xref: /linux/mm/zswap.c (revision c074e146)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * zswap.c - zswap driver file
4  *
5  * zswap is a cache that takes pages that are in the process
6  * of being swapped out and attempts to compress and store them in a
7  * RAM-based memory pool.  This can result in a significant I/O reduction on
8  * the swap device and, in the case where decompressing from RAM is faster
9  * than reading from the swap device, can also improve workload performance.
10  *
11  * Copyright (C) 2012  Seth Jennings <sjenning@linux.vnet.ibm.com>
12 */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/highmem.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/types.h>
22 #include <linux/atomic.h>
23 #include <linux/swap.h>
24 #include <linux/crypto.h>
25 #include <linux/scatterlist.h>
26 #include <linux/mempolicy.h>
27 #include <linux/mempool.h>
28 #include <linux/zpool.h>
29 #include <crypto/acompress.h>
30 #include <linux/zswap.h>
31 #include <linux/mm_types.h>
32 #include <linux/page-flags.h>
33 #include <linux/swapops.h>
34 #include <linux/writeback.h>
35 #include <linux/pagemap.h>
36 #include <linux/workqueue.h>
37 #include <linux/list_lru.h>
38 
39 #include "swap.h"
40 #include "internal.h"
41 
42 /*********************************
43 * statistics
44 **********************************/
45 /* The number of compressed pages currently stored in zswap */
46 atomic_t zswap_stored_pages = ATOMIC_INIT(0);
47 /* The number of same-value filled pages currently stored in zswap */
48 static atomic_t zswap_same_filled_pages = ATOMIC_INIT(0);
49 
50 /*
51  * The statistics below are not protected from concurrent access for
52  * performance reasons so they may not be a 100% accurate.  However,
53  * they do provide useful information on roughly how many times a
54  * certain event is occurring.
55 */
56 
57 /* Pool limit was hit (see zswap_max_pool_percent) */
58 static u64 zswap_pool_limit_hit;
59 /* Pages written back when pool limit was reached */
60 static u64 zswap_written_back_pages;
61 /* Store failed due to a reclaim failure after pool limit was reached */
62 static u64 zswap_reject_reclaim_fail;
63 /* Store failed due to compression algorithm failure */
64 static u64 zswap_reject_compress_fail;
65 /* Compressed page was too big for the allocator to (optimally) store */
66 static u64 zswap_reject_compress_poor;
67 /* Store failed because underlying allocator could not get memory */
68 static u64 zswap_reject_alloc_fail;
69 /* Store failed because the entry metadata could not be allocated (rare) */
70 static u64 zswap_reject_kmemcache_fail;
71 
72 /* Shrinker work queue */
73 static struct workqueue_struct *shrink_wq;
74 /* Pool limit was hit, we need to calm down */
75 static bool zswap_pool_reached_full;
76 
77 /*********************************
78 * tunables
79 **********************************/
80 
81 #define ZSWAP_PARAM_UNSET ""
82 
83 static int zswap_setup(void);
84 
85 /* Enable/disable zswap */
86 static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON);
87 static int zswap_enabled_param_set(const char *,
88 				   const struct kernel_param *);
89 static const struct kernel_param_ops zswap_enabled_param_ops = {
90 	.set =		zswap_enabled_param_set,
91 	.get =		param_get_bool,
92 };
93 module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644);
94 
95 /* Crypto compressor to use */
96 static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
97 static int zswap_compressor_param_set(const char *,
98 				      const struct kernel_param *);
99 static const struct kernel_param_ops zswap_compressor_param_ops = {
100 	.set =		zswap_compressor_param_set,
101 	.get =		param_get_charp,
102 	.free =		param_free_charp,
103 };
104 module_param_cb(compressor, &zswap_compressor_param_ops,
105 		&zswap_compressor, 0644);
106 
107 /* Compressed storage zpool to use */
108 static char *zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
109 static int zswap_zpool_param_set(const char *, const struct kernel_param *);
110 static const struct kernel_param_ops zswap_zpool_param_ops = {
111 	.set =		zswap_zpool_param_set,
112 	.get =		param_get_charp,
113 	.free =		param_free_charp,
114 };
115 module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644);
116 
117 /* The maximum percentage of memory that the compressed pool can occupy */
118 static unsigned int zswap_max_pool_percent = 20;
119 module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
120 
121 /* The threshold for accepting new pages after the max_pool_percent was hit */
122 static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */
123 module_param_named(accept_threshold_percent, zswap_accept_thr_percent,
124 		   uint, 0644);
125 
126 /* Number of zpools in zswap_pool (empirically determined for scalability) */
127 #define ZSWAP_NR_ZPOOLS 32
128 
129 /* Enable/disable memory pressure-based shrinker. */
130 static bool zswap_shrinker_enabled = IS_ENABLED(
131 		CONFIG_ZSWAP_SHRINKER_DEFAULT_ON);
132 module_param_named(shrinker_enabled, zswap_shrinker_enabled, bool, 0644);
133 
is_zswap_enabled(void)134 bool is_zswap_enabled(void)
135 {
136 	return zswap_enabled;
137 }
138 
139 /*********************************
140 * data structures
141 **********************************/
142 
143 struct crypto_acomp_ctx {
144 	struct crypto_acomp *acomp;
145 	struct acomp_req *req;
146 	struct crypto_wait wait;
147 	u8 *buffer;
148 	struct mutex mutex;
149 	bool is_sleepable;
150 };
151 
152 /*
153  * The lock ordering is zswap_tree.lock -> zswap_pool.lru_lock.
154  * The only case where lru_lock is not acquired while holding tree.lock is
155  * when a zswap_entry is taken off the lru for writeback, in that case it
156  * needs to be verified that it's still valid in the tree.
157  */
158 struct zswap_pool {
159 	struct zpool *zpools[ZSWAP_NR_ZPOOLS];
160 	struct crypto_acomp_ctx __percpu *acomp_ctx;
161 	struct percpu_ref ref;
162 	struct list_head list;
163 	struct work_struct release_work;
164 	struct hlist_node node;
165 	char tfm_name[CRYPTO_MAX_ALG_NAME];
166 };
167 
168 /* Global LRU lists shared by all zswap pools. */
169 static struct list_lru zswap_list_lru;
170 
171 /* The lock protects zswap_next_shrink updates. */
172 static DEFINE_SPINLOCK(zswap_shrink_lock);
173 static struct mem_cgroup *zswap_next_shrink;
174 static struct work_struct zswap_shrink_work;
175 static struct shrinker *zswap_shrinker;
176 
177 /*
178  * struct zswap_entry
179  *
180  * This structure contains the metadata for tracking a single compressed
181  * page within zswap.
182  *
183  * swpentry - associated swap entry, the offset indexes into the red-black tree
184  * length - the length in bytes of the compressed page data.  Needed during
185  *          decompression. For a same value filled page length is 0, and both
186  *          pool and lru are invalid and must be ignored.
187  * pool - the zswap_pool the entry's data is in
188  * handle - zpool allocation handle that stores the compressed page data
189  * value - value of the same-value filled pages which have same content
190  * objcg - the obj_cgroup that the compressed memory is charged to
191  * lru - handle to the pool's lru used to evict pages.
192  */
193 struct zswap_entry {
194 	swp_entry_t swpentry;
195 	unsigned int length;
196 	struct zswap_pool *pool;
197 	union {
198 		unsigned long handle;
199 		unsigned long value;
200 	};
201 	struct obj_cgroup *objcg;
202 	struct list_head lru;
203 };
204 
205 static struct xarray *zswap_trees[MAX_SWAPFILES];
206 static unsigned int nr_zswap_trees[MAX_SWAPFILES];
207 
208 /* RCU-protected iteration */
209 static LIST_HEAD(zswap_pools);
210 /* protects zswap_pools list modification */
211 static DEFINE_SPINLOCK(zswap_pools_lock);
212 /* pool counter to provide unique names to zpool */
213 static atomic_t zswap_pools_count = ATOMIC_INIT(0);
214 
215 enum zswap_init_type {
216 	ZSWAP_UNINIT,
217 	ZSWAP_INIT_SUCCEED,
218 	ZSWAP_INIT_FAILED
219 };
220 
221 static enum zswap_init_type zswap_init_state;
222 
223 /* used to ensure the integrity of initialization */
224 static DEFINE_MUTEX(zswap_init_lock);
225 
226 /* init completed, but couldn't create the initial pool */
227 static bool zswap_has_pool;
228 
229 /*********************************
230 * helpers and fwd declarations
231 **********************************/
232 
swap_zswap_tree(swp_entry_t swp)233 static inline struct xarray *swap_zswap_tree(swp_entry_t swp)
234 {
235 	return &zswap_trees[swp_type(swp)][swp_offset(swp)
236 		>> SWAP_ADDRESS_SPACE_SHIFT];
237 }
238 
239 #define zswap_pool_debug(msg, p)				\
240 	pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name,		\
241 		 zpool_get_type((p)->zpools[0]))
242 
243 /*********************************
244 * pool functions
245 **********************************/
246 static void __zswap_pool_empty(struct percpu_ref *ref);
247 
zswap_pool_create(char * type,char * compressor)248 static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
249 {
250 	int i;
251 	struct zswap_pool *pool;
252 	char name[38]; /* 'zswap' + 32 char (max) num + \0 */
253 	gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
254 	int ret;
255 
256 	if (!zswap_has_pool) {
257 		/* if either are unset, pool initialization failed, and we
258 		 * need both params to be set correctly before trying to
259 		 * create a pool.
