1 //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Expr constant evaluator.
10 //
11 // Constant expression evaluation produces four main results:
12 //
13 //  * A success/failure flag indicating whether constant folding was successful.
14 //    This is the 'bool' return value used by most of the code in this file. A
15 //    'false' return value indicates that constant folding has failed, and any
16 //    appropriate diagnostic has already been produced.
17 //
18 //  * An evaluated result, valid only if constant folding has not failed.
19 //
20 //  * A flag indicating if evaluation encountered (unevaluated) side-effects.
21 //    These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
22 //    where it is possible to determine the evaluated result regardless.
23 //
24 //  * A set of notes indicating why the evaluation was not a constant expression
25 //    (under the C++11 / C++1y rules only, at the moment), or, if folding failed
26 //    too, why the expression could not be folded.
27 //
28 // If we are checking for a potential constant expression, failure to constant
29 // fold a potential constant sub-expression will be indicated by a 'false'
30 // return value (the expression could not be folded) and no diagnostic (the
31 // expression is not necessarily non-constant).
32 //
33 //===----------------------------------------------------------------------===//
34 
35 #include "Interp/Context.h"
36 #include "Interp/Frame.h"
37 #include "Interp/State.h"
38 #include "clang/AST/APValue.h"
39 #include "clang/AST/ASTContext.h"
40 #include "clang/AST/ASTDiagnostic.h"
41 #include "clang/AST/ASTLambda.h"
42 #include "clang/AST/Attr.h"
43 #include "clang/AST/CXXInheritance.h"
44 #include "clang/AST/CharUnits.h"
45 #include "clang/AST/CurrentSourceLocExprScope.h"
46 #include "clang/AST/Expr.h"
47 #include "clang/AST/OSLog.h"
48 #include "clang/AST/OptionalDiagnostic.h"
49 #include "clang/AST/RecordLayout.h"
50 #include "clang/AST/StmtVisitor.h"
51 #include "clang/AST/TypeLoc.h"
52 #include "clang/Basic/Builtins.h"
53 #include "clang/Basic/TargetInfo.h"
54 #include "llvm/ADT/APFixedPoint.h"
55 #include "llvm/ADT/Optional.h"
56 #include "llvm/ADT/SmallBitVector.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/SaveAndRestore.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <cstring>
61 #include <functional>
62 
63 #define DEBUG_TYPE "exprconstant"
64 
65 using namespace clang;
66 using llvm::APFixedPoint;
67 using llvm::APInt;
68 using llvm::APSInt;
69 using llvm::APFloat;
70 using llvm::FixedPointSemantics;
71 using llvm::Optional;
72 
73 namespace {
74   struct LValue;
75   class CallStackFrame;
76   class EvalInfo;
77 
78   using SourceLocExprScopeGuard =
79       CurrentSourceLocExprScope::SourceLocExprScopeGuard;
80 
getType(APValue::LValueBase B)81   static QualType getType(APValue::LValueBase B) {
82     return B.getType();
83   }
84 
85   /// Get an LValue path entry, which is known to not be an array index, as a
86   /// field declaration.
getAsField(APValue::LValuePathEntry E)87   static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
88     return dyn_cast_or_null<FieldDecl>(E.getAsBaseOrMember().getPointer());
89   }
90   /// Get an LValue path entry, which is known to not be an array index, as a
91   /// base class declaration.
getAsBaseClass(APValue::LValuePathEntry E)92   static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
93     return dyn_cast_or_null<CXXRecordDecl>(E.getAsBaseOrMember().getPointer());
94   }
95   /// Determine whether this LValue path entry for a base class names a virtual
96   /// base class.
isVirtualBaseClass(APValue::LValuePathEntry E)97   static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
98     return E.getAsBaseOrMember().getInt();
99   }
100 
101   /// Given an expression, determine the type used to store the result of
102   /// evaluating that expression.
getStorageType(const ASTContext & Ctx,const Expr * E)103   static QualType getStorageType(const ASTContext &Ctx, const Expr *E) {
104     if (E->isRValue())
105       return E->getType();
106     return Ctx.getLValueReferenceType(E->getType());
107   }
108 
109   /// Given a CallExpr, try to get the alloc_size attribute. May return null.
getAllocSizeAttr(const CallExpr * CE)110   static const AllocSizeAttr *getAllocSizeAttr(const CallExpr *CE) {
111     if (const FunctionDecl *DirectCallee = CE->getDirectCallee())
112       return DirectCallee->getAttr<AllocSizeAttr>();
113     if (const Decl *IndirectCallee = CE->getCalleeDecl())
114       return IndirectCallee->getAttr<AllocSizeAttr>();
115     return nullptr;
116   }
117 
118   /// Attempts to unwrap a CallExpr (with an alloc_size attribute) from an Expr.
