xref: /netbsd/common/lib/libc/gen/radixtree.c (revision ae9fb279)
1 /*	$NetBSD: radixtree.c,v 1.29 2023/03/06 21:39:06 andvar Exp $	*/
2 
3 /*-
4  * Copyright (c)2011,2012,2013 YAMAMOTO Takashi,
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /*
30  * radixtree.c
31  *
32  * Overview:
33  *
34  * This is an implementation of radix tree, whose keys are uint64_t and leafs
35  * are user provided pointers.
36  *
37  * Leaf nodes are just void * and this implementation doesn't care about
38  * what they actually point to.  However, this implementation has an assumption
39  * about their alignment.  Specifically, this implementation assumes that their
40  * 2 LSBs are always zero and uses them for internal accounting.
41  *
42  * Intermediate nodes and memory allocation:
43  *
44  * Intermediate nodes are automatically allocated and freed internally and
45  * basically users don't need to care about them.  The allocation is done via
46  * pool_cache_get(9) for _KERNEL, malloc(3) for userland, and alloc() for
47  * _STANDALONE environment.  Only radix_tree_insert_node function can allocate
48  * memory for intermediate nodes and thus can fail for ENOMEM.
49  *
50  * Memory Efficiency:
51  *
52  * It's designed to work efficiently with dense index distribution.
53  * The memory consumption (number of necessary intermediate nodes) heavily
54  * depends on the index distribution.  Basically, more dense index distribution
55  * consumes less nodes per item.  Approximately,
56  *
57  *  - the best case: about RADIX_TREE_PTR_PER_NODE items per intermediate node.
58  *    it would look like the following.
59  *
60  *     root (t_height=1)
61  *      |
62  *      v
63  *      [ | | | ]   (intermediate node.  RADIX_TREE_PTR_PER_NODE=4 in this fig)
64  *       | | | |
65  *       v v v v
66  *       p p p p    (items)
67  *
68  *  - the worst case: RADIX_TREE_MAX_HEIGHT intermediate nodes per item.
69  *    it would look like the following if RADIX_TREE_MAX_HEIGHT=3.
70  *
71  *     root (t_height=3)
72  *      |
73  *      v
74  *      [ | | | ]
75  *           |
76  *           v
77  *           [ | | | ]
78  *                |
79  *                v
80  *                [ | | | ]
81  *                   |
82  *                   v
83  *                   p
84  *
85  * The height of tree (t_height) is dynamic.  It's smaller if only small
86  * index values are used.  As an extreme case, if only index 0 is used,
87  * the corresponding value is directly stored in the root of the tree
88  * (struct radix_tree) without allocating any intermediate nodes.  In that
89  * case, t_height=0.
90  *
91  * Gang lookup:
92  *
93  * This implementation provides a way to scan many nodes quickly via
94  * radix_tree_gang_lookup_node function and its varients.
95  *
96  * Tags:
97  *
98  * This implementation provides tagging functionality, which allows quick
99  * scanning of a subset of leaf nodes.  Leaf nodes are untagged when inserted
100  * into the tree and can be tagged by radix_tree_set_tag function.
101  * radix_tree_gang_lookup_tagged_node function and its variants returns only
102  * leaf nodes with the given tag.  To reduce amount of nodes to visit for
103  * these functions, this implementation keeps tagging information in internal
104  * intermediate nodes and quickly skips uninterested parts of a tree.
105  *
106  * A tree has RADIX_TREE_TAG_ID_MAX independent tag spaces, each of which are
107  * identified by a zero-origin numbers, tagid.  For the current implementation,
108  * RADIX_TREE_TAG_ID_MAX is 2.  A set of tags is described as a bitmask tagmask,
109  * which is a bitwise OR of (1 << tagid).
110  */
111 
112 #include <sys/cdefs.h>
113 
114 #if defined(_KERNEL) || defined(_STANDALONE)
115 __KERNEL_RCSID(0, "$NetBSD: radixtree.c,v 1.29 2023/03/06 21:39:06 andvar Exp $");
116 #include <sys/param.h>
117 #include <sys/errno.h>
118 #include <sys/pool.h>
119 #include <sys/radixtree.h>
120 #include <lib/libkern/libkern.h>
121 #if defined(_STANDALONE)
122 #include <lib/libsa/stand.h>
123 #endif /* defined(_STANDALONE) */
124 #else /* defined(_KERNEL) || defined(_STANDALONE) */
125 __RCSID("$NetBSD: radixtree.c,v 1.29 2023/03/06 21:39:06 andvar Exp $");
126 #include <assert.h>
127 #include <errno.h>
128 #include <stdbool.h>
129 #include <stdlib.h>
130 #include <string.h>
131 #if 1
132 #define KASSERT assert
133 #else
134 #define KASSERT(a)	/* nothing */
135 #endif
136 #endif /* defined(_KERNEL) || defined(_STANDALONE) */
137 
138 #include <sys/radixtree.h>
139 
140 #define	RADIX_TREE_BITS_PER_HEIGHT	4	/* XXX tune */
141 #define	RADIX_TREE_PTR_PER_NODE		(1 << RADIX_TREE_BITS_PER_HEIGHT)
142 #define	RADIX_TREE_MAX_HEIGHT		(64 / RADIX_TREE_BITS_PER_HEIGHT)
143 #define	RADIX_TREE_INVALID_HEIGHT	(RADIX_TREE_MAX_HEIGHT + 1)
144 __CTASSERT((64 % RADIX_TREE_BITS_PER_HEIGHT) == 0);
145 
146 __CTASSERT(((1 << RADIX_TREE_TAG_ID_MAX) & (sizeof(int) - 1)) == 0);
147 #define	RADIX_TREE_TAG_MASK	((1 << RADIX_TREE_TAG_ID_MAX) - 1)
148 
149 static inline void *
entry_ptr(void * p)150 entry_ptr(void *p)
151 {
152 
153 	return (void *)((uintptr_t)p & ~RADIX_TREE_TAG_MASK);
154 }
155 
156 static inline unsigned int
entry_tagmask(void * p)157 entry_tagmask(void *p)
158 {
159 
160 	return (uintptr_t)p & RADIX_TREE_TAG_MASK;
161 }
162 
163 static inline void *
entry_compose(void * p,unsigned int tagmask)164 entry_compose(void *p, unsigned int tagmask)
165 {
166 
167 	return (void *)((uintptr_t)p | tagmask);
168 }
169 
170 static inline bool
entry_match_p(void * p,unsigned int tagmask)171 entry_match_p(void *p, unsigned int tagmask)
172 {
173 
174 	KASSERT(entry_ptr(p) != NULL || entry_tagmask(p) == 0);
175 	if (p == NULL) {
176 		return false;
177 	}
178 	if (tagmask == 0) {
179 		return true;
180 	}
181 	return (entry_tagmask(p) & tagmask) != 0;
182 }
183 
184 /*
185  * radix_tree_node: an intermediate node
186  *
187  * we don't care the type of leaf nodes.  they are just void *.
188  *
189  * we used to maintain a count of non-NULL nodes in this structure, but it
190  * prevented it from being aligned to a cache line boundary; the performance
191  * benefit from being cache friendly is greater than the benefit of having
192  * a dedicated count value, especially in multi-processor situations where
193  * we need to avoid intra-pool-page false sharing.
194  */
195 
196 struct radix_tree_node {
197 	void *n_ptrs[RADIX_TREE_PTR_PER_NODE];
198 };
199 
200 /*
201  * p_refs[0].pptr == &t->t_root
202  *	:
203  * p_refs[n].pptr == &(*p_refs[n-1])->n_ptrs[x]
204  *	:
205  *	:
206  * p_refs[t->t_height].pptr == &leaf_pointer
207  */
208 
209 struct radix_tree_path {
210 	struct radix_tree_node_ref {
211 		void **pptr;
212 	} p_refs[RADIX_TREE_MAX_HEIGHT + 1]; /* +1 for the root ptr */
213 	/*
214 	 * p_lastidx is either the index of the last valid element of p_refs[]
215 	 * or RADIX_TREE_INVALID_HEIGHT.
216 	 * RADIX_TREE_INVALID_HEIGHT means that radix_tree_lookup_ptr found
217 	 * that the height of the tree is not enough to cover the given index.