260 		 */
261 		if (!strcmp(type, ZSWAP_PARAM_UNSET))
262 			return NULL;
263 		if (!strcmp(compressor, ZSWAP_PARAM_UNSET))
264 			return NULL;
265 	}
266 
267 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
268 	if (!pool)
269 		return NULL;
270 
271 	for (i = 0; i < ZSWAP_NR_ZPOOLS; i++) {
272 		/* unique name for each pool specifically required by zsmalloc */
273 		snprintf(name, 38, "zswap%x",
274 			 atomic_inc_return(&zswap_pools_count));
275 
276 		pool->zpools[i] = zpool_create_pool(type, name, gfp);
277 		if (!pool->zpools[i]) {
278 			pr_err("%s zpool not available\n", type);
279 			goto error;
280 		}
281 	}
282 	pr_debug("using %s zpool\n", zpool_get_type(pool->zpools[0]));
283 
284 	strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
285 
286 	pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx);
287 	if (!pool->acomp_ctx) {
288 		pr_err("percpu alloc failed\n");
289 		goto error;
290 	}
291 
292 	ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE,
293 				       &pool->node);
294 	if (ret)
295 		goto error;
296 
297 	/* being the current pool takes 1 ref; this func expects the
298 	 * caller to always add the new pool as the current pool
299 	 */
300 	ret = percpu_ref_init(&pool->ref, __zswap_pool_empty,
301 			      PERCPU_REF_ALLOW_REINIT, GFP_KERNEL);
302 	if (ret)
303 		goto ref_fail;
304 	INIT_LIST_HEAD(&pool->list);
305 
306 	zswap_pool_debug("created", pool);
307 
308 	return pool;
309 
310 ref_fail:
311 	cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
312 error:
313 	if (pool->acomp_ctx)
314 		free_percpu(pool->acomp_ctx);
315 	while (i--)
316 		zpool_destroy_pool(pool->zpools[i]);
317 	kfree(pool);
318 	return NULL;
319 }
320 
__zswap_pool_create_fallback(void)321 static struct zswap_pool *__zswap_pool_create_fallback(void)
322 {
323 	bool has_comp, has_zpool;
324 
325 	has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
326 	if (!has_comp && strcmp(zswap_compressor,
327 				CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) {
328 		pr_err("compressor %s not available, using default %s\n",
329 		       zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT);
330 		param_free_charp(&zswap_compressor);
331 		zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
332 		has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
333 	}
334 	if (!has_comp) {
335 		pr_err("default compressor %s not available\n",
336 		       zswap_compressor);
337 		param_free_charp(&zswap_compressor);
338 		zswap_compressor = ZSWAP_PARAM_UNSET;
339 	}
340 
341 	has_zpool = zpool_has_pool(zswap_zpool_type);
342 	if (!has_zpool && strcmp(zswap_zpool_type,
343 				 CONFIG_ZSWAP_ZPOOL_DEFAULT)) {
344 		pr_err("zpool %s not available, using default %s\n",
345 		       zswap_zpool_type, CONFIG_ZSWAP_ZPOOL_DEFAULT);
346 		param_free_charp(&zswap_zpool_type);
347 		zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
348 		has_zpool = zpool_has_pool(zswap_zpool_type);
349 	}
350 	if (!has_zpool) {
351 		pr_err("default zpool %s not available\n",
352 		       zswap_zpool_type);
353 		param_free_charp(&zswap_zpool_type);
354 		zswap_zpool_type = ZSWAP_PARAM_UNSET;
355 	}
356 
357 	if (!has_comp || !has_zpool)
358 		return NULL;
359 
360 	return zswap_pool_create(zswap_zpool_type, zswap_compressor);
361 }
362 
zswap_pool_destroy(struct zswap_pool * pool)363 static void zswap_pool_destroy(struct zswap_pool *pool)
364 {
365 	int i;
366 
367 	zswap_pool_debug("destroying", pool);
368 
369 	cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
370 	free_percpu(pool->acomp_ctx);
371 
372 	for (i = 0; i < ZSWAP_NR_ZPOOLS; i++)
373 		zpool_destroy_pool(pool->zpools[i]);
374 	kfree(pool);
375 }
376 
__zswap_pool_release(struct work_struct * work)377 static void __zswap_pool_release(struct work_struct *work)
378 {
379 	struct zswap_pool *pool = container_of(work, typeof(*pool),
380 						release_work);
381 
382 	synchronize_rcu();
383 
384 	/* nobody should have been able to get a ref... */
385 	WARN_ON(!percpu_ref_is_zero(&pool->ref));
386 	percpu_ref_exit(&pool->ref);
387 
388 	/* pool is now off zswap_pools list and has no references. */
389 	zswap_pool_destroy(pool);
390 }
391 
392 static struct zswap_pool *zswap_pool_current(void);
393 
__zswap_pool_empty(struct percpu_ref * ref)394 static void __zswap_pool_empty(struct percpu_ref *ref)
395 {
396 	struct zswap_pool *pool;
397 
398 	pool = container_of(ref, typeof(*pool), ref);
399 
400 	spin_lock_bh(&zswap_pools_lock);
401 
402 	WARN_ON(pool == zswap_pool_current());
403 
404 	list_del_rcu(&pool->list);
405 
406 	INIT_WORK(&pool->release_work, __zswap_pool_release);
407 	schedule_work(&pool->release_work);
408 
409 	spin_unlock_bh(&zswap_pools_lock);
410 }
411 
zswap_pool_get(struct zswap_pool * pool)412 static int __must_check zswap_pool_get(struct zswap_pool *pool)
413 {
414 	if (!pool)
415 		return 0;
416 
417 	return percpu_ref_tryget(&pool->ref);
418 }
419 
zswap_pool_put(struct zswap_pool * pool)420 static void zswap_pool_put(struct zswap_pool *pool)
421 {
422 	percpu_ref_put(&pool->ref);
423 }
424 
__zswap_pool_current(void)425 static struct zswap_pool *__zswap_pool_current(void)
426 {
427 	struct zswap_pool *pool;
428 
429 	pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
430 	WARN_ONCE(!pool && zswap_has_pool,
431 		  "%s: no page storage pool!\n", __func__);
432 
433 	return pool;
434 }
435 
zswap_pool_current(void)436 static struct zswap_pool *zswap_pool_current(void)
437 {
438 	assert_spin_locked(&zswap_pools_lock);
439 
440 	return __zswap_pool_current();
441 }
442 
zswap_pool_current_get(void)443 static struct zswap_pool *zswap_pool_current_get(void)
444 {
445 	struct zswap_pool *pool;
446 
447 	rcu_read_lock();
448 
449 	pool = __zswap_pool_current();
450 	if (!zswap_pool_get(pool))
451 		pool = NULL;
452 
453 	rcu_read_unlock();
454 
455 	return pool;
456 }
457 
458 /* type and compressor must be null-terminated */
zswap_pool_find_get(char * type,char * compressor)459 static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
460 {
461 	struct zswap_pool *pool;
462 
463 	assert_spin_locked(&zswap_pools_lock);
464 
465 	list_for_each_entry_rcu(pool, &zswap_pools, list) {
466 		if (strcmp(pool->tfm_name, compressor))
467 			continue;
468 		/* all zpools share the same type */
469 		if (strcmp(zpool_get_type(pool->zpools[0]), type))
470 			continue;
471 		/* if we can't get it, it's about to be destroyed */
472 		if (!zswap_pool_get(pool))
473 			continue;
474 		return pool;
475 	}
476 
477 	return NULL;
478 }
479 
zswap_max_pages(void)480 static unsigned long zswap_max_pages(void)
481 {
482 	return totalram_pages() * zswap_max_pool_percent / 100;
483 }
484 
zswap_accept_thr_pages(void)485 static unsigned long zswap_accept_thr_pages(void)
486 {
487 	return zswap_max_pages() * zswap_accept_thr_percent / 100;
488 }
489 
zswap_total_pages(void)490 unsigned long zswap_total_pages(void)
491 {
492 	struct zswap_pool *pool;
493 	unsigned long total = 0;
494 
495 	rcu_read_lock();
496 	list_for_each_entry_rcu(pool, &zswap_pools, list) {
497 		int i;
498 
499 		for (i = 0; i < ZSWAP_NR_ZPOOLS; i++)
500 			total += zpool_get_total_pages(pool->zpools[i]);
501 	}
502 	rcu_read_unlock();
503 
504 	return total;
505 }
506 
zswap_check_limits(void)507 static bool zswap_check_limits(void)
508 {
509 	unsigned long cur_pages = zswap_total_pages();
510 	unsigned long max_pages = zswap_max_pages();
511 
512 	if (cur_pages >= max_pages) {
513 		zswap_pool_limit_hit++;
514 		zswap_pool_reached_full = true;
515 	} else if (zswap_pool_reached_full &&
516 		   cur_pages <= zswap_accept_thr_pages()) {
517 			zswap_pool_reached_full = false;
518 	}
519 	return zswap_pool_reached_full;
520 }
521 
522 /*********************************
523 * param callbacks
524 **********************************/
525 
zswap_pool_changed(const char * s,const struct kernel_param * kp)526 static bool zswap_pool_changed(const char *s, const struct kernel_param *kp)
527 {
528 	/* no change required */
529 	if (!strcmp(s, *(char **)kp->arg) && zswap_has_pool)
530 		return false;
531 	return true;
532 }
533 
534 /* val must be a null-terminated string */
__zswap_param_set(const char * val,const struct kernel_param * kp,char * type,char * compressor)535 static int __zswap_param_set(const char *val, const struct kernel_param *kp,
536 			     char *type, char *compressor)
537 {
538 	struct zswap_pool *pool, *put_pool = NULL;
539 	char *s = strstrip((char *)val);
540 	int ret = 0;
541 	bool new_pool = false;
542 
543 	mutex_lock(&zswap_init_lock);
544 	switch (zswap_init_state) {
545 	case ZSWAP_UNINIT:
546 		/* if this is load-time (pre-init) param setting,
547 		 * don't create a pool; that's done during init.
