xref: /linux/net/xdp/xsk_queue.h (revision 48eb03dd)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* XDP user-space ring structure
3  * Copyright(c) 2018 Intel Corporation.
4  */
5 
6 #ifndef _LINUX_XSK_QUEUE_H
7 #define _LINUX_XSK_QUEUE_H
8 
9 #include <linux/types.h>
10 #include <linux/if_xdp.h>
11 #include <net/xdp_sock.h>
12 #include <net/xsk_buff_pool.h>
13 
14 #include "xsk.h"
15 
16 struct xdp_ring {
17 	u32 producer ____cacheline_aligned_in_smp;
18 	/* Hinder the adjacent cache prefetcher to prefetch the consumer
19 	 * pointer if the producer pointer is touched and vice versa.
20 	 */
21 	u32 pad1 ____cacheline_aligned_in_smp;
22 	u32 consumer ____cacheline_aligned_in_smp;
23 	u32 pad2 ____cacheline_aligned_in_smp;
24 	u32 flags;
25 	u32 pad3 ____cacheline_aligned_in_smp;
26 };
27 
28 /* Used for the RX and TX queues for packets */
29 struct xdp_rxtx_ring {
30 	struct xdp_ring ptrs;
31 	struct xdp_desc desc[] ____cacheline_aligned_in_smp;
32 };
33 
34 /* Used for the fill and completion queues for buffers */
35 struct xdp_umem_ring {
36 	struct xdp_ring ptrs;
37 	u64 desc[] ____cacheline_aligned_in_smp;
38 };
39 
40 struct xsk_queue {
41 	u32 ring_mask;
42 	u32 nentries;
43 	u32 cached_prod;
44 	u32 cached_cons;
45 	struct xdp_ring *ring;
46 	u64 invalid_descs;
47 	u64 queue_empty_descs;
48 	size_t ring_vmalloc_size;
49 };
50 
51 struct parsed_desc {
52 	u32 mb;
53 	u32 valid;
54 };
55 
56 /* The structure of the shared state of the rings are a simple
57  * circular buffer, as outlined in
58  * Documentation/core-api/circular-buffers.rst. For the Rx and
59  * completion ring, the kernel is the producer and user space is the
60  * consumer. For the Tx and fill rings, the kernel is the consumer and
61  * user space is the producer.
62  *
63  * producer                         consumer
64  *
65  * if (LOAD ->consumer) {  (A)      LOAD.acq ->producer  (C)
66  *    STORE $data                   LOAD $data
67  *    STORE.rel ->producer (B)      STORE.rel ->consumer (D)
68  * }
69  *
70  * (A) pairs with (D), and (B) pairs with (C).
71  *
72  * Starting with (B), it protects the data from being written after
73  * the producer pointer. If this barrier was missing, the consumer
74  * could observe the producer pointer being set and thus load the data
75  * before the producer has written the new data. The consumer would in
76  * this case load the old data.
77  *
78  * (C) protects the consumer from speculatively loading the data before
79  * the producer pointer actually has been read. If we do not have this
80  * barrier, some architectures could load old data as speculative loads
81  * are not discarded as the CPU does not know there is a dependency
82  * between ->producer and data.
83  *
84  * (A) is a control dependency that separates the load of ->consumer
85  * from the stores of $data. In case ->consumer indicates there is no
86  * room in the buffer to store $data we do not. The dependency will
87  * order both of the stores after the loads. So no barrier is needed.
88  *
89  * (D) protects the load of the data to be observed to happen after the
90  * store of the consumer pointer. If we did not have this memory
91  * barrier, the producer could observe the consumer pointer being set
92  * and overwrite the data with a new value before the consumer got the
93  * chance to read the old value. The consumer would thus miss reading
94  * the old entry and very likely read the new entry twice, once right
95  * now and again after circling through the ring.