218 	 */
219 	unsigned int p_lastidx;
220 };
221 
222 static inline void **
path_pptr(const struct radix_tree * t,const struct radix_tree_path * p,unsigned int height)223 path_pptr(const struct radix_tree *t, const struct radix_tree_path *p,
224     unsigned int height)
225 {
226 
227 	KASSERT(height <= t->t_height);
228 	return p->p_refs[height].pptr;
229 }
230 
231 static inline struct radix_tree_node *
path_node(const struct radix_tree * t,const struct radix_tree_path * p,unsigned int height)232 path_node(const struct radix_tree * t, const struct radix_tree_path *p,
233     unsigned int height)
234 {
235 
236 	KASSERT(height <= t->t_height);
237 	return entry_ptr(*path_pptr(t, p, height));
238 }
239 
240 /*
241  * radix_tree_init_tree:
242  *
243  * Initialize a tree.
244  */
245 
246 void
radix_tree_init_tree(struct radix_tree * t)247 radix_tree_init_tree(struct radix_tree *t)
248 {
249 
250 	t->t_height = 0;
251 	t->t_root = NULL;
252 }
253 
254 /*
255  * radix_tree_fini_tree:
256  *
257  * Finish using a tree.
258  */
259 
260 void
radix_tree_fini_tree(struct radix_tree * t)261 radix_tree_fini_tree(struct radix_tree *t)
262 {
263 
264 	KASSERT(t->t_root == NULL);
265 	KASSERT(t->t_height == 0);
266 }
267 
268 /*
269  * radix_tree_empty_tree_p:
270  *
271  * Return if the tree is empty.
272  */
273 
274 bool
radix_tree_empty_tree_p(struct radix_tree * t)275 radix_tree_empty_tree_p(struct radix_tree *t)
276 {
277 
278 	return t->t_root == NULL;
279 }
280 
281 /*
282  * radix_tree_empty_tree_p:
283  *
284  * Return true if the tree has any nodes with the given tag.  Otherwise
285  * return false.
286  *
287  * It's illegal to call this function with tagmask 0.
288  */
289 
290 bool
radix_tree_empty_tagged_tree_p(struct radix_tree * t,unsigned int tagmask)291 radix_tree_empty_tagged_tree_p(struct radix_tree *t, unsigned int tagmask)
292 {
293 
294 	KASSERT(tagmask != 0);
295 	return (entry_tagmask(t->t_root) & tagmask) == 0;
296 }
297 
298 static void
radix_tree_node_init(struct radix_tree_node * n)299 radix_tree_node_init(struct radix_tree_node *n)
300 {
301 
302 	memset(n, 0, sizeof(*n));
303 }
304 
305 #if defined(_KERNEL)
306 pool_cache_t radix_tree_node_cache __read_mostly;
307 
308 static int
radix_tree_node_ctor(void * dummy,void * item,int flags)309 radix_tree_node_ctor(void *dummy, void *item, int flags)
310 {
311 	struct radix_tree_node *n = item;
312 
313 	KASSERT(dummy == NULL);
314 	radix_tree_node_init(n);
315 	return 0;
316 }
317 
318 /*
319  * radix_tree_init:
320  *
321  * initialize the subsystem.
322  */
323 
324 void
radix_tree_init(void)325 radix_tree_init(void)
326 {
327 
328 	radix_tree_node_cache = pool_cache_init(sizeof(struct radix_tree_node),
329 	    coherency_unit, 0, PR_LARGECACHE, "radixnode", NULL, IPL_NONE,
330 	    radix_tree_node_ctor, NULL, NULL);
331 	KASSERT(radix_tree_node_cache != NULL);
332 }
333 
334 /*
335  * radix_tree_await_memory:
336  *
337  * after an insert has failed with ENOMEM, wait for memory to become
338  * available, so the caller can retry.  this needs to ensure that the
339  * maximum possible required number of nodes is available.
340  */
341 
342 void
radix_tree_await_memory(void)343 radix_tree_await_memory(void)
344 {
345 	struct radix_tree_node *nodes[RADIX_TREE_MAX_HEIGHT];
346 	int i;
347 
348 	for (i = 0; i < __arraycount(nodes); i++) {
349 		nodes[i] = pool_cache_get(radix_tree_node_cache, PR_WAITOK);
350 	}
351 	while (--i >= 0) {
352 		pool_cache_put(radix_tree_node_cache, nodes[i]);
353 	}
354 }
355 
356 #endif /* defined(_KERNEL) */
357 
358 /*
359  * radix_tree_sum_node:
360  *
361  * return the logical sum of all entries in the given node.  used to quickly
362  * check for tag masks or empty nodes.
363  */
364 
365 static uintptr_t
radix_tree_sum_node(const struct radix_tree_node * n)366 radix_tree_sum_node(const struct radix_tree_node *n)
367 {
368 #if RADIX_TREE_PTR_PER_NODE > 16
369 	unsigned int i;
370 	uintptr_t sum;
371 
372 	for (i = 0, sum = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
373 		sum |= (uintptr_t)n->n_ptrs[i];
374 	}
375 	return sum;
376 #else /* RADIX_TREE_PTR_PER_NODE > 16 */
377 	uintptr_t sum;
378 
379 	/*
380 	 * Unrolling the above is much better than a tight loop with two
381 	 * test+branch pairs.  On x86 with gcc 5.5.0 this compiles into 19
382 	 * deterministic instructions including the "return" and prologue &
383 	 * epilogue.
384 	 */
385 	sum = (uintptr_t)n->n_ptrs[0];
386 	sum |= (uintptr_t)n->n_ptrs[1];
387 	sum |= (uintptr_t)n->n_ptrs[2];
388 	sum |= (uintptr_t)n->n_ptrs[3];
389 #if RADIX_TREE_PTR_PER_NODE > 4
390 	sum |= (uintptr_t)n->n_ptrs[4];
391 	sum |= (uintptr_t)n->n_ptrs[5];
392 	sum |= (uintptr_t)n->n_ptrs[6];
393 	sum |= (uintptr_t)n->n_ptrs[7];
394 #endif
395 #if RADIX_TREE_PTR_PER_NODE > 8
396 	sum |= (uintptr_t)n->n_ptrs[8];
397 	sum |= (uintptr_t)n->n_ptrs[9];
398 	sum |= (uintptr_t)n->n_ptrs[10];
399 	sum |= (uintptr_t)n->n_ptrs[11];
400 	sum |= (uintptr_t)n->n_ptrs[12];
401 	sum |= (uintptr_t)n->n_ptrs[13];
402 	sum |= (uintptr_t)n->n_ptrs[14];
403 	sum |= (uintptr_t)n->n_ptrs[15];
404 #endif
405 	return sum;
406 #endif /* RADIX_TREE_PTR_PER_NODE > 16 */
407 }
408 
409 static int __unused
radix_tree_node_count_ptrs(const struct radix_tree_node * n)410 radix_tree_node_count_ptrs(const struct radix_tree_node *n)
411 {
412 	unsigned int i, c;
413 
414 	for (i = c = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
415 		c += (n->n_ptrs[i] != NULL);
416 	}
417 	return c;
418 }
419 
420 static struct radix_tree_node *
radix_tree_alloc_node(void)421 radix_tree_alloc_node(void)
422 {
423 	struct radix_tree_node *n;
424 
425 #if defined(_KERNEL)
426 	/*
427 	 * note that pool_cache_get can block.
428 	 */
429 	n = pool_cache_get(radix_tree_node_cache, PR_NOWAIT);
430 #else /* defined(_KERNEL) */
431 #if defined(_STANDALONE)
432 	n = alloc(sizeof(*n));
433 #else /* defined(_STANDALONE) */
434 	n = malloc(sizeof(*n));
435 #endif /* defined(_STANDALONE) */
436 	if (n != NULL) {
437 		radix_tree_node_init(n);
438 	}
439 #endif /* defined(_KERNEL) */
440 	KASSERT(n == NULL || radix_tree_sum_node(n) == 0);
441 	return n;
442 }
443 
444 static void
radix_tree_free_node(struct radix_tree_node * n)445 radix_tree_free_node(struct radix_tree_node *n)
446 {
447 
448 	KASSERT(radix_tree_sum_node(n) == 0);
449 #if defined(_KERNEL)
450 	pool_cache_put(radix_tree_node_cache, n);
451 #elif defined(_STANDALONE)
452 	dealloc(n, sizeof(*n));
453 #else
454 	free(n);
455 #endif
456 }
457 
458 /*
459  * radix_tree_grow:
460  *
461  * increase the height of the tree.
