xref: /linux/rust/kernel/init/macros.rs (revision 9218cf82)
1 // SPDX-License-Identifier: Apache-2.0 OR MIT
2 
3 //! This module provides the macros that actually implement the proc-macros `pin_data` and
4 //! `pinned_drop`. It also contains `__init_internal` the implementation of the `{try_}{pin_}init!`
5 //! macros.
6 //!
7 //! These macros should never be called directly, since they expect their input to be
8 //! in a certain format which is internal. If used incorrectly, these macros can lead to UB even in
9 //! safe code! Use the public facing macros instead.
10 //!
11 //! This architecture has been chosen because the kernel does not yet have access to `syn` which
12 //! would make matters a lot easier for implementing these as proc-macros.
13 //!
14 //! # Macro expansion example
15 //!
16 //! This section is intended for readers trying to understand the macros in this module and the
17 //! `pin_init!` macros from `init.rs`.
18 //!
19 //! We will look at the following example:
20 //!
21 //! ```rust,ignore
22 //! # use kernel::init::*;
23 //! # use core::pin::Pin;
24 //! #[pin_data]
25 //! #[repr(C)]
26 //! struct Bar<T> {
27 //!     #[pin]
28 //!     t: T,
29 //!     pub x: usize,
30 //! }
31 //!
32 //! impl<T> Bar<T> {
33 //!     fn new(t: T) -> impl PinInit<Self> {
34 //!         pin_init!(Self { t, x: 0 })
35 //!     }
36 //! }
37 //!
38 //! #[pin_data(PinnedDrop)]
39 //! struct Foo {
40 //!     a: usize,
41 //!     #[pin]
42 //!     b: Bar<u32>,
43 //! }
44 //!
45 //! #[pinned_drop]
46 //! impl PinnedDrop for Foo {
47 //!     fn drop(self: Pin<&mut Self>) {
48 //!         pr_info!("{self:p} is getting dropped.");
49 //!     }
50 //! }
51 //!
52 //! let a = 42;
53 //! let initializer = pin_init!(Foo {
54 //!     a,
55 //!     b <- Bar::new(36),
56 //! });
57 //! ```
58 //!
59 //! This example includes the most common and important features of the pin-init API.
60 //!
61 //! Below you can find individual section about the different macro invocations. Here are some
62 //! general things we need to take into account when designing macros:
63 //! - use global paths, similarly to file paths, these start with the separator: `::core::panic!()`
64 //!   this ensures that the correct item is used, since users could define their own `mod core {}`
65 //!   and then their own `panic!` inside to execute arbitrary code inside of our macro.
66 //! - macro `unsafe` hygiene: we need to ensure that we do not expand arbitrary, user-supplied
67 //!   expressions inside of an `unsafe` block in the macro, because this would allow users to do
68 //!   `unsafe` operations without an associated `unsafe` block.
69 //!
70 //! ## `#[pin_data]` on `Bar`
71 //!
72 //! This macro is used to specify which fields are structurally pinned and which fields are not. It
73 //! is placed on the struct definition and allows `#[pin]` to be placed on the fields.
74 //!
75 //! Here is the definition of `Bar` from our example:
76 //!
77 //! ```rust,ignore
78 //! # use kernel::init::*;
79 //! #[pin_data]
80 //! #[repr(C)]
81 //! struct Bar<T> {
82 //!     #[pin]
83 //!     t: T,
84 //!     pub x: usize,
85 //! }
86 //! ```
87 //!
88 //! This expands to the following code:
89 //!
90 //! ```rust,ignore
91 //! // Firstly the normal definition of the struct, attributes are preserved:
92 //! #[repr(C)]
93 //! struct Bar<T> {
94 //!     t: T,
95 //!     pub x: usize,
96 //! }
97 //! // Then an anonymous constant is defined, this is because we do not want any code to access the
98 //! // types that we define inside:
99 //! const _: () = {
100 //!     // We define the pin-data carrying struct, it is a ZST and needs to have the same generics,
101 //!     // since we need to implement access functions for each field and thus need to know its
102 //!     // type.
103 //!     struct __ThePinData<T> {
104 //!         __phantom: ::core::marker::PhantomData<fn(Bar<T>) -> Bar<T>>,
105 //!     }
106 //!     // We implement `Copy` for the pin-data struct, since all functions it defines will take
107 //!     // `self` by value.
108 //!     impl<T> ::core::clone::Clone for __ThePinData<T> {
109 //!         fn clone(&self) -> Self {
110 //!             *self
111 //!         }
112 //!     }
113 //!     impl<T> ::core::marker::Copy for __ThePinData<T> {}
114 //!     // For every field of `Bar`, the pin-data struct will define a function with the same name
115 //!     // and accessor (`pub` or `pub(crate)` etc.). This function will take a pointer to the
116 //!     // field (`slot`) and a `PinInit` or `Init` depending on the projection kind of the field
117 //!     // (if pinning is structural for the field, then `PinInit` otherwise `Init`).
118 //!     #[allow(dead_code)]
119 //!     impl<T> __ThePinData<T> {
120 //!         unsafe fn t<E>(
121 //!             self,
122 //!             slot: *mut T,
123 //!             // Since `t` is `#[pin]`, this is `PinInit`.
124 //!             init: impl ::kernel::init::PinInit<T, E>,
125 //!         ) -> ::core::result::Result<(), E> {
126 //!             unsafe { ::kernel::init::PinInit::__pinned_init(init, slot) }
127 //!         }
128 //!         pub unsafe fn x<E>(
129 //!             self,
130 //!             slot: *mut usize,
131 //!             // Since `x` is not `#[pin]`, this is `Init`.
132 //!             init: impl ::kernel::init::Init<usize, E>,
133 //!         ) -> ::core::result::Result<(), E> {
134 //!             unsafe { ::kernel::init::Init::__init(init, slot) }
135 //!         }
136 //!     }
137 //!     // Implement the internal `HasPinData` trait that associates `Bar` with the pin-data struct
138 //!     // that we constructed above.
139 //!     unsafe impl<T> ::kernel::init::__internal::HasPinData for Bar<T> {
140 //!         type PinData = __ThePinData<T>;
141 //!         unsafe fn __pin_data() -> Self::PinData {
142 //!             __ThePinData {
143 //!                 __phantom: ::core::marker::PhantomData,
144 //!             }
145 //!         }
146 //!     }
147 //!     // Implement the internal `PinData` trait that marks the pin-data struct as a pin-data
148 //!     // struct. This is important to ensure that no user can implement a rouge `__pin_data`
149 //!     // function without using `unsafe`.
150 //!     unsafe impl<T> ::kernel::init::__internal::PinData for __ThePinData<T> {
151 //!         type Datee = Bar<T>;
152 //!     }
153 //!     // Now we only want to implement `Unpin` for `Bar` when every structurally pinned field is
154 //!     // `Unpin`. In other words, whether `Bar` is `Unpin` only depends on structurally pinned
155 //!     // fields (those marked with `#[pin]`). These fields will be listed in this struct, in our
156 //!     // case no such fields exist, hence this is almost empty. The two phantomdata fields exist
157 //!     // for two reasons:
158 //!     // - `__phantom`: every generic must be used, since we cannot really know which generics
159 //!     //   are used, we declere all and then use everything here once.
160 //!     // - `__phantom_pin`: uses the `'__pin` lifetime and ensures that this struct is invariant
161 //!     //   over it. The lifetime is needed to work around the limitation that trait bounds must
162 //!     //   not be trivial, e.g. the user has a `#[pin] PhantomPinned` field -- this is
163 //!     //   unconditionally `!Unpin` and results in an error. The lifetime tricks the compiler
164 //!     //   into accepting these bounds regardless.
