xref: /linux/kernel/locking/lockdep.c (revision 9a6b55ac)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/lockdep.c
4  *
5  * Runtime locking correctness validator
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11  *
12  * this code maps all the lock dependencies as they occur in a live kernel
13  * and will warn about the following classes of locking bugs:
14  *
15  * - lock inversion scenarios
16  * - circular lock dependencies
17  * - hardirq/softirq safe/unsafe locking bugs
18  *
19  * Bugs are reported even if the current locking scenario does not cause
20  * any deadlock at this point.
21  *
22  * I.e. if anytime in the past two locks were taken in a different order,
23  * even if it happened for another task, even if those were different
24  * locks (but of the same class as this lock), this code will detect it.
25  *
26  * Thanks to Arjan van de Ven for coming up with the initial idea of
27  * mapping lock dependencies runtime.
28  */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57 
58 #include <asm/sections.h>
59 
60 #include "lockdep_internals.h"
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/lock.h>
64 
65 #ifdef CONFIG_PROVE_LOCKING
66 int prove_locking = 1;
67 module_param(prove_locking, int, 0644);
68 #else
69 #define prove_locking 0
70 #endif
71 
72 #ifdef CONFIG_LOCK_STAT
73 int lock_stat = 1;
74 module_param(lock_stat, int, 0644);
75 #else
76 #define lock_stat 0
77 #endif
78 
79 /*
80  * lockdep_lock: protects the lockdep graph, the hashes and the
81  *               class/list/hash allocators.
82  *
83  * This is one of the rare exceptions where it's justified
84  * to use a raw spinlock - we really dont want the spinlock
85  * code to recurse back into the lockdep code...
86  */
87 static arch_spinlock_t lockdep_lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
88 static struct task_struct *lockdep_selftest_task_struct;
89 
90 static int graph_lock(void)
91 {
92 	arch_spin_lock(&lockdep_lock);
93 	/*
94 	 * Make sure that if another CPU detected a bug while
95 	 * walking the graph we dont change it (while the other
96 	 * CPU is busy printing out stuff with the graph lock
97 	 * dropped already)
98 	 */
99 	if (!debug_locks) {
100 		arch_spin_unlock(&lockdep_lock);
101 		return 0;
102 	}
103 	/* prevent any recursions within lockdep from causing deadlocks */
104 	current->lockdep_recursion++;
105 	return 1;
106 }
107 
108 static inline int graph_unlock(void)
109 {
110 	if (debug_locks && !arch_spin_is_locked(&lockdep_lock)) {
111 		/*
112 		 * The lockdep graph lock isn't locked while we expect it to
113 		 * be, we're confused now, bye!
114 		 */
115 		return DEBUG_LOCKS_WARN_ON(1);
116 	}
117 
118 	current->lockdep_recursion--;
119 	arch_spin_unlock(&lockdep_lock);
120 	return 0;
121 }
122 
123 /*
124  * Turn lock debugging off and return with 0 if it was off already,
125  * and also release the graph lock:
126  */
127 static inline int debug_locks_off_graph_unlock(void)
128 {
129 	int ret = debug_locks_off();
130 
131 	arch_spin_unlock(&lockdep_lock);
132 
133 	return ret;
134 }
135 
136 unsigned long nr_list_entries;
137 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
138 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
139 
140 /*
141  * All data structures here are protected by the global debug_lock.
142  *
143  * nr_lock_classes is the number of elements of lock_classes[] that is
144  * in use.
145  */
146 #define KEYHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
147 #define KEYHASH_SIZE		(1UL << KEYHASH_BITS)
148 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
149 unsigned long nr_lock_classes;
150 #ifndef CONFIG_DEBUG_LOCKDEP
151 static
152 #endif
153 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
154 static DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
155 
156 static inline struct lock_class *hlock_class(struct held_lock *hlock)
157 {
158 	unsigned int class_idx = hlock->class_idx;
159 
160 	/* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
161 	barrier();
162 
163 	if (!test_bit(class_idx, lock_classes_in_use)) {
164 		/*
165 		 * Someone passed in garbage, we give up.
166 		 */
167 		DEBUG_LOCKS_WARN_ON(1);
168 		return NULL;
169 	}
170 
171 	/*
172 	 * At this point, if the passed hlock->class_idx is still garbage,
173 	 * we just have to live with it
174 	 */
175 	return lock_classes + class_idx;
176 }
177 
178 #ifdef CONFIG_LOCK_STAT
179 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
180 
181 static inline u64 lockstat_clock(void)
182 {
183 	return local_clock();
184 }
185 
186 static int lock_point(unsigned long points[], unsigned long ip)
187 {
188 	int i;
189 
190 	for (i = 0; i < LOCKSTAT_POINTS; i++) {
191 		if (points[i] == 0) {
192 			points[i] = ip;
193 			break;
194 		}
195 		if (points[i] == ip)
196 			break;
197 	}
198 
199 	return i;
200 }
201 
202 static void lock_time_inc(struct lock_time *lt, u64 time)
203 {
204 	if (time > lt->max)
205 		lt->max = time;
206 
207 	if (time < lt->min || !lt->nr)
208 		lt->min = time;
209 
210 	lt->total += time;
211 	lt->nr++;
212 }
213 
214 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
215 {
216 	if (!src->nr)
217 		return;
218 
219 	if (src->max > dst->max)
220 		dst->max = src->max;
221 
222 	if (src->min < dst->min || !dst->nr)
223 		dst->min = src->min;
224 
225 	dst->total += src->total;
226 	dst->nr += src->nr;
227 }
228 
229 struct lock_class_stats lock_stats(struct lock_class *class)
230 {
231 	struct lock_class_stats stats;
232 	int cpu, i;
233 
234 	memset(&stats, 0, sizeof(struct lock_class_stats));
235 	for_each_possible_cpu(cpu) {
236 		struct lock_class_stats *pcs =
237 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
238 
239 		for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
240 			stats.contention_point[i] += pcs->contention_point[i];
241 
242 		for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
243 			stats.contending_point[i] += pcs->contending_point[i];
244 
245 		lock_time_add(&pcs->read_waittime, &stats.read_waittime);
246 		lock_time_add(&pcs->write_waittime, &stats.write_waittime);
247 
248 		lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
249 		lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
250 
251 		for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
252 			stats.bounces[i] += pcs->bounces[i];
253 	}
254 
255 	return stats;
256 }
257 
258 void clear_lock_stats(struct lock_class *class)
259 {
260 	int cpu;
261 
262 	for_each_possible_cpu(cpu) {
263 		struct lock_class_stats *cpu_stats =
264 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
265 
266 		memset(cpu_stats, 0, sizeof(struct lock_class_stats));
267 	}
268 	memset(class->contention_point, 0, sizeof(class->contention_point));
269 	memset(class->contending_point, 0, sizeof(class->contending_point));
270 }
271 
272 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
273 {
274 	return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
275 }
276 
277 static void lock_release_holdtime(struct held_lock *hlock)
278 {
279 	struct lock_class_stats *stats;
280 	u64 holdtime;
281 
282 	if (!lock_stat)
283 		return;
284 
285 	holdtime = lockstat_clock() - hlock->holdtime_stamp;
286 
287 	stats = get_lock_stats(hlock_class(hlock));
288 	if (hlock->read)
289 		lock_time_inc(&stats->read_holdtime, holdtime);
290 	else
291 		lock_time_inc(&stats->write_holdtime, holdtime);
292 }
293 #else
294 static inline void lock_release_holdtime(struct held_lock *hlock)
295 {
296 }
297 #endif
298 
299 /*
300  * We keep a global list of all lock classes. The list is only accessed with
301  * the lockdep spinlock lock held. free_lock_classes is a list with free
302  * elements. These elements are linked together by the lock_entry member in
303  * struct lock_class.
304  */
305 LIST_HEAD(all_lock_classes);
306 static LIST_HEAD(free_lock_classes);
307 
308 /**
309  * struct pending_free - information about data structures about to be freed
310  * @zapped: Head of a list with struct lock_class elements.
311  * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
312  *	are about to be freed.
313  */
314 struct pending_free {
315 	struct list_head zapped;
316 	DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
317 };
318 
319 /**
320  * struct delayed_free - data structures used for delayed freeing
321  *
322  * A data structure for delayed freeing of data structures that may be
323  * accessed by RCU readers at the time these were freed.
324  *
325  * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
326  * @index:     Index of @pf to which freed data structures are added.
327  * @scheduled: Whether or not an RCU callback has been scheduled.
328  * @pf:        Array with information about data structures about to be freed.
329  */
330 static struct delayed_free {
331 	struct rcu_head		rcu_head;
332 	int			index;
333 	int			scheduled;
334 	struct pending_free	pf[2];
335 } delayed_free;
336 
337 /*
338  * The lockdep classes are in a hash-table as well, for fast lookup:
339  */
340 #define CLASSHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
341 #define CLASSHASH_SIZE		(1UL << CLASSHASH_BITS)
342 #define __classhashfn(key)	hash_long((unsigned long)key, CLASSHASH_BITS)
343 #define classhashentry(key)	(classhash_table + __classhashfn((key)))
344 
345 static struct hlist_head classhash_table[CLASSHASH_SIZE];
346 
347 /*
348  * We put the lock dependency chains into a hash-table as well, to cache
349  * their existence:
350  */
351 #define CHAINHASH_BITS		(MAX_LOCKDEP_CHAINS_BITS-1)
352 #define CHAINHASH_SIZE		(1UL << CHAINHASH_BITS)
353 #define __chainhashfn(chain)	hash_long(chain, CHAINHASH_BITS)
354 #define chainhashentry(chain)	(chainhash_table + __chainhashfn((chain)))
355 
356 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
357 
358 /*
359  * The hash key of the lock dependency chains is a hash itself too:
360  * it's a hash of all locks taken up to that lock, including that lock.
361  * It's a 64-bit hash, because it's important for the keys to be
362  * unique.
363  */
364 static inline u64 iterate_chain_key(u64 key, u32 idx)
365 {
366 	u32 k0 = key, k1 = key >> 32;
367 
368 	__jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
369 
370 	return k0 | (u64)k1 << 32;
371 }
372 
373 void lockdep_init_task(struct task_struct *task)
374 {
375 	task->lockdep_depth = 0; /* no locks held yet */
376 	task->curr_chain_key = INITIAL_CHAIN_KEY;
377 	task->lockdep_recursion = 0;
378 }
379 
380 void lockdep_off(void)
381 {
382 	current->lockdep_recursion++;
383 }
384 EXPORT_SYMBOL(lockdep_off);
385 
386 void lockdep_on(void)
387 {
388 	current->lockdep_recursion--;
389 }
390 EXPORT_SYMBOL(lockdep_on);
391 
392 void lockdep_set_selftest_task(struct task_struct *task)
393 {
394 	lockdep_selftest_task_struct = task;
395 }
396 
397 /*
398  * Debugging switches:
399  */
400 
401 #define VERBOSE			0
402 #define VERY_VERBOSE		0
403 
404 #if VERBOSE
405 # define HARDIRQ_VERBOSE	1
406 # define SOFTIRQ_VERBOSE	1
407 #else
408 # define HARDIRQ_VERBOSE	0
409 # define SOFTIRQ_VERBOSE	0
410 #endif
411 
412 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
413 /*
414  * Quick filtering for interesting events:
415  */
416 static int class_filter(struct lock_class *class)
417 {
418 #if 0
419 	/* Example */
420 	if (class->name_version == 1 &&
421 			!strcmp(class->name, "lockname"))
422 		return 1;
423 	if (class->name_version == 1 &&
424 			!strcmp(class->name, "&struct->lockfield"))
425 		return 1;
426 #endif
427 	/* Filter everything else. 1 would be to allow everything else */
428 	return 0;
429 }
430 #endif
431 
432 static int verbose(struct lock_class *class)
433 {
434 #if VERBOSE
435 	return class_filter(class);
436 #endif
437 	return 0;
438 }
439 
440 static void print_lockdep_off(const char *bug_msg)
441 {
442 	printk(KERN_DEBUG "%s\n", bug_msg);
443 	printk(KERN_DEBUG "turning off the locking correctness validator.\n");
444 #ifdef CONFIG_LOCK_STAT
445 	printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
446 #endif
447 }
448 
449 unsigned long nr_stack_trace_entries;
450 
451 #ifdef CONFIG_PROVE_LOCKING
452 /**
453  * struct lock_trace - single stack backtrace
454  * @hash_entry:	Entry in a stack_trace_hash[] list.
455  * @hash:	jhash() of @entries.
456  * @nr_entries:	Number of entries in @entries.
457  * @entries:	Actual stack backtrace.
458  */
459 struct lock_trace {
460 	struct hlist_node	hash_entry;
461 	u32			hash;
462 	u32			nr_entries;
463 	unsigned long		entries[0] __aligned(sizeof(unsigned long));
464 };
465 #define LOCK_TRACE_SIZE_IN_LONGS				\
466 	(sizeof(struct lock_trace) / sizeof(unsigned long))
467 /*
468  * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
469  */
470 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
471 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
472 
473 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
474 {
475 	return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
476 		memcmp(t1->entries, t2->entries,
477 		       t1->nr_entries * sizeof(t1->entries[0])) == 0;
478 }
479 
480 static struct lock_trace *save_trace(void)
481 {
482 	struct lock_trace *trace, *t2;
483 	struct hlist_head *hash_head;
484 	u32 hash;
485 	unsigned int max_entries;
486 
487 	BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
488 	BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
489 
490 	trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
491 	max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
492 		LOCK_TRACE_SIZE_IN_LONGS;
493 	trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
494 
495 	if (nr_stack_trace_entries >= MAX_STACK_TRACE_ENTRIES -
496 	    LOCK_TRACE_SIZE_IN_LONGS - 1) {
497 		if (!debug_locks_off_graph_unlock())
498 			return NULL;
499 
500 		print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
501 		dump_stack();
502 
503 		return NULL;
504 	}
505 
506 	hash = jhash(trace->entries, trace->nr_entries *
507 		     sizeof(trace->entries[0]), 0);
508 	trace->hash = hash;
509 	hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
510 	hlist_for_each_entry(t2, hash_head, hash_entry) {
511 		if (traces_identical(trace, t2))
512 			return t2;
513 	}
514 	nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
515 	hlist_add_head(&trace->hash_entry, hash_head);
516 
517 	return trace;
518 }
519 
520 /* Return the number of stack traces in the stack_trace[] array. */
521 u64 lockdep_stack_trace_count(void)
522 {
523 	struct lock_trace *trace;
524 	u64 c = 0;
525 	int i;
526 
527 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
528 		hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
529 			c++;
530 		}
531 	}
532 
533 	return c;
534 }
535 
536 /* Return the number of stack hash chains that have at least one stack trace. */
537 u64 lockdep_stack_hash_count(void)
538 {
539 	u64 c = 0;
540 	int i;
541 
542 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
543 		if (!hlist_empty(&stack_trace_hash[i]))
544 			c++;
545 
546 	return c;
547 }
548 #endif
549 
550 unsigned int nr_hardirq_chains;
551 unsigned int nr_softirq_chains;
552 unsigned int nr_process_chains;
553 unsigned int max_lockdep_depth;
554 
555 #ifdef CONFIG_DEBUG_LOCKDEP
556 /*
557  * Various lockdep statistics:
558  */
559 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
560 #endif
561 
562 #ifdef CONFIG_PROVE_LOCKING
563 /*
564  * Locking printouts:
565  */
566 
567 #define __USAGE(__STATE)						\
568 	[LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",	\
569 	[LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",		\
570 	[LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
571 	[LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
572 
573 static const char *usage_str[] =
574 {
575 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
576 #include "lockdep_states.h"
577 #undef LOCKDEP_STATE
578 	[LOCK_USED] = "INITIAL USE",
579 };
580 #endif
581 
582 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
583 {
584 	return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
585 }
586 
587 static inline unsigned long lock_flag(enum lock_usage_bit bit)
588 {
589 	return 1UL << bit;
590 }
591 
592 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
593 {
594 	/*
595 	 * The usage character defaults to '.' (i.e., irqs disabled and not in
596 	 * irq context), which is the safest usage category.
597 	 */
598 	char c = '.';
599 
600 	/*
601 	 * The order of the following usage checks matters, which will
602 	 * result in the outcome character as follows:
603 	 *
604 	 * - '+': irq is enabled and not in irq context
605 	 * - '-': in irq context and irq is disabled
606 	 * - '?': in irq context and irq is enabled
607 	 */
608 	if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
609 		c = '+';
610 		if (class->usage_mask & lock_flag(bit))
611 			c = '?';
612 	} else if (class->usage_mask & lock_flag(bit))
613 		c = '-';
614 
615 	return c;
616 }
617 
618 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
619 {
620 	int i = 0;
621 
622 #define LOCKDEP_STATE(__STATE) 						\
623 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);	\
624 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
625 #include "lockdep_states.h"
626 #undef LOCKDEP_STATE
627 
628 	usage[i] = '\0';
629 }
630 
631 static void __print_lock_name(struct lock_class *class)
632 {
633 	char str[KSYM_NAME_LEN];
634 	const char *name;
635 
636 	name = class->name;
637 	if (!name) {
638 		name = __get_key_name(class->key, str);
639 		printk(KERN_CONT "%s", name);
640 	} else {
641 		printk(KERN_CONT "%s", name);
642 		if (class->name_version > 1)
643 			printk(KERN_CONT "#%d", class->name_version);
644 		if (class->subclass)
645 			printk(KERN_CONT "/%d", class->subclass);
646 	}
647 }
648 
649 static void print_lock_name(struct lock_class *class)
650 {
651 	char usage[LOCK_USAGE_CHARS];
652 
653 	get_usage_chars(class, usage);
654 
655 	printk(KERN_CONT " (");
656 	__print_lock_name(class);
657 	printk(KERN_CONT "){%s}", usage);
658 }
659 
660 static void print_lockdep_cache(struct lockdep_map *lock)
661 {
662 	const char *name;
663 	char str[KSYM_NAME_LEN];
664 
665 	name = lock->name;
666 	if (!name)
667 		name = __get_key_name(lock->key->subkeys, str);
668 
669 	printk(KERN_CONT "%s", name);
670 }
671 
672 static void print_lock(struct held_lock *hlock)
673 {
674 	/*
675 	 * We can be called locklessly through debug_show_all_locks() so be
676 	 * extra careful, the hlock might have been released and cleared.
677 	 *
678 	 * If this indeed happens, lets pretend it does not hurt to continue
679 	 * to print the lock unless the hlock class_idx does not point to a
680 	 * registered class. The rationale here is: since we don't attempt
681 	 * to distinguish whether we are in this situation, if it just
682 	 * happened we can't count on class_idx to tell either.
683 	 */
684 	struct lock_class *lock = hlock_class(hlock);
685 
686 	if (!lock) {
687 		printk(KERN_CONT "<RELEASED>\n");
688 		return;
689 	}
690 
691 	printk(KERN_CONT "%px", hlock->instance);
692 	print_lock_name(lock);
693 	printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
694 }
695 
696 static void lockdep_print_held_locks(struct task_struct *p)
697 {
698 	int i, depth = READ_ONCE(p->lockdep_depth);
699 
700 	if (!depth)
701 		printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
702 	else
703 		printk("%d lock%s held by %s/%d:\n", depth,
704 		       depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
705 	/*
706 	 * It's not reliable to print a task's held locks if it's not sleeping
707 	 * and it's not the current task.
708 	 */
709 	if (p->state == TASK_RUNNING && p != current)
710 		return;
711 	for (i = 0; i < depth; i++) {
712 		printk(" #%d: ", i);
713 		print_lock(p->held_locks + i);
714 	}
715 }
716 
717 static void print_kernel_ident(void)
718 {
719 	printk("%s %.*s %s\n", init_utsname()->release,
720 		(int)strcspn(init_utsname()->version, " "),
721 		init_utsname()->version,
722 		print_tainted());
723 }
724 
725 static int very_verbose(struct lock_class *class)
726 {
727 #if VERY_VERBOSE
728 	return class_filter(class);
729 #endif
730 	return 0;
731 }
732 
733 /*
734  * Is this the address of a static object:
735  */
736 #ifdef __KERNEL__
737 static int static_obj(const void *obj)
738 {
739 	unsigned long start = (unsigned long) &_stext,
740 		      end   = (unsigned long) &_end,
741 		      addr  = (unsigned long) obj;
742 
743 	if (arch_is_kernel_initmem_freed(addr))
744 		return 0;
745 
746 	/*
747 	 * static variable?
748 	 */
749 	if ((addr >= start) && (addr < end))
750 		return 1;
751 
752 	if (arch_is_kernel_data(addr))
753 		return 1;
754 
755 	/*
756 	 * in-kernel percpu var?
757 	 */
758 	if (is_kernel_percpu_address(addr))
759 		return 1;
760 
761 	/*
762 	 * module static or percpu var?
763 	 */
764 	return is_module_address(addr) || is_module_percpu_address(addr);
765 }
766 #endif
767 
768 /*
769  * To make lock name printouts unique, we calculate a unique
770  * class->name_version generation counter. The caller must hold the graph
771  * lock.
772  */
773 static int count_matching_names(struct lock_class *new_class)
774 {
775 	struct lock_class *class;
776 	int count = 0;
777 
778 	if (!new_class->name)
779 		return 0;
780 
781 	list_for_each_entry(class, &all_lock_classes, lock_entry) {
782 		if (new_class->key - new_class->subclass == class->key)
783 			return class->name_version;
784 		if (class->name && !strcmp(class->name, new_class->name))
785 			count = max(count, class->name_version);
786 	}
787 
788 	return count + 1;
789 }
790 
791 static inline struct lock_class *
792 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
793 {
794 	struct lockdep_subclass_key *key;
795 	struct hlist_head *hash_head;
796 	struct lock_class *class;
797 
798 	if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
799 		debug_locks_off();
800 		printk(KERN_ERR
801 			"BUG: looking up invalid subclass: %u\n", subclass);
802 		printk(KERN_ERR
803 			"turning off the locking correctness validator.\n");
804 		dump_stack();
805 		return NULL;
806 	}
807 
808 	/*
809 	 * If it is not initialised then it has never been locked,
810 	 * so it won't be present in the hash table.
