log_feature_change(int which,u32 old_feature,u32 new_feature,u32 old_lock,u32 new_lock,int res)1128 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1129 				     u32 old_lock, u32 new_lock, int res)
1130 {
1131 	struct audit_buffer *ab;
1132 
1133 	if (audit_enabled == AUDIT_OFF)
1134 		return;
1135 
1136 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1137 	if (!ab)
1138 		return;
1139 	audit_log_task_info(ab);
1140 	audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1141 			 audit_feature_names[which], !!old_feature, !!new_feature,
1142 			 !!old_lock, !!new_lock, res);
1143 	audit_log_end(ab);
1144 }
1145 
audit_set_feature(struct audit_features * uaf)1146 static int audit_set_feature(struct audit_features *uaf)
1147 {
1148 	int i;
1149 
1150 	BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1151 
1152 	/* if there is ever a version 2 we should handle that here */
1153 
1154 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1155 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
1156 		u32 old_feature, new_feature, old_lock, new_lock;
1157 
1158 		/* if we are not changing this feature, move along */
1159 		if (!(feature & uaf->mask))
1160 			continue;
1161 
1162 		old_feature = af.features & feature;
1163 		new_feature = uaf->features & feature;
1164 		new_lock = (uaf->lock | af.lock) & feature;
1165 		old_lock = af.lock & feature;
1166 
1167 		/* are we changing a locked feature? */
1168 		if (old_lock && (new_feature != old_feature)) {
1169 			audit_log_feature_change(i, old_feature, new_feature,
1170 						 old_lock, new_lock, 0);
1171 			return -EPERM;
1172 		}
1173 	}
1174 	/* nothing invalid, do the changes */
1175 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1176 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
1177 		u32 old_feature, new_feature, old_lock, new_lock;
1178 
1179 		/* if we are not changing this feature, move along */
1180 		if (!(feature & uaf->mask))
1181 			continue;
1182 
1183 		old_feature = af.features & feature;
1184 		new_feature = uaf->features & feature;
1185 		old_lock = af.lock & feature;
1186 		new_lock = (uaf->lock | af.lock) & feature;
1187 
1188 		if (new_feature != old_feature)
1189 			audit_log_feature_change(i, old_feature, new_feature,
1190 						 old_lock, new_lock, 1);
1191 
1192 		if (new_feature)
1193 			af.features |= feature;
1194 		else
1195 			af.features &= ~feature;
1196 		af.lock |= new_lock;
1197 	}
1198 
1199 	return 0;
1200 }
1201 
audit_replace(struct pid * pid)1202 static int audit_replace(struct pid *pid)
1203 {
1204 	pid_t pvnr;
1205 	struct sk_buff *skb;
1206 
1207 	pvnr = pid_vnr(pid);
1208 	skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1209 	if (!skb)
1210 		return -ENOMEM;
1211 	return auditd_send_unicast_skb(skb);
1212 }
1213 
audit_receive_msg(struct sk_buff * skb,struct nlmsghdr * nlh,bool * ack)1214 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh,
1215 			     bool *ack)
1216 {
1217 	u32			seq;
1218 	void			*data;
1219 	int			data_len;
1220 	int			err;
1221 	struct audit_buffer	*ab;
1222 	u16			msg_type = nlh->nlmsg_type;
1223 	struct audit_sig_info   *sig_data;
1224 	char			*ctx = NULL;
1225 	u32			len;
1226 
1227 	err = audit_netlink_ok(skb, msg_type);
1228 	if (err)
1229 		return err;
1230 
1231 	seq  = nlh->nlmsg_seq;
1232 	data = nlmsg_data(nlh);
1233 	data_len = nlmsg_len(nlh);
1234 
1235 	switch (msg_type) {
1236 	case AUDIT_GET: {
1237 		struct audit_status	s;
1238 		memset(&s, 0, sizeof(s));
1239 		s.enabled		   = audit_enabled;
1240 		s.failure		   = audit_failure;
1241 		/* NOTE: use pid_vnr() so the PID is relative to the current
1242 		 *       namespace */
1243 		s.pid			   = auditd_pid_vnr();
1244 		s.rate_limit		   = audit_rate_limit;
1245 		s.backlog_limit		   = audit_backlog_limit;
1246 		s.lost			   = atomic_read(&audit_lost);
1247 		s.backlog		   = skb_queue_len(&audit_queue);
1248 		s.feature_bitmap	   = AUDIT_FEATURE_BITMAP_ALL;
1249 		s.backlog_wait_time	   = audit_backlog_wait_time;
1250 		s.backlog_wait_time_actual = atomic_read(&audit_backlog_wait_time_actual);
1251 		audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1252 		break;
1253 	}
1254 	case AUDIT_SET: {
1255 		struct audit_status	s;
1256 		memset(&s, 0, sizeof(s));
1257 		/* guard against past and future API changes */
1258 		memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1259 		if (s.mask & AUDIT_STATUS_ENABLED) {
1260 			err = audit_set_enabled(s.enabled);
1261 			if (err < 0)
1262 				return err;
1263 		}
1264 		if (s.mask & AUDIT_STATUS_FAILURE) {
1265 			err = audit_set_failure(s.failure);
1266 			if (err < 0)
1267 				return err;
1268 		}
1269 		if (s.mask & AUDIT_STATUS_PID) {
1270 			/* NOTE: we are using the vnr PID functions below
1271 			 *       because the s.pid value is relative to the