96  */
97 
98 /* The operations on the rings are the following:
99  *
100  * producer                           consumer
101  *
102  * RESERVE entries                    PEEK in the ring for entries
103  * WRITE data into the ring           READ data from the ring
104  * SUBMIT entries                     RELEASE entries
105  *
106  * The producer reserves one or more entries in the ring. It can then
107  * fill in these entries and finally submit them so that they can be
108  * seen and read by the consumer.
109  *
110  * The consumer peeks into the ring to see if the producer has written
111  * any new entries. If so, the consumer can then read these entries
112  * and when it is done reading them release them back to the producer
113  * so that the producer can use these slots to fill in new entries.
114  *
115  * The function names below reflect these operations.
116  */
117 
118 /* Functions that read and validate content from consumer rings. */
119 
__xskq_cons_read_addr_unchecked(struct xsk_queue * q,u32 cached_cons,u64 * addr)120 static inline void __xskq_cons_read_addr_unchecked(struct xsk_queue *q, u32 cached_cons, u64 *addr)
121 {
122 	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
123 	u32 idx = cached_cons & q->ring_mask;
124 
125 	*addr = ring->desc[idx];
126 }
127 
xskq_cons_read_addr_unchecked(struct xsk_queue * q,u64 * addr)128 static inline bool xskq_cons_read_addr_unchecked(struct xsk_queue *q, u64 *addr)
129 {
130 	if (q->cached_cons != q->cached_prod) {
131 		__xskq_cons_read_addr_unchecked(q, q->cached_cons, addr);
132 		return true;
133 	}
134 
135 	return false;
136 }
137 
xp_unused_options_set(u32 options)138 static inline bool xp_unused_options_set(u32 options)
139 {
140 	return options & ~(XDP_PKT_CONTD | XDP_TX_METADATA);
141 }
142 
xp_aligned_validate_desc(struct xsk_buff_pool * pool,struct xdp_desc * desc)143 static inline bool xp_aligned_validate_desc(struct xsk_buff_pool *pool,
144 					    struct xdp_desc *desc)
145 {
146 	u64 addr = desc->addr - pool->tx_metadata_len;
147 	u64 len = desc->len + pool->tx_metadata_len;
148 	u64 offset = addr & (pool->chunk_size - 1);
149 
150 	if (!desc->len)
151 		return false;
152 
153 	if (offset + len > pool->chunk_size)
154 		return false;
155 
156 	if (addr >= pool->addrs_cnt)
157 		return false;
158 
159 	if (xp_unused_options_set(desc->options))
160 		return false;
161 	return true;
162 }
163 
xp_unaligned_validate_desc(struct xsk_buff_pool * pool,struct xdp_desc * desc)164 static inline bool xp_unaligned_validate_desc(struct xsk_buff_pool *pool,
165 					      struct xdp_desc *desc)
166 {
167 	u64 addr = xp_unaligned_add_offset_to_addr(desc->addr) - pool->tx_metadata_len;
168 	u64 len = desc->len + pool->tx_metadata_len;
169 
170 	if (!desc->len)
171 		return false;
172 
173 	if (len > pool->chunk_size)
174 		return false;
175 
176 	if (addr >= pool->addrs_cnt || addr + len > pool->addrs_cnt ||
177 	    xp_desc_crosses_non_contig_pg(pool, addr, len))
178 		return false;
179 
180 	if (xp_unused_options_set(desc->options))
181 		return false;
182 	return true;
183 }
184 
xp_validate_desc(struct xsk_buff_pool * pool,struct xdp_desc * desc)185 static inline bool xp_validate_desc(struct xsk_buff_pool *pool,