165 //!     #[allow(dead_code)]
166 //!     struct __Unpin<'__pin, T> {
167 //!         __phantom_pin: ::core::marker::PhantomData<fn(&'__pin ()) -> &'__pin ()>,
168 //!         __phantom: ::core::marker::PhantomData<fn(Bar<T>) -> Bar<T>>,
169 //!         // Our only `#[pin]` field is `t`.
170 //!         t: T,
171 //!     }
172 //!     #[doc(hidden)]
173 //!     impl<'__pin, T> ::core::marker::Unpin for Bar<T>
174 //!     where
175 //!         __Unpin<'__pin, T>: ::core::marker::Unpin,
176 //!     {}
177 //!     // Now we need to ensure that `Bar` does not implement `Drop`, since that would give users
178 //!     // access to `&mut self` inside of `drop` even if the struct was pinned. This could lead to
179 //!     // UB with only safe code, so we disallow this by giving a trait implementation error using
180 //!     // a direct impl and a blanket implementation.
181 //!     trait MustNotImplDrop {}
182 //!     // Normally `Drop` bounds do not have the correct semantics, but for this purpose they do
183 //!     // (normally people want to know if a type has any kind of drop glue at all, here we want
184 //!     // to know if it has any kind of custom drop glue, which is exactly what this bound does).
185 //!     #[allow(drop_bounds)]
186 //!     impl<T: ::core::ops::Drop> MustNotImplDrop for T {}
187 //!     impl<T> MustNotImplDrop for Bar<T> {}
188 //!     // Here comes a convenience check, if one implemented `PinnedDrop`, but forgot to add it to
189 //!     // `#[pin_data]`, then this will error with the same mechanic as above, this is not needed
190 //!     // for safety, but a good sanity check, since no normal code calls `PinnedDrop::drop`.
191 //!     #[allow(non_camel_case_types)]
192 //!     trait UselessPinnedDropImpl_you_need_to_specify_PinnedDrop {}
193 //!     impl<
194 //!         T: ::kernel::init::PinnedDrop,
195 //!     > UselessPinnedDropImpl_you_need_to_specify_PinnedDrop for T {}
196 //!     impl<T> UselessPinnedDropImpl_you_need_to_specify_PinnedDrop for Bar<T> {}
197 //! };
198 //! ```
199 //!
200 //! ## `pin_init!` in `impl Bar`
201 //!
202 //! This macro creates an pin-initializer for the given struct. It requires that the struct is
203 //! annotated by `#[pin_data]`.
204 //!
205 //! Here is the impl on `Bar` defining the new function:
206 //!
207 //! ```rust,ignore
208 //! impl<T> Bar<T> {
209 //!     fn new(t: T) -> impl PinInit<Self> {
210 //!         pin_init!(Self { t, x: 0 })
211 //!     }
212 //! }
213 //! ```
214 //!
215 //! This expands to the following code:
216 //!
217 //! ```rust,ignore
218 //! impl<T> Bar<T> {
219 //!     fn new(t: T) -> impl PinInit<Self> {
220 //!         {
221 //!             // We do not want to allow arbitrary returns, so we declare this type as the `Ok`
222 //!             // return type and shadow it later when we insert the arbitrary user code. That way
223 //!             // there will be no possibility of returning without `unsafe`.
224 //!             struct __InitOk;
225 //!             // Get the data about fields from the supplied type.
226 //!             // - the function is unsafe, hence the unsafe block
227 //!             // - we `use` the `HasPinData` trait in the block, it is only available in that
228 //!             //   scope.
229 //!             let data = unsafe {
230 //!                 use ::kernel::init::__internal::HasPinData;
231 //!                 Self::__pin_data()
232 //!             };
233 //!             // Ensure that `data` really is of type `PinData` and help with type inference:
234 //!             let init = ::kernel::init::__internal::PinData::make_closure::<
235 //!                 _,
236 //!                 __InitOk,
237 //!                 ::core::convert::Infallible,
238 //!             >(data, move |slot| {
239 //!                 {
240 //!                     // Shadow the structure so it cannot be used to return early. If a user
241 //!                     // tries to write `return Ok(__InitOk)`, then they get a type error,
242 //!                     // since that will refer to this struct instead of the one defined
243 //!                     // above.
244 //!                     struct __InitOk;
245 //!                     // This is the expansion of `t,`, which is syntactic sugar for `t: t,`.
246 //!                     {
247 //!                         unsafe { ::core::ptr::write(::core::addr_of_mut!((*slot).t), t) };
248 //!                     }
249 //!                     // Since initialization could fail later (not in this case, since the
250 //!                     // error type is `Infallible`) we will need to drop this field if there
251 //!                     // is an error later. This `DropGuard` will drop the field when it gets
252 //!                     // dropped and has not yet been forgotten.
253 //!                     let __t_guard = unsafe {
254 //!                         ::pinned_init::__internal::DropGuard::new(::core::addr_of_mut!((*slot).t))
255 //!                     };
256 //!                     // Expansion of `x: 0,`:
257 //!                     // Since this can be an arbitrary expression we cannot place it inside
258 //!                     // of the `unsafe` block, so we bind it here.
259 //!                     {
260 //!                         let x = 0;
261 //!                         unsafe { ::core::ptr::write(::core::addr_of_mut!((*slot).x), x) };
262 //!                     }
263 //!                     // We again create a `DropGuard`.
264 //!                     let __x_guard = unsafe {
265 //!                         ::kernel::init::__internal::DropGuard::new(::core::addr_of_mut!((*slot).x))
266 //!                     };
267 //!                     // Since initialization has successfully completed, we can now forget
268 //!                     // the guards. This is not `mem::forget`, since we only have
269 //!                     // `&DropGuard`.
270 //!                     ::core::mem::forget(__x_guard);
271 //!                     ::core::mem::forget(__t_guard);
272 //!                     // Here we use the type checker to ensure that every field has been
273 //!                     // initialized exactly once, since this is `if false` it will never get
274 //!                     // executed, but still type-checked.
275 //!                     // Additionally we abuse `slot` to automatically infer the correct type
276 //!                     // for the struct. This is also another check that every field is
277 //!                     // accessible from this scope.
278 //!                     #[allow(unreachable_code, clippy::diverging_sub_expression)]
279 //!                     let _ = || {
280 //!                         unsafe {
281 //!                             ::core::ptr::write(
282 //!                                 slot,
283 //!                                 Self {
284 //!                                     // We only care about typecheck finding every field
285 //!                                     // here, the expression does not matter, just conjure
286 //!                                     // one using `panic!()`:
287 //!                                     t: ::core::panic!(),
288 //!                                     x: ::core::panic!(),
289 //!                                 },
290 //!                             );
291 //!                         };
292 //!                     };
293 //!                 }
294 //!                 // We leave the scope above and gain access to the previously shadowed
295 //!                 // `__InitOk` that we need to return.
296 //!                 Ok(__InitOk)
297 //!             });
298 //!             // Change the return type from `__InitOk` to `()`.
299 //!             let init = move |
300 //!                 slot,
301 //!             | -> ::core::result::Result<(), ::core::convert::Infallible> {
302 //!                 init(slot).map(|__InitOk| ())
303 //!             };
304 //!             // Construct the initializer.
305 //!             let init = unsafe {
306 //!                 ::kernel::init::pin_init_from_closure::<
307 //!                     _,
308 //!                     ::core::convert::Infallible,
309 //!                 >(init)
310 //!             };
311 //!             init
312 //!         }
313 //!     }
314 //! }
315 //! ```
316 //!
317 //! ## `#[pin_data]` on `Foo`
318 //!
