xref: /linux/kernel/kexec_file.c (revision 021bc4b9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kexec: kexec_file_load system call
4  *
5  * Copyright (C) 2014 Red Hat Inc.
6  * Authors:
7  *      Vivek Goyal <vgoyal@redhat.com>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/capability.h>
13 #include <linux/mm.h>
14 #include <linux/file.h>
15 #include <linux/slab.h>
16 #include <linux/kexec.h>
17 #include <linux/memblock.h>
18 #include <linux/mutex.h>
19 #include <linux/list.h>
20 #include <linux/fs.h>
21 #include <linux/ima.h>
22 #include <crypto/hash.h>
23 #include <crypto/sha2.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/kernel.h>
27 #include <linux/kernel_read_file.h>
28 #include <linux/syscalls.h>
29 #include <linux/vmalloc.h>
30 #include "kexec_internal.h"
31 
32 #ifdef CONFIG_KEXEC_SIG
33 static bool sig_enforce = IS_ENABLED(CONFIG_KEXEC_SIG_FORCE);
34 
35 void set_kexec_sig_enforced(void)
36 {
37 	sig_enforce = true;
38 }
39 #endif
40 
41 static int kexec_calculate_store_digests(struct kimage *image);
42 
43 /* Maximum size in bytes for kernel/initrd files. */
44 #define KEXEC_FILE_SIZE_MAX	min_t(s64, 4LL << 30, SSIZE_MAX)
45 
46 /*
47  * Currently this is the only default function that is exported as some
48  * architectures need it to do additional handlings.
49  * In the future, other default functions may be exported too if required.
50  */
51 int kexec_image_probe_default(struct kimage *image, void *buf,
52 			      unsigned long buf_len)
53 {
54 	const struct kexec_file_ops * const *fops;
55 	int ret = -ENOEXEC;
56 
57 	for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
58 		ret = (*fops)->probe(buf, buf_len);
59 		if (!ret) {
60 			image->fops = *fops;
61 			return ret;
62 		}
63 	}
64 
65 	return ret;
66 }
67 
68 static void *kexec_image_load_default(struct kimage *image)
69 {
70 	if (!image->fops || !image->fops->load)
71 		return ERR_PTR(-ENOEXEC);
72 
73 	return image->fops->load(image, image->kernel_buf,
74 				 image->kernel_buf_len, image->initrd_buf,
75 				 image->initrd_buf_len, image->cmdline_buf,
76 				 image->cmdline_buf_len);
77 }
78 
79 int kexec_image_post_load_cleanup_default(struct kimage *image)
80 {
81 	if (!image->fops || !image->fops->cleanup)
82 		return 0;
83 
84 	return image->fops->cleanup(image->image_loader_data);
85 }
86 
87 /*
88  * Free up memory used by kernel, initrd, and command line. This is temporary
89  * memory allocation which is not needed any more after these buffers have
90  * been loaded into separate segments and have been copied elsewhere.
91  */
92 void kimage_file_post_load_cleanup(struct kimage *image)
93 {
94 	struct purgatory_info *pi = &image->purgatory_info;
95 
96 	vfree(image->kernel_buf);
97 	image->kernel_buf = NULL;
98 
99 	vfree(image->initrd_buf);
100 	image->initrd_buf = NULL;
101 
102 	kfree(image->cmdline_buf);
103 	image->cmdline_buf = NULL;
104 
105 	vfree(pi->purgatory_buf);
106 	pi->purgatory_buf = NULL;
107 
108 	vfree(pi->sechdrs);
109 	pi->sechdrs = NULL;
110 
111 #ifdef CONFIG_IMA_KEXEC
112 	vfree(image->ima_buffer);
113 	image->ima_buffer = NULL;
114 #endif /* CONFIG_IMA_KEXEC */
115 
116 	/* See if architecture has anything to cleanup post load */
117 	arch_kimage_file_post_load_cleanup(image);
118 
119 	/*
120 	 * Above call should have called into bootloader to free up
121 	 * any data stored in kimage->image_loader_data. It should
122 	 * be ok now to free it up.
