xref: /linux/kernel/kexec_file.c (revision 40254101)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kexec: kexec_file_load system call
4  *
5  * Copyright (C) 2014 Red Hat Inc.
6  * Authors:
7  *      Vivek Goyal <vgoyal@redhat.com>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/capability.h>
13 #include <linux/mm.h>
14 #include <linux/file.h>
15 #include <linux/slab.h>
16 #include <linux/kexec.h>
17 #include <linux/memblock.h>
18 #include <linux/mutex.h>
19 #include <linux/list.h>
20 #include <linux/fs.h>
21 #include <linux/ima.h>
22 #include <crypto/hash.h>
23 #include <crypto/sha2.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/kernel.h>
27 #include <linux/kernel_read_file.h>
28 #include <linux/syscalls.h>
29 #include <linux/vmalloc.h>
30 #include "kexec_internal.h"
31 
32 #ifdef CONFIG_KEXEC_SIG
33 static bool sig_enforce = IS_ENABLED(CONFIG_KEXEC_SIG_FORCE);
34 
set_kexec_sig_enforced(void)35 void set_kexec_sig_enforced(void)
36 {
37 	sig_enforce = true;
38 }
39 #endif
40 
41 static int kexec_calculate_store_digests(struct kimage *image);
42 
43 /* Maximum size in bytes for kernel/initrd files. */
44 #define KEXEC_FILE_SIZE_MAX	min_t(s64, 4LL << 30, SSIZE_MAX)
45 
46 /*
47  * Currently this is the only default function that is exported as some
48  * architectures need it to do additional handlings.
49  * In the future, other default functions may be exported too if required.
50  */
kexec_image_probe_default(struct kimage * image,void * buf,unsigned long buf_len)51 int kexec_image_probe_default(struct kimage *image, void *buf,
52 			      unsigned long buf_len)
53 {
54 	const struct kexec_file_ops * const *fops;
55 	int ret = -ENOEXEC;
56 
57 	for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
58 		ret = (*fops)->probe(buf, buf_len);
59 		if (!ret) {
60 			image->fops = *fops;
61 			return ret;
62 		}
63 	}
64 
65 	return ret;
66 }
67 
kexec_image_load_default(struct kimage * image)68 static void *kexec_image_load_default(struct kimage *image)
69 {
70 	if (!image->fops || !image->fops->load)
71 		return ERR_PTR(-ENOEXEC);
72 
73 	return image->fops->load(image, image->kernel_buf,
74 				 image->kernel_buf_len, image->initrd_buf,
75 				 image->initrd_buf_len, image->cmdline_buf,
76 				 image->cmdline_buf_len);
77 }
78 
kexec_image_post_load_cleanup_default(struct kimage * image)79 int kexec_image_post_load_cleanup_default(struct kimage *image)
80 {
81 	if (!image->fops || !image->fops->cleanup)
82 		return 0;
83 
84 	return image->fops->cleanup(image->image_loader_data);
85 }
86 
87 /*
88  * Free up memory used by kernel, initrd, and command line. This is temporary
89  * memory allocation which is not needed any more after these buffers have
90  * been loaded into separate segments and have been copied elsewhere.
91  */
kimage_file_post_load_cleanup(struct kimage * image)92 void kimage_file_post_load_cleanup(struct kimage *image)
93 {
94 	struct purgatory_info *pi = &image->purgatory_info;
95 
96 	vfree(image->kernel_buf);
97 	image->kernel_buf = NULL;
98 
99 	vfree(image->initrd_buf);
100 	image->initrd_buf = NULL;
101 
102 	kfree(image->cmdline_buf);
103 	image->cmdline_buf = NULL;
104 
105 	vfree(pi->purgatory_buf);
106 	pi->purgatory_buf = NULL;
107 
108 	vfree(pi->sechdrs);
109 	pi->sechdrs = NULL;
110 
111 #ifdef CONFIG_IMA_KEXEC
112 	vfree(image->ima_buffer);
113 	image->ima_buffer = NULL;
114 #endif /* CONFIG_IMA_KEXEC */
115 
116 	/* See if architecture has anything to cleanup post load */
117 	arch_kimage_file_post_load_cleanup(image);
118 
119 	/*
120 	 * Above call should have called into bootloader to free up
121 	 * any data stored in kimage->image_loader_data. It should
122 	 * be ok now to free it up.
