xref: /linux/kernel/exit.c (revision c1be35a1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/blkdev.h>
53 #include <linux/task_work.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/kmsan.h>
64 #include <linux/random.h>
65 #include <linux/rcuwait.h>
66 #include <linux/compat.h>
67 #include <linux/io_uring.h>
68 #include <linux/kprobes.h>
69 #include <linux/rethook.h>
70 #include <linux/sysfs.h>
71 #include <linux/user_events.h>
72 #include <linux/uaccess.h>
73 
74 #include <uapi/linux/wait.h>
75 
76 #include <asm/unistd.h>
77 #include <asm/mmu_context.h>
78 
79 #include "exit.h"
80 
81 /*
82  * The default value should be high enough to not crash a system that randomly
83  * crashes its kernel from time to time, but low enough to at least not permit
84  * overflowing 32-bit refcounts or the ldsem writer count.
85  */
86 static unsigned int oops_limit = 10000;
87 
88 #ifdef CONFIG_SYSCTL
89 static struct ctl_table kern_exit_table[] = {
90 	{
91 		.procname       = "oops_limit",
92 		.data           = &oops_limit,
93 		.maxlen         = sizeof(oops_limit),
94 		.mode           = 0644,
95 		.proc_handler   = proc_douintvec,
96 	},
97 	{ }
98 };
99 
kernel_exit_sysctls_init(void)100 static __init int kernel_exit_sysctls_init(void)
101 {
102 	register_sysctl_init("kernel", kern_exit_table);
103 	return 0;
104 }
105 late_initcall(kernel_exit_sysctls_init);
106 #endif
107 
108 static atomic_t oops_count = ATOMIC_INIT(0);
109 
110 #ifdef CONFIG_SYSFS
oops_count_show(struct kobject * kobj,struct kobj_attribute * attr,char * page)111 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
112 			       char *page)
113 {
114 	return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
115 }
116 
117 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
118 
kernel_exit_sysfs_init(void)119 static __init int kernel_exit_sysfs_init(void)
120 {
121 	sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
122 	return 0;
123 }
124 late_initcall(kernel_exit_sysfs_init);
125 #endif
126 
__unhash_process(struct task_struct * p,bool group_dead)127 static void __unhash_process(struct task_struct *p, bool group_dead)
128 {
129 	nr_threads--;
130 	detach_pid(p, PIDTYPE_PID);
131 	if (group_dead) {
132 		detach_pid(p, PIDTYPE_TGID);
133 		detach_pid(p, PIDTYPE_PGID);
134 		detach_pid(p, PIDTYPE_SID);
135 
136 		list_del_rcu(&p->tasks);
137 		list_del_init(&p->sibling);
138 		__this_cpu_dec(process_counts);
139 	}
140 	list_del_rcu(&p->thread_node);
141 }
142 
143 /*
144  * This function expects the tasklist_lock write-locked.
145  */
__exit_signal(struct task_struct * tsk)146 static void __exit_signal(struct task_struct *tsk)
147 {
148 	struct signal_struct *sig = tsk->signal;
149 	bool group_dead = thread_group_leader(tsk);
150 	struct sighand_struct *sighand;
151 	struct tty_struct *tty;
152 	u64 utime, stime;
153 
154 	sighand = rcu_dereference_check(tsk->sighand,
155 					lockdep_tasklist_lock_is_held());
156 	spin_lock(&sighand->siglock);
157 
158 #ifdef CONFIG_POSIX_TIMERS
159 	posix_cpu_timers_exit(tsk);
160 	if (group_dead)
161 		posix_cpu_timers_exit_group(tsk);
162 #endif
163 
164 	if (group_dead) {
165 		tty = sig->tty;
166 		sig->tty = NULL;
167 	} else {
168 		/*
169 		 * If there is any task waiting for the group exit
170 		 * then notify it:
171 		 */
172 		if (sig->notify_count > 0 && !--sig->notify_count)
173 			wake_up_process(sig->group_exec_task);
174 
175 		if (tsk == sig->curr_target)
176 			sig->curr_target = next_thread(tsk);
177 	}
178 
179 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
180 			      sizeof(unsigned long long));
181 
182 	/*
183 	 * Accumulate here the counters for all threads as they die. We could
184 	 * skip the group leader because it is the last user of signal_struct,
185 	 * but we want to avoid the race with thread_group_cputime() which can
186 	 * see the empty ->thread_head list.
187 	 */
188 	task_cputime(tsk, &utime, &stime);
189 	write_seqlock(&sig->stats_lock);
190 	sig->utime += utime;
191 	sig->stime += stime;
192 	sig->gtime += task_gtime(tsk);
193 	sig->min_flt += tsk->min_flt;
194 	sig->maj_flt += tsk->maj_flt;
195 	sig->nvcsw += tsk->nvcsw;
196 	sig->nivcsw += tsk->nivcsw;
197 	sig->inblock += task_io_get_inblock(tsk);
198 	sig->oublock += task_io_get_oublock(tsk);
199 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
200 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
201 	sig->nr_threads--;
202 	__unhash_process(tsk, group_dead);
203 	write_sequnlock(&sig->stats_lock);
204 
205 	/*
206 	 * Do this under ->siglock, we can race with another thread
207 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
208 	 */
209 	flush_sigqueue(&tsk->pending);
210 	tsk->sighand = NULL;
211 	spin_unlock(&sighand->siglock);
212 
213 	__cleanup_sighand(sighand);
214 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
215 	if (group_dead) {
216 		flush_sigqueue(&sig->shared_pending);
217 		tty_kref_put(tty);
218 	}
219 }
220 
delayed_put_task_struct(struct rcu_head * rhp)221 static void delayed_put_task_struct(struct rcu_head *rhp)
222 {
223 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
224 
225 	kprobe_flush_task(tsk);
226 	rethook_flush_task(tsk);
227 	perf_event_delayed_put(tsk);
228 	trace_sched_process_free(tsk);
229 	put_task_struct(tsk);
230 }
231 
put_task_struct_rcu_user(struct task_struct * task)232 void put_task_struct_rcu_user(struct task_struct *task)
233 {
234 	if (refcount_dec_and_test(&task->rcu_users))
235 		call_rcu(&task->rcu, delayed_put_task_struct);
236 }
237 
release_thread(struct task_struct * dead_task)238 void __weak release_thread(struct task_struct *dead_task)
239 {
240 }
241 
release_task(struct task_struct * p)242 void release_task(struct task_struct *p)
243 {
244 	struct task_struct *leader;
245 	struct pid *thread_pid;
246 	int zap_leader;
247 repeat:
248 	/* don't need to get the RCU readlock here - the process is dead and
249 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
250 	rcu_read_lock();
251 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
252 	rcu_read_unlock();
253 
254 	cgroup_release(p);
255 
256 	write_lock_irq(&tasklist_lock);
257 	ptrace_release_task(p);
258 	thread_pid = get_pid(p->thread_pid);
259 	__exit_signal(p);
260 
261 	/*
262 	 * If we are the last non-leader member of the thread
263 	 * group, and the leader is zombie, then notify the
264 	 * group leader's parent process. (if it wants notification.)
265 	 */
266 	zap_leader = 0;
267 	leader = p->group_leader;
268 	if (leader != p && thread_group_empty(leader)
269 			&& leader->exit_state == EXIT_ZOMBIE) {
270 		/*
271 		 * If we were the last child thread and the leader has
272 		 * exited already, and the leader's parent ignores SIGCHLD,
273 		 * then we are the one who should release the leader.
