xref: /linux/kernel/kexec_file.c (revision f86fd32d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kexec: kexec_file_load system call
4  *
5  * Copyright (C) 2014 Red Hat Inc.
6  * Authors:
7  *      Vivek Goyal <vgoyal@redhat.com>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/capability.h>
13 #include <linux/mm.h>
14 #include <linux/file.h>
15 #include <linux/slab.h>
16 #include <linux/kexec.h>
17 #include <linux/memblock.h>
18 #include <linux/mutex.h>
19 #include <linux/list.h>
20 #include <linux/fs.h>
21 #include <linux/ima.h>
22 #include <crypto/hash.h>
23 #include <crypto/sha.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/kernel.h>
27 #include <linux/syscalls.h>
28 #include <linux/vmalloc.h>
29 #include "kexec_internal.h"
30 
31 static int kexec_calculate_store_digests(struct kimage *image);
32 
33 /*
34  * Currently this is the only default function that is exported as some
35  * architectures need it to do additional handlings.
36  * In the future, other default functions may be exported too if required.
37  */
38 int kexec_image_probe_default(struct kimage *image, void *buf,
39 			      unsigned long buf_len)
40 {
41 	const struct kexec_file_ops * const *fops;
42 	int ret = -ENOEXEC;
43 
44 	for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
45 		ret = (*fops)->probe(buf, buf_len);
46 		if (!ret) {
47 			image->fops = *fops;
48 			return ret;
49 		}
50 	}
51 
52 	return ret;
53 }
54 
55 /* Architectures can provide this probe function */
56 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
57 					 unsigned long buf_len)
58 {
59 	return kexec_image_probe_default(image, buf, buf_len);
60 }
61 
62 static void *kexec_image_load_default(struct kimage *image)
63 {
64 	if (!image->fops || !image->fops->load)
65 		return ERR_PTR(-ENOEXEC);
66 
67 	return image->fops->load(image, image->kernel_buf,
68 				 image->kernel_buf_len, image->initrd_buf,
69 				 image->initrd_buf_len, image->cmdline_buf,
70 				 image->cmdline_buf_len);
71 }
72 
73 void * __weak arch_kexec_kernel_image_load(struct kimage *image)
74 {
75 	return kexec_image_load_default(image);
76 }
77 
78 int kexec_image_post_load_cleanup_default(struct kimage *image)
79 {
80 	if (!image->fops || !image->fops->cleanup)
81 		return 0;
82 
83 	return image->fops->cleanup(image->image_loader_data);
84 }
85 
86 int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
87 {
88 	return kexec_image_post_load_cleanup_default(image);
89 }
90 
91 #ifdef CONFIG_KEXEC_SIG
92 static int kexec_image_verify_sig_default(struct kimage *image, void *buf,
93 					  unsigned long buf_len)
94 {
95 	if (!image->fops || !image->fops->verify_sig) {
96 		pr_debug("kernel loader does not support signature verification.\n");
97 		return -EKEYREJECTED;
98 	}
99 
100 	return image->fops->verify_sig(buf, buf_len);
101 }
102 
103 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
104 					unsigned long buf_len)
105 {
106 	return kexec_image_verify_sig_default(image, buf, buf_len);
107 }
108 #endif
109 
110 /*
111  * arch_kexec_apply_relocations_add - apply relocations of type RELA
112  * @pi:		Purgatory to be relocated.
113  * @section:	Section relocations applying to.
114  * @relsec:	Section containing RELAs.
115  * @symtab:	Corresponding symtab.
116  *
117  * Return: 0 on success, negative errno on error.
118  */
119 int __weak
120 arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section,
121 				 const Elf_Shdr *relsec, const Elf_Shdr *symtab)
122 {
123 	pr_err("RELA relocation unsupported.\n");
124 	return -ENOEXEC;
125 }
126 
127 /*
128  * arch_kexec_apply_relocations - apply relocations of type REL
129  * @pi:		Purgatory to be relocated.
130  * @section:	Section relocations applying to.
131  * @relsec:	Section containing RELs.
132  * @symtab:	Corresponding symtab.
133  *
134  * Return: 0 on success, negative errno on error.
135  */
136 int __weak
137 arch_kexec_apply_relocations(struct purgatory_info *pi, Elf_Shdr *section,
138 			     const Elf_Shdr *relsec, const Elf_Shdr *symtab)
139 {
140 	pr_err("REL relocation unsupported.\n");
141 	return -ENOEXEC;
142 }
143 
144 /*
145  * Free up memory used by kernel, initrd, and command line. This is temporary
146  * memory allocation which is not needed any more after these buffers have
147  * been loaded into separate segments and have been copied elsewhere.
148  */
149 void kimage_file_post_load_cleanup(struct kimage *image)
150 {
151 	struct purgatory_info *pi = &image->purgatory_info;
152 
153 	vfree(image->kernel_buf);
154 	image->kernel_buf = NULL;
155 
156 	vfree(image->initrd_buf);
157 	image->initrd_buf = NULL;
158 
159 	kfree(image->cmdline_buf);
160 	image->cmdline_buf = NULL;
161 
162 	vfree(pi->purgatory_buf);
163 	pi->purgatory_buf = NULL;
164 
165 	vfree(pi->sechdrs);
166 	pi->sechdrs = NULL;
167 
168 	/* See if architecture has anything to cleanup post load */
169 	arch_kimage_file_post_load_cleanup(image);
170 
171 	/*
172 	 * Above call should have called into bootloader to free up
173 	 * any data stored in kimage->image_loader_data. It should
174 	 * be ok now to free it up.