462  */
463 
464 static __noinline int
radix_tree_grow(struct radix_tree * t,unsigned int newheight)465 radix_tree_grow(struct radix_tree *t, unsigned int newheight)
466 {
467 	const unsigned int tagmask = entry_tagmask(t->t_root);
468 	struct radix_tree_node *newnodes[RADIX_TREE_MAX_HEIGHT];
469 	void *root;
470 	int h;
471 
472 	KASSERT(newheight <= RADIX_TREE_MAX_HEIGHT);
473 	if ((root = t->t_root) == NULL) {
474 		t->t_height = newheight;
475 		return 0;
476 	}
477 	for (h = t->t_height; h < newheight; h++) {
478 		newnodes[h] = radix_tree_alloc_node();
479 		if (__predict_false(newnodes[h] == NULL)) {
480 			while (--h >= (int)t->t_height) {
481 				newnodes[h]->n_ptrs[0] = NULL;
482 				radix_tree_free_node(newnodes[h]);
483 			}
484 			return ENOMEM;
485 		}
486 		newnodes[h]->n_ptrs[0] = root;
487 		root = entry_compose(newnodes[h], tagmask);
488 	}
489 	t->t_root = root;
490 	t->t_height = h;
491 	return 0;
492 }
493 
494 /*
495  * radix_tree_lookup_ptr:
496  *
497  * an internal helper function used for various exported functions.
498  *
499  * return the pointer to store the node for the given index.
500  *
501  * if alloc is true, try to allocate the storage.  (note for _KERNEL:
502  * in that case, this function can block.)  if the allocation failed or
503  * alloc is false, return NULL.
504  *
505  * if path is not NULL, fill it for the caller's investigation.
506  *
507  * if tagmask is not zero, search only for nodes with the tag set.
508  * note that, however, this function doesn't check the tagmask for the leaf
509  * pointer.  it's a caller's responsibility to investigate the value which
510  * is pointed by the returned pointer if necessary.
511  *
512  * while this function is a bit large, as it's called with some constant
513  * arguments, inlining might have benefits.  anyway, a compiler will decide.
514  */
515 
516 static inline void **
radix_tree_lookup_ptr(struct radix_tree * t,uint64_t idx,struct radix_tree_path * path,bool alloc,const unsigned int tagmask)517 radix_tree_lookup_ptr(struct radix_tree *t, uint64_t idx,
518     struct radix_tree_path *path, bool alloc, const unsigned int tagmask)
519 {
520 	struct radix_tree_node *n;
521 	int hshift = RADIX_TREE_BITS_PER_HEIGHT * t->t_height;
522 	int shift;
523 	void **vpp;
524 	const uint64_t mask = (UINT64_C(1) << RADIX_TREE_BITS_PER_HEIGHT) - 1;
525 	struct radix_tree_node_ref *refs = NULL;
526 
527 	/*
528 	 * check unsupported combinations
529 	 */
530 	KASSERT(tagmask == 0 || !alloc);
531 	KASSERT(path == NULL || !alloc);
532 	vpp = &t->t_root;
533 	if (path != NULL) {
534 		refs = path->p_refs;
535 		refs->pptr = vpp;
536 	}
537 	n = NULL;
538 	for (shift = 64 - RADIX_TREE_BITS_PER_HEIGHT; shift >= 0;) {
539 		struct radix_tree_node *c;
540 		void *entry;
541 		const uint64_t i = (idx >> shift) & mask;
542 
543 		if (shift >= hshift) {
544 			unsigned int newheight;
545 
546 			KASSERT(vpp == &t->t_root);
547 			if (i == 0) {
548 				shift -= RADIX_TREE_BITS_PER_HEIGHT;
549 				continue;
550 			}
551 			if (!alloc) {
552 				if (path != NULL) {
553 					KASSERT((refs - path->p_refs) == 0);
554 					path->p_lastidx =
555 					    RADIX_TREE_INVALID_HEIGHT;
556 				}
557 				return NULL;
558 			}
559 			newheight = shift / RADIX_TREE_BITS_PER_HEIGHT + 1;
560 			if (radix_tree_grow(t, newheight)) {
561 				return NULL;
562 			}
563 			hshift = RADIX_TREE_BITS_PER_HEIGHT * t->t_height;
564 		}
565 		entry = *vpp;
566 		c = entry_ptr(entry);
567 		if (c == NULL ||
568 		    (tagmask != 0 &&
569 		    (entry_tagmask(entry) & tagmask) == 0)) {
570 			if (!alloc) {
571 				if (path != NULL) {
572 					path->p_lastidx = refs - path->p_refs;
573 				}
574 				return NULL;
575 			}
576 			c = radix_tree_alloc_node();
577 			if (c == NULL) {
578 				return NULL;
579 			}
580 			*vpp = c;
581 		}
582 		n = c;
583 		vpp = &n->n_ptrs[i];
584 		if (path != NULL) {
585 			refs++;
586 			refs->pptr = vpp;
587 		}
588 		shift -= RADIX_TREE_BITS_PER_HEIGHT;
589 	}
590 	if (alloc) {
591 		KASSERT(*vpp == NULL);
592 	}
593 	if (path != NULL) {
594 		path->p_lastidx = refs - path->p_refs;
595 	}
596 	return vpp;
597 }
598 
599 /*
600  * radix_tree_undo_insert_node:
601  *
602  * Undo the effects of a failed insert.  The conditions that led to the
603  * insert may change and it may not be retried.  If the insert is not
604  * retried, there will be no corresponding radix_tree_remove_node() for
605  * this index in the future.  Therefore any adjustments made to the tree
606  * before memory was exhausted must be reverted.
607  */
608 
609 static __noinline void
radix_tree_undo_insert_node(struct radix_tree * t,uint64_t idx)610 radix_tree_undo_insert_node(struct radix_tree *t, uint64_t idx)
611 {
612 	struct radix_tree_path path;
613 	int i;
614 
615 	(void)radix_tree_lookup_ptr(t, idx, &path, false, 0);
616 	if (path.p_lastidx == RADIX_TREE_INVALID_HEIGHT) {
617 		/*
618 		 * no nodes were inserted.
619 		 */
620 		return;
621 	}
622 	for (i = path.p_lastidx - 1; i >= 0; i--) {
623 		struct radix_tree_node ** const pptr =
624 		    (struct radix_tree_node **)path_pptr(t, &path, i);
625 		struct radix_tree_node *n;
626 
627 		KASSERT(pptr != NULL);
628 		n = entry_ptr(*pptr);
629 		KASSERT(n != NULL);
630 		if (radix_tree_sum_node(n) != 0) {
631 			break;
632 		}
633 		radix_tree_free_node(n);
634 		*pptr = NULL;
635 	}
636 	/*
637 	 * fix up height
638 	 */
639 	if (i < 0) {
640 		KASSERT(t->t_root == NULL);
641 		t->t_height = 0;
642 	}
643 }
644 
645 /*
646  * radix_tree_insert_node:
647  *
648  * Insert the node at the given index.
649  *
650  * It's illegal to insert NULL.  It's illegal to insert a non-aligned pointer.
651  *
652  * This function returns ENOMEM if necessary memory allocation failed.
653  * Otherwise, this function returns 0.
654  *
655  * Note that inserting a node can involves memory allocation for intermediate
656  * nodes.  If _KERNEL, it's done with no-sleep IPL_NONE memory allocation.
657  *
658  * For the newly inserted node, all tags are cleared.
659  */
660 
661 int
radix_tree_insert_node(struct radix_tree * t,uint64_t idx,void * p)662 radix_tree_insert_node(struct radix_tree *t, uint64_t idx, void *p)
663 {
664 	void **vpp;
665 
666 	KASSERT(p != NULL);
667 	KASSERT(entry_tagmask(entry_compose(p, 0)) == 0);
668 	vpp = radix_tree_lookup_ptr(t, idx, NULL, true, 0);
669 	if (__predict_false(vpp == NULL)) {
670 		radix_tree_undo_insert_node(t, idx);
671 		return ENOMEM;
672 	}
673 	KASSERT(*vpp == NULL);
674 	*vpp = p;
675 	return 0;
676 }
677 
678 /*
679  * radix_tree_replace_node:
680  *
681  * Replace a node at the given index with the given node and return the
682  * replaced one.
683  *
684  * It's illegal to try to replace a node which has not been inserted.
685  *
686  * This function keeps tags intact.
687  */
688 
689 void *
radix_tree_replace_node(struct radix_tree * t,uint64_t idx,void * p)690 radix_tree_replace_node(struct radix_tree *t, uint64_t idx, void *p)
691 {
692 	void **vpp;
693 	void *oldp;
694 
695 	KASSERT(p != NULL);
696 	KASSERT(entry_tagmask(entry_compose(p, 0)) == 0);
697 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
698 	KASSERT(vpp != NULL);
699 	oldp = *vpp;
700 	KASSERT(oldp != NULL);
701 	*vpp = entry_compose(p, entry_tagmask(*vpp));
702 	return entry_ptr(oldp);
703 }
704 
705 /*
706  * radix_tree_remove_node:
707  *
708  * Remove the node at the given index.