548 		 */
549 		ret = param_set_charp(s, kp);
550 		break;
551 	case ZSWAP_INIT_SUCCEED:
552 		new_pool = zswap_pool_changed(s, kp);
553 		break;
554 	case ZSWAP_INIT_FAILED:
555 		pr_err("can't set param, initialization failed\n");
556 		ret = -ENODEV;
557 	}
558 	mutex_unlock(&zswap_init_lock);
559 
560 	/* no need to create a new pool, return directly */
561 	if (!new_pool)
562 		return ret;
563 
564 	if (!type) {
565 		if (!zpool_has_pool(s)) {
566 			pr_err("zpool %s not available\n", s);
567 			return -ENOENT;
568 		}
569 		type = s;
570 	} else if (!compressor) {
571 		if (!crypto_has_acomp(s, 0, 0)) {
572 			pr_err("compressor %s not available\n", s);
573 			return -ENOENT;
574 		}
575 		compressor = s;
576 	} else {
577 		WARN_ON(1);
578 		return -EINVAL;
579 	}
580 
581 	spin_lock_bh(&zswap_pools_lock);
582 
583 	pool = zswap_pool_find_get(type, compressor);
584 	if (pool) {
585 		zswap_pool_debug("using existing", pool);
586 		WARN_ON(pool == zswap_pool_current());
587 		list_del_rcu(&pool->list);
588 	}
589 
590 	spin_unlock_bh(&zswap_pools_lock);
591 
592 	if (!pool)
593 		pool = zswap_pool_create(type, compressor);
594 	else {
595 		/*
596 		 * Restore the initial ref dropped by percpu_ref_kill()
597 		 * when the pool was decommissioned and switch it again
598 		 * to percpu mode.
599 		 */
600 		percpu_ref_resurrect(&pool->ref);
601 
602 		/* Drop the ref from zswap_pool_find_get(). */
603 		zswap_pool_put(pool);
604 	}
605 
606 	if (pool)
607 		ret = param_set_charp(s, kp);
608 	else
609 		ret = -EINVAL;
610 
611 	spin_lock_bh(&zswap_pools_lock);
612 
613 	if (!ret) {
614 		put_pool = zswap_pool_current();
615 		list_add_rcu(&pool->list, &zswap_pools);
616 		zswap_has_pool = true;
617 	} else if (pool) {
618 		/* add the possibly pre-existing pool to the end of the pools
619 		 * list; if it's new (and empty) then it'll be removed and
620 		 * destroyed by the put after we drop the lock
621 		 */
622 		list_add_tail_rcu(&pool->list, &zswap_pools);
623 		put_pool = pool;
624 	}
625 
626 	spin_unlock_bh(&zswap_pools_lock);
627 
628 	if (!zswap_has_pool && !pool) {
629 		/* if initial pool creation failed, and this pool creation also
630 		 * failed, maybe both compressor and zpool params were bad.
631 		 * Allow changing this param, so pool creation will succeed
632 		 * when the other param is changed. We already verified this
633 		 * param is ok in the zpool_has_pool() or crypto_has_acomp()
634 		 * checks above.
635 		 */
636 		ret = param_set_charp(s, kp);
637 	}
638 
639 	/* drop the ref from either the old current pool,
640 	 * or the new pool we failed to add
641 	 */
642 	if (put_pool)
643 		percpu_ref_kill(&put_pool->ref);
644 
645 	return ret;
646 }
647 
zswap_compressor_param_set(const char * val,const struct kernel_param * kp)648 static int zswap_compressor_param_set(const char *val,
649 				      const struct kernel_param *kp)
650 {
651 	return __zswap_param_set(val, kp, zswap_zpool_type, NULL);
652 }
653 
zswap_zpool_param_set(const char * val,const struct kernel_param * kp)654 static int zswap_zpool_param_set(const char *val,
655 				 const struct kernel_param *kp)
656 {
657 	return __zswap_param_set(val, kp, NULL, zswap_compressor);
658 }
659 
zswap_enabled_param_set(const char * val,const struct kernel_param * kp)660 static int zswap_enabled_param_set(const char *val,
661 				   const struct kernel_param *kp)
662 {
663 	int ret = -ENODEV;
664 
665 	/* if this is load-time (pre-init) param setting, only set param. */
666 	if (system_state != SYSTEM_RUNNING)
667 		return param_set_bool(val, kp);
668 
669 	mutex_lock(&zswap_init_lock);
670 	switch (zswap_init_state) {
671 	case ZSWAP_UNINIT:
672 		if (zswap_setup())
673 			break;
674 		fallthrough;
675 	case ZSWAP_INIT_SUCCEED:
676 		if (!zswap_has_pool)
677 			pr_err("can't enable, no pool configured\n");
678 		else
679 			ret = param_set_bool(val, kp);
680 		break;
681 	case ZSWAP_INIT_FAILED:
682 		pr_err("can't enable, initialization failed\n");
683 	}
684 	mutex_unlock(&zswap_init_lock);
685 
686 	return ret;
687 }
688 
689 /*********************************
690 * lru functions
691 **********************************/
692 
693 /* should be called under RCU */
694 #ifdef CONFIG_MEMCG
mem_cgroup_from_entry(struct zswap_entry * entry)695 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
696 {
697 	return entry->objcg ? obj_cgroup_memcg(entry->objcg) : NULL;
698 }
699 #else
mem_cgroup_from_entry(struct zswap_entry * entry)700 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
701 {
702 	return NULL;
703 }
704 #endif
705 
entry_to_nid(struct zswap_entry * entry)706 static inline int entry_to_nid(struct zswap_entry *entry)
707 {
708 	return page_to_nid(virt_to_page(entry));
709 }
710 
zswap_lru_add(struct list_lru * list_lru,struct zswap_entry * entry)711 static void zswap_lru_add(struct list_lru *list_lru, struct zswap_entry *entry)
712 {
713 	atomic_long_t *nr_zswap_protected;
714 	unsigned long lru_size, old, new;
715 	int nid = entry_to_nid(entry);
716 	struct mem_cgroup *memcg;
717 	struct lruvec *lruvec;
718 
719 	/*
720 	 * Note that it is safe to use rcu_read_lock() here, even in the face of
721 	 * concurrent memcg offlining. Thanks to the memcg->kmemcg_id indirection
722 	 * used in list_lru lookup, only two scenarios are possible:
723 	 *
724 	 * 1. list_lru_add() is called before memcg->kmemcg_id is updated. The
725 	 *    new entry will be reparented to memcg's parent's list_lru.