123 	 */
124 	kfree(image->image_loader_data);
125 	image->image_loader_data = NULL;
126 
127 	kexec_file_dbg_print = false;
128 }
129 
130 #ifdef CONFIG_KEXEC_SIG
131 #ifdef CONFIG_SIGNED_PE_FILE_VERIFICATION
kexec_kernel_verify_pe_sig(const char * kernel,unsigned long kernel_len)132 int kexec_kernel_verify_pe_sig(const char *kernel, unsigned long kernel_len)
133 {
134 	int ret;
135 
136 	ret = verify_pefile_signature(kernel, kernel_len,
137 				      VERIFY_USE_SECONDARY_KEYRING,
138 				      VERIFYING_KEXEC_PE_SIGNATURE);
139 	if (ret == -ENOKEY && IS_ENABLED(CONFIG_INTEGRITY_PLATFORM_KEYRING)) {
140 		ret = verify_pefile_signature(kernel, kernel_len,
141 					      VERIFY_USE_PLATFORM_KEYRING,
142 					      VERIFYING_KEXEC_PE_SIGNATURE);
143 	}
144 	return ret;
145 }
146 #endif
147 
kexec_image_verify_sig(struct kimage * image,void * buf,unsigned long buf_len)148 static int kexec_image_verify_sig(struct kimage *image, void *buf,
149 				  unsigned long buf_len)
150 {
151 	if (!image->fops || !image->fops->verify_sig) {
152 		pr_debug("kernel loader does not support signature verification.\n");
153 		return -EKEYREJECTED;
154 	}
155 
156 	return image->fops->verify_sig(buf, buf_len);
157 }
158 
159 static int
kimage_validate_signature(struct kimage * image)160 kimage_validate_signature(struct kimage *image)
161 {
162 	int ret;
163 
164 	ret = kexec_image_verify_sig(image, image->kernel_buf,
165 				     image->kernel_buf_len);
166 	if (ret) {
167 
168 		if (sig_enforce) {
169 			pr_notice("Enforced kernel signature verification failed (%d).\n", ret);
170 			return ret;
171 		}
172 
173 		/*
174 		 * If IMA is guaranteed to appraise a signature on the kexec
175 		 * image, permit it even if the kernel is otherwise locked
176 		 * down.
177 		 */
178 		if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
179 		    security_locked_down(LOCKDOWN_KEXEC))
180 			return -EPERM;
181 
182 		pr_debug("kernel signature verification failed (%d).\n", ret);
183 	}
184 
185 	return 0;
186 }
187 #endif
188 
189 /*
190  * In file mode list of segments is prepared by kernel. Copy relevant
191  * data from user space, do error checking, prepare segment list
192  */
193 static int
kimage_file_prepare_segments(struct kimage * image,int kernel_fd,int initrd_fd,const char __user * cmdline_ptr,unsigned long cmdline_len,unsigned flags)194 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
195 			     const char __user *cmdline_ptr,
196 			     unsigned long cmdline_len, unsigned flags)
197 {
198 	ssize_t ret;
199 	void *ldata;
200 
201 	ret = kernel_read_file_from_fd(kernel_fd, 0, &image->kernel_buf,
202 				       KEXEC_FILE_SIZE_MAX, NULL,
203 				       READING_KEXEC_IMAGE);
204 	if (ret < 0)
205 		return ret;
206 	image->kernel_buf_len = ret;
207 	kexec_dprintk("kernel: %p kernel_size: %#lx\n",
208 		      image->kernel_buf, image->kernel_buf_len);
209 
210 	/* Call arch image probe handlers */
211 	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
212 					    image->kernel_buf_len);
213 	if (ret)
214 		goto out;
215 
216 #ifdef CONFIG_KEXEC_SIG
217 	ret = kimage_validate_signature(image);
218 
219 	if (ret)
220 		goto out;
221 #endif
222 	/* It is possible that there no initramfs is being loaded */
223 	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
224 		ret = kernel_read_file_from_fd(initrd_fd, 0, &image->initrd_buf,
225 					       KEXEC_FILE_SIZE_MAX, NULL,
226 					       READING_KEXEC_INITRAMFS);
227 		if (ret < 0)
228 			goto out;
229 		image->initrd_buf_len = ret;
230 		ret = 0;
231 	}
232 
233 	if (cmdline_len) {
234 		image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
235 		if (IS_ERR(image->cmdline_buf)) {
236 			ret = PTR_ERR(image->cmdline_buf);
237 			image->cmdline_buf = NULL;
238 			goto out;
239 		}
240 
241 		image->cmdline_buf_len = cmdline_len;
242 
243 		/* command line should be a string with last byte null */
244 		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
245 			ret = -EINVAL;
246 			goto out;
247 		}
248 
249 		ima_kexec_cmdline(kernel_fd, image->cmdline_buf,
250 				  image->cmdline_buf_len - 1);
251 	}
252 
253 	/* IMA needs to pass the measurement list to the next kernel. */
254 	ima_add_kexec_buffer(image);
255 
256 	/* Call image load handler */
257 	ldata = kexec_image_load_default(image);
258 
259 	if (IS_ERR(ldata)) {
260 		ret = PTR_ERR(ldata);
261 		goto out;
262 	}
263 
264 	image->image_loader_data = ldata;
265 out:
266 	/* In case of error, free up all allocated memory in this function */
267 	if (ret)
268 		kimage_file_post_load_cleanup(image);
269 	return ret;
270 }
271 
272 static int