274 		 */
275 		zap_leader = do_notify_parent(leader, leader->exit_signal);
276 		if (zap_leader)
277 			leader->exit_state = EXIT_DEAD;
278 	}
279 
280 	write_unlock_irq(&tasklist_lock);
281 	seccomp_filter_release(p);
282 	proc_flush_pid(thread_pid);
283 	put_pid(thread_pid);
284 	release_thread(p);
285 	put_task_struct_rcu_user(p);
286 
287 	p = leader;
288 	if (unlikely(zap_leader))
289 		goto repeat;
290 }
291 
rcuwait_wake_up(struct rcuwait * w)292 int rcuwait_wake_up(struct rcuwait *w)
293 {
294 	int ret = 0;
295 	struct task_struct *task;
296 
297 	rcu_read_lock();
298 
299 	/*
300 	 * Order condition vs @task, such that everything prior to the load
301 	 * of @task is visible. This is the condition as to why the user called
302 	 * rcuwait_wake() in the first place. Pairs with set_current_state()
303 	 * barrier (A) in rcuwait_wait_event().
304 	 *
305 	 *    WAIT                WAKE
306 	 *    [S] tsk = current	  [S] cond = true
307 	 *        MB (A)	      MB (B)
308 	 *    [L] cond		  [L] tsk
309 	 */
310 	smp_mb(); /* (B) */
311 
312 	task = rcu_dereference(w->task);
313 	if (task)
314 		ret = wake_up_process(task);
315 	rcu_read_unlock();
316 
317 	return ret;
318 }
319 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
320 
321 /*
322  * Determine if a process group is "orphaned", according to the POSIX
323  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
324  * by terminal-generated stop signals.  Newly orphaned process groups are
325  * to receive a SIGHUP and a SIGCONT.
326  *
327  * "I ask you, have you ever known what it is to be an orphan?"
328  */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)329 static int will_become_orphaned_pgrp(struct pid *pgrp,
330 					struct task_struct *ignored_task)
331 {
332 	struct task_struct *p;
333 
334 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
335 		if ((p == ignored_task) ||
336 		    (p->exit_state && thread_group_empty(p)) ||
337 		    is_global_init(p->real_parent))
338 			continue;
339 
340 		if (task_pgrp(p->real_parent) != pgrp &&
341 		    task_session(p->real_parent) == task_session(p))
342 			return 0;
343 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
344 
345 	return 1;
346 }
347 
is_current_pgrp_orphaned(void)348 int is_current_pgrp_orphaned(void)
349 {
350 	int retval;
351 
352 	read_lock(&tasklist_lock);
353 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
354 	read_unlock(&tasklist_lock);
355 
356 	return retval;
357 }
358 
has_stopped_jobs(struct pid * pgrp)359 static bool has_stopped_jobs(struct pid *pgrp)
360 {
361 	struct task_struct *p;
362 
363 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
364 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
365 			return true;
366 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
367 
368 	return false;
369 }
370 
371 /*
372  * Check to see if any process groups have become orphaned as
373  * a result of our exiting, and if they have any stopped jobs,
374  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
375  */
376 static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)377 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
378 {
379 	struct pid *pgrp = task_pgrp(tsk);
380 	struct task_struct *ignored_task = tsk;
381 
382 	if (!parent)
383 		/* exit: our father is in a different pgrp than
384 		 * we are and we were the only connection outside.
385 		 */
386 		parent = tsk->real_parent;
387 	else
388 		/* reparent: our child is in a different pgrp than
389 		 * we are, and it was the only connection outside.
390 		 */
391 		ignored_task = NULL;
392 
393 	if (task_pgrp(parent) != pgrp &&
394 	    task_session(parent) == task_session(tsk) &&
395 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
396 	    has_stopped_jobs(pgrp)) {
397 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
398 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
399 	}
400 }
401 
coredump_task_exit(struct task_struct * tsk)402 static void coredump_task_exit(struct task_struct *tsk)
403 {
404 	struct core_state *core_state;
405 
406 	/*
407 	 * Serialize with any possible pending coredump.
408 	 * We must hold siglock around checking core_state
409 	 * and setting PF_POSTCOREDUMP.  The core-inducing thread
410 	 * will increment ->nr_threads for each thread in the
411 	 * group without PF_POSTCOREDUMP set.
412 	 */
413 	spin_lock_irq(&tsk->sighand->siglock);
414 	tsk->flags |= PF_POSTCOREDUMP;
415 	core_state = tsk->signal->core_state;
416 	spin_unlock_irq(&tsk->sighand->siglock);
417 
418 	/* The vhost_worker does not particpate in coredumps */
419 	if (core_state &&
420 	    ((tsk->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)) {
421 		struct core_thread self;
422 
423 		self.task = current;
424 		if (self.task->flags & PF_SIGNALED)
425 			self.next = xchg(&core_state->dumper.next, &self);
426 		else
427 			self.task = NULL;
428 		/*
429 		 * Implies mb(), the result of xchg() must be visible
430 		 * to core_state->dumper.
431 		 */
432 		if (atomic_dec_and_test(&core_state->nr_threads))
433 			complete(&core_state->startup);
434 
435 		for (;;) {
436 			set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
437 			if (!self.task) /* see coredump_finish() */
438 				break;
439 			schedule();
440 		}
441 		__set_current_state(TASK_RUNNING);
442 	}
443 }
444 
445 #ifdef CONFIG_MEMCG
446 /*
447  * A task is exiting.   If it owned this mm, find a new owner for the mm.
448  */
mm_update_next_owner(struct mm_struct * mm)449 void mm_update_next_owner(struct mm_struct *mm)
450 {
451 	struct task_struct *c, *g, *p = current;
452 
453 retry:
454 	/*
455 	 * If the exiting or execing task is not the owner, it's
456 	 * someone else's problem.
457 	 */
458 	if (mm->owner != p)
459 		return;
460 	/*
461 	 * The current owner is exiting/execing and there are no other
462 	 * candidates.  Do not leave the mm pointing to a possibly
463 	 * freed task structure.
464 	 */
465 	if (atomic_read(&mm->mm_users) <= 1) {
466 		WRITE_ONCE(mm->owner, NULL);
467 		return;
468 	}
469 
470 	read_lock(&tasklist_lock);
471 	/*
472 	 * Search in the children
473 	 */
474 	list_for_each_entry(c, &p->children, sibling) {
475 		if (c->mm == mm)
476 			goto assign_new_owner;
477 	}
478 
479 	/*
480 	 * Search in the siblings
481 	 */
482 	list_for_each_entry(c, &p->real_parent->children, sibling) {
483 		if (c->mm == mm)
484 			goto assign_new_owner;
485 	}
486 
487 	/*
488 	 * Search through everything else, we should not get here often.
489 	 */
490 	for_each_process(g) {
491 		if (g->flags & PF_KTHREAD)
492 			continue;
493 		for_each_thread(g, c) {
494 			if (c->mm == mm)
495 				goto assign_new_owner;
496 			if (c->mm)
497 				break;
498 		}
499 	}
500 	read_unlock(&tasklist_lock);
501 	/*
502 	 * We found no owner yet mm_users > 1: this implies that we are
503 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
504 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
505 	 */
506 	WRITE_ONCE(mm->owner, NULL);
507 	return;
508 
509 assign_new_owner:
510 	BUG_ON(c == p);
511 	get_task_struct(c);
512 	/*
513 	 * The task_lock protects c->mm from changing.
514 	 * We always want mm->owner->mm == mm
515 	 */
516 	task_lock(c);
517 	/*
518 	 * Delay read_unlock() till we have the task_lock()
519 	 * to ensure that c does not slip away underneath us
520 	 */
521 	read_unlock(&tasklist_lock);
522 	if (c->mm != mm) {
523 		task_unlock(c);
524 		put_task_struct(c);
525 		goto retry;
526 	}
527 	WRITE_ONCE(mm->owner, c);
528 	lru_gen_migrate_mm(mm);
529 	task_unlock(c);
530 	put_task_struct(c);
531 }
532 #endif /* CONFIG_MEMCG */
533 
534 /*
535  * Turn us into a lazy TLB process if we
536  * aren't already..