709  *
710  * It's illegal to try to remove a node which has not been inserted.
711  */
712 
713 void *
radix_tree_remove_node(struct radix_tree * t,uint64_t idx)714 radix_tree_remove_node(struct radix_tree *t, uint64_t idx)
715 {
716 	struct radix_tree_path path;
717 	void **vpp;
718 	void *oldp;
719 	int i;
720 
721 	vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
722 	KASSERT(vpp != NULL);
723 	oldp = *vpp;
724 	KASSERT(oldp != NULL);
725 	KASSERT(path.p_lastidx == t->t_height);
726 	KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
727 	*vpp = NULL;
728 	for (i = t->t_height - 1; i >= 0; i--) {
729 		void *entry;
730 		struct radix_tree_node ** const pptr =
731 		    (struct radix_tree_node **)path_pptr(t, &path, i);
732 		struct radix_tree_node *n;
733 
734 		KASSERT(pptr != NULL);
735 		entry = *pptr;
736 		n = entry_ptr(entry);
737 		KASSERT(n != NULL);
738 		if (radix_tree_sum_node(n) != 0) {
739 			break;
740 		}
741 		radix_tree_free_node(n);
742 		*pptr = NULL;
743 	}
744 	/*
745 	 * fix up height
746 	 */
747 	if (i < 0) {
748 		KASSERT(t->t_root == NULL);
749 		t->t_height = 0;
750 	}
751 	/*
752 	 * update tags
753 	 */
754 	for (; i >= 0; i--) {
755 		void *entry;
756 		struct radix_tree_node ** const pptr =
757 		    (struct radix_tree_node **)path_pptr(t, &path, i);
758 		struct radix_tree_node *n;
759 		unsigned int newmask;
760 
761 		KASSERT(pptr != NULL);
762 		entry = *pptr;
763 		n = entry_ptr(entry);
764 		KASSERT(n != NULL);
765 		KASSERT(radix_tree_sum_node(n) != 0);
766 		newmask = radix_tree_sum_node(n) & RADIX_TREE_TAG_MASK;
767 		if (newmask == entry_tagmask(entry)) {
768 			break;
769 		}
770 		*pptr = entry_compose(n, newmask);
771 	}
772 	/*
773 	 * XXX is it worth to try to reduce height?
774 	 * if we do that, make radix_tree_grow rollback its change as well.
775 	 */
776 	return entry_ptr(oldp);
777 }
778 
779 /*
780  * radix_tree_lookup_node:
781  *
782  * Returns the node at the given index.
783  * Returns NULL if nothing is found at the given index.
784  */
785 
786 void *
radix_tree_lookup_node(struct radix_tree * t,uint64_t idx)787 radix_tree_lookup_node(struct radix_tree *t, uint64_t idx)
788 {
789 	void **vpp;
790 
791 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
792 	if (vpp == NULL) {
793 		return NULL;
794 	}
795 	return entry_ptr(*vpp);
796 }
797 
798 static inline void
gang_lookup_init(struct radix_tree * t,uint64_t idx,struct radix_tree_path * path,const unsigned int tagmask)799 gang_lookup_init(struct radix_tree *t, uint64_t idx,
800     struct radix_tree_path *path, const unsigned int tagmask)
801 {
802 	void **vpp __unused;
803 
804 	vpp = radix_tree_lookup_ptr(t, idx, path, false, tagmask);
805 	KASSERT(vpp == NULL ||
806 	    vpp == path_pptr(t, path, path->p_lastidx));
807 	KASSERT(&t->t_root == path_pptr(t, path, 0));
808 	KASSERT(path->p_lastidx == RADIX_TREE_INVALID_HEIGHT ||
809 	   path->p_lastidx == t->t_height ||
810 	   !entry_match_p(*path_pptr(t, path, path->p_lastidx), tagmask));
811 }
812 
813 /*
814  * gang_lookup_scan:
815  *
816  * a helper routine for radix_tree_gang_lookup_node and its variants.
817  */
818 
819 static inline unsigned int
820 __attribute__((__always_inline__))
gang_lookup_scan(struct radix_tree * t,struct radix_tree_path * path,void ** results,const unsigned int maxresults,const unsigned int tagmask,const bool reverse,const bool dense)821 gang_lookup_scan(struct radix_tree *t, struct radix_tree_path *path,
822     void **results, const unsigned int maxresults, const unsigned int tagmask,
823     const bool reverse, const bool dense)
824 {
825 
826 	/*
827 	 * we keep the path updated only for lastidx-1.
828 	 * vpp is what path_pptr(t, path, lastidx) would be.
829 	 */
830 	void **vpp;
831 	unsigned int nfound;
832 	unsigned int lastidx;
833 	/*
834 	 * set up scan direction dependant constants so that we can iterate
835 	 * n_ptrs as the following.
836 	 *
837 	 *	for (i = first; i != guard; i += step)
838 	 *		visit n->n_ptrs[i];
839 	 */
840 	const int step = reverse ? -1 : 1;
841 	const unsigned int first = reverse ? RADIX_TREE_PTR_PER_NODE - 1 : 0;
842 	const unsigned int last = reverse ? 0 : RADIX_TREE_PTR_PER_NODE - 1;
843 	const unsigned int guard = last + step;
844 
845 	KASSERT(maxresults > 0);
846 	KASSERT(&t->t_root == path_pptr(t, path, 0));
847 	lastidx = path->p_lastidx;
848 	KASSERT(lastidx == RADIX_TREE_INVALID_HEIGHT ||
849 	   lastidx == t->t_height ||
850 	   !entry_match_p(*path_pptr(t, path, lastidx), tagmask));
851 	nfound = 0;
852 	if (lastidx == RADIX_TREE_INVALID_HEIGHT) {
853 		/*
854 		 * requested idx is beyond the right-most node.
855 		 */
856 		if (reverse && !dense) {
857 			lastidx = 0;
858 			vpp = path_pptr(t, path, lastidx);
859 			goto descend;
860 		}
861 		return 0;
862 	}
863 	vpp = path_pptr(t, path, lastidx);
864 	while (/*CONSTCOND*/true) {
865 		struct radix_tree_node *n;
866 		unsigned int i;
867 
868 		if (entry_match_p(*vpp, tagmask)) {
869 			KASSERT(lastidx == t->t_height);
870 			/*
871 			 * record the matching non-NULL leaf.
872 			 */
873 			results[nfound] = entry_ptr(*vpp);
874 			nfound++;
875 			if (nfound == maxresults) {
876 				return nfound;
877 			}
878 		} else if (dense) {
879 			return nfound;
880 		}
881 scan_siblings:
882 		/*
883 		 * try to find the next matching non-NULL sibling.
884 		 */
885 		if (lastidx == 0) {
886 			/*
887 			 * the root has no siblings.
888 			 * we've done.
889 			 */
890 			KASSERT(vpp == &t->t_root);
891 			break;
892 		}
893 		n = path_node(t, path, lastidx - 1);
894 		for (i = vpp - n->n_ptrs + step; i != guard; i += step) {
895 			KASSERT(i < RADIX_TREE_PTR_PER_NODE);
896 			if (entry_match_p(n->n_ptrs[i], tagmask)) {
897 				vpp = &n->n_ptrs[i];
898 				break;
899 			} else if (dense) {
900 				return nfound;
901 			}
902 		}
903 		if (i == guard) {
904 			/*
905 			 * not found.  go to parent.
906 			 */
907 			lastidx--;
908 			vpp = path_pptr(t, path, lastidx);
909 			goto scan_siblings;
910 		}
911 descend:
912 		/*
913 		 * following the left-most (or right-most in the case of
914 		 * reverse scan) child node, descend until reaching the leaf or
915 		 * a non-matching entry.
916 		 */
917 		while (entry_match_p(*vpp, tagmask) && lastidx < t->t_height) {
918 			/*
919 			 * save vpp in the path so that we can come back to this
920 			 * node after finishing visiting children.
921 			 */
922 			path->p_refs[lastidx].pptr = vpp;
923 			n = entry_ptr(*vpp);
924 			vpp = &n->n_ptrs[first];
925 			lastidx++;
926 		}
927 	}
928 	return nfound;
929 }
930 
931 /*
932  * radix_tree_gang_lookup_node:
933  *
934  * Scan the tree starting from the given index in the ascending order and
935  * return found nodes.