175 	 */
176 	kfree(image->image_loader_data);
177 	image->image_loader_data = NULL;
178 }
179 
180 #ifdef CONFIG_KEXEC_SIG
181 static int
182 kimage_validate_signature(struct kimage *image)
183 {
184 	const char *reason;
185 	int ret;
186 
187 	ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
188 					   image->kernel_buf_len);
189 	switch (ret) {
190 	case 0:
191 		break;
192 
193 		/* Certain verification errors are non-fatal if we're not
194 		 * checking errors, provided we aren't mandating that there
195 		 * must be a valid signature.
196 		 */
197 	case -ENODATA:
198 		reason = "kexec of unsigned image";
199 		goto decide;
200 	case -ENOPKG:
201 		reason = "kexec of image with unsupported crypto";
202 		goto decide;
203 	case -ENOKEY:
204 		reason = "kexec of image with unavailable key";
205 	decide:
206 		if (IS_ENABLED(CONFIG_KEXEC_SIG_FORCE)) {
207 			pr_notice("%s rejected\n", reason);
208 			return ret;
209 		}
210 
211 		/* If IMA is guaranteed to appraise a signature on the kexec
212 		 * image, permit it even if the kernel is otherwise locked
213 		 * down.
214 		 */
215 		if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
216 		    security_locked_down(LOCKDOWN_KEXEC))
217 			return -EPERM;
218 
219 		return 0;
220 
221 		/* All other errors are fatal, including nomem, unparseable
222 		 * signatures and signature check failures - even if signatures
223 		 * aren't required.
224 		 */
225 	default:
226 		pr_notice("kernel signature verification failed (%d).\n", ret);
227 	}
228 
229 	return ret;
230 }
231 #endif
232 
233 /*
234  * In file mode list of segments is prepared by kernel. Copy relevant
235  * data from user space, do error checking, prepare segment list
236  */
237 static int
238 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
239 			     const char __user *cmdline_ptr,
240 			     unsigned long cmdline_len, unsigned flags)
241 {
242 	int ret;
243 	void *ldata;
244 	loff_t size;
245 
246 	ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
247 				       &size, INT_MAX, READING_KEXEC_IMAGE);
248 	if (ret)
249 		return ret;
250 	image->kernel_buf_len = size;
251 
252 	/* Call arch image probe handlers */
253 	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
254 					    image->kernel_buf_len);
255 	if (ret)
256 		goto out;
257 
258 #ifdef CONFIG_KEXEC_SIG
259 	ret = kimage_validate_signature(image);
260 
261 	if (ret)
262 		goto out;
263 #endif
264 	/* It is possible that there no initramfs is being loaded */
265 	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
266 		ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
267 					       &size, INT_MAX,
268 					       READING_KEXEC_INITRAMFS);
269 		if (ret)
270 			goto out;
271 		image->initrd_buf_len = size;
272 	}
273 
274 	if (cmdline_len) {
275 		image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
276 		if (IS_ERR(image->cmdline_buf)) {
277 			ret = PTR_ERR(image->cmdline_buf);
278 			image->cmdline_buf = NULL;
279 			goto out;
280 		}
281 
282 		image->cmdline_buf_len = cmdline_len;
283 
284 		/* command line should be a string with last byte null */
285 		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
286 			ret = -EINVAL;
287 			goto out;
288 		}
289 
290 		ima_kexec_cmdline(image->cmdline_buf,
291 				  image->cmdline_buf_len - 1);
292 	}
293 
294 	/* IMA needs to pass the measurement list to the next kernel. */
295 	ima_add_kexec_buffer(image);
296 
297 	/* Call arch image load handlers */
298 	ldata = arch_kexec_kernel_image_load(image);
299 
300 	if (IS_ERR(ldata)) {
301 		ret = PTR_ERR(ldata);
302 		goto out;
303 	}
304 
305 	image->image_loader_data = ldata;
306 out:
307 	/* In case of error, free up all allocated memory in this function */
308 	if (ret)
309 		kimage_file_post_load_cleanup(image);
310 	return ret;
311 }
312 
313 static int
314 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
315 		       int initrd_fd, const char __user *cmdline_ptr,
316 		       unsigned long cmdline_len, unsigned long flags)
317 {
318 	int ret;
319 	struct kimage *image;
320 	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
321 
322 	image = do_kimage_alloc_init();
323 	if (!image)
324 		return -ENOMEM;
325 
326 	image->file_mode = 1;
327 
328 	if (kexec_on_panic) {
329 		/* Enable special crash kernel control page alloc policy. */
330 		image->control_page = crashk_res.start;
331 		image->type = KEXEC_TYPE_CRASH;
332 	}
333 
334 	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
335 					   cmdline_ptr, cmdline_len, flags);
336 	if (ret)
337 		goto out_free_image;
338 
339 	ret = sanity_check_segment_list(image);
340 	if (ret)
341 		goto out_free_post_load_bufs;
342 
343 	ret = -ENOMEM;
344 	image->control_code_page = kimage_alloc_control_pages(image,
345 					   get_order(KEXEC_CONTROL_PAGE_SIZE));
346 	if (!image->control_code_page) {
347 		pr_err("Could not allocate control_code_buffer\n");
348 		goto out_free_post_load_bufs;
349 	}
350 
351 	if (!kexec_on_panic) {
352 		image->swap_page = kimage_alloc_control_pages(image, 0);
353 		if (!image->swap_page) {
354 			pr_err("Could not allocate swap buffer\n");
355 			goto out_free_control_pages;
356 		}
357 	}
358 
359 	*rimage = image;
360 	return 0;
