xref: /linux/kernel/crash_core.c (revision 02aff848)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * crash.c - kernel crash support code.
4  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
5  */
6 
7 #include <linux/buildid.h>
8 #include <linux/init.h>
9 #include <linux/utsname.h>
10 #include <linux/vmalloc.h>
11 #include <linux/sizes.h>
12 #include <linux/kexec.h>
13 #include <linux/memory.h>
14 #include <linux/mm.h>
15 #include <linux/cpuhotplug.h>
16 #include <linux/memblock.h>
17 #include <linux/kmemleak.h>
18 #include <linux/crash_core.h>
19 #include <linux/reboot.h>
20 #include <linux/btf.h>
21 #include <linux/objtool.h>
22 
23 #include <asm/page.h>
24 #include <asm/sections.h>
25 
26 #include <crypto/sha1.h>
27 
28 #include "kallsyms_internal.h"
29 #include "kexec_internal.h"
30 
31 /* Per cpu memory for storing cpu states in case of system crash. */
32 note_buf_t __percpu *crash_notes;
33 
34 #ifdef CONFIG_CRASH_DUMP
35 
kimage_crash_copy_vmcoreinfo(struct kimage * image)36 int kimage_crash_copy_vmcoreinfo(struct kimage *image)
37 {
38 	struct page *vmcoreinfo_page;
39 	void *safecopy;
40 
41 	if (!IS_ENABLED(CONFIG_CRASH_DUMP))
42 		return 0;
43 	if (image->type != KEXEC_TYPE_CRASH)
44 		return 0;
45 
46 	/*
47 	 * For kdump, allocate one vmcoreinfo safe copy from the
48 	 * crash memory. as we have arch_kexec_protect_crashkres()
49 	 * after kexec syscall, we naturally protect it from write
50 	 * (even read) access under kernel direct mapping. But on
51 	 * the other hand, we still need to operate it when crash
52 	 * happens to generate vmcoreinfo note, hereby we rely on
53 	 * vmap for this purpose.
54 	 */
55 	vmcoreinfo_page = kimage_alloc_control_pages(image, 0);
56 	if (!vmcoreinfo_page) {
57 		pr_warn("Could not allocate vmcoreinfo buffer\n");
58 		return -ENOMEM;
59 	}
60 	safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL);
61 	if (!safecopy) {
62 		pr_warn("Could not vmap vmcoreinfo buffer\n");
63 		return -ENOMEM;
64 	}
65 
66 	image->vmcoreinfo_data_copy = safecopy;
67 	crash_update_vmcoreinfo_safecopy(safecopy);
68 
69 	return 0;
70 }
71 
72 
73 
kexec_should_crash(struct task_struct * p)74 int kexec_should_crash(struct task_struct *p)
75 {
76 	/*
77 	 * If crash_kexec_post_notifiers is enabled, don't run
78 	 * crash_kexec() here yet, which must be run after panic
79 	 * notifiers in panic().
80 	 */
81 	if (crash_kexec_post_notifiers)
82 		return 0;
83 	/*
84 	 * There are 4 panic() calls in make_task_dead() path, each of which
85 	 * corresponds to each of these 4 conditions.
86 	 */
87 	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
88 		return 1;
89 	return 0;
90 }
91 
kexec_crash_loaded(void)92 int kexec_crash_loaded(void)
93 {
94 	return !!kexec_crash_image;
95 }
96 EXPORT_SYMBOL_GPL(kexec_crash_loaded);
97 
98 /*
99  * No panic_cpu check version of crash_kexec().  This function is called
100  * only when panic_cpu holds the current CPU number; this is the only CPU
101  * which processes crash_kexec routines.
102  */
__crash_kexec(struct pt_regs * regs)103 void __noclone __crash_kexec(struct pt_regs *regs)
104 {
105 	/* Take the kexec_lock here to prevent sys_kexec_load
106 	 * running on one cpu from replacing the crash kernel
107 	 * we are using after a panic on a different cpu.
108 	 *
109 	 * If the crash kernel was not located in a fixed area
110 	 * of memory the xchg(&kexec_crash_image) would be
111 	 * sufficient.  But since I reuse the memory...