726 	 * 2. list_lru_add() is called after memcg->kmemcg_id is updated. The
727 	 *    new entry will be added directly to memcg's parent's list_lru.
728 	 *
729 	 * Similar reasoning holds for list_lru_del().
730 	 */
731 	rcu_read_lock();
732 	memcg = mem_cgroup_from_entry(entry);
733 	/* will always succeed */
734 	list_lru_add(list_lru, &entry->lru, nid, memcg);
735 
736 	/* Update the protection area */
737 	lru_size = list_lru_count_one(list_lru, nid, memcg);
738 	lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
739 	nr_zswap_protected = &lruvec->zswap_lruvec_state.nr_zswap_protected;
740 	old = atomic_long_inc_return(nr_zswap_protected);
741 	/*
742 	 * Decay to avoid overflow and adapt to changing workloads.
743 	 * This is based on LRU reclaim cost decaying heuristics.
744 	 */
745 	do {
746 		new = old > lru_size / 4 ? old / 2 : old;
747 	} while (!atomic_long_try_cmpxchg(nr_zswap_protected, &old, new));
748 	rcu_read_unlock();
749 }
750 
zswap_lru_del(struct list_lru * list_lru,struct zswap_entry * entry)751 static void zswap_lru_del(struct list_lru *list_lru, struct zswap_entry *entry)
752 {
753 	int nid = entry_to_nid(entry);
754 	struct mem_cgroup *memcg;
755 
756 	rcu_read_lock();
757 	memcg = mem_cgroup_from_entry(entry);
758 	/* will always succeed */
759 	list_lru_del(list_lru, &entry->lru, nid, memcg);
760 	rcu_read_unlock();
761 }
762 
zswap_lruvec_state_init(struct lruvec * lruvec)763 void zswap_lruvec_state_init(struct lruvec *lruvec)
764 {
765 	atomic_long_set(&lruvec->zswap_lruvec_state.nr_zswap_protected, 0);
766 }
767 
zswap_folio_swapin(struct folio * folio)768 void zswap_folio_swapin(struct folio *folio)
769 {
770 	struct lruvec *lruvec;
771 
772 	if (folio) {
773 		lruvec = folio_lruvec(folio);
774 		atomic_long_inc(&lruvec->zswap_lruvec_state.nr_zswap_protected);
775 	}
776 }
777 
zswap_memcg_offline_cleanup(struct mem_cgroup * memcg)778 void zswap_memcg_offline_cleanup(struct mem_cgroup *memcg)
779 {
780 	/* lock out zswap shrinker walking memcg tree */
781 	spin_lock(&zswap_shrink_lock);
782 	if (zswap_next_shrink == memcg)
783 		zswap_next_shrink = mem_cgroup_iter(NULL, zswap_next_shrink, NULL);
784 	spin_unlock(&zswap_shrink_lock);
785 }
786 
787 /*********************************
788 * zswap entry functions
789 **********************************/
790 static struct kmem_cache *zswap_entry_cache;
791 
zswap_entry_cache_alloc(gfp_t gfp,int nid)792 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp, int nid)
793 {
794 	struct zswap_entry *entry;
795 	entry = kmem_cache_alloc_node(zswap_entry_cache, gfp, nid);
796 	if (!entry)
797 		return NULL;
798 	return entry;
799 }
800 
zswap_entry_cache_free(struct zswap_entry * entry)801 static void zswap_entry_cache_free(struct zswap_entry *entry)
802 {
803 	kmem_cache_free(zswap_entry_cache, entry);
804 }
805 
zswap_find_zpool(struct zswap_entry * entry)806 static struct zpool *zswap_find_zpool(struct zswap_entry *entry)
807 {
808 	return entry->pool->zpools[hash_ptr(entry, ilog2(ZSWAP_NR_ZPOOLS))];
809 }
810 
811 /*
812  * Carries out the common pattern of freeing and entry's zpool allocation,
813  * freeing the entry itself, and decrementing the number of stored pages.
814  */
zswap_entry_free(struct zswap_entry * entry)815 static void zswap_entry_free(struct zswap_entry *entry)
816 {
817 	if (!entry->length)
818 		atomic_dec(&zswap_same_filled_pages);
819 	else {
820 		zswap_lru_del(&zswap_list_lru, entry);
821 		zpool_free(zswap_find_zpool(entry), entry->handle);
822 		zswap_pool_put(entry->pool);
823 	}
824 	if (entry->objcg) {
825 		obj_cgroup_uncharge_zswap(entry->objcg, entry->length);
826 		obj_cgroup_put(entry->objcg);
827 	}
828 	zswap_entry_cache_free(entry);
829 	atomic_dec(&zswap_stored_pages);
830 }
831 
832 /*********************************
833 * compressed storage functions
834 **********************************/
zswap_cpu_comp_prepare(unsigned int cpu,struct hlist_node * node)835 static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node)
836 {
837 	struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
838 	struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
839 	struct crypto_acomp *acomp;
840 	struct acomp_req *req;
841 	int ret;
842 
843 	mutex_init(&acomp_ctx->mutex);
844 
845 	acomp_ctx->buffer = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
846 	if (!acomp_ctx->buffer)
847 		return -ENOMEM;
848 
849 	acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu));
850 	if (IS_ERR(acomp)) {
851 		pr_err("could not alloc crypto acomp %s : %ld\n",
852 				pool->tfm_name, PTR_ERR(acomp));
853 		ret = PTR_ERR(acomp);
854 		goto acomp_fail;
855 	}
856 	acomp_ctx->acomp = acomp;
857 	acomp_ctx->is_sleepable = acomp_is_async(acomp);
858 
859 	req = acomp_request_alloc(acomp_ctx->acomp);
860 	if (!req) {
861 		pr_err("could not alloc crypto acomp_request %s\n",
862 		       pool->tfm_name);
863 		ret = -ENOMEM;
864 		goto req_fail;
865 	}
866 	acomp_ctx->req = req;
867 
868 	crypto_init_wait(&acomp_ctx->wait);
869 	/*
870 	 * if the backend of acomp is async zip, crypto_req_done() will wakeup
871 	 * crypto_wait_req(); if the backend of acomp is scomp, the callback
872 	 * won't be called, crypto_wait_req() will return without blocking.
873 	 */
874 	acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
875 				   crypto_req_done, &acomp_ctx->wait);
876 
877 	return 0;
878 
879 req_fail:
880 	crypto_free_acomp(acomp_ctx->acomp);
881 acomp_fail:
882 	kfree(acomp_ctx->buffer);
883 	return ret;
884 }
885 
zswap_cpu_comp_dead(unsigned int cpu,struct hlist_node * node)886 static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node)
887 {
888 	struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
889 	struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
890 
891 	if (!IS_ERR_OR_NULL(acomp_ctx)) {
892 		if (!IS_ERR_OR_NULL(acomp_ctx->req))
893 			acomp_request_free(acomp_ctx->req);
894 		if (!IS_ERR_OR_NULL(acomp_ctx->acomp))
895 			crypto_free_acomp(acomp_ctx->acomp);
896 		kfree(acomp_ctx->buffer);
897 	}
898 
899 	return 0;
900 }
901 
zswap_compress(struct folio * folio,struct zswap_entry * entry)902 static bool zswap_compress(struct folio *folio, struct zswap_entry *entry)
903 {
904 	struct crypto_acomp_ctx *acomp_ctx;
905 	struct scatterlist input, output;
906 	int comp_ret = 0, alloc_ret = 0;
907 	unsigned int dlen = PAGE_SIZE;
908 	unsigned long handle;
909 	struct zpool *zpool;
910 	char *buf;
911 	gfp_t gfp;
912 	u8 *dst;
913 
914 	acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
915 
916 	mutex_lock(&acomp_ctx->mutex);
917 
918 	dst = acomp_ctx->buffer;
919 	sg_init_table(&input, 1);
920 	sg_set_page(&input, &folio->page, PAGE_SIZE, 0);
921 
922 	/*
923 	 * We need PAGE_SIZE * 2 here since there maybe over-compression case,
924 	 * and hardware-accelerators may won't check the dst buffer size, so
925 	 * giving the dst buffer with enough length to avoid buffer overflow.
926 	 */
927 	sg_init_one(&output, dst, PAGE_SIZE * 2);
928 	acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen);
929 
930 	/*
931 	 * it maybe looks a little bit silly that we send an asynchronous request,
932 	 * then wait for its completion synchronously. This makes the process look
933 	 * synchronous in fact.
934 	 * Theoretically, acomp supports users send multiple acomp requests in one
935 	 * acomp instance, then get those requests done simultaneously. but in this
936 	 * case, zswap actually does store and load page by page, there is no
937 	 * existing method to send the second page before the first page is done
938 	 * in one thread doing zwap.