936  *
937  * results should be an array large enough to hold maxresults pointers.
938  * This function returns the number of nodes found, up to maxresults.
939  * Returning less than maxresults means there are no more nodes in the tree.
940  *
941  * If dense == true, this function stops scanning when it founds a hole of
942  * indexes.  I.e. an index for which radix_tree_lookup_node would returns NULL.
943  * If dense == false, this function skips holes and continue scanning until
944  * maxresults nodes are found or it reaches the limit of the index range.
945  *
946  * The result of this function is semantically equivalent to what could be
947  * obtained by repeated calls of radix_tree_lookup_node with increasing index.
948  * but this function is expected to be computationally cheaper when looking up
949  * multiple nodes at once.  Especially, it's expected to be much cheaper when
950  * node indexes are distributed sparsely.
951  *
952  * Note that this function doesn't return index values of found nodes.
953  * Thus, in the case of dense == false, if index values are important for
954  * a caller, it's the caller's responsibility to check them, typically
955  * by examining the returned nodes using some caller-specific knowledge
956  * about them.
957  * In the case of dense == true, a node returned via results[N] is always for
958  * the index (idx + N).
959  */
960 
961 unsigned int
radix_tree_gang_lookup_node(struct radix_tree * t,uint64_t idx,void ** results,unsigned int maxresults,bool dense)962 radix_tree_gang_lookup_node(struct radix_tree *t, uint64_t idx,
963     void **results, unsigned int maxresults, bool dense)
964 {
965 	struct radix_tree_path path;
966 
967 	gang_lookup_init(t, idx, &path, 0);
968 	return gang_lookup_scan(t, &path, results, maxresults, 0, false, dense);
969 }
970 
971 /*
972  * radix_tree_gang_lookup_node_reverse:
973  *
974  * Same as radix_tree_gang_lookup_node except that this one scans the
975  * tree in the reverse order.  I.e. descending index values.
976  */
977 
978 unsigned int
radix_tree_gang_lookup_node_reverse(struct radix_tree * t,uint64_t idx,void ** results,unsigned int maxresults,bool dense)979 radix_tree_gang_lookup_node_reverse(struct radix_tree *t, uint64_t idx,
980     void **results, unsigned int maxresults, bool dense)
981 {
982 	struct radix_tree_path path;
983 
984 	gang_lookup_init(t, idx, &path, 0);
985 	return gang_lookup_scan(t, &path, results, maxresults, 0, true, dense);
986 }
987 
988 /*
989  * radix_tree_gang_lookup_tagged_node:
990  *
991  * Same as radix_tree_gang_lookup_node except that this one only returns
992  * nodes tagged with tagid.
993  *
994  * It's illegal to call this function with tagmask 0.
995  */
996 
997 unsigned int
radix_tree_gang_lookup_tagged_node(struct radix_tree * t,uint64_t idx,void ** results,unsigned int maxresults,bool dense,unsigned int tagmask)998 radix_tree_gang_lookup_tagged_node(struct radix_tree *t, uint64_t idx,
999     void **results, unsigned int maxresults, bool dense, unsigned int tagmask)
1000 {
1001 	struct radix_tree_path path;
1002 
1003 	KASSERT(tagmask != 0);
1004 	gang_lookup_init(t, idx, &path, tagmask);
1005 	return gang_lookup_scan(t, &path, results, maxresults, tagmask, false,
1006 	    dense);
1007 }
1008 
1009 /*
1010  * radix_tree_gang_lookup_tagged_node_reverse:
1011  *
1012  * Same as radix_tree_gang_lookup_tagged_node except that this one scans the
1013  * tree in the reverse order.  I.e. descending index values.
1014  */
1015 
1016 unsigned int
radix_tree_gang_lookup_tagged_node_reverse(struct radix_tree * t,uint64_t idx,void ** results,unsigned int maxresults,bool dense,unsigned int tagmask)1017 radix_tree_gang_lookup_tagged_node_reverse(struct radix_tree *t, uint64_t idx,
1018     void **results, unsigned int maxresults, bool dense, unsigned int tagmask)
1019 {
1020 	struct radix_tree_path path;
1021 
1022 	KASSERT(tagmask != 0);
1023 	gang_lookup_init(t, idx, &path, tagmask);
1024 	return gang_lookup_scan(t, &path, results, maxresults, tagmask, true,
1025 	    dense);
1026 }
1027 
1028 /*
1029  * radix_tree_get_tag:
1030  *
1031  * Return the tagmask for the node at the given index.
1032  *
1033  * It's illegal to call this function for a node which has not been inserted.
1034  */
1035 
1036 unsigned int
radix_tree_get_tag(struct radix_tree * t,uint64_t idx,unsigned int tagmask)1037 radix_tree_get_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
1038 {
1039 	/*
1040 	 * the following two implementations should behave same.
1041 	 * the former one was chosen because it seems faster.
1042 	 */
1043 #if 1
1044 	void **vpp;
1045 
1046 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, tagmask);
1047 	if (vpp == NULL) {
1048 		return false;
1049 	}
1050 	KASSERT(*vpp != NULL);
1051 	return (entry_tagmask(*vpp) & tagmask);
1052 #else
1053 	void **vpp;
1054 
1055 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
1056 	KASSERT(vpp != NULL);
1057 	return (entry_tagmask(*vpp) & tagmask);
1058 #endif
1059 }
1060 
1061 /*
1062  * radix_tree_set_tag:
1063  *
1064  * Set the tag for the node at the given index.
1065  *
1066  * It's illegal to call this function for a node which has not been inserted.
1067  * It's illegal to call this function with tagmask 0.
1068  */
1069 
1070 void
radix_tree_set_tag(struct radix_tree * t,uint64_t idx,unsigned int tagmask)1071 radix_tree_set_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
1072 {
1073 	struct radix_tree_path path;
1074 	void **vpp __unused;
1075 	int i;
1076 
1077 	KASSERT(tagmask != 0);
1078 	vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
1079 	KASSERT(vpp != NULL);
1080 	KASSERT(*vpp != NULL);
1081 	KASSERT(path.p_lastidx == t->t_height);
1082 	KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
1083 	for (i = t->t_height; i >= 0; i--) {
1084 		void ** const pptr = (void **)path_pptr(t, &path, i);
1085 		void *entry;
1086 
1087 		KASSERT(pptr != NULL);
1088 		entry = *pptr;
1089 		if ((entry_tagmask(entry) & tagmask) != 0) {
1090 			break;
1091 		}
1092 		*pptr = (void *)((uintptr_t)entry | tagmask);
1093 	}
1094 }
1095 
1096 /*
1097  * radix_tree_clear_tag:
1098  *
1099  * Clear the tag for the node at the given index.
1100  *
1101  * It's illegal to call this function for a node which has not been inserted.
1102  * It's illegal to call this function with tagmask 0.
1103  */
1104 
1105 void
radix_tree_clear_tag(struct radix_tree * t,uint64_t idx,unsigned int tagmask)1106 radix_tree_clear_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
1107 {
1108 	struct radix_tree_path path;
1109 	void **vpp;
1110 	int i;
1111 
1112 	KASSERT(tagmask != 0);
1113 	vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
1114 	KASSERT(vpp != NULL);
1115 	KASSERT(*vpp != NULL);
1116 	KASSERT(path.p_lastidx == t->t_height);
1117 	KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
1118 	/*
1119 	 * if already cleared, nothing to do
1120 	 */
1121 	if ((entry_tagmask(*vpp) & tagmask) == 0) {
1122 		return;
1123 	}
1124 	/*
1125 	 * clear the tag only if no children have the tag.
1126 	 */
1127 	for (i = t->t_height; i >= 0; i--) {
1128 		void ** const pptr = (void **)path_pptr(t, &path, i);
1129 		void *entry;
1130 
1131 		KASSERT(pptr != NULL);
1132 		entry = *pptr;
1133 		KASSERT((entry_tagmask(entry) & tagmask) != 0);
1134 		*pptr = entry_compose(entry_ptr(entry),
1135 		    entry_tagmask(entry) & ~tagmask);
1136 		/*
1137 		 * check if we should proceed to process the next level.