kimage_file_alloc_init(struct kimage ** rimage,int kernel_fd,int initrd_fd,const char __user * cmdline_ptr,unsigned long cmdline_len,unsigned long flags)273 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
274 		       int initrd_fd, const char __user *cmdline_ptr,
275 		       unsigned long cmdline_len, unsigned long flags)
276 {
277 	int ret;
278 	struct kimage *image;
279 	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
280 
281 	image = do_kimage_alloc_init();
282 	if (!image)
283 		return -ENOMEM;
284 
285 	kexec_file_dbg_print = !!(flags & KEXEC_FILE_DEBUG);
286 	image->file_mode = 1;
287 
288 #ifdef CONFIG_CRASH_DUMP
289 	if (kexec_on_panic) {
290 		/* Enable special crash kernel control page alloc policy. */
291 		image->control_page = crashk_res.start;
292 		image->type = KEXEC_TYPE_CRASH;
293 	}
294 #endif
295 
296 	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
297 					   cmdline_ptr, cmdline_len, flags);
298 	if (ret)
299 		goto out_free_image;
300 
301 	ret = sanity_check_segment_list(image);
302 	if (ret)
303 		goto out_free_post_load_bufs;
304 
305 	ret = -ENOMEM;
306 	image->control_code_page = kimage_alloc_control_pages(image,
307 					   get_order(KEXEC_CONTROL_PAGE_SIZE));
308 	if (!image->control_code_page) {
309 		pr_err("Could not allocate control_code_buffer\n");
310 		goto out_free_post_load_bufs;
311 	}
312 
313 	if (!kexec_on_panic) {
314 		image->swap_page = kimage_alloc_control_pages(image, 0);
315 		if (!image->swap_page) {
316 			pr_err("Could not allocate swap buffer\n");
317 			goto out_free_control_pages;
318 		}
319 	}
320 
321 	*rimage = image;
322 	return 0;
323 out_free_control_pages:
324 	kimage_free_page_list(&image->control_pages);
325 out_free_post_load_bufs:
326 	kimage_file_post_load_cleanup(image);
327 out_free_image:
328 	kfree(image);
329 	return ret;
330 }
331 
SYSCALL_DEFINE5(kexec_file_load,int,kernel_fd,int,initrd_fd,unsigned long,cmdline_len,const char __user *,cmdline_ptr,unsigned long,flags)332 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
333 		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
334 		unsigned long, flags)
335 {
336 	int image_type = (flags & KEXEC_FILE_ON_CRASH) ?
337 			 KEXEC_TYPE_CRASH : KEXEC_TYPE_DEFAULT;
338 	struct kimage **dest_image, *image;
339 	int ret = 0, i;
340 
341 	/* We only trust the superuser with rebooting the system. */
342 	if (!kexec_load_permitted(image_type))
343 		return -EPERM;
344 
345 	/* Make sure we have a legal set of flags */
346 	if (flags != (flags & KEXEC_FILE_FLAGS))
347 		return -EINVAL;
348 
349 	image = NULL;
350 
351 	if (!kexec_trylock())
352 		return -EBUSY;
353 
354 #ifdef CONFIG_CRASH_DUMP
355 	if (image_type == KEXEC_TYPE_CRASH) {
356 		dest_image = &kexec_crash_image;
357 		if (kexec_crash_image)
358 			arch_kexec_unprotect_crashkres();
359 	} else
360 #endif
361 		dest_image = &kexec_image;
362 
363 	if (flags & KEXEC_FILE_UNLOAD)
364 		goto exchange;
365 
366 	/*
367 	 * In case of crash, new kernel gets loaded in reserved region. It is
368 	 * same memory where old crash kernel might be loaded. Free any
369 	 * current crash dump kernel before we corrupt it.
370 	 */
371 	if (flags & KEXEC_FILE_ON_CRASH)
372 		kimage_free(xchg(&kexec_crash_image, NULL));
373 
374 	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
375 				     cmdline_len, flags);
376 	if (ret)
377 		goto out;
378 
379 	ret = machine_kexec_prepare(image);
380 	if (ret)
381 		goto out;
382 
383 	/*
384 	 * Some architecture(like S390) may touch the crash memory before
385 	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
386 	 */
387 	ret = kimage_crash_copy_vmcoreinfo(image);
388 	if (ret)
389 		goto out;
390 
391 	ret = kexec_calculate_store_digests(image);
392 	if (ret)
393 		goto out;
394 
395 	kexec_dprintk("nr_segments = %lu\n", image->nr_segments);
396 	for (i = 0; i < image->nr_segments; i++) {
397 		struct kexec_segment *ksegment;
398 
399 		ksegment = &image->segment[i];
400 		kexec_dprintk("segment[%d]: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
401 			      i, ksegment->buf, ksegment->bufsz, ksegment->mem,
402 			      ksegment->memsz);
403 
404 		ret = kimage_load_segment(image, &image->segment[i]);
405 		if (ret)
406 			goto out;
407 	}
408 
409 	kimage_terminate(image);
410 
411 	ret = machine_kexec_post_load(image);
412 	if (ret)
413 		goto out;
414 
415 	kexec_dprintk("kexec_file_load: type:%u, start:0x%lx head:0x%lx flags:0x%lx\n",
416 		      image->type, image->start, image->head, flags);
417 	/*
418 	 * Free up any temporary buffers allocated which are not needed
419 	 * after image has been loaded
420 	 */
421 	kimage_file_post_load_cleanup(image);