939 	 * but in different threads running on different cpu, we have different
940 	 * acomp instance, so multiple threads can do (de)compression in parallel.
941 	 */
942 	comp_ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait);
943 	dlen = acomp_ctx->req->dlen;
944 	if (comp_ret)
945 		goto unlock;
946 
947 	zpool = zswap_find_zpool(entry);
948 	gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
949 	if (zpool_malloc_support_movable(zpool))
950 		gfp |= __GFP_HIGHMEM | __GFP_MOVABLE;
951 	alloc_ret = zpool_malloc(zpool, dlen, gfp, &handle);
952 	if (alloc_ret)
953 		goto unlock;
954 
955 	buf = zpool_map_handle(zpool, handle, ZPOOL_MM_WO);
956 	memcpy(buf, dst, dlen);
957 	zpool_unmap_handle(zpool, handle);
958 
959 	entry->handle = handle;
960 	entry->length = dlen;
961 
962 unlock:
963 	if (comp_ret == -ENOSPC || alloc_ret == -ENOSPC)
964 		zswap_reject_compress_poor++;
965 	else if (comp_ret)
966 		zswap_reject_compress_fail++;
967 	else if (alloc_ret)
968 		zswap_reject_alloc_fail++;
969 
970 	mutex_unlock(&acomp_ctx->mutex);
971 	return comp_ret == 0 && alloc_ret == 0;
972 }
973 
zswap_decompress(struct zswap_entry * entry,struct page * page)974 static void zswap_decompress(struct zswap_entry *entry, struct page *page)
975 {
976 	struct zpool *zpool = zswap_find_zpool(entry);
977 	struct scatterlist input, output;
978 	struct crypto_acomp_ctx *acomp_ctx;
979 	u8 *src;
980 
981 	acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
982 	mutex_lock(&acomp_ctx->mutex);
983 
984 	src = zpool_map_handle(zpool, entry->handle, ZPOOL_MM_RO);
985 	/*
986 	 * If zpool_map_handle is atomic, we cannot reliably utilize its mapped buffer
987 	 * to do crypto_acomp_decompress() which might sleep. In such cases, we must
988 	 * resort to copying the buffer to a temporary one.
989 	 * Meanwhile, zpool_map_handle() might return a non-linearly mapped buffer,
990 	 * such as a kmap address of high memory or even ever a vmap address.
991 	 * However, sg_init_one is only equipped to handle linearly mapped low memory.
992 	 * In such cases, we also must copy the buffer to a temporary and lowmem one.
993 	 */
994 	if ((acomp_ctx->is_sleepable && !zpool_can_sleep_mapped(zpool)) ||
995 	    !virt_addr_valid(src)) {
996 		memcpy(acomp_ctx->buffer, src, entry->length);
997 		src = acomp_ctx->buffer;
998 		zpool_unmap_handle(zpool, entry->handle);
999 	}
1000 
1001 	sg_init_one(&input, src, entry->length);
1002 	sg_init_table(&output, 1);
1003 	sg_set_page(&output, page, PAGE_SIZE, 0);
1004 	acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, PAGE_SIZE);
1005 	BUG_ON(crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait));
1006 	BUG_ON(acomp_ctx->req->dlen != PAGE_SIZE);
1007 	mutex_unlock(&acomp_ctx->mutex);
1008 
1009 	if (src != acomp_ctx->buffer)
1010 		zpool_unmap_handle(zpool, entry->handle);
1011 }
1012 
1013 /*********************************
1014 * writeback code
1015 **********************************/
1016 /*
1017  * Attempts to free an entry by adding a folio to the swap cache,
1018  * decompressing the entry data into the folio, and issuing a
1019  * bio write to write the folio back to the swap device.
1020  *
1021  * This can be thought of as a "resumed writeback" of the folio
1022  * to the swap device.  We are basically resuming the same swap
1023  * writeback path that was intercepted with the zswap_store()
1024  * in the first place.  After the folio has been decompressed into
1025  * the swap cache, the compressed version stored by zswap can be
1026  * freed.
1027  */
zswap_writeback_entry(struct zswap_entry * entry,swp_entry_t swpentry)1028 static int zswap_writeback_entry(struct zswap_entry *entry,
1029 				 swp_entry_t swpentry)
1030 {
1031 	struct xarray *tree;
1032 	pgoff_t offset = swp_offset(swpentry);
1033 	struct folio *folio;
1034 	struct mempolicy *mpol;
1035 	bool folio_was_allocated;
1036 	struct writeback_control wbc = {
1037 		.sync_mode = WB_SYNC_NONE,
1038 	};
1039 
1040 	/* try to allocate swap cache folio */
1041 	mpol = get_task_policy(current);
1042 	folio = __read_swap_cache_async(swpentry, GFP_KERNEL, mpol,
1043 				NO_INTERLEAVE_INDEX, &folio_was_allocated, true);
1044 	if (!folio)
1045 		return -ENOMEM;
1046 
1047 	/*
1048 	 * Found an existing folio, we raced with swapin or concurrent
1049 	 * shrinker. We generally writeback cold folios from zswap, and
1050 	 * swapin means the folio just became hot, so skip this folio.
1051 	 * For unlikely concurrent shrinker case, it will be unlinked
1052 	 * and freed when invalidated by the concurrent shrinker anyway.
1053 	 */
1054 	if (!folio_was_allocated) {
1055 		folio_put(folio);
1056 		return -EEXIST;
1057 	}
1058 
1059 	/*
1060 	 * folio is locked, and the swapcache is now secured against
1061 	 * concurrent swapping to and from the slot, and concurrent
1062 	 * swapoff so we can safely dereference the zswap tree here.
1063 	 * Verify that the swap entry hasn't been invalidated and recycled
1064 	 * behind our backs, to avoid overwriting a new swap folio with
1065 	 * old compressed data. Only when this is successful can the entry
1066 	 * be dereferenced.
1067 	 */
1068 	tree = swap_zswap_tree(swpentry);
1069 	if (entry != xa_cmpxchg(tree, offset, entry, NULL, GFP_KERNEL)) {
1070 		delete_from_swap_cache(folio);
1071 		folio_unlock(folio);
1072 		folio_put(folio);
1073 		return -ENOMEM;
1074 	}
1075 
1076 	zswap_decompress(entry, &folio->page);
1077 
1078 	count_vm_event(ZSWPWB);
1079 	if (entry->objcg)
1080 		count_objcg_event(entry->objcg, ZSWPWB);
1081 
1082 	zswap_entry_free(entry);
1083 
1084 	/* folio is up to date */
1085 	folio_mark_uptodate(folio);
1086 
1087 	/* move it to the tail of the inactive list after end_writeback */
1088 	folio_set_reclaim(folio);
1089 
1090 	/* start writeback */
1091 	__swap_writepage(folio, &wbc);
1092 	folio_put(folio);
1093 
1094 	return 0;
1095 }
1096 
1097 /*********************************
1098 * shrinker functions
1099 **********************************/
shrink_memcg_cb(struct list_head * item,struct list_lru_one * l,spinlock_t * lock,void * arg)1100 static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l,
1101 				       spinlock_t *lock, void *arg)
1102 {
1103 	struct zswap_entry *entry = container_of(item, struct zswap_entry, lru);
1104 	bool *encountered_page_in_swapcache = (bool *)arg;
1105 	swp_entry_t swpentry;
1106 	enum lru_status ret = LRU_REMOVED_RETRY;
1107 	int writeback_result;
1108 
1109 	/*
1110 	 * As soon as we drop the LRU lock, the entry can be freed by
1111 	 * a concurrent invalidation. This means the following:
1112 	 *
1113 	 * 1. We extract the swp_entry_t to the stack, allowing
1114 	 *    zswap_writeback_entry() to pin the swap entry and
1115 	 *    then validate the zwap entry against that swap entry's
1116 	 *    tree using pointer value comparison. Only when that
1117 	 *    is successful can the entry be dereferenced.
1118 	 *
1119 	 * 2. Usually, objects are taken off the LRU for reclaim. In
1120 	 *    this case this isn't possible, because if reclaim fails
1121 	 *    for whatever reason, we have no means of knowing if the
1122 	 *    entry is alive to put it back on the LRU.
1123 	 *
1124 	 *    So rotate it before dropping the lock. If the entry is
1125 	 *    written back or invalidated, the free path will unlink
1126 	 *    it. For failures, rotation is the right thing as well.
1127 	 *
1128 	 *    Temporary failures, where the same entry should be tried
1129 	 *    again immediately, almost never happen for this shrinker.
1130 	 *    We don't do any trylocking; -ENOMEM comes closest,
1131 	 *    but that's extremely rare and doesn't happen spuriously
1132 	 *    either. Don't bother distinguishing this case.