361 out_free_control_pages:
362 	kimage_free_page_list(&image->control_pages);
363 out_free_post_load_bufs:
364 	kimage_file_post_load_cleanup(image);
365 out_free_image:
366 	kfree(image);
367 	return ret;
368 }
369 
370 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
371 		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
372 		unsigned long, flags)
373 {
374 	int ret = 0, i;
375 	struct kimage **dest_image, *image;
376 
377 	/* We only trust the superuser with rebooting the system. */
378 	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
379 		return -EPERM;
380 
381 	/* Make sure we have a legal set of flags */
382 	if (flags != (flags & KEXEC_FILE_FLAGS))
383 		return -EINVAL;
384 
385 	image = NULL;
386 
387 	if (!mutex_trylock(&kexec_mutex))
388 		return -EBUSY;
389 
390 	dest_image = &kexec_image;
391 	if (flags & KEXEC_FILE_ON_CRASH) {
392 		dest_image = &kexec_crash_image;
393 		if (kexec_crash_image)
394 			arch_kexec_unprotect_crashkres();
395 	}
396 
397 	if (flags & KEXEC_FILE_UNLOAD)
398 		goto exchange;
399 
400 	/*
401 	 * In case of crash, new kernel gets loaded in reserved region. It is
402 	 * same memory where old crash kernel might be loaded. Free any
403 	 * current crash dump kernel before we corrupt it.
404 	 */
405 	if (flags & KEXEC_FILE_ON_CRASH)
406 		kimage_free(xchg(&kexec_crash_image, NULL));
407 
408 	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
409 				     cmdline_len, flags);
410 	if (ret)
411 		goto out;
412 
413 	ret = machine_kexec_prepare(image);
414 	if (ret)
415 		goto out;
416 
417 	/*
418 	 * Some architecture(like S390) may touch the crash memory before
419 	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
420 	 */
421 	ret = kimage_crash_copy_vmcoreinfo(image);
422 	if (ret)
423 		goto out;
424 
425 	ret = kexec_calculate_store_digests(image);
426 	if (ret)
427 		goto out;
428 
429 	for (i = 0; i < image->nr_segments; i++) {
430 		struct kexec_segment *ksegment;
431 
432 		ksegment = &image->segment[i];
433 		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
434 			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
435 			 ksegment->memsz);
436 
437 		ret = kimage_load_segment(image, &image->segment[i]);
438 		if (ret)
439 			goto out;
440 	}
441 
442 	kimage_terminate(image);
443 
444 	ret = machine_kexec_post_load(image);
445 	if (ret)
446 		goto out;
447 
448 	/*
449 	 * Free up any temporary buffers allocated which are not needed
450 	 * after image has been loaded
451 	 */
452 	kimage_file_post_load_cleanup(image);
453 exchange:
454 	image = xchg(dest_image, image);
455 out:
456 	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
457 		arch_kexec_protect_crashkres();
458 
459 	mutex_unlock(&kexec_mutex);
460 	kimage_free(image);
461 	return ret;
462 }
463 
464 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
465 				    struct kexec_buf *kbuf)
466 {
467 	struct kimage *image = kbuf->image;
468 	unsigned long temp_start, temp_end;
469 
470 	temp_end = min(end, kbuf->buf_max);
471 	temp_start = temp_end - kbuf->memsz;
472 
473 	do {
474 		/* align down start */
475 		temp_start = temp_start & (~(kbuf->buf_align - 1));
476 
477 		if (temp_start < start || temp_start < kbuf->buf_min)
478 			return 0;
479 
480 		temp_end = temp_start + kbuf->memsz - 1;
481 
482 		/*
483 		 * Make sure this does not conflict with any of existing
484 		 * segments
485 		 */
486 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
487 			temp_start = temp_start - PAGE_SIZE;
488 			continue;
489 		}
490 
491 		/* We found a suitable memory range */
492 		break;
493 	} while (1);
494 
495 	/* If we are here, we found a suitable memory range */
496 	kbuf->mem = temp_start;
497 
498 	/* Success, stop navigating through remaining System RAM ranges */
499 	return 1;
500 }
501 
502 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
503 				     struct kexec_buf *kbuf)
504 {
505 	struct kimage *image = kbuf->image;
506 	unsigned long temp_start, temp_end;
507 
508 	temp_start = max(start, kbuf->buf_min);
509 
510 	do {
511 		temp_start = ALIGN(temp_start, kbuf->buf_align);
512 		temp_end = temp_start + kbuf->memsz - 1;
513 
514 		if (temp_end > end || temp_end > kbuf->buf_max)
515 			return 0;
516 		/*
517 		 * Make sure this does not conflict with any of existing
518 		 * segments
519 		 */
520 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
521 			temp_start = temp_start + PAGE_SIZE;
522 			continue;
523 		}
524 
525 		/* We found a suitable memory range */
526 		break;
527 	} while (1);
528 
529 	/* If we are here, we found a suitable memory range */
530 	kbuf->mem = temp_start;
531 
532 	/* Success, stop navigating through remaining System RAM ranges */
533 	return 1;
534 }
535 
536 static int locate_mem_hole_callback(struct resource *res, void *arg)
537 {
538 	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
539 	u64 start = res->start, end = res->end;
540 	unsigned long sz = end - start + 1;
541 
542 	/* Returning 0 will take to next memory range */
543 	if (sz < kbuf->memsz)
544 		return 0;
545 
546 	if (end < kbuf->buf_min || start > kbuf->buf_max)
547 		return 0;
548 
549 	/*
550 	 * Allocate memory top down with-in ram range. Otherwise bottom up
551 	 * allocation.