123 	 */
124 	kfree(image->image_loader_data);
125 	image->image_loader_data = NULL;
126 
127 	kexec_file_dbg_print = false;
128 }
129 
130 #ifdef CONFIG_KEXEC_SIG
131 #ifdef CONFIG_SIGNED_PE_FILE_VERIFICATION
132 int kexec_kernel_verify_pe_sig(const char *kernel, unsigned long kernel_len)
133 {
134 	int ret;
135 
136 	ret = verify_pefile_signature(kernel, kernel_len,
137 				      VERIFY_USE_SECONDARY_KEYRING,
138 				      VERIFYING_KEXEC_PE_SIGNATURE);
139 	if (ret == -ENOKEY && IS_ENABLED(CONFIG_INTEGRITY_PLATFORM_KEYRING)) {
140 		ret = verify_pefile_signature(kernel, kernel_len,
141 					      VERIFY_USE_PLATFORM_KEYRING,
142 					      VERIFYING_KEXEC_PE_SIGNATURE);
143 	}
144 	return ret;
145 }
146 #endif
147 
148 static int kexec_image_verify_sig(struct kimage *image, void *buf,
149 				  unsigned long buf_len)
150 {
151 	if (!image->fops || !image->fops->verify_sig) {
152 		pr_debug("kernel loader does not support signature verification.\n");
153 		return -EKEYREJECTED;
154 	}
155 
156 	return image->fops->verify_sig(buf, buf_len);
157 }
158 
159 static int
160 kimage_validate_signature(struct kimage *image)
161 {
162 	int ret;
163 
164 	ret = kexec_image_verify_sig(image, image->kernel_buf,
165 				     image->kernel_buf_len);
166 	if (ret) {
167 
168 		if (sig_enforce) {
169 			pr_notice("Enforced kernel signature verification failed (%d).\n", ret);
170 			return ret;
171 		}
172 
173 		/*
174 		 * If IMA is guaranteed to appraise a signature on the kexec
175 		 * image, permit it even if the kernel is otherwise locked
176 		 * down.
177 		 */
178 		if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
179 		    security_locked_down(LOCKDOWN_KEXEC))
180 			return -EPERM;
181 
182 		pr_debug("kernel signature verification failed (%d).\n", ret);
183 	}
184 
185 	return 0;
186 }
187 #endif
188 
189 /*
190  * In file mode list of segments is prepared by kernel. Copy relevant
191  * data from user space, do error checking, prepare segment list
192  */
193 static int
194 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
195 			     const char __user *cmdline_ptr,
196 			     unsigned long cmdline_len, unsigned flags)
197 {
198 	ssize_t ret;
199 	void *ldata;
200 
201 	ret = kernel_read_file_from_fd(kernel_fd, 0, &image->kernel_buf,
202 				       KEXEC_FILE_SIZE_MAX, NULL,
203 				       READING_KEXEC_IMAGE);
204 	if (ret < 0)
205 		return ret;
206 	image->kernel_buf_len = ret;
207 	kexec_dprintk("kernel: %p kernel_size: %#lx\n",
208 		      image->kernel_buf, image->kernel_buf_len);
209 
210 	/* Call arch image probe handlers */
211 	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
212 					    image->kernel_buf_len);
213 	if (ret)
214 		goto out;
215 
216 #ifdef CONFIG_KEXEC_SIG
217 	ret = kimage_validate_signature(image);
218 
219 	if (ret)
220 		goto out;
221 #endif
222 	/* It is possible that there no initramfs is being loaded */
223 	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
224 		ret = kernel_read_file_from_fd(initrd_fd, 0, &image->initrd_buf,
225 					       KEXEC_FILE_SIZE_MAX, NULL,
226 					       READING_KEXEC_INITRAMFS);
227 		if (ret < 0)
228 			goto out;
229 		image->initrd_buf_len = ret;
230 		ret = 0;
231 	}
232 
233 	if (cmdline_len) {
234 		image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
235 		if (IS_ERR(image->cmdline_buf)) {
236 			ret = PTR_ERR(image->cmdline_buf);
237 			image->cmdline_buf = NULL;
238 			goto out;
239 		}
240 
241 		image->cmdline_buf_len = cmdline_len;
242 
243 		/* command line should be a string with last byte null */
244 		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
245 			ret = -EINVAL;
246 			goto out;
247 		}
248 
249 		ima_kexec_cmdline(kernel_fd, image->cmdline_buf,
250 				  image->cmdline_buf_len - 1);
251 	}
252 
253 	/* IMA needs to pass the measurement list to the next kernel. */
254 	ima_add_kexec_buffer(image);
255 
256 	/* Call image load handler */
257 	ldata = kexec_image_load_default(image);
258 
259 	if (IS_ERR(ldata)) {
260 		ret = PTR_ERR(ldata);
261 		goto out;
262 	}
263 
264 	image->image_loader_data = ldata;
265 out:
266 	/* In case of error, free up all allocated memory in this function */
267 	if (ret)
268 		kimage_file_post_load_cleanup(image);
269 	return ret;
270 }
271 
272 static int
273 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
274 		       int initrd_fd, const char __user *cmdline_ptr,
275 		       unsigned long cmdline_len, unsigned long flags)