1133 	 */
1134 	list_move_tail(item, &l->list);
1135 
1136 	/*
1137 	 * Once the lru lock is dropped, the entry might get freed. The
1138 	 * swpentry is copied to the stack, and entry isn't deref'd again
1139 	 * until the entry is verified to still be alive in the tree.
1140 	 */
1141 	swpentry = entry->swpentry;
1142 
1143 	/*
1144 	 * It's safe to drop the lock here because we return either
1145 	 * LRU_REMOVED_RETRY or LRU_RETRY.
1146 	 */
1147 	spin_unlock(lock);
1148 
1149 	writeback_result = zswap_writeback_entry(entry, swpentry);
1150 
1151 	if (writeback_result) {
1152 		zswap_reject_reclaim_fail++;
1153 		ret = LRU_RETRY;
1154 
1155 		/*
1156 		 * Encountering a page already in swap cache is a sign that we are shrinking
1157 		 * into the warmer region. We should terminate shrinking (if we're in the dynamic
1158 		 * shrinker context).
1159 		 */
1160 		if (writeback_result == -EEXIST && encountered_page_in_swapcache) {
1161 			ret = LRU_STOP;
1162 			*encountered_page_in_swapcache = true;
1163 		}
1164 	} else {
1165 		zswap_written_back_pages++;
1166 	}
1167 
1168 	spin_lock(lock);
1169 	return ret;
1170 }
1171 
zswap_shrinker_scan(struct shrinker * shrinker,struct shrink_control * sc)1172 static unsigned long zswap_shrinker_scan(struct shrinker *shrinker,
1173 		struct shrink_control *sc)
1174 {
1175 	struct lruvec *lruvec = mem_cgroup_lruvec(sc->memcg, NODE_DATA(sc->nid));
1176 	unsigned long shrink_ret, nr_protected, lru_size;
1177 	bool encountered_page_in_swapcache = false;
1178 
1179 	if (!zswap_shrinker_enabled ||
1180 			!mem_cgroup_zswap_writeback_enabled(sc->memcg)) {
1181 		sc->nr_scanned = 0;
1182 		return SHRINK_STOP;
1183 	}
1184 
1185 	nr_protected =
1186 		atomic_long_read(&lruvec->zswap_lruvec_state.nr_zswap_protected);
1187 	lru_size = list_lru_shrink_count(&zswap_list_lru, sc);
1188 
1189 	/*
1190 	 * Abort if we are shrinking into the protected region.
1191 	 *
1192 	 * This short-circuiting is necessary because if we have too many multiple
1193 	 * concurrent reclaimers getting the freeable zswap object counts at the
1194 	 * same time (before any of them made reasonable progress), the total
1195 	 * number of reclaimed objects might be more than the number of unprotected
1196 	 * objects (i.e the reclaimers will reclaim into the protected area of the
1197 	 * zswap LRU).
1198 	 */
1199 	if (nr_protected >= lru_size - sc->nr_to_scan) {
1200 		sc->nr_scanned = 0;
1201 		return SHRINK_STOP;
1202 	}
1203 
1204 	shrink_ret = list_lru_shrink_walk(&zswap_list_lru, sc, &shrink_memcg_cb,
1205 		&encountered_page_in_swapcache);
1206 
1207 	if (encountered_page_in_swapcache)
1208 		return SHRINK_STOP;
1209 
1210 	return shrink_ret ? shrink_ret : SHRINK_STOP;
1211 }
1212 
zswap_shrinker_count(struct shrinker * shrinker,struct shrink_control * sc)1213 static unsigned long zswap_shrinker_count(struct shrinker *shrinker,
1214 		struct shrink_control *sc)
1215 {
1216 	struct mem_cgroup *memcg = sc->memcg;
1217 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(sc->nid));
1218 	unsigned long nr_backing, nr_stored, nr_freeable, nr_protected;
1219 
1220 	if (!zswap_shrinker_enabled || !mem_cgroup_zswap_writeback_enabled(memcg))
1221 		return 0;
1222 
1223 	/*
1224 	 * The shrinker resumes swap writeback, which will enter block
1225 	 * and may enter fs. XXX: Harmonize with vmscan.c __GFP_FS
1226 	 * rules (may_enter_fs()), which apply on a per-folio basis.
1227 	 */
1228 	if (!gfp_has_io_fs(sc->gfp_mask))
1229 		return 0;
1230 
1231 	/*
1232 	 * For memcg, use the cgroup-wide ZSWAP stats since we don't
1233 	 * have them per-node and thus per-lruvec. Careful if memcg is
1234 	 * runtime-disabled: we can get sc->memcg == NULL, which is ok
1235 	 * for the lruvec, but not for memcg_page_state().
1236 	 *
1237 	 * Without memcg, use the zswap pool-wide metrics.
1238 	 */
1239 	if (!mem_cgroup_disabled()) {
1240 		mem_cgroup_flush_stats(memcg);
1241 		nr_backing = memcg_page_state(memcg, MEMCG_ZSWAP_B) >> PAGE_SHIFT;
1242 		nr_stored = memcg_page_state(memcg, MEMCG_ZSWAPPED);
1243 	} else {
1244 		nr_backing = zswap_total_pages();
1245 		nr_stored = atomic_read(&zswap_stored_pages);
1246 	}
1247 
1248 	if (!nr_stored)
1249 		return 0;
1250 
1251 	nr_protected =
1252 		atomic_long_read(&lruvec->zswap_lruvec_state.nr_zswap_protected);
1253 	nr_freeable = list_lru_shrink_count(&zswap_list_lru, sc);
1254 	/*
1255 	 * Subtract the lru size by an estimate of the number of pages
1256 	 * that should be protected.
1257 	 */
1258 	nr_freeable = nr_freeable > nr_protected ? nr_freeable - nr_protected : 0;
1259 
1260 	/*
1261 	 * Scale the number of freeable pages by the memory saving factor.
1262 	 * This ensures that the better zswap compresses memory, the fewer
1263 	 * pages we will evict to swap (as it will otherwise incur IO for
1264 	 * relatively small memory saving).
1265 	 *
1266 	 * The memory saving factor calculated here takes same-filled pages into
1267 	 * account, but those are not freeable since they almost occupy no
1268 	 * space. Hence, we may scale nr_freeable down a little bit more than we
1269 	 * should if we have a lot of same-filled pages.
1270 	 */
1271 	return mult_frac(nr_freeable, nr_backing, nr_stored);
1272 }
1273 
zswap_alloc_shrinker(void)1274 static struct shrinker *zswap_alloc_shrinker(void)
1275 {
1276 	struct shrinker *shrinker;
1277 
1278 	shrinker =
1279 		shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, "mm-zswap");
1280 	if (!shrinker)
1281 		return NULL;
1282 
1283 	shrinker->scan_objects = zswap_shrinker_scan;
1284 	shrinker->count_objects = zswap_shrinker_count;
1285 	shrinker->batch = 0;
1286 	shrinker->seeks = DEFAULT_SEEKS;
1287 	return shrinker;
1288 }
1289 
shrink_memcg(struct mem_cgroup * memcg)1290 static int shrink_memcg(struct mem_cgroup *memcg)
1291 {
1292 	int nid, shrunk = 0;
1293 
1294 	if (!mem_cgroup_zswap_writeback_enabled(memcg))
1295 		return -EINVAL;
1296 
1297 	/*
1298 	 * Skip zombies because their LRUs are reparented and we would be
1299 	 * reclaiming from the parent instead of the dead memcg.
1300 	 */
1301 	if (memcg && !mem_cgroup_online(memcg))
1302 		return -ENOENT;
1303 
1304 	for_each_node_state(nid, N_NORMAL_MEMORY) {
1305 		unsigned long nr_to_walk = 1;
1306 
1307 		shrunk += list_lru_walk_one(&zswap_list_lru, nid, memcg,
1308 					    &shrink_memcg_cb, NULL, &nr_to_walk);
1309 	}
1310 	return shrunk ? 0 : -EAGAIN;
1311 }
1312 
shrink_worker(struct work_struct * w)1313 static void shrink_worker(struct work_struct *w)
1314 {
1315 	struct mem_cgroup *memcg;
1316 	int ret, failures = 0;
1317 	unsigned long thr;
1318 
1319 	/* Reclaim down to the accept threshold */
1320 	thr = zswap_accept_thr_pages();
1321 
1322 	/* global reclaim will select cgroup in a round-robin fashion. */
1323 	do {
1324 		spin_lock(&zswap_shrink_lock);
1325 		zswap_next_shrink = mem_cgroup_iter(NULL, zswap_next_shrink, NULL);
1326 		memcg = zswap_next_shrink;
1327 
1328 		/*
1329 		 * We need to retry if we have gone through a full round trip, or if we
1330 		 * got an offline memcg (or else we risk undoing the effect of the
1331 		 * zswap memcg offlining cleanup callback). This is not catastrophic
1332 		 * per se, but it will keep the now offlined memcg hostage for a while.
