xref: /linux/kernel/locking/lockdep.c (revision eb1cfd09)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/lockdep.c
4  *
5  * Runtime locking correctness validator
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11  *
12  * this code maps all the lock dependencies as they occur in a live kernel
13  * and will warn about the following classes of locking bugs:
14  *
15  * - lock inversion scenarios
16  * - circular lock dependencies
17  * - hardirq/softirq safe/unsafe locking bugs
18  *
19  * Bugs are reported even if the current locking scenario does not cause
20  * any deadlock at this point.
21  *
22  * I.e. if anytime in the past two locks were taken in a different order,
23  * even if it happened for another task, even if those were different
24  * locks (but of the same class as this lock), this code will detect it.
25  *
26  * Thanks to Arjan van de Ven for coming up with the initial idea of
27  * mapping lock dependencies runtime.
28  */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57 #include <linux/lockdep.h>
58 #include <linux/context_tracking.h>
59 
60 #include <asm/sections.h>
61 
62 #include "lockdep_internals.h"
63 
64 #include <trace/events/lock.h>
65 
66 #ifdef CONFIG_PROVE_LOCKING
67 static int prove_locking = 1;
68 module_param(prove_locking, int, 0644);
69 #else
70 #define prove_locking 0
71 #endif
72 
73 #ifdef CONFIG_LOCK_STAT
74 static int lock_stat = 1;
75 module_param(lock_stat, int, 0644);
76 #else
77 #define lock_stat 0
78 #endif
79 
80 #ifdef CONFIG_SYSCTL
81 static struct ctl_table kern_lockdep_table[] = {
82 #ifdef CONFIG_PROVE_LOCKING
83 	{
84 		.procname       = "prove_locking",
85 		.data           = &prove_locking,
86 		.maxlen         = sizeof(int),
87 		.mode           = 0644,
88 		.proc_handler   = proc_dointvec,
89 	},
90 #endif /* CONFIG_PROVE_LOCKING */
91 #ifdef CONFIG_LOCK_STAT
92 	{
93 		.procname       = "lock_stat",
94 		.data           = &lock_stat,
95 		.maxlen         = sizeof(int),
96 		.mode           = 0644,
97 		.proc_handler   = proc_dointvec,
98 	},
99 #endif /* CONFIG_LOCK_STAT */
100 	{ }
101 };
102 
103 static __init int kernel_lockdep_sysctls_init(void)
104 {
105 	register_sysctl_init("kernel", kern_lockdep_table);
106 	return 0;
107 }
108 late_initcall(kernel_lockdep_sysctls_init);
109 #endif /* CONFIG_SYSCTL */
110 
111 DEFINE_PER_CPU(unsigned int, lockdep_recursion);
112 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
113 
114 static __always_inline bool lockdep_enabled(void)
115 {
116 	if (!debug_locks)
117 		return false;
118 
119 	if (this_cpu_read(lockdep_recursion))
120 		return false;
121 
122 	if (current->lockdep_recursion)
123 		return false;
124 
125 	return true;
126 }
127 
128 /*
129  * lockdep_lock: protects the lockdep graph, the hashes and the
130  *               class/list/hash allocators.
131  *
132  * This is one of the rare exceptions where it's justified
133  * to use a raw spinlock - we really dont want the spinlock
134  * code to recurse back into the lockdep code...
135  */
136 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
137 static struct task_struct *__owner;
138 
139 static inline void lockdep_lock(void)
140 {
141 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
142 
143 	__this_cpu_inc(lockdep_recursion);
144 	arch_spin_lock(&__lock);
145 	__owner = current;
146 }
147 
148 static inline void lockdep_unlock(void)
149 {
150 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
151 
152 	if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
153 		return;
154 
155 	__owner = NULL;
156 	arch_spin_unlock(&__lock);
157 	__this_cpu_dec(lockdep_recursion);
158 }
159 
160 static inline bool lockdep_assert_locked(void)
161 {
162 	return DEBUG_LOCKS_WARN_ON(__owner != current);
163 }
164 
165 static struct task_struct *lockdep_selftest_task_struct;
166 
167 
168 static int graph_lock(void)
169 {
170 	lockdep_lock();
171 	/*
172 	 * Make sure that if another CPU detected a bug while
173 	 * walking the graph we dont change it (while the other
174 	 * CPU is busy printing out stuff with the graph lock
175 	 * dropped already)
176 	 */
177 	if (!debug_locks) {
178 		lockdep_unlock();
179 		return 0;
180 	}
181 	return 1;
182 }
183 
184 static inline void graph_unlock(void)
185 {
186 	lockdep_unlock();
187 }
188 
189 /*
190  * Turn lock debugging off and return with 0 if it was off already,
191  * and also release the graph lock:
192  */
193 static inline int debug_locks_off_graph_unlock(void)
194 {
195 	int ret = debug_locks_off();
196 
197 	lockdep_unlock();
198 
199 	return ret;
200 }
201 
202 unsigned long nr_list_entries;
203 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
204 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
205 
206 /*
207  * All data structures here are protected by the global debug_lock.
208  *
209  * nr_lock_classes is the number of elements of lock_classes[] that is
210  * in use.
211  */
212 #define KEYHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
213 #define KEYHASH_SIZE		(1UL << KEYHASH_BITS)
214 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
215 unsigned long nr_lock_classes;
216 unsigned long nr_zapped_classes;
217 unsigned long max_lock_class_idx;
218 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
219 DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
220 
221 static inline struct lock_class *hlock_class(struct held_lock *hlock)
222 {
223 	unsigned int class_idx = hlock->class_idx;
224 
225 	/* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
226 	barrier();
227 
228 	if (!test_bit(class_idx, lock_classes_in_use)) {
229 		/*
230 		 * Someone passed in garbage, we give up.
231 		 */
232 		DEBUG_LOCKS_WARN_ON(1);
233 		return NULL;
234 	}
235 
236 	/*
237 	 * At this point, if the passed hlock->class_idx is still garbage,
238 	 * we just have to live with it
239 	 */
240 	return lock_classes + class_idx;
241 }
242 
243 #ifdef CONFIG_LOCK_STAT
244 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
245 
246 static inline u64 lockstat_clock(void)
247 {
248 	return local_clock();
249 }
250 
251 static int lock_point(unsigned long points[], unsigned long ip)
252 {
253 	int i;
254 
255 	for (i = 0; i < LOCKSTAT_POINTS; i++) {
256 		if (points[i] == 0) {
257 			points[i] = ip;
258 			break;
259 		}
260 		if (points[i] == ip)
261 			break;
262 	}
263 
264 	return i;
265 }
266 
267 static void lock_time_inc(struct lock_time *lt, u64 time)
268 {
269 	if (time > lt->max)
270 		lt->max = time;
271 
272 	if (time < lt->min || !lt->nr)
273 		lt->min = time;
274 
275 	lt->total += time;
276 	lt->nr++;
277 }
278 
279 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
280 {
281 	if (!src->nr)
282 		return;
283 
284 	if (src->max > dst->max)
285 		dst->max = src->max;
286 
287 	if (src->min < dst->min || !dst->nr)
288 		dst->min = src->min;
289 
290 	dst->total += src->total;
291 	dst->nr += src->nr;
292 }
293 
294 struct lock_class_stats lock_stats(struct lock_class *class)
295 {
296 	struct lock_class_stats stats;
297 	int cpu, i;
298 
299 	memset(&stats, 0, sizeof(struct lock_class_stats));
300 	for_each_possible_cpu(cpu) {
301 		struct lock_class_stats *pcs =
302 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
303 
304 		for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
305 			stats.contention_point[i] += pcs->contention_point[i];
306 
307 		for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
308 			stats.contending_point[i] += pcs->contending_point[i];
309 
310 		lock_time_add(&pcs->read_waittime, &stats.read_waittime);
311 		lock_time_add(&pcs->write_waittime, &stats.write_waittime);
312 
313 		lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
314 		lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
315 
316 		for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
317 			stats.bounces[i] += pcs->bounces[i];
318 	}
319 
320 	return stats;
321 }
322 
323 void clear_lock_stats(struct lock_class *class)
324 {
325 	int cpu;
326 
327 	for_each_possible_cpu(cpu) {
328 		struct lock_class_stats *cpu_stats =
329 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
330 
331 		memset(cpu_stats, 0, sizeof(struct lock_class_stats));
332 	}
333 	memset(class->contention_point, 0, sizeof(class->contention_point));
334 	memset(class->contending_point, 0, sizeof(class->contending_point));
335 }
336 
337 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
338 {
339 	return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
340 }
341 
342 static void lock_release_holdtime(struct held_lock *hlock)
343 {
344 	struct lock_class_stats *stats;
345 	u64 holdtime;
346 
347 	if (!lock_stat)
348 		return;
349 
350 	holdtime = lockstat_clock() - hlock->holdtime_stamp;
351 
352 	stats = get_lock_stats(hlock_class(hlock));
353 	if (hlock->read)
354 		lock_time_inc(&stats->read_holdtime, holdtime);
355 	else
356 		lock_time_inc(&stats->write_holdtime, holdtime);
357 }
358 #else
359 static inline void lock_release_holdtime(struct held_lock *hlock)
360 {
361 }
362 #endif
363 
364 /*
365  * We keep a global list of all lock classes. The list is only accessed with
366  * the lockdep spinlock lock held. free_lock_classes is a list with free
367  * elements. These elements are linked together by the lock_entry member in
368  * struct lock_class.
369  */
370 static LIST_HEAD(all_lock_classes);
371 static LIST_HEAD(free_lock_classes);
372 
373 /**
374  * struct pending_free - information about data structures about to be freed
375  * @zapped: Head of a list with struct lock_class elements.
376  * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
377  *	are about to be freed.
378  */
379 struct pending_free {
380 	struct list_head zapped;
381 	DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
382 };
383 
384 /**
385  * struct delayed_free - data structures used for delayed freeing
386  *
387  * A data structure for delayed freeing of data structures that may be
388  * accessed by RCU readers at the time these were freed.
389  *
390  * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
391  * @index:     Index of @pf to which freed data structures are added.
392  * @scheduled: Whether or not an RCU callback has been scheduled.
393  * @pf:        Array with information about data structures about to be freed.
394  */
395 static struct delayed_free {
396 	struct rcu_head		rcu_head;
397 	int			index;
398 	int			scheduled;
399 	struct pending_free	pf[2];
400 } delayed_free;
401 
402 /*
403  * The lockdep classes are in a hash-table as well, for fast lookup:
404  */
405 #define CLASSHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
406 #define CLASSHASH_SIZE		(1UL << CLASSHASH_BITS)
407 #define __classhashfn(key)	hash_long((unsigned long)key, CLASSHASH_BITS)
408 #define classhashentry(key)	(classhash_table + __classhashfn((key)))
409 
410 static struct hlist_head classhash_table[CLASSHASH_SIZE];
411 
412 /*
413  * We put the lock dependency chains into a hash-table as well, to cache
414  * their existence:
415  */
416 #define CHAINHASH_BITS		(MAX_LOCKDEP_CHAINS_BITS-1)
417 #define CHAINHASH_SIZE		(1UL << CHAINHASH_BITS)
418 #define __chainhashfn(chain)	hash_long(chain, CHAINHASH_BITS)
419 #define chainhashentry(chain)	(chainhash_table + __chainhashfn((chain)))
420 
421 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
422 
423 /*
424  * the id of held_lock
425  */
426 static inline u16 hlock_id(struct held_lock *hlock)
427 {
428 	BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
429 
430 	return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
431 }
432 
433 static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
434 {
435 	return hlock_id & (MAX_LOCKDEP_KEYS - 1);
436 }
437 
438 /*
439  * The hash key of the lock dependency chains is a hash itself too:
440  * it's a hash of all locks taken up to that lock, including that lock.
441  * It's a 64-bit hash, because it's important for the keys to be
442  * unique.
443  */
444 static inline u64 iterate_chain_key(u64 key, u32 idx)
445 {
446 	u32 k0 = key, k1 = key >> 32;
447 
448 	__jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
449 
450 	return k0 | (u64)k1 << 32;
451 }
452 
453 void lockdep_init_task(struct task_struct *task)
454 {
455 	task->lockdep_depth = 0; /* no locks held yet */
456 	task->curr_chain_key = INITIAL_CHAIN_KEY;
457 	task->lockdep_recursion = 0;
458 }
459 
460 static __always_inline void lockdep_recursion_inc(void)
461 {
462 	__this_cpu_inc(lockdep_recursion);
463 }
464 
465 static __always_inline void lockdep_recursion_finish(void)
466 {
467 	if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
468 		__this_cpu_write(lockdep_recursion, 0);
469 }
470 
471 void lockdep_set_selftest_task(struct task_struct *task)
472 {
473 	lockdep_selftest_task_struct = task;
474 }
475 
476 /*
477  * Debugging switches:
478  */
479 
480 #define VERBOSE			0
481 #define VERY_VERBOSE		0
482 
483 #if VERBOSE
484 # define HARDIRQ_VERBOSE	1
485 # define SOFTIRQ_VERBOSE	1
486 #else
487 # define HARDIRQ_VERBOSE	0
488 # define SOFTIRQ_VERBOSE	0
489 #endif
490 
491 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
492 /*
493  * Quick filtering for interesting events:
494  */
495 static int class_filter(struct lock_class *class)
496 {
497 #if 0
498 	/* Example */
499 	if (class->name_version == 1 &&
500 			!strcmp(class->name, "lockname"))
501 		return 1;
502 	if (class->name_version == 1 &&
503 			!strcmp(class->name, "&struct->lockfield"))
504 		return 1;
505 #endif
506 	/* Filter everything else. 1 would be to allow everything else */
507 	return 0;
508 }
509 #endif
510 
511 static int verbose(struct lock_class *class)
512 {
513 #if VERBOSE
514 	return class_filter(class);
515 #endif
516 	return 0;
517 }
518 
519 static void print_lockdep_off(const char *bug_msg)
520 {
521 	printk(KERN_DEBUG "%s\n", bug_msg);
522 	printk(KERN_DEBUG "turning off the locking correctness validator.\n");
523 #ifdef CONFIG_LOCK_STAT
524 	printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
525 #endif
526 }
527 
528 unsigned long nr_stack_trace_entries;
529 
530 #ifdef CONFIG_PROVE_LOCKING
531 /**
532  * struct lock_trace - single stack backtrace
533  * @hash_entry:	Entry in a stack_trace_hash[] list.
534  * @hash:	jhash() of @entries.
535  * @nr_entries:	Number of entries in @entries.
536  * @entries:	Actual stack backtrace.
537  */
538 struct lock_trace {
539 	struct hlist_node	hash_entry;
540 	u32			hash;
541 	u32			nr_entries;
542 	unsigned long		entries[] __aligned(sizeof(unsigned long));
543 };
544 #define LOCK_TRACE_SIZE_IN_LONGS				\
545 	(sizeof(struct lock_trace) / sizeof(unsigned long))
546 /*
547  * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
548  */
549 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
550 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
551 
552 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
553 {
554 	return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
555 		memcmp(t1->entries, t2->entries,
556 		       t1->nr_entries * sizeof(t1->entries[0])) == 0;
557 }
558 
559 static struct lock_trace *save_trace(void)
560 {
561 	struct lock_trace *trace, *t2;
562 	struct hlist_head *hash_head;
563 	u32 hash;
564 	int max_entries;
565 
566 	BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
567 	BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
568 
569 	trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
570 	max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
571 		LOCK_TRACE_SIZE_IN_LONGS;
572 
573 	if (max_entries <= 0) {
574 		if (!debug_locks_off_graph_unlock())
575 			return NULL;
576 
577 		print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
578 		dump_stack();
579 
580 		return NULL;
581 	}
582 	trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
583 
584 	hash = jhash(trace->entries, trace->nr_entries *
585 		     sizeof(trace->entries[0]), 0);
586 	trace->hash = hash;
587 	hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
588 	hlist_for_each_entry(t2, hash_head, hash_entry) {
589 		if (traces_identical(trace, t2))
590 			return t2;
591 	}
592 	nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
593 	hlist_add_head(&trace->hash_entry, hash_head);
594 
595 	return trace;
596 }
597 
598 /* Return the number of stack traces in the stack_trace[] array. */
599 u64 lockdep_stack_trace_count(void)
600 {
601 	struct lock_trace *trace;
602 	u64 c = 0;
603 	int i;
604 
605 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
606 		hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
607 			c++;
608 		}
609 	}
610 
611 	return c;
612 }
613 
614 /* Return the number of stack hash chains that have at least one stack trace. */
615 u64 lockdep_stack_hash_count(void)
616 {
617 	u64 c = 0;
618 	int i;
619 
620 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
621 		if (!hlist_empty(&stack_trace_hash[i]))
622 			c++;
623 
624 	return c;
625 }
626 #endif
627 
628 unsigned int nr_hardirq_chains;
629 unsigned int nr_softirq_chains;
630 unsigned int nr_process_chains;
631 unsigned int max_lockdep_depth;
632 
633 #ifdef CONFIG_DEBUG_LOCKDEP
634 /*
635  * Various lockdep statistics:
636  */
637 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
638 #endif
639 
640 #ifdef CONFIG_PROVE_LOCKING
641 /*
642  * Locking printouts:
643  */
644 
645 #define __USAGE(__STATE)						\
646 	[LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",	\
647 	[LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",		\
648 	[LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
649 	[LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
650 
651 static const char *usage_str[] =
652 {
653 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
654 #include "lockdep_states.h"
655 #undef LOCKDEP_STATE
656 	[LOCK_USED] = "INITIAL USE",
657 	[LOCK_USED_READ] = "INITIAL READ USE",
658 	/* abused as string storage for verify_lock_unused() */
659 	[LOCK_USAGE_STATES] = "IN-NMI",
660 };
661 #endif
662 
663 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
664 {
665 	return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
666 }
667 
668 static inline unsigned long lock_flag(enum lock_usage_bit bit)
669 {
670 	return 1UL << bit;
671 }
672 
673 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
674 {
675 	/*
676 	 * The usage character defaults to '.' (i.e., irqs disabled and not in
677 	 * irq context), which is the safest usage category.
678 	 */
679 	char c = '.';
680 
681 	/*
682 	 * The order of the following usage checks matters, which will
683 	 * result in the outcome character as follows:
684 	 *
685 	 * - '+': irq is enabled and not in irq context
686 	 * - '-': in irq context and irq is disabled
687 	 * - '?': in irq context and irq is enabled
688 	 */
689 	if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
690 		c = '+';
691 		if (class->usage_mask & lock_flag(bit))
692 			c = '?';
693 	} else if (class->usage_mask & lock_flag(bit))
694 		c = '-';
695 
696 	return c;
697 }
698 
699 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
700 {
701 	int i = 0;
702 
703 #define LOCKDEP_STATE(__STATE) 						\
704 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);	\
705 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
706 #include "lockdep_states.h"
707 #undef LOCKDEP_STATE
708 
709 	usage[i] = '\0';
710 }
711 
712 static void __print_lock_name(struct held_lock *hlock, struct lock_class *class)
713 {
714 	char str[KSYM_NAME_LEN];
715 	const char *name;
716 
717 	name = class->name;
718 	if (!name) {
719 		name = __get_key_name(class->key, str);
720 		printk(KERN_CONT "%s", name);
721 	} else {
722 		printk(KERN_CONT "%s", name);
723 		if (class->name_version > 1)
724 			printk(KERN_CONT "#%d", class->name_version);
725 		if (class->subclass)
726 			printk(KERN_CONT "/%d", class->subclass);
727 		if (hlock && class->print_fn)
728 			class->print_fn(hlock->instance);
729 	}
730 }
731 
732 static void print_lock_name(struct held_lock *hlock, struct lock_class *class)
733 {
734 	char usage[LOCK_USAGE_CHARS];
735 
736 	get_usage_chars(class, usage);
737 
738 	printk(KERN_CONT " (");
739 	__print_lock_name(hlock, class);
740 	printk(KERN_CONT "){%s}-{%d:%d}", usage,
741 			class->wait_type_outer ?: class->wait_type_inner,
742 			class->wait_type_inner);
743 }
744 
745 static void print_lockdep_cache(struct lockdep_map *lock)
746 {
747 	const char *name;
748 	char str[KSYM_NAME_LEN];
749 
750 	name = lock->name;
751 	if (!name)
752 		name = __get_key_name(lock->key->subkeys, str);
753 
754 	printk(KERN_CONT "%s", name);
755 }
756 
757 static void print_lock(struct held_lock *hlock)
758 {
759 	/*
760 	 * We can be called locklessly through debug_show_all_locks() so be
761 	 * extra careful, the hlock might have been released and cleared.
762 	 *
763 	 * If this indeed happens, lets pretend it does not hurt to continue
764 	 * to print the lock unless the hlock class_idx does not point to a
765 	 * registered class. The rationale here is: since we don't attempt
766 	 * to distinguish whether we are in this situation, if it just
767 	 * happened we can't count on class_idx to tell either.
768 	 */
769 	struct lock_class *lock = hlock_class(hlock);
770 
771 	if (!lock) {
772 		printk(KERN_CONT "<RELEASED>\n");
773 		return;
774 	}
775 
776 	printk(KERN_CONT "%px", hlock->instance);
777 	print_lock_name(hlock, lock);
778 	printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
779 }
780 
781 static void lockdep_print_held_locks(struct task_struct *p)
782 {
783 	int i, depth = READ_ONCE(p->lockdep_depth);
784 
785 	if (!depth)
786 		printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
787 	else
788 		printk("%d lock%s held by %s/%d:\n", depth,
789 		       depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
790 	/*
791 	 * It's not reliable to print a task's held locks if it's not sleeping
792 	 * and it's not the current task.
793 	 */
794 	if (p != current && task_is_running(p))
795 		return;
796 	for (i = 0; i < depth; i++) {
797 		printk(" #%d: ", i);
798 		print_lock(p->held_locks + i);
799 	}
800 }
801 
802 static void print_kernel_ident(void)
803 {
804 	printk("%s %.*s %s\n", init_utsname()->release,
805 		(int)strcspn(init_utsname()->version, " "),
806 		init_utsname()->version,
807 		print_tainted());
808 }
809 
810 static int very_verbose(struct lock_class *class)
811 {
812 #if VERY_VERBOSE
813 	return class_filter(class);
814 #endif
815 	return 0;
816 }
817 
818 /*
819  * Is this the address of a static object:
820  */
821 #ifdef __KERNEL__
822 /*
823  * Check if an address is part of freed initmem. After initmem is freed,
824  * memory can be allocated from it, and such allocations would then have
825  * addresses within the range [_stext, _end].
826  */
827 #ifndef arch_is_kernel_initmem_freed
828 static int arch_is_kernel_initmem_freed(unsigned long addr)
829 {
830 	if (system_state < SYSTEM_FREEING_INITMEM)
831 		return 0;
832 
833 	return init_section_contains((void *)addr, 1);
834 }
835 #endif
836 
837 static int static_obj(const void *obj)
838 {
839 	unsigned long start = (unsigned long) &_stext,
840 		      end   = (unsigned long) &_end,
841 		      addr  = (unsigned long) obj;
842 
843 	if (arch_is_kernel_initmem_freed(addr))
844 		return 0;
845 
846 	/*
847 	 * static variable?
848 	 */
849 	if ((addr >= start) && (addr < end))
850 		return 1;
851 
852 	/*
853 	 * in-kernel percpu var?
854 	 */
855 	if (is_kernel_percpu_address(addr))
856 		return 1;
857 
858 	/*
859 	 * module static or percpu var?
860 	 */
861 	return is_module_address(addr) || is_module_percpu_address(addr);
862 }
863 #endif
864 
865 /*
866  * To make lock name printouts unique, we calculate a unique
867  * class->name_version generation counter. The caller must hold the graph
868  * lock.
869  */
870 static int count_matching_names(struct lock_class *new_class)
871 {
872 	struct lock_class *class;
873 	int count = 0;
874 
875 	if (!new_class->name)
876 		return 0;
877 
878 	list_for_each_entry(class, &all_lock_classes, lock_entry) {
879 		if (new_class->key - new_class->subclass == class->key)
880 			return class->name_version;
881 		if (class->name && !strcmp(class->name, new_class->name))
882 			count = max(count, class->name_version);
883 	}
884 
885 	return count + 1;
886 }
887 
888 /* used from NMI context -- must be lockless */
889 static noinstr struct lock_class *
890 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
891 {
892 	struct lockdep_subclass_key *key;
893 	struct hlist_head *hash_head;
894 	struct lock_class *class;
895 
896 	if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
897 		instrumentation_begin();
898 		debug_locks_off();
899 		printk(KERN_ERR
900 			"BUG: looking up invalid subclass: %u\n", subclass);
901 		printk(KERN_ERR
902 			"turning off the locking correctness validator.\n");
903 		dump_stack();
904 		instrumentation_end();
905 		return NULL;
906 	}
907 
908 	/*
909 	 * If it is not initialised then it has never been locked,
910 	 * so it won't be present in the hash table.
911 	 */
912 	if (unlikely(!lock->key))
913 		return NULL;
914 
915 	/*
916 	 * NOTE: the class-key must be unique. For dynamic locks, a static
917 	 * lock_class_key variable is passed in through the mutex_init()
918 	 * (or spin_lock_init()) call - which acts as the key. For static
919 	 * locks we use the lock object itself as the key.
920 	 */
921 	BUILD_BUG_ON(sizeof(struct lock_class_key) >
922 			sizeof(struct lockdep_map));
923 
924 	key = lock->key->subkeys + subclass;
925 
926 	hash_head = classhashentry(key);
927 
928 	/*
929 	 * We do an RCU walk of the hash, see lockdep_free_key_range().
930 	 */
931 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
932 		return NULL;
933 
934 	hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) {
935 		if (class->key == key) {
936 			/*
937 			 * Huh! same key, different name? Did someone trample
938 			 * on some memory? We're most confused.
939 			 */
940 			WARN_ONCE(class->name != lock->name &&
941 				  lock->key != &__lockdep_no_validate__,
942 				  "Looking for class \"%s\" with key %ps, but found a different class \"%s\" with the same key\n",
943 				  lock->name, lock->key, class->name);
944 			return class;
945 		}
946 	}
947 
948 	return NULL;
949 }
950 
951 /*
952  * Static locks do not have their class-keys yet - for them the key is
953  * the lock object itself. If the lock is in the per cpu area, the
954  * canonical address of the lock (per cpu offset removed) is used.
955  */
956 static bool assign_lock_key(struct lockdep_map *lock)
957 {
958 	unsigned long can_addr, addr = (unsigned long)lock;
959 
960 #ifdef __KERNEL__
961 	/*
962 	 * lockdep_free_key_range() assumes that struct lock_class_key
963 	 * objects do not overlap. Since we use the address of lock
964 	 * objects as class key for static objects, check whether the
965 	 * size of lock_class_key objects does not exceed the size of
966 	 * the smallest lock object.
