xref: /linux/kernel/profile.c (revision 2d4bcf88)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/profile.c
4  *  Simple profiling. Manages a direct-mapped profile hit count buffer,
5  *  with configurable resolution, support for restricting the cpus on
6  *  which profiling is done, and switching between cpu time and
7  *  schedule() calls via kernel command line parameters passed at boot.
8  *
9  *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
10  *	Red Hat, July 2004
11  *  Consolidation of architecture support code for profiling,
12  *	Nadia Yvette Chambers, Oracle, July 2004
13  *  Amortized hit count accounting via per-cpu open-addressed hashtables
14  *	to resolve timer interrupt livelocks, Nadia Yvette Chambers,
15  *	Oracle, 2004
16  */
17 
18 #include <linux/export.h>
19 #include <linux/profile.h>
20 #include <linux/memblock.h>
21 #include <linux/notifier.h>
22 #include <linux/mm.h>
23 #include <linux/cpumask.h>
24 #include <linux/cpu.h>
25 #include <linux/highmem.h>
26 #include <linux/mutex.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sched/stat.h>
30 
31 #include <asm/sections.h>
32 #include <asm/irq_regs.h>
33 #include <asm/ptrace.h>
34 
35 struct profile_hit {
36 	u32 pc, hits;
37 };
38 #define PROFILE_GRPSHIFT	3
39 #define PROFILE_GRPSZ		(1 << PROFILE_GRPSHIFT)
40 #define NR_PROFILE_HIT		(PAGE_SIZE/sizeof(struct profile_hit))
41 #define NR_PROFILE_GRP		(NR_PROFILE_HIT/PROFILE_GRPSZ)
42 
43 static atomic_t *prof_buffer;
44 static unsigned long prof_len;
45 static unsigned short int prof_shift;
46 
47 int prof_on __read_mostly;
48 EXPORT_SYMBOL_GPL(prof_on);
49 
50 static cpumask_var_t prof_cpu_mask;
51 #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
52 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
53 static DEFINE_PER_CPU(int, cpu_profile_flip);
54 static DEFINE_MUTEX(profile_flip_mutex);
55 #endif /* CONFIG_SMP */
56 
57 int profile_setup(char *str)
58 {
59 	static const char schedstr[] = "schedule";
60 	static const char sleepstr[] = "sleep";
61 	static const char kvmstr[] = "kvm";
62 	int par;
63 
64 	if (!strncmp(str, sleepstr, strlen(sleepstr))) {
65 #ifdef CONFIG_SCHEDSTATS
66 		force_schedstat_enabled();
67 		prof_on = SLEEP_PROFILING;
68 		if (str[strlen(sleepstr)] == ',')
69 			str += strlen(sleepstr) + 1;
70 		if (get_option(&str, &par))
71 			prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
72 		pr_info("kernel sleep profiling enabled (shift: %u)\n",
73 			prof_shift);
74 #else
75 		pr_warn("kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
76 #endif /* CONFIG_SCHEDSTATS */
77 	} else if (!strncmp(str, schedstr, strlen(schedstr))) {
78 		prof_on = SCHED_PROFILING;
79 		if (str[strlen(schedstr)] == ',')
80 			str += strlen(schedstr) + 1;
81 		if (get_option(&str, &par))
82 			prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
83 		pr_info("kernel schedule profiling enabled (shift: %u)\n",
84 			prof_shift);
85 	} else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
86 		prof_on = KVM_PROFILING;
87 		if (str[strlen(kvmstr)] == ',')
88 			str += strlen(kvmstr) + 1;
89 		if (get_option(&str, &par))
90 			prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
91 		pr_info("kernel KVM profiling enabled (shift: %u)\n",
92 			prof_shift);
93 	} else if (get_option(&str, &par)) {
94 		prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
95 		prof_on = CPU_PROFILING;
96 		pr_info("kernel profiling enabled (shift: %u)\n",
97 			prof_shift);
98 	}
99 	return 1;
100 }
101 __setup("profile=", profile_setup);
102 
103 
104 int __ref profile_init(void)
105 {
106 	int buffer_bytes;
107 	if (!prof_on)
108 		return 0;
109 
110 	/* only text is profiled */
111 	prof_len = (_etext - _stext) >> prof_shift;
112 	buffer_bytes = prof_len*sizeof(atomic_t);
113 
114 	if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
115 		return -ENOMEM;
116 
117 	cpumask_copy(prof_cpu_mask, cpu_possible_mask);
118 
119 	prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
120 	if (prof_buffer)
121 		return 0;
122 
123 	prof_buffer = alloc_pages_exact(buffer_bytes,
124 					GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN);
125 	if (prof_buffer)
126 		return 0;
127 
128 	prof_buffer = vzalloc(buffer_bytes);
129 	if (prof_buffer)
130 		return 0;
131 
132 	free_cpumask_var(prof_cpu_mask);
133 	return -ENOMEM;
134 }
135 
136 /* Profile event notifications */
137 