1272 			 *       namespace of the caller; at present this
1273 			 *       doesn't matter much since you can really only
1274 			 *       run auditd from the initial pid namespace, but
1275 			 *       something to keep in mind if this changes */
1276 			pid_t new_pid = s.pid;
1277 			pid_t auditd_pid;
1278 			struct pid *req_pid = task_tgid(current);
1279 
1280 			/* Sanity check - PID values must match. Setting
1281 			 * pid to 0 is how auditd ends auditing. */
1282 			if (new_pid && (new_pid != pid_vnr(req_pid)))
1283 				return -EINVAL;
1284 
1285 			/* test the auditd connection */
1286 			audit_replace(req_pid);
1287 
1288 			auditd_pid = auditd_pid_vnr();
1289 			if (auditd_pid) {
1290 				/* replacing a healthy auditd is not allowed */
1291 				if (new_pid) {
1292 					audit_log_config_change("audit_pid",
1293 							new_pid, auditd_pid, 0);
1294 					return -EEXIST;
1295 				}
1296 				/* only current auditd can unregister itself */
1297 				if (pid_vnr(req_pid) != auditd_pid) {
1298 					audit_log_config_change("audit_pid",
1299 							new_pid, auditd_pid, 0);
1300 					return -EACCES;
1301 				}
1302 			}
1303 
1304 			if (new_pid) {
1305 				/* register a new auditd connection */
1306 				err = auditd_set(req_pid,
1307 						 NETLINK_CB(skb).portid,
1308 						 sock_net(NETLINK_CB(skb).sk),
1309 						 skb, ack);
1310 				if (audit_enabled != AUDIT_OFF)
1311 					audit_log_config_change("audit_pid",
1312 								new_pid,
1313 								auditd_pid,
1314 								err ? 0 : 1);
1315 				if (err)
1316 					return err;
1317 
1318 				/* try to process any backlog */
1319 				wake_up_interruptible(&kauditd_wait);
1320 			} else {
1321 				if (audit_enabled != AUDIT_OFF)
1322 					audit_log_config_change("audit_pid",
1323 								new_pid,
1324 								auditd_pid, 1);
1325 
1326 				/* unregister the auditd connection */
1327 				auditd_reset(NULL);
1328 			}
1329 		}
1330 		if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1331 			err = audit_set_rate_limit(s.rate_limit);
1332 			if (err < 0)
1333 				return err;
1334 		}
1335 		if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1336 			err = audit_set_backlog_limit(s.backlog_limit);
1337 			if (err < 0)
1338 				return err;
1339 		}
1340 		if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1341 			if (sizeof(s) > (size_t)nlh->nlmsg_len)
1342 				return -EINVAL;
1343 			if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1344 				return -EINVAL;
1345 			err = audit_set_backlog_wait_time(s.backlog_wait_time);
1346 			if (err < 0)
1347 				return err;
1348 		}
1349 		if (s.mask == AUDIT_STATUS_LOST) {
1350 			u32 lost = atomic_xchg(&audit_lost, 0);
1351 
1352 			audit_log_config_change("lost", 0, lost, 1);
1353 			return lost;
1354 		}
1355 		if (s.mask == AUDIT_STATUS_BACKLOG_WAIT_TIME_ACTUAL) {
1356 			u32 actual = atomic_xchg(&audit_backlog_wait_time_actual, 0);
1357 
1358 			audit_log_config_change("backlog_wait_time_actual", 0, actual, 1);
1359 			return actual;
1360 		}
1361 		break;
1362 	}
1363 	case AUDIT_GET_FEATURE:
1364 		err = audit_get_feature(skb);
1365 		if (err)
1366 			return err;
1367 		break;
1368 	case AUDIT_SET_FEATURE:
1369 		if (data_len < sizeof(struct audit_features))
1370 			return -EINVAL;
1371 		err = audit_set_feature(data);
1372 		if (err)
1373 			return err;
1374 		break;
1375 	case AUDIT_USER:
1376 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1377 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1378 		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1379 			return 0;
1380 		/* exit early if there isn't at least one character to print */
1381 		if (data_len < 2)
1382 			return -EINVAL;
1383 
1384 		err = audit_filter(msg_type, AUDIT_FILTER_USER);
1385 		if (err == 1) { /* match or error */
1386 			char *str = data;
1387 
1388 			err = 0;
1389 			if (msg_type == AUDIT_USER_TTY) {
1390 				err = tty_audit_push();
1391 				if (err)
1392 					break;
1393 			}
1394 			audit_log_user_recv_msg(&ab, msg_type);
1395 			if (msg_type != AUDIT_USER_TTY) {
1396 				/* ensure NULL termination */
1397 				str[data_len - 1] = '\0';
1398 				audit_log_format(ab, " msg='%.*s'",
1399 						 AUDIT_MESSAGE_TEXT_MAX,
1400 						 str);
1401 			} else {
1402 				audit_log_format(ab, " data=");
1403 				if (str[data_len - 1] == '\0')
1404 					data_len--;
1405 				audit_log_n_untrustedstring(ab, str, data_len);
1406 			}
1407 			audit_log_end(ab);
1408 		}
1409 		break;
1410 	case AUDIT_ADD_RULE:
1411 	case AUDIT_DEL_RULE:
1412 		if (data_len < sizeof(struct audit_rule_data))
1413 			return -EINVAL;
1414 		if (audit_enabled == AUDIT_LOCKED) {
1415 			audit_log_common_recv_msg(audit_context(), &ab,
1416 						  AUDIT_CONFIG_CHANGE);
1417 			audit_log_format(ab, " op=%s audit_enabled=%d res=0",
1418 					 msg_type == AUDIT_ADD_RULE ?