811 	 */
812 	if (unlikely(!lock->key))
813 		return NULL;
814 
815 	/*
816 	 * NOTE: the class-key must be unique. For dynamic locks, a static
817 	 * lock_class_key variable is passed in through the mutex_init()
818 	 * (or spin_lock_init()) call - which acts as the key. For static
819 	 * locks we use the lock object itself as the key.
820 	 */
821 	BUILD_BUG_ON(sizeof(struct lock_class_key) >
822 			sizeof(struct lockdep_map));
823 
824 	key = lock->key->subkeys + subclass;
825 
826 	hash_head = classhashentry(key);
827 
828 	/*
829 	 * We do an RCU walk of the hash, see lockdep_free_key_range().
830 	 */
831 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
832 		return NULL;
833 
834 	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
835 		if (class->key == key) {
836 			/*
837 			 * Huh! same key, different name? Did someone trample
838 			 * on some memory? We're most confused.
839 			 */
840 			WARN_ON_ONCE(class->name != lock->name &&
841 				     lock->key != &__lockdep_no_validate__);
842 			return class;
843 		}
844 	}
845 
846 	return NULL;
847 }
848 
849 /*
850  * Static locks do not have their class-keys yet - for them the key is
851  * the lock object itself. If the lock is in the per cpu area, the
852  * canonical address of the lock (per cpu offset removed) is used.
853  */
854 static bool assign_lock_key(struct lockdep_map *lock)
855 {
856 	unsigned long can_addr, addr = (unsigned long)lock;
857 
858 #ifdef __KERNEL__
859 	/*
860 	 * lockdep_free_key_range() assumes that struct lock_class_key
861 	 * objects do not overlap. Since we use the address of lock
862 	 * objects as class key for static objects, check whether the
863 	 * size of lock_class_key objects does not exceed the size of
864 	 * the smallest lock object.
865 	 */
866 	BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
867 #endif
868 
869 	if (__is_kernel_percpu_address(addr, &can_addr))
870 		lock->key = (void *)can_addr;
871 	else if (__is_module_percpu_address(addr, &can_addr))
872 		lock->key = (void *)can_addr;
873 	else if (static_obj(lock))
874 		lock->key = (void *)lock;
875 	else {
876 		/* Debug-check: all keys must be persistent! */
877 		debug_locks_off();
878 		pr_err("INFO: trying to register non-static key.\n");
879 		pr_err("the code is fine but needs lockdep annotation.\n");
880 		pr_err("turning off the locking correctness validator.\n");
881 		dump_stack();
882 		return false;
883 	}
884 
885 	return true;
886 }
887 
888 #ifdef CONFIG_DEBUG_LOCKDEP
889 
890 /* Check whether element @e occurs in list @h */
891 static bool in_list(struct list_head *e, struct list_head *h)
892 {
893 	struct list_head *f;
894 
895 	list_for_each(f, h) {
896 		if (e == f)
897 			return true;
898 	}
899 
900 	return false;
901 }
902 
903 /*
904  * Check whether entry @e occurs in any of the locks_after or locks_before
905  * lists.
906  */
907 static bool in_any_class_list(struct list_head *e)
908 {
909 	struct lock_class *class;
910 	int i;
911 
912 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
913 		class = &lock_classes[i];
914 		if (in_list(e, &class->locks_after) ||
915 		    in_list(e, &class->locks_before))
916 			return true;
917 	}
918 	return false;
919 }
920 
921 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
922 {
923 	struct lock_list *e;
924 
925 	list_for_each_entry(e, h, entry) {
926 		if (e->links_to != c) {
927 			printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
928 			       c->name ? : "(?)",
929 			       (unsigned long)(e - list_entries),
930 			       e->links_to && e->links_to->name ?
931 			       e->links_to->name : "(?)",
932 			       e->class && e->class->name ? e->class->name :
933 			       "(?)");
934 			return false;
935 		}
936 	}
937 	return true;
938 }
939 
940 #ifdef CONFIG_PROVE_LOCKING
941 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
942 #endif
943 
944 static bool check_lock_chain_key(struct lock_chain *chain)
945 {
946 #ifdef CONFIG_PROVE_LOCKING
947 	u64 chain_key = INITIAL_CHAIN_KEY;
948 	int i;
949 
950 	for (i = chain->base; i < chain->base + chain->depth; i++)
951 		chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
952 	/*
953 	 * The 'unsigned long long' casts avoid that a compiler warning
954 	 * is reported when building tools/lib/lockdep.
955 	 */
956 	if (chain->chain_key != chain_key) {
957 		printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
958 		       (unsigned long long)(chain - lock_chains),
959 		       (unsigned long long)chain->chain_key,
960 		       (unsigned long long)chain_key);
961 		return false;
962 	}
963 #endif
964 	return true;
965 }
966 
967 static bool in_any_zapped_class_list(struct lock_class *class)
968 {
969 	struct pending_free *pf;
970 	int i;
971 
972 	for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
973 		if (in_list(&class->lock_entry, &pf->zapped))
974 			return true;
975 	}
976 
977 	return false;
978 }
979 
980 static bool __check_data_structures(void)
981 {
982 	struct lock_class *class;
983 	struct lock_chain *chain;
984 	struct hlist_head *head;
985 	struct lock_list *e;
986 	int i;
987 
988 	/* Check whether all classes occur in a lock list. */
989 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
990 		class = &lock_classes[i];
991 		if (!in_list(&class->lock_entry, &all_lock_classes) &&
992 		    !in_list(&class->lock_entry, &free_lock_classes) &&
993 		    !in_any_zapped_class_list(class)) {
994 			printk(KERN_INFO "class %px/%s is not in any class list\n",
995 			       class, class->name ? : "(?)");
996 			return false;
997 		}
998 	}
999 
1000 	/* Check whether all classes have valid lock lists. */
1001 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1002 		class = &lock_classes[i];
1003 		if (!class_lock_list_valid(class, &class->locks_before))
1004 			return false;
1005 		if (!class_lock_list_valid(class, &class->locks_after))
1006 			return false;
1007 	}
1008 
1009 	/* Check the chain_key of all lock chains. */
1010 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1011 		head = chainhash_table + i;
1012 		hlist_for_each_entry_rcu(chain, head, entry) {
1013 			if (!check_lock_chain_key(chain))
1014 				return false;
1015 		}
1016 	}
1017 
1018 	/*
1019 	 * Check whether all list entries that are in use occur in a class
1020 	 * lock list.
1021 	 */
1022 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1023 		e = list_entries + i;
1024 		if (!in_any_class_list(&e->entry)) {
1025 			printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1026 			       (unsigned int)(e - list_entries),
1027 			       e->class->name ? : "(?)",
1028 			       e->links_to->name ? : "(?)");
1029 			return false;
1030 		}
1031 	}
1032 
1033 	/*
1034 	 * Check whether all list entries that are not in use do not occur in
1035 	 * a class lock list.
1036 	 */
1037 	for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1038 		e = list_entries + i;
1039 		if (in_any_class_list(&e->entry)) {
1040 			printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1041 			       (unsigned int)(e - list_entries),
1042 			       e->class && e->class->name ? e->class->name :
1043 			       "(?)",
1044 			       e->links_to && e->links_to->name ?
1045 			       e->links_to->name : "(?)");
1046 			return false;
1047 		}
1048 	}
1049 
1050 	return true;
1051 }
1052 
1053 int check_consistency = 0;
1054 module_param(check_consistency, int, 0644);
1055 
1056 static void check_data_structures(void)
1057 {
1058 	static bool once = false;
1059 
1060 	if (check_consistency && !once) {
1061 		if (!__check_data_structures()) {
1062 			once = true;
1063 			WARN_ON(once);
1064 		}
1065 	}
1066 }
1067 
1068 #else /* CONFIG_DEBUG_LOCKDEP */
1069 
1070 static inline void check_data_structures(void) { }
1071 
1072 #endif /* CONFIG_DEBUG_LOCKDEP */
1073 
1074 /*
1075  * Initialize the lock_classes[] array elements, the free_lock_classes list
1076  * and also the delayed_free structure.
1077  */
1078 static void init_data_structures_once(void)
1079 {
1080 	static bool ds_initialized, rcu_head_initialized;
1081 	int i;
1082 
1083 	if (likely(rcu_head_initialized))
1084 		return;
1085 
1086 	if (system_state >= SYSTEM_SCHEDULING) {
1087 		init_rcu_head(&delayed_free.rcu_head);
1088 		rcu_head_initialized = true;
1089 	}
1090 
1091 	if (ds_initialized)
1092 		return;
1093 
1094 	ds_initialized = true;
1095 
1096 	INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1097 	INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1098 
1099 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1100 		list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1101 		INIT_LIST_HEAD(&lock_classes[i].locks_after);
1102 		INIT_LIST_HEAD(&lock_classes[i].locks_before);
1103 	}
1104 }
1105 
1106 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1107 {
1108 	unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1109 
1110 	return lock_keys_hash + hash;
1111 }
1112 
1113 /* Register a dynamically allocated key. */
1114 void lockdep_register_key(struct lock_class_key *key)
1115 {
1116 	struct hlist_head *hash_head;
1117 	struct lock_class_key *k;
1118 	unsigned long flags;
1119 
1120 	if (WARN_ON_ONCE(static_obj(key)))
1121 		return;
1122 	hash_head = keyhashentry(key);
1123 
1124 	raw_local_irq_save(flags);
1125 	if (!graph_lock())
1126 		goto restore_irqs;
1127 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1128 		if (WARN_ON_ONCE(k == key))
1129 			goto out_unlock;
1130 	}
1131 	hlist_add_head_rcu(&key->hash_entry, hash_head);
1132 out_unlock:
1133 	graph_unlock();
1134 restore_irqs:
1135 	raw_local_irq_restore(flags);
1136 }
1137 EXPORT_SYMBOL_GPL(lockdep_register_key);
1138 
1139 /* Check whether a key has been registered as a dynamic key. */
1140 static bool is_dynamic_key(const struct lock_class_key *key)
1141 {
1142 	struct hlist_head *hash_head;
1143 	struct lock_class_key *k;
1144 	bool found = false;
1145 
1146 	if (WARN_ON_ONCE(static_obj(key)))
1147 		return false;
1148 
1149 	/*
1150 	 * If lock debugging is disabled lock_keys_hash[] may contain
1151 	 * pointers to memory that has already been freed. Avoid triggering
1152 	 * a use-after-free in that case by returning early.
1153 	 */
1154 	if (!debug_locks)
1155 		return true;
1156 
1157 	hash_head = keyhashentry(key);
1158 
1159 	rcu_read_lock();
1160 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1161 		if (k == key) {
1162 			found = true;
1163 			break;
1164 		}
1165 	}
1166 	rcu_read_unlock();
1167 
1168 	return found;
1169 }
1170 
1171 /*
1172  * Register a lock's class in the hash-table, if the class is not present
1173  * yet. Otherwise we look it up. We cache the result in the lock object
1174  * itself, so actual lookup of the hash should be once per lock object.
1175  */
1176 static struct lock_class *
1177 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1178 {
1179 	struct lockdep_subclass_key *key;
1180 	struct hlist_head *hash_head;
1181 	struct lock_class *class;
1182 
1183 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1184 
1185 	class = look_up_lock_class(lock, subclass);
1186 	if (likely(class))
1187 		goto out_set_class_cache;
1188 
1189 	if (!lock->key) {
1190 		if (!assign_lock_key(lock))
1191 			return NULL;
1192 	} else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1193 		return NULL;
1194 	}
1195 
1196 	key = lock->key->subkeys + subclass;
1197 	hash_head = classhashentry(key);
1198 
1199 	if (!graph_lock()) {
1200 		return NULL;
1201 	}
1202 	/*
1203 	 * We have to do the hash-walk again, to avoid races
1204 	 * with another CPU:
1205 	 */
1206 	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1207 		if (class->key == key)
1208 			goto out_unlock_set;
1209 	}
1210 
1211 	init_data_structures_once();
1212 
1213 	/* Allocate a new lock class and add it to the hash. */
1214 	class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1215 					 lock_entry);
1216 	if (!class) {
1217 		if (!debug_locks_off_graph_unlock()) {
1218 			return NULL;
1219 		}
1220 
1221 		print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1222 		dump_stack();
1223 		return NULL;
1224 	}
1225 	nr_lock_classes++;
1226 	__set_bit(class - lock_classes, lock_classes_in_use);
1227 	debug_atomic_inc(nr_unused_locks);
1228 	class->key = key;
1229 	class->name = lock->name;
1230 	class->subclass = subclass;
1231 	WARN_ON_ONCE(!list_empty(&class->locks_before));
1232 	WARN_ON_ONCE(!list_empty(&class->locks_after));
1233 	class->name_version = count_matching_names(class);
1234 	/*
1235 	 * We use RCU's safe list-add method to make
1236 	 * parallel walking of the hash-list safe:
1237 	 */
1238 	hlist_add_head_rcu(&class->hash_entry, hash_head);
1239 	/*
1240 	 * Remove the class from the free list and add it to the global list
1241 	 * of classes.
1242 	 */
1243 	list_move_tail(&class->lock_entry, &all_lock_classes);
1244 
1245 	if (verbose(class)) {
1246 		graph_unlock();
1247 
1248 		printk("\nnew class %px: %s", class->key, class->name);
1249 		if (class->name_version > 1)
1250 			printk(KERN_CONT "#%d", class->name_version);
1251 		printk(KERN_CONT "\n");
1252 		dump_stack();
1253 
1254 		if (!graph_lock()) {
1255 			return NULL;
1256 		}
1257 	}
1258 out_unlock_set:
1259 	graph_unlock();
1260 
1261 out_set_class_cache:
1262 	if (!subclass || force)
1263 		lock->class_cache[0] = class;
1264 	else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1265 		lock->class_cache[subclass] = class;
1266 
1267 	/*
1268 	 * Hash collision, did we smoke some? We found a class with a matching
1269 	 * hash but the subclass -- which is hashed in -- didn't match.
1270 	 */
1271 	if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1272 		return NULL;
1273 
1274 	return class;
1275 }
1276 
1277 #ifdef CONFIG_PROVE_LOCKING
1278 /*
1279  * Allocate a lockdep entry. (assumes the graph_lock held, returns
1280  * with NULL on failure)
1281  */
1282 static struct lock_list *alloc_list_entry(void)
1283 {
1284 	int idx = find_first_zero_bit(list_entries_in_use,
1285 				      ARRAY_SIZE(list_entries));
1286 
1287 	if (idx >= ARRAY_SIZE(list_entries)) {
1288 		if (!debug_locks_off_graph_unlock())
1289 			return NULL;
1290 
1291 		print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1292 		dump_stack();
1293 		return NULL;
1294 	}
1295 	nr_list_entries++;
1296 	__set_bit(idx, list_entries_in_use);
1297 	return list_entries + idx;
1298 }
1299 
1300 /*
1301  * Add a new dependency to the head of the list:
1302  */
1303 static int add_lock_to_list(struct lock_class *this,
1304 			    struct lock_class *links_to, struct list_head *head,
1305 			    unsigned long ip, int distance,
1306 			    const struct lock_trace *trace)
1307 {
1308 	struct lock_list *entry;
1309 	/*
1310 	 * Lock not present yet - get a new dependency struct and
1311 	 * add it to the list:
1312 	 */
1313 	entry = alloc_list_entry();
1314 	if (!entry)
1315 		return 0;
1316 
1317 	entry->class = this;
1318 	entry->links_to = links_to;
1319 	entry->distance = distance;
1320 	entry->trace = trace;
1321 	/*
1322 	 * Both allocation and removal are done under the graph lock; but
1323 	 * iteration is under RCU-sched; see look_up_lock_class() and
1324 	 * lockdep_free_key_range().
1325 	 */
1326 	list_add_tail_rcu(&entry->entry, head);
1327 
1328 	return 1;
1329 }
1330 
1331 /*
1332  * For good efficiency of modular, we use power of 2
1333  */
1334 #define MAX_CIRCULAR_QUEUE_SIZE		4096UL
1335 #define CQ_MASK				(MAX_CIRCULAR_QUEUE_SIZE-1)
1336 
1337 /*
1338  * The circular_queue and helpers are used to implement graph
1339  * breadth-first search (BFS) algorithm, by which we can determine
1340  * whether there is a path from a lock to another. In deadlock checks,
1341  * a path from the next lock to be acquired to a previous held lock
1342  * indicates that adding the <prev> -> <next> lock dependency will
1343  * produce a circle in the graph. Breadth-first search instead of
1344  * depth-first search is used in order to find the shortest (circular)
1345  * path.
1346  */
1347 struct circular_queue {
1348 	struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1349 	unsigned int  front, rear;
1350 };
1351 
1352 static struct circular_queue lock_cq;
1353 
1354 unsigned int max_bfs_queue_depth;
1355 
1356 static unsigned int lockdep_dependency_gen_id;
1357 
1358 static inline void __cq_init(struct circular_queue *cq)
1359 {
1360 	cq->front = cq->rear = 0;
1361 	lockdep_dependency_gen_id++;
1362 }
1363 
1364 static inline int __cq_empty(struct circular_queue *cq)
1365 {
1366 	return (cq->front == cq->rear);
1367 }
1368 
1369 static inline int __cq_full(struct circular_queue *cq)
1370 {
1371 	return ((cq->rear + 1) & CQ_MASK) == cq->front;
1372 }
1373 
1374 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1375 {
1376 	if (__cq_full(cq))
1377 		return -1;
1378 
1379 	cq->element[cq->rear] = elem;
1380 	cq->rear = (cq->rear + 1) & CQ_MASK;
1381 	return 0;
1382 }
1383 
1384 /*
1385  * Dequeue an element from the circular_queue, return a lock_list if
1386  * the queue is not empty, or NULL if otherwise.
1387  */
1388 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1389 {
1390 	struct lock_list * lock;
1391 
1392 	if (__cq_empty(cq))
1393 		return NULL;
1394 
1395 	lock = cq->element[cq->front];
1396 	cq->front = (cq->front + 1) & CQ_MASK;
1397 
1398 	return lock;
1399 }
1400 
1401 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1402 {
1403 	return (cq->rear - cq->front) & CQ_MASK;
1404 }
1405 
1406 static inline void mark_lock_accessed(struct lock_list *lock,
1407 					struct lock_list *parent)
1408 {
1409 	unsigned long nr;
1410 
1411 	nr = lock - list_entries;
1412 	WARN_ON(nr >= ARRAY_SIZE(list_entries)); /* Out-of-bounds, input fail */
1413 	lock->parent = parent;
1414 	lock->class->dep_gen_id = lockdep_dependency_gen_id;
1415 }
1416 
1417 static inline unsigned long lock_accessed(struct lock_list *lock)
1418 {
1419 	unsigned long nr;
1420 
1421 	nr = lock - list_entries;
1422 	WARN_ON(nr >= ARRAY_SIZE(list_entries)); /* Out-of-bounds, input fail */
1423 	return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1424 }
1425 
1426 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1427 {
1428 	return child->parent;
1429 }
1430 
1431 static inline int get_lock_depth(struct lock_list *child)
1432 {
1433 	int depth = 0;
1434 	struct lock_list *parent;
1435 
1436 	while ((parent = get_lock_parent(child))) {
1437 		child = parent;
1438 		depth++;
1439 	}
1440 	return depth;
1441 }
1442 
1443 /*
1444  * Return the forward or backward dependency list.
1445  *
1446  * @lock:   the lock_list to get its class's dependency list
1447  * @offset: the offset to struct lock_class to determine whether it is
1448  *          locks_after or locks_before
1449  */
1450 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1451 {
1452 	void *lock_class = lock->class;
1453 
1454 	return lock_class + offset;
1455 }
1456 
1457 /*
1458  * Forward- or backward-dependency search, used for both circular dependency
1459  * checking and hardirq-unsafe/softirq-unsafe checking.