422 exchange:
423 	image = xchg(dest_image, image);
424 out:
425 #ifdef CONFIG_CRASH_DUMP
426 	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
427 		arch_kexec_protect_crashkres();
428 #endif
429 
430 	kexec_unlock();
431 	kimage_free(image);
432 	return ret;
433 }
434 
locate_mem_hole_top_down(unsigned long start,unsigned long end,struct kexec_buf * kbuf)435 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
436 				    struct kexec_buf *kbuf)
437 {
438 	struct kimage *image = kbuf->image;
439 	unsigned long temp_start, temp_end;
440 
441 	temp_end = min(end, kbuf->buf_max);
442 	temp_start = temp_end - kbuf->memsz + 1;
443 
444 	do {
445 		/* align down start */
446 		temp_start = ALIGN_DOWN(temp_start, kbuf->buf_align);
447 
448 		if (temp_start < start || temp_start < kbuf->buf_min)
449 			return 0;
450 
451 		temp_end = temp_start + kbuf->memsz - 1;
452 
453 		/*
454 		 * Make sure this does not conflict with any of existing
455 		 * segments
456 		 */
457 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
458 			temp_start = temp_start - PAGE_SIZE;
459 			continue;
460 		}
461 
462 		/* We found a suitable memory range */
463 		break;
464 	} while (1);
465 
466 	/* If we are here, we found a suitable memory range */
467 	kbuf->mem = temp_start;
468 
469 	/* Success, stop navigating through remaining System RAM ranges */
470 	return 1;
471 }
472 
locate_mem_hole_bottom_up(unsigned long start,unsigned long end,struct kexec_buf * kbuf)473 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
474 				     struct kexec_buf *kbuf)
475 {
476 	struct kimage *image = kbuf->image;
477 	unsigned long temp_start, temp_end;
478 
479 	temp_start = max(start, kbuf->buf_min);
480 
481 	do {
482 		temp_start = ALIGN(temp_start, kbuf->buf_align);
483 		temp_end = temp_start + kbuf->memsz - 1;
484 
485 		if (temp_end > end || temp_end > kbuf->buf_max)
486 			return 0;
487 		/*
488 		 * Make sure this does not conflict with any of existing
489 		 * segments
490 		 */
491 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
492 			temp_start = temp_start + PAGE_SIZE;
493 			continue;
494 		}
495 
496 		/* We found a suitable memory range */
497 		break;
498 	} while (1);
499 
500 	/* If we are here, we found a suitable memory range */
501 	kbuf->mem = temp_start;
502 
503 	/* Success, stop navigating through remaining System RAM ranges */
504 	return 1;
505 }
506 
locate_mem_hole_callback(struct resource * res,void * arg)507 static int locate_mem_hole_callback(struct resource *res, void *arg)
508 {
509 	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
510 	u64 start = res->start, end = res->end;
511 	unsigned long sz = end - start + 1;
512 
513 	/* Returning 0 will take to next memory range */
514 
515 	/* Don't use memory that will be detected and handled by a driver. */
516 	if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
517 		return 0;
518 
519 	if (sz < kbuf->memsz)
520 		return 0;
521 
522 	if (end < kbuf->buf_min || start > kbuf->buf_max)
523 		return 0;
524 
525 	/*
526 	 * Allocate memory top down with-in ram range. Otherwise bottom up
527 	 * allocation.
528 	 */
529 	if (kbuf->top_down)
530 		return locate_mem_hole_top_down(start, end, kbuf);
531 	return locate_mem_hole_bottom_up(start, end, kbuf);
532 }
533 
534 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK
kexec_walk_memblock(struct kexec_buf * kbuf,int (* func)(struct resource *,void *))535 static int kexec_walk_memblock(struct kexec_buf *kbuf,
536 			       int (*func)(struct resource *, void *))
537 {
538 	int ret = 0;
539 	u64 i;
540 	phys_addr_t mstart, mend;
541 	struct resource res = { };
542 
543 #ifdef CONFIG_CRASH_DUMP
544 	if (kbuf->image->type == KEXEC_TYPE_CRASH)
545 		return func(&crashk_res, kbuf);
546 #endif
547 
548 	/*
549 	 * Using MEMBLOCK_NONE will properly skip MEMBLOCK_DRIVER_MANAGED. See
550 	 * IORESOURCE_SYSRAM_DRIVER_MANAGED handling in
551 	 * locate_mem_hole_callback().
552 	 */
553 	if (kbuf->top_down) {
554 		for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
555 						&mstart, &mend, NULL) {
556 			/*
557 			 * In memblock, end points to the first byte after the
558 			 * range while in kexec, end points to the last byte
559 			 * in the range.
560 			 */
561 			res.start = mstart;
562 			res.end = mend - 1;
563 			ret = func(&res, kbuf);
564 			if (ret)
565 				break;
566 		}
567 	} else {
568 		for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
569 					&mstart, &mend, NULL) {
570 			/*
571 			 * In memblock, end points to the first byte after the
572 			 * range while in kexec, end points to the last byte
573 			 * in the range.