1419 						"add_rule" : "remove_rule",
1420 					 audit_enabled);
1421 			audit_log_end(ab);
1422 			return -EPERM;
1423 		}
1424 		err = audit_rule_change(msg_type, seq, data, data_len);
1425 		break;
1426 	case AUDIT_LIST_RULES:
1427 		err = audit_list_rules_send(skb, seq);
1428 		break;
1429 	case AUDIT_TRIM:
1430 		audit_trim_trees();
1431 		audit_log_common_recv_msg(audit_context(), &ab,
1432 					  AUDIT_CONFIG_CHANGE);
1433 		audit_log_format(ab, " op=trim res=1");
1434 		audit_log_end(ab);
1435 		break;
1436 	case AUDIT_MAKE_EQUIV: {
1437 		void *bufp = data;
1438 		u32 sizes[2];
1439 		size_t msglen = data_len;
1440 		char *old, *new;
1441 
1442 		err = -EINVAL;
1443 		if (msglen < 2 * sizeof(u32))
1444 			break;
1445 		memcpy(sizes, bufp, 2 * sizeof(u32));
1446 		bufp += 2 * sizeof(u32);
1447 		msglen -= 2 * sizeof(u32);
1448 		old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1449 		if (IS_ERR(old)) {
1450 			err = PTR_ERR(old);
1451 			break;
1452 		}
1453 		new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1454 		if (IS_ERR(new)) {
1455 			err = PTR_ERR(new);
1456 			kfree(old);
1457 			break;
1458 		}
1459 		/* OK, here comes... */
1460 		err = audit_tag_tree(old, new);
1461 
1462 		audit_log_common_recv_msg(audit_context(), &ab,
1463 					  AUDIT_CONFIG_CHANGE);
1464 		audit_log_format(ab, " op=make_equiv old=");
1465 		audit_log_untrustedstring(ab, old);
1466 		audit_log_format(ab, " new=");
1467 		audit_log_untrustedstring(ab, new);
1468 		audit_log_format(ab, " res=%d", !err);
1469 		audit_log_end(ab);
1470 		kfree(old);
1471 		kfree(new);
1472 		break;
1473 	}
1474 	case AUDIT_SIGNAL_INFO:
1475 		len = 0;
1476 		if (audit_sig_sid) {
1477 			err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1478 			if (err)
1479 				return err;
1480 		}
1481 		sig_data = kmalloc(struct_size(sig_data, ctx, len), GFP_KERNEL);
1482 		if (!sig_data) {
1483 			if (audit_sig_sid)
1484 				security_release_secctx(ctx, len);
1485 			return -ENOMEM;
1486 		}
1487 		sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1488 		sig_data->pid = audit_sig_pid;
1489 		if (audit_sig_sid) {
1490 			memcpy(sig_data->ctx, ctx, len);
1491 			security_release_secctx(ctx, len);
1492 		}
1493 		audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1494 				 sig_data, struct_size(sig_data, ctx, len));
1495 		kfree(sig_data);
1496 		break;
1497 	case AUDIT_TTY_GET: {
1498 		struct audit_tty_status s;
1499 		unsigned int t;
1500 
1501 		t = READ_ONCE(current->signal->audit_tty);
1502 		s.enabled = t & AUDIT_TTY_ENABLE;
1503 		s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1504 
1505 		audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1506 		break;
1507 	}
1508 	case AUDIT_TTY_SET: {
1509 		struct audit_tty_status s, old;
1510 		struct audit_buffer	*ab;
1511 		unsigned int t;
1512 
1513 		memset(&s, 0, sizeof(s));
1514 		/* guard against past and future API changes */
1515 		memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1516 		/* check if new data is valid */
1517 		if ((s.enabled != 0 && s.enabled != 1) ||
1518 		    (s.log_passwd != 0 && s.log_passwd != 1))
1519 			err = -EINVAL;
1520 
1521 		if (err)
1522 			t = READ_ONCE(current->signal->audit_tty);
1523 		else {
1524 			t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1525 			t = xchg(&current->signal->audit_tty, t);
1526 		}
1527 		old.enabled = t & AUDIT_TTY_ENABLE;
1528 		old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1529 
1530 		audit_log_common_recv_msg(audit_context(), &ab,
1531 					  AUDIT_CONFIG_CHANGE);
1532 		audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1533 				 " old-log_passwd=%d new-log_passwd=%d res=%d",
1534 				 old.enabled, s.enabled, old.log_passwd,
1535 				 s.log_passwd, !err);
1536 		audit_log_end(ab);
1537 		break;
1538 	}
1539 	default:
1540 		err = -EINVAL;
1541 		break;
1542 	}
1543 
1544 	return err < 0 ? err : 0;
1545 }
1546 
1547 /**
1548  * audit_receive - receive messages from a netlink control socket
1549  * @skb: the message buffer
1550  *
1551  * Parse the provided skb and deal with any messages that may be present,
1552  * malformed skbs are discarded.
1553  */
audit_receive(struct sk_buff * skb)1554 static void audit_receive(struct sk_buff *skb)
1555 {
1556 	struct nlmsghdr *nlh;
1557 	bool ack;
1558 	/*
1559 	 * len MUST be signed for nlmsg_next to be able to dec it below 0
1560 	 * if the nlmsg_len was not aligned
1561 	 */
1562 	int len;
1563 	int err;
1564 
1565 	nlh = nlmsg_hdr(skb);
1566 	len = skb->len;
1567 
1568 	audit_ctl_lock();
1569 	while (nlmsg_ok(nlh, len)) {
1570 		ack = nlh->nlmsg_flags & NLM_F_ACK;
1571 		err = audit_receive_msg(skb, nlh, &ack);
1572 
1573 		/* send an ack if the user asked for one and audit_receive_msg
1574 		 * didn't already do it, or if there was an error. */
1575 		if (ack || err)
1576 			netlink_ack(skb, nlh, err, NULL);
1577 
1578 		nlh = nlmsg_next(nlh, &len);
1579 	}
1580 	audit_ctl_unlock();
1581 
1582 	/* can't block with the ctrl lock, so penalize the sender now */
1583 	if (audit_backlog_limit &&
1584 	    (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1585 		DECLARE_WAITQUEUE(wait, current);
1586 
1587 		/* wake kauditd to try and flush the queue */
1588 		wake_up_interruptible(&kauditd_wait);
1589 
1590 		add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1591 		set_current_state(TASK_UNINTERRUPTIBLE);
1592 		schedule_timeout(audit_backlog_wait_time);
1593 		remove_wait_queue(&audit_backlog_wait, &wait);
1594 	}
1595 }
1596 
1597 /* Log information about who is connecting to the audit multicast socket */
audit_log_multicast(int group,const char * op,int err)1598 static void audit_log_multicast(int group, const char *op, int err)
1599 {
1600 	const struct cred *cred;
1601 	struct tty_struct *tty;
1602 	char comm[sizeof(current->comm)];
1603 	struct audit_buffer *ab;
1604 
1605 	if (!audit_enabled)
1606 		return;
1607 
1608 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_EVENT_LISTENER);
1609 	if (!ab)
1610 		return;
1611 
1612 	cred = current_cred();
1613 	tty = audit_get_tty();
1614 	audit_log_format(ab, "pid=%u uid=%u auid=%u tty=%s ses=%u",
1615 			 task_pid_nr(current),
1616 			 from_kuid(&init_user_ns, cred->uid),
1617 			 from_kuid(&init_user_ns, audit_get_loginuid(current)),
1618 			 tty ? tty_name(tty) : "(none)",
1619 			 audit_get_sessionid(current));
1620 	audit_put_tty(tty);
1621 	audit_log_task_context(ab); /* subj= */
1622 	audit_log_format(ab, " comm=");
1623 	audit_log_untrustedstring(ab, get_task_comm(comm, current));