1460  */
1461 static int __bfs(struct lock_list *source_entry,
1462 		 void *data,
1463 		 int (*match)(struct lock_list *entry, void *data),
1464 		 struct lock_list **target_entry,
1465 		 int offset)
1466 {
1467 	struct lock_list *entry;
1468 	struct lock_list *lock;
1469 	struct list_head *head;
1470 	struct circular_queue *cq = &lock_cq;
1471 	int ret = 1;
1472 
1473 	if (match(source_entry, data)) {
1474 		*target_entry = source_entry;
1475 		ret = 0;
1476 		goto exit;
1477 	}
1478 
1479 	head = get_dep_list(source_entry, offset);
1480 	if (list_empty(head))
1481 		goto exit;
1482 
1483 	__cq_init(cq);
1484 	__cq_enqueue(cq, source_entry);
1485 
1486 	while ((lock = __cq_dequeue(cq))) {
1487 
1488 		if (!lock->class) {
1489 			ret = -2;
1490 			goto exit;
1491 		}
1492 
1493 		head = get_dep_list(lock, offset);
1494 
1495 		DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1496 
1497 		list_for_each_entry_rcu(entry, head, entry) {
1498 			if (!lock_accessed(entry)) {
1499 				unsigned int cq_depth;
1500 				mark_lock_accessed(entry, lock);
1501 				if (match(entry, data)) {
1502 					*target_entry = entry;
1503 					ret = 0;
1504 					goto exit;
1505 				}
1506 
1507 				if (__cq_enqueue(cq, entry)) {
1508 					ret = -1;
1509 					goto exit;
1510 				}
1511 				cq_depth = __cq_get_elem_count(cq);
1512 				if (max_bfs_queue_depth < cq_depth)
1513 					max_bfs_queue_depth = cq_depth;
1514 			}
1515 		}
1516 	}
1517 exit:
1518 	return ret;
1519 }
1520 
1521 static inline int __bfs_forwards(struct lock_list *src_entry,
1522 			void *data,
1523 			int (*match)(struct lock_list *entry, void *data),
1524 			struct lock_list **target_entry)
1525 {
1526 	return __bfs(src_entry, data, match, target_entry,
1527 		     offsetof(struct lock_class, locks_after));
1528 
1529 }
1530 
1531 static inline int __bfs_backwards(struct lock_list *src_entry,
1532 			void *data,
1533 			int (*match)(struct lock_list *entry, void *data),
1534 			struct lock_list **target_entry)
1535 {
1536 	return __bfs(src_entry, data, match, target_entry,
1537 		     offsetof(struct lock_class, locks_before));
1538 
1539 }
1540 
1541 static void print_lock_trace(const struct lock_trace *trace,
1542 			     unsigned int spaces)
1543 {
1544 	stack_trace_print(trace->entries, trace->nr_entries, spaces);
1545 }
1546 
1547 /*
1548  * Print a dependency chain entry (this is only done when a deadlock
1549  * has been detected):
1550  */
1551 static noinline void
1552 print_circular_bug_entry(struct lock_list *target, int depth)
1553 {
1554 	if (debug_locks_silent)
1555 		return;
1556 	printk("\n-> #%u", depth);
1557 	print_lock_name(target->class);
1558 	printk(KERN_CONT ":\n");
1559 	print_lock_trace(target->trace, 6);
1560 }
1561 
1562 static void
1563 print_circular_lock_scenario(struct held_lock *src,
1564 			     struct held_lock *tgt,
1565 			     struct lock_list *prt)
1566 {
1567 	struct lock_class *source = hlock_class(src);
1568 	struct lock_class *target = hlock_class(tgt);
1569 	struct lock_class *parent = prt->class;
1570 
1571 	/*
1572 	 * A direct locking problem where unsafe_class lock is taken
1573 	 * directly by safe_class lock, then all we need to show
1574 	 * is the deadlock scenario, as it is obvious that the
1575 	 * unsafe lock is taken under the safe lock.
1576 	 *
1577 	 * But if there is a chain instead, where the safe lock takes
1578 	 * an intermediate lock (middle_class) where this lock is
1579 	 * not the same as the safe lock, then the lock chain is
1580 	 * used to describe the problem. Otherwise we would need
1581 	 * to show a different CPU case for each link in the chain
1582 	 * from the safe_class lock to the unsafe_class lock.
1583 	 */
1584 	if (parent != source) {
1585 		printk("Chain exists of:\n  ");
1586 		__print_lock_name(source);
1587 		printk(KERN_CONT " --> ");
1588 		__print_lock_name(parent);
1589 		printk(KERN_CONT " --> ");
1590 		__print_lock_name(target);
1591 		printk(KERN_CONT "\n\n");
1592 	}
1593 
1594 	printk(" Possible unsafe locking scenario:\n\n");
1595 	printk("       CPU0                    CPU1\n");
1596 	printk("       ----                    ----\n");
1597 	printk("  lock(");
1598 	__print_lock_name(target);
1599 	printk(KERN_CONT ");\n");
1600 	printk("                               lock(");
1601 	__print_lock_name(parent);
1602 	printk(KERN_CONT ");\n");
1603 	printk("                               lock(");
1604 	__print_lock_name(target);
1605 	printk(KERN_CONT ");\n");
1606 	printk("  lock(");
1607 	__print_lock_name(source);
1608 	printk(KERN_CONT ");\n");
1609 	printk("\n *** DEADLOCK ***\n\n");
1610 }
1611 
1612 /*
1613  * When a circular dependency is detected, print the
1614  * header first:
1615  */
1616 static noinline void
1617 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1618 			struct held_lock *check_src,
1619 			struct held_lock *check_tgt)
1620 {
1621 	struct task_struct *curr = current;
1622 
1623 	if (debug_locks_silent)
1624 		return;
1625 
1626 	pr_warn("\n");
1627 	pr_warn("======================================================\n");
1628 	pr_warn("WARNING: possible circular locking dependency detected\n");
1629 	print_kernel_ident();
1630 	pr_warn("------------------------------------------------------\n");
1631 	pr_warn("%s/%d is trying to acquire lock:\n",
1632 		curr->comm, task_pid_nr(curr));
1633 	print_lock(check_src);
1634 
1635 	pr_warn("\nbut task is already holding lock:\n");
1636 
1637 	print_lock(check_tgt);
1638 	pr_warn("\nwhich lock already depends on the new lock.\n\n");
1639 	pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1640 
1641 	print_circular_bug_entry(entry, depth);
1642 }
1643 
1644 static inline int class_equal(struct lock_list *entry, void *data)
1645 {
1646 	return entry->class == data;
1647 }
1648 
1649 static noinline void print_circular_bug(struct lock_list *this,
1650 					struct lock_list *target,
1651 					struct held_lock *check_src,
1652 					struct held_lock *check_tgt)
1653 {
1654 	struct task_struct *curr = current;
1655 	struct lock_list *parent;
1656 	struct lock_list *first_parent;
1657 	int depth;
1658 
1659 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1660 		return;
1661 
1662 	this->trace = save_trace();
1663 	if (!this->trace)
1664 		return;
1665 
1666 	depth = get_lock_depth(target);
1667 
1668 	print_circular_bug_header(target, depth, check_src, check_tgt);
1669 
1670 	parent = get_lock_parent(target);
1671 	first_parent = parent;
1672 
1673 	while (parent) {
1674 		print_circular_bug_entry(parent, --depth);
1675 		parent = get_lock_parent(parent);
1676 	}
1677 
1678 	printk("\nother info that might help us debug this:\n\n");
1679 	print_circular_lock_scenario(check_src, check_tgt,
1680 				     first_parent);
1681 
1682 	lockdep_print_held_locks(curr);
1683 
1684 	printk("\nstack backtrace:\n");
1685 	dump_stack();
1686 }
1687 
1688 static noinline void print_bfs_bug(int ret)
1689 {
1690 	if (!debug_locks_off_graph_unlock())
1691 		return;
1692 
1693 	/*
1694 	 * Breadth-first-search failed, graph got corrupted?
1695 	 */
1696 	WARN(1, "lockdep bfs error:%d\n", ret);
1697 }
1698 
1699 static int noop_count(struct lock_list *entry, void *data)
1700 {
1701 	(*(unsigned long *)data)++;
1702 	return 0;
1703 }
1704 
1705 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
1706 {
1707 	unsigned long  count = 0;
1708 	struct lock_list *uninitialized_var(target_entry);
1709 
1710 	__bfs_forwards(this, (void *)&count, noop_count, &target_entry);
1711 
1712 	return count;
1713 }
1714 unsigned long lockdep_count_forward_deps(struct lock_class *class)
1715 {
1716 	unsigned long ret, flags;
1717 	struct lock_list this;
1718 
1719 	this.parent = NULL;
1720 	this.class = class;
1721 
1722 	raw_local_irq_save(flags);
1723 	arch_spin_lock(&lockdep_lock);
1724 	ret = __lockdep_count_forward_deps(&this);
1725 	arch_spin_unlock(&lockdep_lock);
1726 	raw_local_irq_restore(flags);
1727 
1728 	return ret;
1729 }
1730 
1731 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
1732 {
1733 	unsigned long  count = 0;
1734 	struct lock_list *uninitialized_var(target_entry);
1735 
1736 	__bfs_backwards(this, (void *)&count, noop_count, &target_entry);
1737 
1738 	return count;
1739 }
1740 
1741 unsigned long lockdep_count_backward_deps(struct lock_class *class)
1742 {
1743 	unsigned long ret, flags;
1744 	struct lock_list this;
1745 
1746 	this.parent = NULL;
1747 	this.class = class;
1748 
1749 	raw_local_irq_save(flags);
1750 	arch_spin_lock(&lockdep_lock);
1751 	ret = __lockdep_count_backward_deps(&this);
1752 	arch_spin_unlock(&lockdep_lock);
1753 	raw_local_irq_restore(flags);
1754 
1755 	return ret;
1756 }
1757 
1758 /*
1759  * Check that the dependency graph starting at <src> can lead to
1760  * <target> or not. Print an error and return 0 if it does.
1761  */
1762 static noinline int
1763 check_path(struct lock_class *target, struct lock_list *src_entry,
1764 	   struct lock_list **target_entry)
1765 {
1766 	int ret;
1767 
1768 	ret = __bfs_forwards(src_entry, (void *)target, class_equal,
1769 			     target_entry);
1770 
1771 	if (unlikely(ret < 0))
1772 		print_bfs_bug(ret);
1773 
1774 	return ret;
1775 }
1776 
1777 /*
1778  * Prove that the dependency graph starting at <src> can not
1779  * lead to <target>. If it can, there is a circle when adding
1780  * <target> -> <src> dependency.
1781  *
1782  * Print an error and return 0 if it does.
1783  */
1784 static noinline int
1785 check_noncircular(struct held_lock *src, struct held_lock *target,
1786 		  struct lock_trace **const trace)
1787 {
1788 	int ret;
1789 	struct lock_list *uninitialized_var(target_entry);
1790 	struct lock_list src_entry = {
1791 		.class = hlock_class(src),
1792 		.parent = NULL,
1793 	};
1794 
1795 	debug_atomic_inc(nr_cyclic_checks);
1796 
1797 	ret = check_path(hlock_class(target), &src_entry, &target_entry);
1798 
1799 	if (unlikely(!ret)) {
1800 		if (!*trace) {
1801 			/*
1802 			 * If save_trace fails here, the printing might
1803 			 * trigger a WARN but because of the !nr_entries it
1804 			 * should not do bad things.
1805 			 */
1806 			*trace = save_trace();
1807 		}
1808 
1809 		print_circular_bug(&src_entry, target_entry, src, target);
1810 	}
1811 
1812 	return ret;
1813 }
1814 
1815 #ifdef CONFIG_LOCKDEP_SMALL
1816 /*
1817  * Check that the dependency graph starting at <src> can lead to
1818  * <target> or not. If it can, <src> -> <target> dependency is already
1819  * in the graph.
1820  *
1821  * Print an error and return 2 if it does or 1 if it does not.
1822  */
1823 static noinline int
1824 check_redundant(struct held_lock *src, struct held_lock *target)
1825 {
1826 	int ret;
1827 	struct lock_list *uninitialized_var(target_entry);
1828 	struct lock_list src_entry = {
1829 		.class = hlock_class(src),
1830 		.parent = NULL,
1831 	};
1832 
1833 	debug_atomic_inc(nr_redundant_checks);
1834 
1835 	ret = check_path(hlock_class(target), &src_entry, &target_entry);
1836 
1837 	if (!ret) {
1838 		debug_atomic_inc(nr_redundant);
1839 		ret = 2;
1840 	} else if (ret < 0)
1841 		ret = 0;
1842 
1843 	return ret;
1844 }
1845 #endif
1846 
1847 #ifdef CONFIG_TRACE_IRQFLAGS
1848 
1849 static inline int usage_accumulate(struct lock_list *entry, void *mask)
1850 {
1851 	*(unsigned long *)mask |= entry->class->usage_mask;
1852 
1853 	return 0;
1854 }
1855 
1856 /*
1857  * Forwards and backwards subgraph searching, for the purposes of
1858  * proving that two subgraphs can be connected by a new dependency
1859  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
1860  */
1861 
1862 static inline int usage_match(struct lock_list *entry, void *mask)
1863 {
1864 	return entry->class->usage_mask & *(unsigned long *)mask;
1865 }
1866 
1867 /*
1868  * Find a node in the forwards-direction dependency sub-graph starting
1869  * at @root->class that matches @bit.
1870  *
1871  * Return 0 if such a node exists in the subgraph, and put that node
1872  * into *@target_entry.
1873  *
1874  * Return 1 otherwise and keep *@target_entry unchanged.
1875  * Return <0 on error.
1876  */
1877 static int
1878 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
1879 			struct lock_list **target_entry)
1880 {
1881 	int result;
1882 
1883 	debug_atomic_inc(nr_find_usage_forwards_checks);
1884 
1885 	result = __bfs_forwards(root, &usage_mask, usage_match, target_entry);
1886 
1887 	return result;
1888 }
1889 
1890 /*
1891  * Find a node in the backwards-direction dependency sub-graph starting
1892  * at @root->class that matches @bit.
1893  *
1894  * Return 0 if such a node exists in the subgraph, and put that node
1895  * into *@target_entry.
1896  *
1897  * Return 1 otherwise and keep *@target_entry unchanged.
1898  * Return <0 on error.
1899  */
1900 static int
1901 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
1902 			struct lock_list **target_entry)
1903 {
1904 	int result;
1905 
1906 	debug_atomic_inc(nr_find_usage_backwards_checks);
1907 
1908 	result = __bfs_backwards(root, &usage_mask, usage_match, target_entry);
1909 
1910 	return result;
1911 }
1912 
1913 static void print_lock_class_header(struct lock_class *class, int depth)
1914 {
1915 	int bit;
1916 
1917 	printk("%*s->", depth, "");
1918 	print_lock_name(class);
1919 #ifdef CONFIG_DEBUG_LOCKDEP
1920 	printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
1921 #endif
1922 	printk(KERN_CONT " {\n");
1923 
1924 	for (bit = 0; bit < LOCK_USAGE_STATES; bit++) {
1925 		if (class->usage_mask & (1 << bit)) {
1926 			int len = depth;
1927 
1928 			len += printk("%*s   %s", depth, "", usage_str[bit]);
1929 			len += printk(KERN_CONT " at:\n");
1930 			print_lock_trace(class->usage_traces[bit], len);
1931 		}
1932 	}
1933 	printk("%*s }\n", depth, "");
1934 
1935 	printk("%*s ... key      at: [<%px>] %pS\n",
1936 		depth, "", class->key, class->key);
1937 }
1938 
1939 /*
1940  * printk the shortest lock dependencies from @start to @end in reverse order:
1941  */
1942 static void __used
1943 print_shortest_lock_dependencies(struct lock_list *leaf,
1944 				 struct lock_list *root)
1945 {
1946 	struct lock_list *entry = leaf;
1947 	int depth;
1948 
1949 	/*compute depth from generated tree by BFS*/
1950 	depth = get_lock_depth(leaf);
1951 
1952 	do {
1953 		print_lock_class_header(entry->class, depth);
1954 		printk("%*s ... acquired at:\n", depth, "");
1955 		print_lock_trace(entry->trace, 2);
1956 		printk("\n");
1957 
1958 		if (depth == 0 && (entry != root)) {
1959 			printk("lockdep:%s bad path found in chain graph\n", __func__);
1960 			break;
1961 		}
1962 
1963 		entry = get_lock_parent(entry);
1964 		depth--;
1965 	} while (entry && (depth >= 0));
1966 }
1967 
1968 static void
1969 print_irq_lock_scenario(struct lock_list *safe_entry,
1970 			struct lock_list *unsafe_entry,
1971 			struct lock_class *prev_class,
1972 			struct lock_class *next_class)
1973 {
1974 	struct lock_class *safe_class = safe_entry->class;
1975 	struct lock_class *unsafe_class = unsafe_entry->class;
1976 	struct lock_class *middle_class = prev_class;
1977 
1978 	if (middle_class == safe_class)
1979 		middle_class = next_class;
1980 
1981 	/*
1982 	 * A direct locking problem where unsafe_class lock is taken
1983 	 * directly by safe_class lock, then all we need to show
1984 	 * is the deadlock scenario, as it is obvious that the
1985 	 * unsafe lock is taken under the safe lock.
1986 	 *
1987 	 * But if there is a chain instead, where the safe lock takes
1988 	 * an intermediate lock (middle_class) where this lock is
1989 	 * not the same as the safe lock, then the lock chain is
1990 	 * used to describe the problem. Otherwise we would need
1991 	 * to show a different CPU case for each link in the chain
1992 	 * from the safe_class lock to the unsafe_class lock.
1993 	 */
1994 	if (middle_class != unsafe_class) {
1995 		printk("Chain exists of:\n  ");
1996 		__print_lock_name(safe_class);
1997 		printk(KERN_CONT " --> ");
1998 		__print_lock_name(middle_class);
1999 		printk(KERN_CONT " --> ");
2000 		__print_lock_name(unsafe_class);
2001 		printk(KERN_CONT "\n\n");
2002 	}
2003 
2004 	printk(" Possible interrupt unsafe locking scenario:\n\n");
2005 	printk("       CPU0                    CPU1\n");
2006 	printk("       ----                    ----\n");
2007 	printk("  lock(");
2008 	__print_lock_name(unsafe_class);
2009 	printk(KERN_CONT ");\n");
2010 	printk("                               local_irq_disable();\n");
2011 	printk("                               lock(");
2012 	__print_lock_name(safe_class);
2013 	printk(KERN_CONT ");\n");
2014 	printk("                               lock(");
2015 	__print_lock_name(middle_class);
2016 	printk(KERN_CONT ");\n");
2017 	printk("  <Interrupt>\n");
2018 	printk("    lock(");
2019 	__print_lock_name(safe_class);
2020 	printk(KERN_CONT ");\n");
2021 	printk("\n *** DEADLOCK ***\n\n");
2022 }
2023 
2024 static void
2025 print_bad_irq_dependency(struct task_struct *curr,
2026 			 struct lock_list *prev_root,
2027 			 struct lock_list *next_root,
2028 			 struct lock_list *backwards_entry,
2029 			 struct lock_list *forwards_entry,
2030 			 struct held_lock *prev,
2031 			 struct held_lock *next,
2032 			 enum lock_usage_bit bit1,
2033 			 enum lock_usage_bit bit2,
2034 			 const char *irqclass)
2035 {
2036 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2037 		return;
2038 
2039 	pr_warn("\n");
2040 	pr_warn("=====================================================\n");
2041 	pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2042 		irqclass, irqclass);
2043 	print_kernel_ident();
2044 	pr_warn("-----------------------------------------------------\n");
2045 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2046 		curr->comm, task_pid_nr(curr),
2047 		curr->hardirq_context, hardirq_count() >> HARDIRQ_SHIFT,
2048 		curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2049 		curr->hardirqs_enabled,
2050 		curr->softirqs_enabled);
2051 	print_lock(next);
2052 
2053 	pr_warn("\nand this task is already holding:\n");
2054 	print_lock(prev);
2055 	pr_warn("which would create a new lock dependency:\n");
2056 	print_lock_name(hlock_class(prev));
2057 	pr_cont(" ->");
2058 	print_lock_name(hlock_class(next));
2059 	pr_cont("\n");
2060 
2061 	pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2062 		irqclass);
2063 	print_lock_name(backwards_entry->class);
2064 	pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2065 
2066 	print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2067 
2068 	pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2069 	print_lock_name(forwards_entry->class);
2070 	pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2071 	pr_warn("...");
2072 
2073 	print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2074 
2075 	pr_warn("\nother info that might help us debug this:\n\n");
2076 	print_irq_lock_scenario(backwards_entry, forwards_entry,
2077 				hlock_class(prev), hlock_class(next));
2078 
2079 	lockdep_print_held_locks(curr);
2080 
2081 	pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2082 	prev_root->trace = save_trace();
2083 	if (!prev_root->trace)
2084 		return;
2085 	print_shortest_lock_dependencies(backwards_entry, prev_root);
2086 
2087 	pr_warn("\nthe dependencies between the lock to be acquired");
2088 	pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2089 	next_root->trace = save_trace();
2090 	if (!next_root->trace)
2091 		return;
2092 	print_shortest_lock_dependencies(forwards_entry, next_root);
2093 
2094 	pr_warn("\nstack backtrace:\n");
2095 	dump_stack();
2096 }
2097 
2098 static const char *state_names[] = {
2099 #define LOCKDEP_STATE(__STATE) \
2100 	__stringify(__STATE),
2101 #include "lockdep_states.h"
2102 #undef LOCKDEP_STATE
2103 };
2104 
2105 static const char *state_rnames[] = {
2106 #define LOCKDEP_STATE(__STATE) \
2107 	__stringify(__STATE)"-READ",
2108 #include "lockdep_states.h"
2109 #undef LOCKDEP_STATE
2110 };
2111 
2112 static inline const char *state_name(enum lock_usage_bit bit)
2113 {
2114 	if (bit & LOCK_USAGE_READ_MASK)
2115 		return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2116 	else
2117 		return state_names[bit >> LOCK_USAGE_DIR_MASK];
2118 }
2119 
2120 /*
2121  * The bit number is encoded like:
2122  *
2123  *  bit0: 0 exclusive, 1 read lock
2124  *  bit1: 0 used in irq, 1 irq enabled
2125  *  bit2-n: state
2126  */
2127 static int exclusive_bit(int new_bit)
2128 {
2129 	int state = new_bit & LOCK_USAGE_STATE_MASK;
2130 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
2131 
2132 	/*
2133 	 * keep state, bit flip the direction and strip read.
2134 	 */
2135 	return state | (dir ^ LOCK_USAGE_DIR_MASK);
2136 }
2137 
2138 /*
2139  * Observe that when given a bitmask where each bitnr is encoded as above, a
2140  * right shift of the mask transforms the individual bitnrs as -1 and
2141  * conversely, a left shift transforms into +1 for the individual bitnrs.
2142  *
2143  * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2144  * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2145  * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2146  *
2147  * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2148  *
2149  * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2150  * all bits set) and recompose with bitnr1 flipped.