319 //! Since we already took a look at `#[pin_data]` on `Bar`, this section will only explain the
320 //! differences/new things in the expansion of the `Foo` definition:
321 //!
322 //! ```rust,ignore
323 //! #[pin_data(PinnedDrop)]
324 //! struct Foo {
325 //!     a: usize,
326 //!     #[pin]
327 //!     b: Bar<u32>,
328 //! }
329 //! ```
330 //!
331 //! This expands to the following code:
332 //!
333 //! ```rust,ignore
334 //! struct Foo {
335 //!     a: usize,
336 //!     b: Bar<u32>,
337 //! }
338 //! const _: () = {
339 //!     struct __ThePinData {
340 //!         __phantom: ::core::marker::PhantomData<fn(Foo) -> Foo>,
341 //!     }
342 //!     impl ::core::clone::Clone for __ThePinData {
343 //!         fn clone(&self) -> Self {
344 //!             *self
345 //!         }
346 //!     }
347 //!     impl ::core::marker::Copy for __ThePinData {}
348 //!     #[allow(dead_code)]
349 //!     impl __ThePinData {
350 //!         unsafe fn b<E>(
351 //!             self,
352 //!             slot: *mut Bar<u32>,
353 //!             init: impl ::kernel::init::PinInit<Bar<u32>, E>,
354 //!         ) -> ::core::result::Result<(), E> {
355 //!             unsafe { ::kernel::init::PinInit::__pinned_init(init, slot) }
356 //!         }
357 //!         unsafe fn a<E>(
358 //!             self,
359 //!             slot: *mut usize,
360 //!             init: impl ::kernel::init::Init<usize, E>,
361 //!         ) -> ::core::result::Result<(), E> {
362 //!             unsafe { ::kernel::init::Init::__init(init, slot) }
363 //!         }
364 //!     }
365 //!     unsafe impl ::kernel::init::__internal::HasPinData for Foo {
366 //!         type PinData = __ThePinData;
367 //!         unsafe fn __pin_data() -> Self::PinData {
368 //!             __ThePinData {
369 //!                 __phantom: ::core::marker::PhantomData,
370 //!             }
371 //!         }
372 //!     }
373 //!     unsafe impl ::kernel::init::__internal::PinData for __ThePinData {
374 //!         type Datee = Foo;
375 //!     }
376 //!     #[allow(dead_code)]
377 //!     struct __Unpin<'__pin> {
378 //!         __phantom_pin: ::core::marker::PhantomData<fn(&'__pin ()) -> &'__pin ()>,
379 //!         __phantom: ::core::marker::PhantomData<fn(Foo) -> Foo>,
380 //!         b: Bar<u32>,
381 //!     }
382 //!     #[doc(hidden)]
383 //!     impl<'__pin> ::core::marker::Unpin for Foo
384 //!     where
385 //!         __Unpin<'__pin>: ::core::marker::Unpin,
386 //!     {}
387 //!     // Since we specified `PinnedDrop` as the argument to `#[pin_data]`, we expect `Foo` to
388 //!     // implement `PinnedDrop`. Thus we do not need to prevent `Drop` implementations like
389 //!     // before, instead we implement `Drop` here and delegate to `PinnedDrop`.
390 //!     impl ::core::ops::Drop for Foo {
391 //!         fn drop(&mut self) {
392 //!             // Since we are getting dropped, no one else has a reference to `self` and thus we
393 //!             // can assume that we never move.
394 //!             let pinned = unsafe { ::core::pin::Pin::new_unchecked(self) };
395 //!             // Create the unsafe token that proves that we are inside of a destructor, this
396 //!             // type is only allowed to be created in a destructor.
397 //!             let token = unsafe { ::kernel::init::__internal::OnlyCallFromDrop::new() };
398 //!             ::kernel::init::PinnedDrop::drop(pinned, token);
399 //!         }
400 //!     }
401 //! };
402 //! ```
403 //!
404 //! ## `#[pinned_drop]` on `impl PinnedDrop for Foo`
405 //!
406 //! This macro is used to implement the `PinnedDrop` trait, since that trait is `unsafe` and has an
407 //! extra parameter that should not be used at all. The macro hides that parameter.
408 //!
409 //! Here is the `PinnedDrop` impl for `Foo`:
410 //!
411 //! ```rust,ignore
412 //! #[pinned_drop]
413 //! impl PinnedDrop for Foo {
414 //!     fn drop(self: Pin<&mut Self>) {
415 //!         pr_info!("{self:p} is getting dropped.");
416 //!     }
417 //! }
418 //! ```
419 //!
420 //! This expands to the following code:
421 //!
422 //! ```rust,ignore
423 //! // `unsafe`, full path and the token parameter are added, everything else stays the same.
424 //! unsafe impl ::kernel::init::PinnedDrop for Foo {
425 //!     fn drop(self: Pin<&mut Self>, _: ::kernel::init::__internal::OnlyCallFromDrop) {
426 //!         pr_info!("{self:p} is getting dropped.");
427 //!     }
428 //! }
429 //! ```
430 //!
431 //! ## `pin_init!` on `Foo`
432 //!
433 //! Since we already took a look at `pin_init!` on `Bar`, this section will only show the expansion
434 //! of `pin_init!` on `Foo`:
435 //!
436 //! ```rust,ignore
437 //! let a = 42;
438 //! let initializer = pin_init!(Foo {
439 //!     a,
440 //!     b <- Bar::new(36),
441 //! });
442 //! ```
443 //!
444 //! This expands to the following code:
445 //!
446 //! ```rust,ignore
447 //! let a = 42;
448 //! let initializer = {
449 //!     struct __InitOk;
450 //!     let data = unsafe {
451 //!         use ::kernel::init::__internal::HasPinData;
452 //!         Foo::__pin_data()
453 //!     };
454 //!     let init = ::kernel::init::__internal::PinData::make_closure::<
455 //!         _,
456 //!         __InitOk,
457 //!         ::core::convert::Infallible,
458 //!     >(data, move |slot| {
459 //!         {
460 //!             struct __InitOk;
461 //!             {
462 //!                 unsafe { ::core::ptr::write(::core::addr_of_mut!((*slot).a), a) };
463 //!             }
464 //!             let __a_guard = unsafe {
465 //!                 ::kernel::init::__internal::DropGuard::new(::core::addr_of_mut!((*slot).a))
466 //!             };
467 //!             let init = Bar::new(36);
468 //!             unsafe { data.b(::core::addr_of_mut!((*slot).b), b)? };
469 //!             let __b_guard = unsafe {
470 //!                 ::kernel::init::__internal::DropGuard::new(::core::addr_of_mut!((*slot).b))
471 //!             };
472 //!             ::core::mem::forget(__b_guard);
473 //!             ::core::mem::forget(__a_guard);
474 //!             #[allow(unreachable_code, clippy::diverging_sub_expression)]
475 //!             let _ = || {
476 //!                 unsafe {
477 //!                     ::core::ptr::write(
478 //!                         slot,
479 //!                         Foo {
480 //!                             a: ::core::panic!(),
481 //!                             b: ::core::panic!(),
482 //!                         },
483 //!                     );
484 //!                 };
485 //!             };
486 //!         }
487 //!         Ok(__InitOk)
488 //!     });
489 //!     let init = move |
490 //!         slot,
491 //!     | -> ::core::result::Result<(), ::core::convert::Infallible> {
492 //!         init(slot).map(|__InitOk| ())
493 //!     };
494 //!     let init = unsafe {
495 //!         ::kernel::init::pin_init_from_closure::<_, ::core::convert::Infallible>(init)
496 //!     };
497 //!     init
498 //! };
499 //! ```
500 
501 /// Creates a `unsafe impl<...> PinnedDrop for $type` block.