537  */
exit_mm(void)538 static void exit_mm(void)
539 {
540 	struct mm_struct *mm = current->mm;
541 
542 	exit_mm_release(current, mm);
543 	if (!mm)
544 		return;
545 	mmap_read_lock(mm);
546 	mmgrab_lazy_tlb(mm);
547 	BUG_ON(mm != current->active_mm);
548 	/* more a memory barrier than a real lock */
549 	task_lock(current);
550 	/*
551 	 * When a thread stops operating on an address space, the loop
552 	 * in membarrier_private_expedited() may not observe that
553 	 * tsk->mm, and the loop in membarrier_global_expedited() may
554 	 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
555 	 * rq->membarrier_state, so those would not issue an IPI.
556 	 * Membarrier requires a memory barrier after accessing
557 	 * user-space memory, before clearing tsk->mm or the
558 	 * rq->membarrier_state.
559 	 */
560 	smp_mb__after_spinlock();
561 	local_irq_disable();
562 	current->mm = NULL;
563 	membarrier_update_current_mm(NULL);
564 	enter_lazy_tlb(mm, current);
565 	local_irq_enable();
566 	task_unlock(current);
567 	mmap_read_unlock(mm);
568 	mm_update_next_owner(mm);
569 	mmput(mm);
570 	if (test_thread_flag(TIF_MEMDIE))
571 		exit_oom_victim();
572 }
573 
find_alive_thread(struct task_struct * p)574 static struct task_struct *find_alive_thread(struct task_struct *p)
575 {
576 	struct task_struct *t;
577 
578 	for_each_thread(p, t) {
579 		if (!(t->flags & PF_EXITING))
580 			return t;
581 	}
582 	return NULL;
583 }
584 
find_child_reaper(struct task_struct * father,struct list_head * dead)585 static struct task_struct *find_child_reaper(struct task_struct *father,
586 						struct list_head *dead)
587 	__releases(&tasklist_lock)
588 	__acquires(&tasklist_lock)
589 {
590 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
591 	struct task_struct *reaper = pid_ns->child_reaper;
592 	struct task_struct *p, *n;
593 
594 	if (likely(reaper != father))
595 		return reaper;
596 
597 	reaper = find_alive_thread(father);
598 	if (reaper) {
599 		pid_ns->child_reaper = reaper;
600 		return reaper;
601 	}
602 
603 	write_unlock_irq(&tasklist_lock);
604 
605 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
606 		list_del_init(&p->ptrace_entry);
607 		release_task(p);
608 	}
609 
610 	zap_pid_ns_processes(pid_ns);
611 	write_lock_irq(&tasklist_lock);
612 
613 	return father;
614 }
615 
616 /*
617  * When we die, we re-parent all our children, and try to:
618  * 1. give them to another thread in our thread group, if such a member exists
619  * 2. give it to the first ancestor process which prctl'd itself as a
620  *    child_subreaper for its children (like a service manager)
621  * 3. give it to the init process (PID 1) in our pid namespace
622  */
find_new_reaper(struct task_struct * father,struct task_struct * child_reaper)623 static struct task_struct *find_new_reaper(struct task_struct *father,
624 					   struct task_struct *child_reaper)
625 {
626 	struct task_struct *thread, *reaper;
627 
628 	thread = find_alive_thread(father);
629 	if (thread)
630 		return thread;
631 
632 	if (father->signal->has_child_subreaper) {
633 		unsigned int ns_level = task_pid(father)->level;
634 		/*
635 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
636 		 * We can't check reaper != child_reaper to ensure we do not
637 		 * cross the namespaces, the exiting parent could be injected
638 		 * by setns() + fork().
639 		 * We check pid->level, this is slightly more efficient than
640 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
641 		 */
642 		for (reaper = father->real_parent;
643 		     task_pid(reaper)->level == ns_level;
644 		     reaper = reaper->real_parent) {
645 			if (reaper == &init_task)
646 				break;
647 			if (!reaper->signal->is_child_subreaper)
648 				continue;
649 			thread = find_alive_thread(reaper);
650 			if (thread)
651 				return thread;
652 		}
653 	}
654 
655 	return child_reaper;
656 }
657 
658 /*
659 * Any that need to be release_task'd are put on the @dead list.
660  */
reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)661 static void reparent_leader(struct task_struct *father, struct task_struct *p,
662 				struct list_head *dead)
663 {
664 	if (unlikely(p->exit_state == EXIT_DEAD))
665 		return;
666 
667 	/* We don't want people slaying init. */
668 	p->exit_signal = SIGCHLD;
669 
670 	/* If it has exited notify the new parent about this child's death. */
671 	if (!p->ptrace &&
672 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
673 		if (do_notify_parent(p, p->exit_signal)) {
674 			p->exit_state = EXIT_DEAD;
675 			list_add(&p->ptrace_entry, dead);
676 		}
677 	}
678 
679 	kill_orphaned_pgrp(p, father);
680 }
681 
682 /*
683  * This does two things:
684  *
685  * A.  Make init inherit all the child processes
686  * B.  Check to see if any process groups have become orphaned
687  *	as a result of our exiting, and if they have any stopped
688  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
689  */
forget_original_parent(struct task_struct * father,struct list_head * dead)690 static void forget_original_parent(struct task_struct *father,
691 					struct list_head *dead)
692 {
693 	struct task_struct *p, *t, *reaper;
694 
695 	if (unlikely(!list_empty(&father->ptraced)))
696 		exit_ptrace(father, dead);
697 
698 	/* Can drop and reacquire tasklist_lock */
699 	reaper = find_child_reaper(father, dead);
700 	if (list_empty(&father->children))
701 		return;
702 
703 	reaper = find_new_reaper(father, reaper);
704 	list_for_each_entry(p, &father->children, sibling) {
705 		for_each_thread(p, t) {
706 			RCU_INIT_POINTER(t->real_parent, reaper);
707 			BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
708 			if (likely(!t->ptrace))
709 				t->parent = t->real_parent;
710 			if (t->pdeath_signal)
711 				group_send_sig_info(t->pdeath_signal,
712 						    SEND_SIG_NOINFO, t,
713 						    PIDTYPE_TGID);
714 		}
715 		/*
716 		 * If this is a threaded reparent there is no need to
717 		 * notify anyone anything has happened.
718 		 */
719 		if (!same_thread_group(reaper, father))
720 			reparent_leader(father, p, dead);
721 	}
722 	list_splice_tail_init(&father->children, &reaper->children);
723 }
724 
725 /*
726  * Send signals to all our closest relatives so that they know
727  * to properly mourn us..
728  */
exit_notify(struct task_struct * tsk,int group_dead)729 static void exit_notify(struct task_struct *tsk, int group_dead)
730 {
731 	bool autoreap;
732 	struct task_struct *p, *n;
733 	LIST_HEAD(dead);
734 
735 	write_lock_irq(&tasklist_lock);
736 	forget_original_parent(tsk, &dead);
737 
738 	if (group_dead)
739 		kill_orphaned_pgrp(tsk->group_leader, NULL);
740 
741 	tsk->exit_state = EXIT_ZOMBIE;
742 	/*
743 	 * sub-thread or delay_group_leader(), wake up the
744 	 * PIDFD_THREAD waiters.
745 	 */
746 	if (!thread_group_empty(tsk))
747 		do_notify_pidfd(tsk);
748 
749 	if (unlikely(tsk->ptrace)) {
750 		int sig = thread_group_leader(tsk) &&
751 				thread_group_empty(tsk) &&
752 				!ptrace_reparented(tsk) ?