2151  */
2152 static unsigned long invert_dir_mask(unsigned long mask)
2153 {
2154 	unsigned long excl = 0;
2155 
2156 	/* Invert dir */
2157 	excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2158 	excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2159 
2160 	return excl;
2161 }
2162 
2163 /*
2164  * As above, we clear bitnr0 (LOCK_*_READ off) with bitmask ops. First, for all
2165  * bits with bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*).
2166  * And then mask out all bitnr0.
2167  */
2168 static unsigned long exclusive_mask(unsigned long mask)
2169 {
2170 	unsigned long excl = invert_dir_mask(mask);
2171 
2172 	/* Strip read */
2173 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2174 	excl &= ~LOCKF_IRQ_READ;
2175 
2176 	return excl;
2177 }
2178 
2179 /*
2180  * Retrieve the _possible_ original mask to which @mask is
2181  * exclusive. Ie: this is the opposite of exclusive_mask().
2182  * Note that 2 possible original bits can match an exclusive
2183  * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2184  * cleared. So both are returned for each exclusive bit.
2185  */
2186 static unsigned long original_mask(unsigned long mask)
2187 {
2188 	unsigned long excl = invert_dir_mask(mask);
2189 
2190 	/* Include read in existing usages */
2191 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2192 
2193 	return excl;
2194 }
2195 
2196 /*
2197  * Find the first pair of bit match between an original
2198  * usage mask and an exclusive usage mask.
2199  */
2200 static int find_exclusive_match(unsigned long mask,
2201 				unsigned long excl_mask,
2202 				enum lock_usage_bit *bitp,
2203 				enum lock_usage_bit *excl_bitp)
2204 {
2205 	int bit, excl;
2206 
2207 	for_each_set_bit(bit, &mask, LOCK_USED) {
2208 		excl = exclusive_bit(bit);
2209 		if (excl_mask & lock_flag(excl)) {
2210 			*bitp = bit;
2211 			*excl_bitp = excl;
2212 			return 0;
2213 		}
2214 	}
2215 	return -1;
2216 }
2217 
2218 /*
2219  * Prove that the new dependency does not connect a hardirq-safe(-read)
2220  * lock with a hardirq-unsafe lock - to achieve this we search
2221  * the backwards-subgraph starting at <prev>, and the
2222  * forwards-subgraph starting at <next>:
2223  */
2224 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2225 			   struct held_lock *next)
2226 {
2227 	unsigned long usage_mask = 0, forward_mask, backward_mask;
2228 	enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2229 	struct lock_list *uninitialized_var(target_entry1);
2230 	struct lock_list *uninitialized_var(target_entry);
2231 	struct lock_list this, that;
2232 	int ret;
2233 
2234 	/*
2235 	 * Step 1: gather all hard/soft IRQs usages backward in an
2236 	 * accumulated usage mask.
2237 	 */
2238 	this.parent = NULL;
2239 	this.class = hlock_class(prev);
2240 
2241 	ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, NULL);
2242 	if (ret < 0) {
2243 		print_bfs_bug(ret);
2244 		return 0;
2245 	}
2246 
2247 	usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2248 	if (!usage_mask)
2249 		return 1;
2250 
2251 	/*
2252 	 * Step 2: find exclusive uses forward that match the previous
2253 	 * backward accumulated mask.
2254 	 */
2255 	forward_mask = exclusive_mask(usage_mask);
2256 
2257 	that.parent = NULL;
2258 	that.class = hlock_class(next);
2259 
2260 	ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2261 	if (ret < 0) {
2262 		print_bfs_bug(ret);
2263 		return 0;
2264 	}
2265 	if (ret == 1)
2266 		return ret;
2267 
2268 	/*
2269 	 * Step 3: we found a bad match! Now retrieve a lock from the backward
2270 	 * list whose usage mask matches the exclusive usage mask from the
2271 	 * lock found on the forward list.
2272 	 */
2273 	backward_mask = original_mask(target_entry1->class->usage_mask);
2274 
2275 	ret = find_usage_backwards(&this, backward_mask, &target_entry);
2276 	if (ret < 0) {
2277 		print_bfs_bug(ret);
2278 		return 0;
2279 	}
2280 	if (DEBUG_LOCKS_WARN_ON(ret == 1))
2281 		return 1;
2282 
2283 	/*
2284 	 * Step 4: narrow down to a pair of incompatible usage bits
2285 	 * and report it.
2286 	 */
2287 	ret = find_exclusive_match(target_entry->class->usage_mask,
2288 				   target_entry1->class->usage_mask,
2289 				   &backward_bit, &forward_bit);
2290 	if (DEBUG_LOCKS_WARN_ON(ret == -1))
2291 		return 1;
2292 
2293 	print_bad_irq_dependency(curr, &this, &that,
2294 				 target_entry, target_entry1,
2295 				 prev, next,
2296 				 backward_bit, forward_bit,
2297 				 state_name(backward_bit));
2298 
2299 	return 0;
2300 }
2301 
2302 static void inc_chains(void)
2303 {
2304 	if (current->hardirq_context)
2305 		nr_hardirq_chains++;
2306 	else {
2307 		if (current->softirq_context)
2308 			nr_softirq_chains++;
2309 		else
2310 			nr_process_chains++;
2311 	}
2312 }
2313 
2314 #else
2315 
2316 static inline int check_irq_usage(struct task_struct *curr,
2317 				  struct held_lock *prev, struct held_lock *next)
2318 {
2319 	return 1;
2320 }
2321 
2322 static inline void inc_chains(void)
2323 {
2324 	nr_process_chains++;
2325 }
2326 
2327 #endif /* CONFIG_TRACE_IRQFLAGS */
2328 
2329 static void
2330 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2331 {
2332 	struct lock_class *next = hlock_class(nxt);
2333 	struct lock_class *prev = hlock_class(prv);
2334 
2335 	printk(" Possible unsafe locking scenario:\n\n");
2336 	printk("       CPU0\n");
2337 	printk("       ----\n");
2338 	printk("  lock(");
2339 	__print_lock_name(prev);
2340 	printk(KERN_CONT ");\n");
2341 	printk("  lock(");
2342 	__print_lock_name(next);
2343 	printk(KERN_CONT ");\n");
2344 	printk("\n *** DEADLOCK ***\n\n");
2345 	printk(" May be due to missing lock nesting notation\n\n");
2346 }
2347 
2348 static void
2349 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2350 		   struct held_lock *next)
2351 {
2352 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2353 		return;
2354 
2355 	pr_warn("\n");
2356 	pr_warn("============================================\n");
2357 	pr_warn("WARNING: possible recursive locking detected\n");
2358 	print_kernel_ident();
2359 	pr_warn("--------------------------------------------\n");
2360 	pr_warn("%s/%d is trying to acquire lock:\n",
2361 		curr->comm, task_pid_nr(curr));
2362 	print_lock(next);
2363 	pr_warn("\nbut task is already holding lock:\n");
2364 	print_lock(prev);
2365 
2366 	pr_warn("\nother info that might help us debug this:\n");
2367 	print_deadlock_scenario(next, prev);
2368 	lockdep_print_held_locks(curr);
2369 
2370 	pr_warn("\nstack backtrace:\n");
2371 	dump_stack();
2372 }
2373 
2374 /*
2375  * Check whether we are holding such a class already.
2376  *
2377  * (Note that this has to be done separately, because the graph cannot
2378  * detect such classes of deadlocks.)
2379  *
2380  * Returns: 0 on deadlock detected, 1 on OK, 2 on recursive read
2381  */
2382 static int
2383 check_deadlock(struct task_struct *curr, struct held_lock *next)
2384 {
2385 	struct held_lock *prev;
2386 	struct held_lock *nest = NULL;
2387 	int i;
2388 
2389 	for (i = 0; i < curr->lockdep_depth; i++) {
2390 		prev = curr->held_locks + i;
2391 
2392 		if (prev->instance == next->nest_lock)
2393 			nest = prev;
2394 
2395 		if (hlock_class(prev) != hlock_class(next))
2396 			continue;
2397 
2398 		/*
2399 		 * Allow read-after-read recursion of the same
2400 		 * lock class (i.e. read_lock(lock)+read_lock(lock)):
2401 		 */
2402 		if ((next->read == 2) && prev->read)
2403 			return 2;
2404 
2405 		/*
2406 		 * We're holding the nest_lock, which serializes this lock's
2407 		 * nesting behaviour.
2408 		 */
2409 		if (nest)
2410 			return 2;
2411 
2412 		print_deadlock_bug(curr, prev, next);
2413 		return 0;
2414 	}
2415 	return 1;
2416 }
2417 
2418 /*
2419  * There was a chain-cache miss, and we are about to add a new dependency
2420  * to a previous lock. We validate the following rules:
2421  *
2422  *  - would the adding of the <prev> -> <next> dependency create a
2423  *    circular dependency in the graph? [== circular deadlock]
2424  *
2425  *  - does the new prev->next dependency connect any hardirq-safe lock
2426  *    (in the full backwards-subgraph starting at <prev>) with any
2427  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
2428  *    <next>)? [== illegal lock inversion with hardirq contexts]
2429  *
2430  *  - does the new prev->next dependency connect any softirq-safe lock
2431  *    (in the full backwards-subgraph starting at <prev>) with any
2432  *    softirq-unsafe lock (in the full forwards-subgraph starting at
2433  *    <next>)? [== illegal lock inversion with softirq contexts]
2434  *
2435  * any of these scenarios could lead to a deadlock.
2436  *
2437  * Then if all the validations pass, we add the forwards and backwards
2438  * dependency.
2439  */
2440 static int
2441 check_prev_add(struct task_struct *curr, struct held_lock *prev,
2442 	       struct held_lock *next, int distance,
2443 	       struct lock_trace **const trace)
2444 {
2445 	struct lock_list *entry;
2446 	int ret;
2447 
2448 	if (!hlock_class(prev)->key || !hlock_class(next)->key) {
2449 		/*
2450 		 * The warning statements below may trigger a use-after-free
2451 		 * of the class name. It is better to trigger a use-after free
2452 		 * and to have the class name most of the time instead of not
2453 		 * having the class name available.
2454 		 */
2455 		WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
2456 			  "Detected use-after-free of lock class %px/%s\n",
2457 			  hlock_class(prev),
2458 			  hlock_class(prev)->name);
2459 		WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
2460 			  "Detected use-after-free of lock class %px/%s\n",
2461 			  hlock_class(next),
2462 			  hlock_class(next)->name);
2463 		return 2;
2464 	}
2465 
2466 	/*
2467 	 * Prove that the new <prev> -> <next> dependency would not
2468 	 * create a circular dependency in the graph. (We do this by
2469 	 * a breadth-first search into the graph starting at <next>,
2470 	 * and check whether we can reach <prev>.)
2471 	 *
2472 	 * The search is limited by the size of the circular queue (i.e.,
2473 	 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
2474 	 * in the graph whose neighbours are to be checked.
2475 	 */
2476 	ret = check_noncircular(next, prev, trace);
2477 	if (unlikely(ret <= 0))
2478 		return 0;
2479 
2480 	if (!check_irq_usage(curr, prev, next))
2481 		return 0;
2482 
2483 	/*
2484 	 * For recursive read-locks we do all the dependency checks,
2485 	 * but we dont store read-triggered dependencies (only
2486 	 * write-triggered dependencies). This ensures that only the
2487 	 * write-side dependencies matter, and that if for example a
2488 	 * write-lock never takes any other locks, then the reads are
2489 	 * equivalent to a NOP.
2490 	 */
2491 	if (next->read == 2 || prev->read == 2)
2492 		return 1;
2493 	/*
2494 	 * Is the <prev> -> <next> dependency already present?
2495 	 *
2496 	 * (this may occur even though this is a new chain: consider
2497 	 *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
2498 	 *  chains - the second one will be new, but L1 already has
2499 	 *  L2 added to its dependency list, due to the first chain.)
2500 	 */
2501 	list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
2502 		if (entry->class == hlock_class(next)) {
2503 			if (distance == 1)
2504 				entry->distance = 1;
2505 			return 1;
2506 		}
2507 	}
2508 
2509 #ifdef CONFIG_LOCKDEP_SMALL
2510 	/*
2511 	 * Is the <prev> -> <next> link redundant?
2512 	 */
2513 	ret = check_redundant(prev, next);
2514 	if (ret != 1)
2515 		return ret;
2516 #endif
2517 
2518 	if (!*trace) {
2519 		*trace = save_trace();
2520 		if (!*trace)
2521 			return 0;
2522 	}
2523 
2524 	/*
2525 	 * Ok, all validations passed, add the new lock
2526 	 * to the previous lock's dependency list:
2527 	 */
2528 	ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
2529 			       &hlock_class(prev)->locks_after,
2530 			       next->acquire_ip, distance, *trace);
2531 
2532 	if (!ret)
2533 		return 0;
2534 
2535 	ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
2536 			       &hlock_class(next)->locks_before,
2537 			       next->acquire_ip, distance, *trace);
2538 	if (!ret)
2539 		return 0;
2540 
2541 	return 2;
2542 }
2543 
2544 /*
2545  * Add the dependency to all directly-previous locks that are 'relevant'.
2546  * The ones that are relevant are (in increasing distance from curr):
2547  * all consecutive trylock entries and the final non-trylock entry - or
2548  * the end of this context's lock-chain - whichever comes first.
2549  */
2550 static int
2551 check_prevs_add(struct task_struct *curr, struct held_lock *next)
2552 {
2553 	struct lock_trace *trace = NULL;
2554 	int depth = curr->lockdep_depth;
2555 	struct held_lock *hlock;
2556 
2557 	/*
2558 	 * Debugging checks.
2559 	 *
2560 	 * Depth must not be zero for a non-head lock:
2561 	 */
2562 	if (!depth)
2563 		goto out_bug;
2564 	/*
2565 	 * At least two relevant locks must exist for this
2566 	 * to be a head:
2567 	 */
2568 	if (curr->held_locks[depth].irq_context !=
2569 			curr->held_locks[depth-1].irq_context)
2570 		goto out_bug;
2571 
2572 	for (;;) {
2573 		int distance = curr->lockdep_depth - depth + 1;
2574 		hlock = curr->held_locks + depth - 1;
2575 
2576 		/*
2577 		 * Only non-recursive-read entries get new dependencies
2578 		 * added:
2579 		 */
2580 		if (hlock->read != 2 && hlock->check) {
2581 			int ret = check_prev_add(curr, hlock, next, distance,
2582 						 &trace);
2583 			if (!ret)
2584 				return 0;
2585 
2586 			/*
2587 			 * Stop after the first non-trylock entry,
2588 			 * as non-trylock entries have added their
2589 			 * own direct dependencies already, so this
2590 			 * lock is connected to them indirectly:
2591 			 */
2592 			if (!hlock->trylock)
2593 				break;
2594 		}
2595 
2596 		depth--;
2597 		/*
2598 		 * End of lock-stack?
2599 		 */
2600 		if (!depth)
2601 			break;
2602 		/*
2603 		 * Stop the search if we cross into another context:
2604 		 */
2605 		if (curr->held_locks[depth].irq_context !=
2606 				curr->held_locks[depth-1].irq_context)
2607 			break;
2608 	}
2609 	return 1;
2610 out_bug:
2611 	if (!debug_locks_off_graph_unlock())
2612 		return 0;
2613 
2614 	/*
2615 	 * Clearly we all shouldn't be here, but since we made it we
2616 	 * can reliable say we messed up our state. See the above two
2617 	 * gotos for reasons why we could possibly end up here.
2618 	 */
2619 	WARN_ON(1);
2620 
2621 	return 0;
2622 }
2623 
2624 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
2625 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
2626 int nr_chain_hlocks;
2627 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
2628 
2629 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
2630 {
2631 	return lock_classes + chain_hlocks[chain->base + i];
2632 }
2633 
2634 /*
2635  * Returns the index of the first held_lock of the current chain
2636  */
2637 static inline int get_first_held_lock(struct task_struct *curr,
2638 					struct held_lock *hlock)
2639 {
2640 	int i;
2641 	struct held_lock *hlock_curr;
2642 
2643 	for (i = curr->lockdep_depth - 1; i >= 0; i--) {
2644 		hlock_curr = curr->held_locks + i;
2645 		if (hlock_curr->irq_context != hlock->irq_context)
2646 			break;
2647 
2648 	}
2649 
2650 	return ++i;
2651 }
2652 
2653 #ifdef CONFIG_DEBUG_LOCKDEP
2654 /*
2655  * Returns the next chain_key iteration
2656  */
2657 static u64 print_chain_key_iteration(int class_idx, u64 chain_key)
2658 {
2659 	u64 new_chain_key = iterate_chain_key(chain_key, class_idx);
2660 
2661 	printk(" class_idx:%d -> chain_key:%016Lx",
2662 		class_idx,
2663 		(unsigned long long)new_chain_key);
2664 	return new_chain_key;
2665 }
2666 
2667 static void
2668 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
2669 {
2670 	struct held_lock *hlock;
2671 	u64 chain_key = INITIAL_CHAIN_KEY;
2672 	int depth = curr->lockdep_depth;
2673 	int i = get_first_held_lock(curr, hlock_next);
2674 
2675 	printk("depth: %u (irq_context %u)\n", depth - i + 1,
2676 		hlock_next->irq_context);
2677 	for (; i < depth; i++) {
2678 		hlock = curr->held_locks + i;
2679 		chain_key = print_chain_key_iteration(hlock->class_idx, chain_key);
2680 
2681 		print_lock(hlock);
2682 	}
2683 
2684 	print_chain_key_iteration(hlock_next->class_idx, chain_key);
2685 	print_lock(hlock_next);
2686 }
2687 
2688 static void print_chain_keys_chain(struct lock_chain *chain)
2689 {
2690 	int i;
2691 	u64 chain_key = INITIAL_CHAIN_KEY;
2692 	int class_id;
2693 
2694 	printk("depth: %u\n", chain->depth);
2695 	for (i = 0; i < chain->depth; i++) {
2696 		class_id = chain_hlocks[chain->base + i];
2697 		chain_key = print_chain_key_iteration(class_id, chain_key);
2698 
2699 		print_lock_name(lock_classes + class_id);
2700 		printk("\n");
2701 	}
2702 }
2703 
2704 static void print_collision(struct task_struct *curr,
2705 			struct held_lock *hlock_next,
2706 			struct lock_chain *chain)
2707 {
2708 	pr_warn("\n");
2709 	pr_warn("============================\n");
2710 	pr_warn("WARNING: chain_key collision\n");
2711 	print_kernel_ident();
2712 	pr_warn("----------------------------\n");
2713 	pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
2714 	pr_warn("Hash chain already cached but the contents don't match!\n");
2715 
2716 	pr_warn("Held locks:");
2717 	print_chain_keys_held_locks(curr, hlock_next);
2718 
2719 	pr_warn("Locks in cached chain:");
2720 	print_chain_keys_chain(chain);
2721 
2722 	pr_warn("\nstack backtrace:\n");
2723 	dump_stack();
2724 }
2725 #endif
2726 
2727 /*
2728  * Checks whether the chain and the current held locks are consistent
2729  * in depth and also in content. If they are not it most likely means
2730  * that there was a collision during the calculation of the chain_key.
2731  * Returns: 0 not passed, 1 passed
2732  */
2733 static int check_no_collision(struct task_struct *curr,
2734 			struct held_lock *hlock,
2735 			struct lock_chain *chain)
2736 {
2737 #ifdef CONFIG_DEBUG_LOCKDEP
2738 	int i, j, id;
2739 
2740 	i = get_first_held_lock(curr, hlock);
2741 
2742 	if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
2743 		print_collision(curr, hlock, chain);
2744 		return 0;
2745 	}
2746 
2747 	for (j = 0; j < chain->depth - 1; j++, i++) {
2748 		id = curr->held_locks[i].class_idx;
2749 
2750 		if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
2751 			print_collision(curr, hlock, chain);
2752 			return 0;
2753 		}
2754 	}
2755 #endif
2756 	return 1;
2757 }
2758 
2759 /*
2760  * Given an index that is >= -1, return the index of the next lock chain.
2761  * Return -2 if there is no next lock chain.
2762  */
2763 long lockdep_next_lockchain(long i)
2764 {
2765 	i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
2766 	return i < ARRAY_SIZE(lock_chains) ? i : -2;
2767 }
2768 
2769 unsigned long lock_chain_count(void)
2770 {
2771 	return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
2772 }
2773 
2774 /* Must be called with the graph lock held. */
2775 static struct lock_chain *alloc_lock_chain(void)
2776 {
2777 	int idx = find_first_zero_bit(lock_chains_in_use,
2778 				      ARRAY_SIZE(lock_chains));
2779 
2780 	if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
2781 		return NULL;
2782 	__set_bit(idx, lock_chains_in_use);
2783 	return lock_chains + idx;
2784 }
2785 
2786 /*
2787  * Adds a dependency chain into chain hashtable. And must be called with
2788  * graph_lock held.
2789  *
2790  * Return 0 if fail, and graph_lock is released.
2791  * Return 1 if succeed, with graph_lock held.
2792  */
2793 static inline int add_chain_cache(struct task_struct *curr,
2794 				  struct held_lock *hlock,
2795 				  u64 chain_key)
2796 {
2797 	struct lock_class *class = hlock_class(hlock);
2798 	struct hlist_head *hash_head = chainhashentry(chain_key);
2799 	struct lock_chain *chain;
2800 	int i, j;
2801 
2802 	/*
2803 	 * The caller must hold the graph lock, ensure we've got IRQs
2804 	 * disabled to make this an IRQ-safe lock.. for recursion reasons
2805 	 * lockdep won't complain about its own locking errors.