552 	 */
553 	if (kbuf->top_down)
554 		return locate_mem_hole_top_down(start, end, kbuf);
555 	return locate_mem_hole_bottom_up(start, end, kbuf);
556 }
557 
558 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK
559 static int kexec_walk_memblock(struct kexec_buf *kbuf,
560 			       int (*func)(struct resource *, void *))
561 {
562 	int ret = 0;
563 	u64 i;
564 	phys_addr_t mstart, mend;
565 	struct resource res = { };
566 
567 	if (kbuf->image->type == KEXEC_TYPE_CRASH)
568 		return func(&crashk_res, kbuf);
569 
570 	if (kbuf->top_down) {
571 		for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
572 						&mstart, &mend, NULL) {
573 			/*
574 			 * In memblock, end points to the first byte after the
575 			 * range while in kexec, end points to the last byte
576 			 * in the range.
577 			 */
578 			res.start = mstart;
579 			res.end = mend - 1;
580 			ret = func(&res, kbuf);
581 			if (ret)
582 				break;
583 		}
584 	} else {
585 		for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
586 					&mstart, &mend, NULL) {
587 			/*
588 			 * In memblock, end points to the first byte after the
589 			 * range while in kexec, end points to the last byte
590 			 * in the range.
591 			 */
592 			res.start = mstart;
593 			res.end = mend - 1;
594 			ret = func(&res, kbuf);
595 			if (ret)
596 				break;
597 		}
598 	}
599 
600 	return ret;
601 }
602 #else
603 static int kexec_walk_memblock(struct kexec_buf *kbuf,
604 			       int (*func)(struct resource *, void *))
605 {
606 	return 0;
607 }
608 #endif
609 
610 /**
611  * kexec_walk_resources - call func(data) on free memory regions
612  * @kbuf:	Context info for the search. Also passed to @func.
613  * @func:	Function to call for each memory region.
614  *
615  * Return: The memory walk will stop when func returns a non-zero value
616  * and that value will be returned. If all free regions are visited without
617  * func returning non-zero, then zero will be returned.
618  */
619 static int kexec_walk_resources(struct kexec_buf *kbuf,
620 				int (*func)(struct resource *, void *))
621 {
622 	if (kbuf->image->type == KEXEC_TYPE_CRASH)
623 		return walk_iomem_res_desc(crashk_res.desc,
624 					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
625 					   crashk_res.start, crashk_res.end,
626 					   kbuf, func);
627 	else
628 		return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
629 }
630 
631 /**
632  * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
633  * @kbuf:	Parameters for the memory search.
634  *
635  * On success, kbuf->mem will have the start address of the memory region found.
636  *
637  * Return: 0 on success, negative errno on error.
638  */
639 int kexec_locate_mem_hole(struct kexec_buf *kbuf)
640 {
641 	int ret;
642 
643 	/* Arch knows where to place */
644 	if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
645 		return 0;
646 
647 	if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
648 		ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
649 	else
650 		ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
651 
652 	return ret == 1 ? 0 : -EADDRNOTAVAIL;
653 }
654 
655 /**
656  * kexec_add_buffer - place a buffer in a kexec segment
657  * @kbuf:	Buffer contents and memory parameters.
658  *
659  * This function assumes that kexec_mutex is held.
660  * On successful return, @kbuf->mem will have the physical address of
661  * the buffer in memory.
662  *
663  * Return: 0 on success, negative errno on error.
664  */
665 int kexec_add_buffer(struct kexec_buf *kbuf)
666 {
667 
668 	struct kexec_segment *ksegment;
669 	int ret;
670 
671 	/* Currently adding segment this way is allowed only in file mode */
672 	if (!kbuf->image->file_mode)
673 		return -EINVAL;
674 
675 	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
676 		return -EINVAL;
677 
678 	/*
679 	 * Make sure we are not trying to add buffer after allocating
680 	 * control pages. All segments need to be placed first before
681 	 * any control pages are allocated. As control page allocation
682 	 * logic goes through list of segments to make sure there are
683 	 * no destination overlaps.