753 			tsk->exit_signal : SIGCHLD;
754 		autoreap = do_notify_parent(tsk, sig);
755 	} else if (thread_group_leader(tsk)) {
756 		autoreap = thread_group_empty(tsk) &&
757 			do_notify_parent(tsk, tsk->exit_signal);
758 	} else {
759 		autoreap = true;
760 	}
761 
762 	if (autoreap) {
763 		tsk->exit_state = EXIT_DEAD;
764 		list_add(&tsk->ptrace_entry, &dead);
765 	}
766 
767 	/* mt-exec, de_thread() is waiting for group leader */
768 	if (unlikely(tsk->signal->notify_count < 0))
769 		wake_up_process(tsk->signal->group_exec_task);
770 	write_unlock_irq(&tasklist_lock);
771 
772 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
773 		list_del_init(&p->ptrace_entry);
774 		release_task(p);
775 	}
776 }
777 
778 #ifdef CONFIG_DEBUG_STACK_USAGE
check_stack_usage(void)779 static void check_stack_usage(void)
780 {
781 	static DEFINE_SPINLOCK(low_water_lock);
782 	static int lowest_to_date = THREAD_SIZE;
783 	unsigned long free;
784 
785 	free = stack_not_used(current);
786 
787 	if (free >= lowest_to_date)
788 		return;
789 
790 	spin_lock(&low_water_lock);
791 	if (free < lowest_to_date) {
792 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
793 			current->comm, task_pid_nr(current), free);
794 		lowest_to_date = free;
795 	}
796 	spin_unlock(&low_water_lock);
797 }
798 #else
check_stack_usage(void)799 static inline void check_stack_usage(void) {}
800 #endif
801 
synchronize_group_exit(struct task_struct * tsk,long code)802 static void synchronize_group_exit(struct task_struct *tsk, long code)
803 {
804 	struct sighand_struct *sighand = tsk->sighand;
805 	struct signal_struct *signal = tsk->signal;
806 
807 	spin_lock_irq(&sighand->siglock);
808 	signal->quick_threads--;
809 	if ((signal->quick_threads == 0) &&
810 	    !(signal->flags & SIGNAL_GROUP_EXIT)) {
811 		signal->flags = SIGNAL_GROUP_EXIT;
812 		signal->group_exit_code = code;
813 		signal->group_stop_count = 0;
814 	}
815 	spin_unlock_irq(&sighand->siglock);
816 }
817 
do_exit(long code)818 void __noreturn do_exit(long code)
819 {
820 	struct task_struct *tsk = current;
821 	int group_dead;
822 
823 	WARN_ON(irqs_disabled());
824 
825 	synchronize_group_exit(tsk, code);
826 
827 	WARN_ON(tsk->plug);
828 
829 	kcov_task_exit(tsk);
830 	kmsan_task_exit(tsk);
831 
832 	coredump_task_exit(tsk);
833 	ptrace_event(PTRACE_EVENT_EXIT, code);
834 	user_events_exit(tsk);
835 
836 	io_uring_files_cancel();
837 	exit_signals(tsk);  /* sets PF_EXITING */
838 
839 	acct_update_integrals(tsk);
840 	group_dead = atomic_dec_and_test(&tsk->signal->live);
841 	if (group_dead) {
842 		/*
843 		 * If the last thread of global init has exited, panic
844 		 * immediately to get a useable coredump.
845 		 */
846 		if (unlikely(is_global_init(tsk)))
847 			panic("Attempted to kill init! exitcode=0x%08x\n",
848 				tsk->signal->group_exit_code ?: (int)code);
849 
850 #ifdef CONFIG_POSIX_TIMERS
851 		hrtimer_cancel(&tsk->signal->real_timer);
852 		exit_itimers(tsk);
853 #endif
854 		if (tsk->mm)
855 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
856 	}
857 	acct_collect(code, group_dead);
858 	if (group_dead)
859 		tty_audit_exit();
860 	audit_free(tsk);
861 
862 	tsk->exit_code = code;
863 	taskstats_exit(tsk, group_dead);
864 
865 	exit_mm();
866 
867 	if (group_dead)
868 		acct_process();
869 	trace_sched_process_exit(tsk);
870 
871 	exit_sem(tsk);
872 	exit_shm(tsk);
873 	exit_files(tsk);
874 	exit_fs(tsk);
875 	if (group_dead)
876 		disassociate_ctty(1);
877 	exit_task_namespaces(tsk);
878 	exit_task_work(tsk);
879 	exit_thread(tsk);
880 
881 	/*
882 	 * Flush inherited counters to the parent - before the parent
883 	 * gets woken up by child-exit notifications.
884 	 *
885 	 * because of cgroup mode, must be called before cgroup_exit()
886 	 */
887 	perf_event_exit_task(tsk);
888 
889 	sched_autogroup_exit_task(tsk);
890 	cgroup_exit(tsk);
891 
892 	/*
893 	 * FIXME: do that only when needed, using sched_exit tracepoint
894 	 */
895 	flush_ptrace_hw_breakpoint(tsk);
896 
897 	exit_tasks_rcu_start();
898 	exit_notify(tsk, group_dead);
899 	proc_exit_connector(tsk);
900 	mpol_put_task_policy(tsk);
901 #ifdef CONFIG_FUTEX
902 	if (unlikely(current->pi_state_cache))
903 		kfree(current->pi_state_cache);
904 #endif
905 	/*
906 	 * Make sure we are holding no locks:
907 	 */
908 	debug_check_no_locks_held();
909 
910 	if (tsk->io_context)
911 		exit_io_context(tsk);
912 
913 	if (tsk->splice_pipe)
914 		free_pipe_info(tsk->splice_pipe);
915 
916 	if (tsk->task_frag.page)
917 		put_page(tsk->task_frag.page);
918 
919 	exit_task_stack_account(tsk);
920 
921 	check_stack_usage();
922 	preempt_disable();
923 	if (tsk->nr_dirtied)
924 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
925 	exit_rcu();
926 	exit_tasks_rcu_finish();
927 
928 	lockdep_free_task(tsk);
929 	do_task_dead();
930 }
931 
make_task_dead(int signr)932 void __noreturn make_task_dead(int signr)
933 {
934 	/*
935 	 * Take the task off the cpu after something catastrophic has
936 	 * happened.
937 	 *
938 	 * We can get here from a kernel oops, sometimes with preemption off.
939 	 * Start by checking for critical errors.
940 	 * Then fix up important state like USER_DS and preemption.
941 	 * Then do everything else.
942 	 */
943 	struct task_struct *tsk = current;
944 	unsigned int limit;
945 
946 	if (unlikely(in_interrupt()))
947 		panic("Aiee, killing interrupt handler!");
948 	if (unlikely(!tsk->pid))
949 		panic("Attempted to kill the idle task!");
950 
951 	if (unlikely(irqs_disabled())) {
952 		pr_info("note: %s[%d] exited with irqs disabled\n",
953 			current->comm, task_pid_nr(current));
954 		local_irq_enable();
955 	}
956 	if (unlikely(in_atomic())) {
957 		pr_info("note: %s[%d] exited with preempt_count %d\n",
958 			current->comm, task_pid_nr(current),
959 			preempt_count());
960 		preempt_count_set(PREEMPT_ENABLED);
961 	}
962 
963 	/*
964 	 * Every time the system oopses, if the oops happens while a reference
965 	 * to an object was held, the reference leaks.
966 	 * If the oops doesn't also leak memory, repeated oopsing can cause
967 	 * reference counters to wrap around (if they're not using refcount_t).
968 	 * This means that repeated oopsing can make unexploitable-looking bugs
969 	 * exploitable through repeated oopsing.
970 	 * To make sure this can't happen, place an upper bound on how often the
971 	 * kernel may oops without panic().