119   /// This will look through a single cast.
120   ///
121   /// Returns null if we couldn't unwrap a function with alloc_size.
tryUnwrapAllocSizeCall(const Expr * E)122   static const CallExpr *tryUnwrapAllocSizeCall(const Expr *E) {
123     if (!E->getType()->isPointerType())
124       return nullptr;
125 
126     E = E->IgnoreParens();
127     // If we're doing a variable assignment from e.g. malloc(N), there will
128     // probably be a cast of some kind. In exotic cases, we might also see a
129     // top-level ExprWithCleanups. Ignore them either way.
130     if (const auto *FE = dyn_cast<FullExpr>(E))
131       E = FE->getSubExpr()->IgnoreParens();
132 
133     if (const auto *Cast = dyn_cast<CastExpr>(E))
134       E = Cast->getSubExpr()->IgnoreParens();
135 
136     if (const auto *CE = dyn_cast<CallExpr>(E))
137       return getAllocSizeAttr(CE) ? CE : nullptr;
138     return nullptr;
139   }
140 
141   /// Determines whether or not the given Base contains a call to a function
142   /// with the alloc_size attribute.
isBaseAnAllocSizeCall(APValue::LValueBase Base)143   static bool isBaseAnAllocSizeCall(APValue::LValueBase Base) {
144     const auto *E = Base.dyn_cast<const Expr *>();
145     return E && E->getType()->isPointerType() && tryUnwrapAllocSizeCall(E);
146   }
147 
148   /// Determines whether the given kind of constant expression is only ever
149   /// used for name mangling. If so, it's permitted to reference things that we
150   /// can't generate code for (in particular, dllimported functions).
isForManglingOnly(ConstantExprKind Kind)151   static bool isForManglingOnly(ConstantExprKind Kind) {
152     switch (Kind) {
153     case ConstantExprKind::Normal:
154     case ConstantExprKind::ClassTemplateArgument:
155     case ConstantExprKind::ImmediateInvocation:
156       // Note that non-type template arguments of class type are emitted as
157       // template parameter objects.
158       return false;
159 
160     case ConstantExprKind::NonClassTemplateArgument:
161       return true;
162     }
163     llvm_unreachable("unknown ConstantExprKind");
164   }
165 
isTemplateArgument(ConstantExprKind Kind)166   static bool isTemplateArgument(ConstantExprKind Kind) {
167     switch (Kind) {
168     case ConstantExprKind::Normal:
169     case ConstantExprKind::ImmediateInvocation:
170       return false;
171 
172     case ConstantExprKind::ClassTemplateArgument:
173     case ConstantExprKind::NonClassTemplateArgument:
174       return true;
175     }
176     llvm_unreachable("unknown ConstantExprKind");
177   }
178 
179   /// The bound to claim that an array of unknown bound has.
180   /// The value in MostDerivedArraySize is undefined in this case. So, set it
181   /// to an arbitrary value that's likely to loudly break things if it's used.
182   static const uint64_t AssumedSizeForUnsizedArray =
183       std::numeric_limits<uint64_t>::max() / 2;
184 
185   /// Determines if an LValue with the given LValueBase will have an unsized
186   /// array in its designator.
187   /// Find the path length and type of the most-derived subobject in the given
188   /// path, and find the size of the containing array, if any.
189   static unsigned
findMostDerivedSubobject(ASTContext & Ctx,APValue::LValueBase Base,ArrayRef<APValue::LValuePathEntry> Path,uint64_t & ArraySize,QualType & Type,bool & IsArray,bool & FirstEntryIsUnsizedArray)190   findMostDerivedSubobject(ASTContext &Ctx, APValue::LValueBase Base,
191                            ArrayRef<APValue::LValuePathEntry> Path,
192                            uint64_t &ArraySize, QualType &Type, bool &IsArray,
193                            bool &FirstEntryIsUnsizedArray) {
194     // This only accepts LValueBases from APValues, and APValues don't support
195     // arrays that lack size info.