112 	 */
113 	if (kexec_trylock()) {
114 		if (kexec_crash_image) {
115 			struct pt_regs fixed_regs;
116 
117 			crash_setup_regs(&fixed_regs, regs);
118 			crash_save_vmcoreinfo();
119 			machine_crash_shutdown(&fixed_regs);
120 			machine_kexec(kexec_crash_image);
121 		}
122 		kexec_unlock();
123 	}
124 }
125 STACK_FRAME_NON_STANDARD(__crash_kexec);
126 
crash_kexec(struct pt_regs * regs)127 __bpf_kfunc void crash_kexec(struct pt_regs *regs)
128 {
129 	int old_cpu, this_cpu;
130 
131 	/*
132 	 * Only one CPU is allowed to execute the crash_kexec() code as with
133 	 * panic().  Otherwise parallel calls of panic() and crash_kexec()
134 	 * may stop each other.  To exclude them, we use panic_cpu here too.
135 	 */
136 	old_cpu = PANIC_CPU_INVALID;
137 	this_cpu = raw_smp_processor_id();
138 
139 	if (atomic_try_cmpxchg(&panic_cpu, &old_cpu, this_cpu)) {
140 		/* This is the 1st CPU which comes here, so go ahead. */
141 		__crash_kexec(regs);
142 
143 		/*
144 		 * Reset panic_cpu to allow another panic()/crash_kexec()
145 		 * call.
146 		 */
147 		atomic_set(&panic_cpu, PANIC_CPU_INVALID);
148 	}
149 }
150 
crash_resource_size(const struct resource * res)151 static inline resource_size_t crash_resource_size(const struct resource *res)
152 {
153 	return !res->end ? 0 : resource_size(res);
154 }
155 
156 
157 
158 
crash_prepare_elf64_headers(struct crash_mem * mem,int need_kernel_map,void ** addr,unsigned long * sz)159 int crash_prepare_elf64_headers(struct crash_mem *mem, int need_kernel_map,
160 			  void **addr, unsigned long *sz)
161 {
162 	Elf64_Ehdr *ehdr;
163 	Elf64_Phdr *phdr;
164 	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
165 	unsigned char *buf;
166 	unsigned int cpu, i;
167 	unsigned long long notes_addr;
168 	unsigned long mstart, mend;
169 
170 	/* extra phdr for vmcoreinfo ELF note */
171 	nr_phdr = nr_cpus + 1;
172 	nr_phdr += mem->nr_ranges;
173 
174 	/*
175 	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
176 	 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
177 	 * I think this is required by tools like gdb. So same physical
178 	 * memory will be mapped in two ELF headers. One will contain kernel
179 	 * text virtual addresses and other will have __va(physical) addresses.
180 	 */
181 
182 	nr_phdr++;
183 	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
184 	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
185 
186 	buf = vzalloc(elf_sz);
187 	if (!buf)
188 		return -ENOMEM;
189 
190 	ehdr = (Elf64_Ehdr *)buf;
191 	phdr = (Elf64_Phdr *)(ehdr + 1);
192 	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
193 	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
194 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
195 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
196 	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
197 	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
198 	ehdr->e_type = ET_CORE;
199 	ehdr->e_machine = ELF_ARCH;
200 	ehdr->e_version = EV_CURRENT;
201 	ehdr->e_phoff = sizeof(Elf64_Ehdr);
202 	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
203 	ehdr->e_phentsize = sizeof(Elf64_Phdr);
204 
205 	/* Prepare one phdr of type PT_NOTE for each possible CPU */
206 	for_each_possible_cpu(cpu) {
207 		phdr->p_type = PT_NOTE;
208 		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
209 		phdr->p_offset = phdr->p_paddr = notes_addr;
210 		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
211 		(ehdr->e_phnum)++;
212 		phdr++;
213 	}
214 
215 	/* Prepare one PT_NOTE header for vmcoreinfo */
216 	phdr->p_type = PT_NOTE;
217 	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
218 	phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