967 	 */
968 	BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
969 #endif
970 
971 	if (__is_kernel_percpu_address(addr, &can_addr))
972 		lock->key = (void *)can_addr;
973 	else if (__is_module_percpu_address(addr, &can_addr))
974 		lock->key = (void *)can_addr;
975 	else if (static_obj(lock))
976 		lock->key = (void *)lock;
977 	else {
978 		/* Debug-check: all keys must be persistent! */
979 		debug_locks_off();
980 		pr_err("INFO: trying to register non-static key.\n");
981 		pr_err("The code is fine but needs lockdep annotation, or maybe\n");
982 		pr_err("you didn't initialize this object before use?\n");
983 		pr_err("turning off the locking correctness validator.\n");
984 		dump_stack();
985 		return false;
986 	}
987 
988 	return true;
989 }
990 
991 #ifdef CONFIG_DEBUG_LOCKDEP
992 
993 /* Check whether element @e occurs in list @h */
994 static bool in_list(struct list_head *e, struct list_head *h)
995 {
996 	struct list_head *f;
997 
998 	list_for_each(f, h) {
999 		if (e == f)
1000 			return true;
1001 	}
1002 
1003 	return false;
1004 }
1005 
1006 /*
1007  * Check whether entry @e occurs in any of the locks_after or locks_before
1008  * lists.
1009  */
1010 static bool in_any_class_list(struct list_head *e)
1011 {
1012 	struct lock_class *class;
1013 	int i;
1014 
1015 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1016 		class = &lock_classes[i];
1017 		if (in_list(e, &class->locks_after) ||
1018 		    in_list(e, &class->locks_before))
1019 			return true;
1020 	}
1021 	return false;
1022 }
1023 
1024 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
1025 {
1026 	struct lock_list *e;
1027 
1028 	list_for_each_entry(e, h, entry) {
1029 		if (e->links_to != c) {
1030 			printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
1031 			       c->name ? : "(?)",
1032 			       (unsigned long)(e - list_entries),
1033 			       e->links_to && e->links_to->name ?
1034 			       e->links_to->name : "(?)",
1035 			       e->class && e->class->name ? e->class->name :
1036 			       "(?)");
1037 			return false;
1038 		}
1039 	}
1040 	return true;
1041 }
1042 
1043 #ifdef CONFIG_PROVE_LOCKING
1044 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
1045 #endif
1046 
1047 static bool check_lock_chain_key(struct lock_chain *chain)
1048 {
1049 #ifdef CONFIG_PROVE_LOCKING
1050 	u64 chain_key = INITIAL_CHAIN_KEY;
1051 	int i;
1052 
1053 	for (i = chain->base; i < chain->base + chain->depth; i++)
1054 		chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1055 	/*
1056 	 * The 'unsigned long long' casts avoid that a compiler warning
1057 	 * is reported when building tools/lib/lockdep.
1058 	 */
1059 	if (chain->chain_key != chain_key) {
1060 		printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1061 		       (unsigned long long)(chain - lock_chains),
1062 		       (unsigned long long)chain->chain_key,
1063 		       (unsigned long long)chain_key);
1064 		return false;
1065 	}
1066 #endif
1067 	return true;
1068 }
1069 
1070 static bool in_any_zapped_class_list(struct lock_class *class)
1071 {
1072 	struct pending_free *pf;
1073 	int i;
1074 
1075 	for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1076 		if (in_list(&class->lock_entry, &pf->zapped))
1077 			return true;
1078 	}
1079 
1080 	return false;
1081 }
1082 
1083 static bool __check_data_structures(void)
1084 {
1085 	struct lock_class *class;
1086 	struct lock_chain *chain;
1087 	struct hlist_head *head;
1088 	struct lock_list *e;
1089 	int i;
1090 
1091 	/* Check whether all classes occur in a lock list. */
1092 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1093 		class = &lock_classes[i];
1094 		if (!in_list(&class->lock_entry, &all_lock_classes) &&
1095 		    !in_list(&class->lock_entry, &free_lock_classes) &&
1096 		    !in_any_zapped_class_list(class)) {
1097 			printk(KERN_INFO "class %px/%s is not in any class list\n",
1098 			       class, class->name ? : "(?)");
1099 			return false;
1100 		}
1101 	}
1102 
1103 	/* Check whether all classes have valid lock lists. */
1104 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1105 		class = &lock_classes[i];
1106 		if (!class_lock_list_valid(class, &class->locks_before))
1107 			return false;
1108 		if (!class_lock_list_valid(class, &class->locks_after))
1109 			return false;
1110 	}
1111 
1112 	/* Check the chain_key of all lock chains. */
1113 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1114 		head = chainhash_table + i;
1115 		hlist_for_each_entry_rcu(chain, head, entry) {
1116 			if (!check_lock_chain_key(chain))
1117 				return false;
1118 		}
1119 	}
1120 
1121 	/*
1122 	 * Check whether all list entries that are in use occur in a class
1123 	 * lock list.
1124 	 */
1125 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1126 		e = list_entries + i;
1127 		if (!in_any_class_list(&e->entry)) {
1128 			printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1129 			       (unsigned int)(e - list_entries),
1130 			       e->class->name ? : "(?)",
1131 			       e->links_to->name ? : "(?)");
1132 			return false;
1133 		}
1134 	}
1135 
1136 	/*
1137 	 * Check whether all list entries that are not in use do not occur in
1138 	 * a class lock list.
1139 	 */
1140 	for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1141 		e = list_entries + i;
1142 		if (in_any_class_list(&e->entry)) {
1143 			printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1144 			       (unsigned int)(e - list_entries),
1145 			       e->class && e->class->name ? e->class->name :
1146 			       "(?)",
1147 			       e->links_to && e->links_to->name ?
1148 			       e->links_to->name : "(?)");
1149 			return false;
1150 		}
1151 	}
1152 
1153 	return true;
1154 }
1155 
1156 int check_consistency = 0;
1157 module_param(check_consistency, int, 0644);
1158 
1159 static void check_data_structures(void)
1160 {
1161 	static bool once = false;
1162 
1163 	if (check_consistency && !once) {
1164 		if (!__check_data_structures()) {
1165 			once = true;
1166 			WARN_ON(once);
1167 		}
1168 	}
1169 }
1170 
1171 #else /* CONFIG_DEBUG_LOCKDEP */
1172 
1173 static inline void check_data_structures(void) { }
1174 
1175 #endif /* CONFIG_DEBUG_LOCKDEP */
1176 
1177 static void init_chain_block_buckets(void);
1178 
1179 /*
1180  * Initialize the lock_classes[] array elements, the free_lock_classes list
1181  * and also the delayed_free structure.
1182  */
1183 static void init_data_structures_once(void)
1184 {
1185 	static bool __read_mostly ds_initialized, rcu_head_initialized;
1186 	int i;
1187 
1188 	if (likely(rcu_head_initialized))
1189 		return;
1190 
1191 	if (system_state >= SYSTEM_SCHEDULING) {
1192 		init_rcu_head(&delayed_free.rcu_head);
1193 		rcu_head_initialized = true;
1194 	}
1195 
1196 	if (ds_initialized)
1197 		return;
1198 
1199 	ds_initialized = true;
1200 
1201 	INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1202 	INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1203 
1204 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1205 		list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1206 		INIT_LIST_HEAD(&lock_classes[i].locks_after);
1207 		INIT_LIST_HEAD(&lock_classes[i].locks_before);
1208 	}
1209 	init_chain_block_buckets();
1210 }
1211 
1212 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1213 {
1214 	unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1215 
1216 	return lock_keys_hash + hash;
1217 }
1218 
1219 /* Register a dynamically allocated key. */
1220 void lockdep_register_key(struct lock_class_key *key)
1221 {
1222 	struct hlist_head *hash_head;
1223 	struct lock_class_key *k;
1224 	unsigned long flags;
1225 
1226 	if (WARN_ON_ONCE(static_obj(key)))
1227 		return;
1228 	hash_head = keyhashentry(key);
1229 
1230 	raw_local_irq_save(flags);
1231 	if (!graph_lock())
1232 		goto restore_irqs;
1233 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1234 		if (WARN_ON_ONCE(k == key))
1235 			goto out_unlock;
1236 	}
1237 	hlist_add_head_rcu(&key->hash_entry, hash_head);
1238 out_unlock:
1239 	graph_unlock();
1240 restore_irqs:
1241 	raw_local_irq_restore(flags);
1242 }
1243 EXPORT_SYMBOL_GPL(lockdep_register_key);
1244 
1245 /* Check whether a key has been registered as a dynamic key. */
1246 static bool is_dynamic_key(const struct lock_class_key *key)
1247 {
1248 	struct hlist_head *hash_head;
1249 	struct lock_class_key *k;
1250 	bool found = false;
1251 
1252 	if (WARN_ON_ONCE(static_obj(key)))
1253 		return false;
1254 
1255 	/*
1256 	 * If lock debugging is disabled lock_keys_hash[] may contain
1257 	 * pointers to memory that has already been freed. Avoid triggering
1258 	 * a use-after-free in that case by returning early.
1259 	 */
1260 	if (!debug_locks)
1261 		return true;
1262 
1263 	hash_head = keyhashentry(key);
1264 
1265 	rcu_read_lock();
1266 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1267 		if (k == key) {
1268 			found = true;
1269 			break;
1270 		}
1271 	}
1272 	rcu_read_unlock();
1273 
1274 	return found;
1275 }
1276 
1277 /*
1278  * Register a lock's class in the hash-table, if the class is not present
1279  * yet. Otherwise we look it up. We cache the result in the lock object
1280  * itself, so actual lookup of the hash should be once per lock object.
1281  */
1282 static struct lock_class *
1283 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1284 {
1285 	struct lockdep_subclass_key *key;
1286 	struct hlist_head *hash_head;
1287 	struct lock_class *class;
1288 	int idx;
1289 
1290 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1291 
1292 	class = look_up_lock_class(lock, subclass);
1293 	if (likely(class))
1294 		goto out_set_class_cache;
1295 
1296 	if (!lock->key) {
1297 		if (!assign_lock_key(lock))
1298 			return NULL;
1299 	} else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1300 		return NULL;
1301 	}
1302 
1303 	key = lock->key->subkeys + subclass;
1304 	hash_head = classhashentry(key);
1305 
1306 	if (!graph_lock()) {
1307 		return NULL;
1308 	}
1309 	/*
1310 	 * We have to do the hash-walk again, to avoid races
1311 	 * with another CPU:
1312 	 */
1313 	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1314 		if (class->key == key)
1315 			goto out_unlock_set;
1316 	}
1317 
1318 	init_data_structures_once();
1319 
1320 	/* Allocate a new lock class and add it to the hash. */
1321 	class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1322 					 lock_entry);
1323 	if (!class) {
1324 		if (!debug_locks_off_graph_unlock()) {
1325 			return NULL;
1326 		}
1327 
1328 		print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1329 		dump_stack();
1330 		return NULL;
1331 	}
1332 	nr_lock_classes++;
1333 	__set_bit(class - lock_classes, lock_classes_in_use);
1334 	debug_atomic_inc(nr_unused_locks);
1335 	class->key = key;
1336 	class->name = lock->name;
1337 	class->subclass = subclass;
1338 	WARN_ON_ONCE(!list_empty(&class->locks_before));
1339 	WARN_ON_ONCE(!list_empty(&class->locks_after));
1340 	class->name_version = count_matching_names(class);
1341 	class->wait_type_inner = lock->wait_type_inner;
1342 	class->wait_type_outer = lock->wait_type_outer;
1343 	class->lock_type = lock->lock_type;
1344 	/*
1345 	 * We use RCU's safe list-add method to make
1346 	 * parallel walking of the hash-list safe:
1347 	 */
1348 	hlist_add_head_rcu(&class->hash_entry, hash_head);
1349 	/*
1350 	 * Remove the class from the free list and add it to the global list
1351 	 * of classes.
1352 	 */
1353 	list_move_tail(&class->lock_entry, &all_lock_classes);
1354 	idx = class - lock_classes;
1355 	if (idx > max_lock_class_idx)
1356 		max_lock_class_idx = idx;
1357 
1358 	if (verbose(class)) {
1359 		graph_unlock();
1360 
1361 		printk("\nnew class %px: %s", class->key, class->name);
1362 		if (class->name_version > 1)
1363 			printk(KERN_CONT "#%d", class->name_version);
1364 		printk(KERN_CONT "\n");
1365 		dump_stack();
1366 
1367 		if (!graph_lock()) {
1368 			return NULL;
1369 		}
1370 	}
1371 out_unlock_set:
1372 	graph_unlock();
1373 
1374 out_set_class_cache:
1375 	if (!subclass || force)
1376 		lock->class_cache[0] = class;
1377 	else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1378 		lock->class_cache[subclass] = class;
1379 
1380 	/*
1381 	 * Hash collision, did we smoke some? We found a class with a matching
1382 	 * hash but the subclass -- which is hashed in -- didn't match.
1383 	 */
1384 	if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1385 		return NULL;
1386 
1387 	return class;
1388 }
1389 
1390 #ifdef CONFIG_PROVE_LOCKING
1391 /*
1392  * Allocate a lockdep entry. (assumes the graph_lock held, returns
1393  * with NULL on failure)
1394  */
1395 static struct lock_list *alloc_list_entry(void)
1396 {
1397 	int idx = find_first_zero_bit(list_entries_in_use,
1398 				      ARRAY_SIZE(list_entries));
1399 
1400 	if (idx >= ARRAY_SIZE(list_entries)) {
1401 		if (!debug_locks_off_graph_unlock())
1402 			return NULL;
1403 
1404 		print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1405 		dump_stack();
1406 		return NULL;
1407 	}
1408 	nr_list_entries++;
1409 	__set_bit(idx, list_entries_in_use);
1410 	return list_entries + idx;
1411 }
1412 
1413 /*
1414  * Add a new dependency to the head of the list:
1415  */
1416 static int add_lock_to_list(struct lock_class *this,
1417 			    struct lock_class *links_to, struct list_head *head,
1418 			    u16 distance, u8 dep,
1419 			    const struct lock_trace *trace)
1420 {
1421 	struct lock_list *entry;
1422 	/*
1423 	 * Lock not present yet - get a new dependency struct and
1424 	 * add it to the list:
1425 	 */
1426 	entry = alloc_list_entry();
1427 	if (!entry)
1428 		return 0;
1429 
1430 	entry->class = this;
1431 	entry->links_to = links_to;
1432 	entry->dep = dep;
1433 	entry->distance = distance;
1434 	entry->trace = trace;
1435 	/*
1436 	 * Both allocation and removal are done under the graph lock; but
1437 	 * iteration is under RCU-sched; see look_up_lock_class() and
1438 	 * lockdep_free_key_range().
1439 	 */
1440 	list_add_tail_rcu(&entry->entry, head);
1441 
1442 	return 1;
1443 }
1444 
1445 /*
1446  * For good efficiency of modular, we use power of 2
1447  */
1448 #define MAX_CIRCULAR_QUEUE_SIZE		(1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS)
1449 #define CQ_MASK				(MAX_CIRCULAR_QUEUE_SIZE-1)
1450 
1451 /*
1452  * The circular_queue and helpers are used to implement graph
1453  * breadth-first search (BFS) algorithm, by which we can determine
1454  * whether there is a path from a lock to another. In deadlock checks,
1455  * a path from the next lock to be acquired to a previous held lock
1456  * indicates that adding the <prev> -> <next> lock dependency will
1457  * produce a circle in the graph. Breadth-first search instead of
1458  * depth-first search is used in order to find the shortest (circular)
1459  * path.
1460  */
1461 struct circular_queue {
1462 	struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1463 	unsigned int  front, rear;
1464 };
1465 
1466 static struct circular_queue lock_cq;
1467 
1468 unsigned int max_bfs_queue_depth;
1469 
1470 static unsigned int lockdep_dependency_gen_id;
1471 
1472 static inline void __cq_init(struct circular_queue *cq)
1473 {
1474 	cq->front = cq->rear = 0;
1475 	lockdep_dependency_gen_id++;
1476 }
1477 
1478 static inline int __cq_empty(struct circular_queue *cq)
1479 {
1480 	return (cq->front == cq->rear);
1481 }
1482 
1483 static inline int __cq_full(struct circular_queue *cq)
1484 {
1485 	return ((cq->rear + 1) & CQ_MASK) == cq->front;
1486 }
1487 
1488 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1489 {
1490 	if (__cq_full(cq))
1491 		return -1;
1492 
1493 	cq->element[cq->rear] = elem;
1494 	cq->rear = (cq->rear + 1) & CQ_MASK;
1495 	return 0;
1496 }
1497 
1498 /*
1499  * Dequeue an element from the circular_queue, return a lock_list if
1500  * the queue is not empty, or NULL if otherwise.
1501  */
1502 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1503 {
1504 	struct lock_list * lock;
1505 
1506 	if (__cq_empty(cq))
1507 		return NULL;
1508 
1509 	lock = cq->element[cq->front];
1510 	cq->front = (cq->front + 1) & CQ_MASK;
1511 
1512 	return lock;
1513 }
1514 
1515 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1516 {
1517 	return (cq->rear - cq->front) & CQ_MASK;
1518 }
1519 
1520 static inline void mark_lock_accessed(struct lock_list *lock)
1521 {
1522 	lock->class->dep_gen_id = lockdep_dependency_gen_id;
1523 }
1524 
1525 static inline void visit_lock_entry(struct lock_list *lock,
1526 				    struct lock_list *parent)
1527 {
1528 	lock->parent = parent;
1529 }
1530 
1531 static inline unsigned long lock_accessed(struct lock_list *lock)
1532 {
1533 	return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1534 }
1535 
1536 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1537 {
1538 	return child->parent;
1539 }
1540 
1541 static inline int get_lock_depth(struct lock_list *child)
1542 {
1543 	int depth = 0;
1544 	struct lock_list *parent;
1545 
1546 	while ((parent = get_lock_parent(child))) {
1547 		child = parent;
1548 		depth++;
1549 	}
1550 	return depth;
1551 }
1552 
1553 /*
1554  * Return the forward or backward dependency list.
1555  *
1556  * @lock:   the lock_list to get its class's dependency list
1557  * @offset: the offset to struct lock_class to determine whether it is
1558  *          locks_after or locks_before
1559  */
1560 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1561 {
1562 	void *lock_class = lock->class;
1563 
1564 	return lock_class + offset;
1565 }
1566 /*
1567  * Return values of a bfs search:
1568  *
1569  * BFS_E* indicates an error
1570  * BFS_R* indicates a result (match or not)
1571  *
1572  * BFS_EINVALIDNODE: Find a invalid node in the graph.
1573  *
1574  * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1575  *
1576  * BFS_RMATCH: Find the matched node in the graph, and put that node into
1577  *             *@target_entry.
1578  *
1579  * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1580  *               _unchanged_.
1581  */
1582 enum bfs_result {
1583 	BFS_EINVALIDNODE = -2,
1584 	BFS_EQUEUEFULL = -1,
1585 	BFS_RMATCH = 0,
1586 	BFS_RNOMATCH = 1,
1587 };
1588 
1589 /*
1590  * bfs_result < 0 means error
1591  */
1592 static inline bool bfs_error(enum bfs_result res)
1593 {
1594 	return res < 0;
1595 }
1596 
1597 /*
1598  * DEP_*_BIT in lock_list::dep
1599  *
1600  * For dependency @prev -> @next:
1601  *
1602  *   SR: @prev is shared reader (->read != 0) and @next is recursive reader
1603  *       (->read == 2)
1604  *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1605  *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1606  *   EN: @prev is exclusive locker and @next is non-recursive locker
1607  *
1608  * Note that we define the value of DEP_*_BITs so that:
1609  *   bit0 is prev->read == 0
1610  *   bit1 is next->read != 2
1611  */
1612 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1613 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1614 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1615 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1616 
1617 #define DEP_SR_MASK (1U << (DEP_SR_BIT))
1618 #define DEP_ER_MASK (1U << (DEP_ER_BIT))
1619 #define DEP_SN_MASK (1U << (DEP_SN_BIT))
1620 #define DEP_EN_MASK (1U << (DEP_EN_BIT))
1621 
1622 static inline unsigned int
1623 __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1624 {
1625 	return (prev->read == 0) + ((next->read != 2) << 1);
1626 }
1627 
1628 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1629 {
1630 	return 1U << __calc_dep_bit(prev, next);
1631 }
1632 
1633 /*
1634  * calculate the dep_bit for backwards edges. We care about whether @prev is
1635  * shared and whether @next is recursive.
1636  */
1637 static inline unsigned int
1638 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1639 {
1640 	return (next->read != 2) + ((prev->read == 0) << 1);
1641 }
1642 
1643 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1644 {
1645 	return 1U << __calc_dep_bitb(prev, next);
1646 }
1647 
1648 /*
1649  * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1650  * search.
1651  */
1652 static inline void __bfs_init_root(struct lock_list *lock,
1653 				   struct lock_class *class)
1654 {
1655 	lock->class = class;
1656 	lock->parent = NULL;
1657 	lock->only_xr = 0;
1658 }
1659 
1660 /*
1661  * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1662  * root for a BFS search.
1663  *
1664  * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1665  * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1666  * and -(S*)->.
1667  */
1668 static inline void bfs_init_root(struct lock_list *lock,
1669 				 struct held_lock *hlock)
1670 {
1671 	__bfs_init_root(lock, hlock_class(hlock));
1672 	lock->only_xr = (hlock->read == 2);
1673 }
1674 
1675 /*
1676  * Similar to bfs_init_root() but initialize the root for backwards BFS.
1677  *
1678  * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1679  * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1680  * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1681  */
1682 static inline void bfs_init_rootb(struct lock_list *lock,
1683 				  struct held_lock *hlock)
1684 {
1685 	__bfs_init_root(lock, hlock_class(hlock));
1686 	lock->only_xr = (hlock->read != 0);
1687 }
1688 
1689 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1690 {
1691 	if (!lock || !lock->parent)
1692 		return NULL;
1693 
1694 	return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1695 				     &lock->entry, struct lock_list, entry);
1696 }
1697 
1698 /*
1699  * Breadth-First Search to find a strong path in the dependency graph.
1700  *
1701  * @source_entry: the source of the path we are searching for.
1702  * @data: data used for the second parameter of @match function
1703  * @match: match function for the search
1704  * @target_entry: pointer to the target of a matched path
1705  * @offset: the offset to struct lock_class to determine whether it is
1706  *          locks_after or locks_before
1707  *
1708  * We may have multiple edges (considering different kinds of dependencies,
1709  * e.g. ER and SN) between two nodes in the dependency graph. But
1710  * only the strong dependency path in the graph is relevant to deadlocks. A
1711  * strong dependency path is a dependency path that doesn't have two adjacent
1712  * dependencies as -(*R)-> -(S*)->, please see:
1713  *
1714  *         Documentation/locking/lockdep-design.rst
1715  *
1716  * for more explanation of the definition of strong dependency paths
1717  *
1718  * In __bfs(), we only traverse in the strong dependency path:
1719  *
1720  *     In lock_list::only_xr, we record whether the previous dependency only
1721  *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1722  *     filter out any -(S*)-> in the current dependency and after that, the
1723  *     ->only_xr is set according to whether we only have -(*R)-> left.
1724  */
1725 static enum bfs_result __bfs(struct lock_list *source_entry,
1726 			     void *data,
1727 			     bool (*match)(struct lock_list *entry, void *data),
1728 			     bool (*skip)(struct lock_list *entry, void *data),
1729 			     struct lock_list **target_entry,
1730 			     int offset)
1731 {
1732 	struct circular_queue *cq = &lock_cq;
1733 	struct lock_list *lock = NULL;
1734 	struct lock_list *entry;
1735 	struct list_head *head;
1736 	unsigned int cq_depth;
1737 	bool first;
1738 
1739 	lockdep_assert_locked();
1740 
1741 	__cq_init(cq);
1742 	__cq_enqueue(cq, source_entry);
1743 
1744 	while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1745 		if (!lock->class)
1746 			return BFS_EINVALIDNODE;
1747 
1748 		/*
1749 		 * Step 1: check whether we already finish on this one.
1750 		 *
1751 		 * If we have visited all the dependencies from this @lock to
1752 		 * others (iow, if we have visited all lock_list entries in
1753 		 * @lock->class->locks_{after,before}) we skip, otherwise go
1754 		 * and visit all the dependencies in the list and mark this
1755 		 * list accessed.
1756 		 */
1757 		if (lock_accessed(lock))
1758 			continue;
1759 		else
1760 			mark_lock_accessed(lock);
1761 
1762 		/*
1763 		 * Step 2: check whether prev dependency and this form a strong
1764 		 *         dependency path.
1765 		 */
1766 		if (lock->parent) { /* Parent exists, check prev dependency */
1767 			u8 dep = lock->dep;
1768 			bool prev_only_xr = lock->parent->only_xr;
1769 
1770 			/*
1771 			 * Mask out all -(S*)-> if we only have *R in previous
1772 			 * step, because -(*R)-> -(S*)-> don't make up a strong
1773 			 * dependency.
1774 			 */
1775 			if (prev_only_xr)
1776 				dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1777 
1778 			/* If nothing left, we skip */
1779 			if (!dep)
1780 				continue;
1781 
1782 			/* If there are only -(*R)-> left, set that for the next step */
1783 			lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1784 		}
1785 
1786 		/*
1787 		 * Step 3: we haven't visited this and there is a strong
1788 		 *         dependency path to this, so check with @match.
1789 		 *         If @skip is provide and returns true, we skip this
1790 		 *         lock (and any path this lock is in).
1791 		 */
1792 		if (skip && skip(lock, data))
1793 			continue;
1794 
1795 		if (match(lock, data)) {
1796 			*target_entry = lock;
1797 			return BFS_RMATCH;
1798 		}
1799 
1800 		/*
1801 		 * Step 4: if not match, expand the path by adding the
1802 		 *         forward or backwards dependencies in the search
1803 		 *
1804 		 */
1805 		first = true;
1806 		head = get_dep_list(lock, offset);
1807 		list_for_each_entry_rcu(entry, head, entry) {
1808 			visit_lock_entry(entry, lock);
1809 
1810 			/*
1811 			 * Note we only enqueue the first of the list into the
1812 			 * queue, because we can always find a sibling
1813 			 * dependency from one (see __bfs_next()), as a result
1814 			 * the space of queue is saved.