972 	 */
973 	limit = READ_ONCE(oops_limit);
974 	if (atomic_inc_return(&oops_count) >= limit && limit)
975 		panic("Oopsed too often (kernel.oops_limit is %d)", limit);
976 
977 	/*
978 	 * We're taking recursive faults here in make_task_dead. Safest is to just
979 	 * leave this task alone and wait for reboot.
980 	 */
981 	if (unlikely(tsk->flags & PF_EXITING)) {
982 		pr_alert("Fixing recursive fault but reboot is needed!\n");
983 		futex_exit_recursive(tsk);
984 		tsk->exit_state = EXIT_DEAD;
985 		refcount_inc(&tsk->rcu_users);
986 		do_task_dead();
987 	}
988 
989 	do_exit(signr);
990 }
991 
SYSCALL_DEFINE1(exit,int,error_code)992 SYSCALL_DEFINE1(exit, int, error_code)
993 {
994 	do_exit((error_code&0xff)<<8);
995 }
996 
997 /*
998  * Take down every thread in the group.  This is called by fatal signals
999  * as well as by sys_exit_group (below).
1000  */
1001 void __noreturn
do_group_exit(int exit_code)1002 do_group_exit(int exit_code)
1003 {
1004 	struct signal_struct *sig = current->signal;
1005 
1006 	if (sig->flags & SIGNAL_GROUP_EXIT)
1007 		exit_code = sig->group_exit_code;
1008 	else if (sig->group_exec_task)
1009 		exit_code = 0;
1010 	else {
1011 		struct sighand_struct *const sighand = current->sighand;
1012 
1013 		spin_lock_irq(&sighand->siglock);
1014 		if (sig->flags & SIGNAL_GROUP_EXIT)
1015 			/* Another thread got here before we took the lock.  */
1016 			exit_code = sig->group_exit_code;
1017 		else if (sig->group_exec_task)
1018 			exit_code = 0;
1019 		else {
1020 			sig->group_exit_code = exit_code;
1021 			sig->flags = SIGNAL_GROUP_EXIT;
1022 			zap_other_threads(current);
1023 		}
1024 		spin_unlock_irq(&sighand->siglock);
1025 	}
1026 
1027 	do_exit(exit_code);
1028 	/* NOTREACHED */
1029 }
1030 
1031 /*
1032  * this kills every thread in the thread group. Note that any externally
1033  * wait4()-ing process will get the correct exit code - even if this
1034  * thread is not the thread group leader.
1035  */
SYSCALL_DEFINE1(exit_group,int,error_code)1036 SYSCALL_DEFINE1(exit_group, int, error_code)
1037 {
1038 	do_group_exit((error_code & 0xff) << 8);
1039 	/* NOTREACHED */
1040 	return 0;
1041 }
1042 
eligible_pid(struct wait_opts * wo,struct task_struct * p)1043 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1044 {
1045 	return	wo->wo_type == PIDTYPE_MAX ||
1046 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1047 }
1048 
1049 static int
eligible_child(struct wait_opts * wo,bool ptrace,struct task_struct * p)1050 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1051 {
1052 	if (!eligible_pid(wo, p))
1053 		return 0;
1054 
1055 	/*
1056 	 * Wait for all children (clone and not) if __WALL is set or
1057 	 * if it is traced by us.
1058 	 */
1059 	if (ptrace || (wo->wo_flags & __WALL))
1060 		return 1;
1061 
1062 	/*
1063 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
1064 	 * otherwise, wait for non-clone children *only*.
1065 	 *
1066 	 * Note: a "clone" child here is one that reports to its parent
1067 	 * using a signal other than SIGCHLD, or a non-leader thread which
1068 	 * we can only see if it is traced by us.
1069 	 */
1070 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1071 		return 0;
1072 
1073 	return 1;
1074 }
1075 
1076 /*
1077  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1078  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1079  * the lock and this task is uninteresting.  If we return nonzero, we have
1080  * released the lock and the system call should return.
1081  */
wait_task_zombie(struct wait_opts * wo,struct task_struct * p)1082 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1083 {
1084 	int state, status;
1085 	pid_t pid = task_pid_vnr(p);
1086 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1087 	struct waitid_info *infop;
1088 
1089 	if (!likely(wo->wo_flags & WEXITED))
1090 		return 0;
1091 
1092 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1093 		status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1094 			? p->signal->group_exit_code : p->exit_code;
1095 		get_task_struct(p);
1096 		read_unlock(&tasklist_lock);
1097 		sched_annotate_sleep();
1098 		if (wo->wo_rusage)
1099 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1100 		put_task_struct(p);
1101 		goto out_info;
1102 	}
1103 	/*
1104 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1105 	 */
1106 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1107 		EXIT_TRACE : EXIT_DEAD;
1108 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1109 		return 0;
1110 	/*
1111 	 * We own this thread, nobody else can reap it.
1112 	 */
1113 	read_unlock(&tasklist_lock);
1114 	sched_annotate_sleep();
1115 
1116 	/*
1117 	 * Check thread_group_leader() to exclude the traced sub-threads.
1118 	 */
1119 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1120 		struct signal_struct *sig = p->signal;
1121 		struct signal_struct *psig = current->signal;
1122 		unsigned long maxrss;
1123 		u64 tgutime, tgstime;
1124 
1125 		/*
1126 		 * The resource counters for the group leader are in its
1127 		 * own task_struct.  Those for dead threads in the group
1128 		 * are in its signal_struct, as are those for the child
1129 		 * processes it has previously reaped.  All these
1130 		 * accumulate in the parent's signal_struct c* fields.
1131 		 *
1132 		 * We don't bother to take a lock here to protect these
1133 		 * p->signal fields because the whole thread group is dead
1134 		 * and nobody can change them.
1135 		 *
1136 		 * psig->stats_lock also protects us from our sub-threads
1137 		 * which can reap other children at the same time.
1138 		 *
1139 		 * We use thread_group_cputime_adjusted() to get times for
1140 		 * the thread group, which consolidates times for all threads
1141 		 * in the group including the group leader.
1142 		 */
1143 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1144 		write_seqlock_irq(&psig->stats_lock);
1145 		psig->cutime += tgutime + sig->cutime;
1146 		psig->cstime += tgstime + sig->cstime;
1147 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1148 		psig->cmin_flt +=
1149 			p->min_flt + sig->min_flt + sig->cmin_flt;
1150 		psig->cmaj_flt +=
1151 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1152 		psig->cnvcsw +=
1153 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1154 		psig->cnivcsw +=
1155 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1156 		psig->cinblock +=
1157 			task_io_get_inblock(p) +
1158 			sig->inblock + sig->cinblock;
1159 		psig->coublock +=
1160 			task_io_get_oublock(p) +
1161 			sig->oublock + sig->coublock;
1162 		maxrss = max(sig->maxrss, sig->cmaxrss);
1163 		if (psig->cmaxrss < maxrss)
1164 			psig->cmaxrss = maxrss;
1165 		task_io_accounting_add(&psig->ioac, &p->ioac);
1166 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1167 		write_sequnlock_irq(&psig->stats_lock);
1168 	}
1169 
1170 	if (wo->wo_rusage)
1171 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1172 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1173 		? p->signal->group_exit_code : p->exit_code;
1174 	wo->wo_stat = status;
1175 
1176 	if (state == EXIT_TRACE) {
1177 		write_lock_irq(&tasklist_lock);
1178 		/* We dropped tasklist, ptracer could die and untrace */
1179 		ptrace_unlink(p);
1180 
1181 		/* If parent wants a zombie, don't release it now */
1182 		state = EXIT_ZOMBIE;
1183 		if (do_notify_parent(p, p->exit_signal))
1184 			state = EXIT_DEAD;
1185 		p->exit_state = state;
1186 		write_unlock_irq(&tasklist_lock);
1187 	}
1188 	if (state == EXIT_DEAD)
1189 		release_task(p);
1190 
1191 out_info:
1192 	infop = wo->wo_info;
1193 	if (infop) {
1194 		if ((status & 0x7f) == 0) {
1195 			infop->cause = CLD_EXITED;
1196 			infop->status = status >> 8;
1197 		} else {
1198 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1199 			infop->status = status & 0x7f;
1200 		}
1201 		infop->pid = pid;
1202 		infop->uid = uid;
1203 	}
1204 
1205 	return pid;
1206 }
1207 
task_stopped_code(struct task_struct * p,bool ptrace)1208 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1209 {
1210 	if (ptrace) {
1211 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1212 			return &p->exit_code;
1213 	} else {
1214 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1215 			return &p->signal->group_exit_code;
1216 	}
1217 	return NULL;
1218 }
1219 
1220 /**
1221  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1222  * @wo: wait options
1223  * @ptrace: is the wait for ptrace
1224  * @p: task to wait for
1225  *
1226  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1227  *
1228  * CONTEXT:
1229  * read_lock(&tasklist_lock), which is released if return value is
1230  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1231  *
1232  * RETURNS:
1233  * 0 if wait condition didn't exist and search for other wait conditions
1234  * should continue.  Non-zero return, -errno on failure and @p's pid on
1235  * success, implies that tasklist_lock is released and wait condition
1236  * search should terminate.