1138 		 */
1139 		if (0 < i) {
1140 			struct radix_tree_node *n = path_node(t, &path, i - 1);
1141 
1142 			if ((radix_tree_sum_node(n) & tagmask) != 0) {
1143 				break;
1144 			}
1145 		}
1146 	}
1147 }
1148 
1149 #if defined(UNITTEST)
1150 
1151 #include <inttypes.h>
1152 #include <stdio.h>
1153 
1154 static void
radix_tree_dump_node(const struct radix_tree * t,void * vp,uint64_t offset,unsigned int height)1155 radix_tree_dump_node(const struct radix_tree *t, void *vp,
1156     uint64_t offset, unsigned int height)
1157 {
1158 	struct radix_tree_node *n;
1159 	unsigned int i;
1160 
1161 	for (i = 0; i < t->t_height - height; i++) {
1162 		printf(" ");
1163 	}
1164 	if (entry_tagmask(vp) == 0) {
1165 		printf("[%" PRIu64 "] %p", offset, entry_ptr(vp));
1166 	} else {
1167 		printf("[%" PRIu64 "] %p (tagmask=0x%x)", offset, entry_ptr(vp),
1168 		    entry_tagmask(vp));
1169 	}
1170 	if (height == 0) {
1171 		printf(" (leaf)\n");
1172 		return;
1173 	}
1174 	n = entry_ptr(vp);
1175 	assert((radix_tree_sum_node(n) & RADIX_TREE_TAG_MASK) ==
1176 	    entry_tagmask(vp));
1177 	printf(" (%u children)\n", radix_tree_node_count_ptrs(n));
1178 	for (i = 0; i < __arraycount(n->n_ptrs); i++) {
1179 		void *c;
1180 
1181 		c = n->n_ptrs[i];
1182 		if (c == NULL) {
1183 			continue;
1184 		}
1185 		radix_tree_dump_node(t, c,
1186 		    offset + i * (UINT64_C(1) <<
1187 		    (RADIX_TREE_BITS_PER_HEIGHT * (height - 1))), height - 1);
1188 	}
1189 }
1190 
1191 void radix_tree_dump(const struct radix_tree *);
1192 
1193 void
radix_tree_dump(const struct radix_tree * t)1194 radix_tree_dump(const struct radix_tree *t)
1195 {
1196 
1197 	printf("tree %p height=%u\n", t, t->t_height);
1198 	radix_tree_dump_node(t, t->t_root, 0, t->t_height);
1199 }
1200 
1201 static void
test1(void)1202 test1(void)
1203 {
1204 	struct radix_tree s;
1205 	struct radix_tree *t = &s;
1206 	void *results[3];
1207 
1208 	radix_tree_init_tree(t);
1209 	radix_tree_dump(t);
1210 	assert(radix_tree_lookup_node(t, 0) == NULL);
1211 	assert(radix_tree_lookup_node(t, 1000) == NULL);
1212 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 0);
1213 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 0);
1214 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 0);
1215 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 0);
1216 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false) ==
1217 	    0);
1218 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true) ==
1219 	    0);
1220 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
1221 	    == 0);
1222 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
1223 	    == 0);
1224 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
1225 	    == 0);
1226 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
1227 	    == 0);
1228 	assert(radix_tree_gang_lookup_tagged_node(t, 1000, results, 3, false, 1)
1229 	    == 0);
1230 	assert(radix_tree_gang_lookup_tagged_node(t, 1000, results, 3, true, 1)
1231 	    == 0);
1232 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1233 	    false, 1) == 0);
1234 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1235 	    true, 1) == 0);
1236 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 1000, results, 3,
1237 	    false, 1) == 0);
1238 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 1000, results, 3,
1239 	    true, 1) == 0);
1240 	assert(radix_tree_empty_tree_p(t));
1241 	assert(radix_tree_empty_tagged_tree_p(t, 1));
1242 	assert(radix_tree_empty_tagged_tree_p(t, 2));
1243 	assert(radix_tree_insert_node(t, 0, (void *)0xdeadbea0) == 0);
1244 	assert(!radix_tree_empty_tree_p(t));
1245 	assert(radix_tree_empty_tagged_tree_p(t, 1));
1246 	assert(radix_tree_empty_tagged_tree_p(t, 2));
1247 	assert(radix_tree_lookup_node(t, 0) == (void *)0xdeadbea0);
1248 	assert(radix_tree_lookup_node(t, 1000) == NULL);
1249 	memset(results, 0, sizeof(results));
1250 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 1);
1251 	assert(results[0] == (void *)0xdeadbea0);
1252 	memset(results, 0, sizeof(results));
1253 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 1);
1254 	assert(results[0] == (void *)0xdeadbea0);
1255 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 0);
1256 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 0);
1257 	memset(results, 0, sizeof(results));
1258 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false) ==
1259 	    1);
1260 	assert(results[0] == (void *)0xdeadbea0);
1261 	memset(results, 0, sizeof(results));
1262 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true) ==
1263 	    1);
1264 	assert(results[0] == (void *)0xdeadbea0);
1265 	memset(results, 0, sizeof(results));
1266 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
1267 	    == 1);
1268 	assert(results[0] == (void *)0xdeadbea0);
1269 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
1270 	    == 0);
1271 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
1272 	    == 0);
1273 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
1274 	    == 0);
1275 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1276 	    false, 1) == 0);
1277 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1278 	    true, 1) == 0);
1279 	assert(radix_tree_insert_node(t, 1000, (void *)0xdeadbea0) == 0);
1280 	assert(radix_tree_remove_node(t, 0) == (void *)0xdeadbea0);
1281 	assert(!radix_tree_empty_tree_p(t));
1282 	radix_tree_dump(t);
1283 	assert(radix_tree_lookup_node(t, 0) == NULL);
1284 	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
1285 	memset(results, 0, sizeof(results));
1286 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 1);
1287 	assert(results[0] == (void *)0xdeadbea0);
1288 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 0);
1289 	memset(results, 0, sizeof(results));
1290 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 1);
1291 	assert(results[0] == (void *)0xdeadbea0);
1292 	memset(results, 0, sizeof(results));
1293 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 1);
1294 	assert(results[0] == (void *)0xdeadbea0);
1295 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false)
1296 	    == 0);
1297 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true)
1298 	    == 0);
1299 	memset(results, 0, sizeof(results));
1300 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
1301 	    == 1);
1302 	memset(results, 0, sizeof(results));
1303 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
1304 	    == 1);
1305 	assert(results[0] == (void *)0xdeadbea0);
1306 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
1307 	    == 0);
1308 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
1309 	    == 0);
1310 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1311 	    false, 1) == 0);
1312 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
1313 	    true, 1) == 0);
1314 	assert(!radix_tree_get_tag(t, 1000, 1));
1315 	assert(!radix_tree_get_tag(t, 1000, 2));
1316 	assert(radix_tree_get_tag(t, 1000, 2 | 1) == 0);
1317 	assert(radix_tree_empty_tagged_tree_p(t, 1));
1318 	assert(radix_tree_empty_tagged_tree_p(t, 2));
1319 	radix_tree_set_tag(t, 1000, 2);
1320 	assert(!radix_tree_get_tag(t, 1000, 1));
1321 	assert(radix_tree_get_tag(t, 1000, 2));
1322 	assert(radix_tree_get_tag(t, 1000, 2 | 1) == 2);
1323 	assert(radix_tree_empty_tagged_tree_p(t, 1));
1324 	assert(!radix_tree_empty_tagged_tree_p(t, 2));
1325 	radix_tree_dump(t);
1326 	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