502 ///
503 /// See [`PinnedDrop`] for more information.
504 #[doc(hidden)]
505 #[macro_export]
506 macro_rules! __pinned_drop {
507     (
508         @impl_sig($($impl_sig:tt)*),
509         @impl_body(
510             $(#[$($attr:tt)*])*
511             fn drop($($sig:tt)*) {
512                 $($inner:tt)*
513             }
514         ),
515     ) => {
516         unsafe $($impl_sig)* {
517             // Inherit all attributes and the type/ident tokens for the signature.
518             $(#[$($attr)*])*
519             fn drop($($sig)*, _: $crate::init::__internal::OnlyCallFromDrop) {
520                 $($inner)*
521             }
522         }
523     }
524 }
525 
526 /// This macro first parses the struct definition such that it separates pinned and not pinned
527 /// fields. Afterwards it declares the struct and implement the `PinData` trait safely.
528 #[doc(hidden)]
529 #[macro_export]
530 macro_rules! __pin_data {
531     // Proc-macro entry point, this is supplied by the proc-macro pre-parsing.
532     (parse_input:
533         @args($($pinned_drop:ident)?),
534         @sig(
535             $(#[$($struct_attr:tt)*])*
536             $vis:vis struct $name:ident
537             $(where $($whr:tt)*)?
538         ),
539         @impl_generics($($impl_generics:tt)*),
540         @ty_generics($($ty_generics:tt)*),
541         @decl_generics($($decl_generics:tt)*),
542         @body({ $($fields:tt)* }),
543     ) => {
544         // We now use token munching to iterate through all of the fields. While doing this we
545         // identify fields marked with `#[pin]`, these fields are the 'pinned fields'. The user
546         // wants these to be structurally pinned. The rest of the fields are the
547         // 'not pinned fields'. Additionally we collect all fields, since we need them in the right
548         // order to declare the struct.
549         //
550         // In this call we also put some explaining comments for the parameters.
551         $crate::__pin_data!(find_pinned_fields:
552             // Attributes on the struct itself, these will just be propagated to be put onto the
553             // struct definition.
554             @struct_attrs($(#[$($struct_attr)*])*),
555             // The visibility of the struct.
556             @vis($vis),
557             // The name of the struct.
558             @name($name),
559             // The 'impl generics', the generics that will need to be specified on the struct inside
560             // of an `impl<$ty_generics>` block.
561             @impl_generics($($impl_generics)*),
562             // The 'ty generics', the generics that will need to be specified on the impl blocks.
563             @ty_generics($($ty_generics)*),
564             // The 'decl generics', the generics that need to be specified on the struct
565             // definition.
566             @decl_generics($($decl_generics)*),
567             // The where clause of any impl block and the declaration.
568             @where($($($whr)*)?),
569             // The remaining fields tokens that need to be processed.
570             // We add a `,` at the end to ensure correct parsing.
571             @fields_munch($($fields)* ,),
572             // The pinned fields.
573             @pinned(),
574             // The not pinned fields.
575             @not_pinned(),
576             // All fields.
577             @fields(),
578             // The accumulator containing all attributes already parsed.
579             @accum(),
580             // Contains `yes` or `` to indicate if `#[pin]` was found on the current field.
581             @is_pinned(),
582             // The proc-macro argument, this should be `PinnedDrop` or ``.
583             @pinned_drop($($pinned_drop)?),
584         );
585     };
586     (find_pinned_fields:
587         @struct_attrs($($struct_attrs:tt)*),
588         @vis($vis:vis),
589         @name($name:ident),
590         @impl_generics($($impl_generics:tt)*),
591         @ty_generics($($ty_generics:tt)*),
592         @decl_generics($($decl_generics:tt)*),
593         @where($($whr:tt)*),
594         // We found a PhantomPinned field, this should generally be pinned!
595         @fields_munch($field:ident : $($($(::)?core::)?marker::)?PhantomPinned, $($rest:tt)*),
596         @pinned($($pinned:tt)*),
597         @not_pinned($($not_pinned:tt)*),
598         @fields($($fields:tt)*),
599         @accum($($accum:tt)*),
600         // This field is not pinned.
601         @is_pinned(),
602         @pinned_drop($($pinned_drop:ident)?),
603     ) => {
604         ::core::compile_error!(concat!(
605             "The field `",
606             stringify!($field),
607             "` of type `PhantomPinned` only has an effect, if it has the `#[pin]` attribute.",
608         ));
609         $crate::__pin_data!(find_pinned_fields:
610             @struct_attrs($($struct_attrs)*),
611             @vis($vis),
612             @name($name),
613             @impl_generics($($impl_generics)*),
614             @ty_generics($($ty_generics)*),
615             @decl_generics($($decl_generics)*),
616             @where($($whr)*),
617             @fields_munch($($rest)*),
618             @pinned($($pinned)* $($accum)* $field: ::core::marker::PhantomPinned,),
619             @not_pinned($($not_pinned)*),
620             @fields($($fields)* $($accum)* $field: ::core::marker::PhantomPinned,),
621             @accum(),
622             @is_pinned(),
623             @pinned_drop($($pinned_drop)?),
624         );
625     };
626     (find_pinned_fields:
627         @struct_attrs($($struct_attrs:tt)*),
628         @vis($vis:vis),
629         @name($name:ident),
630         @impl_generics($($impl_generics:tt)*),
631         @ty_generics($($ty_generics:tt)*),
632         @decl_generics($($decl_generics:tt)*),
633         @where($($whr:tt)*),
634         // We reached the field declaration.
635         @fields_munch($field:ident : $type:ty, $($rest:tt)*),
636         @pinned($($pinned:tt)*),
637         @not_pinned($($not_pinned:tt)*),
638         @fields($($fields:tt)*),
639         @accum($($accum:tt)*),
640         // This field is pinned.
641         @is_pinned(yes),
642         @pinned_drop($($pinned_drop:ident)?),
643     ) => {
644         $crate::__pin_data!(find_pinned_fields:
645             @struct_attrs($($struct_attrs)*),
646             @vis($vis),
647             @name($name),
648             @impl_generics($($impl_generics)*),
649             @ty_generics($($ty_generics)*),
650             @decl_generics($($decl_generics)*),
651             @where($($whr)*),
652             @fields_munch($($rest)*),
653             @pinned($($pinned)* $($accum)* $field: $type,),
654             @not_pinned($($not_pinned)*),
655             @fields($($fields)* $($accum)* $field: $type,),
656             @accum(),
657             @is_pinned(),
658             @pinned_drop($($pinned_drop)?),
659         );
660     };
661     (find_pinned_fields:
662         @struct_attrs($($struct_attrs:tt)*),
663         @vis($vis:vis),
664         @name($name:ident),
665         @impl_generics($($impl_generics:tt)*),
666         @ty_generics($($ty_generics:tt)*),
667         @decl_generics($($decl_generics:tt)*),
668         @where($($whr:tt)*),
669         // We reached the field declaration.
670         @fields_munch($field:ident : $type:ty, $($rest:tt)*),
671         @pinned($($pinned:tt)*),
672         @not_pinned($($not_pinned:tt)*),
673         @fields($($fields:tt)*),
674         @accum($($accum:tt)*),
675         // This field is not pinned.