276 {
277 	int ret;
278 	struct kimage *image;
279 	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
280 
281 	image = do_kimage_alloc_init();
282 	if (!image)
283 		return -ENOMEM;
284 
285 	kexec_file_dbg_print = !!(flags & KEXEC_FILE_DEBUG);
286 	image->file_mode = 1;
287 
288 	if (kexec_on_panic) {
289 		/* Enable special crash kernel control page alloc policy. */
290 		image->control_page = crashk_res.start;
291 		image->type = KEXEC_TYPE_CRASH;
292 	}
293 
294 	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
295 					   cmdline_ptr, cmdline_len, flags);
296 	if (ret)
297 		goto out_free_image;
298 
299 	ret = sanity_check_segment_list(image);
300 	if (ret)
301 		goto out_free_post_load_bufs;
302 
303 	ret = -ENOMEM;
304 	image->control_code_page = kimage_alloc_control_pages(image,
305 					   get_order(KEXEC_CONTROL_PAGE_SIZE));
306 	if (!image->control_code_page) {
307 		pr_err("Could not allocate control_code_buffer\n");
308 		goto out_free_post_load_bufs;
309 	}
310 
311 	if (!kexec_on_panic) {
312 		image->swap_page = kimage_alloc_control_pages(image, 0);
313 		if (!image->swap_page) {
314 			pr_err("Could not allocate swap buffer\n");
315 			goto out_free_control_pages;
316 		}
317 	}
318 
319 	*rimage = image;
320 	return 0;
321 out_free_control_pages:
322 	kimage_free_page_list(&image->control_pages);
323 out_free_post_load_bufs:
324 	kimage_file_post_load_cleanup(image);
325 out_free_image:
326 	kfree(image);
327 	return ret;
328 }
329 
330 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
331 		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
332 		unsigned long, flags)
333 {
334 	int image_type = (flags & KEXEC_FILE_ON_CRASH) ?
335 			 KEXEC_TYPE_CRASH : KEXEC_TYPE_DEFAULT;
336 	struct kimage **dest_image, *image;
337 	int ret = 0, i;
338 
339 	/* We only trust the superuser with rebooting the system. */
340 	if (!kexec_load_permitted(image_type))
341 		return -EPERM;
342 
343 	/* Make sure we have a legal set of flags */
344 	if (flags != (flags & KEXEC_FILE_FLAGS))
345 		return -EINVAL;
346 
347 	image = NULL;
348 
349 	if (!kexec_trylock())
350 		return -EBUSY;
351 
352 	if (image_type == KEXEC_TYPE_CRASH) {
353 		dest_image = &kexec_crash_image;
354 		if (kexec_crash_image)
355 			arch_kexec_unprotect_crashkres();
356 	} else {
357 		dest_image = &kexec_image;
358 	}
359 
360 	if (flags & KEXEC_FILE_UNLOAD)
361 		goto exchange;
362 
363 	/*
364 	 * In case of crash, new kernel gets loaded in reserved region. It is
365 	 * same memory where old crash kernel might be loaded. Free any
366 	 * current crash dump kernel before we corrupt it.
367 	 */
368 	if (flags & KEXEC_FILE_ON_CRASH)
369 		kimage_free(xchg(&kexec_crash_image, NULL));
370 
371 	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
372 				     cmdline_len, flags);
373 	if (ret)
374 		goto out;
375 
376 	ret = machine_kexec_prepare(image);
377 	if (ret)
378 		goto out;
379 
380 	/*
381 	 * Some architecture(like S390) may touch the crash memory before
382 	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
383 	 */
384 	ret = kimage_crash_copy_vmcoreinfo(image);
385 	if (ret)
386 		goto out;
387 
388 	ret = kexec_calculate_store_digests(image);
389 	if (ret)
390 		goto out;
391 
392 	kexec_dprintk("nr_segments = %lu\n", image->nr_segments);
393 	for (i = 0; i < image->nr_segments; i++) {
394 		struct kexec_segment *ksegment;
395 
396 		ksegment = &image->segment[i];
397 		kexec_dprintk("segment[%d]: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
398 			      i, ksegment->buf, ksegment->bufsz, ksegment->mem,
399 			      ksegment->memsz);
400 
401 		ret = kimage_load_segment(image, &image->segment[i]);
402 		if (ret)
403 			goto out;
404 	}
405 
406 	kimage_terminate(image);
407 
408 	ret = machine_kexec_post_load(image);
409 	if (ret)
410 		goto out;
411 
412 	kexec_dprintk("kexec_file_load: type:%u, start:0x%lx head:0x%lx flags:0x%lx\n",
413 		      image->type, image->start, image->head, flags);
414 	/*
415 	 * Free up any temporary buffers allocated which are not needed
416 	 * after image has been loaded
417 	 */
418 	kimage_file_post_load_cleanup(image);
419 exchange:
420 	image = xchg(dest_image, image);
421 out:
422 	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
423 		arch_kexec_protect_crashkres();
424 
425 	kexec_unlock();
426 	kimage_free(image);
427 	return ret;
428 }
429 
430 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