196     assert(!isBaseAnAllocSizeCall(Base) &&
197            "Unsized arrays shouldn't appear here");
198     unsigned MostDerivedLength = 0;
199     Type = getType(Base);
200 
201     for (unsigned I = 0, N = Path.size(); I != N; ++I) {
202       if (Type->isArrayType()) {
203         const ArrayType *AT = Ctx.getAsArrayType(Type);
204         Type = AT->getElementType();
205         MostDerivedLength = I + 1;
206         IsArray = true;
207 
208         if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
209           ArraySize = CAT->getSize().getZExtValue();
210         } else {
211           assert(I == 0 && "unexpected unsized array designator");
212           FirstEntryIsUnsizedArray = true;
213           ArraySize = AssumedSizeForUnsizedArray;
214         }
215       } else if (Type->isAnyComplexType()) {
216         const ComplexType *CT = Type->castAs<ComplexType>();
217         Type = CT->getElementType();
218         ArraySize = 2;
219         MostDerivedLength = I + 1;
220         IsArray = true;
221       } else if (const FieldDecl *FD = getAsField(Path[I])) {
222         Type = FD->getType();
223         ArraySize = 0;
224         MostDerivedLength = I + 1;
225         IsArray = false;
226       } else {
227         // Path[I] describes a base class.
228         ArraySize = 0;
229         IsArray = false;
230       }
231     }
232     return MostDerivedLength;
233   }
234 
235   /// A path from a glvalue to a subobject of that glvalue.
236   struct SubobjectDesignator {
237     /// True if the subobject was named in a manner not supported by C++11. Such
238     /// lvalues can still be folded, but they are not core constant expressions
239     /// and we cannot perform lvalue-to-rvalue conversions on them.
240     unsigned Invalid : 1;
241 
242     /// Is this a pointer one past the end of an object?
243     unsigned IsOnePastTheEnd : 1;
244 
245     /// Indicator of whether the first entry is an unsized array.
246     unsigned FirstEntryIsAnUnsizedArray : 1;
247 
248     /// Indicator of whether the most-derived object is an array element.
249     unsigned MostDerivedIsArrayElement : 1;
250 
251     /// The length of the path to the most-derived object of which this is a
252     /// subobject.
253     unsigned MostDerivedPathLength : 28;
254 
255     /// The size of the array of which the most-derived object is an element.
256     /// This will always be 0 if the most-derived object is not an array
257     /// element. 0 is not an indicator of whether or not the most-derived object
258     /// is an array, however, because 0-length arrays are allowed.
259     ///
260     /// If the current array is an unsized array, the value of this is
261     /// undefined.
262     uint64_t MostDerivedArraySize;
263 
264     /// The type of the most derived object referred to by this address.
265     QualType MostDerivedType;
266 
267     typedef APValue::LValuePathEntry PathEntry;
268 
269     /// The entries on the path from the glvalue to the designated subobject.
270     SmallVector<PathEntry, 8> Entries;
271 
SubobjectDesignator__anon6b379bbb0111::SubobjectDesignator272     SubobjectDesignator() : Invalid(true) {}
273 
SubobjectDesignator__anon6b379bbb0111::SubobjectDesignator274     explicit SubobjectDesignator(QualType T)
275         : Invalid(false), IsOnePastTheEnd(false),
276           FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
277           MostDerivedPathLength(0), MostDerivedArraySize(0),
278           MostDerivedType(T) {}
279 
SubobjectDesignator__anon6b379bbb0111::SubobjectDesignator280     SubobjectDesignator(ASTContext &Ctx, const APValue &V)
281         : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
282           FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
283           MostDerivedPathLength(0), MostDerivedArraySize(0) {
284       assert(V.isLValue() && "Non-LValue used to make an LValue designator?");
285       if (!Invalid) {
286         IsOnePastTheEnd = V.isLValueOnePastTheEnd();
287         ArrayRef<PathEntry> VEntries = V.getLValuePath();
288         Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
289         if (V.getLValueBase()) {
290           bool IsArray = false;
291           bool FirstIsUnsizedArray = false;
292           MostDerivedPathLength = findMostDerivedSubobject(
293               Ctx, V.getLValueBase(), V.getLValuePath(), MostDerivedArraySize,
294               MostDerivedType, IsArray, FirstIsUnsizedArray);
295           MostDerivedIsArrayElement = IsArray;
296           FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
297         }
298       }
299     }
300 
truncate__anon6b379bbb0111::SubobjectDesignator301     void truncate(ASTContext &Ctx, APValue::LValueBase Base,
302                   unsigned NewLength) {
303       if (Invalid)
304         return;
305 
306       assert(Base && "cannot truncate path for null pointer");
307       assert(NewLength <= Entries.size() && "not a truncation");
308 
309       if (NewLength == Entries.size())
310         return;
311       Entries.resize(NewLength);
312 
313       bool IsArray = false;
314       bool FirstIsUnsizedArray = false;
315       MostDerivedPathLength = findMostDerivedSubobject(
316           Ctx, Base, Entries, MostDerivedArraySize, MostDerivedType, IsArray,
317           FirstIsUnsizedArray);
318       MostDerivedIsArrayElement = IsArray;
319       FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
320     }
321 
setInvalid__anon6b379bbb0111::SubobjectDesignator322     void setInvalid() {
323       Invalid = true;
324       Entries.clear();
325     }
326 
327     /// Determine whether the most derived subobject is an array without a
328     /// known bound.