1624 	audit_log_d_path_exe(ab, current->mm); /* exe= */
1625 	audit_log_format(ab, " nl-mcgrp=%d op=%s res=%d", group, op, !err);
1626 	audit_log_end(ab);
1627 }
1628 
1629 /* Run custom bind function on netlink socket group connect or bind requests. */
audit_multicast_bind(struct net * net,int group)1630 static int audit_multicast_bind(struct net *net, int group)
1631 {
1632 	int err = 0;
1633 
1634 	if (!capable(CAP_AUDIT_READ))
1635 		err = -EPERM;
1636 	audit_log_multicast(group, "connect", err);
1637 	return err;
1638 }
1639 
audit_multicast_unbind(struct net * net,int group)1640 static void audit_multicast_unbind(struct net *net, int group)
1641 {
1642 	audit_log_multicast(group, "disconnect", 0);
1643 }
1644 
audit_net_init(struct net * net)1645 static int __net_init audit_net_init(struct net *net)
1646 {
1647 	struct netlink_kernel_cfg cfg = {
1648 		.input	= audit_receive,
1649 		.bind	= audit_multicast_bind,
1650 		.unbind	= audit_multicast_unbind,
1651 		.flags	= NL_CFG_F_NONROOT_RECV,
1652 		.groups	= AUDIT_NLGRP_MAX,
1653 	};
1654 
1655 	struct audit_net *aunet = net_generic(net, audit_net_id);
1656 
1657 	aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1658 	if (aunet->sk == NULL) {
1659 		audit_panic("cannot initialize netlink socket in namespace");
1660 		return -ENOMEM;
1661 	}
1662 	/* limit the timeout in case auditd is blocked/stopped */
1663 	aunet->sk->sk_sndtimeo = HZ / 10;
1664 
1665 	return 0;
1666 }
1667 
audit_net_exit(struct net * net)1668 static void __net_exit audit_net_exit(struct net *net)
1669 {
1670 	struct audit_net *aunet = net_generic(net, audit_net_id);
1671 
1672 	/* NOTE: you would think that we would want to check the auditd
1673 	 * connection and potentially reset it here if it lives in this
1674 	 * namespace, but since the auditd connection tracking struct holds a
1675 	 * reference to this namespace (see auditd_set()) we are only ever
1676 	 * going to get here after that connection has been released */
1677 
1678 	netlink_kernel_release(aunet->sk);
1679 }
1680 
1681 static struct pernet_operations audit_net_ops __net_initdata = {
1682 	.init = audit_net_init,
1683 	.exit = audit_net_exit,
1684 	.id = &audit_net_id,
1685 	.size = sizeof(struct audit_net),
1686 };
1687 
1688 /* Initialize audit support at boot time. */
audit_init(void)1689 static int __init audit_init(void)
1690 {
1691 	int i;
1692 
1693 	if (audit_initialized == AUDIT_DISABLED)
1694 		return 0;
1695 
1696 	audit_buffer_cache = KMEM_CACHE(audit_buffer, SLAB_PANIC);
1697 
1698 	skb_queue_head_init(&audit_queue);
1699 	skb_queue_head_init(&audit_retry_queue);
1700 	skb_queue_head_init(&audit_hold_queue);
1701 
1702 	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1703 		INIT_LIST_HEAD(&audit_inode_hash[i]);
1704 
1705 	mutex_init(&audit_cmd_mutex.lock);
1706 	audit_cmd_mutex.owner = NULL;
1707 
1708 	pr_info("initializing netlink subsys (%s)\n",
1709 		audit_default ? "enabled" : "disabled");
1710 	register_pernet_subsys(&audit_net_ops);
1711 
1712 	audit_initialized = AUDIT_INITIALIZED;
1713 
1714 	kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1715 	if (IS_ERR(kauditd_task)) {
1716 		int err = PTR_ERR(kauditd_task);
1717 		panic("audit: failed to start the kauditd thread (%d)\n", err);
1718 	}
1719 
1720 	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1721 		"state=initialized audit_enabled=%u res=1",
1722 		 audit_enabled);
1723 
1724 	return 0;
1725 }
1726 postcore_initcall(audit_init);
1727 
1728 /*
1729  * Process kernel command-line parameter at boot time.
1730  * audit={0|off} or audit={1|on}.
1731  */
audit_enable(char * str)1732 static int __init audit_enable(char *str)
1733 {
1734 	if (!strcasecmp(str, "off") || !strcmp(str, "0"))
1735 		audit_default = AUDIT_OFF;
1736 	else if (!strcasecmp(str, "on") || !strcmp(str, "1"))
1737 		audit_default = AUDIT_ON;
1738 	else {
1739 		pr_err("audit: invalid 'audit' parameter value (%s)\n", str);
1740 		audit_default = AUDIT_ON;
1741 	}
1742 
1743 	if (audit_default == AUDIT_OFF)
1744 		audit_initialized = AUDIT_DISABLED;
1745 	if (audit_set_enabled(audit_default))
1746 		pr_err("audit: error setting audit state (%d)\n",
1747 		       audit_default);
1748 
1749 	pr_info("%s\n", audit_default ?
1750 		"enabled (after initialization)" : "disabled (until reboot)");
1751 
1752 	return 1;
1753 }
1754 __setup("audit=", audit_enable);
1755 
1756 /* Process kernel command-line parameter at boot time.
1757  * audit_backlog_limit=<n> */
audit_backlog_limit_set(char * str)1758 static int __init audit_backlog_limit_set(char *str)
1759 {
1760 	u32 audit_backlog_limit_arg;
1761 
1762 	pr_info("audit_backlog_limit: ");
1763 	if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1764 		pr_cont("using default of %u, unable to parse %s\n",
1765 			audit_backlog_limit, str);
1766 		return 1;
1767 	}
1768 
1769 	audit_backlog_limit = audit_backlog_limit_arg;
1770 	pr_cont("%d\n", audit_backlog_limit);
1771 
1772 	return 1;
1773 }
1774 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1775 
audit_buffer_free(struct audit_buffer * ab)1776 static void audit_buffer_free(struct audit_buffer *ab)
1777 {
1778 	if (!ab)
1779 		return;
1780 
1781 	kfree_skb(ab->skb);
1782 	kmem_cache_free(audit_buffer_cache, ab);
1783 }
1784 
audit_buffer_alloc(struct audit_context * ctx,gfp_t gfp_mask,int type)1785 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1786 					       gfp_t gfp_mask, int type)
1787 {
1788 	struct audit_buffer *ab;
1789 
1790 	ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1791 	if (!ab)
1792 		return NULL;
1793 
1794 	ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1795 	if (!ab->skb)
1796 		goto err;
1797 	if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1798 		goto err;
1799 
1800 	ab->ctx = ctx;
1801 	ab->gfp_mask = gfp_mask;
1802 
1803 	return ab;
1804 
1805 err:
1806 	audit_buffer_free(ab);
1807 	return NULL;
1808 }
1809 
1810 /**
1811  * audit_serial - compute a serial number for the audit record
1812  *
1813  * Compute a serial number for the audit record.  Audit records are
1814  * written to user-space as soon as they are generated, so a complete
1815  * audit record may be written in several pieces.  The timestamp of the
1816  * record and this serial number are used by the user-space tools to
1817  * determine which pieces belong to the same audit record.  The
1818  * (timestamp,serial) tuple is unique for each syscall and is live from
1819  * syscall entry to syscall exit.