684 	 */
685 	if (!list_empty(&kbuf->image->control_pages)) {
686 		WARN_ON(1);
687 		return -EINVAL;
688 	}
689 
690 	/* Ensure minimum alignment needed for segments. */
691 	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
692 	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
693 
694 	/* Walk the RAM ranges and allocate a suitable range for the buffer */
695 	ret = kexec_locate_mem_hole(kbuf);
696 	if (ret)
697 		return ret;
698 
699 	/* Found a suitable memory range */
700 	ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
701 	ksegment->kbuf = kbuf->buffer;
702 	ksegment->bufsz = kbuf->bufsz;
703 	ksegment->mem = kbuf->mem;
704 	ksegment->memsz = kbuf->memsz;
705 	kbuf->image->nr_segments++;
706 	return 0;
707 }
708 
709 /* Calculate and store the digest of segments */
710 static int kexec_calculate_store_digests(struct kimage *image)
711 {
712 	struct crypto_shash *tfm;
713 	struct shash_desc *desc;
714 	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
715 	size_t desc_size, nullsz;
716 	char *digest;
717 	void *zero_buf;
718 	struct kexec_sha_region *sha_regions;
719 	struct purgatory_info *pi = &image->purgatory_info;
720 
721 	if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
722 		return 0;
723 
724 	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
725 	zero_buf_sz = PAGE_SIZE;
726 
727 	tfm = crypto_alloc_shash("sha256", 0, 0);
728 	if (IS_ERR(tfm)) {
729 		ret = PTR_ERR(tfm);
730 		goto out;
731 	}
732 
733 	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
734 	desc = kzalloc(desc_size, GFP_KERNEL);
735 	if (!desc) {
736 		ret = -ENOMEM;
737 		goto out_free_tfm;
738 	}
739 
740 	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
741 	sha_regions = vzalloc(sha_region_sz);
742 	if (!sha_regions)
743 		goto out_free_desc;
744 
745 	desc->tfm   = tfm;
746 
747 	ret = crypto_shash_init(desc);
748 	if (ret < 0)
749 		goto out_free_sha_regions;
750 
751 	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
752 	if (!digest) {
753 		ret = -ENOMEM;
754 		goto out_free_sha_regions;
755 	}
756 
757 	for (j = i = 0; i < image->nr_segments; i++) {
758 		struct kexec_segment *ksegment;
759 
760 		ksegment = &image->segment[i];
761 		/*
762 		 * Skip purgatory as it will be modified once we put digest
763 		 * info in purgatory.
764 		 */
765 		if (ksegment->kbuf == pi->purgatory_buf)
766 			continue;
767 
768 		ret = crypto_shash_update(desc, ksegment->kbuf,
769 					  ksegment->bufsz);
770 		if (ret)
771 			break;
772 
773 		/*
774 		 * Assume rest of the buffer is filled with zero and
775 		 * update digest accordingly.
776 		 */
777 		nullsz = ksegment->memsz - ksegment->bufsz;
778 		while (nullsz) {
779 			unsigned long bytes = nullsz;
780 
781 			if (bytes > zero_buf_sz)
782 				bytes = zero_buf_sz;
783 			ret = crypto_shash_update(desc, zero_buf, bytes);
784 			if (ret)
785 				break;
786 			nullsz -= bytes;
787 		}
788 
789 		if (ret)
790 			break;
791 
792 		sha_regions[j].start = ksegment->mem;
793 		sha_regions[j].len = ksegment->memsz;
794 		j++;
795 	}
796 
797 	if (!ret) {
798 		ret = crypto_shash_final(desc, digest);
799 		if (ret)
800 			goto out_free_digest;
801 		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
802 						     sha_regions, sha_region_sz, 0);
803 		if (ret)
804 			goto out_free_digest;
805 
806 		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
807 						     digest, SHA256_DIGEST_SIZE, 0);
808 		if (ret)
809 			goto out_free_digest;
810 	}
811 
812 out_free_digest:
813 	kfree(digest);
814 out_free_sha_regions:
815 	vfree(sha_regions);
816 out_free_desc:
817 	kfree(desc);
818 out_free_tfm:
819 	kfree(tfm);
820 out:
821 	return ret;
822 }
823 
824 #ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
825 /*
826  * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
827  * @pi:		Purgatory to be loaded.
828  * @kbuf:	Buffer to setup.
829  *
830  * Allocates the memory needed for the buffer. Caller is responsible to free
831  * the memory after use.
832  *
833  * Return: 0 on success, negative errno on error.
834  */
835 static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
836 				      struct kexec_buf *kbuf)
837 {
838 	const Elf_Shdr *sechdrs;
839 	unsigned long bss_align;
840 	unsigned long bss_sz;
841 	unsigned long align;
842 	int i, ret;
843 
844 	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
845 	kbuf->buf_align = bss_align = 1;
846 	kbuf->bufsz = bss_sz = 0;
847 
848 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
849 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
850 			continue;
851 
852 		align = sechdrs[i].sh_addralign;
853 		if (sechdrs[i].sh_type != SHT_NOBITS) {
854 			if (kbuf->buf_align < align)
855 				kbuf->buf_align = align;
856 			kbuf->bufsz = ALIGN(kbuf->bufsz, align);
857 			kbuf->bufsz += sechdrs[i].sh_size;
858 		} else {
859 			if (bss_align < align)
860 				bss_align = align;
861 			bss_sz = ALIGN(bss_sz, align);
862 			bss_sz += sechdrs[i].sh_size;
863 		}
864 	}
865 	kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
866 	kbuf->memsz = kbuf->bufsz + bss_sz;
867 	if (kbuf->buf_align < bss_align)
868 		kbuf->buf_align = bss_align;
869 
870 	kbuf->buffer = vzalloc(kbuf->bufsz);
871 	if (!kbuf->buffer)
872 		return -ENOMEM;
873 	pi->purgatory_buf = kbuf->buffer;
874 
875 	ret = kexec_add_buffer(kbuf);
876 	if (ret)
877 		goto out;
878 
879 	return 0;
880 out:
881 	vfree(pi->purgatory_buf);
882 	pi->purgatory_buf = NULL;
883 	return ret;
884 }
885 
886 /*
887  * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
888  * @pi:		Purgatory to be loaded.