431 				    struct kexec_buf *kbuf)
432 {
433 	struct kimage *image = kbuf->image;
434 	unsigned long temp_start, temp_end;
435 
436 	temp_end = min(end, kbuf->buf_max);
437 	temp_start = temp_end - kbuf->memsz + 1;
438 
439 	do {
440 		/* align down start */
441 		temp_start = ALIGN_DOWN(temp_start, kbuf->buf_align);
442 
443 		if (temp_start < start || temp_start < kbuf->buf_min)
444 			return 0;
445 
446 		temp_end = temp_start + kbuf->memsz - 1;
447 
448 		/*
449 		 * Make sure this does not conflict with any of existing
450 		 * segments
451 		 */
452 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
453 			temp_start = temp_start - PAGE_SIZE;
454 			continue;
455 		}
456 
457 		/* We found a suitable memory range */
458 		break;
459 	} while (1);
460 
461 	/* If we are here, we found a suitable memory range */
462 	kbuf->mem = temp_start;
463 
464 	/* Success, stop navigating through remaining System RAM ranges */
465 	return 1;
466 }
467 
468 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
469 				     struct kexec_buf *kbuf)
470 {
471 	struct kimage *image = kbuf->image;
472 	unsigned long temp_start, temp_end;
473 
474 	temp_start = max(start, kbuf->buf_min);
475 
476 	do {
477 		temp_start = ALIGN(temp_start, kbuf->buf_align);
478 		temp_end = temp_start + kbuf->memsz - 1;
479 
480 		if (temp_end > end || temp_end > kbuf->buf_max)
481 			return 0;
482 		/*
483 		 * Make sure this does not conflict with any of existing
484 		 * segments
485 		 */
486 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
487 			temp_start = temp_start + PAGE_SIZE;
488 			continue;
489 		}
490 
491 		/* We found a suitable memory range */
492 		break;
493 	} while (1);
494 
495 	/* If we are here, we found a suitable memory range */
496 	kbuf->mem = temp_start;
497 
498 	/* Success, stop navigating through remaining System RAM ranges */
499 	return 1;
500 }
501 
502 static int locate_mem_hole_callback(struct resource *res, void *arg)
503 {
504 	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
505 	u64 start = res->start, end = res->end;
506 	unsigned long sz = end - start + 1;
507 
508 	/* Returning 0 will take to next memory range */
509 
510 	/* Don't use memory that will be detected and handled by a driver. */
511 	if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
512 		return 0;
513 
514 	if (sz < kbuf->memsz)
515 		return 0;
516 
517 	if (end < kbuf->buf_min || start > kbuf->buf_max)
518 		return 0;
519 
520 	/*
521 	 * Allocate memory top down with-in ram range. Otherwise bottom up
522 	 * allocation.
523 	 */
524 	if (kbuf->top_down)
525 		return locate_mem_hole_top_down(start, end, kbuf);
526 	return locate_mem_hole_bottom_up(start, end, kbuf);
527 }
528 
529 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK
530 static int kexec_walk_memblock(struct kexec_buf *kbuf,
531 			       int (*func)(struct resource *, void *))
532 {
533 	int ret = 0;
534 	u64 i;
535 	phys_addr_t mstart, mend;
536 	struct resource res = { };
537 
538 	if (kbuf->image->type == KEXEC_TYPE_CRASH)
539 		return func(&crashk_res, kbuf);
540 
541 	/*
542 	 * Using MEMBLOCK_NONE will properly skip MEMBLOCK_DRIVER_MANAGED. See
543 	 * IORESOURCE_SYSRAM_DRIVER_MANAGED handling in
544 	 * locate_mem_hole_callback().
545 	 */
546 	if (kbuf->top_down) {
547 		for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
548 						&mstart, &mend, NULL) {
549 			/*
550 			 * In memblock, end points to the first byte after the
551 			 * range while in kexec, end points to the last byte
552 			 * in the range.
553 			 */
554 			res.start = mstart;
555 			res.end = mend - 1;
556 			ret = func(&res, kbuf);
557 			if (ret)
558 				break;
559 		}
560 	} else {
561 		for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
562 					&mstart, &mend, NULL) {
563 			/*
564 			 * In memblock, end points to the first byte after the
565 			 * range while in kexec, end points to the last byte
566 			 * in the range.
567 			 */
568 			res.start = mstart;
569 			res.end = mend - 1;
570 			ret = func(&res, kbuf);
571 			if (ret)
572 				break;
573 		}
574 	}
575 
576 	return ret;
577 }
578 #else
579 static int kexec_walk_memblock(struct kexec_buf *kbuf,
580 			       int (*func)(struct resource *, void *))
581 {
582 	return 0;
583 }
584 #endif
585 
586 /**
587  * kexec_walk_resources - call func(data) on free memory regions
588  * @kbuf:	Context info for the search. Also passed to @func.