1820  *
1821  * NOTE: Another possibility is to store the formatted records off the
1822  * audit context (for those records that have a context), and emit them
1823  * all at syscall exit.  However, this could delay the reporting of
1824  * significant errors until syscall exit (or never, if the system
1825  * halts).
1826  */
audit_serial(void)1827 unsigned int audit_serial(void)
1828 {
1829 	static atomic_t serial = ATOMIC_INIT(0);
1830 
1831 	return atomic_inc_return(&serial);
1832 }
1833 
audit_get_stamp(struct audit_context * ctx,struct timespec64 * t,unsigned int * serial)1834 static inline void audit_get_stamp(struct audit_context *ctx,
1835 				   struct timespec64 *t, unsigned int *serial)
1836 {
1837 	if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1838 		ktime_get_coarse_real_ts64(t);
1839 		*serial = audit_serial();
1840 	}
1841 }
1842 
1843 /**
1844  * audit_log_start - obtain an audit buffer
1845  * @ctx: audit_context (may be NULL)
1846  * @gfp_mask: type of allocation
1847  * @type: audit message type
1848  *
1849  * Returns audit_buffer pointer on success or NULL on error.
1850  *
1851  * Obtain an audit buffer.  This routine does locking to obtain the
1852  * audit buffer, but then no locking is required for calls to
1853  * audit_log_*format.  If the task (ctx) is a task that is currently in a
1854  * syscall, then the syscall is marked as auditable and an audit record
1855  * will be written at syscall exit.  If there is no associated task, then
1856  * task context (ctx) should be NULL.
1857  */
audit_log_start(struct audit_context * ctx,gfp_t gfp_mask,int type)1858 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1859 				     int type)
1860 {
1861 	struct audit_buffer *ab;
1862 	struct timespec64 t;
1863 	unsigned int serial;
1864 
1865 	if (audit_initialized != AUDIT_INITIALIZED)
1866 		return NULL;
1867 
1868 	if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE)))
1869 		return NULL;
1870 
1871 	/* NOTE: don't ever fail/sleep on these two conditions:
1872 	 * 1. auditd generated record - since we need auditd to drain the
1873 	 *    queue; also, when we are checking for auditd, compare PIDs using
1874 	 *    task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1875 	 *    using a PID anchored in the caller's namespace
1876 	 * 2. generator holding the audit_cmd_mutex - we don't want to block
1877 	 *    while holding the mutex, although we do penalize the sender
1878 	 *    later in audit_receive() when it is safe to block
1879 	 */
1880 	if (!(auditd_test_task(current) || audit_ctl_owner_current())) {
1881 		long stime = audit_backlog_wait_time;
1882 
1883 		while (audit_backlog_limit &&
1884 		       (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1885 			/* wake kauditd to try and flush the queue */
1886 			wake_up_interruptible(&kauditd_wait);
1887 
1888 			/* sleep if we are allowed and we haven't exhausted our
1889 			 * backlog wait limit */
1890 			if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1891 				long rtime = stime;
1892 
1893 				DECLARE_WAITQUEUE(wait, current);
1894 
1895 				add_wait_queue_exclusive(&audit_backlog_wait,
1896 							 &wait);
1897 				set_current_state(TASK_UNINTERRUPTIBLE);
1898 				stime = schedule_timeout(rtime);
1899 				atomic_add(rtime - stime, &audit_backlog_wait_time_actual);
1900 				remove_wait_queue(&audit_backlog_wait, &wait);
1901 			} else {
1902 				if (audit_rate_check() && printk_ratelimit())
1903 					pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1904 						skb_queue_len(&audit_queue),
1905 						audit_backlog_limit);
1906 				audit_log_lost("backlog limit exceeded");
1907 				return NULL;
1908 			}
1909 		}
1910 	}
1911 
1912 	ab = audit_buffer_alloc(ctx, gfp_mask, type);
1913 	if (!ab) {
1914 		audit_log_lost("out of memory in audit_log_start");
1915 		return NULL;
1916 	}
1917 
1918 	audit_get_stamp(ab->ctx, &t, &serial);
1919 	/* cancel dummy context to enable supporting records */
1920 	if (ctx)
1921 		ctx->dummy = 0;
1922 	audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1923 			 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
1924 
1925 	return ab;
1926 }
1927 
1928 /**
1929  * audit_expand - expand skb in the audit buffer
1930  * @ab: audit_buffer
1931  * @extra: space to add at tail of the skb
1932  *
1933  * Returns 0 (no space) on failed expansion, or available space if
1934  * successful.
1935  */
audit_expand(struct audit_buffer * ab,int extra)1936 static inline int audit_expand(struct audit_buffer *ab, int extra)
1937 {
1938 	struct sk_buff *skb = ab->skb;
1939 	int oldtail = skb_tailroom(skb);
1940 	int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1941 	int newtail = skb_tailroom(skb);
1942 
1943 	if (ret < 0) {
1944 		audit_log_lost("out of memory in audit_expand");
1945 		return 0;
1946 	}
1947 
1948 	skb->truesize += newtail - oldtail;
1949 	return newtail;
1950 }
1951 
1952 /*
1953  * Format an audit message into the audit buffer.  If there isn't enough
1954  * room in the audit buffer, more room will be allocated and vsnprint
1955  * will be called a second time.  Currently, we assume that a printk
1956  * can't format message larger than 1024 bytes, so we don't either.