isMostDerivedAnUnsizedArray__anon6b379bbb0111::SubobjectDesignator329     bool isMostDerivedAnUnsizedArray() const {
330       assert(!Invalid && "Calling this makes no sense on invalid designators");
331       return Entries.size() == 1 && FirstEntryIsAnUnsizedArray;
332     }
333 
334     /// Determine what the most derived array's size is. Results in an assertion
335     /// failure if the most derived array lacks a size.
getMostDerivedArraySize__anon6b379bbb0111::SubobjectDesignator336     uint64_t getMostDerivedArraySize() const {
337       assert(!isMostDerivedAnUnsizedArray() && "Unsized array has no size");
338       return MostDerivedArraySize;
339     }
340 
341     /// Determine whether this is a one-past-the-end pointer.
isOnePastTheEnd__anon6b379bbb0111::SubobjectDesignator342     bool isOnePastTheEnd() const {
343       assert(!Invalid);
344       if (IsOnePastTheEnd)
345         return true;
346       if (!isMostDerivedAnUnsizedArray() && MostDerivedIsArrayElement &&
347           Entries[MostDerivedPathLength - 1].getAsArrayIndex() ==
348               MostDerivedArraySize)
349         return true;
350       return false;
351     }
352 
353     /// Get the range of valid index adjustments in the form
354     ///   {maximum value that can be subtracted from this pointer,
355     ///    maximum value that can be added to this pointer}
validIndexAdjustments__anon6b379bbb0111::SubobjectDesignator356     std::pair<uint64_t, uint64_t> validIndexAdjustments() {
357       if (Invalid || isMostDerivedAnUnsizedArray())
358         return {0, 0};
359 
360       // [expr.add]p4: For the purposes of these operators, a pointer to a
361       // nonarray object behaves the same as a pointer to the first element of
362       // an array of length one with the type of the object as its element type.
363       bool IsArray = MostDerivedPathLength == Entries.size() &&
364                      MostDerivedIsArrayElement;
365       uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
366                                     : (uint64_t)IsOnePastTheEnd;
367       uint64_t ArraySize =
368           IsArray ? getMostDerivedArraySize() : (uint64_t)1;
369       return {ArrayIndex, ArraySize - ArrayIndex};
370     }
371 
372     /// Check that this refers to a valid subobject.
isValidSubobject__anon6b379bbb0111::SubobjectDesignator373     bool isValidSubobject() const {
374       if (Invalid)
375         return false;
376       return !isOnePastTheEnd();
377     }
378     /// Check that this refers to a valid subobject, and if not, produce a
379     /// relevant diagnostic and set the designator as invalid.
380     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
381 
382     /// Get the type of the designated object.
getType__anon6b379bbb0111::SubobjectDesignator383     QualType getType(ASTContext &Ctx) const {
384       assert(!Invalid && "invalid designator has no subobject type");
385       return MostDerivedPathLength == Entries.size()
386                  ? MostDerivedType
387                  : Ctx.getRecordType(getAsBaseClass(Entries.back()));
388     }
389 
390     /// Update this designator to refer to the first element within this array.
addArrayUnchecked__anon6b379bbb0111::SubobjectDesignator391     void addArrayUnchecked(const ConstantArrayType *CAT) {
392       Entries.push_back(PathEntry::ArrayIndex(0));
393 
394       // This is a most-derived object.