1815 			 */
1816 			if (!first)
1817 				continue;
1818 
1819 			first = false;
1820 
1821 			if (__cq_enqueue(cq, entry))
1822 				return BFS_EQUEUEFULL;
1823 
1824 			cq_depth = __cq_get_elem_count(cq);
1825 			if (max_bfs_queue_depth < cq_depth)
1826 				max_bfs_queue_depth = cq_depth;
1827 		}
1828 	}
1829 
1830 	return BFS_RNOMATCH;
1831 }
1832 
1833 static inline enum bfs_result
1834 __bfs_forwards(struct lock_list *src_entry,
1835 	       void *data,
1836 	       bool (*match)(struct lock_list *entry, void *data),
1837 	       bool (*skip)(struct lock_list *entry, void *data),
1838 	       struct lock_list **target_entry)
1839 {
1840 	return __bfs(src_entry, data, match, skip, target_entry,
1841 		     offsetof(struct lock_class, locks_after));
1842 
1843 }
1844 
1845 static inline enum bfs_result
1846 __bfs_backwards(struct lock_list *src_entry,
1847 		void *data,
1848 		bool (*match)(struct lock_list *entry, void *data),
1849 	       bool (*skip)(struct lock_list *entry, void *data),
1850 		struct lock_list **target_entry)
1851 {
1852 	return __bfs(src_entry, data, match, skip, target_entry,
1853 		     offsetof(struct lock_class, locks_before));
1854 
1855 }
1856 
1857 static void print_lock_trace(const struct lock_trace *trace,
1858 			     unsigned int spaces)
1859 {
1860 	stack_trace_print(trace->entries, trace->nr_entries, spaces);
1861 }
1862 
1863 /*
1864  * Print a dependency chain entry (this is only done when a deadlock
1865  * has been detected):
1866  */
1867 static noinline void
1868 print_circular_bug_entry(struct lock_list *target, int depth)
1869 {
1870 	if (debug_locks_silent)
1871 		return;
1872 	printk("\n-> #%u", depth);
1873 	print_lock_name(NULL, target->class);
1874 	printk(KERN_CONT ":\n");
1875 	print_lock_trace(target->trace, 6);
1876 }
1877 
1878 static void
1879 print_circular_lock_scenario(struct held_lock *src,
1880 			     struct held_lock *tgt,
1881 			     struct lock_list *prt)
1882 {
1883 	struct lock_class *source = hlock_class(src);
1884 	struct lock_class *target = hlock_class(tgt);
1885 	struct lock_class *parent = prt->class;
1886 	int src_read = src->read;
1887 	int tgt_read = tgt->read;
1888 
1889 	/*
1890 	 * A direct locking problem where unsafe_class lock is taken
1891 	 * directly by safe_class lock, then all we need to show
1892 	 * is the deadlock scenario, as it is obvious that the
1893 	 * unsafe lock is taken under the safe lock.
1894 	 *
1895 	 * But if there is a chain instead, where the safe lock takes
1896 	 * an intermediate lock (middle_class) where this lock is
1897 	 * not the same as the safe lock, then the lock chain is
1898 	 * used to describe the problem. Otherwise we would need
1899 	 * to show a different CPU case for each link in the chain
1900 	 * from the safe_class lock to the unsafe_class lock.
1901 	 */
1902 	if (parent != source) {
1903 		printk("Chain exists of:\n  ");
1904 		__print_lock_name(src, source);
1905 		printk(KERN_CONT " --> ");
1906 		__print_lock_name(NULL, parent);
1907 		printk(KERN_CONT " --> ");
1908 		__print_lock_name(tgt, target);
1909 		printk(KERN_CONT "\n\n");
1910 	}
1911 
1912 	printk(" Possible unsafe locking scenario:\n\n");
1913 	printk("       CPU0                    CPU1\n");
1914 	printk("       ----                    ----\n");
1915 	if (tgt_read != 0)
1916 		printk("  rlock(");
1917 	else
1918 		printk("  lock(");
1919 	__print_lock_name(tgt, target);
1920 	printk(KERN_CONT ");\n");
1921 	printk("                               lock(");
1922 	__print_lock_name(NULL, parent);
1923 	printk(KERN_CONT ");\n");
1924 	printk("                               lock(");
1925 	__print_lock_name(tgt, target);
1926 	printk(KERN_CONT ");\n");
1927 	if (src_read != 0)
1928 		printk("  rlock(");
1929 	else if (src->sync)
1930 		printk("  sync(");
1931 	else
1932 		printk("  lock(");
1933 	__print_lock_name(src, source);
1934 	printk(KERN_CONT ");\n");
1935 	printk("\n *** DEADLOCK ***\n\n");
1936 }
1937 
1938 /*
1939  * When a circular dependency is detected, print the
1940  * header first:
1941  */
1942 static noinline void
1943 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1944 			struct held_lock *check_src,
1945 			struct held_lock *check_tgt)
1946 {
1947 	struct task_struct *curr = current;
1948 
1949 	if (debug_locks_silent)
1950 		return;
1951 
1952 	pr_warn("\n");
1953 	pr_warn("======================================================\n");
1954 	pr_warn("WARNING: possible circular locking dependency detected\n");
1955 	print_kernel_ident();
1956 	pr_warn("------------------------------------------------------\n");
1957 	pr_warn("%s/%d is trying to acquire lock:\n",
1958 		curr->comm, task_pid_nr(curr));
1959 	print_lock(check_src);
1960 
1961 	pr_warn("\nbut task is already holding lock:\n");
1962 
1963 	print_lock(check_tgt);
1964 	pr_warn("\nwhich lock already depends on the new lock.\n\n");
1965 	pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1966 
1967 	print_circular_bug_entry(entry, depth);
1968 }
1969 
1970 /*
1971  * We are about to add A -> B into the dependency graph, and in __bfs() a
1972  * strong dependency path A -> .. -> B is found: hlock_class equals
1973  * entry->class.
1974  *
1975  * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1976  * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1977  * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1978  * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1979  * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1980  * having dependency A -> B, we could already get a equivalent path ..-> A ->
1981  * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant.
1982  *
1983  * We need to make sure both the start and the end of A -> .. -> B is not
1984  * weaker than A -> B. For the start part, please see the comment in
1985  * check_redundant(). For the end part, we need:
1986  *
1987  * Either
1988  *
1989  *     a) A -> B is -(*R)-> (everything is not weaker than that)
1990  *
1991  * or
1992  *
1993  *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1994  *
1995  */
1996 static inline bool hlock_equal(struct lock_list *entry, void *data)
1997 {
1998 	struct held_lock *hlock = (struct held_lock *)data;
1999 
2000 	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
2001 	       (hlock->read == 2 ||  /* A -> B is -(*R)-> */
2002 		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
2003 }
2004 
2005 /*
2006  * We are about to add B -> A into the dependency graph, and in __bfs() a
2007  * strong dependency path A -> .. -> B is found: hlock_class equals
2008  * entry->class.
2009  *
2010  * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
2011  * dependency cycle, that means:
2012  *
2013  * Either
2014  *
2015  *     a) B -> A is -(E*)->
2016  *
2017  * or
2018  *
2019  *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
2020  *
2021  * as then we don't have -(*R)-> -(S*)-> in the cycle.
2022  */
2023 static inline bool hlock_conflict(struct lock_list *entry, void *data)
2024 {
2025 	struct held_lock *hlock = (struct held_lock *)data;
2026 
2027 	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
2028 	       (hlock->read == 0 || /* B -> A is -(E*)-> */
2029 		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
2030 }
2031 
2032 static noinline void print_circular_bug(struct lock_list *this,
2033 				struct lock_list *target,
2034 				struct held_lock *check_src,
2035 				struct held_lock *check_tgt)
2036 {
2037 	struct task_struct *curr = current;
2038 	struct lock_list *parent;
2039 	struct lock_list *first_parent;
2040 	int depth;
2041 
2042 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2043 		return;
2044 
2045 	this->trace = save_trace();
2046 	if (!this->trace)
2047 		return;
2048 
2049 	depth = get_lock_depth(target);
2050 
2051 	print_circular_bug_header(target, depth, check_src, check_tgt);
2052 
2053 	parent = get_lock_parent(target);
2054 	first_parent = parent;
2055 
2056 	while (parent) {
2057 		print_circular_bug_entry(parent, --depth);
2058 		parent = get_lock_parent(parent);
2059 	}
2060 
2061 	printk("\nother info that might help us debug this:\n\n");
2062 	print_circular_lock_scenario(check_src, check_tgt,
2063 				     first_parent);
2064 
2065 	lockdep_print_held_locks(curr);
2066 
2067 	printk("\nstack backtrace:\n");
2068 	dump_stack();
2069 }
2070 
2071 static noinline void print_bfs_bug(int ret)
2072 {
2073 	if (!debug_locks_off_graph_unlock())
2074 		return;
2075 
2076 	/*
2077 	 * Breadth-first-search failed, graph got corrupted?
2078 	 */
2079 	WARN(1, "lockdep bfs error:%d\n", ret);
2080 }
2081 
2082 static bool noop_count(struct lock_list *entry, void *data)
2083 {
2084 	(*(unsigned long *)data)++;
2085 	return false;
2086 }
2087 
2088 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2089 {
2090 	unsigned long  count = 0;
2091 	struct lock_list *target_entry;
2092 
2093 	__bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry);
2094 
2095 	return count;
2096 }
2097 unsigned long lockdep_count_forward_deps(struct lock_class *class)
2098 {
2099 	unsigned long ret, flags;
2100 	struct lock_list this;
2101 
2102 	__bfs_init_root(&this, class);
2103 
2104 	raw_local_irq_save(flags);
2105 	lockdep_lock();
2106 	ret = __lockdep_count_forward_deps(&this);
2107 	lockdep_unlock();
2108 	raw_local_irq_restore(flags);
2109 
2110 	return ret;
2111 }
2112 
2113 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2114 {
2115 	unsigned long  count = 0;
2116 	struct lock_list *target_entry;
2117 
2118 	__bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry);
2119 
2120 	return count;
2121 }
2122 
2123 unsigned long lockdep_count_backward_deps(struct lock_class *class)
2124 {
2125 	unsigned long ret, flags;
2126 	struct lock_list this;
2127 
2128 	__bfs_init_root(&this, class);
2129 
2130 	raw_local_irq_save(flags);
2131 	lockdep_lock();
2132 	ret = __lockdep_count_backward_deps(&this);
2133 	lockdep_unlock();
2134 	raw_local_irq_restore(flags);
2135 
2136 	return ret;
2137 }
2138 
2139 /*
2140  * Check that the dependency graph starting at <src> can lead to
2141  * <target> or not.
2142  */
2143 static noinline enum bfs_result
2144 check_path(struct held_lock *target, struct lock_list *src_entry,
2145 	   bool (*match)(struct lock_list *entry, void *data),
2146 	   bool (*skip)(struct lock_list *entry, void *data),
2147 	   struct lock_list **target_entry)
2148 {
2149 	enum bfs_result ret;
2150 
2151 	ret = __bfs_forwards(src_entry, target, match, skip, target_entry);
2152 
2153 	if (unlikely(bfs_error(ret)))
2154 		print_bfs_bug(ret);
2155 
2156 	return ret;
2157 }
2158 
2159 static void print_deadlock_bug(struct task_struct *, struct held_lock *, struct held_lock *);
2160 
2161 /*
2162  * Prove that the dependency graph starting at <src> can not
2163  * lead to <target>. If it can, there is a circle when adding
2164  * <target> -> <src> dependency.
2165  *
2166  * Print an error and return BFS_RMATCH if it does.
2167  */
2168 static noinline enum bfs_result
2169 check_noncircular(struct held_lock *src, struct held_lock *target,
2170 		  struct lock_trace **const trace)
2171 {
2172 	enum bfs_result ret;
2173 	struct lock_list *target_entry;
2174 	struct lock_list src_entry;
2175 
2176 	bfs_init_root(&src_entry, src);
2177 
2178 	debug_atomic_inc(nr_cyclic_checks);
2179 
2180 	ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry);
2181 
2182 	if (unlikely(ret == BFS_RMATCH)) {
2183 		if (!*trace) {
2184 			/*
2185 			 * If save_trace fails here, the printing might
2186 			 * trigger a WARN but because of the !nr_entries it
2187 			 * should not do bad things.
2188 			 */
2189 			*trace = save_trace();
2190 		}
2191 
2192 		if (src->class_idx == target->class_idx)
2193 			print_deadlock_bug(current, src, target);
2194 		else
2195 			print_circular_bug(&src_entry, target_entry, src, target);
2196 	}
2197 
2198 	return ret;
2199 }
2200 
2201 #ifdef CONFIG_TRACE_IRQFLAGS
2202 
2203 /*
2204  * Forwards and backwards subgraph searching, for the purposes of
2205  * proving that two subgraphs can be connected by a new dependency
2206  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2207  *
2208  * A irq safe->unsafe deadlock happens with the following conditions:
2209  *
2210  * 1) We have a strong dependency path A -> ... -> B
2211  *
2212  * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2213  *    irq can create a new dependency B -> A (consider the case that a holder
2214  *    of B gets interrupted by an irq whose handler will try to acquire A).
2215  *
2216  * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2217  *    strong circle:
2218  *
2219  *      For the usage bits of B:
2220  *        a) if A -> B is -(*N)->, then B -> A could be any type, so any
2221  *           ENABLED_IRQ usage suffices.
2222  *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2223  *           ENABLED_IRQ_*_READ usage suffices.
2224  *
2225  *      For the usage bits of A:
2226  *        c) if A -> B is -(E*)->, then B -> A could be any type, so any
2227  *           USED_IN_IRQ usage suffices.
2228  *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2229  *           USED_IN_IRQ_*_READ usage suffices.
2230  */
2231 
2232 /*
2233  * There is a strong dependency path in the dependency graph: A -> B, and now
2234  * we need to decide which usage bit of A should be accumulated to detect
2235  * safe->unsafe bugs.
2236  *
2237  * Note that usage_accumulate() is used in backwards search, so ->only_xr
2238  * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2239  *
2240  * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2241  * path, any usage of A should be considered. Otherwise, we should only
2242  * consider _READ usage.
2243  */
2244 static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2245 {
2246 	if (!entry->only_xr)
2247 		*(unsigned long *)mask |= entry->class->usage_mask;
2248 	else /* Mask out _READ usage bits */
2249 		*(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2250 
2251 	return false;
2252 }
2253 
2254 /*
2255  * There is a strong dependency path in the dependency graph: A -> B, and now
2256  * we need to decide which usage bit of B conflicts with the usage bits of A,
2257  * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2258  *
2259  * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2260  * path, any usage of B should be considered. Otherwise, we should only
2261  * consider _READ usage.
2262  */
2263 static inline bool usage_match(struct lock_list *entry, void *mask)
2264 {
2265 	if (!entry->only_xr)
2266 		return !!(entry->class->usage_mask & *(unsigned long *)mask);
2267 	else /* Mask out _READ usage bits */
2268 		return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2269 }
2270 
2271 static inline bool usage_skip(struct lock_list *entry, void *mask)
2272 {
2273 	/*
2274 	 * Skip local_lock() for irq inversion detection.
2275 	 *
2276 	 * For !RT, local_lock() is not a real lock, so it won't carry any
2277 	 * dependency.
2278 	 *
2279 	 * For RT, an irq inversion happens when we have lock A and B, and on
2280 	 * some CPU we can have:
2281 	 *
2282 	 *	lock(A);
2283 	 *	<interrupted>
2284 	 *	  lock(B);
2285 	 *
2286 	 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A.
2287 	 *
2288 	 * Now we prove local_lock() cannot exist in that dependency. First we
2289 	 * have the observation for any lock chain L1 -> ... -> Ln, for any
2290 	 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise
2291 	 * wait context check will complain. And since B is not a sleep lock,
2292 	 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of
2293 	 * local_lock() is 3, which is greater than 2, therefore there is no
2294 	 * way the local_lock() exists in the dependency B -> ... -> A.
2295 	 *
2296 	 * As a result, we will skip local_lock(), when we search for irq
2297 	 * inversion bugs.
2298 	 */
2299 	if (entry->class->lock_type == LD_LOCK_PERCPU) {
2300 		if (DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG))
2301 			return false;
2302 
2303 		return true;
2304 	}
2305 
2306 	return false;
2307 }
2308 
2309 /*
2310  * Find a node in the forwards-direction dependency sub-graph starting
2311  * at @root->class that matches @bit.
2312  *
2313  * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2314  * into *@target_entry.
2315  */
2316 static enum bfs_result
2317 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2318 			struct lock_list **target_entry)
2319 {
2320 	enum bfs_result result;
2321 
2322 	debug_atomic_inc(nr_find_usage_forwards_checks);
2323 
2324 	result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2325 
2326 	return result;
2327 }
2328 
2329 /*
2330  * Find a node in the backwards-direction dependency sub-graph starting
2331  * at @root->class that matches @bit.
2332  */
2333 static enum bfs_result
2334 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2335 			struct lock_list **target_entry)
2336 {
2337 	enum bfs_result result;
2338 
2339 	debug_atomic_inc(nr_find_usage_backwards_checks);
2340 
2341 	result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2342 
2343 	return result;
2344 }
2345 
2346 static void print_lock_class_header(struct lock_class *class, int depth)
2347 {
2348 	int bit;
2349 
2350 	printk("%*s->", depth, "");
2351 	print_lock_name(NULL, class);
2352 #ifdef CONFIG_DEBUG_LOCKDEP
2353 	printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2354 #endif
2355 	printk(KERN_CONT " {\n");
2356 
2357 	for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2358 		if (class->usage_mask & (1 << bit)) {
2359 			int len = depth;
2360 
2361 			len += printk("%*s   %s", depth, "", usage_str[bit]);
2362 			len += printk(KERN_CONT " at:\n");
2363 			print_lock_trace(class->usage_traces[bit], len);
2364 		}
2365 	}
2366 	printk("%*s }\n", depth, "");
2367 
2368 	printk("%*s ... key      at: [<%px>] %pS\n",
2369 		depth, "", class->key, class->key);
2370 }
2371 
2372 /*
2373  * Dependency path printing:
2374  *
2375  * After BFS we get a lock dependency path (linked via ->parent of lock_list),
2376  * printing out each lock in the dependency path will help on understanding how
2377  * the deadlock could happen. Here are some details about dependency path
2378  * printing:
2379  *
2380  * 1)	A lock_list can be either forwards or backwards for a lock dependency,
2381  * 	for a lock dependency A -> B, there are two lock_lists:
2382  *
2383  * 	a)	lock_list in the ->locks_after list of A, whose ->class is B and
2384  * 		->links_to is A. In this case, we can say the lock_list is
2385  * 		"A -> B" (forwards case).
2386  *
2387  * 	b)	lock_list in the ->locks_before list of B, whose ->class is A
2388  * 		and ->links_to is B. In this case, we can say the lock_list is
2389  * 		"B <- A" (bacwards case).
2390  *
2391  * 	The ->trace of both a) and b) point to the call trace where B was
2392  * 	acquired with A held.
2393  *
2394  * 2)	A "helper" lock_list is introduced during BFS, this lock_list doesn't
2395  * 	represent a certain lock dependency, it only provides an initial entry
2396  * 	for BFS. For example, BFS may introduce a "helper" lock_list whose
2397  * 	->class is A, as a result BFS will search all dependencies starting with
2398  * 	A, e.g. A -> B or A -> C.
2399  *
2400  * 	The notation of a forwards helper lock_list is like "-> A", which means
2401  * 	we should search the forwards dependencies starting with "A", e.g A -> B
2402  * 	or A -> C.
2403  *
2404  * 	The notation of a bacwards helper lock_list is like "<- B", which means
2405  * 	we should search the backwards dependencies ending with "B", e.g.
2406  * 	B <- A or B <- C.
2407  */
2408 
2409 /*
2410  * printk the shortest lock dependencies from @root to @leaf in reverse order.
2411  *
2412  * We have a lock dependency path as follow:
2413  *
2414  *    @root                                                                 @leaf
2415  *      |                                                                     |
2416  *      V                                                                     V
2417  *	          ->parent                                   ->parent
2418  * | lock_list | <--------- | lock_list | ... | lock_list  | <--------- | lock_list |
2419  * |    -> L1  |            | L1 -> L2  | ... |Ln-2 -> Ln-1|            | Ln-1 -> Ln|
2420  *
2421  * , so it's natural that we start from @leaf and print every ->class and
2422  * ->trace until we reach the @root.
2423  */
2424 static void __used
2425 print_shortest_lock_dependencies(struct lock_list *leaf,
2426 				 struct lock_list *root)
2427 {
2428 	struct lock_list *entry = leaf;
2429 	int depth;
2430 
2431 	/*compute depth from generated tree by BFS*/
2432 	depth = get_lock_depth(leaf);
2433 
2434 	do {
2435 		print_lock_class_header(entry->class, depth);
2436 		printk("%*s ... acquired at:\n", depth, "");
2437 		print_lock_trace(entry->trace, 2);
2438 		printk("\n");
2439 
2440 		if (depth == 0 && (entry != root)) {
2441 			printk("lockdep:%s bad path found in chain graph\n", __func__);
2442 			break;
2443 		}
2444 
2445 		entry = get_lock_parent(entry);
2446 		depth--;
2447 	} while (entry && (depth >= 0));
2448 }
2449 
2450 /*
2451  * printk the shortest lock dependencies from @leaf to @root.
2452  *
2453  * We have a lock dependency path (from a backwards search) as follow:
2454  *
2455  *    @leaf                                                                 @root
2456  *      |                                                                     |
2457  *      V                                                                     V
2458  *	          ->parent                                   ->parent
2459  * | lock_list | ---------> | lock_list | ... | lock_list  | ---------> | lock_list |
2460  * | L2 <- L1  |            | L3 <- L2  | ... | Ln <- Ln-1 |            |    <- Ln  |
2461  *
2462  * , so when we iterate from @leaf to @root, we actually print the lock
2463  * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order.
2464  *
2465  * Another thing to notice here is that ->class of L2 <- L1 is L1, while the
2466  * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call
2467  * trace of L1 in the dependency path, which is alright, because most of the
2468  * time we can figure out where L1 is held from the call trace of L2.
2469  */
2470 static void __used
2471 print_shortest_lock_dependencies_backwards(struct lock_list *leaf,
2472 					   struct lock_list *root)
2473 {
2474 	struct lock_list *entry = leaf;
2475 	const struct lock_trace *trace = NULL;
2476 	int depth;
2477 
2478 	/*compute depth from generated tree by BFS*/
2479 	depth = get_lock_depth(leaf);
2480 
2481 	do {
2482 		print_lock_class_header(entry->class, depth);
2483 		if (trace) {
2484 			printk("%*s ... acquired at:\n", depth, "");
2485 			print_lock_trace(trace, 2);
2486 			printk("\n");
2487 		}
2488 
2489 		/*
2490 		 * Record the pointer to the trace for the next lock_list
2491 		 * entry, see the comments for the function.
2492 		 */
2493 		trace = entry->trace;
2494 
2495 		if (depth == 0 && (entry != root)) {
2496 			printk("lockdep:%s bad path found in chain graph\n", __func__);
2497 			break;
2498 		}
2499 
2500 		entry = get_lock_parent(entry);
2501 		depth--;
2502 	} while (entry && (depth >= 0));
2503 }
2504 
2505 static void
2506 print_irq_lock_scenario(struct lock_list *safe_entry,
2507 			struct lock_list *unsafe_entry,
2508 			struct lock_class *prev_class,
2509 			struct lock_class *next_class)
2510 {
2511 	struct lock_class *safe_class = safe_entry->class;
2512 	struct lock_class *unsafe_class = unsafe_entry->class;
2513 	struct lock_class *middle_class = prev_class;
2514 
2515 	if (middle_class == safe_class)
2516 		middle_class = next_class;
2517 
2518 	/*
2519 	 * A direct locking problem where unsafe_class lock is taken
2520 	 * directly by safe_class lock, then all we need to show
2521 	 * is the deadlock scenario, as it is obvious that the
2522 	 * unsafe lock is taken under the safe lock.
2523 	 *
2524 	 * But if there is a chain instead, where the safe lock takes
2525 	 * an intermediate lock (middle_class) where this lock is
2526 	 * not the same as the safe lock, then the lock chain is
2527 	 * used to describe the problem. Otherwise we would need
2528 	 * to show a different CPU case for each link in the chain
2529 	 * from the safe_class lock to the unsafe_class lock.