676         @is_pinned(),
677         @pinned_drop($($pinned_drop:ident)?),
678     ) => {
679         $crate::__pin_data!(find_pinned_fields:
680             @struct_attrs($($struct_attrs)*),
681             @vis($vis),
682             @name($name),
683             @impl_generics($($impl_generics)*),
684             @ty_generics($($ty_generics)*),
685             @decl_generics($($decl_generics)*),
686             @where($($whr)*),
687             @fields_munch($($rest)*),
688             @pinned($($pinned)*),
689             @not_pinned($($not_pinned)* $($accum)* $field: $type,),
690             @fields($($fields)* $($accum)* $field: $type,),
691             @accum(),
692             @is_pinned(),
693             @pinned_drop($($pinned_drop)?),
694         );
695     };
696     (find_pinned_fields:
697         @struct_attrs($($struct_attrs:tt)*),
698         @vis($vis:vis),
699         @name($name:ident),
700         @impl_generics($($impl_generics:tt)*),
701         @ty_generics($($ty_generics:tt)*),
702         @decl_generics($($decl_generics:tt)*),
703         @where($($whr:tt)*),
704         // We found the `#[pin]` attr.
705         @fields_munch(#[pin] $($rest:tt)*),
706         @pinned($($pinned:tt)*),
707         @not_pinned($($not_pinned:tt)*),
708         @fields($($fields:tt)*),
709         @accum($($accum:tt)*),
710         @is_pinned($($is_pinned:ident)?),
711         @pinned_drop($($pinned_drop:ident)?),
712     ) => {
713         $crate::__pin_data!(find_pinned_fields:
714             @struct_attrs($($struct_attrs)*),
715             @vis($vis),
716             @name($name),
717             @impl_generics($($impl_generics)*),
718             @ty_generics($($ty_generics)*),
719             @decl_generics($($decl_generics)*),
720             @where($($whr)*),
721             @fields_munch($($rest)*),
722             // We do not include `#[pin]` in the list of attributes, since it is not actually an
723             // attribute that is defined somewhere.
724             @pinned($($pinned)*),
725             @not_pinned($($not_pinned)*),
726             @fields($($fields)*),
727             @accum($($accum)*),
728             // Set this to `yes`.
729             @is_pinned(yes),
730             @pinned_drop($($pinned_drop)?),
731         );
732     };
733     (find_pinned_fields:
734         @struct_attrs($($struct_attrs:tt)*),
735         @vis($vis:vis),
736         @name($name:ident),
737         @impl_generics($($impl_generics:tt)*),
738         @ty_generics($($ty_generics:tt)*),
739         @decl_generics($($decl_generics:tt)*),
740         @where($($whr:tt)*),
741         // We reached the field declaration with visibility, for simplicity we only munch the
742         // visibility and put it into `$accum`.
743         @fields_munch($fvis:vis $field:ident $($rest:tt)*),
744         @pinned($($pinned:tt)*),
745         @not_pinned($($not_pinned:tt)*),
746         @fields($($fields:tt)*),
747         @accum($($accum:tt)*),
748         @is_pinned($($is_pinned:ident)?),
749         @pinned_drop($($pinned_drop:ident)?),
750     ) => {
751         $crate::__pin_data!(find_pinned_fields:
752             @struct_attrs($($struct_attrs)*),
753             @vis($vis),
754             @name($name),
755             @impl_generics($($impl_generics)*),
756             @ty_generics($($ty_generics)*),
757             @decl_generics($($decl_generics)*),
758             @where($($whr)*),
759             @fields_munch($field $($rest)*),
760             @pinned($($pinned)*),
761             @not_pinned($($not_pinned)*),
762             @fields($($fields)*),
763             @accum($($accum)* $fvis),
764             @is_pinned($($is_pinned)?),
765             @pinned_drop($($pinned_drop)?),
766         );
767     };
768     (find_pinned_fields:
769         @struct_attrs($($struct_attrs:tt)*),
770         @vis($vis:vis),
771         @name($name:ident),
772         @impl_generics($($impl_generics:tt)*),
773         @ty_generics($($ty_generics:tt)*),
774         @decl_generics($($decl_generics:tt)*),
775         @where($($whr:tt)*),
776         // Some other attribute, just put it into `$accum`.
777         @fields_munch(#[$($attr:tt)*] $($rest:tt)*),
778         @pinned($($pinned:tt)*),
779         @not_pinned($($not_pinned:tt)*),
780         @fields($($fields:tt)*),
781         @accum($($accum:tt)*),
782         @is_pinned($($is_pinned:ident)?),
783         @pinned_drop($($pinned_drop:ident)?),
784     ) => {
785         $crate::__pin_data!(find_pinned_fields:
786             @struct_attrs($($struct_attrs)*),
787             @vis($vis),
788             @name($name),
789             @impl_generics($($impl_generics)*),
790             @ty_generics($($ty_generics)*),
791             @decl_generics($($decl_generics)*),
792             @where($($whr)*),
793             @fields_munch($($rest)*),
794             @pinned($($pinned)*),
795             @not_pinned($($not_pinned)*),
796             @fields($($fields)*),
797             @accum($($accum)* #[$($attr)*]),
798             @is_pinned($($is_pinned)?),
799             @pinned_drop($($pinned_drop)?),
800         );
801     };
802     (find_pinned_fields:
803         @struct_attrs($($struct_attrs:tt)*),
804         @vis($vis:vis),
805         @name($name:ident),
806         @impl_generics($($impl_generics:tt)*),
807         @ty_generics($($ty_generics:tt)*),
808         @decl_generics($($decl_generics:tt)*),
809         @where($($whr:tt)*),
810         // We reached the end of the fields, plus an optional additional comma, since we added one
811         // before and the user is also allowed to put a trailing comma.
812         @fields_munch($(,)?),
813         @pinned($($pinned:tt)*),
814         @not_pinned($($not_pinned:tt)*),
815         @fields($($fields:tt)*),
816         @accum(),
817         @is_pinned(),
818         @pinned_drop($($pinned_drop:ident)?),
819     ) => {
820         // Declare the struct with all fields in the correct order.
821         $($struct_attrs)*
822         $vis struct $name <$($decl_generics)*>
823         where $($whr)*
824         {
825             $($fields)*
826         }
827 
828         // We put the rest into this const item, because it then will not be accessible to anything
829         // outside.
830         const _: () = {
831             // We declare this struct which will host all of the projection function for our type.
832             // it will be invariant over all generic parameters which are inherited from the
833             // struct.
834             $vis struct __ThePinData<$($impl_generics)*>
835             where $($whr)*
836             {
837                 __phantom: ::core::marker::PhantomData<
838                     fn($name<$($ty_generics)*>) -> $name<$($ty_generics)*>
839                 >,
840             }
841 
842             impl<$($impl_generics)*> ::core::clone::Clone for __ThePinData<$($ty_generics)*>
843             where $($whr)*
844             {
845                 fn clone(&self) -> Self { *self }
846             }
847 
848             impl<$($impl_generics)*> ::core::marker::Copy for __ThePinData<$($ty_generics)*>
849             where $($whr)*
850             {}
851 
852             // Make all projection functions.
853             $crate::__pin_data!(make_pin_data:
854                 @pin_data(__ThePinData),
855                 @impl_generics($($impl_generics)*),
856                 @ty_generics($($ty_generics)*),
857                 @where($($whr)*),
858                 @pinned($($pinned)*),
859                 @not_pinned($($not_pinned)*),
860             );
861 
862             // SAFETY: We have added the correct projection functions above to `__ThePinData` and
863             // we also use the least restrictive generics possible.