2806 	 */
2807 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2808 		return 0;
2809 
2810 	chain = alloc_lock_chain();
2811 	if (!chain) {
2812 		if (!debug_locks_off_graph_unlock())
2813 			return 0;
2814 
2815 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
2816 		dump_stack();
2817 		return 0;
2818 	}
2819 	chain->chain_key = chain_key;
2820 	chain->irq_context = hlock->irq_context;
2821 	i = get_first_held_lock(curr, hlock);
2822 	chain->depth = curr->lockdep_depth + 1 - i;
2823 
2824 	BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
2825 	BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
2826 	BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
2827 
2828 	if (likely(nr_chain_hlocks + chain->depth <= MAX_LOCKDEP_CHAIN_HLOCKS)) {
2829 		chain->base = nr_chain_hlocks;
2830 		for (j = 0; j < chain->depth - 1; j++, i++) {
2831 			int lock_id = curr->held_locks[i].class_idx;
2832 			chain_hlocks[chain->base + j] = lock_id;
2833 		}
2834 		chain_hlocks[chain->base + j] = class - lock_classes;
2835 		nr_chain_hlocks += chain->depth;
2836 	} else {
2837 		if (!debug_locks_off_graph_unlock())
2838 			return 0;
2839 
2840 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
2841 		dump_stack();
2842 		return 0;
2843 	}
2844 
2845 	hlist_add_head_rcu(&chain->entry, hash_head);
2846 	debug_atomic_inc(chain_lookup_misses);
2847 	inc_chains();
2848 
2849 	return 1;
2850 }
2851 
2852 /*
2853  * Look up a dependency chain. Must be called with either the graph lock or
2854  * the RCU read lock held.
2855  */
2856 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
2857 {
2858 	struct hlist_head *hash_head = chainhashentry(chain_key);
2859 	struct lock_chain *chain;
2860 
2861 	hlist_for_each_entry_rcu(chain, hash_head, entry) {
2862 		if (READ_ONCE(chain->chain_key) == chain_key) {
2863 			debug_atomic_inc(chain_lookup_hits);
2864 			return chain;
2865 		}
2866 	}
2867 	return NULL;
2868 }
2869 
2870 /*
2871  * If the key is not present yet in dependency chain cache then
2872  * add it and return 1 - in this case the new dependency chain is
2873  * validated. If the key is already hashed, return 0.
2874  * (On return with 1 graph_lock is held.)
2875  */
2876 static inline int lookup_chain_cache_add(struct task_struct *curr,
2877 					 struct held_lock *hlock,
2878 					 u64 chain_key)
2879 {
2880 	struct lock_class *class = hlock_class(hlock);
2881 	struct lock_chain *chain = lookup_chain_cache(chain_key);
2882 
2883 	if (chain) {
2884 cache_hit:
2885 		if (!check_no_collision(curr, hlock, chain))
2886 			return 0;
2887 
2888 		if (very_verbose(class)) {
2889 			printk("\nhash chain already cached, key: "
2890 					"%016Lx tail class: [%px] %s\n",
2891 					(unsigned long long)chain_key,
2892 					class->key, class->name);
2893 		}
2894 
2895 		return 0;
2896 	}
2897 
2898 	if (very_verbose(class)) {
2899 		printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
2900 			(unsigned long long)chain_key, class->key, class->name);
2901 	}
2902 
2903 	if (!graph_lock())
2904 		return 0;
2905 
2906 	/*
2907 	 * We have to walk the chain again locked - to avoid duplicates:
2908 	 */
2909 	chain = lookup_chain_cache(chain_key);
2910 	if (chain) {
2911 		graph_unlock();
2912 		goto cache_hit;
2913 	}
2914 
2915 	if (!add_chain_cache(curr, hlock, chain_key))
2916 		return 0;
2917 
2918 	return 1;
2919 }
2920 
2921 static int validate_chain(struct task_struct *curr,
2922 			  struct held_lock *hlock,
2923 			  int chain_head, u64 chain_key)
2924 {
2925 	/*
2926 	 * Trylock needs to maintain the stack of held locks, but it
2927 	 * does not add new dependencies, because trylock can be done
2928 	 * in any order.
2929 	 *
2930 	 * We look up the chain_key and do the O(N^2) check and update of
2931 	 * the dependencies only if this is a new dependency chain.
2932 	 * (If lookup_chain_cache_add() return with 1 it acquires
2933 	 * graph_lock for us)
2934 	 */
2935 	if (!hlock->trylock && hlock->check &&
2936 	    lookup_chain_cache_add(curr, hlock, chain_key)) {
2937 		/*
2938 		 * Check whether last held lock:
2939 		 *
2940 		 * - is irq-safe, if this lock is irq-unsafe
2941 		 * - is softirq-safe, if this lock is hardirq-unsafe
2942 		 *
2943 		 * And check whether the new lock's dependency graph
2944 		 * could lead back to the previous lock:
2945 		 *
2946 		 * - within the current held-lock stack
2947 		 * - across our accumulated lock dependency records
2948 		 *
2949 		 * any of these scenarios could lead to a deadlock.
2950 		 */
2951 		/*
2952 		 * The simple case: does the current hold the same lock
2953 		 * already?
2954 		 */
2955 		int ret = check_deadlock(curr, hlock);
2956 
2957 		if (!ret)
2958 			return 0;
2959 		/*
2960 		 * Mark recursive read, as we jump over it when
2961 		 * building dependencies (just like we jump over
2962 		 * trylock entries):
2963 		 */
2964 		if (ret == 2)
2965 			hlock->read = 2;
2966 		/*
2967 		 * Add dependency only if this lock is not the head
2968 		 * of the chain, and if it's not a secondary read-lock:
2969 		 */
2970 		if (!chain_head && ret != 2) {
2971 			if (!check_prevs_add(curr, hlock))
2972 				return 0;
2973 		}
2974 
2975 		graph_unlock();
2976 	} else {
2977 		/* after lookup_chain_cache_add(): */
2978 		if (unlikely(!debug_locks))
2979 			return 0;
2980 	}
2981 
2982 	return 1;
2983 }
2984 #else
2985 static inline int validate_chain(struct task_struct *curr,
2986 				 struct held_lock *hlock,
2987 				 int chain_head, u64 chain_key)
2988 {
2989 	return 1;
2990 }
2991 #endif /* CONFIG_PROVE_LOCKING */
2992 
2993 /*
2994  * We are building curr_chain_key incrementally, so double-check
2995  * it from scratch, to make sure that it's done correctly:
2996  */
2997 static void check_chain_key(struct task_struct *curr)
2998 {
2999 #ifdef CONFIG_DEBUG_LOCKDEP
3000 	struct held_lock *hlock, *prev_hlock = NULL;
3001 	unsigned int i;
3002 	u64 chain_key = INITIAL_CHAIN_KEY;
3003 
3004 	for (i = 0; i < curr->lockdep_depth; i++) {
3005 		hlock = curr->held_locks + i;
3006 		if (chain_key != hlock->prev_chain_key) {
3007 			debug_locks_off();
3008 			/*
3009 			 * We got mighty confused, our chain keys don't match
3010 			 * with what we expect, someone trample on our task state?
3011 			 */
3012 			WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3013 				curr->lockdep_depth, i,
3014 				(unsigned long long)chain_key,
3015 				(unsigned long long)hlock->prev_chain_key);
3016 			return;
3017 		}
3018 
3019 		/*
3020 		 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3021 		 * it registered lock class index?
3022 		 */
3023 		if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3024 			return;
3025 
3026 		if (prev_hlock && (prev_hlock->irq_context !=
3027 							hlock->irq_context))
3028 			chain_key = INITIAL_CHAIN_KEY;
3029 		chain_key = iterate_chain_key(chain_key, hlock->class_idx);
3030 		prev_hlock = hlock;
3031 	}
3032 	if (chain_key != curr->curr_chain_key) {
3033 		debug_locks_off();
3034 		/*
3035 		 * More smoking hash instead of calculating it, damn see these
3036 		 * numbers float.. I bet that a pink elephant stepped on my memory.
3037 		 */
3038 		WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3039 			curr->lockdep_depth, i,
3040 			(unsigned long long)chain_key,
3041 			(unsigned long long)curr->curr_chain_key);
3042 	}
3043 #endif
3044 }
3045 
3046 #ifdef CONFIG_PROVE_LOCKING
3047 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3048 		     enum lock_usage_bit new_bit);
3049 
3050 static void print_usage_bug_scenario(struct held_lock *lock)
3051 {
3052 	struct lock_class *class = hlock_class(lock);
3053 
3054 	printk(" Possible unsafe locking scenario:\n\n");
3055 	printk("       CPU0\n");
3056 	printk("       ----\n");
3057 	printk("  lock(");
3058 	__print_lock_name(class);
3059 	printk(KERN_CONT ");\n");
3060 	printk("  <Interrupt>\n");
3061 	printk("    lock(");
3062 	__print_lock_name(class);
3063 	printk(KERN_CONT ");\n");
3064 	printk("\n *** DEADLOCK ***\n\n");
3065 }
3066 
3067 static void
3068 print_usage_bug(struct task_struct *curr, struct held_lock *this,
3069 		enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3070 {
3071 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3072 		return;
3073 
3074 	pr_warn("\n");
3075 	pr_warn("================================\n");
3076 	pr_warn("WARNING: inconsistent lock state\n");
3077 	print_kernel_ident();
3078 	pr_warn("--------------------------------\n");
3079 
3080 	pr_warn("inconsistent {%s} -> {%s} usage.\n",
3081 		usage_str[prev_bit], usage_str[new_bit]);
3082 
3083 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3084 		curr->comm, task_pid_nr(curr),
3085 		trace_hardirq_context(curr), hardirq_count() >> HARDIRQ_SHIFT,
3086 		trace_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3087 		trace_hardirqs_enabled(curr),
3088 		trace_softirqs_enabled(curr));
3089 	print_lock(this);
3090 
3091 	pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3092 	print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3093 
3094 	print_irqtrace_events(curr);
3095 	pr_warn("\nother info that might help us debug this:\n");
3096 	print_usage_bug_scenario(this);
3097 
3098 	lockdep_print_held_locks(curr);
3099 
3100 	pr_warn("\nstack backtrace:\n");
3101 	dump_stack();
3102 }
3103 
3104 /*
3105  * Print out an error if an invalid bit is set:
3106  */
3107 static inline int
3108 valid_state(struct task_struct *curr, struct held_lock *this,
3109 	    enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
3110 {
3111 	if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
3112 		print_usage_bug(curr, this, bad_bit, new_bit);
3113 		return 0;
3114 	}
3115 	return 1;
3116 }
3117 
3118 
3119 /*
3120  * print irq inversion bug:
3121  */
3122 static void
3123 print_irq_inversion_bug(struct task_struct *curr,
3124 			struct lock_list *root, struct lock_list *other,
3125 			struct held_lock *this, int forwards,
3126 			const char *irqclass)
3127 {
3128 	struct lock_list *entry = other;
3129 	struct lock_list *middle = NULL;
3130 	int depth;
3131 
3132 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3133 		return;
3134 
3135 	pr_warn("\n");
3136 	pr_warn("========================================================\n");
3137 	pr_warn("WARNING: possible irq lock inversion dependency detected\n");
3138 	print_kernel_ident();
3139 	pr_warn("--------------------------------------------------------\n");
3140 	pr_warn("%s/%d just changed the state of lock:\n",
3141 		curr->comm, task_pid_nr(curr));
3142 	print_lock(this);
3143 	if (forwards)
3144 		pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
3145 	else
3146 		pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
3147 	print_lock_name(other->class);
3148 	pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
3149 
3150 	pr_warn("\nother info that might help us debug this:\n");
3151 
3152 	/* Find a middle lock (if one exists) */
3153 	depth = get_lock_depth(other);
3154 	do {
3155 		if (depth == 0 && (entry != root)) {
3156 			pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
3157 			break;
3158 		}
3159 		middle = entry;
3160 		entry = get_lock_parent(entry);
3161 		depth--;
3162 	} while (entry && entry != root && (depth >= 0));
3163 	if (forwards)
3164 		print_irq_lock_scenario(root, other,
3165 			middle ? middle->class : root->class, other->class);
3166 	else
3167 		print_irq_lock_scenario(other, root,
3168 			middle ? middle->class : other->class, root->class);
3169 
3170 	lockdep_print_held_locks(curr);
3171 
3172 	pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
3173 	root->trace = save_trace();
3174 	if (!root->trace)
3175 		return;
3176 	print_shortest_lock_dependencies(other, root);
3177 
3178 	pr_warn("\nstack backtrace:\n");
3179 	dump_stack();
3180 }
3181 
3182 /*
3183  * Prove that in the forwards-direction subgraph starting at <this>
3184  * there is no lock matching <mask>:
3185  */
3186 static int
3187 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
3188 		     enum lock_usage_bit bit, const char *irqclass)
3189 {
3190 	int ret;
3191 	struct lock_list root;
3192 	struct lock_list *uninitialized_var(target_entry);
3193 
3194 	root.parent = NULL;
3195 	root.class = hlock_class(this);
3196 	ret = find_usage_forwards(&root, lock_flag(bit), &target_entry);
3197 	if (ret < 0) {
3198 		print_bfs_bug(ret);
3199 		return 0;
3200 	}
3201 	if (ret == 1)
3202 		return ret;
3203 
3204 	print_irq_inversion_bug(curr, &root, target_entry,
3205 				this, 1, irqclass);
3206 	return 0;
3207 }
3208 
3209 /*
3210  * Prove that in the backwards-direction subgraph starting at <this>
3211  * there is no lock matching <mask>:
3212  */
3213 static int
3214 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
3215 		      enum lock_usage_bit bit, const char *irqclass)
3216 {
3217 	int ret;
3218 	struct lock_list root;
3219 	struct lock_list *uninitialized_var(target_entry);
3220 
3221 	root.parent = NULL;
3222 	root.class = hlock_class(this);
3223 	ret = find_usage_backwards(&root, lock_flag(bit), &target_entry);
3224 	if (ret < 0) {
3225 		print_bfs_bug(ret);
3226 		return 0;
3227 	}
3228 	if (ret == 1)
3229 		return ret;
3230 
3231 	print_irq_inversion_bug(curr, &root, target_entry,
3232 				this, 0, irqclass);
3233 	return 0;
3234 }
3235 
3236 void print_irqtrace_events(struct task_struct *curr)
3237 {
3238 	printk("irq event stamp: %u\n", curr->irq_events);
3239 	printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
3240 		curr->hardirq_enable_event, (void *)curr->hardirq_enable_ip,
3241 		(void *)curr->hardirq_enable_ip);
3242 	printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
3243 		curr->hardirq_disable_event, (void *)curr->hardirq_disable_ip,
3244 		(void *)curr->hardirq_disable_ip);
3245 	printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
3246 		curr->softirq_enable_event, (void *)curr->softirq_enable_ip,
3247 		(void *)curr->softirq_enable_ip);
3248 	printk("softirqs last disabled at (%u): [<%px>] %pS\n",
3249 		curr->softirq_disable_event, (void *)curr->softirq_disable_ip,
3250 		(void *)curr->softirq_disable_ip);
3251 }
3252 
3253 static int HARDIRQ_verbose(struct lock_class *class)
3254 {
3255 #if HARDIRQ_VERBOSE
3256 	return class_filter(class);
3257 #endif
3258 	return 0;
3259 }
3260 
3261 static int SOFTIRQ_verbose(struct lock_class *class)
3262 {
3263 #if SOFTIRQ_VERBOSE
3264 	return class_filter(class);
3265 #endif
3266 	return 0;
3267 }
3268 
3269 #define STRICT_READ_CHECKS	1
3270 
3271 static int (*state_verbose_f[])(struct lock_class *class) = {
3272 #define LOCKDEP_STATE(__STATE) \
3273 	__STATE##_verbose,
3274 #include "lockdep_states.h"
3275 #undef LOCKDEP_STATE
3276 };
3277 
3278 static inline int state_verbose(enum lock_usage_bit bit,
3279 				struct lock_class *class)
3280 {
3281 	return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
3282 }
3283 
3284 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
3285 			     enum lock_usage_bit bit, const char *name);
3286 
3287 static int
3288 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
3289 		enum lock_usage_bit new_bit)
3290 {
3291 	int excl_bit = exclusive_bit(new_bit);
3292 	int read = new_bit & LOCK_USAGE_READ_MASK;
3293 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
3294 
3295 	/*
3296 	 * mark USED_IN has to look forwards -- to ensure no dependency
3297 	 * has ENABLED state, which would allow recursion deadlocks.
3298 	 *
3299 	 * mark ENABLED has to look backwards -- to ensure no dependee
3300 	 * has USED_IN state, which, again, would allow  recursion deadlocks.
3301 	 */
3302 	check_usage_f usage = dir ?
3303 		check_usage_backwards : check_usage_forwards;
3304 
3305 	/*
3306 	 * Validate that this particular lock does not have conflicting
3307 	 * usage states.
3308 	 */
3309 	if (!valid_state(curr, this, new_bit, excl_bit))
3310 		return 0;
3311 
3312 	/*
3313 	 * Validate that the lock dependencies don't have conflicting usage
3314 	 * states.
3315 	 */
3316 	if ((!read || STRICT_READ_CHECKS) &&
3317 			!usage(curr, this, excl_bit, state_name(new_bit & ~LOCK_USAGE_READ_MASK)))
3318 		return 0;
3319 
3320 	/*
3321 	 * Check for read in write conflicts
3322 	 */
3323 	if (!read) {
3324 		if (!valid_state(curr, this, new_bit, excl_bit + LOCK_USAGE_READ_MASK))
3325 			return 0;
3326 
3327 		if (STRICT_READ_CHECKS &&
3328 			!usage(curr, this, excl_bit + LOCK_USAGE_READ_MASK,
3329 				state_name(new_bit + LOCK_USAGE_READ_MASK)))
3330 			return 0;
3331 	}
3332 
3333 	if (state_verbose(new_bit, hlock_class(this)))
3334 		return 2;
3335 
3336 	return 1;
3337 }
3338 
3339 /*
3340  * Mark all held locks with a usage bit:
3341  */
3342 static int
3343 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
3344 {
3345 	struct held_lock *hlock;
3346 	int i;
3347 
3348 	for (i = 0; i < curr->lockdep_depth; i++) {
3349 		enum lock_usage_bit hlock_bit = base_bit;
3350 		hlock = curr->held_locks + i;
3351 
3352 		if (hlock->read)
3353 			hlock_bit += LOCK_USAGE_READ_MASK;
3354 
3355 		BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
3356 
3357 		if (!hlock->check)
3358 			continue;
3359 
3360 		if (!mark_lock(curr, hlock, hlock_bit))
3361 			return 0;
3362 	}
3363 
3364 	return 1;
3365 }
3366 
3367 /*
3368  * Hardirqs will be enabled:
3369  */
3370 static void __trace_hardirqs_on_caller(unsigned long ip)
3371 {
3372 	struct task_struct *curr = current;
3373 
3374 	/* we'll do an OFF -> ON transition: */
3375 	curr->hardirqs_enabled = 1;
3376 
3377 	/*
3378 	 * We are going to turn hardirqs on, so set the
3379 	 * usage bit for all held locks:
3380 	 */
3381 	if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
3382 		return;
3383 	/*
3384 	 * If we have softirqs enabled, then set the usage
3385 	 * bit for all held locks. (disabled hardirqs prevented
3386 	 * this bit from being set before)
3387 	 */
3388 	if (curr->softirqs_enabled)
3389 		if (!mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ))
3390 			return;
3391 
3392 	curr->hardirq_enable_ip = ip;
3393 	curr->hardirq_enable_event = ++curr->irq_events;
3394 	debug_atomic_inc(hardirqs_on_events);
3395 }
3396 
3397 void lockdep_hardirqs_on(unsigned long ip)
3398 {
3399 	if (unlikely(!debug_locks || current->lockdep_recursion))
3400 		return;
3401 
3402 	if (unlikely(current->hardirqs_enabled)) {
3403 		/*
3404 		 * Neither irq nor preemption are disabled here
3405 		 * so this is racy by nature but losing one hit
3406 		 * in a stat is not a big deal.
3407 		 */
3408 		__debug_atomic_inc(redundant_hardirqs_on);
3409 		return;
3410 	}
3411 
3412 	/*
3413 	 * We're enabling irqs and according to our state above irqs weren't
3414 	 * already enabled, yet we find the hardware thinks they are in fact
3415 	 * enabled.. someone messed up their IRQ state tracing.
3416 	 */
3417 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
3418 		return;
3419 
3420 	/*
3421 	 * See the fine text that goes along with this variable definition.
3422 	 */
3423 	if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
3424 		return;
3425 
3426 	/*
3427 	 * Can't allow enabling interrupts while in an interrupt handler,
3428 	 * that's general bad form and such. Recursion, limited stack etc..
3429 	 */
3430 	if (DEBUG_LOCKS_WARN_ON(current->hardirq_context))
3431 		return;
3432 
3433 	current->lockdep_recursion = 1;
3434 	__trace_hardirqs_on_caller(ip);
3435 	current->lockdep_recursion = 0;
3436 }
3437 NOKPROBE_SYMBOL(lockdep_hardirqs_on);
3438 
3439 /*
3440  * Hardirqs were disabled:
3441  */
3442 void lockdep_hardirqs_off(unsigned long ip)
3443 {
3444 	struct task_struct *curr = current;
3445 
3446 	if (unlikely(!debug_locks || current->lockdep_recursion))
3447 		return;
3448 
3449 	/*
3450 	 * So we're supposed to get called after you mask local IRQs, but for
3451 	 * some reason the hardware doesn't quite think you did a proper job.