2530 	 */
2531 	if (middle_class != unsafe_class) {
2532 		printk("Chain exists of:\n  ");
2533 		__print_lock_name(NULL, safe_class);
2534 		printk(KERN_CONT " --> ");
2535 		__print_lock_name(NULL, middle_class);
2536 		printk(KERN_CONT " --> ");
2537 		__print_lock_name(NULL, unsafe_class);
2538 		printk(KERN_CONT "\n\n");
2539 	}
2540 
2541 	printk(" Possible interrupt unsafe locking scenario:\n\n");
2542 	printk("       CPU0                    CPU1\n");
2543 	printk("       ----                    ----\n");
2544 	printk("  lock(");
2545 	__print_lock_name(NULL, unsafe_class);
2546 	printk(KERN_CONT ");\n");
2547 	printk("                               local_irq_disable();\n");
2548 	printk("                               lock(");
2549 	__print_lock_name(NULL, safe_class);
2550 	printk(KERN_CONT ");\n");
2551 	printk("                               lock(");
2552 	__print_lock_name(NULL, middle_class);
2553 	printk(KERN_CONT ");\n");
2554 	printk("  <Interrupt>\n");
2555 	printk("    lock(");
2556 	__print_lock_name(NULL, safe_class);
2557 	printk(KERN_CONT ");\n");
2558 	printk("\n *** DEADLOCK ***\n\n");
2559 }
2560 
2561 static void
2562 print_bad_irq_dependency(struct task_struct *curr,
2563 			 struct lock_list *prev_root,
2564 			 struct lock_list *next_root,
2565 			 struct lock_list *backwards_entry,
2566 			 struct lock_list *forwards_entry,
2567 			 struct held_lock *prev,
2568 			 struct held_lock *next,
2569 			 enum lock_usage_bit bit1,
2570 			 enum lock_usage_bit bit2,
2571 			 const char *irqclass)
2572 {
2573 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2574 		return;
2575 
2576 	pr_warn("\n");
2577 	pr_warn("=====================================================\n");
2578 	pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2579 		irqclass, irqclass);
2580 	print_kernel_ident();
2581 	pr_warn("-----------------------------------------------------\n");
2582 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2583 		curr->comm, task_pid_nr(curr),
2584 		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2585 		curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2586 		lockdep_hardirqs_enabled(),
2587 		curr->softirqs_enabled);
2588 	print_lock(next);
2589 
2590 	pr_warn("\nand this task is already holding:\n");
2591 	print_lock(prev);
2592 	pr_warn("which would create a new lock dependency:\n");
2593 	print_lock_name(prev, hlock_class(prev));
2594 	pr_cont(" ->");
2595 	print_lock_name(next, hlock_class(next));
2596 	pr_cont("\n");
2597 
2598 	pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2599 		irqclass);
2600 	print_lock_name(NULL, backwards_entry->class);
2601 	pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2602 
2603 	print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2604 
2605 	pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2606 	print_lock_name(NULL, forwards_entry->class);
2607 	pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2608 	pr_warn("...");
2609 
2610 	print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2611 
2612 	pr_warn("\nother info that might help us debug this:\n\n");
2613 	print_irq_lock_scenario(backwards_entry, forwards_entry,
2614 				hlock_class(prev), hlock_class(next));
2615 
2616 	lockdep_print_held_locks(curr);
2617 
2618 	pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2619 	print_shortest_lock_dependencies_backwards(backwards_entry, prev_root);
2620 
2621 	pr_warn("\nthe dependencies between the lock to be acquired");
2622 	pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2623 	next_root->trace = save_trace();
2624 	if (!next_root->trace)
2625 		return;
2626 	print_shortest_lock_dependencies(forwards_entry, next_root);
2627 
2628 	pr_warn("\nstack backtrace:\n");
2629 	dump_stack();
2630 }
2631 
2632 static const char *state_names[] = {
2633 #define LOCKDEP_STATE(__STATE) \
2634 	__stringify(__STATE),
2635 #include "lockdep_states.h"
2636 #undef LOCKDEP_STATE
2637 };
2638 
2639 static const char *state_rnames[] = {
2640 #define LOCKDEP_STATE(__STATE) \
2641 	__stringify(__STATE)"-READ",
2642 #include "lockdep_states.h"
2643 #undef LOCKDEP_STATE
2644 };
2645 
2646 static inline const char *state_name(enum lock_usage_bit bit)
2647 {
2648 	if (bit & LOCK_USAGE_READ_MASK)
2649 		return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2650 	else
2651 		return state_names[bit >> LOCK_USAGE_DIR_MASK];
2652 }
2653 
2654 /*
2655  * The bit number is encoded like:
2656  *
2657  *  bit0: 0 exclusive, 1 read lock
2658  *  bit1: 0 used in irq, 1 irq enabled
2659  *  bit2-n: state
2660  */
2661 static int exclusive_bit(int new_bit)
2662 {
2663 	int state = new_bit & LOCK_USAGE_STATE_MASK;
2664 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
2665 
2666 	/*
2667 	 * keep state, bit flip the direction and strip read.
2668 	 */
2669 	return state | (dir ^ LOCK_USAGE_DIR_MASK);
2670 }
2671 
2672 /*
2673  * Observe that when given a bitmask where each bitnr is encoded as above, a
2674  * right shift of the mask transforms the individual bitnrs as -1 and
2675  * conversely, a left shift transforms into +1 for the individual bitnrs.
2676  *
2677  * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2678  * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2679  * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2680  *
2681  * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2682  *
2683  * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2684  * all bits set) and recompose with bitnr1 flipped.
2685  */
2686 static unsigned long invert_dir_mask(unsigned long mask)
2687 {
2688 	unsigned long excl = 0;
2689 
2690 	/* Invert dir */
2691 	excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2692 	excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2693 
2694 	return excl;
2695 }
2696 
2697 /*
2698  * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2699  * usage may cause deadlock too, for example:
2700  *
2701  * P1				P2
2702  * <irq disabled>
2703  * write_lock(l1);		<irq enabled>
2704  *				read_lock(l2);
2705  * write_lock(l2);
2706  * 				<in irq>
2707  * 				read_lock(l1);
2708  *
2709  * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2710  * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2711  * deadlock.
2712  *
2713  * In fact, all of the following cases may cause deadlocks:
2714  *
2715  * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2716  * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2717  * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2718  * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2719  *
2720  * As a result, to calculate the "exclusive mask", first we invert the
2721  * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2722  * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2723  * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2724  */
2725 static unsigned long exclusive_mask(unsigned long mask)
2726 {
2727 	unsigned long excl = invert_dir_mask(mask);
2728 
2729 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2730 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2731 
2732 	return excl;
2733 }
2734 
2735 /*
2736  * Retrieve the _possible_ original mask to which @mask is
2737  * exclusive. Ie: this is the opposite of exclusive_mask().
2738  * Note that 2 possible original bits can match an exclusive
2739  * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2740  * cleared. So both are returned for each exclusive bit.
2741  */
2742 static unsigned long original_mask(unsigned long mask)
2743 {
2744 	unsigned long excl = invert_dir_mask(mask);
2745 
2746 	/* Include read in existing usages */
2747 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2748 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2749 
2750 	return excl;
2751 }
2752 
2753 /*
2754  * Find the first pair of bit match between an original
2755  * usage mask and an exclusive usage mask.
2756  */
2757 static int find_exclusive_match(unsigned long mask,
2758 				unsigned long excl_mask,
2759 				enum lock_usage_bit *bitp,
2760 				enum lock_usage_bit *excl_bitp)
2761 {
2762 	int bit, excl, excl_read;
2763 
2764 	for_each_set_bit(bit, &mask, LOCK_USED) {
2765 		/*
2766 		 * exclusive_bit() strips the read bit, however,
2767 		 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2768 		 * to search excl | LOCK_USAGE_READ_MASK as well.
2769 		 */
2770 		excl = exclusive_bit(bit);
2771 		excl_read = excl | LOCK_USAGE_READ_MASK;
2772 		if (excl_mask & lock_flag(excl)) {
2773 			*bitp = bit;
2774 			*excl_bitp = excl;
2775 			return 0;
2776 		} else if (excl_mask & lock_flag(excl_read)) {
2777 			*bitp = bit;
2778 			*excl_bitp = excl_read;
2779 			return 0;
2780 		}
2781 	}
2782 	return -1;
2783 }
2784 
2785 /*
2786  * Prove that the new dependency does not connect a hardirq-safe(-read)
2787  * lock with a hardirq-unsafe lock - to achieve this we search
2788  * the backwards-subgraph starting at <prev>, and the
2789  * forwards-subgraph starting at <next>:
2790  */
2791 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2792 			   struct held_lock *next)
2793 {
2794 	unsigned long usage_mask = 0, forward_mask, backward_mask;
2795 	enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2796 	struct lock_list *target_entry1;
2797 	struct lock_list *target_entry;
2798 	struct lock_list this, that;
2799 	enum bfs_result ret;
2800 
2801 	/*
2802 	 * Step 1: gather all hard/soft IRQs usages backward in an
2803 	 * accumulated usage mask.
2804 	 */
2805 	bfs_init_rootb(&this, prev);
2806 
2807 	ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL);
2808 	if (bfs_error(ret)) {
2809 		print_bfs_bug(ret);
2810 		return 0;
2811 	}
2812 
2813 	usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2814 	if (!usage_mask)
2815 		return 1;
2816 
2817 	/*
2818 	 * Step 2: find exclusive uses forward that match the previous
2819 	 * backward accumulated mask.
2820 	 */
2821 	forward_mask = exclusive_mask(usage_mask);
2822 
2823 	bfs_init_root(&that, next);
2824 
2825 	ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2826 	if (bfs_error(ret)) {
2827 		print_bfs_bug(ret);
2828 		return 0;
2829 	}
2830 	if (ret == BFS_RNOMATCH)
2831 		return 1;
2832 
2833 	/*
2834 	 * Step 3: we found a bad match! Now retrieve a lock from the backward
2835 	 * list whose usage mask matches the exclusive usage mask from the
2836 	 * lock found on the forward list.
2837 	 *
2838 	 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering
2839 	 * the follow case:
2840 	 *
2841 	 * When trying to add A -> B to the graph, we find that there is a
2842 	 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M,
2843 	 * that B -> ... -> M. However M is **softirq-safe**, if we use exact
2844 	 * invert bits of M's usage_mask, we will find another lock N that is
2845 	 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not
2846 	 * cause a inversion deadlock.
2847 	 */
2848 	backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL);
2849 
2850 	ret = find_usage_backwards(&this, backward_mask, &target_entry);
2851 	if (bfs_error(ret)) {
2852 		print_bfs_bug(ret);
2853 		return 0;
2854 	}
2855 	if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2856 		return 1;
2857 
2858 	/*
2859 	 * Step 4: narrow down to a pair of incompatible usage bits
2860 	 * and report it.
2861 	 */
2862 	ret = find_exclusive_match(target_entry->class->usage_mask,
2863 				   target_entry1->class->usage_mask,
2864 				   &backward_bit, &forward_bit);
2865 	if (DEBUG_LOCKS_WARN_ON(ret == -1))
2866 		return 1;
2867 
2868 	print_bad_irq_dependency(curr, &this, &that,
2869 				 target_entry, target_entry1,
2870 				 prev, next,
2871 				 backward_bit, forward_bit,
2872 				 state_name(backward_bit));
2873 
2874 	return 0;
2875 }
2876 
2877 #else
2878 
2879 static inline int check_irq_usage(struct task_struct *curr,
2880 				  struct held_lock *prev, struct held_lock *next)
2881 {
2882 	return 1;
2883 }
2884 
2885 static inline bool usage_skip(struct lock_list *entry, void *mask)
2886 {
2887 	return false;
2888 }
2889 
2890 #endif /* CONFIG_TRACE_IRQFLAGS */
2891 
2892 #ifdef CONFIG_LOCKDEP_SMALL
2893 /*
2894  * Check that the dependency graph starting at <src> can lead to
2895  * <target> or not. If it can, <src> -> <target> dependency is already
2896  * in the graph.
2897  *
2898  * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if
2899  * any error appears in the bfs search.
2900  */
2901 static noinline enum bfs_result
2902 check_redundant(struct held_lock *src, struct held_lock *target)
2903 {
2904 	enum bfs_result ret;
2905 	struct lock_list *target_entry;
2906 	struct lock_list src_entry;
2907 
2908 	bfs_init_root(&src_entry, src);
2909 	/*
2910 	 * Special setup for check_redundant().
2911 	 *
2912 	 * To report redundant, we need to find a strong dependency path that
2913 	 * is equal to or stronger than <src> -> <target>. So if <src> is E,
2914 	 * we need to let __bfs() only search for a path starting at a -(E*)->,
2915 	 * we achieve this by setting the initial node's ->only_xr to true in
2916 	 * that case. And if <prev> is S, we set initial ->only_xr to false
2917 	 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2918 	 */
2919 	src_entry.only_xr = src->read == 0;
2920 
2921 	debug_atomic_inc(nr_redundant_checks);
2922 
2923 	/*
2924 	 * Note: we skip local_lock() for redundant check, because as the
2925 	 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not
2926 	 * the same.
2927 	 */
2928 	ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry);
2929 
2930 	if (ret == BFS_RMATCH)
2931 		debug_atomic_inc(nr_redundant);
2932 
2933 	return ret;
2934 }
2935 
2936 #else
2937 
2938 static inline enum bfs_result
2939 check_redundant(struct held_lock *src, struct held_lock *target)
2940 {
2941 	return BFS_RNOMATCH;
2942 }
2943 
2944 #endif
2945 
2946 static void inc_chains(int irq_context)
2947 {
2948 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2949 		nr_hardirq_chains++;
2950 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2951 		nr_softirq_chains++;
2952 	else
2953 		nr_process_chains++;
2954 }
2955 
2956 static void dec_chains(int irq_context)
2957 {
2958 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2959 		nr_hardirq_chains--;
2960 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2961 		nr_softirq_chains--;
2962 	else
2963 		nr_process_chains--;
2964 }
2965 
2966 static void
2967 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2968 {
2969 	struct lock_class *next = hlock_class(nxt);
2970 	struct lock_class *prev = hlock_class(prv);
2971 
2972 	printk(" Possible unsafe locking scenario:\n\n");
2973 	printk("       CPU0\n");
2974 	printk("       ----\n");
2975 	printk("  lock(");
2976 	__print_lock_name(prv, prev);
2977 	printk(KERN_CONT ");\n");
2978 	printk("  lock(");
2979 	__print_lock_name(nxt, next);
2980 	printk(KERN_CONT ");\n");
2981 	printk("\n *** DEADLOCK ***\n\n");
2982 	printk(" May be due to missing lock nesting notation\n\n");
2983 }
2984 
2985 static void
2986 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2987 		   struct held_lock *next)
2988 {
2989 	struct lock_class *class = hlock_class(prev);
2990 
2991 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2992 		return;
2993 
2994 	pr_warn("\n");
2995 	pr_warn("============================================\n");
2996 	pr_warn("WARNING: possible recursive locking detected\n");
2997 	print_kernel_ident();
2998 	pr_warn("--------------------------------------------\n");
2999 	pr_warn("%s/%d is trying to acquire lock:\n",
3000 		curr->comm, task_pid_nr(curr));
3001 	print_lock(next);
3002 	pr_warn("\nbut task is already holding lock:\n");
3003 	print_lock(prev);
3004 
3005 	if (class->cmp_fn) {
3006 		pr_warn("and the lock comparison function returns %i:\n",
3007 			class->cmp_fn(prev->instance, next->instance));
3008 	}
3009 
3010 	pr_warn("\nother info that might help us debug this:\n");
3011 	print_deadlock_scenario(next, prev);
3012 	lockdep_print_held_locks(curr);
3013 
3014 	pr_warn("\nstack backtrace:\n");
3015 	dump_stack();
3016 }
3017 
3018 /*
3019  * Check whether we are holding such a class already.
3020  *
3021  * (Note that this has to be done separately, because the graph cannot
3022  * detect such classes of deadlocks.)
3023  *
3024  * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
3025  * lock class is held but nest_lock is also held, i.e. we rely on the
3026  * nest_lock to avoid the deadlock.
3027  */
3028 static int
3029 check_deadlock(struct task_struct *curr, struct held_lock *next)
3030 {
3031 	struct lock_class *class;
3032 	struct held_lock *prev;
3033 	struct held_lock *nest = NULL;
3034 	int i;
3035 
3036 	for (i = 0; i < curr->lockdep_depth; i++) {
3037 		prev = curr->held_locks + i;
3038 
3039 		if (prev->instance == next->nest_lock)
3040 			nest = prev;
3041 
3042 		if (hlock_class(prev) != hlock_class(next))
3043 			continue;
3044 
3045 		/*
3046 		 * Allow read-after-read recursion of the same
3047 		 * lock class (i.e. read_lock(lock)+read_lock(lock)):
3048 		 */
3049 		if ((next->read == 2) && prev->read)
3050 			continue;
3051 
3052 		class = hlock_class(prev);
3053 
3054 		if (class->cmp_fn &&
3055 		    class->cmp_fn(prev->instance, next->instance) < 0)
3056 			continue;
3057 
3058 		/*
3059 		 * We're holding the nest_lock, which serializes this lock's
3060 		 * nesting behaviour.
3061 		 */
3062 		if (nest)
3063 			return 2;
3064 
3065 		print_deadlock_bug(curr, prev, next);
3066 		return 0;
3067 	}
3068 	return 1;
3069 }
3070 
3071 /*
3072  * There was a chain-cache miss, and we are about to add a new dependency
3073  * to a previous lock. We validate the following rules:
3074  *
3075  *  - would the adding of the <prev> -> <next> dependency create a
3076  *    circular dependency in the graph? [== circular deadlock]
3077  *
3078  *  - does the new prev->next dependency connect any hardirq-safe lock
3079  *    (in the full backwards-subgraph starting at <prev>) with any
3080  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
3081  *    <next>)? [== illegal lock inversion with hardirq contexts]
3082  *
3083  *  - does the new prev->next dependency connect any softirq-safe lock
3084  *    (in the full backwards-subgraph starting at <prev>) with any
3085  *    softirq-unsafe lock (in the full forwards-subgraph starting at
3086  *    <next>)? [== illegal lock inversion with softirq contexts]
3087  *
3088  * any of these scenarios could lead to a deadlock.
3089  *
3090  * Then if all the validations pass, we add the forwards and backwards
3091  * dependency.
3092  */
3093 static int
3094 check_prev_add(struct task_struct *curr, struct held_lock *prev,
3095 	       struct held_lock *next, u16 distance,
3096 	       struct lock_trace **const trace)
3097 {
3098 	struct lock_list *entry;
3099 	enum bfs_result ret;
3100 
3101 	if (!hlock_class(prev)->key || !hlock_class(next)->key) {
3102 		/*
3103 		 * The warning statements below may trigger a use-after-free
3104 		 * of the class name. It is better to trigger a use-after free
3105 		 * and to have the class name most of the time instead of not
3106 		 * having the class name available.
3107 		 */
3108 		WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
3109 			  "Detected use-after-free of lock class %px/%s\n",
3110 			  hlock_class(prev),
3111 			  hlock_class(prev)->name);
3112 		WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
3113 			  "Detected use-after-free of lock class %px/%s\n",
3114 			  hlock_class(next),
3115 			  hlock_class(next)->name);
3116 		return 2;
3117 	}
3118 
3119 	if (prev->class_idx == next->class_idx) {
3120 		struct lock_class *class = hlock_class(prev);
3121 
3122 		if (class->cmp_fn &&
3123 		    class->cmp_fn(prev->instance, next->instance) < 0)
3124 			return 2;
3125 	}
3126 
3127 	/*
3128 	 * Prove that the new <prev> -> <next> dependency would not
3129 	 * create a circular dependency in the graph. (We do this by
3130 	 * a breadth-first search into the graph starting at <next>,
3131 	 * and check whether we can reach <prev>.)
3132 	 *
3133 	 * The search is limited by the size of the circular queue (i.e.,
3134 	 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
3135 	 * in the graph whose neighbours are to be checked.
3136 	 */
3137 	ret = check_noncircular(next, prev, trace);
3138 	if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
3139 		return 0;
3140 
3141 	if (!check_irq_usage(curr, prev, next))
3142 		return 0;
3143 
3144 	/*
3145 	 * Is the <prev> -> <next> dependency already present?
3146 	 *
3147 	 * (this may occur even though this is a new chain: consider
3148 	 *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
3149 	 *  chains - the second one will be new, but L1 already has
3150 	 *  L2 added to its dependency list, due to the first chain.)
3151 	 */
3152 	list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
3153 		if (entry->class == hlock_class(next)) {
3154 			if (distance == 1)
3155 				entry->distance = 1;
3156 			entry->dep |= calc_dep(prev, next);
3157 
3158 			/*
3159 			 * Also, update the reverse dependency in @next's
3160 			 * ->locks_before list.
3161 			 *
3162 			 *  Here we reuse @entry as the cursor, which is fine
3163 			 *  because we won't go to the next iteration of the
3164 			 *  outer loop:
3165 			 *
3166 			 *  For normal cases, we return in the inner loop.
3167 			 *
3168 			 *  If we fail to return, we have inconsistency, i.e.
3169 			 *  <prev>::locks_after contains <next> while
3170 			 *  <next>::locks_before doesn't contain <prev>. In
3171 			 *  that case, we return after the inner and indicate
3172 			 *  something is wrong.
3173 			 */
3174 			list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
3175 				if (entry->class == hlock_class(prev)) {
3176 					if (distance == 1)
3177 						entry->distance = 1;
3178 					entry->dep |= calc_depb(prev, next);
3179 					return 1;
3180 				}
3181 			}
3182 
3183 			/* <prev> is not found in <next>::locks_before */
3184 			return 0;
3185 		}
3186 	}
3187 
3188 	/*
3189 	 * Is the <prev> -> <next> link redundant?
3190 	 */
3191 	ret = check_redundant(prev, next);
3192 	if (bfs_error(ret))
3193 		return 0;
3194 	else if (ret == BFS_RMATCH)
3195 		return 2;
3196 
3197 	if (!*trace) {
3198 		*trace = save_trace();
3199 		if (!*trace)
3200 			return 0;
3201 	}
3202 
3203 	/*
3204 	 * Ok, all validations passed, add the new lock
3205 	 * to the previous lock's dependency list:
3206 	 */
3207 	ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3208 			       &hlock_class(prev)->locks_after, distance,
3209 			       calc_dep(prev, next), *trace);
3210 
3211 	if (!ret)
3212 		return 0;
3213 
3214 	ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3215 			       &hlock_class(next)->locks_before, distance,
3216 			       calc_depb(prev, next), *trace);
3217 	if (!ret)
3218 		return 0;
3219 
3220 	return 2;
3221 }
3222 
3223 /*
3224  * Add the dependency to all directly-previous locks that are 'relevant'.
3225  * The ones that are relevant are (in increasing distance from curr):
3226  * all consecutive trylock entries and the final non-trylock entry - or
3227  * the end of this context's lock-chain - whichever comes first.
3228  */
3229 static int
3230 check_prevs_add(struct task_struct *curr, struct held_lock *next)
3231 {
3232 	struct lock_trace *trace = NULL;
3233 	int depth = curr->lockdep_depth;
3234 	struct held_lock *hlock;
3235 
3236 	/*
3237 	 * Debugging checks.
3238 	 *
3239 	 * Depth must not be zero for a non-head lock:
3240 	 */
3241 	if (!depth)
3242 		goto out_bug;
3243 	/*
3244 	 * At least two relevant locks must exist for this
3245 	 * to be a head:
3246 	 */
3247 	if (curr->held_locks[depth].irq_context !=
3248 			curr->held_locks[depth-1].irq_context)
3249 		goto out_bug;
3250 
3251 	for (;;) {
3252 		u16 distance = curr->lockdep_depth - depth + 1;
3253 		hlock = curr->held_locks + depth - 1;
3254 
3255 		if (hlock->check) {
3256 			int ret = check_prev_add(curr, hlock, next, distance, &trace);
3257 			if (!ret)
3258 				return 0;
3259 
3260 			/*
3261 			 * Stop after the first non-trylock entry,
3262 			 * as non-trylock entries have added their
3263 			 * own direct dependencies already, so this
3264 			 * lock is connected to them indirectly:
3265 			 */
3266 			if (!hlock->trylock)
3267 				break;
3268 		}
3269 
3270 		depth--;
3271 		/*
3272 		 * End of lock-stack?
3273 		 */
3274 		if (!depth)
3275 			break;
3276 		/*
3277 		 * Stop the search if we cross into another context:
3278 		 */
3279 		if (curr->held_locks[depth].irq_context !=
3280 				curr->held_locks[depth-1].irq_context)
3281 			break;
3282 	}
3283 	return 1;
3284 out_bug:
3285 	if (!debug_locks_off_graph_unlock())
3286 		return 0;
3287 
3288 	/*
3289 	 * Clearly we all shouldn't be here, but since we made it we
3290 	 * can reliable say we messed up our state. See the above two
3291 	 * gotos for reasons why we could possibly end up here.
3292 	 */
3293 	WARN_ON(1);
3294 
3295 	return 0;
3296 }
3297 
3298 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3299 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3300 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3301 unsigned long nr_zapped_lock_chains;
3302 unsigned int nr_free_chain_hlocks;	/* Free chain_hlocks in buckets */
3303 unsigned int nr_lost_chain_hlocks;	/* Lost chain_hlocks */
3304 unsigned int nr_large_chain_blocks;	/* size > MAX_CHAIN_BUCKETS */
3305 
3306 /*
3307  * The first 2 chain_hlocks entries in the chain block in the bucket
3308  * list contains the following meta data:
3309  *
3310  *   entry[0]:
3311  *     Bit    15 - always set to 1 (it is not a class index)
3312  *     Bits 0-14 - upper 15 bits of the next block index
3313  *   entry[1]    - lower 16 bits of next block index
3314  *
3315  * A next block index of all 1 bits means it is the end of the list.
3316  *
3317  * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3318  * the chain block size:
3319  *
3320  *   entry[2] - upper 16 bits of the chain block size
3321  *   entry[3] - lower 16 bits of the chain block size
3322  */
3323 #define MAX_CHAIN_BUCKETS	16
3324 #define CHAIN_BLK_FLAG		(1U << 15)
3325 #define CHAIN_BLK_LIST_END	0xFFFFU
3326 
3327 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3328 
3329 static inline int size_to_bucket(int size)
3330 {
3331 	if (size > MAX_CHAIN_BUCKETS)
3332 		return 0;
3333 
3334 	return size - 1;
3335 }
3336 
3337 /*
3338  * Iterate all the chain blocks in a bucket.
3339  */
3340 #define for_each_chain_block(bucket, prev, curr)		\
3341 	for ((prev) = -1, (curr) = chain_block_buckets[bucket];	\
3342 	     (curr) >= 0;					\
3343 	     (prev) = (curr), (curr) = chain_block_next(curr))
3344 
3345 /*
3346  * next block or -1
3347  */
3348 static inline int chain_block_next(int offset)
3349 {
3350 	int next = chain_hlocks[offset];
3351 
3352 	WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3353 
3354 	if (next == CHAIN_BLK_LIST_END)
3355 		return -1;
3356 
3357 	next &= ~CHAIN_BLK_FLAG;
3358 	next <<= 16;
3359 	next |= chain_hlocks[offset + 1];
3360 
3361 	return next;
3362 }
3363 
3364 /*
3365  * bucket-0 only
3366  */
3367 static inline int chain_block_size(int offset)
3368 {
3369 	return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3370 }
3371 
3372 static inline void init_chain_block(int offset, int next, int bucket, int size)
3373 {
3374 	chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3375 	chain_hlocks[offset + 1] = (u16)next;
3376 
3377 	if (size && !bucket) {
3378 		chain_hlocks[offset + 2] = size >> 16;
3379 		chain_hlocks[offset + 3] = (u16)size;
3380 	}
3381 }
3382 
3383 static inline void add_chain_block(int offset, int size)
3384 {
3385 	int bucket = size_to_bucket(size);
3386 	int next = chain_block_buckets[bucket];
3387 	int prev, curr;
3388 
3389 	if (unlikely(size < 2)) {
3390 		/*
3391 		 * We can't store single entries on the freelist. Leak them.
3392 		 *
3393 		 * One possible way out would be to uniquely mark them, other
3394 		 * than with CHAIN_BLK_FLAG, such that we can recover them when
3395 		 * the block before it is re-added.
3396 		 */
3397 		if (size)
3398 			nr_lost_chain_hlocks++;
3399 		return;
3400 	}
3401 
3402 	nr_free_chain_hlocks += size;
3403 	if (!bucket) {
3404 		nr_large_chain_blocks++;
3405 
3406 		/*
3407 		 * Variable sized, sort large to small.
3408 		 */
3409 		for_each_chain_block(0, prev, curr) {
3410 			if (size >= chain_block_size(curr))
3411 				break;
3412 		}
3413 		init_chain_block(offset, curr, 0, size);
3414 		if (prev < 0)
3415 			chain_block_buckets[0] = offset;
3416 		else
3417 			init_chain_block(prev, offset, 0, 0);
3418 		return;
3419 	}
3420 	/*
3421 	 * Fixed size, add to head.