1333 		 *
1334 		 * Note that if we got an online memcg, we will keep the extra
1335 		 * reference in case the original reference obtained by mem_cgroup_iter
1336 		 * is dropped by the zswap memcg offlining callback, ensuring that the
1337 		 * memcg is not killed when we are reclaiming.
1338 		 */
1339 		if (!memcg) {
1340 			spin_unlock(&zswap_shrink_lock);
1341 			if (++failures == MAX_RECLAIM_RETRIES)
1342 				break;
1343 
1344 			goto resched;
1345 		}
1346 
1347 		if (!mem_cgroup_tryget_online(memcg)) {
1348 			/* drop the reference from mem_cgroup_iter() */
1349 			mem_cgroup_iter_break(NULL, memcg);
1350 			zswap_next_shrink = NULL;
1351 			spin_unlock(&zswap_shrink_lock);
1352 
1353 			if (++failures == MAX_RECLAIM_RETRIES)
1354 				break;
1355 
1356 			goto resched;
1357 		}
1358 		spin_unlock(&zswap_shrink_lock);
1359 
1360 		ret = shrink_memcg(memcg);
1361 		/* drop the extra reference */
1362 		mem_cgroup_put(memcg);
1363 
1364 		if (ret == -EINVAL)
1365 			break;
1366 		if (ret && ++failures == MAX_RECLAIM_RETRIES)
1367 			break;
1368 resched:
1369 		cond_resched();
1370 	} while (zswap_total_pages() > thr);
1371 }
1372 
1373 /*********************************
1374 * same-filled functions
1375 **********************************/
zswap_is_folio_same_filled(struct folio * folio,unsigned long * value)1376 static bool zswap_is_folio_same_filled(struct folio *folio, unsigned long *value)
1377 {
1378 	unsigned long *page;
1379 	unsigned long val;
1380 	unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1;
1381 	bool ret = false;
1382 
1383 	page = kmap_local_folio(folio, 0);
1384 	val = page[0];
1385 
1386 	if (val != page[last_pos])
1387 		goto out;
1388 
1389 	for (pos = 1; pos < last_pos; pos++) {
1390 		if (val != page[pos])
1391 			goto out;
1392 	}
1393 
1394 	*value = val;
1395 	ret = true;
1396 out:
1397 	kunmap_local(page);
1398 	return ret;
1399 }
1400 
zswap_fill_page(void * ptr,unsigned long value)1401 static void zswap_fill_page(void *ptr, unsigned long value)
1402 {
1403 	unsigned long *page;
1404 
1405 	page = (unsigned long *)ptr;
1406 	memset_l(page, value, PAGE_SIZE / sizeof(unsigned long));
1407 }
1408 
1409 /*********************************
1410 * main API
1411 **********************************/
zswap_store(struct folio * folio)1412 bool zswap_store(struct folio *folio)
1413 {
1414 	swp_entry_t swp = folio->swap;
1415 	pgoff_t offset = swp_offset(swp);
1416 	struct xarray *tree = swap_zswap_tree(swp);
1417 	struct zswap_entry *entry, *old;
1418 	struct obj_cgroup *objcg = NULL;
1419 	struct mem_cgroup *memcg = NULL;
1420 	unsigned long value;
1421 
1422 	VM_WARN_ON_ONCE(!folio_test_locked(folio));
1423 	VM_WARN_ON_ONCE(!folio_test_swapcache(folio));
1424 
1425 	/* Large folios aren't supported */
1426 	if (folio_test_large(folio))
1427 		return false;
1428 
1429 	if (!zswap_enabled)
1430 		goto check_old;
1431 
1432 	/* Check cgroup limits */
1433 	objcg = get_obj_cgroup_from_folio(folio);
1434 	if (objcg && !obj_cgroup_may_zswap(objcg)) {
1435 		memcg = get_mem_cgroup_from_objcg(objcg);
1436 		if (shrink_memcg(memcg)) {
1437 			mem_cgroup_put(memcg);
1438 			goto reject;
1439 		}
1440 		mem_cgroup_put(memcg);
1441 	}
1442 
1443 	if (zswap_check_limits())
1444 		goto reject;
1445 
1446 	/* allocate entry */
1447 	entry = zswap_entry_cache_alloc(GFP_KERNEL, folio_nid(folio));
1448 	if (!entry) {
1449 		zswap_reject_kmemcache_fail++;
1450 		goto reject;
1451 	}
1452 
1453 	if (zswap_is_folio_same_filled(folio, &value)) {
1454 		entry->length = 0;
1455 		entry->value = value;
1456 		atomic_inc(&zswap_same_filled_pages);
1457 		goto store_entry;
1458 	}
1459 
1460 	/* if entry is successfully added, it keeps the reference */
1461 	entry->pool = zswap_pool_current_get();
1462 	if (!entry->pool)
1463 		goto freepage;
1464 
1465 	if (objcg) {
1466 		memcg = get_mem_cgroup_from_objcg(objcg);
1467 		if (memcg_list_lru_alloc(memcg, &zswap_list_lru, GFP_KERNEL)) {
1468 			mem_cgroup_put(memcg);
1469 			goto put_pool;
1470 		}
1471 		mem_cgroup_put(memcg);
1472 	}
1473 
1474 	if (!zswap_compress(folio, entry))
1475 		goto put_pool;
1476 
1477 store_entry:
1478 	entry->swpentry = swp;
1479 	entry->objcg = objcg;
1480 
1481 	old = xa_store(tree, offset, entry, GFP_KERNEL);
1482 	if (xa_is_err(old)) {
1483 		int err = xa_err(old);
1484 
1485 		WARN_ONCE(err != -ENOMEM, "unexpected xarray error: %d\n", err);
1486 		zswap_reject_alloc_fail++;
1487 		goto store_failed;
1488 	}
1489 
1490 	/*
1491 	 * We may have had an existing entry that became stale when
1492 	 * the folio was redirtied and now the new version is being
1493 	 * swapped out. Get rid of the old.
1494 	 */
1495 	if (old)
1496 		zswap_entry_free(old);
1497 
1498 	if (objcg) {
1499 		obj_cgroup_charge_zswap(objcg, entry->length);
1500 		count_objcg_event(objcg, ZSWPOUT);
1501 	}
1502 
1503 	/*
1504 	 * We finish initializing the entry while it's already in xarray.
1505 	 * This is safe because:
1506 	 *
1507 	 * 1. Concurrent stores and invalidations are excluded by folio lock.
1508 	 *
1509 	 * 2. Writeback is excluded by the entry not being on the LRU yet.
1510 	 *    The publishing order matters to prevent writeback from seeing
1511 	 *    an incoherent entry.
1512 	 */
1513 	if (entry->length) {
1514 		INIT_LIST_HEAD(&entry->lru);
1515 		zswap_lru_add(&zswap_list_lru, entry);
1516 	}
1517 
1518 	/* update stats */
1519 	atomic_inc(&zswap_stored_pages);
1520 	count_vm_event(ZSWPOUT);
1521 
1522 	return true;
1523 
1524 store_failed:
1525 	if (!entry->length)
1526 		atomic_dec(&zswap_same_filled_pages);
1527 	else {
1528 		zpool_free(zswap_find_zpool(entry), entry->handle);
1529 put_pool:
1530 		zswap_pool_put(entry->pool);
1531 	}
1532 freepage:
1533 	zswap_entry_cache_free(entry);
1534 reject:
1535 	obj_cgroup_put(objcg);
1536 	if (zswap_pool_reached_full)
1537 		queue_work(shrink_wq, &zswap_shrink_work);
1538 check_old:
1539 	/*
1540 	 * If the zswap store fails or zswap is disabled, we must invalidate the
1541 	 * possibly stale entry which was previously stored at this offset.
1542 	 * Otherwise, writeback could overwrite the new data in the swapfile.
1543 	 */
1544 	entry = xa_erase(tree, offset);
1545 	if (entry)
1546 		zswap_entry_free(entry);
1547 	return false;
1548 }
1549 
zswap_load(struct folio * folio)1550 bool zswap_load(struct folio *folio)
1551 {
1552 	swp_entry_t swp = folio->swap;
1553 	pgoff_t offset = swp_offset(swp);
1554 	struct page *page = &folio->page;
1555 	bool swapcache = folio_test_swapcache(folio);
1556 	struct xarray *tree = swap_zswap_tree(swp);
1557 	struct zswap_entry *entry;
1558 	u8 *dst;
1559 
1560 	VM_WARN_ON_ONCE(!folio_test_locked(folio));
1561 
1562 	/*
1563 	 * When reading into the swapcache, invalidate our entry. The
1564 	 * swapcache can be the authoritative owner of the page and
1565 	 * its mappings, and the pressure that results from having two
1566 	 * in-memory copies outweighs any benefits of caching the
1567 	 * compression work.