219 	(ehdr->e_phnum)++;
220 	phdr++;
221 
222 	/* Prepare PT_LOAD type program header for kernel text region */
223 	if (need_kernel_map) {
224 		phdr->p_type = PT_LOAD;
225 		phdr->p_flags = PF_R|PF_W|PF_X;
226 		phdr->p_vaddr = (unsigned long) _text;
227 		phdr->p_filesz = phdr->p_memsz = _end - _text;
228 		phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
229 		ehdr->e_phnum++;
230 		phdr++;
231 	}
232 
233 	/* Go through all the ranges in mem->ranges[] and prepare phdr */
234 	for (i = 0; i < mem->nr_ranges; i++) {
235 		mstart = mem->ranges[i].start;
236 		mend = mem->ranges[i].end;
237 
238 		phdr->p_type = PT_LOAD;
239 		phdr->p_flags = PF_R|PF_W|PF_X;
240 		phdr->p_offset  = mstart;
241 
242 		phdr->p_paddr = mstart;
243 		phdr->p_vaddr = (unsigned long) __va(mstart);
244 		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
245 		phdr->p_align = 0;
246 		ehdr->e_phnum++;
247 #ifdef CONFIG_KEXEC_FILE
248 		kexec_dprintk("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
249 			      phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
250 			      ehdr->e_phnum, phdr->p_offset);
251 #endif
252 		phdr++;
253 	}
254 
255 	*addr = buf;
256 	*sz = elf_sz;
257 	return 0;
258 }
259 
crash_exclude_mem_range(struct crash_mem * mem,unsigned long long mstart,unsigned long long mend)260 int crash_exclude_mem_range(struct crash_mem *mem,
261 			    unsigned long long mstart, unsigned long long mend)
262 {
263 	int i;
264 	unsigned long long start, end, p_start, p_end;
265 
266 	for (i = 0; i < mem->nr_ranges; i++) {
267 		start = mem->ranges[i].start;
268 		end = mem->ranges[i].end;
269 		p_start = mstart;
270 		p_end = mend;
271 
272 		if (p_start > end)
273 			continue;
274 
275 		/*
276 		 * Because the memory ranges in mem->ranges are stored in
277 		 * ascending order, when we detect `p_end < start`, we can
278 		 * immediately exit the for loop, as the subsequent memory
279 		 * ranges will definitely be outside the range we are looking
280 		 * for.
281 		 */
282 		if (p_end < start)
283 			break;
284 
285 		/* Truncate any area outside of range */
286 		if (p_start < start)
287 			p_start = start;
288 		if (p_end > end)
289 			p_end = end;
290 
291 		/* Found completely overlapping range */
292 		if (p_start == start && p_end == end) {
293 			memmove(&mem->ranges[i], &mem->ranges[i + 1],
294 				(mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i]));
295 			i--;
296 			mem->nr_ranges--;
297 		} else if (p_start > start && p_end < end) {
298 			/* Split original range */
299 			if (mem->nr_ranges >= mem->max_nr_ranges)
300 				return -ENOMEM;
301 
302 			memmove(&mem->ranges[i + 2], &mem->ranges[i + 1],
303 				(mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i]));
304 
305 			mem->ranges[i].end = p_start - 1;
306 			mem->ranges[i + 1].start = p_end + 1;
307 			mem->ranges[i + 1].end = end;
308 
309 			i++;
310 			mem->nr_ranges++;
311 		} else if (p_start != start)
312 			mem->ranges[i].end = p_start - 1;
313 		else
314 			mem->ranges[i].start = p_end + 1;
315 	}
316 
317 	return 0;
318 }
319 
crash_get_memory_size(void)320 ssize_t crash_get_memory_size(void)
321 {
322 	ssize_t size = 0;
323 
324 	if (!kexec_trylock())
325 		return -EBUSY;
326 
327 	size += crash_resource_size(&crashk_res);
328 	size += crash_resource_size(&crashk_low_res);
329 
330 	kexec_unlock();
331 	return size;
332 }
333 
__crash_shrink_memory(struct resource * old_res,unsigned long new_size)334 static int __crash_shrink_memory(struct resource *old_res,
335 				 unsigned long new_size)
336 {
337 	struct resource *ram_res;
338 
339 	ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