589  * @func:	Function to call for each memory region.
590  *
591  * Return: The memory walk will stop when func returns a non-zero value
592  * and that value will be returned. If all free regions are visited without
593  * func returning non-zero, then zero will be returned.
594  */
595 static int kexec_walk_resources(struct kexec_buf *kbuf,
596 				int (*func)(struct resource *, void *))
597 {
598 	if (kbuf->image->type == KEXEC_TYPE_CRASH)
599 		return walk_iomem_res_desc(crashk_res.desc,
600 					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
601 					   crashk_res.start, crashk_res.end,
602 					   kbuf, func);
603 	else if (kbuf->top_down)
604 		return walk_system_ram_res_rev(0, ULONG_MAX, kbuf, func);
605 	else
606 		return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
607 }
608 
609 /**
610  * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
611  * @kbuf:	Parameters for the memory search.
612  *
613  * On success, kbuf->mem will have the start address of the memory region found.
614  *
615  * Return: 0 on success, negative errno on error.
616  */
617 int kexec_locate_mem_hole(struct kexec_buf *kbuf)
618 {
619 	int ret;
620 
621 	/* Arch knows where to place */
622 	if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
623 		return 0;
624 
625 	if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
626 		ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
627 	else
628 		ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
629 
630 	return ret == 1 ? 0 : -EADDRNOTAVAIL;
631 }
632 
633 /**
634  * kexec_add_buffer - place a buffer in a kexec segment
635  * @kbuf:	Buffer contents and memory parameters.
636  *
637  * This function assumes that kexec_lock is held.
638  * On successful return, @kbuf->mem will have the physical address of
639  * the buffer in memory.
640  *
641  * Return: 0 on success, negative errno on error.
642  */
643 int kexec_add_buffer(struct kexec_buf *kbuf)
644 {
645 	struct kexec_segment *ksegment;
646 	int ret;
647 
648 	/* Currently adding segment this way is allowed only in file mode */
649 	if (!kbuf->image->file_mode)
650 		return -EINVAL;
651 
652 	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
653 		return -EINVAL;
654 
655 	/*
656 	 * Make sure we are not trying to add buffer after allocating
657 	 * control pages. All segments need to be placed first before
658 	 * any control pages are allocated. As control page allocation
659 	 * logic goes through list of segments to make sure there are
660 	 * no destination overlaps.
661 	 */
662 	if (!list_empty(&kbuf->image->control_pages)) {
663 		WARN_ON(1);
664 		return -EINVAL;
665 	}
666 
667 	/* Ensure minimum alignment needed for segments. */
668 	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
669 	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
670 
671 	/* Walk the RAM ranges and allocate a suitable range for the buffer */
672 	ret = arch_kexec_locate_mem_hole(kbuf);
673 	if (ret)
674 		return ret;
675 
676 	/* Found a suitable memory range */
677 	ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
678 	ksegment->kbuf = kbuf->buffer;
679 	ksegment->bufsz = kbuf->bufsz;
680 	ksegment->mem = kbuf->mem;
681 	ksegment->memsz = kbuf->memsz;
682 	kbuf->image->nr_segments++;
683 	return 0;
684 }
685 
686 /* Calculate and store the digest of segments */
687 static int kexec_calculate_store_digests(struct kimage *image)
688 {
689 	struct crypto_shash *tfm;
690 	struct shash_desc *desc;
691 	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
692 	size_t desc_size, nullsz;
693 	char *digest;
694 	void *zero_buf;
695 	struct kexec_sha_region *sha_regions;
696 	struct purgatory_info *pi = &image->purgatory_info;
697 
698 	if (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY))
699 		return 0;
700 
701 	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
702 	zero_buf_sz = PAGE_SIZE;
703 
704 	tfm = crypto_alloc_shash("sha256", 0, 0);
705 	if (IS_ERR(tfm)) {
706 		ret = PTR_ERR(tfm);
707 		goto out;
708 	}
709 
710 	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
711 	desc = kzalloc(desc_size, GFP_KERNEL);
712 	if (!desc) {
713 		ret = -ENOMEM;
714 		goto out_free_tfm;
715 	}
716 
717 	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
718 	sha_regions = vzalloc(sha_region_sz);
719 	if (!sha_regions) {
720 		ret = -ENOMEM;
721 		goto out_free_desc;
722 	}
723 
724 	desc->tfm   = tfm;
725 
726 	ret = crypto_shash_init(desc);
727 	if (ret < 0)
728 		goto out_free_sha_regions;
729 
730 	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
731 	if (!digest) {
732 		ret = -ENOMEM;
733 		goto out_free_sha_regions;
734 	}
735 
736 	for (j = i = 0; i < image->nr_segments; i++) {
737 		struct kexec_segment *ksegment;
738 
739 #ifdef CONFIG_CRASH_HOTPLUG
740 		/* Exclude elfcorehdr segment to allow future changes via hotplug */
741 		if (j == image->elfcorehdr_index)
742 			continue;
743 #endif
744 
745 		ksegment = &image->segment[i];
746 		/*
747 		 * Skip purgatory as it will be modified once we put digest
748 		 * info in purgatory.