574 			 */
575 			res.start = mstart;
576 			res.end = mend - 1;
577 			ret = func(&res, kbuf);
578 			if (ret)
579 				break;
580 		}
581 	}
582 
583 	return ret;
584 }
585 #else
kexec_walk_memblock(struct kexec_buf * kbuf,int (* func)(struct resource *,void *))586 static int kexec_walk_memblock(struct kexec_buf *kbuf,
587 			       int (*func)(struct resource *, void *))
588 {
589 	return 0;
590 }
591 #endif
592 
593 /**
594  * kexec_walk_resources - call func(data) on free memory regions
595  * @kbuf:	Context info for the search. Also passed to @func.
596  * @func:	Function to call for each memory region.
597  *
598  * Return: The memory walk will stop when func returns a non-zero value
599  * and that value will be returned. If all free regions are visited without
600  * func returning non-zero, then zero will be returned.
601  */
kexec_walk_resources(struct kexec_buf * kbuf,int (* func)(struct resource *,void *))602 static int kexec_walk_resources(struct kexec_buf *kbuf,
603 				int (*func)(struct resource *, void *))
604 {
605 #ifdef CONFIG_CRASH_DUMP
606 	if (kbuf->image->type == KEXEC_TYPE_CRASH)
607 		return walk_iomem_res_desc(crashk_res.desc,
608 					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
609 					   crashk_res.start, crashk_res.end,
610 					   kbuf, func);
611 #endif
612 	if (kbuf->top_down)
613 		return walk_system_ram_res_rev(0, ULONG_MAX, kbuf, func);
614 	else
615 		return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
616 }
617 
618 /**
619  * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
620  * @kbuf:	Parameters for the memory search.
621  *
622  * On success, kbuf->mem will have the start address of the memory region found.
623  *
624  * Return: 0 on success, negative errno on error.
625  */
kexec_locate_mem_hole(struct kexec_buf * kbuf)626 int kexec_locate_mem_hole(struct kexec_buf *kbuf)
627 {
628 	int ret;
629 
630 	/* Arch knows where to place */
631 	if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
632 		return 0;
633 
634 	if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
635 		ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
636 	else
637 		ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
638 
639 	return ret == 1 ? 0 : -EADDRNOTAVAIL;
640 }
641 
642 /**
643  * kexec_add_buffer - place a buffer in a kexec segment
644  * @kbuf:	Buffer contents and memory parameters.
645  *
646  * This function assumes that kexec_lock is held.
647  * On successful return, @kbuf->mem will have the physical address of
648  * the buffer in memory.
649  *
650  * Return: 0 on success, negative errno on error.
651  */
kexec_add_buffer(struct kexec_buf * kbuf)652 int kexec_add_buffer(struct kexec_buf *kbuf)
653 {
654 	struct kexec_segment *ksegment;
655 	int ret;
656 
657 	/* Currently adding segment this way is allowed only in file mode */
658 	if (!kbuf->image->file_mode)
659 		return -EINVAL;
660 
661 	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
662 		return -EINVAL;
663 
664 	/*
665 	 * Make sure we are not trying to add buffer after allocating
666 	 * control pages. All segments need to be placed first before
667 	 * any control pages are allocated. As control page allocation
668 	 * logic goes through list of segments to make sure there are
669 	 * no destination overlaps.
670 	 */
671 	if (!list_empty(&kbuf->image->control_pages)) {
672 		WARN_ON(1);
673 		return -EINVAL;
674 	}
675 
676 	/* Ensure minimum alignment needed for segments. */
677 	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
678 	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
679 
680 	/* Walk the RAM ranges and allocate a suitable range for the buffer */
681 	ret = arch_kexec_locate_mem_hole(kbuf);
682 	if (ret)
683 		return ret;
684 
685 	/* Found a suitable memory range */
686 	ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
687 	ksegment->kbuf = kbuf->buffer;
688 	ksegment->bufsz = kbuf->bufsz;
689 	ksegment->mem = kbuf->mem;
690 	ksegment->memsz = kbuf->memsz;
691 	kbuf->image->nr_segments++;
692 	return 0;
693 }
694 
695 /* Calculate and store the digest of segments */
kexec_calculate_store_digests(struct kimage * image)696 static int kexec_calculate_store_digests(struct kimage *image)
697 {
698 	struct crypto_shash *tfm;
699 	struct shash_desc *desc;
700 	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
701 	size_t desc_size, nullsz;
702 	char *digest;
703 	void *zero_buf;
704 	struct kexec_sha_region *sha_regions;
705 	struct purgatory_info *pi = &image->purgatory_info;
706 
707 	if (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY))
708 		return 0;
709 
710 	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
711 	zero_buf_sz = PAGE_SIZE;
712 
713 	tfm = crypto_alloc_shash("sha256", 0, 0);
714 	if (IS_ERR(tfm)) {
715 		ret = PTR_ERR(tfm);
716 		goto out;
717 	}
718 
719 	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
720 	desc = kzalloc(desc_size, GFP_KERNEL);
721 	if (!desc) {
722 		ret = -ENOMEM;
723 		goto out_free_tfm;
724 	}
725 
726 	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
727 	sha_regions = vzalloc(sha_region_sz);
728 	if (!sha_regions) {
729 		ret = -ENOMEM;
730 		goto out_free_desc;
731 	}
732 
733 	desc->tfm   = tfm;
734 
735 	ret = crypto_shash_init(desc);
736 	if (ret < 0)
737 		goto out_free_sha_regions;
738 
739 	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
740 	if (!digest) {
741 		ret = -ENOMEM;
742 		goto out_free_sha_regions;
743 	}
744 
745 	for (j = i = 0; i < image->nr_segments; i++) {
746 		struct kexec_segment *ksegment;
747 
748 #ifdef CONFIG_CRASH_HOTPLUG
749 		/* Exclude elfcorehdr segment to allow future changes via hotplug */
750 		if (j == image->elfcorehdr_index)
751 			continue;
752 #endif
753 
754 		ksegment = &image->segment[i];
755 		/*
756 		 * Skip purgatory as it will be modified once we put digest
757 		 * info in purgatory.