138 static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
139 
140 int profile_handoff_task(struct task_struct *task)
141 {
142 	int ret;
143 	ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
144 	return (ret == NOTIFY_OK) ? 1 : 0;
145 }
146 
147 int task_handoff_register(struct notifier_block *n)
148 {
149 	return atomic_notifier_chain_register(&task_free_notifier, n);
150 }
151 EXPORT_SYMBOL_GPL(task_handoff_register);
152 
153 int task_handoff_unregister(struct notifier_block *n)
154 {
155 	return atomic_notifier_chain_unregister(&task_free_notifier, n);
156 }
157 EXPORT_SYMBOL_GPL(task_handoff_unregister);
158 
159 #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
160 /*
161  * Each cpu has a pair of open-addressed hashtables for pending
162  * profile hits. read_profile() IPI's all cpus to request them
163  * to flip buffers and flushes their contents to prof_buffer itself.
164  * Flip requests are serialized by the profile_flip_mutex. The sole
165  * use of having a second hashtable is for avoiding cacheline
166  * contention that would otherwise happen during flushes of pending
167  * profile hits required for the accuracy of reported profile hits
168  * and so resurrect the interrupt livelock issue.
169  *
170  * The open-addressed hashtables are indexed by profile buffer slot
171  * and hold the number of pending hits to that profile buffer slot on
172  * a cpu in an entry. When the hashtable overflows, all pending hits
173  * are accounted to their corresponding profile buffer slots with
174  * atomic_add() and the hashtable emptied. As numerous pending hits
175  * may be accounted to a profile buffer slot in a hashtable entry,
176  * this amortizes a number of atomic profile buffer increments likely
177  * to be far larger than the number of entries in the hashtable,
178  * particularly given that the number of distinct profile buffer
179  * positions to which hits are accounted during short intervals (e.g.
180  * several seconds) is usually very small. Exclusion from buffer
181  * flipping is provided by interrupt disablement (note that for
182  * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
183  * process context).
184  * The hash function is meant to be lightweight as opposed to strong,
185  * and was vaguely inspired by ppc64 firmware-supported inverted
186  * pagetable hash functions, but uses a full hashtable full of finite
187  * collision chains, not just pairs of them.
188  *
189  * -- nyc
190  */
191 static void __profile_flip_buffers(void *unused)
192 {
193 	int cpu = smp_processor_id();
194 
195 	per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
196 }
197 
198 static void profile_flip_buffers(void)
199 {
200 	int i, j, cpu;
201 
202 	mutex_lock(&profile_flip_mutex);
203 	j = per_cpu(cpu_profile_flip, get_cpu());
204 	put_cpu();
205 	on_each_cpu(__profile_flip_buffers, NULL, 1);
206 	for_each_online_cpu(cpu) {
207 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
208 		for (i = 0; i < NR_PROFILE_HIT; ++i) {
209 			if (!hits[i].hits) {
210 				if (hits[i].pc)
211 					hits[i].pc = 0;
212 				continue;
213 			}
214 			atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
215 			hits[i].hits = hits[i].pc = 0;
216 		}
217 	}
218 	mutex_unlock(&profile_flip_mutex);
219 }
220 
221 static void profile_discard_flip_buffers(void)
222 {
223 	int i, cpu;
224 
225 	mutex_lock(&profile_flip_mutex);
226 	i = per_cpu(cpu_profile_flip, get_cpu());
227 	put_cpu();
228 	on_each_cpu(__profile_flip_buffers, NULL, 1);
229 	for_each_online_cpu(cpu) {
230 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
231 		memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
232 	}
233 	mutex_unlock(&profile_flip_mutex);
234 }
235 
236 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
237 {
238 	unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
239 	int i, j, cpu;
240 	struct profile_hit *hits;
241 
242 	pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
243 	i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
244 	secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
245 	cpu = get_cpu();
246 	hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
247 	if (!hits) {
248 		put_cpu();
249 		return;
250 	}
251 	/*
252 	 * We buffer the global profiler buffer into a per-CPU
253 	 * queue and thus reduce the number of global (and possibly
254 	 * NUMA-alien) accesses. The write-queue is self-coalescing:
255 	 */
256 	local_irq_save(flags);
257 	do {
258 		for (j = 0; j < PROFILE_GRPSZ; ++j) {
259 			if (hits[i + j].pc == pc) {
260 				hits[i + j].hits += nr_hits;
261 				goto out;
262 			} else if (!hits[i + j].hits) {
263 				hits[i + j].pc = pc;
264 				hits[i + j].hits = nr_hits;
265 				goto out;
266 			}
267 		}
268 		i = (i + secondary) & (NR_PROFILE_HIT - 1);
269 	} while (i != primary);
270 
271 	/*
272 	 * Add the current hit(s) and flush the write-queue out
273 	 * to the global buffer:
274 	 */
275 	atomic_add(nr_hits, &prof_buffer[pc]);
276 	for (i = 0; i < NR_PROFILE_HIT; ++i) {
277 		atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
278 		hits[i].pc = hits[i].hits = 0;
279 	}
280 out:
281 	local_irq_restore(flags);
282 	put_cpu();
283 }
284 
285 static int profile_dead_cpu(unsigned int cpu)
286 {
287 	struct page *page;
288 	int i;
289 
290 	if (cpumask_available(prof_cpu_mask))
291 		cpumask_clear_cpu(cpu, prof_cpu_mask);
292 
293 	for (i = 0; i < 2; i++) {
294 		if (per_cpu(cpu_profile_hits, cpu)[i]) {
295 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[i]);
296 			per_cpu(cpu_profile_hits, cpu)[i] = NULL;
297 			__free_page(page);
298 		}
299 	}
300 	return 0;
301 }
302 
303 static int profile_prepare_cpu(unsigned int cpu)
304 {
305 	int i, node = cpu_to_mem(cpu);
306 	struct page *page;
307 
308 	per_cpu(cpu_profile_flip, cpu) = 0;
309 
310 	for (i = 0; i < 2; i++) {
311 		if (per_cpu(cpu_profile_hits, cpu)[i])
312 			continue;
313 
314 		page = __alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
315 		if (!page) {
316 			profile_dead_cpu(cpu);
317 			return -ENOMEM;
318 		}
319 		per_cpu(cpu_profile_hits, cpu)[i] = page_address(page);
320 
321 	}
322 	return 0;
323 }
324 
325 static int profile_online_cpu(unsigned int cpu)
326 {
327 	if (cpumask_available(prof_cpu_mask))
328 		cpumask_set_cpu(cpu, prof_cpu_mask);
329 
330 	return 0;
331 }
332 
333 #else /* !CONFIG_SMP */
334 #define profile_flip_buffers()		do { } while (0)
335 #define profile_discard_flip_buffers()	do { } while (0)
336 
337 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
338 {
339 	unsigned long pc;
340 	pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
341 	atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
342 }
343 #endif /* !CONFIG_SMP */
344 
345 void profile_hits(int type, void *__pc, unsigned int nr_hits)
346 {
347 	if (prof_on != type || !prof_buffer)
348 		return;
349 	do_profile_hits(type, __pc, nr_hits);
350 }
351 EXPORT_SYMBOL_GPL(profile_hits);
352 
353 void profile_tick(int type)
354 {
355 	struct pt_regs *regs = get_irq_regs();
356 
357 	if (!user_mode(regs) && cpumask_available(prof_cpu_mask) &&
358 	    cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
359 		profile_hit(type, (void *)profile_pc(regs));
360 }
361 
362 #ifdef CONFIG_PROC_FS
363 #include <linux/proc_fs.h>
364 #include <linux/seq_file.h>
365 #include <linux/uaccess.h>
366 
367 static int prof_cpu_mask_proc_show(struct seq_file *m, void *v)
368 {
369 	seq_printf(m, "%*pb\n", cpumask_pr_args(prof_cpu_mask));
370 	return 0;
371 }
372 
373 static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file)
374 {
375 	return single_open(file, prof_cpu_mask_proc_show, NULL);
376 }
377 
378 static ssize_t prof_cpu_mask_proc_write(struct file *file,
379 	const char __user *buffer, size_t count, loff_t *pos)
380 {
381 	cpumask_var_t new_value;
382 	int err;
383 
384 	if (!zalloc_cpumask_var(&new_value, GFP_KERNEL))
385 		return -ENOMEM;
386 
387 	err = cpumask_parse_user(buffer, count, new_value);
388 	if (!err) {
389 		cpumask_copy(prof_cpu_mask, new_value);
390 		err = count;
391 	}
392 	free_cpumask_var(new_value);
393 	return err;
394 }
395 
396 static const struct proc_ops prof_cpu_mask_proc_ops = {
397 	.proc_open	= prof_cpu_mask_proc_open,
398 	.proc_read	= seq_read,
399 	.proc_lseek	= seq_lseek,
400 	.proc_release	= single_release,
401 	.proc_write	= prof_cpu_mask_proc_write,
402 };
403 
404 void create_prof_cpu_mask(void)
405 {
406 	/* create /proc/irq/prof_cpu_mask */
407 	proc_create("irq/prof_cpu_mask", 0600, NULL, &prof_cpu_mask_proc_ops);
408 }
409 
410 /*
411  * This function accesses profiling information. The returned data is
412  * binary: the sampling step and the actual contents of the profile
413  * buffer. Use of the program readprofile is recommended in order to
414  * get meaningful info out of these data.