3422 	 */
3423 	init_chain_block(offset, next, bucket, size);
3424 	chain_block_buckets[bucket] = offset;
3425 }
3426 
3427 /*
3428  * Only the first block in the list can be deleted.
3429  *
3430  * For the variable size bucket[0], the first block (the largest one) is
3431  * returned, broken up and put back into the pool. So if a chain block of
3432  * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3433  * queued up after the primordial chain block and never be used until the
3434  * hlock entries in the primordial chain block is almost used up. That
3435  * causes fragmentation and reduce allocation efficiency. That can be
3436  * monitored by looking at the "large chain blocks" number in lockdep_stats.
3437  */
3438 static inline void del_chain_block(int bucket, int size, int next)
3439 {
3440 	nr_free_chain_hlocks -= size;
3441 	chain_block_buckets[bucket] = next;
3442 
3443 	if (!bucket)
3444 		nr_large_chain_blocks--;
3445 }
3446 
3447 static void init_chain_block_buckets(void)
3448 {
3449 	int i;
3450 
3451 	for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3452 		chain_block_buckets[i] = -1;
3453 
3454 	add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3455 }
3456 
3457 /*
3458  * Return offset of a chain block of the right size or -1 if not found.
3459  *
3460  * Fairly simple worst-fit allocator with the addition of a number of size
3461  * specific free lists.
3462  */
3463 static int alloc_chain_hlocks(int req)
3464 {
3465 	int bucket, curr, size;
3466 
3467 	/*
3468 	 * We rely on the MSB to act as an escape bit to denote freelist
3469 	 * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3470 	 */
3471 	BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3472 
3473 	init_data_structures_once();
3474 
3475 	if (nr_free_chain_hlocks < req)
3476 		return -1;
3477 
3478 	/*
3479 	 * We require a minimum of 2 (u16) entries to encode a freelist
3480 	 * 'pointer'.
3481 	 */
3482 	req = max(req, 2);
3483 	bucket = size_to_bucket(req);
3484 	curr = chain_block_buckets[bucket];
3485 
3486 	if (bucket) {
3487 		if (curr >= 0) {
3488 			del_chain_block(bucket, req, chain_block_next(curr));
3489 			return curr;
3490 		}
3491 		/* Try bucket 0 */
3492 		curr = chain_block_buckets[0];
3493 	}
3494 
3495 	/*
3496 	 * The variable sized freelist is sorted by size; the first entry is
3497 	 * the largest. Use it if it fits.
3498 	 */
3499 	if (curr >= 0) {
3500 		size = chain_block_size(curr);
3501 		if (likely(size >= req)) {
3502 			del_chain_block(0, size, chain_block_next(curr));
3503 			add_chain_block(curr + req, size - req);
3504 			return curr;
3505 		}
3506 	}
3507 
3508 	/*
3509 	 * Last resort, split a block in a larger sized bucket.
3510 	 */
3511 	for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3512 		bucket = size_to_bucket(size);
3513 		curr = chain_block_buckets[bucket];
3514 		if (curr < 0)
3515 			continue;
3516 
3517 		del_chain_block(bucket, size, chain_block_next(curr));
3518 		add_chain_block(curr + req, size - req);
3519 		return curr;
3520 	}
3521 
3522 	return -1;
3523 }
3524 
3525 static inline void free_chain_hlocks(int base, int size)
3526 {
3527 	add_chain_block(base, max(size, 2));
3528 }
3529 
3530 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3531 {
3532 	u16 chain_hlock = chain_hlocks[chain->base + i];
3533 	unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3534 
3535 	return lock_classes + class_idx;
3536 }
3537 
3538 /*
3539  * Returns the index of the first held_lock of the current chain
3540  */
3541 static inline int get_first_held_lock(struct task_struct *curr,
3542 					struct held_lock *hlock)
3543 {
3544 	int i;
3545 	struct held_lock *hlock_curr;
3546 
3547 	for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3548 		hlock_curr = curr->held_locks + i;
3549 		if (hlock_curr->irq_context != hlock->irq_context)
3550 			break;
3551 
3552 	}
3553 
3554 	return ++i;
3555 }
3556 
3557 #ifdef CONFIG_DEBUG_LOCKDEP
3558 /*
3559  * Returns the next chain_key iteration
3560  */
3561 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3562 {
3563 	u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3564 
3565 	printk(" hlock_id:%d -> chain_key:%016Lx",
3566 		(unsigned int)hlock_id,
3567 		(unsigned long long)new_chain_key);
3568 	return new_chain_key;
3569 }
3570 
3571 static void
3572 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3573 {
3574 	struct held_lock *hlock;
3575 	u64 chain_key = INITIAL_CHAIN_KEY;
3576 	int depth = curr->lockdep_depth;
3577 	int i = get_first_held_lock(curr, hlock_next);
3578 
3579 	printk("depth: %u (irq_context %u)\n", depth - i + 1,
3580 		hlock_next->irq_context);
3581 	for (; i < depth; i++) {
3582 		hlock = curr->held_locks + i;
3583 		chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3584 
3585 		print_lock(hlock);
3586 	}
3587 
3588 	print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3589 	print_lock(hlock_next);
3590 }
3591 
3592 static void print_chain_keys_chain(struct lock_chain *chain)
3593 {
3594 	int i;
3595 	u64 chain_key = INITIAL_CHAIN_KEY;
3596 	u16 hlock_id;
3597 
3598 	printk("depth: %u\n", chain->depth);
3599 	for (i = 0; i < chain->depth; i++) {
3600 		hlock_id = chain_hlocks[chain->base + i];
3601 		chain_key = print_chain_key_iteration(hlock_id, chain_key);
3602 
3603 		print_lock_name(NULL, lock_classes + chain_hlock_class_idx(hlock_id));
3604 		printk("\n");
3605 	}
3606 }
3607 
3608 static void print_collision(struct task_struct *curr,
3609 			struct held_lock *hlock_next,
3610 			struct lock_chain *chain)
3611 {
3612 	pr_warn("\n");
3613 	pr_warn("============================\n");
3614 	pr_warn("WARNING: chain_key collision\n");
3615 	print_kernel_ident();
3616 	pr_warn("----------------------------\n");
3617 	pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3618 	pr_warn("Hash chain already cached but the contents don't match!\n");
3619 
3620 	pr_warn("Held locks:");
3621 	print_chain_keys_held_locks(curr, hlock_next);
3622 
3623 	pr_warn("Locks in cached chain:");
3624 	print_chain_keys_chain(chain);
3625 
3626 	pr_warn("\nstack backtrace:\n");
3627 	dump_stack();
3628 }
3629 #endif
3630 
3631 /*
3632  * Checks whether the chain and the current held locks are consistent
3633  * in depth and also in content. If they are not it most likely means
3634  * that there was a collision during the calculation of the chain_key.
3635  * Returns: 0 not passed, 1 passed
3636  */
3637 static int check_no_collision(struct task_struct *curr,
3638 			struct held_lock *hlock,
3639 			struct lock_chain *chain)
3640 {
3641 #ifdef CONFIG_DEBUG_LOCKDEP
3642 	int i, j, id;
3643 
3644 	i = get_first_held_lock(curr, hlock);
3645 
3646 	if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3647 		print_collision(curr, hlock, chain);
3648 		return 0;
3649 	}
3650 
3651 	for (j = 0; j < chain->depth - 1; j++, i++) {
3652 		id = hlock_id(&curr->held_locks[i]);
3653 
3654 		if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3655 			print_collision(curr, hlock, chain);
3656 			return 0;
3657 		}
3658 	}
3659 #endif
3660 	return 1;
3661 }
3662 
3663 /*
3664  * Given an index that is >= -1, return the index of the next lock chain.
3665  * Return -2 if there is no next lock chain.
3666  */
3667 long lockdep_next_lockchain(long i)
3668 {
3669 	i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3670 	return i < ARRAY_SIZE(lock_chains) ? i : -2;
3671 }
3672 
3673 unsigned long lock_chain_count(void)
3674 {
3675 	return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3676 }
3677 
3678 /* Must be called with the graph lock held. */
3679 static struct lock_chain *alloc_lock_chain(void)
3680 {
3681 	int idx = find_first_zero_bit(lock_chains_in_use,
3682 				      ARRAY_SIZE(lock_chains));
3683 
3684 	if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3685 		return NULL;
3686 	__set_bit(idx, lock_chains_in_use);
3687 	return lock_chains + idx;
3688 }
3689 
3690 /*
3691  * Adds a dependency chain into chain hashtable. And must be called with
3692  * graph_lock held.
3693  *
3694  * Return 0 if fail, and graph_lock is released.
3695  * Return 1 if succeed, with graph_lock held.
3696  */
3697 static inline int add_chain_cache(struct task_struct *curr,
3698 				  struct held_lock *hlock,
3699 				  u64 chain_key)
3700 {
3701 	struct hlist_head *hash_head = chainhashentry(chain_key);
3702 	struct lock_chain *chain;
3703 	int i, j;
3704 
3705 	/*
3706 	 * The caller must hold the graph lock, ensure we've got IRQs
3707 	 * disabled to make this an IRQ-safe lock.. for recursion reasons
3708 	 * lockdep won't complain about its own locking errors.
3709 	 */
3710 	if (lockdep_assert_locked())
3711 		return 0;
3712 
3713 	chain = alloc_lock_chain();
3714 	if (!chain) {
3715 		if (!debug_locks_off_graph_unlock())
3716 			return 0;
3717 
3718 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3719 		dump_stack();
3720 		return 0;
3721 	}
3722 	chain->chain_key = chain_key;
3723 	chain->irq_context = hlock->irq_context;
3724 	i = get_first_held_lock(curr, hlock);
3725 	chain->depth = curr->lockdep_depth + 1 - i;
3726 
3727 	BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3728 	BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3729 	BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3730 
3731 	j = alloc_chain_hlocks(chain->depth);
3732 	if (j < 0) {
3733 		if (!debug_locks_off_graph_unlock())
3734 			return 0;
3735 
3736 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3737 		dump_stack();
3738 		return 0;
3739 	}
3740 
3741 	chain->base = j;
3742 	for (j = 0; j < chain->depth - 1; j++, i++) {
3743 		int lock_id = hlock_id(curr->held_locks + i);
3744 
3745 		chain_hlocks[chain->base + j] = lock_id;
3746 	}
3747 	chain_hlocks[chain->base + j] = hlock_id(hlock);
3748 	hlist_add_head_rcu(&chain->entry, hash_head);
3749 	debug_atomic_inc(chain_lookup_misses);
3750 	inc_chains(chain->irq_context);
3751 
3752 	return 1;
3753 }
3754 
3755 /*
3756  * Look up a dependency chain. Must be called with either the graph lock or
3757  * the RCU read lock held.
3758  */
3759 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3760 {
3761 	struct hlist_head *hash_head = chainhashentry(chain_key);
3762 	struct lock_chain *chain;
3763 
3764 	hlist_for_each_entry_rcu(chain, hash_head, entry) {
3765 		if (READ_ONCE(chain->chain_key) == chain_key) {
3766 			debug_atomic_inc(chain_lookup_hits);
3767 			return chain;
3768 		}
3769 	}
3770 	return NULL;
3771 }
3772 
3773 /*
3774  * If the key is not present yet in dependency chain cache then
3775  * add it and return 1 - in this case the new dependency chain is
3776  * validated. If the key is already hashed, return 0.
3777  * (On return with 1 graph_lock is held.)
3778  */
3779 static inline int lookup_chain_cache_add(struct task_struct *curr,
3780 					 struct held_lock *hlock,
3781 					 u64 chain_key)
3782 {
3783 	struct lock_class *class = hlock_class(hlock);
3784 	struct lock_chain *chain = lookup_chain_cache(chain_key);
3785 
3786 	if (chain) {
3787 cache_hit:
3788 		if (!check_no_collision(curr, hlock, chain))
3789 			return 0;
3790 
3791 		if (very_verbose(class)) {
3792 			printk("\nhash chain already cached, key: "
3793 					"%016Lx tail class: [%px] %s\n",
3794 					(unsigned long long)chain_key,
3795 					class->key, class->name);
3796 		}
3797 
3798 		return 0;
3799 	}
3800 
3801 	if (very_verbose(class)) {
3802 		printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3803 			(unsigned long long)chain_key, class->key, class->name);
3804 	}
3805 
3806 	if (!graph_lock())
3807 		return 0;
3808 
3809 	/*
3810 	 * We have to walk the chain again locked - to avoid duplicates:
3811 	 */
3812 	chain = lookup_chain_cache(chain_key);
3813 	if (chain) {
3814 		graph_unlock();
3815 		goto cache_hit;
3816 	}
3817 
3818 	if (!add_chain_cache(curr, hlock, chain_key))
3819 		return 0;
3820 
3821 	return 1;
3822 }
3823 
3824 static int validate_chain(struct task_struct *curr,
3825 			  struct held_lock *hlock,
3826 			  int chain_head, u64 chain_key)
3827 {
3828 	/*
3829 	 * Trylock needs to maintain the stack of held locks, but it
3830 	 * does not add new dependencies, because trylock can be done
3831 	 * in any order.
3832 	 *
3833 	 * We look up the chain_key and do the O(N^2) check and update of
3834 	 * the dependencies only if this is a new dependency chain.
3835 	 * (If lookup_chain_cache_add() return with 1 it acquires
3836 	 * graph_lock for us)
3837 	 */
3838 	if (!hlock->trylock && hlock->check &&
3839 	    lookup_chain_cache_add(curr, hlock, chain_key)) {
3840 		/*
3841 		 * Check whether last held lock:
3842 		 *
3843 		 * - is irq-safe, if this lock is irq-unsafe
3844 		 * - is softirq-safe, if this lock is hardirq-unsafe
3845 		 *
3846 		 * And check whether the new lock's dependency graph
3847 		 * could lead back to the previous lock:
3848 		 *
3849 		 * - within the current held-lock stack
3850 		 * - across our accumulated lock dependency records
3851 		 *
3852 		 * any of these scenarios could lead to a deadlock.
3853 		 */
3854 		/*
3855 		 * The simple case: does the current hold the same lock
3856 		 * already?
3857 		 */
3858 		int ret = check_deadlock(curr, hlock);
3859 
3860 		if (!ret)
3861 			return 0;
3862 		/*
3863 		 * Add dependency only if this lock is not the head
3864 		 * of the chain, and if the new lock introduces no more
3865 		 * lock dependency (because we already hold a lock with the
3866 		 * same lock class) nor deadlock (because the nest_lock
3867 		 * serializes nesting locks), see the comments for
3868 		 * check_deadlock().
3869 		 */
3870 		if (!chain_head && ret != 2) {
3871 			if (!check_prevs_add(curr, hlock))
3872 				return 0;
3873 		}
3874 
3875 		graph_unlock();
3876 	} else {
3877 		/* after lookup_chain_cache_add(): */
3878 		if (unlikely(!debug_locks))
3879 			return 0;
3880 	}
3881 
3882 	return 1;
3883 }
3884 #else
3885 static inline int validate_chain(struct task_struct *curr,
3886 				 struct held_lock *hlock,
3887 				 int chain_head, u64 chain_key)
3888 {
3889 	return 1;
3890 }
3891 
3892 static void init_chain_block_buckets(void)	{ }
3893 #endif /* CONFIG_PROVE_LOCKING */
3894 
3895 /*
3896  * We are building curr_chain_key incrementally, so double-check
3897  * it from scratch, to make sure that it's done correctly:
3898  */
3899 static void check_chain_key(struct task_struct *curr)
3900 {
3901 #ifdef CONFIG_DEBUG_LOCKDEP
3902 	struct held_lock *hlock, *prev_hlock = NULL;
3903 	unsigned int i;
3904 	u64 chain_key = INITIAL_CHAIN_KEY;
3905 
3906 	for (i = 0; i < curr->lockdep_depth; i++) {
3907 		hlock = curr->held_locks + i;
3908 		if (chain_key != hlock->prev_chain_key) {
3909 			debug_locks_off();
3910 			/*
3911 			 * We got mighty confused, our chain keys don't match
3912 			 * with what we expect, someone trample on our task state?
3913 			 */
3914 			WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3915 				curr->lockdep_depth, i,
3916 				(unsigned long long)chain_key,
3917 				(unsigned long long)hlock->prev_chain_key);
3918 			return;
3919 		}
3920 
3921 		/*
3922 		 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3923 		 * it registered lock class index?
3924 		 */
3925 		if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3926 			return;
3927 
3928 		if (prev_hlock && (prev_hlock->irq_context !=
3929 							hlock->irq_context))
3930 			chain_key = INITIAL_CHAIN_KEY;
3931 		chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3932 		prev_hlock = hlock;
3933 	}
3934 	if (chain_key != curr->curr_chain_key) {
3935 		debug_locks_off();
3936 		/*
3937 		 * More smoking hash instead of calculating it, damn see these
3938 		 * numbers float.. I bet that a pink elephant stepped on my memory.
3939 		 */
3940 		WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3941 			curr->lockdep_depth, i,
3942 			(unsigned long long)chain_key,
3943 			(unsigned long long)curr->curr_chain_key);
3944 	}
3945 #endif
3946 }
3947 
3948 #ifdef CONFIG_PROVE_LOCKING
3949 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3950 		     enum lock_usage_bit new_bit);
3951 
3952 static void print_usage_bug_scenario(struct held_lock *lock)
3953 {
3954 	struct lock_class *class = hlock_class(lock);
3955 
3956 	printk(" Possible unsafe locking scenario:\n\n");
3957 	printk("       CPU0\n");
3958 	printk("       ----\n");
3959 	printk("  lock(");
3960 	__print_lock_name(lock, class);
3961 	printk(KERN_CONT ");\n");
3962 	printk("  <Interrupt>\n");
3963 	printk("    lock(");
3964 	__print_lock_name(lock, class);
3965 	printk(KERN_CONT ");\n");
3966 	printk("\n *** DEADLOCK ***\n\n");
3967 }
3968 
3969 static void
3970 print_usage_bug(struct task_struct *curr, struct held_lock *this,
3971 		enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3972 {
3973 	if (!debug_locks_off() || debug_locks_silent)
3974 		return;
3975 
3976 	pr_warn("\n");
3977 	pr_warn("================================\n");
3978 	pr_warn("WARNING: inconsistent lock state\n");
3979 	print_kernel_ident();
3980 	pr_warn("--------------------------------\n");
3981 
3982 	pr_warn("inconsistent {%s} -> {%s} usage.\n",
3983 		usage_str[prev_bit], usage_str[new_bit]);
3984 
3985 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3986 		curr->comm, task_pid_nr(curr),
3987 		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
3988 		lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3989 		lockdep_hardirqs_enabled(),
3990 		lockdep_softirqs_enabled(curr));
3991 	print_lock(this);
3992 
3993 	pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3994 	print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3995 
3996 	print_irqtrace_events(curr);
3997 	pr_warn("\nother info that might help us debug this:\n");
3998 	print_usage_bug_scenario(this);
3999 
4000 	lockdep_print_held_locks(curr);
4001 
4002 	pr_warn("\nstack backtrace:\n");
4003 	dump_stack();
4004 }
4005 
4006 /*
4007  * Print out an error if an invalid bit is set:
4008  */
4009 static inline int
4010 valid_state(struct task_struct *curr, struct held_lock *this,
4011 	    enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
4012 {
4013 	if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
4014 		graph_unlock();
4015 		print_usage_bug(curr, this, bad_bit, new_bit);
4016 		return 0;
4017 	}
4018 	return 1;
4019 }
4020 
4021 
4022 /*
4023  * print irq inversion bug:
4024  */
4025 static void
4026 print_irq_inversion_bug(struct task_struct *curr,
4027 			struct lock_list *root, struct lock_list *other,
4028 			struct held_lock *this, int forwards,
4029 			const char *irqclass)
4030 {
4031 	struct lock_list *entry = other;
4032 	struct lock_list *middle = NULL;
4033 	int depth;
4034 
4035 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
4036 		return;
4037 
4038 	pr_warn("\n");
4039 	pr_warn("========================================================\n");
4040 	pr_warn("WARNING: possible irq lock inversion dependency detected\n");
4041 	print_kernel_ident();
4042 	pr_warn("--------------------------------------------------------\n");
4043 	pr_warn("%s/%d just changed the state of lock:\n",
4044 		curr->comm, task_pid_nr(curr));
4045 	print_lock(this);
4046 	if (forwards)
4047 		pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
4048 	else
4049 		pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
4050 	print_lock_name(NULL, other->class);
4051 	pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
4052 
4053 	pr_warn("\nother info that might help us debug this:\n");
4054 
4055 	/* Find a middle lock (if one exists) */
4056 	depth = get_lock_depth(other);
4057 	do {
4058 		if (depth == 0 && (entry != root)) {
4059 			pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
4060 			break;
4061 		}
4062 		middle = entry;
4063 		entry = get_lock_parent(entry);
4064 		depth--;
4065 	} while (entry && entry != root && (depth >= 0));
4066 	if (forwards)
4067 		print_irq_lock_scenario(root, other,
4068 			middle ? middle->class : root->class, other->class);
4069 	else
4070 		print_irq_lock_scenario(other, root,
4071 			middle ? middle->class : other->class, root->class);
4072 
4073 	lockdep_print_held_locks(curr);
4074 
4075 	pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
4076 	root->trace = save_trace();
4077 	if (!root->trace)
4078 		return;
4079 	print_shortest_lock_dependencies(other, root);
4080 
4081 	pr_warn("\nstack backtrace:\n");
4082 	dump_stack();
4083 }
4084 
4085 /*
4086  * Prove that in the forwards-direction subgraph starting at <this>
4087  * there is no lock matching <mask>:
4088  */
4089 static int
4090 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
4091 		     enum lock_usage_bit bit)
4092 {
4093 	enum bfs_result ret;
4094 	struct lock_list root;
4095 	struct lock_list *target_entry;
4096 	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4097 	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4098 
4099 	bfs_init_root(&root, this);
4100 	ret = find_usage_forwards(&root, usage_mask, &target_entry);
4101 	if (bfs_error(ret)) {
4102 		print_bfs_bug(ret);
4103 		return 0;
4104 	}
4105 	if (ret == BFS_RNOMATCH)
4106 		return 1;
4107 
4108 	/* Check whether write or read usage is the match */
4109 	if (target_entry->class->usage_mask & lock_flag(bit)) {
4110 		print_irq_inversion_bug(curr, &root, target_entry,
4111 					this, 1, state_name(bit));
4112 	} else {
4113 		print_irq_inversion_bug(curr, &root, target_entry,
4114 					this, 1, state_name(read_bit));
4115 	}
4116 
4117 	return 0;
4118 }
4119 
4120 /*
4121  * Prove that in the backwards-direction subgraph starting at <this>
4122  * there is no lock matching <mask>:
4123  */
4124 static int
4125 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
4126 		      enum lock_usage_bit bit)
4127 {
4128 	enum bfs_result ret;
4129 	struct lock_list root;
4130 	struct lock_list *target_entry;
4131 	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4132 	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4133 
4134 	bfs_init_rootb(&root, this);
4135 	ret = find_usage_backwards(&root, usage_mask, &target_entry);
4136 	if (bfs_error(ret)) {
4137 		print_bfs_bug(ret);
4138 		return 0;
4139 	}
4140 	if (ret == BFS_RNOMATCH)
4141 		return 1;
4142 
4143 	/* Check whether write or read usage is the match */
4144 	if (target_entry->class->usage_mask & lock_flag(bit)) {
4145 		print_irq_inversion_bug(curr, &root, target_entry,
4146 					this, 0, state_name(bit));
4147 	} else {
4148 		print_irq_inversion_bug(curr, &root, target_entry,
4149 					this, 0, state_name(read_bit));
4150 	}
4151 
4152 	return 0;
4153 }
4154 
4155 void print_irqtrace_events(struct task_struct *curr)
4156 {
4157 	const struct irqtrace_events *trace = &curr->irqtrace;
4158 
4159 	printk("irq event stamp: %u\n", trace->irq_events);
4160 	printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
4161 		trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
4162 		(void *)trace->hardirq_enable_ip);
4163 	printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
4164 		trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
4165 		(void *)trace->hardirq_disable_ip);
4166 	printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
4167 		trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
4168 		(void *)trace->softirq_enable_ip);
4169 	printk("softirqs last disabled at (%u): [<%px>] %pS\n",
4170 		trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
4171 		(void *)trace->softirq_disable_ip);
4172 }
4173 
4174 static int HARDIRQ_verbose(struct lock_class *class)
4175 {
4176 #if HARDIRQ_VERBOSE
4177 	return class_filter(class);
4178 #endif
4179 	return 0;
4180 }
4181 
4182 static int SOFTIRQ_verbose(struct lock_class *class)
4183 {
4184 #if SOFTIRQ_VERBOSE
4185 	return class_filter(class);
4186 #endif
4187 	return 0;
4188 }
4189 
4190 static int (*state_verbose_f[])(struct lock_class *class) = {
4191 #define LOCKDEP_STATE(__STATE) \
4192 	__STATE##_verbose,
4193 #include "lockdep_states.h"
4194 #undef LOCKDEP_STATE
4195 };
4196 
4197 static inline int state_verbose(enum lock_usage_bit bit,
4198 				struct lock_class *class)
4199 {
4200 	return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4201 }
4202 
4203 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4204 			     enum lock_usage_bit bit, const char *name);
4205 
4206 static int
4207 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4208 		enum lock_usage_bit new_bit)
4209 {
4210 	int excl_bit = exclusive_bit(new_bit);
4211 	int read = new_bit & LOCK_USAGE_READ_MASK;
4212 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
4213 
4214 	/*
4215 	 * Validate that this particular lock does not have conflicting
4216 	 * usage states.
4217 	 */
4218 	if (!valid_state(curr, this, new_bit, excl_bit))
4219 		return 0;
4220 
4221 	/*
4222 	 * Check for read in write conflicts
4223 	 */
4224 	if (!read && !valid_state(curr, this, new_bit,
4225 				  excl_bit + LOCK_USAGE_READ_MASK))
4226 		return 0;
4227 
4228 
4229 	/*
4230 	 * Validate that the lock dependencies don't have conflicting usage
4231 	 * states.
4232 	 */
4233 	if (dir) {
4234 		/*
4235 		 * mark ENABLED has to look backwards -- to ensure no dependee
4236 		 * has USED_IN state, which, again, would allow  recursion deadlocks.