864             unsafe impl<$($impl_generics)*>
865                 $crate::init::__internal::HasPinData for $name<$($ty_generics)*>
866             where $($whr)*
867             {
868                 type PinData = __ThePinData<$($ty_generics)*>;
869 
870                 unsafe fn __pin_data() -> Self::PinData {
871                     __ThePinData { __phantom: ::core::marker::PhantomData }
872                 }
873             }
874 
875             unsafe impl<$($impl_generics)*>
876                 $crate::init::__internal::PinData for __ThePinData<$($ty_generics)*>
877             where $($whr)*
878             {
879                 type Datee = $name<$($ty_generics)*>;
880             }
881 
882             // This struct will be used for the unpin analysis. Since only structurally pinned
883             // fields are relevant whether the struct should implement `Unpin`.
884             #[allow(dead_code)]
885             struct __Unpin <'__pin, $($impl_generics)*>
886             where $($whr)*
887             {
888                 __phantom_pin: ::core::marker::PhantomData<fn(&'__pin ()) -> &'__pin ()>,
889                 __phantom: ::core::marker::PhantomData<
890                     fn($name<$($ty_generics)*>) -> $name<$($ty_generics)*>
891                 >,
892                 // Only the pinned fields.
893                 $($pinned)*
894             }
895 
896             #[doc(hidden)]
897             impl<'__pin, $($impl_generics)*> ::core::marker::Unpin for $name<$($ty_generics)*>
898             where
899                 __Unpin<'__pin, $($ty_generics)*>: ::core::marker::Unpin,
900                 $($whr)*
901             {}
902 
903             // We need to disallow normal `Drop` implementation, the exact behavior depends on
904             // whether `PinnedDrop` was specified as the parameter.
905             $crate::__pin_data!(drop_prevention:
906                 @name($name),
907                 @impl_generics($($impl_generics)*),
908                 @ty_generics($($ty_generics)*),
909                 @where($($whr)*),
910                 @pinned_drop($($pinned_drop)?),
911             );
912         };
913     };
914     // When no `PinnedDrop` was specified, then we have to prevent implementing drop.
915     (drop_prevention:
916         @name($name:ident),
917         @impl_generics($($impl_generics:tt)*),
918         @ty_generics($($ty_generics:tt)*),
919         @where($($whr:tt)*),
920         @pinned_drop(),
921     ) => {
922         // We prevent this by creating a trait that will be implemented for all types implementing
923         // `Drop`. Additionally we will implement this trait for the struct leading to a conflict,
924         // if it also implements `Drop`
925         trait MustNotImplDrop {}
926         #[allow(drop_bounds)]
927         impl<T: ::core::ops::Drop> MustNotImplDrop for T {}
928         impl<$($impl_generics)*> MustNotImplDrop for $name<$($ty_generics)*>
929         where $($whr)* {}
930         // We also take care to prevent users from writing a useless `PinnedDrop` implementation.
931         // They might implement `PinnedDrop` correctly for the struct, but forget to give
932         // `PinnedDrop` as the parameter to `#[pin_data]`.
933         #[allow(non_camel_case_types)]
934         trait UselessPinnedDropImpl_you_need_to_specify_PinnedDrop {}
935         impl<T: $crate::init::PinnedDrop>
936             UselessPinnedDropImpl_you_need_to_specify_PinnedDrop for T {}
937         impl<$($impl_generics)*>
938             UselessPinnedDropImpl_you_need_to_specify_PinnedDrop for $name<$($ty_generics)*>
939         where $($whr)* {}
940     };
941     // When `PinnedDrop` was specified we just implement `Drop` and delegate.
942     (drop_prevention:
943         @name($name:ident),
944         @impl_generics($($impl_generics:tt)*),
945         @ty_generics($($ty_generics:tt)*),
946         @where($($whr:tt)*),
947         @pinned_drop(PinnedDrop),
948     ) => {
949         impl<$($impl_generics)*> ::core::ops::Drop for $name<$($ty_generics)*>
950         where $($whr)*
951         {
952             fn drop(&mut self) {
953                 // SAFETY: Since this is a destructor, `self` will not move after this function
954                 // terminates, since it is inaccessible.
955                 let pinned = unsafe { ::core::pin::Pin::new_unchecked(self) };
956                 // SAFETY: Since this is a drop function, we can create this token to call the
957                 // pinned destructor of this type.
958                 let token = unsafe { $crate::init::__internal::OnlyCallFromDrop::new() };
959                 $crate::init::PinnedDrop::drop(pinned, token);
960             }
961         }
962     };
963     // If some other parameter was specified, we emit a readable error.
964     (drop_prevention:
965         @name($name:ident),
966         @impl_generics($($impl_generics:tt)*),
967         @ty_generics($($ty_generics:tt)*),
968         @where($($whr:tt)*),
969         @pinned_drop($($rest:tt)*),
970     ) => {
971         compile_error!(
972             "Wrong parameters to `#[pin_data]`, expected nothing or `PinnedDrop`, got '{}'.",
973             stringify!($($rest)*),
974         );
975     };
976     (make_pin_data:
977         @pin_data($pin_data:ident),
978         @impl_generics($($impl_generics:tt)*),
979         @ty_generics($($ty_generics:tt)*),
980         @where($($whr:tt)*),
981         @pinned($($(#[$($p_attr:tt)*])* $pvis:vis $p_field:ident : $p_type:ty),* $(,)?),
982         @not_pinned($($(#[$($attr:tt)*])* $fvis:vis $field:ident : $type:ty),* $(,)?),
983     ) => {
984         // For every field, we create a projection function according to its projection type. If a
985         // field is structurally pinned, then it must be initialized via `PinInit`, if it is not
986         // structurally pinned, then it can be initialized via `Init`.
987         //
988         // The functions are `unsafe` to prevent accidentally calling them.
989         #[allow(dead_code)]
990         impl<$($impl_generics)*> $pin_data<$($ty_generics)*>
991         where $($whr)*
992         {
993             $(
994                 $(#[$($p_attr)*])*
995                 $pvis unsafe fn $p_field<E>(
996                     self,
997                     slot: *mut $p_type,
998                     init: impl $crate::init::PinInit<$p_type, E>,
999                 ) -> ::core::result::Result<(), E> {
1000                     unsafe { $crate::init::PinInit::__pinned_init(init, slot) }
1001                 }
1002             )*
1003             $(
1004                 $(#[$($attr)*])*
1005                 $fvis unsafe fn $field<E>(
1006                     self,
1007                     slot: *mut $type,
1008                     init: impl $crate::init::Init<$type, E>,
1009                 ) -> ::core::result::Result<(), E> {
1010                     unsafe { $crate::init::Init::__init(init, slot) }
1011                 }
1012             )*
1013         }
1014     };
1015 }
1016 
1017 /// The internal init macro. Do not call manually!
1018 ///
1019 /// This is called by the `{try_}{pin_}init!` macros with various inputs.
1020 ///
1021 /// This macro has multiple internal call configurations, these are always the very first ident:
1022 /// - nothing: this is the base case and called by the `{try_}{pin_}init!` macros.
1023 /// - `with_update_parsed`: when the `..Zeroable::zeroed()` syntax has been handled.
1024 /// - `init_slot`: recursively creates the code that initializes all fields in `slot`.
1025 /// - `make_initializer`: recursively create the struct initializer that guarantees that every
1026 ///   field has been initialized exactly once.
1027 #[doc(hidden)]
1028 #[macro_export]
1029 macro_rules! __init_internal {
1030     (
1031         @this($($this:ident)?),
1032         @typ($t:path),
1033         @fields($($fields:tt)*),
1034         @error($err:ty),
1035         // Either `PinData` or `InitData`, `$use_data` should only be present in the `PinData`
1036         // case.
1037         @data($data:ident, $($use_data:ident)?),
1038         // `HasPinData` or `HasInitData`.
1039         @has_data($has_data:ident, $get_data:ident),
1040         // `pin_init_from_closure` or `init_from_closure`.