889  * @kbuf:	Buffer prepared to store purgatory.
890  *
891  * Allocates the memory needed for the buffer. Caller is responsible to free
892  * the memory after use.
893  *
894  * Return: 0 on success, negative errno on error.
895  */
896 static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
897 					 struct kexec_buf *kbuf)
898 {
899 	unsigned long bss_addr;
900 	unsigned long offset;
901 	Elf_Shdr *sechdrs;
902 	int i;
903 
904 	/*
905 	 * The section headers in kexec_purgatory are read-only. In order to
906 	 * have them modifiable make a temporary copy.
907 	 */
908 	sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum));
909 	if (!sechdrs)
910 		return -ENOMEM;
911 	memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
912 	       pi->ehdr->e_shnum * sizeof(Elf_Shdr));
913 	pi->sechdrs = sechdrs;
914 
915 	offset = 0;
916 	bss_addr = kbuf->mem + kbuf->bufsz;
917 	kbuf->image->start = pi->ehdr->e_entry;
918 
919 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
920 		unsigned long align;
921 		void *src, *dst;
922 
923 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
924 			continue;
925 
926 		align = sechdrs[i].sh_addralign;
927 		if (sechdrs[i].sh_type == SHT_NOBITS) {
928 			bss_addr = ALIGN(bss_addr, align);
929 			sechdrs[i].sh_addr = bss_addr;
930 			bss_addr += sechdrs[i].sh_size;
931 			continue;
932 		}
933 
934 		offset = ALIGN(offset, align);
935 		if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
936 		    pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
937 		    pi->ehdr->e_entry < (sechdrs[i].sh_addr
938 					 + sechdrs[i].sh_size)) {
939 			kbuf->image->start -= sechdrs[i].sh_addr;
940 			kbuf->image->start += kbuf->mem + offset;
941 		}
942 
943 		src = (void *)pi->ehdr + sechdrs[i].sh_offset;
944 		dst = pi->purgatory_buf + offset;
945 		memcpy(dst, src, sechdrs[i].sh_size);
946 
947 		sechdrs[i].sh_addr = kbuf->mem + offset;
948 		sechdrs[i].sh_offset = offset;
949 		offset += sechdrs[i].sh_size;
950 	}
951 
952 	return 0;
953 }
954 
955 static int kexec_apply_relocations(struct kimage *image)
956 {
957 	int i, ret;
958 	struct purgatory_info *pi = &image->purgatory_info;
959 	const Elf_Shdr *sechdrs;
960 
961 	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
962 
963 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
964 		const Elf_Shdr *relsec;
965 		const Elf_Shdr *symtab;
966 		Elf_Shdr *section;
967 
968 		relsec = sechdrs + i;
969 
970 		if (relsec->sh_type != SHT_RELA &&
971 		    relsec->sh_type != SHT_REL)
972 			continue;
973 
974 		/*
975 		 * For section of type SHT_RELA/SHT_REL,
976 		 * ->sh_link contains section header index of associated
977 		 * symbol table. And ->sh_info contains section header
978 		 * index of section to which relocations apply.
979 		 */
980 		if (relsec->sh_info >= pi->ehdr->e_shnum ||
981 		    relsec->sh_link >= pi->ehdr->e_shnum)
982 			return -ENOEXEC;
983 
984 		section = pi->sechdrs + relsec->sh_info;
985 		symtab = sechdrs + relsec->sh_link;
986 
987 		if (!(section->sh_flags & SHF_ALLOC))
988 			continue;
989 
990 		/*
991 		 * symtab->sh_link contain section header index of associated
992 		 * string table.
993 		 */
994 		if (symtab->sh_link >= pi->ehdr->e_shnum)
995 			/* Invalid section number? */
996 			continue;
997 
998 		/*
999 		 * Respective architecture needs to provide support for applying
1000 		 * relocations of type SHT_RELA/SHT_REL.
1001 		 */
1002 		if (relsec->sh_type == SHT_RELA)
1003 			ret = arch_kexec_apply_relocations_add(pi, section,
1004 							       relsec, symtab);
1005 		else if (relsec->sh_type == SHT_REL)
1006 			ret = arch_kexec_apply_relocations(pi, section,
1007 							   relsec, symtab);
1008 		if (ret)
1009 			return ret;
1010 	}
1011 
1012 	return 0;
1013 }
1014 
1015 /*
1016  * kexec_load_purgatory - Load and relocate the purgatory object.
1017  * @image:	Image to add the purgatory to.
1018  * @kbuf:	Memory parameters to use.
1019  *
1020  * Allocates the memory needed for image->purgatory_info.sechdrs and
1021  * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
1022  * to free the memory after use.
1023  *
1024  * Return: 0 on success, negative errno on error.