1957  */
audit_log_vformat(struct audit_buffer * ab,const char * fmt,va_list args)1958 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1959 			      va_list args)
1960 {
1961 	int len, avail;
1962 	struct sk_buff *skb;
1963 	va_list args2;
1964 
1965 	if (!ab)
1966 		return;
1967 
1968 	BUG_ON(!ab->skb);
1969 	skb = ab->skb;
1970 	avail = skb_tailroom(skb);
1971 	if (avail == 0) {
1972 		avail = audit_expand(ab, AUDIT_BUFSIZ);
1973 		if (!avail)
1974 			goto out;
1975 	}
1976 	va_copy(args2, args);
1977 	len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1978 	if (len >= avail) {
1979 		/* The printk buffer is 1024 bytes long, so if we get
1980 		 * here and AUDIT_BUFSIZ is at least 1024, then we can
1981 		 * log everything that printk could have logged. */
1982 		avail = audit_expand(ab,
1983 			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1984 		if (!avail)
1985 			goto out_va_end;
1986 		len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1987 	}
1988 	if (len > 0)
1989 		skb_put(skb, len);
1990 out_va_end:
1991 	va_end(args2);
1992 out:
1993 	return;
1994 }
1995 
1996 /**
1997  * audit_log_format - format a message into the audit buffer.
1998  * @ab: audit_buffer
1999  * @fmt: format string
2000  * @...: optional parameters matching @fmt string
2001  *
2002  * All the work is done in audit_log_vformat.
2003  */
audit_log_format(struct audit_buffer * ab,const char * fmt,...)2004 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
2005 {
2006 	va_list args;
2007 
2008 	if (!ab)
2009 		return;
2010 	va_start(args, fmt);
2011 	audit_log_vformat(ab, fmt, args);
2012 	va_end(args);
2013 }
2014 
2015 /**
2016  * audit_log_n_hex - convert a buffer to hex and append it to the audit skb
2017  * @ab: the audit_buffer
2018  * @buf: buffer to convert to hex
2019  * @len: length of @buf to be converted
2020  *
2021  * No return value; failure to expand is silently ignored.
2022  *
2023  * This function will take the passed buf and convert it into a string of
2024  * ascii hex digits. The new string is placed onto the skb.
2025  */
audit_log_n_hex(struct audit_buffer * ab,const unsigned char * buf,size_t len)2026 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
2027 		size_t len)
2028 {
2029 	int i, avail, new_len;
2030 	unsigned char *ptr;
2031 	struct sk_buff *skb;
2032 
2033 	if (!ab)
2034 		return;
2035 
2036 	BUG_ON(!ab->skb);
2037 	skb = ab->skb;
2038 	avail = skb_tailroom(skb);
2039 	new_len = len<<1;
2040 	if (new_len >= avail) {
2041 		/* Round the buffer request up to the next multiple */
2042 		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
2043 		avail = audit_expand(ab, new_len);
2044 		if (!avail)
2045 			return;
2046 	}
2047 
2048 	ptr = skb_tail_pointer(skb);
2049 	for (i = 0; i < len; i++)
2050 		ptr = hex_byte_pack_upper(ptr, buf[i]);
2051 	*ptr = 0;
2052 	skb_put(skb, len << 1); /* new string is twice the old string */
2053 }
2054 
2055 /*
2056  * Format a string of no more than slen characters into the audit buffer,
2057  * enclosed in quote marks.
2058  */
audit_log_n_string(struct audit_buffer * ab,const char * string,size_t slen)2059 void audit_log_n_string(struct audit_buffer *ab, const char *string,
2060 			size_t slen)
2061 {
2062 	int avail, new_len;
2063 	unsigned char *ptr;
2064 	struct sk_buff *skb;
2065 
2066 	if (!ab)
2067 		return;
2068 
2069 	BUG_ON(!ab->skb);
2070 	skb = ab->skb;
2071 	avail = skb_tailroom(skb);
2072 	new_len = slen + 3;	/* enclosing quotes + null terminator */
2073 	if (new_len > avail) {
2074 		avail = audit_expand(ab, new_len);
2075 		if (!avail)
2076 			return;
2077 	}
2078 	ptr = skb_tail_pointer(skb);
2079 	*ptr++ = '"';
2080 	memcpy(ptr, string, slen);
2081 	ptr += slen;
2082 	*ptr++ = '"';
2083 	*ptr = 0;
2084 	skb_put(skb, slen + 2);	/* don't include null terminator */
2085 }
2086 
2087 /**
2088  * audit_string_contains_control - does a string need to be logged in hex
2089  * @string: string to be checked
2090  * @len: max length of the string to check
2091  */
audit_string_contains_control(const char * string,size_t len)2092 bool audit_string_contains_control(const char *string, size_t len)
2093 {
2094 	const unsigned char *p;
2095 	for (p = string; p < (const unsigned char *)string + len; p++) {
2096 		if (*p == '"' || *p < 0x21 || *p > 0x7e)
2097 			return true;
2098 	}
2099 	return false;
2100 }
2101 
2102 /**
2103  * audit_log_n_untrustedstring - log a string that may contain random characters
2104  * @ab: audit_buffer
2105  * @len: length of string (not including trailing null)
2106  * @string: string to be logged
2107  *
2108  * This code will escape a string that is passed to it if the string
2109  * contains a control character, unprintable character, double quote mark,
2110  * or a space. Unescaped strings will start and end with a double quote mark.
2111  * Strings that are escaped are printed in hex (2 digits per char).
2112  *
2113  * The caller specifies the number of characters in the string to log, which may
2114  * or may not be the entire string.
2115  */
audit_log_n_untrustedstring(struct audit_buffer * ab,const char * string,size_t len)2116 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
2117 				 size_t len)
2118 {
2119 	if (audit_string_contains_control(string, len))
2120 		audit_log_n_hex(ab, string, len);
2121 	else
2122 		audit_log_n_string(ab, string, len);
2123 }
2124 
2125 /**
2126  * audit_log_untrustedstring - log a string that may contain random characters
2127  * @ab: audit_buffer
2128  * @string: string to be logged
2129  *
2130  * Same as audit_log_n_untrustedstring(), except that strlen is used to
2131  * determine string length.