1041         @construct_closure($construct_closure:ident),
1042         @munch_fields(),
1043     ) => {
1044         $crate::__init_internal!(with_update_parsed:
1045             @this($($this)?),
1046             @typ($t),
1047             @fields($($fields)*),
1048             @error($err),
1049             @data($data, $($use_data)?),
1050             @has_data($has_data, $get_data),
1051             @construct_closure($construct_closure),
1052             @zeroed(), // Nothing means default behavior.
1053         )
1054     };
1055     (
1056         @this($($this:ident)?),
1057         @typ($t:path),
1058         @fields($($fields:tt)*),
1059         @error($err:ty),
1060         // Either `PinData` or `InitData`, `$use_data` should only be present in the `PinData`
1061         // case.
1062         @data($data:ident, $($use_data:ident)?),
1063         // `HasPinData` or `HasInitData`.
1064         @has_data($has_data:ident, $get_data:ident),
1065         // `pin_init_from_closure` or `init_from_closure`.
1066         @construct_closure($construct_closure:ident),
1067         @munch_fields(..Zeroable::zeroed()),
1068     ) => {
1069         $crate::__init_internal!(with_update_parsed:
1070             @this($($this)?),
1071             @typ($t),
1072             @fields($($fields)*),
1073             @error($err),
1074             @data($data, $($use_data)?),
1075             @has_data($has_data, $get_data),
1076             @construct_closure($construct_closure),
1077             @zeroed(()), // `()` means zero all fields not mentioned.
1078         )
1079     };
1080     (
1081         @this($($this:ident)?),
1082         @typ($t:path),
1083         @fields($($fields:tt)*),
1084         @error($err:ty),
1085         // Either `PinData` or `InitData`, `$use_data` should only be present in the `PinData`
1086         // case.
1087         @data($data:ident, $($use_data:ident)?),
1088         // `HasPinData` or `HasInitData`.
1089         @has_data($has_data:ident, $get_data:ident),
1090         // `pin_init_from_closure` or `init_from_closure`.
1091         @construct_closure($construct_closure:ident),
1092         @munch_fields($ignore:tt $($rest:tt)*),
1093     ) => {
1094         $crate::__init_internal!(
1095             @this($($this)?),
1096             @typ($t),
1097             @fields($($fields)*),
1098             @error($err),
1099             @data($data, $($use_data)?),
1100             @has_data($has_data, $get_data),
1101             @construct_closure($construct_closure),
1102             @munch_fields($($rest)*),
1103         )
1104     };
1105     (with_update_parsed:
1106         @this($($this:ident)?),
1107         @typ($t:path),
1108         @fields($($fields:tt)*),
1109         @error($err:ty),
1110         // Either `PinData` or `InitData`, `$use_data` should only be present in the `PinData`
1111         // case.
1112         @data($data:ident, $($use_data:ident)?),
1113         // `HasPinData` or `HasInitData`.
1114         @has_data($has_data:ident, $get_data:ident),
1115         // `pin_init_from_closure` or `init_from_closure`.
1116         @construct_closure($construct_closure:ident),
1117         @zeroed($($init_zeroed:expr)?),
1118     ) => {{
1119         // We do not want to allow arbitrary returns, so we declare this type as the `Ok` return
1120         // type and shadow it later when we insert the arbitrary user code. That way there will be
1121         // no possibility of returning without `unsafe`.
1122         struct __InitOk;
1123         // Get the data about fields from the supplied type.
1124         let data = unsafe {
1125             use $crate::init::__internal::$has_data;
1126             // Here we abuse `paste!` to retokenize `$t`. Declarative macros have some internal
1127             // information that is associated to already parsed fragments, so a path fragment
1128             // cannot be used in this position. Doing the retokenization results in valid rust
1129             // code.
1130             ::kernel::macros::paste!($t::$get_data())
1131         };
1132         // Ensure that `data` really is of type `$data` and help with type inference:
1133         let init = $crate::init::__internal::$data::make_closure::<_, __InitOk, $err>(
1134             data,
1135             move |slot| {
1136                 {
1137                     // Shadow the structure so it cannot be used to return early.
1138                     struct __InitOk;
1139                     // If `$init_zeroed` is present we should zero the slot now and not emit an
1140                     // error when fields are missing (since they will be zeroed). We also have to
1141                     // check that the type actually implements `Zeroable`.
1142                     $({
1143                         fn assert_zeroable<T: $crate::init::Zeroable>(_: *mut T) {}
1144                         // Ensure that the struct is indeed `Zeroable`.
1145                         assert_zeroable(slot);
1146                         // SAFETY: The type implements `Zeroable` by the check above.
1147                         unsafe { ::core::ptr::write_bytes(slot, 0, 1) };
1148                         $init_zeroed // This will be `()` if set.
1149                     })?
1150                     // Create the `this` so it can be referenced by the user inside of the
1151                     // expressions creating the individual fields.
1152                     $(let $this = unsafe { ::core::ptr::NonNull::new_unchecked(slot) };)?
1153                     // Initialize every field.
1154                     $crate::__init_internal!(init_slot($($use_data)?):
1155                         @data(data),
1156                         @slot(slot),
1157                         @guards(),
1158                         @munch_fields($($fields)*,),
1159                     );
1160                     // We use unreachable code to ensure that all fields have been mentioned exactly
1161                     // once, this struct initializer will still be type-checked and complain with a
1162                     // very natural error message if a field is forgotten/mentioned more than once.
1163                     #[allow(unreachable_code, clippy::diverging_sub_expression)]
1164                     let _ = || {
1165                         $crate::__init_internal!(make_initializer:
1166                             @slot(slot),
1167                             @type_name($t),
1168                             @munch_fields($($fields)*,),
1169                             @acc(),
1170                         );
1171                     };
1172                 }
1173                 Ok(__InitOk)
1174             }
1175         );
1176         let init = move |slot| -> ::core::result::Result<(), $err> {
1177             init(slot).map(|__InitOk| ())
1178         };
1179         let init = unsafe { $crate::init::$construct_closure::<_, $err>(init) };
1180         init
1181     }};
1182     (init_slot($($use_data:ident)?):
1183         @data($data:ident),
1184         @slot($slot:ident),
1185         @guards($($guards:ident,)*),
1186         @munch_fields($(..Zeroable::zeroed())? $(,)?),
1187     ) => {
1188         // Endpoint of munching, no fields are left. If execution reaches this point, all fields
1189         // have been initialized. Therefore we can now dismiss the guards by forgetting them.
1190         $(::core::mem::forget($guards);)*
1191     };
1192     (init_slot($use_data:ident): // `use_data` is present, so we use the `data` to init fields.
1193         @data($data:ident),
1194         @slot($slot:ident),
1195         @guards($($guards:ident,)*),
1196         // In-place initialization syntax.
1197         @munch_fields($field:ident <- $val:expr, $($rest:tt)*),
1198     ) => {
1199         let init = $val;
1200         // Call the initializer.
1201         //
1202         // SAFETY: `slot` is valid, because we are inside of an initializer closure, we
1203         // return when an error/panic occurs.
1204         // We also use the `data` to require the correct trait (`Init` or `PinInit`) for `$field`.
1205         unsafe { $data.$field(::core::ptr::addr_of_mut!((*$slot).$field), init)? };
1206         // Create the drop guard:
1207         //
1208         // We rely on macro hygiene to make it impossible for users to access this local variable.
1209         // We use `paste!` to create new hygiene for `$field`.
1210         ::kernel::macros::paste! {
1211             // SAFETY: We forget the guard later when initialization has succeeded.