1025  */
1026 int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
1027 {
1028 	struct purgatory_info *pi = &image->purgatory_info;
1029 	int ret;
1030 
1031 	if (kexec_purgatory_size <= 0)
1032 		return -EINVAL;
1033 
1034 	pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
1035 
1036 	ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1037 	if (ret)
1038 		return ret;
1039 
1040 	ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1041 	if (ret)
1042 		goto out_free_kbuf;
1043 
1044 	ret = kexec_apply_relocations(image);
1045 	if (ret)
1046 		goto out;
1047 
1048 	return 0;
1049 out:
1050 	vfree(pi->sechdrs);
1051 	pi->sechdrs = NULL;
1052 out_free_kbuf:
1053 	vfree(pi->purgatory_buf);
1054 	pi->purgatory_buf = NULL;
1055 	return ret;
1056 }
1057 
1058 /*
1059  * kexec_purgatory_find_symbol - find a symbol in the purgatory
1060  * @pi:		Purgatory to search in.
1061  * @name:	Name of the symbol.
1062  *
1063  * Return: pointer to symbol in read-only symtab on success, NULL on error.
1064  */
1065 static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1066 						  const char *name)
1067 {
1068 	const Elf_Shdr *sechdrs;
1069 	const Elf_Ehdr *ehdr;
1070 	const Elf_Sym *syms;
1071 	const char *strtab;
1072 	int i, k;
1073 
1074 	if (!pi->ehdr)
1075 		return NULL;
1076 
1077 	ehdr = pi->ehdr;
1078 	sechdrs = (void *)ehdr + ehdr->e_shoff;
1079 
1080 	for (i = 0; i < ehdr->e_shnum; i++) {
1081 		if (sechdrs[i].sh_type != SHT_SYMTAB)
1082 			continue;
1083 
1084 		if (sechdrs[i].sh_link >= ehdr->e_shnum)
1085 			/* Invalid strtab section number */
1086 			continue;
1087 		strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1088 		syms = (void *)ehdr + sechdrs[i].sh_offset;
1089 
1090 		/* Go through symbols for a match */
1091 		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1092 			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1093 				continue;
1094 
1095 			if (strcmp(strtab + syms[k].st_name, name) != 0)
1096 				continue;
1097 
1098 			if (syms[k].st_shndx == SHN_UNDEF ||
1099 			    syms[k].st_shndx >= ehdr->e_shnum) {
1100 				pr_debug("Symbol: %s has bad section index %d.\n",
1101 						name, syms[k].st_shndx);
1102 				return NULL;
1103 			}
1104 
1105 			/* Found the symbol we are looking for */
1106 			return &syms[k];
1107 		}
1108 	}
1109 
1110 	return NULL;
1111 }
1112 
1113 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1114 {
1115 	struct purgatory_info *pi = &image->purgatory_info;
1116 	const Elf_Sym *sym;
1117 	Elf_Shdr *sechdr;
1118 
1119 	sym = kexec_purgatory_find_symbol(pi, name);
1120 	if (!sym)
1121 		return ERR_PTR(-EINVAL);
1122 
1123 	sechdr = &pi->sechdrs[sym->st_shndx];
1124 
1125 	/*
1126 	 * Returns the address where symbol will finally be loaded after
1127 	 * kexec_load_segment()
1128 	 */
1129 	return (void *)(sechdr->sh_addr + sym->st_value);
1130 }
1131 
1132 /*
1133  * Get or set value of a symbol. If "get_value" is true, symbol value is
1134  * returned in buf otherwise symbol value is set based on value in buf.
1135  */
1136 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1137 				   void *buf, unsigned int size, bool get_value)
1138 {
1139 	struct purgatory_info *pi = &image->purgatory_info;
1140 	const Elf_Sym *sym;
1141 	Elf_Shdr *sec;
1142 	char *sym_buf;
1143 
1144 	sym = kexec_purgatory_find_symbol(pi, name);
1145 	if (!sym)
1146 		return -EINVAL;
1147 
1148 	if (sym->st_size != size) {
1149 		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1150 		       name, (unsigned long)sym->st_size, size);
1151 		return -EINVAL;
1152 	}
1153 
1154 	sec = pi->sechdrs + sym->st_shndx;
1155 
1156 	if (sec->sh_type == SHT_NOBITS) {
1157 		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1158 		       get_value ? "get" : "set");
1159 		return -EINVAL;
1160 	}
1161 
1162 	sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1163 
1164 	if (get_value)
1165 		memcpy((void *)buf, sym_buf, size);
1166 	else
1167 		memcpy((void *)sym_buf, buf, size);
1168 
1169 	return 0;
1170 }
1171 #endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1172 
1173 int crash_exclude_mem_range(struct crash_mem *mem,
1174 			    unsigned long long mstart, unsigned long long mend)
1175 {
1176 	int i, j;
1177 	unsigned long long start, end;
1178 	struct crash_mem_range temp_range = {0, 0};
1179 
1180 	for (i = 0; i < mem->nr_ranges; i++) {
1181 		start = mem->ranges[i].start;
1182 		end = mem->ranges[i].end;
1183 
1184 		if (mstart > end || mend < start)
1185 			continue;
1186 
1187 		/* Truncate any area outside of range */
1188 		if (mstart < start)
1189 			mstart = start;
1190 		if (mend > end)
1191 			mend = end;
1192 
1193 		/* Found completely overlapping range */
1194 		if (mstart == start && mend == end) {
1195 			mem->ranges[i].start = 0;