1237  */
wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1238 static int wait_task_stopped(struct wait_opts *wo,
1239 				int ptrace, struct task_struct *p)
1240 {
1241 	struct waitid_info *infop;
1242 	int exit_code, *p_code, why;
1243 	uid_t uid = 0; /* unneeded, required by compiler */
1244 	pid_t pid;
1245 
1246 	/*
1247 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1248 	 */
1249 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1250 		return 0;
1251 
1252 	if (!task_stopped_code(p, ptrace))
1253 		return 0;
1254 
1255 	exit_code = 0;
1256 	spin_lock_irq(&p->sighand->siglock);
1257 
1258 	p_code = task_stopped_code(p, ptrace);
1259 	if (unlikely(!p_code))
1260 		goto unlock_sig;
1261 
1262 	exit_code = *p_code;
1263 	if (!exit_code)
1264 		goto unlock_sig;
1265 
1266 	if (!unlikely(wo->wo_flags & WNOWAIT))
1267 		*p_code = 0;
1268 
1269 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1270 unlock_sig:
1271 	spin_unlock_irq(&p->sighand->siglock);
1272 	if (!exit_code)
1273 		return 0;
1274 
1275 	/*
1276 	 * Now we are pretty sure this task is interesting.
1277 	 * Make sure it doesn't get reaped out from under us while we
1278 	 * give up the lock and then examine it below.  We don't want to
1279 	 * keep holding onto the tasklist_lock while we call getrusage and
1280 	 * possibly take page faults for user memory.
1281 	 */
1282 	get_task_struct(p);
1283 	pid = task_pid_vnr(p);
1284 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1285 	read_unlock(&tasklist_lock);
1286 	sched_annotate_sleep();
1287 	if (wo->wo_rusage)
1288 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1289 	put_task_struct(p);
1290 
1291 	if (likely(!(wo->wo_flags & WNOWAIT)))
1292 		wo->wo_stat = (exit_code << 8) | 0x7f;
1293 
1294 	infop = wo->wo_info;
1295 	if (infop) {
1296 		infop->cause = why;
1297 		infop->status = exit_code;
1298 		infop->pid = pid;
1299 		infop->uid = uid;
1300 	}
1301 	return pid;
1302 }
1303 
1304 /*
1305  * Handle do_wait work for one task in a live, non-stopped state.
1306  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1307  * the lock and this task is uninteresting.  If we return nonzero, we have
1308  * released the lock and the system call should return.
1309  */
wait_task_continued(struct wait_opts * wo,struct task_struct * p)1310 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1311 {
1312 	struct waitid_info *infop;
1313 	pid_t pid;
1314 	uid_t uid;
1315 
1316 	if (!unlikely(wo->wo_flags & WCONTINUED))
1317 		return 0;
1318 
1319 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1320 		return 0;
1321 
1322 	spin_lock_irq(&p->sighand->siglock);
1323 	/* Re-check with the lock held.  */
1324 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1325 		spin_unlock_irq(&p->sighand->siglock);
1326 		return 0;
1327 	}
1328 	if (!unlikely(wo->wo_flags & WNOWAIT))
1329 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1330 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1331 	spin_unlock_irq(&p->sighand->siglock);
1332 
1333 	pid = task_pid_vnr(p);
1334 	get_task_struct(p);
1335 	read_unlock(&tasklist_lock);
1336 	sched_annotate_sleep();
1337 	if (wo->wo_rusage)
1338 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1339 	put_task_struct(p);
1340 
1341 	infop = wo->wo_info;
1342 	if (!infop) {
1343 		wo->wo_stat = 0xffff;
1344 	} else {
1345 		infop->cause = CLD_CONTINUED;
1346 		infop->pid = pid;
1347 		infop->uid = uid;
1348 		infop->status = SIGCONT;
1349 	}
1350 	return pid;
1351 }
1352 
1353 /*
1354  * Consider @p for a wait by @parent.
1355  *
1356  * -ECHILD should be in ->notask_error before the first call.
1357  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1358  * Returns zero if the search for a child should continue;
1359  * then ->notask_error is 0 if @p is an eligible child,
1360  * or still -ECHILD.
1361  */
wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1362 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1363 				struct task_struct *p)
1364 {
1365 	/*
1366 	 * We can race with wait_task_zombie() from another thread.
1367 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1368 	 * can't confuse the checks below.
1369 	 */
1370 	int exit_state = READ_ONCE(p->exit_state);
1371 	int ret;
1372 
1373 	if (unlikely(exit_state == EXIT_DEAD))
1374 		return 0;
1375 
1376 	ret = eligible_child(wo, ptrace, p);
1377 	if (!ret)
1378 		return ret;
1379 
1380 	if (unlikely(exit_state == EXIT_TRACE)) {
1381 		/*
1382 		 * ptrace == 0 means we are the natural parent. In this case
1383 		 * we should clear notask_error, debugger will notify us.
1384 		 */
1385 		if (likely(!ptrace))
1386 			wo->notask_error = 0;
1387 		return 0;
1388 	}
1389 
1390 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1391 		/*
1392 		 * If it is traced by its real parent's group, just pretend
1393 		 * the caller is ptrace_do_wait() and reap this child if it
1394 		 * is zombie.
1395 		 *
1396 		 * This also hides group stop state from real parent; otherwise
1397 		 * a single stop can be reported twice as group and ptrace stop.
1398 		 * If a ptracer wants to distinguish these two events for its
1399 		 * own children it should create a separate process which takes
1400 		 * the role of real parent.
1401 		 */
1402 		if (!ptrace_reparented(p))
1403 			ptrace = 1;
1404 	}
1405 
1406 	/* slay zombie? */
1407 	if (exit_state == EXIT_ZOMBIE) {
1408 		/* we don't reap group leaders with subthreads */
1409 		if (!delay_group_leader(p)) {
1410 			/*
1411 			 * A zombie ptracee is only visible to its ptracer.
1412 			 * Notification and reaping will be cascaded to the
1413 			 * real parent when the ptracer detaches.
1414 			 */
1415 			if (unlikely(ptrace) || likely(!p->ptrace))
1416 				return wait_task_zombie(wo, p);
1417 		}
1418 
1419 		/*
1420 		 * Allow access to stopped/continued state via zombie by
1421 		 * falling through.  Clearing of notask_error is complex.