1212             let [< __ $field _guard >] = unsafe {
1213                 $crate::init::__internal::DropGuard::new(::core::ptr::addr_of_mut!((*$slot).$field))
1214             };
1215 
1216             $crate::__init_internal!(init_slot($use_data):
1217                 @data($data),
1218                 @slot($slot),
1219                 @guards([< __ $field _guard >], $($guards,)*),
1220                 @munch_fields($($rest)*),
1221             );
1222         }
1223     };
1224     (init_slot(): // No `use_data`, so we use `Init::__init` directly.
1225         @data($data:ident),
1226         @slot($slot:ident),
1227         @guards($($guards:ident,)*),
1228         // In-place initialization syntax.
1229         @munch_fields($field:ident <- $val:expr, $($rest:tt)*),
1230     ) => {
1231         let init = $val;
1232         // Call the initializer.
1233         //
1234         // SAFETY: `slot` is valid, because we are inside of an initializer closure, we
1235         // return when an error/panic occurs.
1236         unsafe { $crate::init::Init::__init(init, ::core::ptr::addr_of_mut!((*$slot).$field))? };
1237         // Create the drop guard:
1238         //
1239         // We rely on macro hygiene to make it impossible for users to access this local variable.
1240         // We use `paste!` to create new hygiene for `$field`.
1241         ::kernel::macros::paste! {
1242             // SAFETY: We forget the guard later when initialization has succeeded.
1243             let [< __ $field _guard >] = unsafe {
1244                 $crate::init::__internal::DropGuard::new(::core::ptr::addr_of_mut!((*$slot).$field))
1245             };
1246 
1247             $crate::__init_internal!(init_slot():
1248                 @data($data),
1249                 @slot($slot),
1250                 @guards([< __ $field _guard >], $($guards,)*),
1251                 @munch_fields($($rest)*),
1252             );
1253         }
1254     };
1255     (init_slot($($use_data:ident)?):
1256         @data($data:ident),
1257         @slot($slot:ident),
1258         @guards($($guards:ident,)*),
1259         // Init by-value.
1260         @munch_fields($field:ident $(: $val:expr)?, $($rest:tt)*),
1261     ) => {
1262         {
1263             $(let $field = $val;)?
1264             // Initialize the field.
1265             //
1266             // SAFETY: The memory at `slot` is uninitialized.
1267             unsafe { ::core::ptr::write(::core::ptr::addr_of_mut!((*$slot).$field), $field) };
1268         }
1269         // Create the drop guard:
1270         //
1271         // We rely on macro hygiene to make it impossible for users to access this local variable.
1272         // We use `paste!` to create new hygiene for `$field`.
1273         ::kernel::macros::paste! {
1274             // SAFETY: We forget the guard later when initialization has succeeded.
1275             let [< __ $field _guard >] = unsafe {
1276                 $crate::init::__internal::DropGuard::new(::core::ptr::addr_of_mut!((*$slot).$field))
1277             };
1278 
1279             $crate::__init_internal!(init_slot($($use_data)?):
1280                 @data($data),
1281                 @slot($slot),
1282                 @guards([< __ $field _guard >], $($guards,)*),
1283                 @munch_fields($($rest)*),
1284             );
1285         }
1286     };
1287     (make_initializer:
1288         @slot($slot:ident),
1289         @type_name($t:path),
1290         @munch_fields(..Zeroable::zeroed() $(,)?),
1291         @acc($($acc:tt)*),
1292     ) => {
1293         // Endpoint, nothing more to munch, create the initializer. Since the users specified
1294         // `..Zeroable::zeroed()`, the slot will already have been zeroed and all field that have
1295         // not been overwritten are thus zero and initialized. We still check that all fields are
1296         // actually accessible by using the struct update syntax ourselves.
1297         // We are inside of a closure that is never executed and thus we can abuse `slot` to
1298         // get the correct type inference here:
1299         #[allow(unused_assignments)]
1300         unsafe {
1301             let mut zeroed = ::core::mem::zeroed();
1302             // We have to use type inference here to make zeroed have the correct type. This does
1303             // not get executed, so it has no effect.
1304             ::core::ptr::write($slot, zeroed);
1305             zeroed = ::core::mem::zeroed();
1306             // Here we abuse `paste!` to retokenize `$t`. Declarative macros have some internal
1307             // information that is associated to already parsed fragments, so a path fragment
1308             // cannot be used in this position. Doing the retokenization results in valid rust
1309             // code.
1310             ::kernel::macros::paste!(
1311                 ::core::ptr::write($slot, $t {
1312                     $($acc)*
1313                     ..zeroed
1314                 });
1315             );
1316         }
1317     };
1318     (make_initializer:
1319         @slot($slot:ident),
1320         @type_name($t:path),
1321         @munch_fields($(,)?),
1322         @acc($($acc:tt)*),
1323     ) => {
1324         // Endpoint, nothing more to munch, create the initializer.
1325         // Since we are in the closure that is never called, this will never get executed.
1326         // We abuse `slot` to get the correct type inference here:
1327         unsafe {
1328             // Here we abuse `paste!` to retokenize `$t`. Declarative macros have some internal
1329             // information that is associated to already parsed fragments, so a path fragment
1330             // cannot be used in this position. Doing the retokenization results in valid rust
1331             // code.
1332             ::kernel::macros::paste!(
1333                 ::core::ptr::write($slot, $t {
1334                     $($acc)*
1335                 });
1336             );
1337         }
1338     };
1339     (make_initializer:
1340         @slot($slot:ident),
1341         @type_name($t:path),
1342         @munch_fields($field:ident <- $val:expr, $($rest:tt)*),
1343         @acc($($acc:tt)*),
1344     ) => {
1345         $crate::__init_internal!(make_initializer:
1346             @slot($slot),
1347             @type_name($t),
1348             @munch_fields($($rest)*),
1349             @acc($($acc)* $field: ::core::panic!(),),
1350         );
1351     };
1352     (make_initializer:
1353         @slot($slot:ident),
1354         @type_name($t:path),
1355         @munch_fields($field:ident $(: $val:expr)?, $($rest:tt)*),
1356         @acc($($acc:tt)*),
1357     ) => {
1358         $crate::__init_internal!(make_initializer:
1359             @slot($slot),
1360             @type_name($t),
1361             @munch_fields($($rest)*),
1362             @acc($($acc)* $field: ::core::panic!(),),
1363         );
1364     };
1365 }
1366 
1367 #[doc(hidden)]
1368 #[macro_export]
1369 macro_rules! __derive_zeroable {
1370     (parse_input:
1371         @sig(
1372             $(#[$($struct_attr:tt)*])*
1373             $vis:vis struct $name:ident
1374             $(where $($whr:tt)*)?
1375         ),
1376         @impl_generics($($impl_generics:tt)*),
1377         @ty_generics($($ty_generics:tt)*),
1378         @body({
1379             $(
1380                 $(#[$($field_attr:tt)*])*
1381                 $field:ident : $field_ty:ty
1382             ),* $(,)?
1383         }),
1384     ) => {
1385         // SAFETY: Every field type implements `Zeroable` and padding bytes may be zero.
1386         #[automatically_derived]
1387         unsafe impl<$($impl_generics)*> $crate::init::Zeroable for $name<$($ty_generics)*>
1388         where
1389             $($($whr)*)?
1390         {}
1391         const _: () = {
1392             fn assert_zeroable<T: ?::core::marker::Sized + $crate::init::Zeroable>() {}
1393             fn ensure_zeroable<$($impl_generics)*>()
1394                 where $($($whr)*)?
1395             {
1396                 $(assert_zeroable::<$field_ty>();)*
1397             }
1398         };
1399     };
1400 }
1401