1196 			mem->ranges[i].end = 0;
1197 			if (i < mem->nr_ranges - 1) {
1198 				/* Shift rest of the ranges to left */
1199 				for (j = i; j < mem->nr_ranges - 1; j++) {
1200 					mem->ranges[j].start =
1201 						mem->ranges[j+1].start;
1202 					mem->ranges[j].end =
1203 							mem->ranges[j+1].end;
1204 				}
1205 			}
1206 			mem->nr_ranges--;
1207 			return 0;
1208 		}
1209 
1210 		if (mstart > start && mend < end) {
1211 			/* Split original range */
1212 			mem->ranges[i].end = mstart - 1;
1213 			temp_range.start = mend + 1;
1214 			temp_range.end = end;
1215 		} else if (mstart != start)
1216 			mem->ranges[i].end = mstart - 1;
1217 		else
1218 			mem->ranges[i].start = mend + 1;
1219 		break;
1220 	}
1221 
1222 	/* If a split happened, add the split to array */
1223 	if (!temp_range.end)
1224 		return 0;
1225 
1226 	/* Split happened */
1227 	if (i == mem->max_nr_ranges - 1)
1228 		return -ENOMEM;
1229 
1230 	/* Location where new range should go */
1231 	j = i + 1;
1232 	if (j < mem->nr_ranges) {
1233 		/* Move over all ranges one slot towards the end */
1234 		for (i = mem->nr_ranges - 1; i >= j; i--)
1235 			mem->ranges[i + 1] = mem->ranges[i];
1236 	}
1237 
1238 	mem->ranges[j].start = temp_range.start;
1239 	mem->ranges[j].end = temp_range.end;
1240 	mem->nr_ranges++;
1241 	return 0;
1242 }
1243 
1244 int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map,
1245 			  void **addr, unsigned long *sz)
1246 {
1247 	Elf64_Ehdr *ehdr;
1248 	Elf64_Phdr *phdr;
1249 	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1250 	unsigned char *buf;
1251 	unsigned int cpu, i;
1252 	unsigned long long notes_addr;
1253 	unsigned long mstart, mend;
1254 
1255 	/* extra phdr for vmcoreinfo elf note */
1256 	nr_phdr = nr_cpus + 1;
1257 	nr_phdr += mem->nr_ranges;
1258 
1259 	/*
1260 	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1261 	 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1262 	 * I think this is required by tools like gdb. So same physical
1263 	 * memory will be mapped in two elf headers. One will contain kernel
1264 	 * text virtual addresses and other will have __va(physical) addresses.
1265 	 */
1266 
1267 	nr_phdr++;
1268 	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1269 	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1270 
1271 	buf = vzalloc(elf_sz);
1272 	if (!buf)
1273 		return -ENOMEM;
1274 
1275 	ehdr = (Elf64_Ehdr *)buf;
1276 	phdr = (Elf64_Phdr *)(ehdr + 1);
1277 	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1278 	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1279 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1280 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1281 	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1282 	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1283 	ehdr->e_type = ET_CORE;
1284 	ehdr->e_machine = ELF_ARCH;
1285 	ehdr->e_version = EV_CURRENT;
1286 	ehdr->e_phoff = sizeof(Elf64_Ehdr);
1287 	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1288 	ehdr->e_phentsize = sizeof(Elf64_Phdr);
1289 
1290 	/* Prepare one phdr of type PT_NOTE for each present cpu */
1291 	for_each_present_cpu(cpu) {
1292 		phdr->p_type = PT_NOTE;
1293 		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1294 		phdr->p_offset = phdr->p_paddr = notes_addr;
1295 		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1296 		(ehdr->e_phnum)++;
1297 		phdr++;
1298 	}
1299 
1300 	/* Prepare one PT_NOTE header for vmcoreinfo */
1301 	phdr->p_type = PT_NOTE;
1302 	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1303 	phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1304 	(ehdr->e_phnum)++;
1305 	phdr++;
1306 
1307 	/* Prepare PT_LOAD type program header for kernel text region */
1308 	if (kernel_map) {
1309 		phdr->p_type = PT_LOAD;
1310 		phdr->p_flags = PF_R|PF_W|PF_X;
1311 		phdr->p_vaddr = (unsigned long) _text;
1312 		phdr->p_filesz = phdr->p_memsz = _end - _text;
1313 		phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1314 		ehdr->e_phnum++;
1315 		phdr++;
1316 	}
1317 
1318 	/* Go through all the ranges in mem->ranges[] and prepare phdr */
1319 	for (i = 0; i < mem->nr_ranges; i++) {
1320 		mstart = mem->ranges[i].start;
1321 		mend = mem->ranges[i].end;
1322 
1323 		phdr->p_type = PT_LOAD;
1324 		phdr->p_flags = PF_R|PF_W|PF_X;
1325 		phdr->p_offset  = mstart;
1326 
1327 		phdr->p_paddr = mstart;
1328 		phdr->p_vaddr = (unsigned long) __va(mstart);
1329 		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1330 		phdr->p_align = 0;
1331 		ehdr->e_phnum++;
1332 		phdr++;
1333 		pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1334 			phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1335 			ehdr->e_phnum, phdr->p_offset);
1336 	}
1337 
1338 	*addr = buf;
1339 	*sz = elf_sz;
1340 	return 0;
1341 }
1342