1327 	assert(radix_tree_insert_node(t, 0, (void *)0xbea0) == 0);
1328 	radix_tree_dump(t);
1329 	assert(radix_tree_lookup_node(t, 0) == (void *)0xbea0);
1330 	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
1331 	assert(radix_tree_insert_node(t, UINT64_C(10000000000), (void *)0xdea0)
1332 	    == 0);
1333 	radix_tree_dump(t);
1334 	assert(radix_tree_lookup_node(t, 0) == (void *)0xbea0);
1335 	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
1336 	assert(radix_tree_lookup_node(t, UINT64_C(10000000000)) ==
1337 	    (void *)0xdea0);
1338 	radix_tree_dump(t);
1339 	assert(!radix_tree_get_tag(t, 0, 2));
1340 	assert(radix_tree_get_tag(t, 1000, 2));
1341 	assert(!radix_tree_get_tag(t, UINT64_C(10000000000), 1));
1342 	radix_tree_set_tag(t, 0, 2);
1343 	radix_tree_set_tag(t, UINT64_C(10000000000), 2);
1344 	radix_tree_dump(t);
1345 	assert(radix_tree_get_tag(t, 0, 2));
1346 	assert(radix_tree_get_tag(t, 1000, 2));
1347 	assert(radix_tree_get_tag(t, UINT64_C(10000000000), 2));
1348 	radix_tree_clear_tag(t, 0, 2);
1349 	radix_tree_clear_tag(t, UINT64_C(10000000000), 2);
1350 	radix_tree_dump(t);
1351 	assert(!radix_tree_get_tag(t, 0, 2));
1352 	assert(radix_tree_get_tag(t, 1000, 2));
1353 	assert(!radix_tree_get_tag(t, UINT64_C(10000000000), 2));
1354 	radix_tree_dump(t);
1355 	assert(radix_tree_replace_node(t, 1000, (void *)0x12345678) ==
1356 	    (void *)0xdeadbea0);
1357 	assert(!radix_tree_get_tag(t, 1000, 1));
1358 	assert(radix_tree_get_tag(t, 1000, 2));
1359 	assert(radix_tree_get_tag(t, 1000, 2 | 1) == 2);
1360 	memset(results, 0, sizeof(results));
1361 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 3);
1362 	assert(results[0] == (void *)0xbea0);
1363 	assert(results[1] == (void *)0x12345678);
1364 	assert(results[2] == (void *)0xdea0);
1365 	memset(results, 0, sizeof(results));
1366 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 1);
1367 	assert(results[0] == (void *)0xbea0);
1368 	memset(results, 0, sizeof(results));
1369 	assert(radix_tree_gang_lookup_node(t, 1, results, 3, false) == 2);
1370 	assert(results[0] == (void *)0x12345678);
1371 	assert(results[1] == (void *)0xdea0);
1372 	assert(radix_tree_gang_lookup_node(t, 1, results, 3, true) == 0);
1373 	memset(results, 0, sizeof(results));
1374 	assert(radix_tree_gang_lookup_node(t, 1001, results, 3, false) == 1);
1375 	assert(results[0] == (void *)0xdea0);
1376 	assert(radix_tree_gang_lookup_node(t, 1001, results, 3, true) == 0);
1377 	assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000001), results, 3,
1378 	    false) == 0);
1379 	assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000001), results, 3,
1380 	    true) == 0);
1381 	assert(radix_tree_gang_lookup_node(t, UINT64_C(1000000000000), results,
1382 	    3, false) == 0);
1383 	assert(radix_tree_gang_lookup_node(t, UINT64_C(1000000000000), results,
1384 	    3, true) == 0);
1385 	memset(results, 0, sizeof(results));
1386 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 100, false, 2)
1387 	    == 1);
1388 	assert(results[0] == (void *)0x12345678);
1389 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 100, true, 2)
1390 	    == 0);
1391 	assert(entry_tagmask(t->t_root) != 0);
1392 	assert(radix_tree_remove_node(t, 1000) == (void *)0x12345678);
1393 	assert(entry_tagmask(t->t_root) == 0);
1394 	radix_tree_dump(t);
1395 	assert(radix_tree_insert_node(t, UINT64_C(10000000001), (void *)0xfff0)
1396 	    == 0);
1397 	memset(results, 0, sizeof(results));
1398 	assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000000), results, 3,
1399 	    false) == 2);
1400 	assert(results[0] == (void *)0xdea0);
1401 	assert(results[1] == (void *)0xfff0);
1402 	memset(results, 0, sizeof(results));
1403 	assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000000), results, 3,
1404 	    true) == 2);
1405 	assert(results[0] == (void *)0xdea0);
1406 	assert(results[1] == (void *)0xfff0);
1407 	memset(results, 0, sizeof(results));
1408 	assert(radix_tree_gang_lookup_node_reverse(t, UINT64_C(10000000001),
1409 	    results, 3, false) == 3);
1410 	assert(results[0] == (void *)0xfff0);
1411 	assert(results[1] == (void *)0xdea0);
1412 	assert(results[2] == (void *)0xbea0);
1413 	memset(results, 0, sizeof(results));
1414 	assert(radix_tree_gang_lookup_node_reverse(t, UINT64_C(10000000001),
1415 	    results, 3, true) == 2);
1416 	assert(results[0] == (void *)0xfff0);
1417 	assert(results[1] == (void *)0xdea0);
1418 	assert(radix_tree_remove_node(t, UINT64_C(10000000000)) ==
1419 	    (void *)0xdea0);
1420 	assert(radix_tree_remove_node(t, UINT64_C(10000000001)) ==
1421 	    (void *)0xfff0);
1422 	radix_tree_dump(t);
1423 	assert(radix_tree_remove_node(t, 0) == (void *)0xbea0);
1424 	radix_tree_dump(t);
1425 	radix_tree_fini_tree(t);
1426 }
1427 
1428 #include <sys/time.h>
1429 
1430 struct testnode {
1431 	uint64_t idx;
1432 	bool tagged[RADIX_TREE_TAG_ID_MAX];
1433 };
1434 
1435 static void
printops(const char * title,const char * name,int tag,unsigned int n,const struct timeval * stv,const struct timeval * etv)1436 printops(const char *title, const char *name, int tag, unsigned int n,
1437     const struct timeval *stv, const struct timeval *etv)
1438 {
1439 	uint64_t s = stv->tv_sec * 1000000 + stv->tv_usec;
1440 	uint64_t e = etv->tv_sec * 1000000 + etv->tv_usec;
1441 
1442 	printf("RESULT %s %s %d %lf op/s\n", title, name, tag,
1443 	    (double)n / (e - s) * 1000000);
1444 }
1445 
1446 #define	TEST2_GANG_LOOKUP_NODES	16
1447 
1448 static bool
test2_should_tag(unsigned int i,unsigned int tagid)1449 test2_should_tag(unsigned int i, unsigned int tagid)
1450 {
1451 
1452 	if (tagid == 0) {
1453 		return (i % 4) == 0;	/* 25% */
1454 	} else {
1455 		return (i % 7) == 0;	/* 14% */
1456 	}
1457 	return 1;
1458 }
1459 
1460 static void
check_tag_count(const unsigned int * ntagged,unsigned int tagmask,unsigned int count)1461 check_tag_count(const unsigned int *ntagged, unsigned int tagmask,
1462     unsigned int count)
1463 {
1464 	unsigned int tag;
1465 
1466 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1467 		if ((tagmask & (1 << tag)) == 0) {
1468 			continue;
1469 		}
1470 		if (((tagmask - 1) & tagmask) == 0) {
1471 			assert(count == ntagged[tag]);
1472 		} else {
1473 			assert(count >= ntagged[tag]);
1474 		}
1475 	}
1476 }
1477 
1478 static void
test2(const char * title,bool dense)1479 test2(const char *title, bool dense)
1480 {
1481 	struct radix_tree s;
1482 	struct radix_tree *t = &s;
1483 	struct testnode *n;
1484 	unsigned int i;
1485 	unsigned int nnodes = 100000;
1486 	unsigned int removed;
1487 	unsigned int tag;
1488 	unsigned int tagmask;
1489 	unsigned int ntagged[RADIX_TREE_TAG_ID_MAX];
1490 	struct testnode *nodes;
1491 	struct timeval stv;
1492 	struct timeval etv;
1493 
1494 	nodes = malloc(nnodes * sizeof(*nodes));
1495 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1496 		ntagged[tag] = 0;
1497 	}
1498 	radix_tree_init_tree(t);
1499 	for (i = 0; i < nnodes; i++) {
1500 		n = &nodes[i];
1501 		n->idx = random();
1502 		if (sizeof(long) == 4) {
1503 			n->idx <<= 32;
1504 			n->idx |= (uint32_t)random();
1505 		}
1506 		if (dense) {
1507 			n->idx %= nnodes * 2;
1508 		}
1509 		while (radix_tree_lookup_node(t, n->idx) != NULL) {
1510 			n->idx++;
1511 		}
1512 		radix_tree_insert_node(t, n->idx, n);
1513 		for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1514 			tagmask = 1 << tag;
1515 