749 		 */
750 		if (ksegment->kbuf == pi->purgatory_buf)
751 			continue;
752 
753 		ret = crypto_shash_update(desc, ksegment->kbuf,
754 					  ksegment->bufsz);
755 		if (ret)
756 			break;
757 
758 		/*
759 		 * Assume rest of the buffer is filled with zero and
760 		 * update digest accordingly.
761 		 */
762 		nullsz = ksegment->memsz - ksegment->bufsz;
763 		while (nullsz) {
764 			unsigned long bytes = nullsz;
765 
766 			if (bytes > zero_buf_sz)
767 				bytes = zero_buf_sz;
768 			ret = crypto_shash_update(desc, zero_buf, bytes);
769 			if (ret)
770 				break;
771 			nullsz -= bytes;
772 		}
773 
774 		if (ret)
775 			break;
776 
777 		sha_regions[j].start = ksegment->mem;
778 		sha_regions[j].len = ksegment->memsz;
779 		j++;
780 	}
781 
782 	if (!ret) {
783 		ret = crypto_shash_final(desc, digest);
784 		if (ret)
785 			goto out_free_digest;
786 		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
787 						     sha_regions, sha_region_sz, 0);
788 		if (ret)
789 			goto out_free_digest;
790 
791 		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
792 						     digest, SHA256_DIGEST_SIZE, 0);
793 		if (ret)
794 			goto out_free_digest;
795 	}
796 
797 out_free_digest:
798 	kfree(digest);
799 out_free_sha_regions:
800 	vfree(sha_regions);
801 out_free_desc:
802 	kfree(desc);
803 out_free_tfm:
804 	kfree(tfm);
805 out:
806 	return ret;
807 }
808 
809 #ifdef CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY
810 /*
811  * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
812  * @pi:		Purgatory to be loaded.
813  * @kbuf:	Buffer to setup.
814  *
815  * Allocates the memory needed for the buffer. Caller is responsible to free
816  * the memory after use.
817  *
818  * Return: 0 on success, negative errno on error.
819  */
820 static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
821 				      struct kexec_buf *kbuf)
822 {
823 	const Elf_Shdr *sechdrs;
824 	unsigned long bss_align;
825 	unsigned long bss_sz;
826 	unsigned long align;
827 	int i, ret;
828 
829 	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
830 	kbuf->buf_align = bss_align = 1;
831 	kbuf->bufsz = bss_sz = 0;
832 
833 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
834 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
835 			continue;
836 
837 		align = sechdrs[i].sh_addralign;
838 		if (sechdrs[i].sh_type != SHT_NOBITS) {
839 			if (kbuf->buf_align < align)
840 				kbuf->buf_align = align;
841 			kbuf->bufsz = ALIGN(kbuf->bufsz, align);
842 			kbuf->bufsz += sechdrs[i].sh_size;
843 		} else {
844 			if (bss_align < align)
845 				bss_align = align;
846 			bss_sz = ALIGN(bss_sz, align);
847 			bss_sz += sechdrs[i].sh_size;
848 		}
849 	}
850 	kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
851 	kbuf->memsz = kbuf->bufsz + bss_sz;
852 	if (kbuf->buf_align < bss_align)
853 		kbuf->buf_align = bss_align;
854 
855 	kbuf->buffer = vzalloc(kbuf->bufsz);
856 	if (!kbuf->buffer)
857 		return -ENOMEM;
858 	pi->purgatory_buf = kbuf->buffer;
859 
860 	ret = kexec_add_buffer(kbuf);
861 	if (ret)
862 		goto out;
863 
864 	return 0;
865 out:
866 	vfree(pi->purgatory_buf);
867 	pi->purgatory_buf = NULL;
868 	return ret;
869 }
870 
871 /*
872  * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
873  * @pi:		Purgatory to be loaded.
874  * @kbuf:	Buffer prepared to store purgatory.
875  *
876  * Allocates the memory needed for the buffer. Caller is responsible to free
877  * the memory after use.
878  *
879  * Return: 0 on success, negative errno on error.
880  */
881 static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
882 					 struct kexec_buf *kbuf)
883 {
884 	unsigned long bss_addr;
885 	unsigned long offset;
886 	size_t sechdrs_size;
887 	Elf_Shdr *sechdrs;
888 	int i;
889 
890 	/*
891 	 * The section headers in kexec_purgatory are read-only. In order to
892 	 * have them modifiable make a temporary copy.