2132  */
audit_log_untrustedstring(struct audit_buffer * ab,const char * string)2133 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
2134 {
2135 	audit_log_n_untrustedstring(ab, string, strlen(string));
2136 }
2137 
2138 /* This is a helper-function to print the escaped d_path */
audit_log_d_path(struct audit_buffer * ab,const char * prefix,const struct path * path)2139 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
2140 		      const struct path *path)
2141 {
2142 	char *p, *pathname;
2143 
2144 	if (prefix)
2145 		audit_log_format(ab, "%s", prefix);
2146 
2147 	/* We will allow 11 spaces for ' (deleted)' to be appended */
2148 	pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
2149 	if (!pathname) {
2150 		audit_log_format(ab, "\"<no_memory>\"");
2151 		return;
2152 	}
2153 	p = d_path(path, pathname, PATH_MAX+11);
2154 	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
2155 		/* FIXME: can we save some information here? */
2156 		audit_log_format(ab, "\"<too_long>\"");
2157 	} else
2158 		audit_log_untrustedstring(ab, p);
2159 	kfree(pathname);
2160 }
2161 
audit_log_session_info(struct audit_buffer * ab)2162 void audit_log_session_info(struct audit_buffer *ab)
2163 {
2164 	unsigned int sessionid = audit_get_sessionid(current);
2165 	uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
2166 
2167 	audit_log_format(ab, "auid=%u ses=%u", auid, sessionid);
2168 }
2169 
audit_log_key(struct audit_buffer * ab,char * key)2170 void audit_log_key(struct audit_buffer *ab, char *key)
2171 {
2172 	audit_log_format(ab, " key=");
2173 	if (key)
2174 		audit_log_untrustedstring(ab, key);
2175 	else
2176 		audit_log_format(ab, "(null)");
2177 }
2178 
audit_log_task_context(struct audit_buffer * ab)2179 int audit_log_task_context(struct audit_buffer *ab)
2180 {
2181 	char *ctx = NULL;
2182 	unsigned len;
2183 	int error;
2184 	u32 sid;
2185 
2186 	security_current_getsecid_subj(&sid);
2187 	if (!sid)
2188 		return 0;
2189 
2190 	error = security_secid_to_secctx(sid, &ctx, &len);
2191 	if (error) {
2192 		if (error != -EINVAL)
2193 			goto error_path;
2194 		return 0;
2195 	}
2196 
2197 	audit_log_format(ab, " subj=%s", ctx);
2198 	security_release_secctx(ctx, len);
2199 	return 0;
2200 
2201 error_path:
2202 	audit_panic("error in audit_log_task_context");
2203 	return error;
2204 }
2205 EXPORT_SYMBOL(audit_log_task_context);
2206 
audit_log_d_path_exe(struct audit_buffer * ab,struct mm_struct * mm)2207 void audit_log_d_path_exe(struct audit_buffer *ab,
2208 			  struct mm_struct *mm)
2209 {
2210 	struct file *exe_file;
2211 
2212 	if (!mm)
2213 		goto out_null;
2214 
2215 	exe_file = get_mm_exe_file(mm);
2216 	if (!exe_file)
2217 		goto out_null;
2218 
2219 	audit_log_d_path(ab, " exe=", &exe_file->f_path);
2220 	fput(exe_file);
2221 	return;
2222 out_null:
2223 	audit_log_format(ab, " exe=(null)");
2224 }
2225 
audit_get_tty(void)2226 struct tty_struct *audit_get_tty(void)
2227 {
2228 	struct tty_struct *tty = NULL;
2229 	unsigned long flags;
2230 
2231 	spin_lock_irqsave(&current->sighand->siglock, flags);
2232 	if (current->signal)
2233 		tty = tty_kref_get(current->signal->tty);
2234 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
2235 	return tty;
2236 }
2237 
audit_put_tty(struct tty_struct * tty)2238 void audit_put_tty(struct tty_struct *tty)
2239 {
2240 	tty_kref_put(tty);
2241 }
2242 
audit_log_task_info(struct audit_buffer * ab)2243 void audit_log_task_info(struct audit_buffer *ab)
2244 {
2245 	const struct cred *cred;
2246 	char comm[sizeof(current->comm)];
2247 	struct tty_struct *tty;
2248 
2249 	if (!ab)
2250 		return;
2251 
2252 	cred = current_cred();
2253 	tty = audit_get_tty();
2254 	audit_log_format(ab,
2255 			 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2256 			 " euid=%u suid=%u fsuid=%u"
2257 			 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2258 			 task_ppid_nr(current),
2259 			 task_tgid_nr(current),
2260 			 from_kuid(&init_user_ns, audit_get_loginuid(current)),
2261 			 from_kuid(&init_user_ns, cred->uid),
2262 			 from_kgid(&init_user_ns, cred->gid),
2263 			 from_kuid(&init_user_ns, cred->euid),
2264 			 from_kuid(&init_user_ns, cred->suid),
2265 			 from_kuid(&init_user_ns, cred->fsuid),
2266 			 from_kgid(&init_user_ns, cred->egid),
2267 			 from_kgid(&init_user_ns, cred->sgid),
2268 			 from_kgid(&init_user_ns, cred->fsgid),
2269 			 tty ? tty_name(tty) : "(none)",
2270 			 audit_get_sessionid(current));
2271 	audit_put_tty(tty);
2272 	audit_log_format(ab, " comm=");
2273 	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2274 	audit_log_d_path_exe(ab, current->mm);
2275 	audit_log_task_context(ab);
2276 }
2277 EXPORT_SYMBOL(audit_log_task_info);
2278 
2279 /**
2280  * audit_log_path_denied - report a path restriction denial
2281  * @type: audit message type (AUDIT_ANOM_LINK, AUDIT_ANOM_CREAT, etc)
2282  * @operation: specific operation name
2283  */
audit_log_path_denied(int type,const char * operation)2284 void audit_log_path_denied(int type, const char *operation)
2285 {
2286 	struct audit_buffer *ab;
2287 
2288 	if (!audit_enabled || audit_dummy_context())
2289 		return;
2290 
2291 	/* Generate log with subject, operation, outcome. */
2292 	ab = audit_log_start(audit_context(), GFP_KERNEL, type);
2293 	if (!ab)
2294 		return;
2295 	audit_log_format(ab, "op=%s", operation);
2296 	audit_log_task_info(ab);
2297 	audit_log_format(ab, " res=0");
2298 	audit_log_end(ab);
2299 }
2300 
2301 /* global counter which is incremented every time something logs in */
2302 static atomic_t session_id = ATOMIC_INIT(0);
2303 
audit_set_loginuid_perm(kuid_t loginuid)2304 static int audit_set_loginuid_perm(kuid_t loginuid)
2305 {
2306 	/* if we are unset, we don't need privs */
2307 	if (!audit_loginuid_set(current))
2308 		return 0;
2309 	/* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2310 	if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2311 		return -EPERM;
2312 	/* it is set, you need permission */
2313 	if (!capable(CAP_AUDIT_CONTROL))
2314 		return -EPERM;
2315 	/* reject if this is not an unset and we don't allow that */
2316 	if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID)
2317 				 && uid_valid(loginuid))
2318 		return -EPERM;
2319 	return 0;
2320 }
2321 
audit_log_set_loginuid(kuid_t koldloginuid,kuid_t kloginuid,unsigned int oldsessionid,unsigned int sessionid,int rc)2322 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2323 				   unsigned int oldsessionid,
2324 				   unsigned int sessionid, int rc)
2325 {
2326 	struct audit_buffer *ab;
2327 	uid_t uid, oldloginuid, loginuid;
2328 	struct tty_struct *tty;
2329 
2330 	if (!audit_enabled)
2331 		return;
2332 
2333 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_LOGIN);
2334 	if (!ab)
2335 		return;
2336 
2337 	uid = from_kuid(&init_user_ns, task_uid(current));
2338 	oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2339 	loginuid = from_kuid(&init_user_ns, kloginuid);
2340 	tty = audit_get_tty();
2341 
2342 	audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2343 	audit_log_task_context(ab);
2344 	audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2345 			 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2346 			 oldsessionid, sessionid, !rc);
2347 	audit_put_tty(tty);
2348 	audit_log_end(ab);
2349 }
2350 
2351 /**
2352  * audit_set_loginuid - set current task's loginuid
2353  * @loginuid: loginuid value
2354  *
2355  * Returns 0.