4237 		 */
4238 		if (!check_usage_backwards(curr, this, excl_bit))
4239 			return 0;
4240 	} else {
4241 		/*
4242 		 * mark USED_IN has to look forwards -- to ensure no dependency
4243 		 * has ENABLED state, which would allow recursion deadlocks.
4244 		 */
4245 		if (!check_usage_forwards(curr, this, excl_bit))
4246 			return 0;
4247 	}
4248 
4249 	if (state_verbose(new_bit, hlock_class(this)))
4250 		return 2;
4251 
4252 	return 1;
4253 }
4254 
4255 /*
4256  * Mark all held locks with a usage bit:
4257  */
4258 static int
4259 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4260 {
4261 	struct held_lock *hlock;
4262 	int i;
4263 
4264 	for (i = 0; i < curr->lockdep_depth; i++) {
4265 		enum lock_usage_bit hlock_bit = base_bit;
4266 		hlock = curr->held_locks + i;
4267 
4268 		if (hlock->read)
4269 			hlock_bit += LOCK_USAGE_READ_MASK;
4270 
4271 		BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4272 
4273 		if (!hlock->check)
4274 			continue;
4275 
4276 		if (!mark_lock(curr, hlock, hlock_bit))
4277 			return 0;
4278 	}
4279 
4280 	return 1;
4281 }
4282 
4283 /*
4284  * Hardirqs will be enabled:
4285  */
4286 static void __trace_hardirqs_on_caller(void)
4287 {
4288 	struct task_struct *curr = current;
4289 
4290 	/*
4291 	 * We are going to turn hardirqs on, so set the
4292 	 * usage bit for all held locks:
4293 	 */
4294 	if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4295 		return;
4296 	/*
4297 	 * If we have softirqs enabled, then set the usage
4298 	 * bit for all held locks. (disabled hardirqs prevented
4299 	 * this bit from being set before)
4300 	 */
4301 	if (curr->softirqs_enabled)
4302 		mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4303 }
4304 
4305 /**
4306  * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4307  *
4308  * Invoked before a possible transition to RCU idle from exit to user or
4309  * guest mode. This ensures that all RCU operations are done before RCU
4310  * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4311  * invoked to set the final state.
4312  */
4313 void lockdep_hardirqs_on_prepare(void)
4314 {
4315 	if (unlikely(!debug_locks))
4316 		return;
4317 
4318 	/*
4319 	 * NMIs do not (and cannot) track lock dependencies, nothing to do.
4320 	 */
4321 	if (unlikely(in_nmi()))
4322 		return;
4323 
4324 	if (unlikely(this_cpu_read(lockdep_recursion)))
4325 		return;
4326 
4327 	if (unlikely(lockdep_hardirqs_enabled())) {
4328 		/*
4329 		 * Neither irq nor preemption are disabled here
4330 		 * so this is racy by nature but losing one hit
4331 		 * in a stat is not a big deal.
4332 		 */
4333 		__debug_atomic_inc(redundant_hardirqs_on);
4334 		return;
4335 	}
4336 
4337 	/*
4338 	 * We're enabling irqs and according to our state above irqs weren't
4339 	 * already enabled, yet we find the hardware thinks they are in fact
4340 	 * enabled.. someone messed up their IRQ state tracing.
4341 	 */
4342 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4343 		return;
4344 
4345 	/*
4346 	 * See the fine text that goes along with this variable definition.
4347 	 */
4348 	if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4349 		return;
4350 
4351 	/*
4352 	 * Can't allow enabling interrupts while in an interrupt handler,
4353 	 * that's general bad form and such. Recursion, limited stack etc..
4354 	 */
4355 	if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4356 		return;
4357 
4358 	current->hardirq_chain_key = current->curr_chain_key;
4359 
4360 	lockdep_recursion_inc();
4361 	__trace_hardirqs_on_caller();
4362 	lockdep_recursion_finish();
4363 }
4364 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4365 
4366 void noinstr lockdep_hardirqs_on(unsigned long ip)
4367 {
4368 	struct irqtrace_events *trace = &current->irqtrace;
4369 
4370 	if (unlikely(!debug_locks))
4371 		return;
4372 
4373 	/*
4374 	 * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4375 	 * tracking state and hardware state are out of sync.
4376 	 *
4377 	 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4378 	 * and not rely on hardware state like normal interrupts.
4379 	 */
4380 	if (unlikely(in_nmi())) {
4381 		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4382 			return;
4383 
4384 		/*
4385 		 * Skip:
4386 		 *  - recursion check, because NMI can hit lockdep;
4387 		 *  - hardware state check, because above;
4388 		 *  - chain_key check, see lockdep_hardirqs_on_prepare().
4389 		 */
4390 		goto skip_checks;
4391 	}
4392 
4393 	if (unlikely(this_cpu_read(lockdep_recursion)))
4394 		return;
4395 
4396 	if (lockdep_hardirqs_enabled()) {
4397 		/*
4398 		 * Neither irq nor preemption are disabled here
4399 		 * so this is racy by nature but losing one hit
4400 		 * in a stat is not a big deal.
4401 		 */
4402 		__debug_atomic_inc(redundant_hardirqs_on);
4403 		return;
4404 	}
4405 
4406 	/*
4407 	 * We're enabling irqs and according to our state above irqs weren't
4408 	 * already enabled, yet we find the hardware thinks they are in fact
4409 	 * enabled.. someone messed up their IRQ state tracing.
4410 	 */
4411 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4412 		return;
4413 
4414 	/*
4415 	 * Ensure the lock stack remained unchanged between
4416 	 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4417 	 */
4418 	DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4419 			    current->curr_chain_key);
4420 
4421 skip_checks:
4422 	/* we'll do an OFF -> ON transition: */
4423 	__this_cpu_write(hardirqs_enabled, 1);
4424 	trace->hardirq_enable_ip = ip;
4425 	trace->hardirq_enable_event = ++trace->irq_events;
4426 	debug_atomic_inc(hardirqs_on_events);
4427 }
4428 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4429 
4430 /*
4431  * Hardirqs were disabled:
4432  */
4433 void noinstr lockdep_hardirqs_off(unsigned long ip)
4434 {
4435 	if (unlikely(!debug_locks))
4436 		return;
4437 
4438 	/*
4439 	 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4440 	 * they will restore the software state. This ensures the software
4441 	 * state is consistent inside NMIs as well.
4442 	 */
4443 	if (in_nmi()) {
4444 		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4445 			return;
4446 	} else if (__this_cpu_read(lockdep_recursion))
4447 		return;
4448 
4449 	/*
4450 	 * So we're supposed to get called after you mask local IRQs, but for
4451 	 * some reason the hardware doesn't quite think you did a proper job.
4452 	 */
4453 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4454 		return;
4455 
4456 	if (lockdep_hardirqs_enabled()) {
4457 		struct irqtrace_events *trace = &current->irqtrace;
4458 
4459 		/*
4460 		 * We have done an ON -> OFF transition:
4461 		 */
4462 		__this_cpu_write(hardirqs_enabled, 0);
4463 		trace->hardirq_disable_ip = ip;
4464 		trace->hardirq_disable_event = ++trace->irq_events;
4465 		debug_atomic_inc(hardirqs_off_events);
4466 	} else {
4467 		debug_atomic_inc(redundant_hardirqs_off);
4468 	}
4469 }
4470 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4471 
4472 /*
4473  * Softirqs will be enabled:
4474  */
4475 void lockdep_softirqs_on(unsigned long ip)
4476 {
4477 	struct irqtrace_events *trace = &current->irqtrace;
4478 
4479 	if (unlikely(!lockdep_enabled()))
4480 		return;
4481 
4482 	/*
4483 	 * We fancy IRQs being disabled here, see softirq.c, avoids
4484 	 * funny state and nesting things.
4485 	 */
4486 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4487 		return;
4488 
4489 	if (current->softirqs_enabled) {
4490 		debug_atomic_inc(redundant_softirqs_on);
4491 		return;
4492 	}
4493 
4494 	lockdep_recursion_inc();
4495 	/*
4496 	 * We'll do an OFF -> ON transition:
4497 	 */
4498 	current->softirqs_enabled = 1;
4499 	trace->softirq_enable_ip = ip;
4500 	trace->softirq_enable_event = ++trace->irq_events;
4501 	debug_atomic_inc(softirqs_on_events);
4502 	/*
4503 	 * We are going to turn softirqs on, so set the
4504 	 * usage bit for all held locks, if hardirqs are
4505 	 * enabled too:
4506 	 */
4507 	if (lockdep_hardirqs_enabled())
4508 		mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4509 	lockdep_recursion_finish();
4510 }
4511 
4512 /*
4513  * Softirqs were disabled:
4514  */
4515 void lockdep_softirqs_off(unsigned long ip)
4516 {
4517 	if (unlikely(!lockdep_enabled()))
4518 		return;
4519 
4520 	/*
4521 	 * We fancy IRQs being disabled here, see softirq.c
4522 	 */
4523 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4524 		return;
4525 
4526 	if (current->softirqs_enabled) {
4527 		struct irqtrace_events *trace = &current->irqtrace;
4528 
4529 		/*
4530 		 * We have done an ON -> OFF transition:
4531 		 */
4532 		current->softirqs_enabled = 0;
4533 		trace->softirq_disable_ip = ip;
4534 		trace->softirq_disable_event = ++trace->irq_events;
4535 		debug_atomic_inc(softirqs_off_events);
4536 		/*
4537 		 * Whoops, we wanted softirqs off, so why aren't they?
4538 		 */
4539 		DEBUG_LOCKS_WARN_ON(!softirq_count());
4540 	} else
4541 		debug_atomic_inc(redundant_softirqs_off);
4542 }
4543 
4544 static int
4545 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4546 {
4547 	if (!check)
4548 		goto lock_used;
4549 
4550 	/*
4551 	 * If non-trylock use in a hardirq or softirq context, then
4552 	 * mark the lock as used in these contexts:
4553 	 */
4554 	if (!hlock->trylock) {
4555 		if (hlock->read) {
4556 			if (lockdep_hardirq_context())
4557 				if (!mark_lock(curr, hlock,
4558 						LOCK_USED_IN_HARDIRQ_READ))
4559 					return 0;
4560 			if (curr->softirq_context)
4561 				if (!mark_lock(curr, hlock,
4562 						LOCK_USED_IN_SOFTIRQ_READ))
4563 					return 0;
4564 		} else {
4565 			if (lockdep_hardirq_context())
4566 				if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4567 					return 0;
4568 			if (curr->softirq_context)
4569 				if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4570 					return 0;
4571 		}
4572 	}
4573 
4574 	/*
4575 	 * For lock_sync(), don't mark the ENABLED usage, since lock_sync()
4576 	 * creates no critical section and no extra dependency can be introduced
4577 	 * by interrupts
4578 	 */
4579 	if (!hlock->hardirqs_off && !hlock->sync) {
4580 		if (hlock->read) {
4581 			if (!mark_lock(curr, hlock,
4582 					LOCK_ENABLED_HARDIRQ_READ))
4583 				return 0;
4584 			if (curr->softirqs_enabled)
4585 				if (!mark_lock(curr, hlock,
4586 						LOCK_ENABLED_SOFTIRQ_READ))
4587 					return 0;
4588 		} else {
4589 			if (!mark_lock(curr, hlock,
4590 					LOCK_ENABLED_HARDIRQ))
4591 				return 0;
4592 			if (curr->softirqs_enabled)
4593 				if (!mark_lock(curr, hlock,
4594 						LOCK_ENABLED_SOFTIRQ))
4595 					return 0;
4596 		}
4597 	}
4598 
4599 lock_used:
4600 	/* mark it as used: */
4601 	if (!mark_lock(curr, hlock, LOCK_USED))
4602 		return 0;
4603 
4604 	return 1;
4605 }
4606 
4607 static inline unsigned int task_irq_context(struct task_struct *task)
4608 {
4609 	return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4610 	       LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4611 }
4612 
4613 static int separate_irq_context(struct task_struct *curr,
4614 		struct held_lock *hlock)
4615 {
4616 	unsigned int depth = curr->lockdep_depth;
4617 
4618 	/*
4619 	 * Keep track of points where we cross into an interrupt context:
4620 	 */
4621 	if (depth) {
4622 		struct held_lock *prev_hlock;
4623 
4624 		prev_hlock = curr->held_locks + depth-1;
4625 		/*
4626 		 * If we cross into another context, reset the
4627 		 * hash key (this also prevents the checking and the
4628 		 * adding of the dependency to 'prev'):
4629 		 */
4630 		if (prev_hlock->irq_context != hlock->irq_context)
4631 			return 1;
4632 	}
4633 	return 0;
4634 }
4635 
4636 /*
4637  * Mark a lock with a usage bit, and validate the state transition:
4638  */
4639 static int mark_lock(struct task_struct *curr, struct held_lock *this,
4640 			     enum lock_usage_bit new_bit)
4641 {
4642 	unsigned int new_mask, ret = 1;
4643 
4644 	if (new_bit >= LOCK_USAGE_STATES) {
4645 		DEBUG_LOCKS_WARN_ON(1);
4646 		return 0;
4647 	}
4648 
4649 	if (new_bit == LOCK_USED && this->read)
4650 		new_bit = LOCK_USED_READ;
4651 
4652 	new_mask = 1 << new_bit;
4653 
4654 	/*
4655 	 * If already set then do not dirty the cacheline,
4656 	 * nor do any checks:
4657 	 */
4658 	if (likely(hlock_class(this)->usage_mask & new_mask))
4659 		return 1;
4660 
4661 	if (!graph_lock())
4662 		return 0;
4663 	/*
4664 	 * Make sure we didn't race:
4665 	 */
4666 	if (unlikely(hlock_class(this)->usage_mask & new_mask))
4667 		goto unlock;
4668 
4669 	if (!hlock_class(this)->usage_mask)
4670 		debug_atomic_dec(nr_unused_locks);
4671 
4672 	hlock_class(this)->usage_mask |= new_mask;
4673 
4674 	if (new_bit < LOCK_TRACE_STATES) {
4675 		if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4676 			return 0;
4677 	}
4678 
4679 	if (new_bit < LOCK_USED) {
4680 		ret = mark_lock_irq(curr, this, new_bit);
4681 		if (!ret)
4682 			return 0;
4683 	}
4684 
4685 unlock:
4686 	graph_unlock();
4687 
4688 	/*
4689 	 * We must printk outside of the graph_lock:
4690 	 */
4691 	if (ret == 2) {
4692 		printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4693 		print_lock(this);
4694 		print_irqtrace_events(curr);
4695 		dump_stack();
4696 	}
4697 
4698 	return ret;
4699 }
4700 
4701 static inline short task_wait_context(struct task_struct *curr)
4702 {
4703 	/*
4704 	 * Set appropriate wait type for the context; for IRQs we have to take
4705 	 * into account force_irqthread as that is implied by PREEMPT_RT.
4706 	 */
4707 	if (lockdep_hardirq_context()) {
4708 		/*
4709 		 * Check if force_irqthreads will run us threaded.
4710 		 */
4711 		if (curr->hardirq_threaded || curr->irq_config)
4712 			return LD_WAIT_CONFIG;
4713 
4714 		return LD_WAIT_SPIN;
4715 	} else if (curr->softirq_context) {
4716 		/*
4717 		 * Softirqs are always threaded.
4718 		 */
4719 		return LD_WAIT_CONFIG;
4720 	}
4721 
4722 	return LD_WAIT_MAX;
4723 }
4724 
4725 static int
4726 print_lock_invalid_wait_context(struct task_struct *curr,
4727 				struct held_lock *hlock)
4728 {
4729 	short curr_inner;
4730 
4731 	if (!debug_locks_off())
4732 		return 0;
4733 	if (debug_locks_silent)
4734 		return 0;
4735 
4736 	pr_warn("\n");
4737 	pr_warn("=============================\n");
4738 	pr_warn("[ BUG: Invalid wait context ]\n");
4739 	print_kernel_ident();
4740 	pr_warn("-----------------------------\n");
4741 
4742 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4743 	print_lock(hlock);
4744 
4745 	pr_warn("other info that might help us debug this:\n");
4746 
4747 	curr_inner = task_wait_context(curr);
4748 	pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4749 
4750 	lockdep_print_held_locks(curr);
4751 
4752 	pr_warn("stack backtrace:\n");
4753 	dump_stack();
4754 
4755 	return 0;
4756 }
4757 
4758 /*
4759  * Verify the wait_type context.
4760  *
4761  * This check validates we take locks in the right wait-type order; that is it
4762  * ensures that we do not take mutexes inside spinlocks and do not attempt to
4763  * acquire spinlocks inside raw_spinlocks and the sort.
4764  *
4765  * The entire thing is slightly more complex because of RCU, RCU is a lock that
4766  * can be taken from (pretty much) any context but also has constraints.
4767  * However when taken in a stricter environment the RCU lock does not loosen
4768  * the constraints.
4769  *
4770  * Therefore we must look for the strictest environment in the lock stack and
4771  * compare that to the lock we're trying to acquire.
4772  */
4773 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4774 {
4775 	u8 next_inner = hlock_class(next)->wait_type_inner;
4776 	u8 next_outer = hlock_class(next)->wait_type_outer;
4777 	u8 curr_inner;
4778 	int depth;
4779 
4780 	if (!next_inner || next->trylock)
4781 		return 0;
4782 
4783 	if (!next_outer)
4784 		next_outer = next_inner;
4785 
4786 	/*
4787 	 * Find start of current irq_context..
4788 	 */
4789 	for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4790 		struct held_lock *prev = curr->held_locks + depth;
4791 		if (prev->irq_context != next->irq_context)
4792 			break;
4793 	}
4794 	depth++;
4795 
4796 	curr_inner = task_wait_context(curr);
4797 
4798 	for (; depth < curr->lockdep_depth; depth++) {
4799 		struct held_lock *prev = curr->held_locks + depth;
4800 		u8 prev_inner = hlock_class(prev)->wait_type_inner;
4801 
4802 		if (prev_inner) {
4803 			/*
4804 			 * We can have a bigger inner than a previous one
4805 			 * when outer is smaller than inner, as with RCU.
4806 			 *
4807 			 * Also due to trylocks.
4808 			 */
4809 			curr_inner = min(curr_inner, prev_inner);
4810 		}
4811 	}
4812 
4813 	if (next_outer > curr_inner)
4814 		return print_lock_invalid_wait_context(curr, next);
4815 
4816 	return 0;
4817 }
4818 
4819 #else /* CONFIG_PROVE_LOCKING */
4820 
4821 static inline int
4822 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4823 {
4824 	return 1;
4825 }
4826 
4827 static inline unsigned int task_irq_context(struct task_struct *task)
4828 {
4829 	return 0;
4830 }
4831 
4832 static inline int separate_irq_context(struct task_struct *curr,
4833 		struct held_lock *hlock)
4834 {
4835 	return 0;
4836 }
4837 
4838 static inline int check_wait_context(struct task_struct *curr,
4839 				     struct held_lock *next)
4840 {
4841 	return 0;
4842 }
4843 
4844 #endif /* CONFIG_PROVE_LOCKING */
4845 
4846 /*
4847  * Initialize a lock instance's lock-class mapping info:
4848  */
4849 void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4850 			    struct lock_class_key *key, int subclass,
4851 			    u8 inner, u8 outer, u8 lock_type)
4852 {
4853 	int i;
4854 
4855 	for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4856 		lock->class_cache[i] = NULL;
4857 
4858 #ifdef CONFIG_LOCK_STAT
4859 	lock->cpu = raw_smp_processor_id();
4860 #endif
4861 
4862 	/*
4863 	 * Can't be having no nameless bastards around this place!
4864 	 */
4865 	if (DEBUG_LOCKS_WARN_ON(!name)) {
4866 		lock->name = "NULL";
4867 		return;
4868 	}
4869 
4870 	lock->name = name;
4871 
4872 	lock->wait_type_outer = outer;
4873 	lock->wait_type_inner = inner;
4874 	lock->lock_type = lock_type;
4875 
4876 	/*
4877 	 * No key, no joy, we need to hash something.
4878 	 */
4879 	if (DEBUG_LOCKS_WARN_ON(!key))
4880 		return;
4881 	/*
4882 	 * Sanity check, the lock-class key must either have been allocated
4883 	 * statically or must have been registered as a dynamic key.
4884 	 */
4885 	if (!static_obj(key) && !is_dynamic_key(key)) {
4886 		if (debug_locks)
4887 			printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4888 		DEBUG_LOCKS_WARN_ON(1);
4889 		return;
4890 	}
4891 	lock->key = key;
4892 
4893 	if (unlikely(!debug_locks))
4894 		return;
4895 
4896 	if (subclass) {
4897 		unsigned long flags;
4898 
4899 		if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4900 			return;
4901 
4902 		raw_local_irq_save(flags);
4903 		lockdep_recursion_inc();
4904 		register_lock_class(lock, subclass, 1);
4905 		lockdep_recursion_finish();
4906 		raw_local_irq_restore(flags);
4907 	}
4908 }
4909 EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4910 
4911 struct lock_class_key __lockdep_no_validate__;
4912 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4913 
4914 #ifdef CONFIG_PROVE_LOCKING
4915 void lockdep_set_lock_cmp_fn(struct lockdep_map *lock, lock_cmp_fn cmp_fn,
4916 			     lock_print_fn print_fn)
4917 {
4918 	struct lock_class *class = lock->class_cache[0];
4919 	unsigned long flags;
4920 
4921 	raw_local_irq_save(flags);
4922 	lockdep_recursion_inc();
4923 
4924 	if (!class)
4925 		class = register_lock_class(lock, 0, 0);
4926 
4927 	if (class) {
4928 		WARN_ON(class->cmp_fn	&& class->cmp_fn != cmp_fn);
4929 		WARN_ON(class->print_fn && class->print_fn != print_fn);
4930 
4931 		class->cmp_fn	= cmp_fn;
4932 		class->print_fn = print_fn;
4933 	}
4934 
4935 	lockdep_recursion_finish();
4936 	raw_local_irq_restore(flags);
4937 }
4938 EXPORT_SYMBOL_GPL(lockdep_set_lock_cmp_fn);
4939 #endif
4940 
4941 static void
4942 print_lock_nested_lock_not_held(struct task_struct *curr,
4943 				struct held_lock *hlock)
4944 {
4945 	if (!debug_locks_off())
4946 		return;
4947 	if (debug_locks_silent)
4948 		return;
4949 
4950 	pr_warn("\n");
4951 	pr_warn("==================================\n");
4952 	pr_warn("WARNING: Nested lock was not taken\n");
4953 	print_kernel_ident();
4954 	pr_warn("----------------------------------\n");
4955 
4956 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4957 	print_lock(hlock);
4958 
4959 	pr_warn("\nbut this task is not holding:\n");
4960 	pr_warn("%s\n", hlock->nest_lock->name);
4961 
4962 	pr_warn("\nstack backtrace:\n");
4963 	dump_stack();
4964 
4965 	pr_warn("\nother info that might help us debug this:\n");
4966 	lockdep_print_held_locks(curr);
4967 
4968 	pr_warn("\nstack backtrace:\n");
4969 	dump_stack();
4970 }
4971 
4972 static int __lock_is_held(const struct lockdep_map *lock, int read);
4973 
4974 /*
4975  * This gets called for every mutex_lock*()/spin_lock*() operation.
4976  * We maintain the dependency maps and validate the locking attempt:
4977  *
4978  * The callers must make sure that IRQs are disabled before calling it,
4979  * otherwise we could get an interrupt which would want to take locks,
4980  * which would end up in lockdep again.
4981  */
4982 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4983 			  int trylock, int read, int check, int hardirqs_off,
4984 			  struct lockdep_map *nest_lock, unsigned long ip,
4985 			  int references, int pin_count, int sync)
4986 {
4987 	struct task_struct *curr = current;
4988 	struct lock_class *class = NULL;
4989 	struct held_lock *hlock;
4990 	unsigned int depth;
4991 	int chain_head = 0;
4992 	int class_idx;
4993 	u64 chain_key;
4994 
4995 	if (unlikely(!debug_locks))
4996 		return 0;
4997 
4998 	if (!prove_locking || lock->key == &__lockdep_no_validate__)
4999 		check = 0;
5000 
5001 	if (subclass < NR_LOCKDEP_CACHING_CLASSES)
5002 		class = lock->class_cache[subclass];
5003 	/*
5004 	 * Not cached?
5005 	 */
5006 	if (unlikely(!class)) {
5007 		class = register_lock_class(lock, subclass, 0);
5008 		if (!class)
5009 			return 0;
5010 	}
5011 
5012 	debug_class_ops_inc(class);
5013 
5014 	if (very_verbose(class)) {
5015 		printk("\nacquire class [%px] %s", class->key, class->name);
5016 		if (class->name_version > 1)
5017 			printk(KERN_CONT "#%d", class->name_version);
5018 		printk(KERN_CONT "\n");
5019 		dump_stack();
5020 	}
5021 
5022 	/*
5023 	 * Add the lock to the list of currently held locks.
5024 	 * (we dont increase the depth just yet, up until the
5025 	 * dependency checks are done)
5026 	 */
5027 	depth = curr->lockdep_depth;
5028 	/*
5029 	 * Ran out of static storage for our per-task lock stack again have we?
5030 	 */
5031 	if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
5032 		return 0;
5033 
5034 	class_idx = class - lock_classes;
5035 
5036 	if (depth && !sync) {
5037 		/* we're holding locks and the new held lock is not a sync */
5038 		hlock = curr->held_locks + depth - 1;
5039 		if (hlock->class_idx == class_idx && nest_lock) {
5040 			if (!references)
5041 				references++;
5042 
5043 			if (!hlock->references)
5044 				hlock->references++;
5045 
5046 			hlock->references += references;
5047 
5048 			/* Overflow */
5049 			if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
5050 				return 0;
5051 
5052 			return 2;
5053 		}
5054 	}
5055 
5056 	hlock = curr->held_locks + depth;
5057 	/*
5058 	 * Plain impossible, we just registered it and checked it weren't no
5059 	 * NULL like.. I bet this mushroom I ate was good!
5060 	 */
5061 	if (DEBUG_LOCKS_WARN_ON(!class))
5062 		return 0;
5063 	hlock->class_idx = class_idx;
5064 	hlock->acquire_ip = ip;
5065 	hlock->instance = lock;
5066 	hlock->nest_lock = nest_lock;
5067 	hlock->irq_context = task_irq_context(curr);
5068 	hlock->trylock = trylock;
5069 	hlock->read = read;
5070 	hlock->check = check;
5071 	hlock->sync = !!sync;
5072 	hlock->hardirqs_off = !!hardirqs_off;
5073 	hlock->references = references;
5074 #ifdef CONFIG_LOCK_STAT
5075 	hlock->waittime_stamp = 0;
5076 	hlock->holdtime_stamp = lockstat_clock();
5077 #endif
5078 	hlock->pin_count = pin_count;
5079 
5080 	if (check_wait_context(curr, hlock))
5081 		return 0;
5082 
5083 	/* Initialize the lock usage bit */
5084 	if (!mark_usage(curr, hlock, check))
5085 		return 0;
5086 
5087 	/*
5088 	 * Calculate the chain hash: it's the combined hash of all the
5089 	 * lock keys along the dependency chain. We save the hash value
5090 	 * at every step so that we can get the current hash easily
5091 	 * after unlock. The chain hash is then used to cache dependency
5092 	 * results.