758 		 */
759 		if (ksegment->kbuf == pi->purgatory_buf)
760 			continue;
761 
762 		ret = crypto_shash_update(desc, ksegment->kbuf,
763 					  ksegment->bufsz);
764 		if (ret)
765 			break;
766 
767 		/*
768 		 * Assume rest of the buffer is filled with zero and
769 		 * update digest accordingly.
770 		 */
771 		nullsz = ksegment->memsz - ksegment->bufsz;
772 		while (nullsz) {
773 			unsigned long bytes = nullsz;
774 
775 			if (bytes > zero_buf_sz)
776 				bytes = zero_buf_sz;
777 			ret = crypto_shash_update(desc, zero_buf, bytes);
778 			if (ret)
779 				break;
780 			nullsz -= bytes;
781 		}
782 
783 		if (ret)
784 			break;
785 
786 		sha_regions[j].start = ksegment->mem;
787 		sha_regions[j].len = ksegment->memsz;
788 		j++;
789 	}
790 
791 	if (!ret) {
792 		ret = crypto_shash_final(desc, digest);
793 		if (ret)
794 			goto out_free_digest;
795 		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
796 						     sha_regions, sha_region_sz, 0);
797 		if (ret)
798 			goto out_free_digest;
799 
800 		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
801 						     digest, SHA256_DIGEST_SIZE, 0);
802 		if (ret)
803 			goto out_free_digest;
804 	}
805 
806 out_free_digest:
807 	kfree(digest);
808 out_free_sha_regions:
809 	vfree(sha_regions);
810 out_free_desc:
811 	kfree(desc);
812 out_free_tfm:
813 	kfree(tfm);
814 out:
815 	return ret;
816 }
817 
818 #ifdef CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY
819 /*
820  * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
821  * @pi:		Purgatory to be loaded.
822  * @kbuf:	Buffer to setup.
823  *
824  * Allocates the memory needed for the buffer. Caller is responsible to free
825  * the memory after use.
826  *
827  * Return: 0 on success, negative errno on error.
828  */
kexec_purgatory_setup_kbuf(struct purgatory_info * pi,struct kexec_buf * kbuf)829 static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
830 				      struct kexec_buf *kbuf)
831 {
832 	const Elf_Shdr *sechdrs;
833 	unsigned long bss_align;
834 	unsigned long bss_sz;
835 	unsigned long align;
836 	int i, ret;
837 
838 	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
839 	kbuf->buf_align = bss_align = 1;
840 	kbuf->bufsz = bss_sz = 0;
841 
842 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
843 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
844 			continue;
845 
846 		align = sechdrs[i].sh_addralign;
847 		if (sechdrs[i].sh_type != SHT_NOBITS) {
848 			if (kbuf->buf_align < align)
849 				kbuf->buf_align = align;
850 			kbuf->bufsz = ALIGN(kbuf->bufsz, align);
851 			kbuf->bufsz += sechdrs[i].sh_size;
852 		} else {
853 			if (bss_align < align)
854 				bss_align = align;
855 			bss_sz = ALIGN(bss_sz, align);
856 			bss_sz += sechdrs[i].sh_size;
857 		}
858 	}
859 	kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
860 	kbuf->memsz = kbuf->bufsz + bss_sz;
861 	if (kbuf->buf_align < bss_align)
862 		kbuf->buf_align = bss_align;
863 
864 	kbuf->buffer = vzalloc(kbuf->bufsz);
865 	if (!kbuf->buffer)
866 		return -ENOMEM;
867 	pi->purgatory_buf = kbuf->buffer;
868 
869 	ret = kexec_add_buffer(kbuf);
870 	if (ret)
871 		goto out;
872 
873 	return 0;
874 out:
875 	vfree(pi->purgatory_buf);
876 	pi->purgatory_buf = NULL;
877 	return ret;
878 }
879 
880 /*
881  * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
882  * @pi:		Purgatory to be loaded.
883  * @kbuf:	Buffer prepared to store purgatory.
884  *
885  * Allocates the memory needed for the buffer. Caller is responsible to free
886  * the memory after use.
887  *
888  * Return: 0 on success, negative errno on error.