1568 	 *
1569 	 * (Most swapins go through the swapcache. The notable
1570 	 * exception is the singleton fault on SWP_SYNCHRONOUS_IO
1571 	 * files, which reads into a private page and may free it if
1572 	 * the fault fails. We remain the primary owner of the entry.)
1573 	 */
1574 	if (swapcache)
1575 		entry = xa_erase(tree, offset);
1576 	else
1577 		entry = xa_load(tree, offset);
1578 
1579 	if (!entry)
1580 		return false;
1581 
1582 	if (entry->length)
1583 		zswap_decompress(entry, page);
1584 	else {
1585 		dst = kmap_local_page(page);
1586 		zswap_fill_page(dst, entry->value);
1587 		kunmap_local(dst);
1588 	}
1589 
1590 	count_vm_event(ZSWPIN);
1591 	if (entry->objcg)
1592 		count_objcg_event(entry->objcg, ZSWPIN);
1593 
1594 	if (swapcache) {
1595 		zswap_entry_free(entry);
1596 		folio_mark_dirty(folio);
1597 	}
1598 
1599 	return true;
1600 }
1601 
zswap_invalidate(swp_entry_t swp)1602 void zswap_invalidate(swp_entry_t swp)
1603 {
1604 	pgoff_t offset = swp_offset(swp);
1605 	struct xarray *tree = swap_zswap_tree(swp);
1606 	struct zswap_entry *entry;
1607 
1608 	entry = xa_erase(tree, offset);
1609 	if (entry)
1610 		zswap_entry_free(entry);
1611 }
1612 
zswap_swapon(int type,unsigned long nr_pages)1613 int zswap_swapon(int type, unsigned long nr_pages)
1614 {
1615 	struct xarray *trees, *tree;
1616 	unsigned int nr, i;
1617 
1618 	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
1619 	trees = kvcalloc(nr, sizeof(*tree), GFP_KERNEL);
1620 	if (!trees) {
1621 		pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1622 		return -ENOMEM;
1623 	}
1624 
1625 	for (i = 0; i < nr; i++)
1626 		xa_init(trees + i);
1627 
1628 	nr_zswap_trees[type] = nr;
1629 	zswap_trees[type] = trees;
1630 	return 0;
1631 }
1632 
zswap_swapoff(int type)1633 void zswap_swapoff(int type)
1634 {
1635 	struct xarray *trees = zswap_trees[type];
1636 	unsigned int i;
1637 
1638 	if (!trees)
1639 		return;
1640 
1641 	/* try_to_unuse() invalidated all the entries already */
1642 	for (i = 0; i < nr_zswap_trees[type]; i++)
1643 		WARN_ON_ONCE(!xa_empty(trees + i));
1644 
1645 	kvfree(trees);
1646 	nr_zswap_trees[type] = 0;
1647 	zswap_trees[type] = NULL;
1648 }
1649 
1650 /*********************************
1651 * debugfs functions
1652 **********************************/
1653 #ifdef CONFIG_DEBUG_FS
1654 #include <linux/debugfs.h>
1655 
1656 static struct dentry *zswap_debugfs_root;
1657 
debugfs_get_total_size(void * data,u64 * val)1658 static int debugfs_get_total_size(void *data, u64 *val)
1659 {
1660 	*val = zswap_total_pages() * PAGE_SIZE;
1661 	return 0;
1662 }
1663 DEFINE_DEBUGFS_ATTRIBUTE(total_size_fops, debugfs_get_total_size, NULL, "%llu\n");
1664 
zswap_debugfs_init(void)1665 static int zswap_debugfs_init(void)
1666 {
1667 	if (!debugfs_initialized())
1668 		return -ENODEV;
1669 
1670 	zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
1671 
1672 	debugfs_create_u64("pool_limit_hit", 0444,
1673 			   zswap_debugfs_root, &zswap_pool_limit_hit);
1674 	debugfs_create_u64("reject_reclaim_fail", 0444,
1675 			   zswap_debugfs_root, &zswap_reject_reclaim_fail);
1676 	debugfs_create_u64("reject_alloc_fail", 0444,
1677 			   zswap_debugfs_root, &zswap_reject_alloc_fail);
1678 	debugfs_create_u64("reject_kmemcache_fail", 0444,
1679 			   zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1680 	debugfs_create_u64("reject_compress_fail", 0444,
1681 			   zswap_debugfs_root, &zswap_reject_compress_fail);
1682 	debugfs_create_u64("reject_compress_poor", 0444,
1683 			   zswap_debugfs_root, &zswap_reject_compress_poor);
1684 	debugfs_create_u64("written_back_pages", 0444,
1685 			   zswap_debugfs_root, &zswap_written_back_pages);
1686 	debugfs_create_file("pool_total_size", 0444,
1687 			    zswap_debugfs_root, NULL, &total_size_fops);
1688 	debugfs_create_atomic_t("stored_pages", 0444,
1689 				zswap_debugfs_root, &zswap_stored_pages);
1690 	debugfs_create_atomic_t("same_filled_pages", 0444,
1691 				zswap_debugfs_root, &zswap_same_filled_pages);
1692 
1693 	return 0;
1694 }
1695 #else
zswap_debugfs_init(void)1696 static int zswap_debugfs_init(void)
1697 {
1698 	return 0;
1699 }
1700 #endif
1701 
1702 /*********************************
1703 * module init and exit
1704 **********************************/
zswap_setup(void)1705 static int zswap_setup(void)
1706 {
1707 	struct zswap_pool *pool;
1708 	int ret;
1709 
1710 	zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
1711 	if (!zswap_entry_cache) {
1712 		pr_err("entry cache creation failed\n");
1713 		goto cache_fail;
1714 	}
1715 
1716 	ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE,
1717 				      "mm/zswap_pool:prepare",
1718 				      zswap_cpu_comp_prepare,
1719 				      zswap_cpu_comp_dead);
1720 	if (ret)
1721 		goto hp_fail;
1722 
1723 	shrink_wq = alloc_workqueue("zswap-shrink",
1724 			WQ_UNBOUND|WQ_MEM_RECLAIM, 1);
1725 	if (!shrink_wq)
1726 		goto shrink_wq_fail;
1727 
1728 	zswap_shrinker = zswap_alloc_shrinker();
1729 	if (!zswap_shrinker)
1730 		goto shrinker_fail;
1731 	if (list_lru_init_memcg(&zswap_list_lru, zswap_shrinker))
1732 		goto lru_fail;
1733 	shrinker_register(zswap_shrinker);
1734 
1735 	INIT_WORK(&zswap_shrink_work, shrink_worker);
1736 
1737 	pool = __zswap_pool_create_fallback();
1738 	if (pool) {
1739 		pr_info("loaded using pool %s/%s\n", pool->tfm_name,
1740 			zpool_get_type(pool->zpools[0]));
1741 		list_add(&pool->list, &zswap_pools);
1742 		zswap_has_pool = true;
1743 	} else {
1744 		pr_err("pool creation failed\n");
1745 		zswap_enabled = false;
1746 	}
1747 
1748 	if (zswap_debugfs_init())
1749 		pr_warn("debugfs initialization failed\n");
1750 	zswap_init_state = ZSWAP_INIT_SUCCEED;
1751 	return 0;
1752 
1753 lru_fail:
1754 	shrinker_free(zswap_shrinker);
1755 shrinker_fail:
1756 	destroy_workqueue(shrink_wq);
1757 shrink_wq_fail:
1758 	cpuhp_remove_multi_state(CPUHP_MM_ZSWP_POOL_PREPARE);
1759 hp_fail:
1760 	kmem_cache_destroy(zswap_entry_cache);
1761 cache_fail:
1762 	/* if built-in, we aren't unloaded on failure; don't allow use */
1763 	zswap_init_state = ZSWAP_INIT_FAILED;
1764 	zswap_enabled = false;
1765 	return -ENOMEM;
1766 }
1767 
zswap_init(void)1768 static int __init zswap_init(void)
1769 {
1770 	if (!zswap_enabled)
1771 		return 0;
1772 	return zswap_setup();
1773 }
1774 /* must be late so crypto has time to come up */
1775 late_initcall(zswap_init);
1776 
1777 MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
1778 MODULE_DESCRIPTION("Compressed cache for swap pages");
1779