340 	if (!ram_res)
341 		return -ENOMEM;
342 
343 	ram_res->start = old_res->start + new_size;
344 	ram_res->end   = old_res->end;
345 	ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
346 	ram_res->name  = "System RAM";
347 
348 	if (!new_size) {
349 		release_resource(old_res);
350 		old_res->start = 0;
351 		old_res->end   = 0;
352 	} else {
353 		crashk_res.end = ram_res->start - 1;
354 	}
355 
356 	crash_free_reserved_phys_range(ram_res->start, ram_res->end);
357 	insert_resource(&iomem_resource, ram_res);
358 
359 	return 0;
360 }
361 
crash_shrink_memory(unsigned long new_size)362 int crash_shrink_memory(unsigned long new_size)
363 {
364 	int ret = 0;
365 	unsigned long old_size, low_size;
366 
367 	if (!kexec_trylock())
368 		return -EBUSY;
369 
370 	if (kexec_crash_image) {
371 		ret = -ENOENT;
372 		goto unlock;
373 	}
374 
375 	low_size = crash_resource_size(&crashk_low_res);
376 	old_size = crash_resource_size(&crashk_res) + low_size;
377 	new_size = roundup(new_size, KEXEC_CRASH_MEM_ALIGN);
378 	if (new_size >= old_size) {
379 		ret = (new_size == old_size) ? 0 : -EINVAL;
380 		goto unlock;
381 	}
382 
383 	/*
384 	 * (low_size > new_size) implies that low_size is greater than zero.
385 	 * This also means that if low_size is zero, the else branch is taken.
386 	 *
387 	 * If low_size is greater than 0, (low_size > new_size) indicates that
388 	 * crashk_low_res also needs to be shrunken. Otherwise, only crashk_res
389 	 * needs to be shrunken.
390 	 */
391 	if (low_size > new_size) {
392 		ret = __crash_shrink_memory(&crashk_res, 0);
393 		if (ret)
394 			goto unlock;
395 
396 		ret = __crash_shrink_memory(&crashk_low_res, new_size);
397 	} else {
398 		ret = __crash_shrink_memory(&crashk_res, new_size - low_size);
399 	}
400 
401 	/* Swap crashk_res and crashk_low_res if needed */
402 	if (!crashk_res.end && crashk_low_res.end) {
403 		crashk_res.start = crashk_low_res.start;
404 		crashk_res.end   = crashk_low_res.end;
405 		release_resource(&crashk_low_res);
406 		crashk_low_res.start = 0;
407 		crashk_low_res.end   = 0;
408 		insert_resource(&iomem_resource, &crashk_res);
409 	}
410 
411 unlock:
412 	kexec_unlock();
413 	return ret;
414 }
415 
crash_save_cpu(struct pt_regs * regs,int cpu)416 void crash_save_cpu(struct pt_regs *regs, int cpu)
417 {
418 	struct elf_prstatus prstatus;
419 	u32 *buf;
420 
421 	if ((cpu < 0) || (cpu >= nr_cpu_ids))
422 		return;
423 
424 	/* Using ELF notes here is opportunistic.
425 	 * I need a well defined structure format
426 	 * for the data I pass, and I need tags
427 	 * on the data to indicate what information I have
428 	 * squirrelled away.  ELF notes happen to provide
429 	 * all of that, so there is no need to invent something new.
430 	 */
431 	buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
432 	if (!buf)
433 		return;
434 	memset(&prstatus, 0, sizeof(prstatus));
435 	prstatus.common.pr_pid = current->pid;
436 	elf_core_copy_regs(&prstatus.pr_reg, regs);
437 	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
438 			      &prstatus, sizeof(prstatus));
439 	final_note(buf);
440 }
441 
442 
443 
crash_notes_memory_init(void)444 static int __init crash_notes_memory_init(void)
445 {
446 	/* Allocate memory for saving cpu registers. */
447 	size_t size, align;
448 
449 	/*
450 	 * crash_notes could be allocated across 2 vmalloc pages when percpu
451 	 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
452 	 * pages are also on 2 continuous physical pages. In this case the
453 	 * 2nd part of crash_notes in 2nd page could be lost since only the
454 	 * starting address and size of crash_notes are exported through sysfs.