395       MostDerivedType = CAT->getElementType();
396       MostDerivedIsArrayElement = true;
397       MostDerivedArraySize = CAT->getSize().getZExtValue();
398       MostDerivedPathLength = Entries.size();
399     }
400     /// Update this designator to refer to the first element within the array of
401     /// elements of type T. This is an array of unknown size.
addUnsizedArrayUnchecked__anon6b379bbb0111::SubobjectDesignator402     void addUnsizedArrayUnchecked(QualType ElemTy) {
403       Entries.push_back(PathEntry::ArrayIndex(0));
404 
405       MostDerivedType = ElemTy;
406       MostDerivedIsArrayElement = true;
407       // The value in MostDerivedArraySize is undefined in this case. So, set it
408       // to an arbitrary value that's likely to loudly break things if it's
409       // used.
410       MostDerivedArraySize = AssumedSizeForUnsizedArray;
411       MostDerivedPathLength = Entries.size();
412     }
413     /// Update this designator to refer to the given base or member of this
414     /// object.
addDeclUnchecked__anon6b379bbb0111::SubobjectDesignator415     void addDeclUnchecked(const Decl *D, bool Virtual = false) {
416       Entries.push_back(APValue::BaseOrMemberType(D, Virtual));
417 
418       // If this isn't a base class, it's a new most-derived object.
419       if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
420         MostDerivedType = FD->getType();
421         MostDerivedIsArrayElement = false;
422         MostDerivedArraySize = 0;
423         MostDerivedPathLength = Entries.size();
424       }
425     }
426     /// Update this designator to refer to the given complex component.
addComplexUnchecked__anon6b379bbb0111::SubobjectDesignator427     void addComplexUnchecked(QualType EltTy, bool Imag) {
428       Entries.push_back(PathEntry::ArrayIndex(Imag));
429 
430       // This is technically a most-derived object, though in practice this
431       // is unlikely to matter.
432       MostDerivedType = EltTy;
433       MostDerivedIsArrayElement = true;
434       MostDerivedArraySize = 2;
435       MostDerivedPathLength = Entries.size();
436     }
437     void diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, const Expr *E);
438     void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E,
439                                    const APSInt &N);
440     /// Add N to the address of this subobject.
adjustIndex__anon6b379bbb0111::SubobjectDesignator441     void adjustIndex(EvalInfo &Info, const Expr *E, APSInt N) {
442       if (Invalid || !N) return;
443       uint64_t TruncatedN = N.extOrTrunc(64).getZExtValue();
444       if (isMostDerivedAnUnsizedArray()) {
445         diagnoseUnsizedArrayPointerArithmetic(Info, E);
446         // Can't verify -- trust that the user is doing the right thing (or if
447         // not, trust that the caller will catch the bad behavior).
448         // FIXME: Should we reject if this overflows, at least?
449         Entries.back() = PathEntry::ArrayIndex(
450             Entries.back().getAsArrayIndex() + TruncatedN);
451         return;
452       }
453 
454       // [expr.add]p4: For the purposes of these operators, a pointer to a
455       // nonarray object behaves the same as a pointer to the first element of
456       // an array of length one with the type of the object as its element type.
457       bool IsArray = MostDerivedPathLength == Entries.size() &&
458                      MostDerivedIsArrayElement;
459       uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
460                                     : (uint64_t)IsOnePastTheEnd;
461       uint64_t ArraySize =
462           IsArray ? getMostDerivedArraySize() : (uint64_t)1;
463 
464       if (N < -(int64_t)ArrayIndex || N > ArraySize - ArrayIndex) {
465         // Calculate the actual index in a wide enough type, so we can include
466         // it in the note.
467         N = N.extend(std::max<unsigned>(N.getBitWidth() + 1, 65));
468         (llvm::APInt&)N += ArrayIndex;
469         assert(N.ugt(ArraySize) && "bounds check failed for in-bounds index");
470         diagnosePointerArithmetic(Info, E, N);
471         setInvalid();
472         return;
473       }
474 
475       ArrayIndex += TruncatedN;
476       assert(ArrayIndex <= ArraySize &&
477              "bounds check succeeded for out-of-bounds index");
478 
479       if (IsArray)
480         Entries.back() = PathEntry::ArrayIndex(ArrayIndex);
481       else
482         IsOnePastTheEnd = (ArrayIndex != 0);
483     }
484   };
485 
486   /// A scope at the end of which an object can need to be destroyed.
487   enum class ScopeKind {
488     Block,
489     FullExpression,
490     Call
491   };
492 
493   /// A reference to a particular call and its arguments.