186 				    struct xdp_desc *desc)
187 {
188 	return pool->unaligned ? xp_unaligned_validate_desc(pool, desc) :
189 		xp_aligned_validate_desc(pool, desc);
190 }
191 
xskq_has_descs(struct xsk_queue * q)192 static inline bool xskq_has_descs(struct xsk_queue *q)
193 {
194 	return q->cached_cons != q->cached_prod;
195 }
196 
xskq_cons_is_valid_desc(struct xsk_queue * q,struct xdp_desc * d,struct xsk_buff_pool * pool)197 static inline bool xskq_cons_is_valid_desc(struct xsk_queue *q,
198 					   struct xdp_desc *d,
199 					   struct xsk_buff_pool *pool)
200 {
201 	if (!xp_validate_desc(pool, d)) {
202 		q->invalid_descs++;
203 		return false;
204 	}
205 	return true;
206 }
207 
xskq_cons_read_desc(struct xsk_queue * q,struct xdp_desc * desc,struct xsk_buff_pool * pool)208 static inline bool xskq_cons_read_desc(struct xsk_queue *q,
209 				       struct xdp_desc *desc,
210 				       struct xsk_buff_pool *pool)
211 {
212 	if (q->cached_cons != q->cached_prod) {
213 		struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
214 		u32 idx = q->cached_cons & q->ring_mask;
215 
216 		*desc = ring->desc[idx];
217 		return xskq_cons_is_valid_desc(q, desc, pool);
218 	}
219 
220 	q->queue_empty_descs++;
221 	return false;
222 }
223 
xskq_cons_release_n(struct xsk_queue * q,u32 cnt)224 static inline void xskq_cons_release_n(struct xsk_queue *q, u32 cnt)
225 {
226 	q->cached_cons += cnt;
227 }
228 
parse_desc(struct xsk_queue * q,struct xsk_buff_pool * pool,struct xdp_desc * desc,struct parsed_desc * parsed)229 static inline void parse_desc(struct xsk_queue *q, struct xsk_buff_pool *pool,
230 			      struct xdp_desc *desc, struct parsed_desc *parsed)
231 {
232 	parsed->valid = xskq_cons_is_valid_desc(q, desc, pool);
233 	parsed->mb = xp_mb_desc(desc);
234 }
235 
236 static inline
xskq_cons_read_desc_batch(struct xsk_queue * q,struct xsk_buff_pool * pool,u32 max)237 u32 xskq_cons_read_desc_batch(struct xsk_queue *q, struct xsk_buff_pool *pool,
238 			      u32 max)
239 {
240 	u32 cached_cons = q->cached_cons, nb_entries = 0;
241 	struct xdp_desc *descs = pool->tx_descs;
242 	u32 total_descs = 0, nr_frags = 0;
243 
244 	/* track first entry, if stumble upon *any* invalid descriptor, rewind
245 	 * current packet that consists of frags and stop the processing
246 	 */
247 	while (cached_cons != q->cached_prod && nb_entries < max) {
248 		struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
249 		u32 idx = cached_cons & q->ring_mask;
250 		struct parsed_desc parsed;
251 
252 		descs[nb_entries] = ring->desc[idx];
253 		cached_cons++;
254 		parse_desc(q, pool, &descs[nb_entries], &parsed);
255 		if (unlikely(!parsed.valid))
256 			break;
257 
258 		if (likely(!parsed.mb)) {
259 			total_descs += (nr_frags + 1);
260 			nr_frags = 0;
261 		} else {
262 			nr_frags++;
263 			if (nr_frags == pool->netdev->xdp_zc_max_segs) {
264 				nr_frags = 0;
265 				break;
266 			}
267 		}
268 		nb_entries++;
269 	}
270 
271 	cached_cons -= nr_frags;
272 	/* Release valid plus any invalid entries */
273 	xskq_cons_release_n(q, cached_cons - q->cached_cons);
274 	return total_descs;
275 }
276 
277 /* Functions for consumers */
278 
__xskq_cons_release(struct xsk_queue * q)279 static inline void __xskq_cons_release(struct xsk_queue *q)
280 {