3452 	 */
3453 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
3454 		return;
3455 
3456 	if (curr->hardirqs_enabled) {
3457 		/*
3458 		 * We have done an ON -> OFF transition:
3459 		 */
3460 		curr->hardirqs_enabled = 0;
3461 		curr->hardirq_disable_ip = ip;
3462 		curr->hardirq_disable_event = ++curr->irq_events;
3463 		debug_atomic_inc(hardirqs_off_events);
3464 	} else
3465 		debug_atomic_inc(redundant_hardirqs_off);
3466 }
3467 NOKPROBE_SYMBOL(lockdep_hardirqs_off);
3468 
3469 /*
3470  * Softirqs will be enabled:
3471  */
3472 void trace_softirqs_on(unsigned long ip)
3473 {
3474 	struct task_struct *curr = current;
3475 
3476 	if (unlikely(!debug_locks || current->lockdep_recursion))
3477 		return;
3478 
3479 	/*
3480 	 * We fancy IRQs being disabled here, see softirq.c, avoids
3481 	 * funny state and nesting things.
3482 	 */
3483 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
3484 		return;
3485 
3486 	if (curr->softirqs_enabled) {
3487 		debug_atomic_inc(redundant_softirqs_on);
3488 		return;
3489 	}
3490 
3491 	current->lockdep_recursion = 1;
3492 	/*
3493 	 * We'll do an OFF -> ON transition:
3494 	 */
3495 	curr->softirqs_enabled = 1;
3496 	curr->softirq_enable_ip = ip;
3497 	curr->softirq_enable_event = ++curr->irq_events;
3498 	debug_atomic_inc(softirqs_on_events);
3499 	/*
3500 	 * We are going to turn softirqs on, so set the
3501 	 * usage bit for all held locks, if hardirqs are
3502 	 * enabled too:
3503 	 */
3504 	if (curr->hardirqs_enabled)
3505 		mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
3506 	current->lockdep_recursion = 0;
3507 }
3508 
3509 /*
3510  * Softirqs were disabled:
3511  */
3512 void trace_softirqs_off(unsigned long ip)
3513 {
3514 	struct task_struct *curr = current;
3515 
3516 	if (unlikely(!debug_locks || current->lockdep_recursion))
3517 		return;
3518 
3519 	/*
3520 	 * We fancy IRQs being disabled here, see softirq.c
3521 	 */
3522 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
3523 		return;
3524 
3525 	if (curr->softirqs_enabled) {
3526 		/*
3527 		 * We have done an ON -> OFF transition:
3528 		 */
3529 		curr->softirqs_enabled = 0;
3530 		curr->softirq_disable_ip = ip;
3531 		curr->softirq_disable_event = ++curr->irq_events;
3532 		debug_atomic_inc(softirqs_off_events);
3533 		/*
3534 		 * Whoops, we wanted softirqs off, so why aren't they?
3535 		 */
3536 		DEBUG_LOCKS_WARN_ON(!softirq_count());
3537 	} else
3538 		debug_atomic_inc(redundant_softirqs_off);
3539 }
3540 
3541 static int
3542 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
3543 {
3544 	if (!check)
3545 		goto lock_used;
3546 
3547 	/*
3548 	 * If non-trylock use in a hardirq or softirq context, then
3549 	 * mark the lock as used in these contexts:
3550 	 */
3551 	if (!hlock->trylock) {
3552 		if (hlock->read) {
3553 			if (curr->hardirq_context)
3554 				if (!mark_lock(curr, hlock,
3555 						LOCK_USED_IN_HARDIRQ_READ))
3556 					return 0;
3557 			if (curr->softirq_context)
3558 				if (!mark_lock(curr, hlock,
3559 						LOCK_USED_IN_SOFTIRQ_READ))
3560 					return 0;
3561 		} else {
3562 			if (curr->hardirq_context)
3563 				if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
3564 					return 0;
3565 			if (curr->softirq_context)
3566 				if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
3567 					return 0;
3568 		}
3569 	}
3570 	if (!hlock->hardirqs_off) {
3571 		if (hlock->read) {
3572 			if (!mark_lock(curr, hlock,
3573 					LOCK_ENABLED_HARDIRQ_READ))
3574 				return 0;
3575 			if (curr->softirqs_enabled)
3576 				if (!mark_lock(curr, hlock,
3577 						LOCK_ENABLED_SOFTIRQ_READ))
3578 					return 0;
3579 		} else {
3580 			if (!mark_lock(curr, hlock,
3581 					LOCK_ENABLED_HARDIRQ))
3582 				return 0;
3583 			if (curr->softirqs_enabled)
3584 				if (!mark_lock(curr, hlock,
3585 						LOCK_ENABLED_SOFTIRQ))
3586 					return 0;
3587 		}
3588 	}
3589 
3590 lock_used:
3591 	/* mark it as used: */
3592 	if (!mark_lock(curr, hlock, LOCK_USED))
3593 		return 0;
3594 
3595 	return 1;
3596 }
3597 
3598 static inline unsigned int task_irq_context(struct task_struct *task)
3599 {
3600 	return 2 * !!task->hardirq_context + !!task->softirq_context;
3601 }
3602 
3603 static int separate_irq_context(struct task_struct *curr,
3604 		struct held_lock *hlock)
3605 {
3606 	unsigned int depth = curr->lockdep_depth;
3607 
3608 	/*
3609 	 * Keep track of points where we cross into an interrupt context:
3610 	 */
3611 	if (depth) {
3612 		struct held_lock *prev_hlock;
3613 
3614 		prev_hlock = curr->held_locks + depth-1;
3615 		/*
3616 		 * If we cross into another context, reset the
3617 		 * hash key (this also prevents the checking and the
3618 		 * adding of the dependency to 'prev'):
3619 		 */
3620 		if (prev_hlock->irq_context != hlock->irq_context)
3621 			return 1;
3622 	}
3623 	return 0;
3624 }
3625 
3626 /*
3627  * Mark a lock with a usage bit, and validate the state transition:
3628  */
3629 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3630 			     enum lock_usage_bit new_bit)
3631 {
3632 	unsigned int new_mask = 1 << new_bit, ret = 1;
3633 
3634 	if (new_bit >= LOCK_USAGE_STATES) {
3635 		DEBUG_LOCKS_WARN_ON(1);
3636 		return 0;
3637 	}
3638 
3639 	/*
3640 	 * If already set then do not dirty the cacheline,
3641 	 * nor do any checks:
3642 	 */
3643 	if (likely(hlock_class(this)->usage_mask & new_mask))
3644 		return 1;
3645 
3646 	if (!graph_lock())
3647 		return 0;
3648 	/*
3649 	 * Make sure we didn't race:
3650 	 */
3651 	if (unlikely(hlock_class(this)->usage_mask & new_mask)) {
3652 		graph_unlock();
3653 		return 1;
3654 	}
3655 
3656 	hlock_class(this)->usage_mask |= new_mask;
3657 
3658 	if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
3659 		return 0;
3660 
3661 	switch (new_bit) {
3662 	case LOCK_USED:
3663 		debug_atomic_dec(nr_unused_locks);
3664 		break;
3665 	default:
3666 		ret = mark_lock_irq(curr, this, new_bit);
3667 		if (!ret)
3668 			return 0;
3669 	}
3670 
3671 	graph_unlock();
3672 
3673 	/*
3674 	 * We must printk outside of the graph_lock:
3675 	 */
3676 	if (ret == 2) {
3677 		printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
3678 		print_lock(this);
3679 		print_irqtrace_events(curr);
3680 		dump_stack();
3681 	}
3682 
3683 	return ret;
3684 }
3685 
3686 #else /* CONFIG_PROVE_LOCKING */
3687 
3688 static inline int
3689 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
3690 {
3691 	return 1;
3692 }
3693 
3694 static inline unsigned int task_irq_context(struct task_struct *task)
3695 {
3696 	return 0;
3697 }
3698 
3699 static inline int separate_irq_context(struct task_struct *curr,
3700 		struct held_lock *hlock)
3701 {
3702 	return 0;
3703 }
3704 
3705 #endif /* CONFIG_PROVE_LOCKING */
3706 
3707 /*
3708  * Initialize a lock instance's lock-class mapping info:
3709  */
3710 void lockdep_init_map(struct lockdep_map *lock, const char *name,
3711 		      struct lock_class_key *key, int subclass)
3712 {
3713 	int i;
3714 
3715 	for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
3716 		lock->class_cache[i] = NULL;
3717 
3718 #ifdef CONFIG_LOCK_STAT
3719 	lock->cpu = raw_smp_processor_id();
3720 #endif
3721 
3722 	/*
3723 	 * Can't be having no nameless bastards around this place!
3724 	 */
3725 	if (DEBUG_LOCKS_WARN_ON(!name)) {
3726 		lock->name = "NULL";
3727 		return;
3728 	}
3729 
3730 	lock->name = name;
3731 
3732 	/*
3733 	 * No key, no joy, we need to hash something.
3734 	 */
3735 	if (DEBUG_LOCKS_WARN_ON(!key))
3736 		return;
3737 	/*
3738 	 * Sanity check, the lock-class key must either have been allocated
3739 	 * statically or must have been registered as a dynamic key.
3740 	 */
3741 	if (!static_obj(key) && !is_dynamic_key(key)) {
3742 		if (debug_locks)
3743 			printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
3744 		DEBUG_LOCKS_WARN_ON(1);
3745 		return;
3746 	}
3747 	lock->key = key;
3748 
3749 	if (unlikely(!debug_locks))
3750 		return;
3751 
3752 	if (subclass) {
3753 		unsigned long flags;
3754 
3755 		if (DEBUG_LOCKS_WARN_ON(current->lockdep_recursion))
3756 			return;
3757 
3758 		raw_local_irq_save(flags);
3759 		current->lockdep_recursion = 1;
3760 		register_lock_class(lock, subclass, 1);
3761 		current->lockdep_recursion = 0;
3762 		raw_local_irq_restore(flags);
3763 	}
3764 }
3765 EXPORT_SYMBOL_GPL(lockdep_init_map);
3766 
3767 struct lock_class_key __lockdep_no_validate__;
3768 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
3769 
3770 static void
3771 print_lock_nested_lock_not_held(struct task_struct *curr,
3772 				struct held_lock *hlock,
3773 				unsigned long ip)
3774 {
3775 	if (!debug_locks_off())
3776 		return;
3777 	if (debug_locks_silent)
3778 		return;
3779 
3780 	pr_warn("\n");
3781 	pr_warn("==================================\n");
3782 	pr_warn("WARNING: Nested lock was not taken\n");
3783 	print_kernel_ident();
3784 	pr_warn("----------------------------------\n");
3785 
3786 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
3787 	print_lock(hlock);
3788 
3789 	pr_warn("\nbut this task is not holding:\n");
3790 	pr_warn("%s\n", hlock->nest_lock->name);
3791 
3792 	pr_warn("\nstack backtrace:\n");
3793 	dump_stack();
3794 
3795 	pr_warn("\nother info that might help us debug this:\n");
3796 	lockdep_print_held_locks(curr);
3797 
3798 	pr_warn("\nstack backtrace:\n");
3799 	dump_stack();
3800 }
3801 
3802 static int __lock_is_held(const struct lockdep_map *lock, int read);
3803 
3804 /*
3805  * This gets called for every mutex_lock*()/spin_lock*() operation.
3806  * We maintain the dependency maps and validate the locking attempt:
3807  *
3808  * The callers must make sure that IRQs are disabled before calling it,
3809  * otherwise we could get an interrupt which would want to take locks,
3810  * which would end up in lockdep again.
3811  */
3812 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
3813 			  int trylock, int read, int check, int hardirqs_off,
3814 			  struct lockdep_map *nest_lock, unsigned long ip,
3815 			  int references, int pin_count)
3816 {
3817 	struct task_struct *curr = current;
3818 	struct lock_class *class = NULL;
3819 	struct held_lock *hlock;
3820 	unsigned int depth;
3821 	int chain_head = 0;
3822 	int class_idx;
3823 	u64 chain_key;
3824 
3825 	if (unlikely(!debug_locks))
3826 		return 0;
3827 
3828 	if (!prove_locking || lock->key == &__lockdep_no_validate__)
3829 		check = 0;
3830 
3831 	if (subclass < NR_LOCKDEP_CACHING_CLASSES)
3832 		class = lock->class_cache[subclass];
3833 	/*
3834 	 * Not cached?
3835 	 */
3836 	if (unlikely(!class)) {
3837 		class = register_lock_class(lock, subclass, 0);
3838 		if (!class)
3839 			return 0;
3840 	}
3841 
3842 	debug_class_ops_inc(class);
3843 
3844 	if (very_verbose(class)) {
3845 		printk("\nacquire class [%px] %s", class->key, class->name);
3846 		if (class->name_version > 1)
3847 			printk(KERN_CONT "#%d", class->name_version);
3848 		printk(KERN_CONT "\n");
3849 		dump_stack();
3850 	}
3851 
3852 	/*
3853 	 * Add the lock to the list of currently held locks.
3854 	 * (we dont increase the depth just yet, up until the
3855 	 * dependency checks are done)
3856 	 */
3857 	depth = curr->lockdep_depth;
3858 	/*
3859 	 * Ran out of static storage for our per-task lock stack again have we?
3860 	 */
3861 	if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
3862 		return 0;
3863 
3864 	class_idx = class - lock_classes;
3865 
3866 	if (depth) {
3867 		hlock = curr->held_locks + depth - 1;
3868 		if (hlock->class_idx == class_idx && nest_lock) {
3869 			if (!references)
3870 				references++;
3871 
3872 			if (!hlock->references)
3873 				hlock->references++;
3874 
3875 			hlock->references += references;
3876 
3877 			/* Overflow */
3878 			if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
3879 				return 0;
3880 
3881 			return 2;
3882 		}
3883 	}
3884 
3885 	hlock = curr->held_locks + depth;
3886 	/*
3887 	 * Plain impossible, we just registered it and checked it weren't no
3888 	 * NULL like.. I bet this mushroom I ate was good!
3889 	 */
3890 	if (DEBUG_LOCKS_WARN_ON(!class))
3891 		return 0;
3892 	hlock->class_idx = class_idx;
3893 	hlock->acquire_ip = ip;
3894 	hlock->instance = lock;
3895 	hlock->nest_lock = nest_lock;
3896 	hlock->irq_context = task_irq_context(curr);
3897 	hlock->trylock = trylock;
3898 	hlock->read = read;
3899 	hlock->check = check;
3900 	hlock->hardirqs_off = !!hardirqs_off;
3901 	hlock->references = references;
3902 #ifdef CONFIG_LOCK_STAT
3903 	hlock->waittime_stamp = 0;
3904 	hlock->holdtime_stamp = lockstat_clock();
3905 #endif
3906 	hlock->pin_count = pin_count;
3907 
3908 	/* Initialize the lock usage bit */
3909 	if (!mark_usage(curr, hlock, check))
3910 		return 0;
3911 
3912 	/*
3913 	 * Calculate the chain hash: it's the combined hash of all the
3914 	 * lock keys along the dependency chain. We save the hash value
3915 	 * at every step so that we can get the current hash easily
3916 	 * after unlock. The chain hash is then used to cache dependency
3917 	 * results.
3918 	 *
3919 	 * The 'key ID' is what is the most compact key value to drive
3920 	 * the hash, not class->key.
3921 	 */
3922 	/*
3923 	 * Whoops, we did it again.. class_idx is invalid.
3924 	 */
3925 	if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
3926 		return 0;
3927 
3928 	chain_key = curr->curr_chain_key;
3929 	if (!depth) {
3930 		/*
3931 		 * How can we have a chain hash when we ain't got no keys?!
3932 		 */
3933 		if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
3934 			return 0;
3935 		chain_head = 1;
3936 	}
3937 
3938 	hlock->prev_chain_key = chain_key;
3939 	if (separate_irq_context(curr, hlock)) {
3940 		chain_key = INITIAL_CHAIN_KEY;
3941 		chain_head = 1;
3942 	}
3943 	chain_key = iterate_chain_key(chain_key, class_idx);
3944 
3945 	if (nest_lock && !__lock_is_held(nest_lock, -1)) {
3946 		print_lock_nested_lock_not_held(curr, hlock, ip);
3947 		return 0;
3948 	}
3949 
3950 	if (!debug_locks_silent) {
3951 		WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
3952 		WARN_ON_ONCE(!hlock_class(hlock)->key);
3953 	}
3954 
3955 	if (!validate_chain(curr, hlock, chain_head, chain_key))
3956 		return 0;
3957 
3958 	curr->curr_chain_key = chain_key;
3959 	curr->lockdep_depth++;
3960 	check_chain_key(curr);
3961 #ifdef CONFIG_DEBUG_LOCKDEP
3962 	if (unlikely(!debug_locks))
3963 		return 0;
3964 #endif
3965 	if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
3966 		debug_locks_off();
3967 		print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
3968 		printk(KERN_DEBUG "depth: %i  max: %lu!\n",
3969 		       curr->lockdep_depth, MAX_LOCK_DEPTH);
3970 
3971 		lockdep_print_held_locks(current);
3972 		debug_show_all_locks();
3973 		dump_stack();
3974 
3975 		return 0;
3976 	}
3977 
3978 	if (unlikely(curr->lockdep_depth > max_lockdep_depth))
3979 		max_lockdep_depth = curr->lockdep_depth;
3980 
3981 	return 1;
3982 }
3983 
3984 static void print_unlock_imbalance_bug(struct task_struct *curr,
3985 				       struct lockdep_map *lock,
3986 				       unsigned long ip)
3987 {
3988 	if (!debug_locks_off())
3989 		return;
3990 	if (debug_locks_silent)
3991 		return;
3992 
3993 	pr_warn("\n");
3994 	pr_warn("=====================================\n");
3995 	pr_warn("WARNING: bad unlock balance detected!\n");
3996 	print_kernel_ident();
3997 	pr_warn("-------------------------------------\n");
3998 	pr_warn("%s/%d is trying to release lock (",
3999 		curr->comm, task_pid_nr(curr));
4000 	print_lockdep_cache(lock);
4001 	pr_cont(") at:\n");
4002 	print_ip_sym(ip);
4003 	pr_warn("but there are no more locks to release!\n");
4004 	pr_warn("\nother info that might help us debug this:\n");
4005 	lockdep_print_held_locks(curr);
4006 
4007 	pr_warn("\nstack backtrace:\n");
4008 	dump_stack();
4009 }
4010 
4011 static int match_held_lock(const struct held_lock *hlock,
4012 					const struct lockdep_map *lock)
4013 {
4014 	if (hlock->instance == lock)
4015 		return 1;
4016 
4017 	if (hlock->references) {
4018 		const struct lock_class *class = lock->class_cache[0];
4019 
4020 		if (!class)
4021 			class = look_up_lock_class(lock, 0);
4022 
4023 		/*
4024 		 * If look_up_lock_class() failed to find a class, we're trying
4025 		 * to test if we hold a lock that has never yet been acquired.
4026 		 * Clearly if the lock hasn't been acquired _ever_, we're not
4027 		 * holding it either, so report failure.
4028 		 */
4029 		if (!class)
4030 			return 0;
4031 
4032 		/*
4033 		 * References, but not a lock we're actually ref-counting?
4034 		 * State got messed up, follow the sites that change ->references
4035 		 * and try to make sense of it.
4036 		 */
4037 		if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
4038 			return 0;
4039 
4040 		if (hlock->class_idx == class - lock_classes)
4041 			return 1;
4042 	}
4043 
4044 	return 0;
4045 }
4046 
4047 /* @depth must not be zero */
4048 static struct held_lock *find_held_lock(struct task_struct *curr,
4049 					struct lockdep_map *lock,
4050 					unsigned int depth, int *idx)
4051 {
4052 	struct held_lock *ret, *hlock, *prev_hlock;
4053 	int i;
4054 
4055 	i = depth - 1;
4056 	hlock = curr->held_locks + i;
4057 	ret = hlock;
4058 	if (match_held_lock(hlock, lock))
4059 		goto out;
4060 
4061 	ret = NULL;
4062 	for (i--, prev_hlock = hlock--;
4063 	     i >= 0;
4064 	     i--, prev_hlock = hlock--) {
4065 		/*
4066 		 * We must not cross into another context:
4067 		 */
4068 		if (prev_hlock->irq_context != hlock->irq_context) {
4069 			ret = NULL;
4070 			break;
4071 		}
4072 		if (match_held_lock(hlock, lock)) {
4073 			ret = hlock;
4074 			break;
4075 		}
4076 	}
4077 
4078 out:
4079 	*idx = i;
4080 	return ret;
4081 }
4082 
4083 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
4084 				int idx, unsigned int *merged)
4085 {
4086 	struct held_lock *hlock;
4087 	int first_idx = idx;
4088 
4089 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4090 		return 0;
4091 
4092 	for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
4093 		switch (__lock_acquire(hlock->instance,
4094 				    hlock_class(hlock)->subclass,
4095 				    hlock->trylock,
4096 				    hlock->read, hlock->check,
4097 				    hlock->hardirqs_off,
4098 				    hlock->nest_lock, hlock->acquire_ip,
4099 				    hlock->references, hlock->pin_count)) {
4100 		case 0:
4101 			return 1;
4102 		case 1:
4103 			break;
4104 		case 2:
4105 			*merged += (idx == first_idx);
4106 			break;
4107 		default:
4108 			WARN_ON(1);
4109 			return 0;
4110 		}
4111 	}
4112 	return 0;
4113 }
4114 
4115 static int
4116 __lock_set_class(struct lockdep_map *lock, const char *name,
4117 		 struct lock_class_key *key, unsigned int subclass,
4118 		 unsigned long ip)
4119 {
4120 	struct task_struct *curr = current;
4121 	unsigned int depth, merged = 0;
4122 	struct held_lock *hlock;
4123 	struct lock_class *class;
4124 	int i;
4125 
4126 	if (unlikely(!debug_locks))
4127 		return 0;
4128 
4129 	depth = curr->lockdep_depth;
4130 	/*
4131 	 * This function is about (re)setting the class of a held lock,
4132 	 * yet we're not actually holding any locks. Naughty user!