2356  *
2357  * Called (set) from fs/proc/base.c::proc_loginuid_write().
2358  */
audit_set_loginuid(kuid_t loginuid)2359 int audit_set_loginuid(kuid_t loginuid)
2360 {
2361 	unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET;
2362 	kuid_t oldloginuid;
2363 	int rc;
2364 
2365 	oldloginuid = audit_get_loginuid(current);
2366 	oldsessionid = audit_get_sessionid(current);
2367 
2368 	rc = audit_set_loginuid_perm(loginuid);
2369 	if (rc)
2370 		goto out;
2371 
2372 	/* are we setting or clearing? */
2373 	if (uid_valid(loginuid)) {
2374 		sessionid = (unsigned int)atomic_inc_return(&session_id);
2375 		if (unlikely(sessionid == AUDIT_SID_UNSET))
2376 			sessionid = (unsigned int)atomic_inc_return(&session_id);
2377 	}
2378 
2379 	current->sessionid = sessionid;
2380 	current->loginuid = loginuid;
2381 out:
2382 	audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2383 	return rc;
2384 }
2385 
2386 /**
2387  * audit_signal_info - record signal info for shutting down audit subsystem
2388  * @sig: signal value
2389  * @t: task being signaled
2390  *
2391  * If the audit subsystem is being terminated, record the task (pid)
2392  * and uid that is doing that.
2393  */
audit_signal_info(int sig,struct task_struct * t)2394 int audit_signal_info(int sig, struct task_struct *t)
2395 {
2396 	kuid_t uid = current_uid(), auid;
2397 
2398 	if (auditd_test_task(t) &&
2399 	    (sig == SIGTERM || sig == SIGHUP ||
2400 	     sig == SIGUSR1 || sig == SIGUSR2)) {
2401 		audit_sig_pid = task_tgid_nr(current);
2402 		auid = audit_get_loginuid(current);
2403 		if (uid_valid(auid))
2404 			audit_sig_uid = auid;
2405 		else
2406 			audit_sig_uid = uid;
2407 		security_current_getsecid_subj(&audit_sig_sid);
2408 	}
2409 
2410 	return audit_signal_info_syscall(t);
2411 }
2412 
2413 /**
2414  * audit_log_end - end one audit record
2415  * @ab: the audit_buffer
2416  *
2417  * We can not do a netlink send inside an irq context because it blocks (last
2418  * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2419  * queue and a kthread is scheduled to remove them from the queue outside the
2420  * irq context.  May be called in any context.
2421  */
audit_log_end(struct audit_buffer * ab)2422 void audit_log_end(struct audit_buffer *ab)
2423 {
2424 	struct sk_buff *skb;
2425 	struct nlmsghdr *nlh;
2426 
2427 	if (!ab)
2428 		return;
2429 
2430 	if (audit_rate_check()) {
2431 		skb = ab->skb;
2432 		ab->skb = NULL;
2433 
2434 		/* setup the netlink header, see the comments in
2435 		 * kauditd_send_multicast_skb() for length quirks */
2436 		nlh = nlmsg_hdr(skb);
2437 		nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2438 
2439 		/* queue the netlink packet and poke the kauditd thread */
2440 		skb_queue_tail(&audit_queue, skb);
2441 		wake_up_interruptible(&kauditd_wait);
2442 	} else
2443 		audit_log_lost("rate limit exceeded");
2444 
2445 	audit_buffer_free(ab);
2446 }
2447 
2448 /**
2449  * audit_log - Log an audit record
2450  * @ctx: audit context
2451  * @gfp_mask: type of allocation
2452  * @type: audit message type
2453  * @fmt: format string to use
2454  * @...: variable parameters matching the format string
2455  *
2456  * This is a convenience function that calls audit_log_start,
2457  * audit_log_vformat, and audit_log_end.  It may be called
2458  * in any context.
2459  */
audit_log(struct audit_context * ctx,gfp_t gfp_mask,int type,const char * fmt,...)2460 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2461 	       const char *fmt, ...)
2462 {
2463 	struct audit_buffer *ab;
2464 	va_list args;
2465 
2466 	ab = audit_log_start(ctx, gfp_mask, type);
2467 	if (ab) {
2468 		va_start(args, fmt);
2469 		audit_log_vformat(ab, fmt, args);
2470 		va_end(args);
2471 		audit_log_end(ab);
2472 	}
2473 }
2474 
2475 EXPORT_SYMBOL(audit_log_start);
2476 EXPORT_SYMBOL(audit_log_end);
2477 EXPORT_SYMBOL(audit_log_format);
2478 EXPORT_SYMBOL(audit_log);
2479