455 	 * Here round up the size of crash_notes to the nearest power of two
456 	 * and pass it to __alloc_percpu as align value. This can make sure
457 	 * crash_notes is allocated inside one physical page.
458 	 */
459 	size = sizeof(note_buf_t);
460 	align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
461 
462 	/*
463 	 * Break compile if size is bigger than PAGE_SIZE since crash_notes
464 	 * definitely will be in 2 pages with that.
465 	 */
466 	BUILD_BUG_ON(size > PAGE_SIZE);
467 
468 	crash_notes = __alloc_percpu(size, align);
469 	if (!crash_notes) {
470 		pr_warn("Memory allocation for saving cpu register states failed\n");
471 		return -ENOMEM;
472 	}
473 	return 0;
474 }
475 subsys_initcall(crash_notes_memory_init);
476 
477 #endif /*CONFIG_CRASH_DUMP*/
478 
479 #ifdef CONFIG_CRASH_HOTPLUG
480 #undef pr_fmt
481 #define pr_fmt(fmt) "crash hp: " fmt
482 
483 /*
484  * Different than kexec/kdump loading/unloading/jumping/shrinking which
485  * usually rarely happen, there will be many crash hotplug events notified
486  * during one short period, e.g one memory board is hot added and memory
487  * regions are online. So mutex lock  __crash_hotplug_lock is used to
488  * serialize the crash hotplug handling specifically.
489  */
490 static DEFINE_MUTEX(__crash_hotplug_lock);
491 #define crash_hotplug_lock() mutex_lock(&__crash_hotplug_lock)
492 #define crash_hotplug_unlock() mutex_unlock(&__crash_hotplug_lock)
493 
494 /*
495  * This routine utilized when the crash_hotplug sysfs node is read.
496  * It reflects the kernel's ability/permission to update the crash
497  * elfcorehdr directly.
498  */
crash_check_update_elfcorehdr(void)499 int crash_check_update_elfcorehdr(void)
500 {
501 	int rc = 0;
502 
503 	crash_hotplug_lock();
504 	/* Obtain lock while reading crash information */
505 	if (!kexec_trylock()) {
506 		pr_info("kexec_trylock() failed, elfcorehdr may be inaccurate\n");
507 		crash_hotplug_unlock();
508 		return 0;
509 	}
510 	if (kexec_crash_image) {
511 		if (kexec_crash_image->file_mode)
512 			rc = 1;
513 		else
514 			rc = kexec_crash_image->update_elfcorehdr;
515 	}
516 	/* Release lock now that update complete */
517 	kexec_unlock();
518 	crash_hotplug_unlock();
519 
520 	return rc;
521 }
522 
523 /*
524  * To accurately reflect hot un/plug changes of cpu and memory resources
525  * (including onling and offlining of those resources), the elfcorehdr
526  * (which is passed to the crash kernel via the elfcorehdr= parameter)
527  * must be updated with the new list of CPUs and memories.
528  *
529  * In order to make changes to elfcorehdr, two conditions are needed:
530  * First, the segment containing the elfcorehdr must be large enough
531  * to permit a growing number of resources; the elfcorehdr memory size
532  * is based on NR_CPUS_DEFAULT and CRASH_MAX_MEMORY_RANGES.
533  * Second, purgatory must explicitly exclude the elfcorehdr from the
534  * list of segments it checks (since the elfcorehdr changes and thus
535  * would require an update to purgatory itself to update the digest).