889  */
kexec_purgatory_setup_sechdrs(struct purgatory_info * pi,struct kexec_buf * kbuf)890 static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
891 					 struct kexec_buf *kbuf)
892 {
893 	unsigned long bss_addr;
894 	unsigned long offset;
895 	size_t sechdrs_size;
896 	Elf_Shdr *sechdrs;
897 	int i;
898 
899 	/*
900 	 * The section headers in kexec_purgatory are read-only. In order to
901 	 * have them modifiable make a temporary copy.
902 	 */
903 	sechdrs_size = array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum);
904 	sechdrs = vzalloc(sechdrs_size);
905 	if (!sechdrs)
906 		return -ENOMEM;
907 	memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff, sechdrs_size);
908 	pi->sechdrs = sechdrs;
909 
910 	offset = 0;
911 	bss_addr = kbuf->mem + kbuf->bufsz;
912 	kbuf->image->start = pi->ehdr->e_entry;
913 
914 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
915 		unsigned long align;
916 		void *src, *dst;
917 
918 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
919 			continue;
920 
921 		align = sechdrs[i].sh_addralign;
922 		if (sechdrs[i].sh_type == SHT_NOBITS) {
923 			bss_addr = ALIGN(bss_addr, align);
924 			sechdrs[i].sh_addr = bss_addr;
925 			bss_addr += sechdrs[i].sh_size;
926 			continue;
927 		}
928 
929 		offset = ALIGN(offset, align);
930 
931 		/*
932 		 * Check if the segment contains the entry point, if so,
933 		 * calculate the value of image->start based on it.
934 		 * If the compiler has produced more than one .text section
935 		 * (Eg: .text.hot), they are generally after the main .text
936 		 * section, and they shall not be used to calculate
937 		 * image->start. So do not re-calculate image->start if it
938 		 * is not set to the initial value, and warn the user so they
939 		 * have a chance to fix their purgatory's linker script.
940 		 */
941 		if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
942 		    pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
943 		    pi->ehdr->e_entry < (sechdrs[i].sh_addr
944 					 + sechdrs[i].sh_size) &&
945 		    !WARN_ON(kbuf->image->start != pi->ehdr->e_entry)) {
946 			kbuf->image->start -= sechdrs[i].sh_addr;
947 			kbuf->image->start += kbuf->mem + offset;
948 		}
949 
950 		src = (void *)pi->ehdr + sechdrs[i].sh_offset;
951 		dst = pi->purgatory_buf + offset;
952 		memcpy(dst, src, sechdrs[i].sh_size);
953 
954 		sechdrs[i].sh_addr = kbuf->mem + offset;
955 		sechdrs[i].sh_offset = offset;
956 		offset += sechdrs[i].sh_size;
957 	}
958 
959 	return 0;
960 }
961 
kexec_apply_relocations(struct kimage * image)962 static int kexec_apply_relocations(struct kimage *image)
963 {
964 	int i, ret;
965 	struct purgatory_info *pi = &image->purgatory_info;
966 	const Elf_Shdr *sechdrs;
967 
968 	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
969 
970 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
971 		const Elf_Shdr *relsec;
972 		const Elf_Shdr *symtab;
973 		Elf_Shdr *section;
974 
975 		relsec = sechdrs + i;
976 
977 		if (relsec->sh_type != SHT_RELA &&
978 		    relsec->sh_type != SHT_REL)
979 			continue;
980 
981 		/*
982 		 * For section of type SHT_RELA/SHT_REL,
983 		 * ->sh_link contains section header index of associated
984 		 * symbol table. And ->sh_info contains section header
985 		 * index of section to which relocations apply.
986 		 */
987 		if (relsec->sh_info >= pi->ehdr->e_shnum ||
988 		    relsec->sh_link >= pi->ehdr->e_shnum)
989 			return -ENOEXEC;
990 
991 		section = pi->sechdrs + relsec->sh_info;
992 		symtab = sechdrs + relsec->sh_link;
993 
994 		if (!(section->sh_flags & SHF_ALLOC))
995 			continue;
996 
997 		/*
998 		 * symtab->sh_link contain section header index of associated
999 		 * string table.
1000 		 */
1001 		if (symtab->sh_link >= pi->ehdr->e_shnum)
1002 			/* Invalid section number? */
1003 			continue;
1004 
1005 		/*
1006 		 * Respective architecture needs to provide support for applying
1007 		 * relocations of type SHT_RELA/SHT_REL.
1008 		 */
1009 		if (relsec->sh_type == SHT_RELA)
1010 			ret = arch_kexec_apply_relocations_add(pi, section,
1011 							       relsec, symtab);
1012 		else if (relsec->sh_type == SHT_REL)
1013 			ret = arch_kexec_apply_relocations(pi, section,
1014 							   relsec, symtab);
1015 		if (ret)
1016 			return ret;
1017 	}
1018 
1019 	return 0;
1020 }
1021 
1022 /*
1023  * kexec_load_purgatory - Load and relocate the purgatory object.
1024  * @image:	Image to add the purgatory to.
1025  * @kbuf:	Memory parameters to use.
1026  *
1027  * Allocates the memory needed for image->purgatory_info.sechdrs and
1028  * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
1029  * to free the memory after use.