4133 	 */
4134 	if (DEBUG_LOCKS_WARN_ON(!depth))
4135 		return 0;
4136 
4137 	hlock = find_held_lock(curr, lock, depth, &i);
4138 	if (!hlock) {
4139 		print_unlock_imbalance_bug(curr, lock, ip);
4140 		return 0;
4141 	}
4142 
4143 	lockdep_init_map(lock, name, key, 0);
4144 	class = register_lock_class(lock, subclass, 0);
4145 	hlock->class_idx = class - lock_classes;
4146 
4147 	curr->lockdep_depth = i;
4148 	curr->curr_chain_key = hlock->prev_chain_key;
4149 
4150 	if (reacquire_held_locks(curr, depth, i, &merged))
4151 		return 0;
4152 
4153 	/*
4154 	 * I took it apart and put it back together again, except now I have
4155 	 * these 'spare' parts.. where shall I put them.
4156 	 */
4157 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
4158 		return 0;
4159 	return 1;
4160 }
4161 
4162 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
4163 {
4164 	struct task_struct *curr = current;
4165 	unsigned int depth, merged = 0;
4166 	struct held_lock *hlock;
4167 	int i;
4168 
4169 	if (unlikely(!debug_locks))
4170 		return 0;
4171 
4172 	depth = curr->lockdep_depth;
4173 	/*
4174 	 * This function is about (re)setting the class of a held lock,
4175 	 * yet we're not actually holding any locks. Naughty user!
4176 	 */
4177 	if (DEBUG_LOCKS_WARN_ON(!depth))
4178 		return 0;
4179 
4180 	hlock = find_held_lock(curr, lock, depth, &i);
4181 	if (!hlock) {
4182 		print_unlock_imbalance_bug(curr, lock, ip);
4183 		return 0;
4184 	}
4185 
4186 	curr->lockdep_depth = i;
4187 	curr->curr_chain_key = hlock->prev_chain_key;
4188 
4189 	WARN(hlock->read, "downgrading a read lock");
4190 	hlock->read = 1;
4191 	hlock->acquire_ip = ip;
4192 
4193 	if (reacquire_held_locks(curr, depth, i, &merged))
4194 		return 0;
4195 
4196 	/* Merging can't happen with unchanged classes.. */
4197 	if (DEBUG_LOCKS_WARN_ON(merged))
4198 		return 0;
4199 
4200 	/*
4201 	 * I took it apart and put it back together again, except now I have
4202 	 * these 'spare' parts.. where shall I put them.
4203 	 */
4204 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
4205 		return 0;
4206 
4207 	return 1;
4208 }
4209 
4210 /*
4211  * Remove the lock from the list of currently held locks - this gets
4212  * called on mutex_unlock()/spin_unlock*() (or on a failed
4213  * mutex_lock_interruptible()).
4214  */
4215 static int
4216 __lock_release(struct lockdep_map *lock, unsigned long ip)
4217 {
4218 	struct task_struct *curr = current;
4219 	unsigned int depth, merged = 1;
4220 	struct held_lock *hlock;
4221 	int i;
4222 
4223 	if (unlikely(!debug_locks))
4224 		return 0;
4225 
4226 	depth = curr->lockdep_depth;
4227 	/*
4228 	 * So we're all set to release this lock.. wait what lock? We don't
4229 	 * own any locks, you've been drinking again?
4230 	 */
4231 	if (depth <= 0) {
4232 		print_unlock_imbalance_bug(curr, lock, ip);
4233 		return 0;
4234 	}
4235 
4236 	/*
4237 	 * Check whether the lock exists in the current stack
4238 	 * of held locks:
4239 	 */
4240 	hlock = find_held_lock(curr, lock, depth, &i);
4241 	if (!hlock) {
4242 		print_unlock_imbalance_bug(curr, lock, ip);
4243 		return 0;
4244 	}
4245 
4246 	if (hlock->instance == lock)
4247 		lock_release_holdtime(hlock);
4248 
4249 	WARN(hlock->pin_count, "releasing a pinned lock\n");
4250 
4251 	if (hlock->references) {
4252 		hlock->references--;
4253 		if (hlock->references) {
4254 			/*
4255 			 * We had, and after removing one, still have
4256 			 * references, the current lock stack is still
4257 			 * valid. We're done!
4258 			 */
4259 			return 1;
4260 		}
4261 	}
4262 
4263 	/*
4264 	 * We have the right lock to unlock, 'hlock' points to it.
4265 	 * Now we remove it from the stack, and add back the other
4266 	 * entries (if any), recalculating the hash along the way:
4267 	 */
4268 
4269 	curr->lockdep_depth = i;
4270 	curr->curr_chain_key = hlock->prev_chain_key;
4271 
4272 	/*
4273 	 * The most likely case is when the unlock is on the innermost
4274 	 * lock. In this case, we are done!
4275 	 */
4276 	if (i == depth-1)
4277 		return 1;
4278 
4279 	if (reacquire_held_locks(curr, depth, i + 1, &merged))
4280 		return 0;
4281 
4282 	/*
4283 	 * We had N bottles of beer on the wall, we drank one, but now
4284 	 * there's not N-1 bottles of beer left on the wall...
4285 	 * Pouring two of the bottles together is acceptable.
4286 	 */
4287 	DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
4288 
4289 	/*
4290 	 * Since reacquire_held_locks() would have called check_chain_key()
4291 	 * indirectly via __lock_acquire(), we don't need to do it again
4292 	 * on return.
4293 	 */
4294 	return 0;
4295 }
4296 
4297 static nokprobe_inline
4298 int __lock_is_held(const struct lockdep_map *lock, int read)
4299 {
4300 	struct task_struct *curr = current;
4301 	int i;
4302 
4303 	for (i = 0; i < curr->lockdep_depth; i++) {
4304 		struct held_lock *hlock = curr->held_locks + i;
4305 
4306 		if (match_held_lock(hlock, lock)) {
4307 			if (read == -1 || hlock->read == read)
4308 				return 1;
4309 
4310 			return 0;
4311 		}
4312 	}
4313 
4314 	return 0;
4315 }
4316 
4317 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
4318 {
4319 	struct pin_cookie cookie = NIL_COOKIE;
4320 	struct task_struct *curr = current;
4321 	int i;
4322 
4323 	if (unlikely(!debug_locks))
4324 		return cookie;
4325 
4326 	for (i = 0; i < curr->lockdep_depth; i++) {
4327 		struct held_lock *hlock = curr->held_locks + i;
4328 
4329 		if (match_held_lock(hlock, lock)) {
4330 			/*
4331 			 * Grab 16bits of randomness; this is sufficient to not
4332 			 * be guessable and still allows some pin nesting in
4333 			 * our u32 pin_count.
4334 			 */
4335 			cookie.val = 1 + (prandom_u32() >> 16);
4336 			hlock->pin_count += cookie.val;
4337 			return cookie;
4338 		}
4339 	}
4340 
4341 	WARN(1, "pinning an unheld lock\n");
4342 	return cookie;
4343 }
4344 
4345 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
4346 {
4347 	struct task_struct *curr = current;
4348 	int i;
4349 
4350 	if (unlikely(!debug_locks))
4351 		return;
4352 
4353 	for (i = 0; i < curr->lockdep_depth; i++) {
4354 		struct held_lock *hlock = curr->held_locks + i;
4355 
4356 		if (match_held_lock(hlock, lock)) {
4357 			hlock->pin_count += cookie.val;
4358 			return;
4359 		}
4360 	}
4361 
4362 	WARN(1, "pinning an unheld lock\n");
4363 }
4364 
4365 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
4366 {
4367 	struct task_struct *curr = current;
4368 	int i;
4369 
4370 	if (unlikely(!debug_locks))
4371 		return;
4372 
4373 	for (i = 0; i < curr->lockdep_depth; i++) {
4374 		struct held_lock *hlock = curr->held_locks + i;
4375 
4376 		if (match_held_lock(hlock, lock)) {
4377 			if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
4378 				return;
4379 
4380 			hlock->pin_count -= cookie.val;
4381 
4382 			if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
4383 				hlock->pin_count = 0;
4384 
4385 			return;
4386 		}
4387 	}
4388 
4389 	WARN(1, "unpinning an unheld lock\n");
4390 }
4391 
4392 /*
4393  * Check whether we follow the irq-flags state precisely:
4394  */
4395 static void check_flags(unsigned long flags)
4396 {
4397 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
4398 	if (!debug_locks)
4399 		return;
4400 
4401 	if (irqs_disabled_flags(flags)) {
4402 		if (DEBUG_LOCKS_WARN_ON(current->hardirqs_enabled)) {
4403 			printk("possible reason: unannotated irqs-off.\n");
4404 		}
4405 	} else {
4406 		if (DEBUG_LOCKS_WARN_ON(!current->hardirqs_enabled)) {
4407 			printk("possible reason: unannotated irqs-on.\n");
4408 		}
4409 	}
4410 
4411 	/*
4412 	 * We dont accurately track softirq state in e.g.
4413 	 * hardirq contexts (such as on 4KSTACKS), so only
4414 	 * check if not in hardirq contexts:
4415 	 */
4416 	if (!hardirq_count()) {
4417 		if (softirq_count()) {
4418 			/* like the above, but with softirqs */
4419 			DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
4420 		} else {
4421 			/* lick the above, does it taste good? */
4422 			DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
4423 		}
4424 	}
4425 
4426 	if (!debug_locks)
4427 		print_irqtrace_events(current);
4428 #endif
4429 }
4430 
4431 void lock_set_class(struct lockdep_map *lock, const char *name,
4432 		    struct lock_class_key *key, unsigned int subclass,
4433 		    unsigned long ip)
4434 {
4435 	unsigned long flags;
4436 
4437 	if (unlikely(current->lockdep_recursion))
4438 		return;
4439 
4440 	raw_local_irq_save(flags);
4441 	current->lockdep_recursion = 1;
4442 	check_flags(flags);
4443 	if (__lock_set_class(lock, name, key, subclass, ip))
4444 		check_chain_key(current);
4445 	current->lockdep_recursion = 0;
4446 	raw_local_irq_restore(flags);
4447 }
4448 EXPORT_SYMBOL_GPL(lock_set_class);
4449 
4450 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
4451 {
4452 	unsigned long flags;
4453 
4454 	if (unlikely(current->lockdep_recursion))
4455 		return;
4456 
4457 	raw_local_irq_save(flags);
4458 	current->lockdep_recursion = 1;
4459 	check_flags(flags);
4460 	if (__lock_downgrade(lock, ip))
4461 		check_chain_key(current);
4462 	current->lockdep_recursion = 0;
4463 	raw_local_irq_restore(flags);
4464 }
4465 EXPORT_SYMBOL_GPL(lock_downgrade);
4466 
4467 /*
4468  * We are not always called with irqs disabled - do that here,
4469  * and also avoid lockdep recursion:
4470  */
4471 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4472 			  int trylock, int read, int check,
4473 			  struct lockdep_map *nest_lock, unsigned long ip)
4474 {
4475 	unsigned long flags;
4476 
4477 	if (unlikely(current->lockdep_recursion))
4478 		return;
4479 
4480 	raw_local_irq_save(flags);
4481 	check_flags(flags);
4482 
4483 	current->lockdep_recursion = 1;
4484 	trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
4485 	__lock_acquire(lock, subclass, trylock, read, check,
4486 		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0);
4487 	current->lockdep_recursion = 0;
4488 	raw_local_irq_restore(flags);
4489 }
4490 EXPORT_SYMBOL_GPL(lock_acquire);
4491 
4492 void lock_release(struct lockdep_map *lock, unsigned long ip)
4493 {
4494 	unsigned long flags;
4495 
4496 	if (unlikely(current->lockdep_recursion))
4497 		return;
4498 
4499 	raw_local_irq_save(flags);
4500 	check_flags(flags);
4501 	current->lockdep_recursion = 1;
4502 	trace_lock_release(lock, ip);
4503 	if (__lock_release(lock, ip))
4504 		check_chain_key(current);
4505 	current->lockdep_recursion = 0;
4506 	raw_local_irq_restore(flags);
4507 }
4508 EXPORT_SYMBOL_GPL(lock_release);
4509 
4510 int lock_is_held_type(const struct lockdep_map *lock, int read)
4511 {
4512 	unsigned long flags;
4513 	int ret = 0;
4514 
4515 	if (unlikely(current->lockdep_recursion))
4516 		return 1; /* avoid false negative lockdep_assert_held() */
4517 
4518 	raw_local_irq_save(flags);
4519 	check_flags(flags);
4520 
4521 	current->lockdep_recursion = 1;
4522 	ret = __lock_is_held(lock, read);
4523 	current->lockdep_recursion = 0;
4524 	raw_local_irq_restore(flags);
4525 
4526 	return ret;
4527 }
4528 EXPORT_SYMBOL_GPL(lock_is_held_type);
4529 NOKPROBE_SYMBOL(lock_is_held_type);
4530 
4531 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
4532 {
4533 	struct pin_cookie cookie = NIL_COOKIE;
4534 	unsigned long flags;
4535 
4536 	if (unlikely(current->lockdep_recursion))
4537 		return cookie;
4538 
4539 	raw_local_irq_save(flags);
4540 	check_flags(flags);
4541 
4542 	current->lockdep_recursion = 1;
4543 	cookie = __lock_pin_lock(lock);
4544 	current->lockdep_recursion = 0;
4545 	raw_local_irq_restore(flags);
4546 
4547 	return cookie;
4548 }
4549 EXPORT_SYMBOL_GPL(lock_pin_lock);
4550 
4551 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
4552 {
4553 	unsigned long flags;
4554 
4555 	if (unlikely(current->lockdep_recursion))
4556 		return;
4557 
4558 	raw_local_irq_save(flags);
4559 	check_flags(flags);
4560 
4561 	current->lockdep_recursion = 1;
4562 	__lock_repin_lock(lock, cookie);
4563 	current->lockdep_recursion = 0;
4564 	raw_local_irq_restore(flags);
4565 }
4566 EXPORT_SYMBOL_GPL(lock_repin_lock);
4567 
4568 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
4569 {
4570 	unsigned long flags;
4571 
4572 	if (unlikely(current->lockdep_recursion))
4573 		return;
4574 
4575 	raw_local_irq_save(flags);
4576 	check_flags(flags);
4577 
4578 	current->lockdep_recursion = 1;
4579 	__lock_unpin_lock(lock, cookie);
4580 	current->lockdep_recursion = 0;
4581 	raw_local_irq_restore(flags);
4582 }
4583 EXPORT_SYMBOL_GPL(lock_unpin_lock);
4584 
4585 #ifdef CONFIG_LOCK_STAT
4586 static void print_lock_contention_bug(struct task_struct *curr,
4587 				      struct lockdep_map *lock,
4588 				      unsigned long ip)
4589 {
4590 	if (!debug_locks_off())
4591 		return;
4592 	if (debug_locks_silent)
4593 		return;
4594 
4595 	pr_warn("\n");
4596 	pr_warn("=================================\n");
4597 	pr_warn("WARNING: bad contention detected!\n");
4598 	print_kernel_ident();
4599 	pr_warn("---------------------------------\n");
4600 	pr_warn("%s/%d is trying to contend lock (",
4601 		curr->comm, task_pid_nr(curr));
4602 	print_lockdep_cache(lock);
4603 	pr_cont(") at:\n");
4604 	print_ip_sym(ip);
4605 	pr_warn("but there are no locks held!\n");
4606 	pr_warn("\nother info that might help us debug this:\n");
4607 	lockdep_print_held_locks(curr);
4608 
4609 	pr_warn("\nstack backtrace:\n");
4610 	dump_stack();
4611 }
4612 
4613 static void
4614 __lock_contended(struct lockdep_map *lock, unsigned long ip)
4615 {
4616 	struct task_struct *curr = current;
4617 	struct held_lock *hlock;
4618 	struct lock_class_stats *stats;
4619 	unsigned int depth;
4620 	int i, contention_point, contending_point;
4621 
4622 	depth = curr->lockdep_depth;
4623 	/*
4624 	 * Whee, we contended on this lock, except it seems we're not
4625 	 * actually trying to acquire anything much at all..
4626 	 */
4627 	if (DEBUG_LOCKS_WARN_ON(!depth))
4628 		return;
4629 
4630 	hlock = find_held_lock(curr, lock, depth, &i);
4631 	if (!hlock) {
4632 		print_lock_contention_bug(curr, lock, ip);
4633 		return;
4634 	}
4635 
4636 	if (hlock->instance != lock)
4637 		return;
4638 
4639 	hlock->waittime_stamp = lockstat_clock();
4640 
4641 	contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
4642 	contending_point = lock_point(hlock_class(hlock)->contending_point,
4643 				      lock->ip);
4644 
4645 	stats = get_lock_stats(hlock_class(hlock));
4646 	if (contention_point < LOCKSTAT_POINTS)
4647 		stats->contention_point[contention_point]++;
4648 	if (contending_point < LOCKSTAT_POINTS)
4649 		stats->contending_point[contending_point]++;
4650 	if (lock->cpu != smp_processor_id())
4651 		stats->bounces[bounce_contended + !!hlock->read]++;
4652 }
4653 
4654 static void
4655 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
4656 {
4657 	struct task_struct *curr = current;
4658 	struct held_lock *hlock;
4659 	struct lock_class_stats *stats;
4660 	unsigned int depth;
4661 	u64 now, waittime = 0;
4662 	int i, cpu;
4663 
4664 	depth = curr->lockdep_depth;
4665 	/*
4666 	 * Yay, we acquired ownership of this lock we didn't try to
4667 	 * acquire, how the heck did that happen?
4668 	 */
4669 	if (DEBUG_LOCKS_WARN_ON(!depth))
4670 		return;
4671 
4672 	hlock = find_held_lock(curr, lock, depth, &i);
4673 	if (!hlock) {
4674 		print_lock_contention_bug(curr, lock, _RET_IP_);
4675 		return;
4676 	}
4677 
4678 	if (hlock->instance != lock)
4679 		return;
4680 
4681 	cpu = smp_processor_id();
4682 	if (hlock->waittime_stamp) {
4683 		now = lockstat_clock();
4684 		waittime = now - hlock->waittime_stamp;
4685 		hlock->holdtime_stamp = now;
4686 	}
4687 
4688 	trace_lock_acquired(lock, ip);
4689 
4690 	stats = get_lock_stats(hlock_class(hlock));
4691 	if (waittime) {
4692 		if (hlock->read)
4693 			lock_time_inc(&stats->read_waittime, waittime);
4694 		else
4695 			lock_time_inc(&stats->write_waittime, waittime);
4696 	}
4697 	if (lock->cpu != cpu)
4698 		stats->bounces[bounce_acquired + !!hlock->read]++;
4699 
4700 	lock->cpu = cpu;
4701 	lock->ip = ip;
4702 }
4703 
4704 void lock_contended(struct lockdep_map *lock, unsigned long ip)
4705 {
4706 	unsigned long flags;
4707 
4708 	if (unlikely(!lock_stat || !debug_locks))
4709 		return;
4710 
4711 	if (unlikely(current->lockdep_recursion))
4712 		return;
4713 
4714 	raw_local_irq_save(flags);
4715 	check_flags(flags);
4716 	current->lockdep_recursion = 1;
4717 	trace_lock_contended(lock, ip);
4718 	__lock_contended(lock, ip);
4719 	current->lockdep_recursion = 0;
4720 	raw_local_irq_restore(flags);
4721 }
4722 EXPORT_SYMBOL_GPL(lock_contended);
4723 
4724 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
4725 {
4726 	unsigned long flags;
4727 
4728 	if (unlikely(!lock_stat || !debug_locks))
4729 		return;
4730 
4731 	if (unlikely(current->lockdep_recursion))
4732 		return;
4733 
4734 	raw_local_irq_save(flags);
4735 	check_flags(flags);
4736 	current->lockdep_recursion = 1;
4737 	__lock_acquired(lock, ip);
4738 	current->lockdep_recursion = 0;
4739 	raw_local_irq_restore(flags);
4740 }
4741 EXPORT_SYMBOL_GPL(lock_acquired);
4742 #endif
4743 
4744 /*
4745  * Used by the testsuite, sanitize the validator state
4746  * after a simulated failure:
4747  */
4748 
4749 void lockdep_reset(void)
4750 {
4751 	unsigned long flags;
4752 	int i;
4753 
4754 	raw_local_irq_save(flags);
4755 	lockdep_init_task(current);
4756 	memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
4757 	nr_hardirq_chains = 0;
4758 	nr_softirq_chains = 0;
4759 	nr_process_chains = 0;
4760 	debug_locks = 1;
4761 	for (i = 0; i < CHAINHASH_SIZE; i++)
4762 		INIT_HLIST_HEAD(chainhash_table + i);
4763 	raw_local_irq_restore(flags);
4764 }
4765 
4766 /* Remove a class from a lock chain. Must be called with the graph lock held. */
4767 static void remove_class_from_lock_chain(struct pending_free *pf,
4768 					 struct lock_chain *chain,
4769 					 struct lock_class *class)
4770 {
4771 #ifdef CONFIG_PROVE_LOCKING
4772 	struct lock_chain *new_chain;
4773 	u64 chain_key;
4774 	int i;
4775 
4776 	for (i = chain->base; i < chain->base + chain->depth; i++) {
4777 		if (chain_hlocks[i] != class - lock_classes)
4778 			continue;
4779 		/* The code below leaks one chain_hlock[] entry. */
4780 		if (--chain->depth > 0) {
4781 			memmove(&chain_hlocks[i], &chain_hlocks[i + 1],
4782 				(chain->base + chain->depth - i) *
4783 				sizeof(chain_hlocks[0]));
4784 		}
4785 		/*
4786 		 * Each lock class occurs at most once in a lock chain so once
4787 		 * we found a match we can break out of this loop.