893 	 */
894 	sechdrs_size = array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum);
895 	sechdrs = vzalloc(sechdrs_size);
896 	if (!sechdrs)
897 		return -ENOMEM;
898 	memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff, sechdrs_size);
899 	pi->sechdrs = sechdrs;
900 
901 	offset = 0;
902 	bss_addr = kbuf->mem + kbuf->bufsz;
903 	kbuf->image->start = pi->ehdr->e_entry;
904 
905 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
906 		unsigned long align;
907 		void *src, *dst;
908 
909 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
910 			continue;
911 
912 		align = sechdrs[i].sh_addralign;
913 		if (sechdrs[i].sh_type == SHT_NOBITS) {
914 			bss_addr = ALIGN(bss_addr, align);
915 			sechdrs[i].sh_addr = bss_addr;
916 			bss_addr += sechdrs[i].sh_size;
917 			continue;
918 		}
919 
920 		offset = ALIGN(offset, align);
921 
922 		/*
923 		 * Check if the segment contains the entry point, if so,
924 		 * calculate the value of image->start based on it.
925 		 * If the compiler has produced more than one .text section
926 		 * (Eg: .text.hot), they are generally after the main .text
927 		 * section, and they shall not be used to calculate
928 		 * image->start. So do not re-calculate image->start if it
929 		 * is not set to the initial value, and warn the user so they
930 		 * have a chance to fix their purgatory's linker script.
931 		 */
932 		if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
933 		    pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
934 		    pi->ehdr->e_entry < (sechdrs[i].sh_addr
935 					 + sechdrs[i].sh_size) &&
936 		    !WARN_ON(kbuf->image->start != pi->ehdr->e_entry)) {
937 			kbuf->image->start -= sechdrs[i].sh_addr;
938 			kbuf->image->start += kbuf->mem + offset;
939 		}
940 
941 		src = (void *)pi->ehdr + sechdrs[i].sh_offset;
942 		dst = pi->purgatory_buf + offset;
943 		memcpy(dst, src, sechdrs[i].sh_size);
944 
945 		sechdrs[i].sh_addr = kbuf->mem + offset;
946 		sechdrs[i].sh_offset = offset;
947 		offset += sechdrs[i].sh_size;
948 	}
949 
950 	return 0;
951 }
952 
953 static int kexec_apply_relocations(struct kimage *image)
954 {
955 	int i, ret;
956 	struct purgatory_info *pi = &image->purgatory_info;
957 	const Elf_Shdr *sechdrs;
958 
959 	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
960 
961 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
962 		const Elf_Shdr *relsec;
963 		const Elf_Shdr *symtab;
964 		Elf_Shdr *section;
965 
966 		relsec = sechdrs + i;
967 
968 		if (relsec->sh_type != SHT_RELA &&
969 		    relsec->sh_type != SHT_REL)
970 			continue;
971 
972 		/*
973 		 * For section of type SHT_RELA/SHT_REL,
974 		 * ->sh_link contains section header index of associated
975 		 * symbol table. And ->sh_info contains section header
976 		 * index of section to which relocations apply.
977 		 */
978 		if (relsec->sh_info >= pi->ehdr->e_shnum ||
979 		    relsec->sh_link >= pi->ehdr->e_shnum)
980 			return -ENOEXEC;
981 
982 		section = pi->sechdrs + relsec->sh_info;
983 		symtab = sechdrs + relsec->sh_link;
984 
985 		if (!(section->sh_flags & SHF_ALLOC))
986 			continue;
987 
988 		/*
989 		 * symtab->sh_link contain section header index of associated
990 		 * string table.
991 		 */
992 		if (symtab->sh_link >= pi->ehdr->e_shnum)
993 			/* Invalid section number? */
994 			continue;
995 
996 		/*
997 		 * Respective architecture needs to provide support for applying
998 		 * relocations of type SHT_RELA/SHT_REL.
999 		 */
1000 		if (relsec->sh_type == SHT_RELA)
1001 			ret = arch_kexec_apply_relocations_add(pi, section,
1002 							       relsec, symtab);
1003 		else if (relsec->sh_type == SHT_REL)
1004 			ret = arch_kexec_apply_relocations(pi, section,
1005 							   relsec, symtab);
1006 		if (ret)
1007 			return ret;
1008 	}
1009 
1010 	return 0;
1011 }
1012 
1013 /*
1014  * kexec_load_purgatory - Load and relocate the purgatory object.
1015  * @image:	Image to add the purgatory to.
1016  * @kbuf:	Memory parameters to use.
1017  *
1018  * Allocates the memory needed for image->purgatory_info.sechdrs and
1019  * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
1020  * to free the memory after use.