1030  *
1031  * Return: 0 on success, negative errno on error.
1032  */
kexec_load_purgatory(struct kimage * image,struct kexec_buf * kbuf)1033 int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
1034 {
1035 	struct purgatory_info *pi = &image->purgatory_info;
1036 	int ret;
1037 
1038 	if (kexec_purgatory_size <= 0)
1039 		return -EINVAL;
1040 
1041 	pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
1042 
1043 	ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1044 	if (ret)
1045 		return ret;
1046 
1047 	ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1048 	if (ret)
1049 		goto out_free_kbuf;
1050 
1051 	ret = kexec_apply_relocations(image);
1052 	if (ret)
1053 		goto out;
1054 
1055 	return 0;
1056 out:
1057 	vfree(pi->sechdrs);
1058 	pi->sechdrs = NULL;
1059 out_free_kbuf:
1060 	vfree(pi->purgatory_buf);
1061 	pi->purgatory_buf = NULL;
1062 	return ret;
1063 }
1064 
1065 /*
1066  * kexec_purgatory_find_symbol - find a symbol in the purgatory
1067  * @pi:		Purgatory to search in.
1068  * @name:	Name of the symbol.
1069  *
1070  * Return: pointer to symbol in read-only symtab on success, NULL on error.
1071  */
kexec_purgatory_find_symbol(struct purgatory_info * pi,const char * name)1072 static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1073 						  const char *name)
1074 {
1075 	const Elf_Shdr *sechdrs;
1076 	const Elf_Ehdr *ehdr;
1077 	const Elf_Sym *syms;
1078 	const char *strtab;
1079 	int i, k;
1080 
1081 	if (!pi->ehdr)
1082 		return NULL;
1083 
1084 	ehdr = pi->ehdr;
1085 	sechdrs = (void *)ehdr + ehdr->e_shoff;
1086 
1087 	for (i = 0; i < ehdr->e_shnum; i++) {
1088 		if (sechdrs[i].sh_type != SHT_SYMTAB)
1089 			continue;
1090 
1091 		if (sechdrs[i].sh_link >= ehdr->e_shnum)
1092 			/* Invalid strtab section number */
1093 			continue;
1094 		strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1095 		syms = (void *)ehdr + sechdrs[i].sh_offset;
1096 
1097 		/* Go through symbols for a match */
1098 		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1099 			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1100 				continue;
1101 
1102 			if (strcmp(strtab + syms[k].st_name, name) != 0)
1103 				continue;
1104 
1105 			if (syms[k].st_shndx == SHN_UNDEF ||
1106 			    syms[k].st_shndx >= ehdr->e_shnum) {
1107 				pr_debug("Symbol: %s has bad section index %d.\n",
1108 						name, syms[k].st_shndx);
1109 				return NULL;
1110 			}
1111 
1112 			/* Found the symbol we are looking for */
1113 			return &syms[k];
1114 		}
1115 	}
1116 
1117 	return NULL;
1118 }
1119 
kexec_purgatory_get_symbol_addr(struct kimage * image,const char * name)1120 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1121 {
1122 	struct purgatory_info *pi = &image->purgatory_info;
1123 	const Elf_Sym *sym;
1124 	Elf_Shdr *sechdr;
1125 
1126 	sym = kexec_purgatory_find_symbol(pi, name);
1127 	if (!sym)
1128 		return ERR_PTR(-EINVAL);
1129 
1130 	sechdr = &pi->sechdrs[sym->st_shndx];
1131 
1132 	/*
1133 	 * Returns the address where symbol will finally be loaded after
1134 	 * kexec_load_segment()
1135 	 */
1136 	return (void *)(sechdr->sh_addr + sym->st_value);
1137 }
1138 
1139 /*
1140  * Get or set value of a symbol. If "get_value" is true, symbol value is
1141  * returned in buf otherwise symbol value is set based on value in buf.
1142  */
kexec_purgatory_get_set_symbol(struct kimage * image,const char * name,void * buf,unsigned int size,bool get_value)1143 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1144 				   void *buf, unsigned int size, bool get_value)
1145 {
1146 	struct purgatory_info *pi = &image->purgatory_info;
1147 	const Elf_Sym *sym;
1148 	Elf_Shdr *sec;
1149 	char *sym_buf;
1150 
1151 	sym = kexec_purgatory_find_symbol(pi, name);
1152 	if (!sym)
1153 		return -EINVAL;
1154 
1155 	if (sym->st_size != size) {
1156 		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1157 		       name, (unsigned long)sym->st_size, size);
1158 		return -EINVAL;
1159 	}
1160 
1161 	sec = pi->sechdrs + sym->st_shndx;
1162 
1163 	if (sec->sh_type == SHT_NOBITS) {
1164 		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1165 		       get_value ? "get" : "set");
1166 		return -EINVAL;
1167 	}
1168 
1169 	sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1170 
1171 	if (get_value)
1172 		memcpy((void *)buf, sym_buf, size);
1173 	else
1174 		memcpy((void *)sym_buf, buf, size);
1175 
1176 	return 0;
1177 }
1178 #endif /* CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY */
1179