1422 		 *
1423 		 * When !@ptrace:
1424 		 *
1425 		 * If WEXITED is set, notask_error should naturally be
1426 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1427 		 * so, if there are live subthreads, there are events to
1428 		 * wait for.  If all subthreads are dead, it's still safe
1429 		 * to clear - this function will be called again in finite
1430 		 * amount time once all the subthreads are released and
1431 		 * will then return without clearing.
1432 		 *
1433 		 * When @ptrace:
1434 		 *
1435 		 * Stopped state is per-task and thus can't change once the
1436 		 * target task dies.  Only continued and exited can happen.
1437 		 * Clear notask_error if WCONTINUED | WEXITED.
1438 		 */
1439 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1440 			wo->notask_error = 0;
1441 	} else {
1442 		/*
1443 		 * @p is alive and it's gonna stop, continue or exit, so
1444 		 * there always is something to wait for.
1445 		 */
1446 		wo->notask_error = 0;
1447 	}
1448 
1449 	/*
1450 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1451 	 * is used and the two don't interact with each other.
1452 	 */
1453 	ret = wait_task_stopped(wo, ptrace, p);
1454 	if (ret)
1455 		return ret;
1456 
1457 	/*
1458 	 * Wait for continued.  There's only one continued state and the
1459 	 * ptracer can consume it which can confuse the real parent.  Don't
1460 	 * use WCONTINUED from ptracer.  You don't need or want it.
1461 	 */
1462 	return wait_task_continued(wo, p);
1463 }
1464 
1465 /*
1466  * Do the work of do_wait() for one thread in the group, @tsk.
1467  *
1468  * -ECHILD should be in ->notask_error before the first call.
1469  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1470  * Returns zero if the search for a child should continue; then
1471  * ->notask_error is 0 if there were any eligible children,
1472  * or still -ECHILD.
1473  */
do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1474 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1475 {
1476 	struct task_struct *p;
1477 
1478 	list_for_each_entry(p, &tsk->children, sibling) {
1479 		int ret = wait_consider_task(wo, 0, p);
1480 
1481 		if (ret)
1482 			return ret;
1483 	}
1484 
1485 	return 0;
1486 }
1487 
ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1488 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1489 {
1490 	struct task_struct *p;
1491 
1492 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1493 		int ret = wait_consider_task(wo, 1, p);
1494 
1495 		if (ret)
1496 			return ret;
1497 	}
1498 
1499 	return 0;
1500 }
1501 
pid_child_should_wake(struct wait_opts * wo,struct task_struct * p)1502 bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p)
1503 {
1504 	if (!eligible_pid(wo, p))
1505 		return false;
1506 
1507 	if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent)
1508 		return false;
1509 
1510 	return true;
1511 }
1512 
child_wait_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1513 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1514 				int sync, void *key)
1515 {
1516 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1517 						child_wait);
1518 	struct task_struct *p = key;
1519 
1520 	if (pid_child_should_wake(wo, p))
1521 		return default_wake_function(wait, mode, sync, key);
1522 
1523 	return 0;
1524 }
1525 
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1526 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1527 {
1528 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1529 			   TASK_INTERRUPTIBLE, p);
1530 }
1531 
is_effectively_child(struct wait_opts * wo,bool ptrace,struct task_struct * target)1532 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1533 				 struct task_struct *target)
1534 {
1535 	struct task_struct *parent =
1536 		!ptrace ? target->real_parent : target->parent;
1537 
1538 	return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1539 				     same_thread_group(current, parent));
1540 }
1541 
1542 /*
1543  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1544  * and tracee lists to find the target task.
1545  */
do_wait_pid(struct wait_opts * wo)1546 static int do_wait_pid(struct wait_opts *wo)
1547 {
1548 	bool ptrace;
1549 	struct task_struct *target;
1550 	int retval;
1551 
1552 	ptrace = false;
1553 	target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1554 	if (target && is_effectively_child(wo, ptrace, target)) {
1555 		retval = wait_consider_task(wo, ptrace, target);
1556 		if (retval)
1557 			return retval;
1558 	}
1559 
1560 	ptrace = true;
1561 	target = pid_task(wo->wo_pid, PIDTYPE_PID);
1562 	if (target && target->ptrace &&
1563 	    is_effectively_child(wo, ptrace, target)) {
1564 		retval = wait_consider_task(wo, ptrace, target);
1565 		if (retval)
1566 			return retval;
1567 	}
1568 
1569 	return 0;
1570 }
1571 
__do_wait(struct wait_opts * wo)1572 long __do_wait(struct wait_opts *wo)
1573 {
1574 	long retval;
1575 
1576 	/*
1577 	 * If there is nothing that can match our criteria, just get out.
1578 	 * We will clear ->notask_error to zero if we see any child that
1579 	 * might later match our criteria, even if we are not able to reap
1580 	 * it yet.
1581 	 */
1582 	wo->notask_error = -ECHILD;
1583 	if ((wo->wo_type < PIDTYPE_MAX) &&
1584 	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1585 		goto notask;
1586 
1587 	read_lock(&tasklist_lock);
1588 
1589 	if (wo->wo_type == PIDTYPE_PID) {
1590 		retval = do_wait_pid(wo);
1591 		if (retval)
1592 			return retval;
1593 	} else {
1594 		struct task_struct *tsk = current;
1595 
1596 		do {
1597 			retval = do_wait_thread(wo, tsk);
1598 			if (retval)
1599 				return retval;
1600 
1601 			retval = ptrace_do_wait(wo, tsk);
1602 			if (retval)
1603 				return retval;
1604 
1605 			if (wo->wo_flags & __WNOTHREAD)
1606 				break;
1607 		} while_each_thread(current, tsk);
1608 	}
1609 	read_unlock(&tasklist_lock);
1610 
1611 notask:
1612 	retval = wo->notask_error;
1613 	if (!retval && !(wo->wo_flags & WNOHANG))
1614 		return -ERESTARTSYS;
1615 
1616 	return retval;
1617 }
1618 
do_wait(struct wait_opts * wo)1619 static long do_wait(struct wait_opts *wo)
1620 {
1621 	int retval;
1622 
1623 	trace_sched_process_wait(wo->wo_pid);
1624 
1625 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1626 	wo->child_wait.private = current;
1627 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1628 
1629 	do {
1630 		set_current_state(TASK_INTERRUPTIBLE);
1631 		retval = __do_wait(wo);
1632 		if (retval != -ERESTARTSYS)
1633 			break;
1634 		if (signal_pending(current))
1635 			break;
1636 		schedule();
1637 	} while (1);
1638 
1639 	__set_current_state(TASK_RUNNING);
1640 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1641 	return retval;
1642 }
1643 
kernel_waitid_prepare(struct wait_opts * wo,int which,pid_t upid,struct waitid_info * infop,int options,struct rusage * ru)1644 int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid,
1645 			  struct waitid_info *infop, int options,
1646 			  struct rusage *ru)
1647 {
1648 	unsigned int f_flags = 0;
1649 	struct pid *pid = NULL;
1650 	enum pid_type type;
1651 
1652 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1653 			__WNOTHREAD|__WCLONE|__WALL))
1654 		return -EINVAL;
1655 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1656 		return -EINVAL;
1657 
1658 	switch (which) {