5093 	 *
5094 	 * The 'key ID' is what is the most compact key value to drive
5095 	 * the hash, not class->key.
5096 	 */
5097 	/*
5098 	 * Whoops, we did it again.. class_idx is invalid.
5099 	 */
5100 	if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
5101 		return 0;
5102 
5103 	chain_key = curr->curr_chain_key;
5104 	if (!depth) {
5105 		/*
5106 		 * How can we have a chain hash when we ain't got no keys?!
5107 		 */
5108 		if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
5109 			return 0;
5110 		chain_head = 1;
5111 	}
5112 
5113 	hlock->prev_chain_key = chain_key;
5114 	if (separate_irq_context(curr, hlock)) {
5115 		chain_key = INITIAL_CHAIN_KEY;
5116 		chain_head = 1;
5117 	}
5118 	chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
5119 
5120 	if (nest_lock && !__lock_is_held(nest_lock, -1)) {
5121 		print_lock_nested_lock_not_held(curr, hlock);
5122 		return 0;
5123 	}
5124 
5125 	if (!debug_locks_silent) {
5126 		WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
5127 		WARN_ON_ONCE(!hlock_class(hlock)->key);
5128 	}
5129 
5130 	if (!validate_chain(curr, hlock, chain_head, chain_key))
5131 		return 0;
5132 
5133 	/* For lock_sync(), we are done here since no actual critical section */
5134 	if (hlock->sync)
5135 		return 1;
5136 
5137 	curr->curr_chain_key = chain_key;
5138 	curr->lockdep_depth++;
5139 	check_chain_key(curr);
5140 #ifdef CONFIG_DEBUG_LOCKDEP
5141 	if (unlikely(!debug_locks))
5142 		return 0;
5143 #endif
5144 	if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
5145 		debug_locks_off();
5146 		print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
5147 		printk(KERN_DEBUG "depth: %i  max: %lu!\n",
5148 		       curr->lockdep_depth, MAX_LOCK_DEPTH);
5149 
5150 		lockdep_print_held_locks(current);
5151 		debug_show_all_locks();
5152 		dump_stack();
5153 
5154 		return 0;
5155 	}
5156 
5157 	if (unlikely(curr->lockdep_depth > max_lockdep_depth))
5158 		max_lockdep_depth = curr->lockdep_depth;
5159 
5160 	return 1;
5161 }
5162 
5163 static void print_unlock_imbalance_bug(struct task_struct *curr,
5164 				       struct lockdep_map *lock,
5165 				       unsigned long ip)
5166 {
5167 	if (!debug_locks_off())
5168 		return;
5169 	if (debug_locks_silent)
5170 		return;
5171 
5172 	pr_warn("\n");
5173 	pr_warn("=====================================\n");
5174 	pr_warn("WARNING: bad unlock balance detected!\n");
5175 	print_kernel_ident();
5176 	pr_warn("-------------------------------------\n");
5177 	pr_warn("%s/%d is trying to release lock (",
5178 		curr->comm, task_pid_nr(curr));
5179 	print_lockdep_cache(lock);
5180 	pr_cont(") at:\n");
5181 	print_ip_sym(KERN_WARNING, ip);
5182 	pr_warn("but there are no more locks to release!\n");
5183 	pr_warn("\nother info that might help us debug this:\n");
5184 	lockdep_print_held_locks(curr);
5185 
5186 	pr_warn("\nstack backtrace:\n");
5187 	dump_stack();
5188 }
5189 
5190 static noinstr int match_held_lock(const struct held_lock *hlock,
5191 				   const struct lockdep_map *lock)
5192 {
5193 	if (hlock->instance == lock)
5194 		return 1;
5195 
5196 	if (hlock->references) {
5197 		const struct lock_class *class = lock->class_cache[0];
5198 
5199 		if (!class)
5200 			class = look_up_lock_class(lock, 0);
5201 
5202 		/*
5203 		 * If look_up_lock_class() failed to find a class, we're trying
5204 		 * to test if we hold a lock that has never yet been acquired.
5205 		 * Clearly if the lock hasn't been acquired _ever_, we're not
5206 		 * holding it either, so report failure.
5207 		 */
5208 		if (!class)
5209 			return 0;
5210 
5211 		/*
5212 		 * References, but not a lock we're actually ref-counting?
5213 		 * State got messed up, follow the sites that change ->references
5214 		 * and try to make sense of it.
5215 		 */
5216 		if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
5217 			return 0;
5218 
5219 		if (hlock->class_idx == class - lock_classes)
5220 			return 1;
5221 	}
5222 
5223 	return 0;
5224 }
5225 
5226 /* @depth must not be zero */
5227 static struct held_lock *find_held_lock(struct task_struct *curr,
5228 					struct lockdep_map *lock,
5229 					unsigned int depth, int *idx)
5230 {
5231 	struct held_lock *ret, *hlock, *prev_hlock;
5232 	int i;
5233 
5234 	i = depth - 1;
5235 	hlock = curr->held_locks + i;
5236 	ret = hlock;
5237 	if (match_held_lock(hlock, lock))
5238 		goto out;
5239 
5240 	ret = NULL;
5241 	for (i--, prev_hlock = hlock--;
5242 	     i >= 0;
5243 	     i--, prev_hlock = hlock--) {
5244 		/*
5245 		 * We must not cross into another context:
5246 		 */
5247 		if (prev_hlock->irq_context != hlock->irq_context) {
5248 			ret = NULL;
5249 			break;
5250 		}
5251 		if (match_held_lock(hlock, lock)) {
5252 			ret = hlock;
5253 			break;
5254 		}
5255 	}
5256 
5257 out:
5258 	*idx = i;
5259 	return ret;
5260 }
5261 
5262 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5263 				int idx, unsigned int *merged)
5264 {
5265 	struct held_lock *hlock;
5266 	int first_idx = idx;
5267 
5268 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5269 		return 0;
5270 
5271 	for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5272 		switch (__lock_acquire(hlock->instance,
5273 				    hlock_class(hlock)->subclass,
5274 				    hlock->trylock,
5275 				    hlock->read, hlock->check,
5276 				    hlock->hardirqs_off,
5277 				    hlock->nest_lock, hlock->acquire_ip,
5278 				    hlock->references, hlock->pin_count, 0)) {
5279 		case 0:
5280 			return 1;
5281 		case 1:
5282 			break;
5283 		case 2:
5284 			*merged += (idx == first_idx);
5285 			break;
5286 		default:
5287 			WARN_ON(1);
5288 			return 0;
5289 		}
5290 	}
5291 	return 0;
5292 }
5293 
5294 static int
5295 __lock_set_class(struct lockdep_map *lock, const char *name,
5296 		 struct lock_class_key *key, unsigned int subclass,
5297 		 unsigned long ip)
5298 {
5299 	struct task_struct *curr = current;
5300 	unsigned int depth, merged = 0;
5301 	struct held_lock *hlock;
5302 	struct lock_class *class;
5303 	int i;
5304 
5305 	if (unlikely(!debug_locks))
5306 		return 0;
5307 
5308 	depth = curr->lockdep_depth;
5309 	/*
5310 	 * This function is about (re)setting the class of a held lock,
5311 	 * yet we're not actually holding any locks. Naughty user!
5312 	 */
5313 	if (DEBUG_LOCKS_WARN_ON(!depth))
5314 		return 0;
5315 
5316 	hlock = find_held_lock(curr, lock, depth, &i);
5317 	if (!hlock) {
5318 		print_unlock_imbalance_bug(curr, lock, ip);
5319 		return 0;
5320 	}
5321 
5322 	lockdep_init_map_type(lock, name, key, 0,
5323 			      lock->wait_type_inner,
5324 			      lock->wait_type_outer,
5325 			      lock->lock_type);
5326 	class = register_lock_class(lock, subclass, 0);
5327 	hlock->class_idx = class - lock_classes;
5328 
5329 	curr->lockdep_depth = i;
5330 	curr->curr_chain_key = hlock->prev_chain_key;
5331 
5332 	if (reacquire_held_locks(curr, depth, i, &merged))
5333 		return 0;
5334 
5335 	/*
5336 	 * I took it apart and put it back together again, except now I have
5337 	 * these 'spare' parts.. where shall I put them.
5338 	 */
5339 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5340 		return 0;
5341 	return 1;
5342 }
5343 
5344 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5345 {
5346 	struct task_struct *curr = current;
5347 	unsigned int depth, merged = 0;
5348 	struct held_lock *hlock;
5349 	int i;
5350 
5351 	if (unlikely(!debug_locks))
5352 		return 0;
5353 
5354 	depth = curr->lockdep_depth;
5355 	/*
5356 	 * This function is about (re)setting the class of a held lock,
5357 	 * yet we're not actually holding any locks. Naughty user!
5358 	 */
5359 	if (DEBUG_LOCKS_WARN_ON(!depth))
5360 		return 0;
5361 
5362 	hlock = find_held_lock(curr, lock, depth, &i);
5363 	if (!hlock) {
5364 		print_unlock_imbalance_bug(curr, lock, ip);
5365 		return 0;
5366 	}
5367 
5368 	curr->lockdep_depth = i;
5369 	curr->curr_chain_key = hlock->prev_chain_key;
5370 
5371 	WARN(hlock->read, "downgrading a read lock");
5372 	hlock->read = 1;
5373 	hlock->acquire_ip = ip;
5374 
5375 	if (reacquire_held_locks(curr, depth, i, &merged))
5376 		return 0;
5377 
5378 	/* Merging can't happen with unchanged classes.. */
5379 	if (DEBUG_LOCKS_WARN_ON(merged))
5380 		return 0;
5381 
5382 	/*
5383 	 * I took it apart and put it back together again, except now I have
5384 	 * these 'spare' parts.. where shall I put them.
5385 	 */
5386 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5387 		return 0;
5388 
5389 	return 1;
5390 }
5391 
5392 /*
5393  * Remove the lock from the list of currently held locks - this gets
5394  * called on mutex_unlock()/spin_unlock*() (or on a failed
5395  * mutex_lock_interruptible()).
5396  */
5397 static int
5398 __lock_release(struct lockdep_map *lock, unsigned long ip)
5399 {
5400 	struct task_struct *curr = current;
5401 	unsigned int depth, merged = 1;
5402 	struct held_lock *hlock;
5403 	int i;
5404 
5405 	if (unlikely(!debug_locks))
5406 		return 0;
5407 
5408 	depth = curr->lockdep_depth;
5409 	/*
5410 	 * So we're all set to release this lock.. wait what lock? We don't
5411 	 * own any locks, you've been drinking again?
5412 	 */
5413 	if (depth <= 0) {
5414 		print_unlock_imbalance_bug(curr, lock, ip);
5415 		return 0;
5416 	}
5417 
5418 	/*
5419 	 * Check whether the lock exists in the current stack
5420 	 * of held locks:
5421 	 */
5422 	hlock = find_held_lock(curr, lock, depth, &i);
5423 	if (!hlock) {
5424 		print_unlock_imbalance_bug(curr, lock, ip);
5425 		return 0;
5426 	}
5427 
5428 	if (hlock->instance == lock)
5429 		lock_release_holdtime(hlock);
5430 
5431 	WARN(hlock->pin_count, "releasing a pinned lock\n");
5432 
5433 	if (hlock->references) {
5434 		hlock->references--;
5435 		if (hlock->references) {
5436 			/*
5437 			 * We had, and after removing one, still have
5438 			 * references, the current lock stack is still
5439 			 * valid. We're done!
5440 			 */
5441 			return 1;
5442 		}
5443 	}
5444 
5445 	/*
5446 	 * We have the right lock to unlock, 'hlock' points to it.
5447 	 * Now we remove it from the stack, and add back the other
5448 	 * entries (if any), recalculating the hash along the way:
5449 	 */
5450 
5451 	curr->lockdep_depth = i;
5452 	curr->curr_chain_key = hlock->prev_chain_key;
5453 
5454 	/*
5455 	 * The most likely case is when the unlock is on the innermost
5456 	 * lock. In this case, we are done!
5457 	 */
5458 	if (i == depth-1)
5459 		return 1;
5460 
5461 	if (reacquire_held_locks(curr, depth, i + 1, &merged))
5462 		return 0;
5463 
5464 	/*
5465 	 * We had N bottles of beer on the wall, we drank one, but now
5466 	 * there's not N-1 bottles of beer left on the wall...
5467 	 * Pouring two of the bottles together is acceptable.
5468 	 */
5469 	DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5470 
5471 	/*
5472 	 * Since reacquire_held_locks() would have called check_chain_key()
5473 	 * indirectly via __lock_acquire(), we don't need to do it again
5474 	 * on return.
5475 	 */
5476 	return 0;
5477 }
5478 
5479 static __always_inline
5480 int __lock_is_held(const struct lockdep_map *lock, int read)
5481 {
5482 	struct task_struct *curr = current;
5483 	int i;
5484 
5485 	for (i = 0; i < curr->lockdep_depth; i++) {
5486 		struct held_lock *hlock = curr->held_locks + i;
5487 
5488 		if (match_held_lock(hlock, lock)) {
5489 			if (read == -1 || !!hlock->read == read)
5490 				return LOCK_STATE_HELD;
5491 
5492 			return LOCK_STATE_NOT_HELD;
5493 		}
5494 	}
5495 
5496 	return LOCK_STATE_NOT_HELD;
5497 }
5498 
5499 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5500 {
5501 	struct pin_cookie cookie = NIL_COOKIE;
5502 	struct task_struct *curr = current;
5503 	int i;
5504 
5505 	if (unlikely(!debug_locks))
5506 		return cookie;
5507 
5508 	for (i = 0; i < curr->lockdep_depth; i++) {
5509 		struct held_lock *hlock = curr->held_locks + i;
5510 
5511 		if (match_held_lock(hlock, lock)) {
5512 			/*
5513 			 * Grab 16bits of randomness; this is sufficient to not
5514 			 * be guessable and still allows some pin nesting in
5515 			 * our u32 pin_count.
5516 			 */
5517 			cookie.val = 1 + (sched_clock() & 0xffff);
5518 			hlock->pin_count += cookie.val;
5519 			return cookie;
5520 		}
5521 	}
5522 
5523 	WARN(1, "pinning an unheld lock\n");
5524 	return cookie;
5525 }
5526 
5527 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5528 {
5529 	struct task_struct *curr = current;
5530 	int i;
5531 
5532 	if (unlikely(!debug_locks))
5533 		return;
5534 
5535 	for (i = 0; i < curr->lockdep_depth; i++) {
5536 		struct held_lock *hlock = curr->held_locks + i;
5537 
5538 		if (match_held_lock(hlock, lock)) {
5539 			hlock->pin_count += cookie.val;
5540 			return;
5541 		}
5542 	}
5543 
5544 	WARN(1, "pinning an unheld lock\n");
5545 }
5546 
5547 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5548 {
5549 	struct task_struct *curr = current;
5550 	int i;
5551 
5552 	if (unlikely(!debug_locks))
5553 		return;
5554 
5555 	for (i = 0; i < curr->lockdep_depth; i++) {
5556 		struct held_lock *hlock = curr->held_locks + i;
5557 
5558 		if (match_held_lock(hlock, lock)) {
5559 			if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5560 				return;
5561 
5562 			hlock->pin_count -= cookie.val;
5563 
5564 			if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5565 				hlock->pin_count = 0;
5566 
5567 			return;
5568 		}
5569 	}
5570 
5571 	WARN(1, "unpinning an unheld lock\n");
5572 }
5573 
5574 /*
5575  * Check whether we follow the irq-flags state precisely:
5576  */
5577 static noinstr void check_flags(unsigned long flags)
5578 {
5579 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5580 	if (!debug_locks)
5581 		return;
5582 
5583 	/* Get the warning out..  */
5584 	instrumentation_begin();
5585 
5586 	if (irqs_disabled_flags(flags)) {
5587 		if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5588 			printk("possible reason: unannotated irqs-off.\n");
5589 		}
5590 	} else {
5591 		if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5592 			printk("possible reason: unannotated irqs-on.\n");
5593 		}
5594 	}
5595 
5596 #ifndef CONFIG_PREEMPT_RT
5597 	/*
5598 	 * We dont accurately track softirq state in e.g.
5599 	 * hardirq contexts (such as on 4KSTACKS), so only
5600 	 * check if not in hardirq contexts:
5601 	 */
5602 	if (!hardirq_count()) {
5603 		if (softirq_count()) {
5604 			/* like the above, but with softirqs */
5605 			DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5606 		} else {
5607 			/* lick the above, does it taste good? */
5608 			DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5609 		}
5610 	}
5611 #endif
5612 
5613 	if (!debug_locks)
5614 		print_irqtrace_events(current);
5615 
5616 	instrumentation_end();
5617 #endif
5618 }
5619 
5620 void lock_set_class(struct lockdep_map *lock, const char *name,
5621 		    struct lock_class_key *key, unsigned int subclass,
5622 		    unsigned long ip)
5623 {
5624 	unsigned long flags;
5625 
5626 	if (unlikely(!lockdep_enabled()))
5627 		return;
5628 
5629 	raw_local_irq_save(flags);
5630 	lockdep_recursion_inc();
5631 	check_flags(flags);
5632 	if (__lock_set_class(lock, name, key, subclass, ip))
5633 		check_chain_key(current);
5634 	lockdep_recursion_finish();
5635 	raw_local_irq_restore(flags);
5636 }
5637 EXPORT_SYMBOL_GPL(lock_set_class);
5638 
5639 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5640 {
5641 	unsigned long flags;
5642 
5643 	if (unlikely(!lockdep_enabled()))
5644 		return;
5645 
5646 	raw_local_irq_save(flags);
5647 	lockdep_recursion_inc();
5648 	check_flags(flags);
5649 	if (__lock_downgrade(lock, ip))
5650 		check_chain_key(current);
5651 	lockdep_recursion_finish();
5652 	raw_local_irq_restore(flags);
5653 }
5654 EXPORT_SYMBOL_GPL(lock_downgrade);
5655 
5656 /* NMI context !!! */
5657 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5658 {
5659 #ifdef CONFIG_PROVE_LOCKING
5660 	struct lock_class *class = look_up_lock_class(lock, subclass);
5661 	unsigned long mask = LOCKF_USED;
5662 
5663 	/* if it doesn't have a class (yet), it certainly hasn't been used yet */
5664 	if (!class)
5665 		return;
5666 
5667 	/*
5668 	 * READ locks only conflict with USED, such that if we only ever use
5669 	 * READ locks, there is no deadlock possible -- RCU.
5670 	 */
5671 	if (!hlock->read)
5672 		mask |= LOCKF_USED_READ;
5673 
5674 	if (!(class->usage_mask & mask))
5675 		return;
5676 
5677 	hlock->class_idx = class - lock_classes;
5678 
5679 	print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5680 #endif
5681 }
5682 
5683 static bool lockdep_nmi(void)
5684 {
5685 	if (raw_cpu_read(lockdep_recursion))
5686 		return false;
5687 
5688 	if (!in_nmi())
5689 		return false;
5690 
5691 	return true;
5692 }
5693 
5694 /*
5695  * read_lock() is recursive if:
5696  * 1. We force lockdep think this way in selftests or
5697  * 2. The implementation is not queued read/write lock or
5698  * 3. The locker is at an in_interrupt() context.
5699  */
5700 bool read_lock_is_recursive(void)
5701 {
5702 	return force_read_lock_recursive ||
5703 	       !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5704 	       in_interrupt();
5705 }
5706 EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5707 
5708 /*
5709  * We are not always called with irqs disabled - do that here,
5710  * and also avoid lockdep recursion:
5711  */
5712 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5713 			  int trylock, int read, int check,
5714 			  struct lockdep_map *nest_lock, unsigned long ip)
5715 {
5716 	unsigned long flags;
5717 
5718 	trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5719 
5720 	if (!debug_locks)
5721 		return;
5722 
5723 	if (unlikely(!lockdep_enabled())) {
5724 		/* XXX allow trylock from NMI ?!? */
5725 		if (lockdep_nmi() && !trylock) {
5726 			struct held_lock hlock;
5727 
5728 			hlock.acquire_ip = ip;
5729 			hlock.instance = lock;
5730 			hlock.nest_lock = nest_lock;
5731 			hlock.irq_context = 2; // XXX
5732 			hlock.trylock = trylock;
5733 			hlock.read = read;
5734 			hlock.check = check;
5735 			hlock.hardirqs_off = true;
5736 			hlock.references = 0;
5737 
5738 			verify_lock_unused(lock, &hlock, subclass);
5739 		}
5740 		return;
5741 	}
5742 
5743 	raw_local_irq_save(flags);
5744 	check_flags(flags);
5745 
5746 	lockdep_recursion_inc();
5747 	__lock_acquire(lock, subclass, trylock, read, check,
5748 		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 0);
5749 	lockdep_recursion_finish();
5750 	raw_local_irq_restore(flags);
5751 }
5752 EXPORT_SYMBOL_GPL(lock_acquire);
5753 
5754 void lock_release(struct lockdep_map *lock, unsigned long ip)
5755 {
5756 	unsigned long flags;
5757 
5758 	trace_lock_release(lock, ip);
5759 
5760 	if (unlikely(!lockdep_enabled()))
5761 		return;
5762 
5763 	raw_local_irq_save(flags);
5764 	check_flags(flags);
5765 
5766 	lockdep_recursion_inc();
5767 	if (__lock_release(lock, ip))
5768 		check_chain_key(current);
5769 	lockdep_recursion_finish();
5770 	raw_local_irq_restore(flags);
5771 }
5772 EXPORT_SYMBOL_GPL(lock_release);
5773 
5774 /*
5775  * lock_sync() - A special annotation for synchronize_{s,}rcu()-like API.
5776  *
5777  * No actual critical section is created by the APIs annotated with this: these
5778  * APIs are used to wait for one or multiple critical sections (on other CPUs
5779  * or threads), and it means that calling these APIs inside these critical
5780  * sections is potential deadlock.
5781  */
5782 void lock_sync(struct lockdep_map *lock, unsigned subclass, int read,
5783 	       int check, struct lockdep_map *nest_lock, unsigned long ip)
5784 {
5785 	unsigned long flags;
5786 
5787 	if (unlikely(!lockdep_enabled()))
5788 		return;
5789 
5790 	raw_local_irq_save(flags);
5791 	check_flags(flags);
5792 
5793 	lockdep_recursion_inc();
5794 	__lock_acquire(lock, subclass, 0, read, check,
5795 		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 1);
5796 	check_chain_key(current);
5797 	lockdep_recursion_finish();
5798 	raw_local_irq_restore(flags);
5799 }
5800 EXPORT_SYMBOL_GPL(lock_sync);
5801 
5802 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5803 {
5804 	unsigned long flags;
5805 	int ret = LOCK_STATE_NOT_HELD;
5806 
5807 	/*
5808 	 * Avoid false negative lockdep_assert_held() and
5809 	 * lockdep_assert_not_held().
5810 	 */
5811 	if (unlikely(!lockdep_enabled()))
5812 		return LOCK_STATE_UNKNOWN;
5813 
5814 	raw_local_irq_save(flags);
5815 	check_flags(flags);
5816 
5817 	lockdep_recursion_inc();
5818 	ret = __lock_is_held(lock, read);
5819 	lockdep_recursion_finish();
5820 	raw_local_irq_restore(flags);
5821 
5822 	return ret;
5823 }
5824 EXPORT_SYMBOL_GPL(lock_is_held_type);
5825 NOKPROBE_SYMBOL(lock_is_held_type);
5826 
5827 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5828 {
5829 	struct pin_cookie cookie = NIL_COOKIE;
5830 	unsigned long flags;
5831 
5832 	if (unlikely(!lockdep_enabled()))
5833 		return cookie;
5834 
5835 	raw_local_irq_save(flags);
5836 	check_flags(flags);
5837 
5838 	lockdep_recursion_inc();
5839 	cookie = __lock_pin_lock(lock);
5840 	lockdep_recursion_finish();
5841 	raw_local_irq_restore(flags);
5842 
5843 	return cookie;
5844 }
5845 EXPORT_SYMBOL_GPL(lock_pin_lock);
5846 
5847 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5848 {
5849 	unsigned long flags;
5850 
5851 	if (unlikely(!lockdep_enabled()))
5852 		return;
5853 
5854 	raw_local_irq_save(flags);
5855 	check_flags(flags);
5856 
5857 	lockdep_recursion_inc();
5858 	__lock_repin_lock(lock, cookie);
5859 	lockdep_recursion_finish();
5860 	raw_local_irq_restore(flags);
5861 }
5862 EXPORT_SYMBOL_GPL(lock_repin_lock);
5863 
5864 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5865 {
5866 	unsigned long flags;
5867 
5868 	if (unlikely(!lockdep_enabled()))
5869 		return;
5870 
5871 	raw_local_irq_save(flags);
5872 	check_flags(flags);
5873 
5874 	lockdep_recursion_inc();
5875 	__lock_unpin_lock(lock, cookie);
5876 	lockdep_recursion_finish();
5877 	raw_local_irq_restore(flags);
5878 }
5879 EXPORT_SYMBOL_GPL(lock_unpin_lock);
5880 
5881 #ifdef CONFIG_LOCK_STAT
5882 static void print_lock_contention_bug(struct task_struct *curr,
5883 				      struct lockdep_map *lock,
5884 				      unsigned long ip)
5885 {
5886 	if (!debug_locks_off())
5887 		return;
5888 	if (debug_locks_silent)
5889 		return;
5890 
5891 	pr_warn("\n");
5892 	pr_warn("=================================\n");
5893 	pr_warn("WARNING: bad contention detected!\n");
5894 	print_kernel_ident();
5895 	pr_warn("---------------------------------\n");
5896 	pr_warn("%s/%d is trying to contend lock (",
5897 		curr->comm, task_pid_nr(curr));
5898 	print_lockdep_cache(lock);
5899 	pr_cont(") at:\n");
5900 	print_ip_sym(KERN_WARNING, ip);
5901 	pr_warn("but there are no locks held!\n");
5902 	pr_warn("\nother info that might help us debug this:\n");
5903 	lockdep_print_held_locks(curr);
5904 
5905 	pr_warn("\nstack backtrace:\n");
5906 	dump_stack();
5907 }
5908 
5909 static void
5910 __lock_contended(struct lockdep_map *lock, unsigned long ip)
5911 {
5912 	struct task_struct *curr = current;
5913 	struct held_lock *hlock;
5914 	struct lock_class_stats *stats;
5915 	unsigned int depth;
5916 	int i, contention_point, contending_point;
5917 
5918 	depth = curr->lockdep_depth;
5919 	/*
5920 	 * Whee, we contended on this lock, except it seems we're not
5921 	 * actually trying to acquire anything much at all..