494   struct CallRef {
CallRef__anon6b379bbb0111::CallRef495     CallRef() : OrigCallee(), CallIndex(0), Version() {}
CallRef__anon6b379bbb0111::CallRef496     CallRef(const FunctionDecl *Callee, unsigned CallIndex, unsigned Version)
497         : OrigCallee(Callee), CallIndex(CallIndex), Version(Version) {}
498 
operator bool__anon6b379bbb0111::CallRef499     explicit operator bool() const { return OrigCallee; }
500 
501     /// Get the parameter that the caller initialized, corresponding to the
502     /// given parameter in the callee.
getOrigParam__anon6b379bbb0111::CallRef503     const ParmVarDecl *getOrigParam(const ParmVarDecl *PVD) const {
504       return OrigCallee ? OrigCallee->getParamDecl(PVD->getFunctionScopeIndex())
505                         : PVD;
506     }
507 
508     /// The callee at the point where the arguments were evaluated. This might
509     /// be different from the actual callee (a different redeclaration, or a
510     /// virtual override), but this function's parameters are the ones that
511     /// appear in the parameter map.
512     const FunctionDecl *OrigCallee;
513     /// The call index of the frame that holds the argument values.
514     unsigned CallIndex;
515     /// The version of the parameters corresponding to this call.
516     unsigned Version;
517   };
518 
519   /// A stack frame in the constexpr call stack.
520   class CallStackFrame : public interp::Frame {
521   public:
522     EvalInfo &Info;
523 
524     /// Parent - The caller of this stack frame.
525     CallStackFrame *Caller;
526 
527     /// Callee - The function which was called.
528     const FunctionDecl *Callee;
529 
530     /// This - The binding for the this pointer in this call, if any.
531     const LValue *This;
532 
533     /// Information on how to find the arguments to this call. Our arguments
534     /// are stored in our parent's CallStackFrame, using the ParmVarDecl* as a
535     /// key and this value as the version.
536     CallRef Arguments;
537 
538     /// Source location information about the default argument or default
539     /// initializer expression we're evaluating, if any.
540     CurrentSourceLocExprScope CurSourceLocExprScope;
541 
542     // Note that we intentionally use std::map here so that references to
543     // values are stable.
544     typedef std::pair<const void *, unsigned> MapKeyTy;
545     typedef std::map<MapKeyTy, APValue> MapTy;
546     /// Temporaries - Temporary lvalues materialized within this stack frame.
547     MapTy Temporaries;
548 
549     /// CallLoc - The location of the call expression for this call.
550     SourceLocation CallLoc;
551 
552     /// Index - The call index of this call.
553     unsigned Index;
554 
555     /// The stack of integers for tracking version numbers for temporaries.
556     SmallVector<unsigned, 2> TempVersionStack = {1};
557     unsigned CurTempVersion = TempVersionStack.back();
558 
getTempVersion() const559     unsigned getTempVersion() const { return TempVersionStack.back(); }
560 
pushTempVersion()561     void pushTempVersion() {
562       TempVersionStack.push_back(++CurTempVersion);
563     }
564 
popTempVersion()565     void popTempVersion() {
566       TempVersionStack.pop_back();
567     }
568 
createCall(const FunctionDecl * Callee)569     CallRef createCall(const FunctionDecl *Callee) {
570       return {Callee, Index, ++CurTempVersion};
571     }
572 
573     // FIXME: Adding this to every 'CallStackFrame' may have a nontrivial impact
574     // on the overall stack usage of deeply-recursing constexpr evaluations.
575     // (We should cache this map rather than recomputing it repeatedly.)
576     // But let's try this and see how it goes; we can look into caching the map
577     // as a later change.
578 
579     /// LambdaCaptureFields - Mapping from captured variables/this to
580     /// corresponding data members in the closure class.
581     llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
582     FieldDecl *LambdaThisCaptureField;
583 
584     CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
585                    const FunctionDecl *Callee, const LValue *This,
586                    CallRef Arguments);
587     ~CallStackFrame();
588 
589     // Return the temporary for Key whose version number is Version.
getTemporary(const void * Key,unsigned Version)590     APValue *getTemporary(const void *Key, unsigned Version) {
591       MapKeyTy KV(Key, Version);
592       auto LB = Temporaries.lower_bound(KV);
593       if (LB != Temporaries.end() && LB->first == KV)
594         return &LB->second;
595       // Pair (Key,Version) wasn't found in the map. Check that no elements
596       // in the map have 'Key' as their key.