1659 	case P_ALL:
1660 		type = PIDTYPE_MAX;
1661 		break;
1662 	case P_PID:
1663 		type = PIDTYPE_PID;
1664 		if (upid <= 0)
1665 			return -EINVAL;
1666 
1667 		pid = find_get_pid(upid);
1668 		break;
1669 	case P_PGID:
1670 		type = PIDTYPE_PGID;
1671 		if (upid < 0)
1672 			return -EINVAL;
1673 
1674 		if (upid)
1675 			pid = find_get_pid(upid);
1676 		else
1677 			pid = get_task_pid(current, PIDTYPE_PGID);
1678 		break;
1679 	case P_PIDFD:
1680 		type = PIDTYPE_PID;
1681 		if (upid < 0)
1682 			return -EINVAL;
1683 
1684 		pid = pidfd_get_pid(upid, &f_flags);
1685 		if (IS_ERR(pid))
1686 			return PTR_ERR(pid);
1687 
1688 		break;
1689 	default:
1690 		return -EINVAL;
1691 	}
1692 
1693 	wo->wo_type	= type;
1694 	wo->wo_pid	= pid;
1695 	wo->wo_flags	= options;
1696 	wo->wo_info	= infop;
1697 	wo->wo_rusage	= ru;
1698 	if (f_flags & O_NONBLOCK)
1699 		wo->wo_flags |= WNOHANG;
1700 
1701 	return 0;
1702 }
1703 
kernel_waitid(int which,pid_t upid,struct waitid_info * infop,int options,struct rusage * ru)1704 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1705 			  int options, struct rusage *ru)
1706 {
1707 	struct wait_opts wo;
1708 	long ret;
1709 
1710 	ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru);
1711 	if (ret)
1712 		return ret;
1713 
1714 	ret = do_wait(&wo);
1715 	if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG))
1716 		ret = -EAGAIN;
1717 
1718 	put_pid(wo.wo_pid);
1719 	return ret;
1720 }
1721 
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1722 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1723 		infop, int, options, struct rusage __user *, ru)
1724 {
1725 	struct rusage r;
1726 	struct waitid_info info = {.status = 0};
1727 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1728 	int signo = 0;
1729 
1730 	if (err > 0) {
1731 		signo = SIGCHLD;
1732 		err = 0;
1733 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1734 			return -EFAULT;
1735 	}
1736 	if (!infop)
1737 		return err;
1738 
1739 	if (!user_write_access_begin(infop, sizeof(*infop)))
1740 		return -EFAULT;
1741 
1742 	unsafe_put_user(signo, &infop->si_signo, Efault);
1743 	unsafe_put_user(0, &infop->si_errno, Efault);
1744 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1745 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1746 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1747 	unsafe_put_user(info.status, &infop->si_status, Efault);
1748 	user_write_access_end();
1749 	return err;
1750 Efault:
1751 	user_write_access_end();
1752 	return -EFAULT;
1753 }
1754 
kernel_wait4(pid_t upid,int __user * stat_addr,int options,struct rusage * ru)1755 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1756 		  struct rusage *ru)
1757 {
1758 	struct wait_opts wo;
1759 	struct pid *pid = NULL;
1760 	enum pid_type type;
1761 	long ret;
1762 
1763 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1764 			__WNOTHREAD|__WCLONE|__WALL))
1765 		return -EINVAL;
1766 
1767 	/* -INT_MIN is not defined */
1768 	if (upid == INT_MIN)
1769 		return -ESRCH;
1770 
1771 	if (upid == -1)
1772 		type = PIDTYPE_MAX;
1773 	else if (upid < 0) {
1774 		type = PIDTYPE_PGID;
1775 		pid = find_get_pid(-upid);
1776 	} else if (upid == 0) {
1777 		type = PIDTYPE_PGID;
1778 		pid = get_task_pid(current, PIDTYPE_PGID);
1779 	} else /* upid > 0 */ {
1780 		type = PIDTYPE_PID;
1781 		pid = find_get_pid(upid);
1782 	}
1783 
1784 	wo.wo_type	= type;
1785 	wo.wo_pid	= pid;
1786 	wo.wo_flags	= options | WEXITED;
1787 	wo.wo_info	= NULL;
1788 	wo.wo_stat	= 0;
1789 	wo.wo_rusage	= ru;
1790 	ret = do_wait(&wo);
1791 	put_pid(pid);
1792 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1793 		ret = -EFAULT;
1794 
1795 	return ret;
1796 }
1797 
kernel_wait(pid_t pid,int * stat)1798 int kernel_wait(pid_t pid, int *stat)
1799 {
1800 	struct wait_opts wo = {
1801 		.wo_type	= PIDTYPE_PID,
1802 		.wo_pid		= find_get_pid(pid),
1803 		.wo_flags	= WEXITED,
1804 	};
1805 	int ret;
1806 
1807 	ret = do_wait(&wo);
1808 	if (ret > 0 && wo.wo_stat)
1809 		*stat = wo.wo_stat;
1810 	put_pid(wo.wo_pid);
1811 	return ret;
1812 }
1813 
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1814 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1815 		int, options, struct rusage __user *, ru)
1816 {
1817 	struct rusage r;
1818 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1819 
1820 	if (err > 0) {
1821 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1822 			return -EFAULT;
1823 	}
1824 	return err;
1825 }
1826 
1827 #ifdef __ARCH_WANT_SYS_WAITPID
1828 
1829 /*
1830  * sys_waitpid() remains for compatibility. waitpid() should be
1831  * implemented by calling sys_wait4() from libc.a.
1832  */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1833 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1834 {
1835 	return kernel_wait4(pid, stat_addr, options, NULL);
1836 }
1837 
1838 #endif
1839 
1840 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(wait4,compat_pid_t,pid,compat_uint_t __user *,stat_addr,int,options,struct compat_rusage __user *,ru)1841 COMPAT_SYSCALL_DEFINE4(wait4,
1842 	compat_pid_t, pid,
1843 	compat_uint_t __user *, stat_addr,
1844 	int, options,
1845 	struct compat_rusage __user *, ru)
1846 {
1847 	struct rusage r;
1848 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1849 	if (err > 0) {
1850 		if (ru && put_compat_rusage(&r, ru))
1851 			return -EFAULT;
1852 	}
1853 	return err;
1854 }
1855 
COMPAT_SYSCALL_DEFINE5(waitid,int,which,compat_pid_t,pid,struct compat_siginfo __user *,infop,int,options,struct compat_rusage __user *,uru)1856 COMPAT_SYSCALL_DEFINE5(waitid,
1857 		int, which, compat_pid_t, pid,
1858 		struct compat_siginfo __user *, infop, int, options,
1859 		struct compat_rusage __user *, uru)
1860 {
1861 	struct rusage ru;
1862 	struct waitid_info info = {.status = 0};
1863 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1864 	int signo = 0;
1865 	if (err > 0) {
1866 		signo = SIGCHLD;
1867 		err = 0;
1868 		if (uru) {
1869 			/* kernel_waitid() overwrites everything in ru */
1870 			if (COMPAT_USE_64BIT_TIME)
1871 				err = copy_to_user(uru, &ru, sizeof(ru));
1872 			else
1873 				err = put_compat_rusage(&ru, uru);
1874 			if (err)
1875 				return -EFAULT;
1876 		}
1877 	}
1878 
1879 	if (!infop)
1880 		return err;
1881 
1882 	if (!user_write_access_begin(infop, sizeof(*infop)))
1883 		return -EFAULT;
1884 
1885 	unsafe_put_user(signo, &infop->si_signo, Efault);
1886 	unsafe_put_user(0, &infop->si_errno, Efault);
1887 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1888 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1889 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1890 	unsafe_put_user(info.status, &infop->si_status, Efault);
1891 	user_write_access_end();
1892 	return err;
1893 Efault:
1894 	user_write_access_end();
1895 	return -EFAULT;
1896 }
1897 #endif
1898 
1899 /*
1900  * This needs to be __function_aligned as GCC implicitly makes any
1901  * implementation of abort() cold and drops alignment specified by
1902  * -falign-functions=N.
1903  *
1904  * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1905  */
abort(void)1906 __weak __function_aligned void abort(void)
1907 {
1908 	BUG();
1909 
1910 	/* if that doesn't kill us, halt */
1911 	panic("Oops failed to kill thread");
1912 }
1913 EXPORT_SYMBOL(abort);
1914