281 	smp_store_release(&q->ring->consumer, q->cached_cons); /* D, matchees A */
282 }
283 
__xskq_cons_peek(struct xsk_queue * q)284 static inline void __xskq_cons_peek(struct xsk_queue *q)
285 {
286 	/* Refresh the local pointer */
287 	q->cached_prod = smp_load_acquire(&q->ring->producer);  /* C, matches B */
288 }
289 
xskq_cons_get_entries(struct xsk_queue * q)290 static inline void xskq_cons_get_entries(struct xsk_queue *q)
291 {
292 	__xskq_cons_release(q);
293 	__xskq_cons_peek(q);
294 }
295 
xskq_cons_nb_entries(struct xsk_queue * q,u32 max)296 static inline u32 xskq_cons_nb_entries(struct xsk_queue *q, u32 max)
297 {
298 	u32 entries = q->cached_prod - q->cached_cons;
299 
300 	if (entries >= max)
301 		return max;
302 
303 	__xskq_cons_peek(q);
304 	entries = q->cached_prod - q->cached_cons;
305 
306 	return entries >= max ? max : entries;
307 }
308 
xskq_cons_has_entries(struct xsk_queue * q,u32 cnt)309 static inline bool xskq_cons_has_entries(struct xsk_queue *q, u32 cnt)
310 {
311 	return xskq_cons_nb_entries(q, cnt) >= cnt;
312 }
313 
xskq_cons_peek_addr_unchecked(struct xsk_queue * q,u64 * addr)314 static inline bool xskq_cons_peek_addr_unchecked(struct xsk_queue *q, u64 *addr)
315 {
316 	if (q->cached_prod == q->cached_cons)
317 		xskq_cons_get_entries(q);
318 	return xskq_cons_read_addr_unchecked(q, addr);
319 }
320 
xskq_cons_peek_desc(struct xsk_queue * q,struct xdp_desc * desc,struct xsk_buff_pool * pool)321 static inline bool xskq_cons_peek_desc(struct xsk_queue *q,
322 				       struct xdp_desc *desc,
323 				       struct xsk_buff_pool *pool)
324 {
325 	if (q->cached_prod == q->cached_cons)
326 		xskq_cons_get_entries(q);
327 	return xskq_cons_read_desc(q, desc, pool);
328 }
329 
330 /* To improve performance in the xskq_cons_release functions, only update local state here.
331  * Reflect this to global state when we get new entries from the ring in
332  * xskq_cons_get_entries() and whenever Rx or Tx processing are completed in the NAPI loop.
333  */
xskq_cons_release(struct xsk_queue * q)334 static inline void xskq_cons_release(struct xsk_queue *q)
335 {
336 	q->cached_cons++;
337 }
338 
xskq_cons_cancel_n(struct xsk_queue * q,u32 cnt)339 static inline void xskq_cons_cancel_n(struct xsk_queue *q, u32 cnt)
340 {
341 	q->cached_cons -= cnt;
342 }
343 
xskq_cons_present_entries(struct xsk_queue * q)344 static inline u32 xskq_cons_present_entries(struct xsk_queue *q)
345 {
346 	/* No barriers needed since data is not accessed */
347 	return READ_ONCE(q->ring->producer) - READ_ONCE(q->ring->consumer);
348 }
349 
350 /* Functions for producers */
351 
xskq_prod_nb_free(struct xsk_queue * q,u32 max)352 static inline u32 xskq_prod_nb_free(struct xsk_queue *q, u32 max)
353 {
354 	u32 free_entries = q->nentries - (q->cached_prod - q->cached_cons);
355 
356 	if (free_entries >= max)
357 		return max;
358 
359 	/* Refresh the local tail pointer */
360 	q->cached_cons = READ_ONCE(q->ring->consumer);
361 	free_entries = q->nentries - (q->cached_prod - q->cached_cons);
362 
363 	return free_entries >= max ? max : free_entries;
364 }
365 
xskq_prod_is_full(struct xsk_queue * q)366 static inline bool xskq_prod_is_full(struct xsk_queue *q)
367 {