597       assert((LB == Temporaries.end() || LB->first.first != Key) &&
598              (LB == Temporaries.begin() || std::prev(LB)->first.first != Key) &&
599              "Element with key 'Key' found in map");
600       return nullptr;
601     }
602 
603     // Return the current temporary for Key in the map.
getCurrentTemporary(const void * Key)604     APValue *getCurrentTemporary(const void *Key) {
605       auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX));
606       if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key)
607         return &std::prev(UB)->second;
608       return nullptr;
609     }
610 
611     // Return the version number of the current temporary for Key.
getCurrentTemporaryVersion(const void * Key) const612     unsigned getCurrentTemporaryVersion(const void *Key) const {
613       auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX));
614       if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key)
615         return std::prev(UB)->first.second;
616       return 0;
617     }
618 
619     /// Allocate storage for an object of type T in this stack frame.
620     /// Populates LV with a handle to the created object. Key identifies
621     /// the temporary within the stack frame, and must not be reused without
622     /// bumping the temporary version number.
623     template<typename KeyT>
624     APValue &createTemporary(const KeyT *Key, QualType T,
625                              ScopeKind Scope, LValue &LV);
626 
627     /// Allocate storage for a parameter of a function call made in this frame.
628     APValue &createParam(CallRef Args, const ParmVarDecl *PVD, LValue &LV);
629 
630     void describe(llvm::raw_ostream &OS) override;
631 
getCaller() const632     Frame *getCaller() const override { return Caller; }
getCallLocation() const633     SourceLocation getCallLocation() const override { return CallLoc; }
getCallee() const634     const FunctionDecl *getCallee() const override { return Callee; }
635 
isStdFunction() const636     bool isStdFunction() const {
637       for (const DeclContext *DC = Callee; DC; DC = DC->getParent())
638         if (DC->isStdNamespace())
639           return true;
640       return false;
641     }
642 
643   private:
644     APValue &createLocal(APValue::LValueBase Base, const void *Key, QualType T,
645                          ScopeKind Scope);
646   };
647 
648   /// Temporarily override 'this'.
649   class ThisOverrideRAII {
650   public:
ThisOverrideRAII(CallStackFrame & Frame,const LValue * NewThis,bool Enable)651     ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
652         : Frame(Frame), OldThis(Frame.This) {
653       if (Enable)
654         Frame.This = NewThis;
655     }
~ThisOverrideRAII()656     ~ThisOverrideRAII() {
657       Frame.This = OldThis;
658     }
659   private:
660     CallStackFrame &Frame;
661     const LValue *OldThis;
662   };
663 }
664 
665 static bool HandleDestruction(EvalInfo &Info, const Expr *E,
666                               const LValue &This, QualType ThisType);
667 static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
668                               APValue::LValueBase LVBase, APValue &Value,
669                               QualType T);
670 
671 namespace {
672   /// A cleanup, and a flag indicating whether it is lifetime-extended.
673   class Cleanup {
674     llvm::PointerIntPair<APValue*, 2, ScopeKind> Value;
675     APValue::LValueBase Base;
676     QualType T;
677 
678   public:
Cleanup(APValue * Val,APValue::LValueBase Base,QualType T,ScopeKind Scope)679     Cleanup(APValue *Val, APValue::LValueBase Base, QualType T,
680             ScopeKind Scope)
681         : Value(Val, Scope), Base(Base), T(T) {}
682 
683     /// Determine whether this cleanup should be performed at the end of the
684     /// given kind of scope.
isDestroyedAtEndOf(ScopeKind K) const685     bool isDestroyedAtEndOf(ScopeKind K) const {
686       return (int)Value.getInt() >= (int)K;
687     }
endLifetime(EvalInfo & Info,bool RunDestructors)688     bool endLifetime(EvalInfo &Info, bool RunDestructors) {
689       if (RunDestructors) {
690         SourceLocation Loc;
691         if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>())
692           Loc = VD->getLocation();
693         else if (const Expr *E = Base.dyn_cast<const Expr*>())
694           Loc = E->getExprLoc();
695         return HandleDestruction(Info, Loc, Base, *Value.getPointer(), T);
696       }
697       *Value.getPointer() = APValue();
698       return true;
699     }
700 
hasSideEffect()701     bool hasSideEffect() {
702       return T.isDestructedType();
703     }
704   };
705 
706   /// A reference to an object whose construction we are currently evaluating.