1021  *
1022  * Return: 0 on success, negative errno on error.
1023  */
1024 int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
1025 {
1026 	struct purgatory_info *pi = &image->purgatory_info;
1027 	int ret;
1028 
1029 	if (kexec_purgatory_size <= 0)
1030 		return -EINVAL;
1031 
1032 	pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
1033 
1034 	ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1035 	if (ret)
1036 		return ret;
1037 
1038 	ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1039 	if (ret)
1040 		goto out_free_kbuf;
1041 
1042 	ret = kexec_apply_relocations(image);
1043 	if (ret)
1044 		goto out;
1045 
1046 	return 0;
1047 out:
1048 	vfree(pi->sechdrs);
1049 	pi->sechdrs = NULL;
1050 out_free_kbuf:
1051 	vfree(pi->purgatory_buf);
1052 	pi->purgatory_buf = NULL;
1053 	return ret;
1054 }
1055 
1056 /*
1057  * kexec_purgatory_find_symbol - find a symbol in the purgatory
1058  * @pi:		Purgatory to search in.
1059  * @name:	Name of the symbol.
1060  *
1061  * Return: pointer to symbol in read-only symtab on success, NULL on error.
1062  */
1063 static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1064 						  const char *name)
1065 {
1066 	const Elf_Shdr *sechdrs;
1067 	const Elf_Ehdr *ehdr;
1068 	const Elf_Sym *syms;
1069 	const char *strtab;
1070 	int i, k;
1071 
1072 	if (!pi->ehdr)
1073 		return NULL;
1074 
1075 	ehdr = pi->ehdr;
1076 	sechdrs = (void *)ehdr + ehdr->e_shoff;
1077 
1078 	for (i = 0; i < ehdr->e_shnum; i++) {
1079 		if (sechdrs[i].sh_type != SHT_SYMTAB)
1080 			continue;
1081 
1082 		if (sechdrs[i].sh_link >= ehdr->e_shnum)
1083 			/* Invalid strtab section number */
1084 			continue;
1085 		strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1086 		syms = (void *)ehdr + sechdrs[i].sh_offset;
1087 
1088 		/* Go through symbols for a match */
1089 		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1090 			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1091 				continue;
1092 
1093 			if (strcmp(strtab + syms[k].st_name, name) != 0)
1094 				continue;
1095 
1096 			if (syms[k].st_shndx == SHN_UNDEF ||
1097 			    syms[k].st_shndx >= ehdr->e_shnum) {
1098 				pr_debug("Symbol: %s has bad section index %d.\n",
1099 						name, syms[k].st_shndx);
1100 				return NULL;
1101 			}
1102 
1103 			/* Found the symbol we are looking for */
1104 			return &syms[k];
1105 		}
1106 	}
1107 
1108 	return NULL;
1109 }
1110 
1111 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1112 {
1113 	struct purgatory_info *pi = &image->purgatory_info;
1114 	const Elf_Sym *sym;
1115 	Elf_Shdr *sechdr;
1116 
1117 	sym = kexec_purgatory_find_symbol(pi, name);
1118 	if (!sym)
1119 		return ERR_PTR(-EINVAL);
1120 
1121 	sechdr = &pi->sechdrs[sym->st_shndx];
1122 
1123 	/*
1124 	 * Returns the address where symbol will finally be loaded after
1125 	 * kexec_load_segment()
1126 	 */
1127 	return (void *)(sechdr->sh_addr + sym->st_value);
1128 }
1129 
1130 /*
1131  * Get or set value of a symbol. If "get_value" is true, symbol value is
1132  * returned in buf otherwise symbol value is set based on value in buf.
1133  */
1134 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1135 				   void *buf, unsigned int size, bool get_value)
1136 {
1137 	struct purgatory_info *pi = &image->purgatory_info;
1138 	const Elf_Sym *sym;
1139 	Elf_Shdr *sec;
1140 	char *sym_buf;
1141 
1142 	sym = kexec_purgatory_find_symbol(pi, name);
1143 	if (!sym)
1144 		return -EINVAL;
1145 
1146 	if (sym->st_size != size) {
1147 		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1148 		       name, (unsigned long)sym->st_size, size);
1149 		return -EINVAL;
1150 	}
1151 
1152 	sec = pi->sechdrs + sym->st_shndx;
1153 
1154 	if (sec->sh_type == SHT_NOBITS) {
1155 		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1156 		       get_value ? "get" : "set");
1157 		return -EINVAL;
1158 	}
1159 
1160 	sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1161 
1162 	if (get_value)
1163 		memcpy((void *)buf, sym_buf, size);
1164 	else
1165 		memcpy((void *)sym_buf, buf, size);
1166 
1167 	return 0;
1168 }
1169 #endif /* CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY */
1170