536  */
crash_handle_hotplug_event(unsigned int hp_action,unsigned int cpu)537 static void crash_handle_hotplug_event(unsigned int hp_action, unsigned int cpu)
538 {
539 	struct kimage *image;
540 
541 	crash_hotplug_lock();
542 	/* Obtain lock while changing crash information */
543 	if (!kexec_trylock()) {
544 		pr_info("kexec_trylock() failed, elfcorehdr may be inaccurate\n");
545 		crash_hotplug_unlock();
546 		return;
547 	}
548 
549 	/* Check kdump is not loaded */
550 	if (!kexec_crash_image)
551 		goto out;
552 
553 	image = kexec_crash_image;
554 
555 	/* Check that updating elfcorehdr is permitted */
556 	if (!(image->file_mode || image->update_elfcorehdr))
557 		goto out;
558 
559 	if (hp_action == KEXEC_CRASH_HP_ADD_CPU ||
560 		hp_action == KEXEC_CRASH_HP_REMOVE_CPU)
561 		pr_debug("hp_action %u, cpu %u\n", hp_action, cpu);
562 	else
563 		pr_debug("hp_action %u\n", hp_action);
564 
565 	/*
566 	 * The elfcorehdr_index is set to -1 when the struct kimage
567 	 * is allocated. Find the segment containing the elfcorehdr,
568 	 * if not already found.
569 	 */
570 	if (image->elfcorehdr_index < 0) {
571 		unsigned long mem;
572 		unsigned char *ptr;
573 		unsigned int n;
574 
575 		for (n = 0; n < image->nr_segments; n++) {
576 			mem = image->segment[n].mem;
577 			ptr = kmap_local_page(pfn_to_page(mem >> PAGE_SHIFT));
578 			if (ptr) {
579 				/* The segment containing elfcorehdr */
580 				if (memcmp(ptr, ELFMAG, SELFMAG) == 0)
581 					image->elfcorehdr_index = (int)n;
582 				kunmap_local(ptr);
583 			}
584 		}
585 	}
586 
587 	if (image->elfcorehdr_index < 0) {
588 		pr_err("unable to locate elfcorehdr segment");
589 		goto out;
590 	}
591 
592 	/* Needed in order for the segments to be updated */
593 	arch_kexec_unprotect_crashkres();
594 
595 	/* Differentiate between normal load and hotplug update */
596 	image->hp_action = hp_action;
597 
598 	/* Now invoke arch-specific update handler */
599 	arch_crash_handle_hotplug_event(image);
600 
601 	/* No longer handling a hotplug event */
602 	image->hp_action = KEXEC_CRASH_HP_NONE;
603 	image->elfcorehdr_updated = true;
604 
605 	/* Change back to read-only */
606 	arch_kexec_protect_crashkres();
607 
608 	/* Errors in the callback is not a reason to rollback state */
609 out:
610 	/* Release lock now that update complete */
611 	kexec_unlock();
612 	crash_hotplug_unlock();
613 }
614 
crash_memhp_notifier(struct notifier_block * nb,unsigned long val,void * v)615 static int crash_memhp_notifier(struct notifier_block *nb, unsigned long val, void *v)
616 {
617 	switch (val) {
618 	case MEM_ONLINE:
619 		crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_MEMORY,
620 			KEXEC_CRASH_HP_INVALID_CPU);
621 		break;
622 
623 	case MEM_OFFLINE:
624 		crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_MEMORY,
625 			KEXEC_CRASH_HP_INVALID_CPU);
626 		break;
627 	}
628 	return NOTIFY_OK;
629 }
630 
631 static struct notifier_block crash_memhp_nb = {
632 	.notifier_call = crash_memhp_notifier,
633 	.priority = 0
634 };
635 
crash_cpuhp_online(unsigned int cpu)636 static int crash_cpuhp_online(unsigned int cpu)
637 {
638 	crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_CPU, cpu);
639 	return 0;
640 }
641 
crash_cpuhp_offline(unsigned int cpu)642 static int crash_cpuhp_offline(unsigned int cpu)
643 {
644 	crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_CPU, cpu);
645 	return 0;
646 }
647 
crash_hotplug_init(void)648 static int __init crash_hotplug_init(void)
649 {
650 	int result = 0;
651 
652 	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG))
653 		register_memory_notifier(&crash_memhp_nb);
654 
655 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
656 		result = cpuhp_setup_state_nocalls(CPUHP_BP_PREPARE_DYN,
657 			"crash/cpuhp", crash_cpuhp_online, crash_cpuhp_offline);
658 	}
659 
660 	return result;
661 }
662 
663 subsys_initcall(crash_hotplug_init);
664 #endif
665