4788 		 */
4789 		goto recalc;
4790 	}
4791 	/* Since the chain has not been modified, return. */
4792 	return;
4793 
4794 recalc:
4795 	chain_key = INITIAL_CHAIN_KEY;
4796 	for (i = chain->base; i < chain->base + chain->depth; i++)
4797 		chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
4798 	if (chain->depth && chain->chain_key == chain_key)
4799 		return;
4800 	/* Overwrite the chain key for concurrent RCU readers. */
4801 	WRITE_ONCE(chain->chain_key, chain_key);
4802 	/*
4803 	 * Note: calling hlist_del_rcu() from inside a
4804 	 * hlist_for_each_entry_rcu() loop is safe.
4805 	 */
4806 	hlist_del_rcu(&chain->entry);
4807 	__set_bit(chain - lock_chains, pf->lock_chains_being_freed);
4808 	if (chain->depth == 0)
4809 		return;
4810 	/*
4811 	 * If the modified lock chain matches an existing lock chain, drop
4812 	 * the modified lock chain.
4813 	 */
4814 	if (lookup_chain_cache(chain_key))
4815 		return;
4816 	new_chain = alloc_lock_chain();
4817 	if (WARN_ON_ONCE(!new_chain)) {
4818 		debug_locks_off();
4819 		return;
4820 	}
4821 	*new_chain = *chain;
4822 	hlist_add_head_rcu(&new_chain->entry, chainhashentry(chain_key));
4823 #endif
4824 }
4825 
4826 /* Must be called with the graph lock held. */
4827 static void remove_class_from_lock_chains(struct pending_free *pf,
4828 					  struct lock_class *class)
4829 {
4830 	struct lock_chain *chain;
4831 	struct hlist_head *head;
4832 	int i;
4833 
4834 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
4835 		head = chainhash_table + i;
4836 		hlist_for_each_entry_rcu(chain, head, entry) {
4837 			remove_class_from_lock_chain(pf, chain, class);
4838 		}
4839 	}
4840 }
4841 
4842 /*
4843  * Remove all references to a lock class. The caller must hold the graph lock.
4844  */
4845 static void zap_class(struct pending_free *pf, struct lock_class *class)
4846 {
4847 	struct lock_list *entry;
4848 	int i;
4849 
4850 	WARN_ON_ONCE(!class->key);
4851 
4852 	/*
4853 	 * Remove all dependencies this lock is
4854 	 * involved in:
4855 	 */
4856 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
4857 		entry = list_entries + i;
4858 		if (entry->class != class && entry->links_to != class)
4859 			continue;
4860 		__clear_bit(i, list_entries_in_use);
4861 		nr_list_entries--;
4862 		list_del_rcu(&entry->entry);
4863 	}
4864 	if (list_empty(&class->locks_after) &&
4865 	    list_empty(&class->locks_before)) {
4866 		list_move_tail(&class->lock_entry, &pf->zapped);
4867 		hlist_del_rcu(&class->hash_entry);
4868 		WRITE_ONCE(class->key, NULL);
4869 		WRITE_ONCE(class->name, NULL);
4870 		nr_lock_classes--;
4871 		__clear_bit(class - lock_classes, lock_classes_in_use);
4872 	} else {
4873 		WARN_ONCE(true, "%s() failed for class %s\n", __func__,
4874 			  class->name);
4875 	}
4876 
4877 	remove_class_from_lock_chains(pf, class);
4878 }
4879 
4880 static void reinit_class(struct lock_class *class)
4881 {
4882 	void *const p = class;
4883 	const unsigned int offset = offsetof(struct lock_class, key);
4884 
4885 	WARN_ON_ONCE(!class->lock_entry.next);
4886 	WARN_ON_ONCE(!list_empty(&class->locks_after));
4887 	WARN_ON_ONCE(!list_empty(&class->locks_before));
4888 	memset(p + offset, 0, sizeof(*class) - offset);
4889 	WARN_ON_ONCE(!class->lock_entry.next);
4890 	WARN_ON_ONCE(!list_empty(&class->locks_after));
4891 	WARN_ON_ONCE(!list_empty(&class->locks_before));
4892 }
4893 
4894 static inline int within(const void *addr, void *start, unsigned long size)
4895 {
4896 	return addr >= start && addr < start + size;
4897 }
4898 
4899 static bool inside_selftest(void)
4900 {
4901 	return current == lockdep_selftest_task_struct;
4902 }
4903 
4904 /* The caller must hold the graph lock. */
4905 static struct pending_free *get_pending_free(void)
4906 {
4907 	return delayed_free.pf + delayed_free.index;
4908 }
4909 
4910 static void free_zapped_rcu(struct rcu_head *cb);
4911 
4912 /*
4913  * Schedule an RCU callback if no RCU callback is pending. Must be called with
4914  * the graph lock held.
4915  */
4916 static void call_rcu_zapped(struct pending_free *pf)
4917 {
4918 	WARN_ON_ONCE(inside_selftest());
4919 
4920 	if (list_empty(&pf->zapped))
4921 		return;
4922 
4923 	if (delayed_free.scheduled)
4924 		return;
4925 
4926 	delayed_free.scheduled = true;
4927 
4928 	WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
4929 	delayed_free.index ^= 1;
4930 
4931 	call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
4932 }
4933 
4934 /* The caller must hold the graph lock. May be called from RCU context. */
4935 static void __free_zapped_classes(struct pending_free *pf)
4936 {
4937 	struct lock_class *class;
4938 
4939 	check_data_structures();
4940 
4941 	list_for_each_entry(class, &pf->zapped, lock_entry)
4942 		reinit_class(class);
4943 
4944 	list_splice_init(&pf->zapped, &free_lock_classes);
4945 
4946 #ifdef CONFIG_PROVE_LOCKING
4947 	bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
4948 		      pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
4949 	bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
4950 #endif
4951 }
4952 
4953 static void free_zapped_rcu(struct rcu_head *ch)
4954 {
4955 	struct pending_free *pf;
4956 	unsigned long flags;
4957 
4958 	if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
4959 		return;
4960 
4961 	raw_local_irq_save(flags);
4962 	arch_spin_lock(&lockdep_lock);
4963 	current->lockdep_recursion = 1;
4964 
4965 	/* closed head */
4966 	pf = delayed_free.pf + (delayed_free.index ^ 1);
4967 	__free_zapped_classes(pf);
4968 	delayed_free.scheduled = false;
4969 
4970 	/*
4971 	 * If there's anything on the open list, close and start a new callback.
4972 	 */
4973 	call_rcu_zapped(delayed_free.pf + delayed_free.index);
4974 
4975 	current->lockdep_recursion = 0;
4976 	arch_spin_unlock(&lockdep_lock);
4977 	raw_local_irq_restore(flags);
4978 }
4979 
4980 /*
4981  * Remove all lock classes from the class hash table and from the
4982  * all_lock_classes list whose key or name is in the address range [start,
4983  * start + size). Move these lock classes to the zapped_classes list. Must
4984  * be called with the graph lock held.
4985  */
4986 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
4987 				     unsigned long size)
4988 {
4989 	struct lock_class *class;
4990 	struct hlist_head *head;
4991 	int i;
4992 
4993 	/* Unhash all classes that were created by a module. */
4994 	for (i = 0; i < CLASSHASH_SIZE; i++) {
4995 		head = classhash_table + i;
4996 		hlist_for_each_entry_rcu(class, head, hash_entry) {
4997 			if (!within(class->key, start, size) &&
4998 			    !within(class->name, start, size))
4999 				continue;
5000 			zap_class(pf, class);
5001 		}
5002 	}
5003 }
5004 
5005 /*
5006  * Used in module.c to remove lock classes from memory that is going to be
5007  * freed; and possibly re-used by other modules.
5008  *
5009  * We will have had one synchronize_rcu() before getting here, so we're
5010  * guaranteed nobody will look up these exact classes -- they're properly dead
5011  * but still allocated.
5012  */
5013 static void lockdep_free_key_range_reg(void *start, unsigned long size)
5014 {
5015 	struct pending_free *pf;
5016 	unsigned long flags;
5017 
5018 	init_data_structures_once();
5019 
5020 	raw_local_irq_save(flags);
5021 	arch_spin_lock(&lockdep_lock);
5022 	current->lockdep_recursion = 1;
5023 	pf = get_pending_free();
5024 	__lockdep_free_key_range(pf, start, size);
5025 	call_rcu_zapped(pf);
5026 	current->lockdep_recursion = 0;
5027 	arch_spin_unlock(&lockdep_lock);
5028 	raw_local_irq_restore(flags);
5029 
5030 	/*
5031 	 * Wait for any possible iterators from look_up_lock_class() to pass
5032 	 * before continuing to free the memory they refer to.
5033 	 */
5034 	synchronize_rcu();
5035 }
5036 
5037 /*
5038  * Free all lockdep keys in the range [start, start+size). Does not sleep.
5039  * Ignores debug_locks. Must only be used by the lockdep selftests.
5040  */
5041 static void lockdep_free_key_range_imm(void *start, unsigned long size)
5042 {
5043 	struct pending_free *pf = delayed_free.pf;
5044 	unsigned long flags;
5045 
5046 	init_data_structures_once();
5047 
5048 	raw_local_irq_save(flags);
5049 	arch_spin_lock(&lockdep_lock);
5050 	__lockdep_free_key_range(pf, start, size);
5051 	__free_zapped_classes(pf);
5052 	arch_spin_unlock(&lockdep_lock);
5053 	raw_local_irq_restore(flags);
5054 }
5055 
5056 void lockdep_free_key_range(void *start, unsigned long size)
5057 {
5058 	init_data_structures_once();
5059 
5060 	if (inside_selftest())
5061 		lockdep_free_key_range_imm(start, size);
5062 	else
5063 		lockdep_free_key_range_reg(start, size);
5064 }
5065 
5066 /*
5067  * Check whether any element of the @lock->class_cache[] array refers to a
5068  * registered lock class. The caller must hold either the graph lock or the
5069  * RCU read lock.
5070  */
5071 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
5072 {
5073 	struct lock_class *class;
5074 	struct hlist_head *head;
5075 	int i, j;
5076 
5077 	for (i = 0; i < CLASSHASH_SIZE; i++) {
5078 		head = classhash_table + i;
5079 		hlist_for_each_entry_rcu(class, head, hash_entry) {
5080 			for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
5081 				if (lock->class_cache[j] == class)
5082 					return true;
5083 		}
5084 	}
5085 	return false;
5086 }
5087 
5088 /* The caller must hold the graph lock. Does not sleep. */
5089 static void __lockdep_reset_lock(struct pending_free *pf,
5090 				 struct lockdep_map *lock)
5091 {
5092 	struct lock_class *class;
5093 	int j;
5094 
5095 	/*
5096 	 * Remove all classes this lock might have:
5097 	 */
5098 	for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
5099 		/*
5100 		 * If the class exists we look it up and zap it:
5101 		 */
5102 		class = look_up_lock_class(lock, j);
5103 		if (class)
5104 			zap_class(pf, class);
5105 	}
5106 	/*
5107 	 * Debug check: in the end all mapped classes should
5108 	 * be gone.
5109 	 */
5110 	if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
5111 		debug_locks_off();
5112 }
5113 
5114 /*
5115  * Remove all information lockdep has about a lock if debug_locks == 1. Free
5116  * released data structures from RCU context.
5117  */
5118 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
5119 {
5120 	struct pending_free *pf;
5121 	unsigned long flags;
5122 	int locked;
5123 
5124 	raw_local_irq_save(flags);
5125 	locked = graph_lock();
5126 	if (!locked)
5127 		goto out_irq;
5128 
5129 	pf = get_pending_free();
5130 	__lockdep_reset_lock(pf, lock);
5131 	call_rcu_zapped(pf);
5132 
5133 	graph_unlock();
5134 out_irq:
5135 	raw_local_irq_restore(flags);
5136 }
5137 
5138 /*
5139  * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
5140  * lockdep selftests.
5141  */
5142 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
5143 {
5144 	struct pending_free *pf = delayed_free.pf;
5145 	unsigned long flags;
5146 
5147 	raw_local_irq_save(flags);
5148 	arch_spin_lock(&lockdep_lock);
5149 	__lockdep_reset_lock(pf, lock);
5150 	__free_zapped_classes(pf);
5151 	arch_spin_unlock(&lockdep_lock);
5152 	raw_local_irq_restore(flags);
5153 }
5154 
5155 void lockdep_reset_lock(struct lockdep_map *lock)
5156 {
5157 	init_data_structures_once();
5158 
5159 	if (inside_selftest())
5160 		lockdep_reset_lock_imm(lock);
5161 	else
5162 		lockdep_reset_lock_reg(lock);
5163 }
5164 
5165 /* Unregister a dynamically allocated key. */
5166 void lockdep_unregister_key(struct lock_class_key *key)
5167 {
5168 	struct hlist_head *hash_head = keyhashentry(key);
5169 	struct lock_class_key *k;
5170 	struct pending_free *pf;
5171 	unsigned long flags;
5172 	bool found = false;
5173 
5174 	might_sleep();
5175 
5176 	if (WARN_ON_ONCE(static_obj(key)))
5177 		return;
5178 
5179 	raw_local_irq_save(flags);
5180 	if (!graph_lock())
5181 		goto out_irq;
5182 
5183 	pf = get_pending_free();
5184 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
5185 		if (k == key) {
5186 			hlist_del_rcu(&k->hash_entry);
5187 			found = true;
5188 			break;
5189 		}
5190 	}
5191 	WARN_ON_ONCE(!found);
5192 	__lockdep_free_key_range(pf, key, 1);
5193 	call_rcu_zapped(pf);
5194 	graph_unlock();
5195 out_irq:
5196 	raw_local_irq_restore(flags);
5197 
5198 	/* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
5199 	synchronize_rcu();
5200 }
5201 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
5202 
5203 void __init lockdep_init(void)
5204 {
5205 	printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
5206 
5207 	printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
5208 	printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
5209 	printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
5210 	printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
5211 	printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
5212 	printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
5213 	printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
5214 
5215 	printk(" memory used by lock dependency info: %zu kB\n",
5216 	       (sizeof(lock_classes) +
5217 		sizeof(lock_classes_in_use) +
5218 		sizeof(classhash_table) +
5219 		sizeof(list_entries) +
5220 		sizeof(list_entries_in_use) +
5221 		sizeof(chainhash_table) +
5222 		sizeof(delayed_free)
5223 #ifdef CONFIG_PROVE_LOCKING
5224 		+ sizeof(lock_cq)
5225 		+ sizeof(lock_chains)
5226 		+ sizeof(lock_chains_in_use)
5227 		+ sizeof(chain_hlocks)
5228 #endif
5229 		) / 1024
5230 		);
5231 
5232 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
5233 	printk(" memory used for stack traces: %zu kB\n",
5234 	       (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
5235 	       );
5236 #endif
5237 
5238 	printk(" per task-struct memory footprint: %zu bytes\n",
5239 	       sizeof(((struct task_struct *)NULL)->held_locks));
5240 }
5241 
5242 static void
5243 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
5244 		     const void *mem_to, struct held_lock *hlock)
5245 {
5246 	if (!debug_locks_off())
5247 		return;
5248 	if (debug_locks_silent)
5249 		return;
5250 
5251 	pr_warn("\n");
5252 	pr_warn("=========================\n");
5253 	pr_warn("WARNING: held lock freed!\n");
5254 	print_kernel_ident();
5255 	pr_warn("-------------------------\n");
5256 	pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
5257 		curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
5258 	print_lock(hlock);
5259 	lockdep_print_held_locks(curr);
5260 
5261 	pr_warn("\nstack backtrace:\n");
5262 	dump_stack();
5263 }
5264 
5265 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
5266 				const void* lock_from, unsigned long lock_len)
5267 {
5268 	return lock_from + lock_len <= mem_from ||
5269 		mem_from + mem_len <= lock_from;
5270 }
5271 
5272 /*
5273  * Called when kernel memory is freed (or unmapped), or if a lock
5274  * is destroyed or reinitialized - this code checks whether there is
5275  * any held lock in the memory range of <from> to <to>:
5276  */
5277 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
5278 {
5279 	struct task_struct *curr = current;
5280 	struct held_lock *hlock;
5281 	unsigned long flags;
5282 	int i;
5283 
5284 	if (unlikely(!debug_locks))
5285 		return;
5286 
5287 	raw_local_irq_save(flags);
5288 	for (i = 0; i < curr->lockdep_depth; i++) {
5289 		hlock = curr->held_locks + i;
5290 
5291 		if (not_in_range(mem_from, mem_len, hlock->instance,
5292 					sizeof(*hlock->instance)))
5293 			continue;
5294 
5295 		print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
5296 		break;
5297 	}
5298 	raw_local_irq_restore(flags);
5299 }
5300 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
5301 
5302 static void print_held_locks_bug(void)
5303 {
5304 	if (!debug_locks_off())
5305 		return;
5306 	if (debug_locks_silent)
5307 		return;
5308 
5309 	pr_warn("\n");
5310 	pr_warn("====================================\n");
5311 	pr_warn("WARNING: %s/%d still has locks held!\n",
5312 	       current->comm, task_pid_nr(current));
5313 	print_kernel_ident();
5314 	pr_warn("------------------------------------\n");
5315 	lockdep_print_held_locks(current);
5316 	pr_warn("\nstack backtrace:\n");
5317 	dump_stack();
5318 }
5319 
5320 void debug_check_no_locks_held(void)
5321 {
5322 	if (unlikely(current->lockdep_depth > 0))
5323 		print_held_locks_bug();
5324 }
5325 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
5326 
5327 #ifdef __KERNEL__
5328 void debug_show_all_locks(void)
5329 {
5330 	struct task_struct *g, *p;
5331 
5332 	if (unlikely(!debug_locks)) {
5333 		pr_warn("INFO: lockdep is turned off.\n");
5334 		return;
5335 	}
5336 	pr_warn("\nShowing all locks held in the system:\n");
5337 
5338 	rcu_read_lock();
5339 	for_each_process_thread(g, p) {
5340 		if (!p->lockdep_depth)
5341 			continue;
5342 		lockdep_print_held_locks(p);
5343 		touch_nmi_watchdog();
5344 		touch_all_softlockup_watchdogs();
5345 	}
5346 	rcu_read_unlock();
5347 
5348 	pr_warn("\n");
5349 	pr_warn("=============================================\n\n");
5350 }
5351 EXPORT_SYMBOL_GPL(debug_show_all_locks);
5352 #endif
5353 
5354 /*
5355  * Careful: only use this function if you are sure that
5356  * the task cannot run in parallel!
5357  */
5358 void debug_show_held_locks(struct task_struct *task)
5359 {
5360 	if (unlikely(!debug_locks)) {
5361 		printk("INFO: lockdep is turned off.\n");
5362 		return;
5363 	}
5364 	lockdep_print_held_locks(task);
5365 }
5366 EXPORT_SYMBOL_GPL(debug_show_held_locks);
5367 
5368 asmlinkage __visible void lockdep_sys_exit(void)
5369 {
5370 	struct task_struct *curr = current;
5371 
5372 	if (unlikely(curr->lockdep_depth)) {
5373 		if (!debug_locks_off())
5374 			return;
5375 		pr_warn("\n");
5376 		pr_warn("================================================\n");
5377 		pr_warn("WARNING: lock held when returning to user space!\n");
5378 		print_kernel_ident();
5379 		pr_warn("------------------------------------------------\n");
5380 		pr_warn("%s/%d is leaving the kernel with locks still held!\n",
5381 				curr->comm, curr->pid);
5382 		lockdep_print_held_locks(curr);
5383 	}
5384 
5385 	/*
5386 	 * The lock history for each syscall should be independent. So wipe the
5387 	 * slate clean on return to userspace.
5388 	 */
5389 	lockdep_invariant_state(false);
5390 }
5391 
5392 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
5393 {
5394 	struct task_struct *curr = current;
5395 
5396 	/* Note: the following can be executed concurrently, so be careful. */
5397 	pr_warn("\n");
5398 	pr_warn("=============================\n");
5399 	pr_warn("WARNING: suspicious RCU usage\n");
5400 	print_kernel_ident();
5401 	pr_warn("-----------------------------\n");
5402 	pr_warn("%s:%d %s!\n", file, line, s);
5403 	pr_warn("\nother info that might help us debug this:\n\n");
5404 	pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n",
5405 	       !rcu_lockdep_current_cpu_online()
5406 			? "RCU used illegally from offline CPU!\n"
5407 			: !rcu_is_watching()
5408 				? "RCU used illegally from idle CPU!\n"
5409 				: "",
5410 	       rcu_scheduler_active, debug_locks);
5411 
5412 	/*
5413 	 * If a CPU is in the RCU-free window in idle (ie: in the section
5414 	 * between rcu_idle_enter() and rcu_idle_exit(), then RCU
5415 	 * considers that CPU to be in an "extended quiescent state",
5416 	 * which means that RCU will be completely ignoring that CPU.
5417 	 * Therefore, rcu_read_lock() and friends have absolutely no
5418 	 * effect on a CPU running in that state. In other words, even if
5419 	 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
5420 	 * delete data structures out from under it.  RCU really has no
5421 	 * choice here: we need to keep an RCU-free window in idle where
5422 	 * the CPU may possibly enter into low power mode. This way we can
5423 	 * notice an extended quiescent state to other CPUs that started a grace
5424 	 * period. Otherwise we would delay any grace period as long as we run
5425 	 * in the idle task.
5426 	 *
5427 	 * So complain bitterly if someone does call rcu_read_lock(),
5428 	 * rcu_read_lock_bh() and so on from extended quiescent states.
5429 	 */
5430 	if (!rcu_is_watching())
5431 		pr_warn("RCU used illegally from extended quiescent state!\n");
5432 
5433 	lockdep_print_held_locks(curr);
5434 	pr_warn("\nstack backtrace:\n");
5435 	dump_stack();
5436 }
5437 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);
5438