5922 	 */
5923 	if (DEBUG_LOCKS_WARN_ON(!depth))
5924 		return;
5925 
5926 	hlock = find_held_lock(curr, lock, depth, &i);
5927 	if (!hlock) {
5928 		print_lock_contention_bug(curr, lock, ip);
5929 		return;
5930 	}
5931 
5932 	if (hlock->instance != lock)
5933 		return;
5934 
5935 	hlock->waittime_stamp = lockstat_clock();
5936 
5937 	contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5938 	contending_point = lock_point(hlock_class(hlock)->contending_point,
5939 				      lock->ip);
5940 
5941 	stats = get_lock_stats(hlock_class(hlock));
5942 	if (contention_point < LOCKSTAT_POINTS)
5943 		stats->contention_point[contention_point]++;
5944 	if (contending_point < LOCKSTAT_POINTS)
5945 		stats->contending_point[contending_point]++;
5946 	if (lock->cpu != smp_processor_id())
5947 		stats->bounces[bounce_contended + !!hlock->read]++;
5948 }
5949 
5950 static void
5951 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
5952 {
5953 	struct task_struct *curr = current;
5954 	struct held_lock *hlock;
5955 	struct lock_class_stats *stats;
5956 	unsigned int depth;
5957 	u64 now, waittime = 0;
5958 	int i, cpu;
5959 
5960 	depth = curr->lockdep_depth;
5961 	/*
5962 	 * Yay, we acquired ownership of this lock we didn't try to
5963 	 * acquire, how the heck did that happen?
5964 	 */
5965 	if (DEBUG_LOCKS_WARN_ON(!depth))
5966 		return;
5967 
5968 	hlock = find_held_lock(curr, lock, depth, &i);
5969 	if (!hlock) {
5970 		print_lock_contention_bug(curr, lock, _RET_IP_);
5971 		return;
5972 	}
5973 
5974 	if (hlock->instance != lock)
5975 		return;
5976 
5977 	cpu = smp_processor_id();
5978 	if (hlock->waittime_stamp) {
5979 		now = lockstat_clock();
5980 		waittime = now - hlock->waittime_stamp;
5981 		hlock->holdtime_stamp = now;
5982 	}
5983 
5984 	stats = get_lock_stats(hlock_class(hlock));
5985 	if (waittime) {
5986 		if (hlock->read)
5987 			lock_time_inc(&stats->read_waittime, waittime);
5988 		else
5989 			lock_time_inc(&stats->write_waittime, waittime);
5990 	}
5991 	if (lock->cpu != cpu)
5992 		stats->bounces[bounce_acquired + !!hlock->read]++;
5993 
5994 	lock->cpu = cpu;
5995 	lock->ip = ip;
5996 }
5997 
5998 void lock_contended(struct lockdep_map *lock, unsigned long ip)
5999 {
6000 	unsigned long flags;
6001 
6002 	trace_lock_contended(lock, ip);
6003 
6004 	if (unlikely(!lock_stat || !lockdep_enabled()))
6005 		return;
6006 
6007 	raw_local_irq_save(flags);
6008 	check_flags(flags);
6009 	lockdep_recursion_inc();
6010 	__lock_contended(lock, ip);
6011 	lockdep_recursion_finish();
6012 	raw_local_irq_restore(flags);
6013 }
6014 EXPORT_SYMBOL_GPL(lock_contended);
6015 
6016 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
6017 {
6018 	unsigned long flags;
6019 
6020 	trace_lock_acquired(lock, ip);
6021 
6022 	if (unlikely(!lock_stat || !lockdep_enabled()))
6023 		return;
6024 
6025 	raw_local_irq_save(flags);
6026 	check_flags(flags);
6027 	lockdep_recursion_inc();
6028 	__lock_acquired(lock, ip);
6029 	lockdep_recursion_finish();
6030 	raw_local_irq_restore(flags);
6031 }
6032 EXPORT_SYMBOL_GPL(lock_acquired);
6033 #endif
6034 
6035 /*
6036  * Used by the testsuite, sanitize the validator state
6037  * after a simulated failure:
6038  */
6039 
6040 void lockdep_reset(void)
6041 {
6042 	unsigned long flags;
6043 	int i;
6044 
6045 	raw_local_irq_save(flags);
6046 	lockdep_init_task(current);
6047 	memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
6048 	nr_hardirq_chains = 0;
6049 	nr_softirq_chains = 0;
6050 	nr_process_chains = 0;
6051 	debug_locks = 1;
6052 	for (i = 0; i < CHAINHASH_SIZE; i++)
6053 		INIT_HLIST_HEAD(chainhash_table + i);
6054 	raw_local_irq_restore(flags);
6055 }
6056 
6057 /* Remove a class from a lock chain. Must be called with the graph lock held. */
6058 static void remove_class_from_lock_chain(struct pending_free *pf,
6059 					 struct lock_chain *chain,
6060 					 struct lock_class *class)
6061 {
6062 #ifdef CONFIG_PROVE_LOCKING
6063 	int i;
6064 
6065 	for (i = chain->base; i < chain->base + chain->depth; i++) {
6066 		if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
6067 			continue;
6068 		/*
6069 		 * Each lock class occurs at most once in a lock chain so once
6070 		 * we found a match we can break out of this loop.
6071 		 */
6072 		goto free_lock_chain;
6073 	}
6074 	/* Since the chain has not been modified, return. */
6075 	return;
6076 
6077 free_lock_chain:
6078 	free_chain_hlocks(chain->base, chain->depth);
6079 	/* Overwrite the chain key for concurrent RCU readers. */
6080 	WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
6081 	dec_chains(chain->irq_context);
6082 
6083 	/*
6084 	 * Note: calling hlist_del_rcu() from inside a
6085 	 * hlist_for_each_entry_rcu() loop is safe.
6086 	 */
6087 	hlist_del_rcu(&chain->entry);
6088 	__set_bit(chain - lock_chains, pf->lock_chains_being_freed);
6089 	nr_zapped_lock_chains++;
6090 #endif
6091 }
6092 
6093 /* Must be called with the graph lock held. */
6094 static void remove_class_from_lock_chains(struct pending_free *pf,
6095 					  struct lock_class *class)
6096 {
6097 	struct lock_chain *chain;
6098 	struct hlist_head *head;
6099 	int i;
6100 
6101 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
6102 		head = chainhash_table + i;
6103 		hlist_for_each_entry_rcu(chain, head, entry) {
6104 			remove_class_from_lock_chain(pf, chain, class);
6105 		}
6106 	}
6107 }
6108 
6109 /*
6110  * Remove all references to a lock class. The caller must hold the graph lock.
6111  */
6112 static void zap_class(struct pending_free *pf, struct lock_class *class)
6113 {
6114 	struct lock_list *entry;
6115 	int i;
6116 
6117 	WARN_ON_ONCE(!class->key);
6118 
6119 	/*
6120 	 * Remove all dependencies this lock is
6121 	 * involved in:
6122 	 */
6123 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
6124 		entry = list_entries + i;
6125 		if (entry->class != class && entry->links_to != class)
6126 			continue;
6127 		__clear_bit(i, list_entries_in_use);
6128 		nr_list_entries--;
6129 		list_del_rcu(&entry->entry);
6130 	}
6131 	if (list_empty(&class->locks_after) &&
6132 	    list_empty(&class->locks_before)) {
6133 		list_move_tail(&class->lock_entry, &pf->zapped);
6134 		hlist_del_rcu(&class->hash_entry);
6135 		WRITE_ONCE(class->key, NULL);
6136 		WRITE_ONCE(class->name, NULL);
6137 		nr_lock_classes--;
6138 		__clear_bit(class - lock_classes, lock_classes_in_use);
6139 		if (class - lock_classes == max_lock_class_idx)
6140 			max_lock_class_idx--;
6141 	} else {
6142 		WARN_ONCE(true, "%s() failed for class %s\n", __func__,
6143 			  class->name);
6144 	}
6145 
6146 	remove_class_from_lock_chains(pf, class);
6147 	nr_zapped_classes++;
6148 }
6149 
6150 static void reinit_class(struct lock_class *class)
6151 {
6152 	WARN_ON_ONCE(!class->lock_entry.next);
6153 	WARN_ON_ONCE(!list_empty(&class->locks_after));
6154 	WARN_ON_ONCE(!list_empty(&class->locks_before));
6155 	memset_startat(class, 0, key);
6156 	WARN_ON_ONCE(!class->lock_entry.next);
6157 	WARN_ON_ONCE(!list_empty(&class->locks_after));
6158 	WARN_ON_ONCE(!list_empty(&class->locks_before));
6159 }
6160 
6161 static inline int within(const void *addr, void *start, unsigned long size)
6162 {
6163 	return addr >= start && addr < start + size;
6164 }
6165 
6166 static bool inside_selftest(void)
6167 {
6168 	return current == lockdep_selftest_task_struct;
6169 }
6170 
6171 /* The caller must hold the graph lock. */
6172 static struct pending_free *get_pending_free(void)
6173 {
6174 	return delayed_free.pf + delayed_free.index;
6175 }
6176 
6177 static void free_zapped_rcu(struct rcu_head *cb);
6178 
6179 /*
6180  * Schedule an RCU callback if no RCU callback is pending. Must be called with
6181  * the graph lock held.
6182  */
6183 static void call_rcu_zapped(struct pending_free *pf)
6184 {
6185 	WARN_ON_ONCE(inside_selftest());
6186 
6187 	if (list_empty(&pf->zapped))
6188 		return;
6189 
6190 	if (delayed_free.scheduled)
6191 		return;
6192 
6193 	delayed_free.scheduled = true;
6194 
6195 	WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
6196 	delayed_free.index ^= 1;
6197 
6198 	call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6199 }
6200 
6201 /* The caller must hold the graph lock. May be called from RCU context. */
6202 static void __free_zapped_classes(struct pending_free *pf)
6203 {
6204 	struct lock_class *class;
6205 
6206 	check_data_structures();
6207 
6208 	list_for_each_entry(class, &pf->zapped, lock_entry)
6209 		reinit_class(class);
6210 
6211 	list_splice_init(&pf->zapped, &free_lock_classes);
6212 
6213 #ifdef CONFIG_PROVE_LOCKING
6214 	bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
6215 		      pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
6216 	bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
6217 #endif
6218 }
6219 
6220 static void free_zapped_rcu(struct rcu_head *ch)
6221 {
6222 	struct pending_free *pf;
6223 	unsigned long flags;
6224 
6225 	if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
6226 		return;
6227 
6228 	raw_local_irq_save(flags);
6229 	lockdep_lock();
6230 
6231 	/* closed head */
6232 	pf = delayed_free.pf + (delayed_free.index ^ 1);
6233 	__free_zapped_classes(pf);
6234 	delayed_free.scheduled = false;
6235 
6236 	/*
6237 	 * If there's anything on the open list, close and start a new callback.
6238 	 */
6239 	call_rcu_zapped(delayed_free.pf + delayed_free.index);
6240 
6241 	lockdep_unlock();
6242 	raw_local_irq_restore(flags);
6243 }
6244 
6245 /*
6246  * Remove all lock classes from the class hash table and from the
6247  * all_lock_classes list whose key or name is in the address range [start,
6248  * start + size). Move these lock classes to the zapped_classes list. Must
6249  * be called with the graph lock held.
6250  */
6251 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
6252 				     unsigned long size)
6253 {
6254 	struct lock_class *class;
6255 	struct hlist_head *head;
6256 	int i;
6257 
6258 	/* Unhash all classes that were created by a module. */
6259 	for (i = 0; i < CLASSHASH_SIZE; i++) {
6260 		head = classhash_table + i;
6261 		hlist_for_each_entry_rcu(class, head, hash_entry) {
6262 			if (!within(class->key, start, size) &&
6263 			    !within(class->name, start, size))
6264 				continue;
6265 			zap_class(pf, class);
6266 		}
6267 	}
6268 }
6269 
6270 /*
6271  * Used in module.c to remove lock classes from memory that is going to be
6272  * freed; and possibly re-used by other modules.
6273  *
6274  * We will have had one synchronize_rcu() before getting here, so we're
6275  * guaranteed nobody will look up these exact classes -- they're properly dead
6276  * but still allocated.
6277  */
6278 static void lockdep_free_key_range_reg(void *start, unsigned long size)
6279 {
6280 	struct pending_free *pf;
6281 	unsigned long flags;
6282 
6283 	init_data_structures_once();
6284 
6285 	raw_local_irq_save(flags);
6286 	lockdep_lock();
6287 	pf = get_pending_free();
6288 	__lockdep_free_key_range(pf, start, size);
6289 	call_rcu_zapped(pf);
6290 	lockdep_unlock();
6291 	raw_local_irq_restore(flags);
6292 
6293 	/*
6294 	 * Wait for any possible iterators from look_up_lock_class() to pass
6295 	 * before continuing to free the memory they refer to.
6296 	 */
6297 	synchronize_rcu();
6298 }
6299 
6300 /*
6301  * Free all lockdep keys in the range [start, start+size). Does not sleep.
6302  * Ignores debug_locks. Must only be used by the lockdep selftests.
6303  */
6304 static void lockdep_free_key_range_imm(void *start, unsigned long size)
6305 {
6306 	struct pending_free *pf = delayed_free.pf;
6307 	unsigned long flags;
6308 
6309 	init_data_structures_once();
6310 
6311 	raw_local_irq_save(flags);
6312 	lockdep_lock();
6313 	__lockdep_free_key_range(pf, start, size);
6314 	__free_zapped_classes(pf);
6315 	lockdep_unlock();
6316 	raw_local_irq_restore(flags);
6317 }
6318 
6319 void lockdep_free_key_range(void *start, unsigned long size)
6320 {
6321 	init_data_structures_once();
6322 
6323 	if (inside_selftest())
6324 		lockdep_free_key_range_imm(start, size);
6325 	else
6326 		lockdep_free_key_range_reg(start, size);
6327 }
6328 
6329 /*
6330  * Check whether any element of the @lock->class_cache[] array refers to a
6331  * registered lock class. The caller must hold either the graph lock or the
6332  * RCU read lock.
6333  */
6334 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6335 {
6336 	struct lock_class *class;
6337 	struct hlist_head *head;
6338 	int i, j;
6339 
6340 	for (i = 0; i < CLASSHASH_SIZE; i++) {
6341 		head = classhash_table + i;
6342 		hlist_for_each_entry_rcu(class, head, hash_entry) {
6343 			for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6344 				if (lock->class_cache[j] == class)
6345 					return true;
6346 		}
6347 	}
6348 	return false;
6349 }
6350 
6351 /* The caller must hold the graph lock. Does not sleep. */
6352 static void __lockdep_reset_lock(struct pending_free *pf,
6353 				 struct lockdep_map *lock)
6354 {
6355 	struct lock_class *class;
6356 	int j;
6357 
6358 	/*
6359 	 * Remove all classes this lock might have:
6360 	 */
6361 	for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6362 		/*
6363 		 * If the class exists we look it up and zap it:
6364 		 */
6365 		class = look_up_lock_class(lock, j);
6366 		if (class)
6367 			zap_class(pf, class);
6368 	}
6369 	/*
6370 	 * Debug check: in the end all mapped classes should
6371 	 * be gone.
6372 	 */
6373 	if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6374 		debug_locks_off();
6375 }
6376 
6377 /*
6378  * Remove all information lockdep has about a lock if debug_locks == 1. Free
6379  * released data structures from RCU context.
6380  */
6381 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6382 {
6383 	struct pending_free *pf;
6384 	unsigned long flags;
6385 	int locked;
6386 
6387 	raw_local_irq_save(flags);
6388 	locked = graph_lock();
6389 	if (!locked)
6390 		goto out_irq;
6391 
6392 	pf = get_pending_free();
6393 	__lockdep_reset_lock(pf, lock);
6394 	call_rcu_zapped(pf);
6395 
6396 	graph_unlock();
6397 out_irq:
6398 	raw_local_irq_restore(flags);
6399 }
6400 
6401 /*
6402  * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6403  * lockdep selftests.
6404  */
6405 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6406 {
6407 	struct pending_free *pf = delayed_free.pf;
6408 	unsigned long flags;
6409 
6410 	raw_local_irq_save(flags);
6411 	lockdep_lock();
6412 	__lockdep_reset_lock(pf, lock);
6413 	__free_zapped_classes(pf);
6414 	lockdep_unlock();
6415 	raw_local_irq_restore(flags);
6416 }
6417 
6418 void lockdep_reset_lock(struct lockdep_map *lock)
6419 {
6420 	init_data_structures_once();
6421 
6422 	if (inside_selftest())
6423 		lockdep_reset_lock_imm(lock);
6424 	else
6425 		lockdep_reset_lock_reg(lock);
6426 }
6427 
6428 /*
6429  * Unregister a dynamically allocated key.
6430  *
6431  * Unlike lockdep_register_key(), a search is always done to find a matching
6432  * key irrespective of debug_locks to avoid potential invalid access to freed
6433  * memory in lock_class entry.
6434  */
6435 void lockdep_unregister_key(struct lock_class_key *key)
6436 {
6437 	struct hlist_head *hash_head = keyhashentry(key);
6438 	struct lock_class_key *k;
6439 	struct pending_free *pf;
6440 	unsigned long flags;
6441 	bool found = false;
6442 
6443 	might_sleep();
6444 
6445 	if (WARN_ON_ONCE(static_obj(key)))
6446 		return;
6447 
6448 	raw_local_irq_save(flags);
6449 	lockdep_lock();
6450 
6451 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6452 		if (k == key) {
6453 			hlist_del_rcu(&k->hash_entry);
6454 			found = true;
6455 			break;
6456 		}
6457 	}
6458 	WARN_ON_ONCE(!found && debug_locks);
6459 	if (found) {
6460 		pf = get_pending_free();
6461 		__lockdep_free_key_range(pf, key, 1);
6462 		call_rcu_zapped(pf);
6463 	}
6464 	lockdep_unlock();
6465 	raw_local_irq_restore(flags);
6466 
6467 	/* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6468 	synchronize_rcu();
6469 }
6470 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6471 
6472 void __init lockdep_init(void)
6473 {
6474 	printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6475 
6476 	printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
6477 	printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
6478 	printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
6479 	printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
6480 	printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
6481 	printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
6482 	printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
6483 
6484 	printk(" memory used by lock dependency info: %zu kB\n",
6485 	       (sizeof(lock_classes) +
6486 		sizeof(lock_classes_in_use) +
6487 		sizeof(classhash_table) +
6488 		sizeof(list_entries) +
6489 		sizeof(list_entries_in_use) +
6490 		sizeof(chainhash_table) +
6491 		sizeof(delayed_free)
6492 #ifdef CONFIG_PROVE_LOCKING
6493 		+ sizeof(lock_cq)
6494 		+ sizeof(lock_chains)
6495 		+ sizeof(lock_chains_in_use)
6496 		+ sizeof(chain_hlocks)
6497 #endif
6498 		) / 1024
6499 		);
6500 
6501 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6502 	printk(" memory used for stack traces: %zu kB\n",
6503 	       (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6504 	       );
6505 #endif
6506 
6507 	printk(" per task-struct memory footprint: %zu bytes\n",
6508 	       sizeof(((struct task_struct *)NULL)->held_locks));
6509 }
6510 
6511 static void
6512 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6513 		     const void *mem_to, struct held_lock *hlock)
6514 {
6515 	if (!debug_locks_off())
6516 		return;
6517 	if (debug_locks_silent)
6518 		return;
6519 
6520 	pr_warn("\n");
6521 	pr_warn("=========================\n");
6522 	pr_warn("WARNING: held lock freed!\n");
6523 	print_kernel_ident();
6524 	pr_warn("-------------------------\n");
6525 	pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6526 		curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6527 	print_lock(hlock);
6528 	lockdep_print_held_locks(curr);
6529 
6530 	pr_warn("\nstack backtrace:\n");
6531 	dump_stack();
6532 }
6533 
6534 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6535 				const void* lock_from, unsigned long lock_len)
6536 {
6537 	return lock_from + lock_len <= mem_from ||
6538 		mem_from + mem_len <= lock_from;
6539 }
6540 
6541 /*
6542  * Called when kernel memory is freed (or unmapped), or if a lock
6543  * is destroyed or reinitialized - this code checks whether there is
6544  * any held lock in the memory range of <from> to <to>:
6545  */
6546 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6547 {
6548 	struct task_struct *curr = current;
6549 	struct held_lock *hlock;
6550 	unsigned long flags;
6551 	int i;
6552 
6553 	if (unlikely(!debug_locks))
6554 		return;
6555 
6556 	raw_local_irq_save(flags);
6557 	for (i = 0; i < curr->lockdep_depth; i++) {
6558 		hlock = curr->held_locks + i;
6559 
6560 		if (not_in_range(mem_from, mem_len, hlock->instance,
6561 					sizeof(*hlock->instance)))
6562 			continue;
6563 
6564 		print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6565 		break;
6566 	}
6567 	raw_local_irq_restore(flags);
6568 }
6569 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6570 
6571 static void print_held_locks_bug(void)
6572 {
6573 	if (!debug_locks_off())
6574 		return;
6575 	if (debug_locks_silent)
6576 		return;
6577 
6578 	pr_warn("\n");
6579 	pr_warn("====================================\n");
6580 	pr_warn("WARNING: %s/%d still has locks held!\n",
6581 	       current->comm, task_pid_nr(current));
6582 	print_kernel_ident();
6583 	pr_warn("------------------------------------\n");
6584 	lockdep_print_held_locks(current);
6585 	pr_warn("\nstack backtrace:\n");
6586 	dump_stack();
6587 }
6588 
6589 void debug_check_no_locks_held(void)
6590 {
6591 	if (unlikely(current->lockdep_depth > 0))
6592 		print_held_locks_bug();
6593 }
6594 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6595 
6596 #ifdef __KERNEL__
6597 void debug_show_all_locks(void)
6598 {
6599 	struct task_struct *g, *p;
6600 
6601 	if (unlikely(!debug_locks)) {
6602 		pr_warn("INFO: lockdep is turned off.\n");
6603 		return;
6604 	}
6605 	pr_warn("\nShowing all locks held in the system:\n");
6606 
6607 	rcu_read_lock();
6608 	for_each_process_thread(g, p) {
6609 		if (!p->lockdep_depth)
6610 			continue;
6611 		lockdep_print_held_locks(p);
6612 		touch_nmi_watchdog();
6613 		touch_all_softlockup_watchdogs();
6614 	}
6615 	rcu_read_unlock();
6616 
6617 	pr_warn("\n");
6618 	pr_warn("=============================================\n\n");
6619 }
6620 EXPORT_SYMBOL_GPL(debug_show_all_locks);
6621 #endif
6622 
6623 /*
6624  * Careful: only use this function if you are sure that
6625  * the task cannot run in parallel!
6626  */
6627 void debug_show_held_locks(struct task_struct *task)
6628 {
6629 	if (unlikely(!debug_locks)) {
6630 		printk("INFO: lockdep is turned off.\n");
6631 		return;
6632 	}
6633 	lockdep_print_held_locks(task);
6634 }
6635 EXPORT_SYMBOL_GPL(debug_show_held_locks);
6636 
6637 asmlinkage __visible void lockdep_sys_exit(void)
6638 {
6639 	struct task_struct *curr = current;
6640 
6641 	if (unlikely(curr->lockdep_depth)) {
6642 		if (!debug_locks_off())
6643 			return;
6644 		pr_warn("\n");
6645 		pr_warn("================================================\n");
6646 		pr_warn("WARNING: lock held when returning to user space!\n");
6647 		print_kernel_ident();
6648 		pr_warn("------------------------------------------------\n");
6649 		pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6650 				curr->comm, curr->pid);
6651 		lockdep_print_held_locks(curr);
6652 	}
6653 
6654 	/*
6655 	 * The lock history for each syscall should be independent. So wipe the
6656 	 * slate clean on return to userspace.
6657 	 */
6658 	lockdep_invariant_state(false);
6659 }
6660 
6661 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6662 {
6663 	struct task_struct *curr = current;
6664 	int dl = READ_ONCE(debug_locks);
6665 	bool rcu = warn_rcu_enter();
6666 
6667 	/* Note: the following can be executed concurrently, so be careful. */
6668 	pr_warn("\n");
6669 	pr_warn("=============================\n");
6670 	pr_warn("WARNING: suspicious RCU usage\n");
6671 	print_kernel_ident();
6672 	pr_warn("-----------------------------\n");
6673 	pr_warn("%s:%d %s!\n", file, line, s);
6674 	pr_warn("\nother info that might help us debug this:\n\n");
6675 	pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s",
6676 	       !rcu_lockdep_current_cpu_online()
6677 			? "RCU used illegally from offline CPU!\n"
6678 			: "",
6679 	       rcu_scheduler_active, dl,
6680 	       dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n");
6681 
6682 	/*
6683 	 * If a CPU is in the RCU-free window in idle (ie: in the section
6684 	 * between ct_idle_enter() and ct_idle_exit(), then RCU
6685 	 * considers that CPU to be in an "extended quiescent state",
6686 	 * which means that RCU will be completely ignoring that CPU.
6687 	 * Therefore, rcu_read_lock() and friends have absolutely no
6688 	 * effect on a CPU running in that state. In other words, even if
6689 	 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6690 	 * delete data structures out from under it.  RCU really has no
6691 	 * choice here: we need to keep an RCU-free window in idle where
6692 	 * the CPU may possibly enter into low power mode. This way we can
6693 	 * notice an extended quiescent state to other CPUs that started a grace
6694 	 * period. Otherwise we would delay any grace period as long as we run
6695 	 * in the idle task.
6696 	 *
6697 	 * So complain bitterly if someone does call rcu_read_lock(),
6698 	 * rcu_read_lock_bh() and so on from extended quiescent states.
6699 	 */
6700 	if (!rcu_is_watching())
6701 		pr_warn("RCU used illegally from extended quiescent state!\n");
6702 
6703 	lockdep_print_held_locks(curr);
6704 	pr_warn("\nstack backtrace:\n");
6705 	dump_stack();
6706 	warn_rcu_exit(rcu);
6707 }
6708 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);
6709