1516 			n->tagged[tag] = test2_should_tag(i, tag);
1517 			if (n->tagged[tag]) {
1518 				radix_tree_set_tag(t, n->idx, tagmask);
1519 				ntagged[tag]++;
1520 			}
1521 			assert((n->tagged[tag] ? tagmask : 0) ==
1522 			    radix_tree_get_tag(t, n->idx, tagmask));
1523 		}
1524 	}
1525 
1526 	gettimeofday(&stv, NULL);
1527 	for (i = 0; i < nnodes; i++) {
1528 		n = &nodes[i];
1529 		assert(radix_tree_lookup_node(t, n->idx) == n);
1530 	}
1531 	gettimeofday(&etv, NULL);
1532 	printops(title, "lookup", 0, nnodes, &stv, &etv);
1533 
1534 	for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
1535 		unsigned int count = 0;
1536 
1537 		gettimeofday(&stv, NULL);
1538 		for (i = 0; i < nnodes; i++) {
1539 			unsigned int tagged;
1540 
1541 			n = &nodes[i];
1542 			tagged = radix_tree_get_tag(t, n->idx, tagmask);
1543 			assert((tagged & ~tagmask) == 0);
1544 			for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1545 				assert((tagmask & (1 << tag)) == 0 ||
1546 				    n->tagged[tag] == !!(tagged & (1 << tag)));
1547 			}
1548 			if (tagged) {
1549 				count++;
1550 			}
1551 		}
1552 		gettimeofday(&etv, NULL);
1553 		check_tag_count(ntagged, tagmask, count);
1554 		printops(title, "get_tag", tagmask, nnodes, &stv, &etv);
1555 	}
1556 
1557 	gettimeofday(&stv, NULL);
1558 	for (i = 0; i < nnodes; i++) {
1559 		n = &nodes[i];
1560 		radix_tree_remove_node(t, n->idx);
1561 	}
1562 	gettimeofday(&etv, NULL);
1563 	printops(title, "remove", 0, nnodes, &stv, &etv);
1564 
1565 	gettimeofday(&stv, NULL);
1566 	for (i = 0; i < nnodes; i++) {
1567 		n = &nodes[i];
1568 		radix_tree_insert_node(t, n->idx, n);
1569 	}
1570 	gettimeofday(&etv, NULL);
1571 	printops(title, "insert", 0, nnodes, &stv, &etv);
1572 
1573 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1574 		tagmask = 1 << tag;
1575 
1576 		ntagged[tag] = 0;
1577 		gettimeofday(&stv, NULL);
1578 		for (i = 0; i < nnodes; i++) {
1579 			n = &nodes[i];
1580 			if (n->tagged[tag]) {
1581 				radix_tree_set_tag(t, n->idx, tagmask);
1582 				ntagged[tag]++;
1583 			}
1584 		}
1585 		gettimeofday(&etv, NULL);
1586 		printops(title, "set_tag", tag, ntagged[tag], &stv, &etv);
1587 	}
1588 
1589 	gettimeofday(&stv, NULL);
1590 	{
1591 		struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1592 		uint64_t nextidx;
1593 		unsigned int nfound;
1594 		unsigned int total;
1595 
1596 		nextidx = 0;
1597 		total = 0;
1598 		while ((nfound = radix_tree_gang_lookup_node(t, nextidx,
1599 		    (void *)results, __arraycount(results), false)) > 0) {
1600 			nextidx = results[nfound - 1]->idx + 1;
1601 			total += nfound;
1602 			if (nextidx == 0) {
1603 				break;
1604 			}
1605 		}
1606 		assert(total == nnodes);
1607 	}
1608 	gettimeofday(&etv, NULL);
1609 	printops(title, "ganglookup", 0, nnodes, &stv, &etv);
1610 
1611 	gettimeofday(&stv, NULL);
1612 	{
1613 		struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1614 		uint64_t nextidx;
1615 		unsigned int nfound;
1616 		unsigned int total;
1617 
1618 		nextidx = UINT64_MAX;
1619 		total = 0;
1620 		while ((nfound = radix_tree_gang_lookup_node_reverse(t, nextidx,
1621 		    (void *)results, __arraycount(results), false)) > 0) {
1622 			nextidx = results[nfound - 1]->idx - 1;
1623 			total += nfound;
1624 			if (nextidx == UINT64_MAX) {
1625 				break;
1626 			}
1627 		}
1628 		assert(total == nnodes);
1629 	}
1630 	gettimeofday(&etv, NULL);
1631 	printops(title, "ganglookup_reverse", 0, nnodes, &stv, &etv);
1632 
1633 	for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
1634 		unsigned int total = 0;
1635 
1636 		gettimeofday(&stv, NULL);
1637 		{
1638 			struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1639 			uint64_t nextidx;
1640 			unsigned int nfound;
1641 
1642 			nextidx = 0;
1643 			while ((nfound = radix_tree_gang_lookup_tagged_node(t,
1644 			    nextidx, (void *)results, __arraycount(results),
1645 			    false, tagmask)) > 0) {
1646 				nextidx = results[nfound - 1]->idx + 1;
1647 				total += nfound;
1648 			}
1649 		}
1650 		gettimeofday(&etv, NULL);
1651 		check_tag_count(ntagged, tagmask, total);
1652 		assert(tagmask != 0 || total == 0);
1653 		printops(title, "ganglookup_tag", tagmask, total, &stv, &etv);
1654 	}
1655 
1656 	for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
1657 		unsigned int total = 0;
1658 
1659 		gettimeofday(&stv, NULL);
1660 		{
1661 			struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1662 			uint64_t nextidx;
1663 			unsigned int nfound;
1664 
1665 			nextidx = UINT64_MAX;
1666 			while ((nfound =
1667 			    radix_tree_gang_lookup_tagged_node_reverse(t,
1668 			    nextidx, (void *)results, __arraycount(results),
1669 			    false, tagmask)) > 0) {
1670 				nextidx = results[nfound - 1]->idx - 1;
1671 				total += nfound;
1672 				if (nextidx == UINT64_MAX) {
1673 					break;
1674 				}
1675 			}
1676 		}
1677 		gettimeofday(&etv, NULL);
1678 		check_tag_count(ntagged, tagmask, total);
1679 		assert(tagmask != 0 || total == 0);
1680 		printops(title, "ganglookup_tag_reverse", tagmask, total,
1681 		    &stv, &etv);
1682 	}
1683 
1684 	removed = 0;
1685 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
1686 		unsigned int total;
1687 
1688 		total = 0;
1689 		tagmask = 1 << tag;
1690 		gettimeofday(&stv, NULL);
1691 		{
1692 			struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1693 			uint64_t nextidx;
1694 			unsigned int nfound;
1695 
1696 			nextidx = 0;
1697 			while ((nfound = radix_tree_gang_lookup_tagged_node(t,
1698 			    nextidx, (void *)results, __arraycount(results),
1699 			    false, tagmask)) > 0) {
1700 				for (i = 0; i < nfound; i++) {
1701 					radix_tree_remove_node(t,
1702 					    results[i]->idx);
1703 				}
1704 				nextidx = results[nfound - 1]->idx + 1;
1705 				total += nfound;
1706 				if (nextidx == 0) {
1707 					break;
1708 				}
1709 			}
1710 		}
1711 		gettimeofday(&etv, NULL);
1712 		if (tag == 0) {
1713 			check_tag_count(ntagged, tagmask, total);
1714 		} else {
1715 			assert(total <= ntagged[tag]);
1716 		}
1717 		printops(title, "ganglookup_tag+remove", tagmask, total, &stv,
1718 		    &etv);
1719 		removed += total;
1720 	}
1721 
1722 	gettimeofday(&stv, NULL);
1723 	{
1724 		struct testnode *results[TEST2_GANG_LOOKUP_NODES];
1725 		uint64_t nextidx;
1726 		unsigned int nfound;
1727 		unsigned int total;
1728 
1729 		nextidx = 0;
1730 		total = 0;
1731 		while ((nfound = radix_tree_gang_lookup_node(t, nextidx,
1732 		    (void *)results, __arraycount(results), false)) > 0) {
1733 			for (i = 0; i < nfound; i++) {
1734 				assert(results[i] == radix_tree_remove_node(t,
1735 				    results[i]->idx));
1736 			}
1737 			nextidx = results[nfound - 1]->idx + 1;
1738 			total += nfound;
1739 			if (nextidx == 0) {
1740 				break;
1741 			}
1742 		}
1743 		assert(total == nnodes - removed);
1744 	}
1745 	gettimeofday(&etv, NULL);
1746 	printops(title, "ganglookup+remove", 0, nnodes - removed, &stv, &etv);
1747 
1748 	assert(radix_tree_empty_tree_p(t));
1749 	for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
1750 		assert(radix_tree_empty_tagged_tree_p(t, tagmask));
1751 	}
1752 	radix_tree_fini_tree(t);
1753 	free(nodes);
1754 }
1755 
1756 int
main(int argc,char * argv[])1757 main(int argc, char *argv[])
1758 {
1759 
1760 	test1();
1761 	test2("dense", true);
1762 	test2("sparse", false);
1763 	return 0;
1764 }
1765 
1766 #endif /* defined(UNITTEST) */
1767