415  */
416 static ssize_t
417 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
418 {
419 	unsigned long p = *ppos;
420 	ssize_t read;
421 	char *pnt;
422 	unsigned long sample_step = 1UL << prof_shift;
423 
424 	profile_flip_buffers();
425 	if (p >= (prof_len+1)*sizeof(unsigned int))
426 		return 0;
427 	if (count > (prof_len+1)*sizeof(unsigned int) - p)
428 		count = (prof_len+1)*sizeof(unsigned int) - p;
429 	read = 0;
430 
431 	while (p < sizeof(unsigned int) && count > 0) {
432 		if (put_user(*((char *)(&sample_step)+p), buf))
433 			return -EFAULT;
434 		buf++; p++; count--; read++;
435 	}
436 	pnt = (char *)prof_buffer + p - sizeof(atomic_t);
437 	if (copy_to_user(buf, (void *)pnt, count))
438 		return -EFAULT;
439 	read += count;
440 	*ppos += read;
441 	return read;
442 }
443 
444 /*
445  * Writing to /proc/profile resets the counters
446  *
447  * Writing a 'profiling multiplier' value into it also re-sets the profiling
448  * interrupt frequency, on architectures that support this.
449  */
450 static ssize_t write_profile(struct file *file, const char __user *buf,
451 			     size_t count, loff_t *ppos)
452 {
453 #ifdef CONFIG_SMP
454 	extern int setup_profiling_timer(unsigned int multiplier);
455 
456 	if (count == sizeof(int)) {
457 		unsigned int multiplier;
458 
459 		if (copy_from_user(&multiplier, buf, sizeof(int)))
460 			return -EFAULT;
461 
462 		if (setup_profiling_timer(multiplier))
463 			return -EINVAL;
464 	}
465 #endif
466 	profile_discard_flip_buffers();
467 	memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
468 	return count;
469 }
470 
471 static const struct proc_ops profile_proc_ops = {
472 	.proc_read	= read_profile,
473 	.proc_write	= write_profile,
474 	.proc_lseek	= default_llseek,
475 };
476 
477 int __ref create_proc_profile(void)
478 {
479 	struct proc_dir_entry *entry;
480 #ifdef CONFIG_SMP
481 	enum cpuhp_state online_state;
482 #endif
483 
484 	int err = 0;
485 
486 	if (!prof_on)
487 		return 0;
488 #ifdef CONFIG_SMP
489 	err = cpuhp_setup_state(CPUHP_PROFILE_PREPARE, "PROFILE_PREPARE",
490 				profile_prepare_cpu, profile_dead_cpu);
491 	if (err)
492 		return err;
493 
494 	err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "AP_PROFILE_ONLINE",
495 				profile_online_cpu, NULL);
496 	if (err < 0)
497 		goto err_state_prep;
498 	online_state = err;
499 	err = 0;
500 #endif
501 	entry = proc_create("profile", S_IWUSR | S_IRUGO,
502 			    NULL, &profile_proc_ops);
503 	if (!entry)
504 		goto err_state_onl;
505 	proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t));
506 
507 	return err;
508 err_state_onl:
509 #ifdef CONFIG_SMP
510 	cpuhp_remove_state(online_state);
511 err_state_prep:
512 	cpuhp_remove_state(CPUHP_PROFILE_PREPARE);
513 #endif
514 	return err;
515 }
516 subsys_initcall(create_proc_profile);
517 #endif /* CONFIG_PROC_FS */
518