368 	return xskq_prod_nb_free(q, 1) ? false : true;
369 }
370 
xskq_prod_cancel_n(struct xsk_queue * q,u32 cnt)371 static inline void xskq_prod_cancel_n(struct xsk_queue *q, u32 cnt)
372 {
373 	q->cached_prod -= cnt;
374 }
375 
xskq_prod_reserve(struct xsk_queue * q)376 static inline int xskq_prod_reserve(struct xsk_queue *q)
377 {
378 	if (xskq_prod_is_full(q))
379 		return -ENOSPC;
380 
381 	/* A, matches D */
382 	q->cached_prod++;
383 	return 0;
384 }
385 
xskq_prod_reserve_addr(struct xsk_queue * q,u64 addr)386 static inline int xskq_prod_reserve_addr(struct xsk_queue *q, u64 addr)
387 {
388 	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
389 
390 	if (xskq_prod_is_full(q))
391 		return -ENOSPC;
392 
393 	/* A, matches D */
394 	ring->desc[q->cached_prod++ & q->ring_mask] = addr;
395 	return 0;
396 }
397 
xskq_prod_write_addr_batch(struct xsk_queue * q,struct xdp_desc * descs,u32 nb_entries)398 static inline void xskq_prod_write_addr_batch(struct xsk_queue *q, struct xdp_desc *descs,
399 					      u32 nb_entries)
400 {
401 	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
402 	u32 i, cached_prod;
403 
404 	/* A, matches D */
405 	cached_prod = q->cached_prod;
406 	for (i = 0; i < nb_entries; i++)
407 		ring->desc[cached_prod++ & q->ring_mask] = descs[i].addr;
408 	q->cached_prod = cached_prod;
409 }
410 
xskq_prod_reserve_desc(struct xsk_queue * q,u64 addr,u32 len,u32 flags)411 static inline int xskq_prod_reserve_desc(struct xsk_queue *q,
412 					 u64 addr, u32 len, u32 flags)
413 {
414 	struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
415 	u32 idx;
416 
417 	if (xskq_prod_is_full(q))
418 		return -ENOBUFS;
419 
420 	/* A, matches D */
421 	idx = q->cached_prod++ & q->ring_mask;
422 	ring->desc[idx].addr = addr;
423 	ring->desc[idx].len = len;
424 	ring->desc[idx].options = flags;
425 
426 	return 0;
427 }
428 
__xskq_prod_submit(struct xsk_queue * q,u32 idx)429 static inline void __xskq_prod_submit(struct xsk_queue *q, u32 idx)
430 {
431 	smp_store_release(&q->ring->producer, idx); /* B, matches C */
432 }
433 
xskq_prod_submit(struct xsk_queue * q)434 static inline void xskq_prod_submit(struct xsk_queue *q)
435 {
436 	__xskq_prod_submit(q, q->cached_prod);
437 }
438 
xskq_prod_submit_n(struct xsk_queue * q,u32 nb_entries)439 static inline void xskq_prod_submit_n(struct xsk_queue *q, u32 nb_entries)
440 {
441 	__xskq_prod_submit(q, q->ring->producer + nb_entries);
442 }
443 
xskq_prod_is_empty(struct xsk_queue * q)444 static inline bool xskq_prod_is_empty(struct xsk_queue *q)
445 {
446 	/* No barriers needed since data is not accessed */
447 	return READ_ONCE(q->ring->consumer) == READ_ONCE(q->ring->producer);
448 }
449 
450 /* For both producers and consumers */
451 
xskq_nb_invalid_descs(struct xsk_queue * q)452 static inline u64 xskq_nb_invalid_descs(struct xsk_queue *q)
453 {
454 	return q ? q->invalid_descs : 0;
455 }
456 
xskq_nb_queue_empty_descs(struct xsk_queue * q)457 static inline u64 xskq_nb_queue_empty_descs(struct xsk_queue *q)
458 {
459 	return q ? q->queue_empty_descs : 0;
460 }
461 
462 struct xsk_queue *xskq_create(u32 nentries, bool umem_queue);
463 void xskq_destroy(struct xsk_queue *q_ops);
464 
465 #endif /* _LINUX_XSK_QUEUE_H */
466