707   struct ObjectUnderConstruction {
708     APValue::LValueBase Base;
709     ArrayRef<APValue::LValuePathEntry> Path;
operator ==(const ObjectUnderConstruction & LHS,const ObjectUnderConstruction & RHS)710     friend bool operator==(const ObjectUnderConstruction &LHS,
711                            const ObjectUnderConstruction &RHS) {
712       return LHS.Base == RHS.Base && LHS.Path == RHS.Path;
713     }
hash_value(const ObjectUnderConstruction & Obj)714     friend llvm::hash_code hash_value(const ObjectUnderConstruction &Obj) {
715       return llvm::hash_combine(Obj.Base, Obj.Path);
716     }
717   };
718   enum class ConstructionPhase {
719     None,
720     Bases,
721     AfterBases,
722     AfterFields,
723     Destroying,
724     DestroyingBases
725   };
726 }
727 
728 namespace llvm {
729 template<> struct DenseMapInfo<ObjectUnderConstruction> {
730   using Base = DenseMapInfo<APValue::LValueBase>;
getEmptyKeyllvm::DenseMapInfo731   static ObjectUnderConstruction getEmptyKey() {
732     return {Base::getEmptyKey(), {}}; }
getTombstoneKeyllvm::DenseMapInfo733   static ObjectUnderConstruction getTombstoneKey() {
734     return {Base::getTombstoneKey(), {}};
735   }
getHashValuellvm::DenseMapInfo736   static unsigned getHashValue(const ObjectUnderConstruction &Object) {
737     return hash_value(Object);
738   }
isEqualllvm::DenseMapInfo739   static bool isEqual(const ObjectUnderConstruction &LHS,
740                       const ObjectUnderConstruction &RHS) {
741     return LHS == RHS;
742   }
743 };
744 }
745 
746 namespace {
747   /// A dynamically-allocated heap object.
748   struct DynAlloc {
749     /// The value of this heap-allocated object.
750     APValue Value;
751     /// The allocating expression; used for diagnostics. Either a CXXNewExpr
752     /// or a CallExpr (the latter is for direct calls to operator new inside
753     /// std::allocator<T>::allocate).
754     const Expr *AllocExpr = nullptr;
755 
756     enum Kind {
757       New,
758       ArrayNew,
759       StdAllocator
760     };
761 
762     /// Get the kind of the allocation. This must match between allocation
763     /// and deallocation.
getKind__anon6b379bbb0311::DynAlloc764     Kind getKind() const {
765       if (auto *NE = dyn_cast<CXXNewExpr>(AllocExpr))
766         return NE->isArray() ? ArrayNew : New;
767       assert(isa<CallExpr>(AllocExpr));
768       return StdAllocator;
769     }
770   };
771 
772   struct DynAllocOrder {
operator ()__anon6b379bbb0311::DynAllocOrder773     bool operator()(DynamicAllocLValue L, DynamicAllocLValue R) const {
774       return L.getIndex() < R.getIndex();
775     }
776   };
777 
778   /// EvalInfo - This is a private struct used by the evaluator to capture
779   /// information about a subexpression as it is folded.  It retains information
780   /// about the AST context, but also maintains information about the folded
781   /// expression.
782   ///
783   /// If an expression could be evaluated, it is still possible it is not a C
784   /// "integer constant expression" or constant expression.  If not, this struct
785   /// captures information about how and why not.
786   ///
787   /// One bit of information passed *into* the request for constant folding
788   /// indicates whether the subexpression is "evaluated" or not according to C
789   /// rules.  For example, the RHS of (0 && foo()) is not evaluated.  We can
790   /// evaluate the expression regardless of what the RHS is, but C only allows
791   /// certain things in certain situations.
792   class EvalInfo : public interp::State {
793   public:
794     ASTContext &Ctx;
795 
796     /// EvalStatus - Contains information about the evaluation.
797     Expr::EvalStatus &EvalStatus;
798 
799     /// CurrentCall - The top of the constexpr call stack.
800     CallStackFrame *CurrentCall;
801 
802     /// CallStackDepth - The number of calls in the call stack right now.
803     unsigned CallStackDepth;
804 
805     /// NextCallIndex - The next call index to assign.
806     unsigned NextCallIndex;
807 
808     /// StepsLeft - The remaining number of evaluation steps we're permitted
809     /// to perform. This is essentially a limit for the number of statements
810     /// we will evaluate.
811     unsigned StepsLeft;
812 
813     /// Enable the experimental new constant interpreter. If an expression is
814     /// not supported by the interpreter, an error is triggered.
815     bool EnableNewConstInterp;
816 
817     /// BottomFrame - The frame in which evaluation started. This must be
818     /// initialized after CurrentCall and CallStackDepth.
819     CallStackFrame BottomFrame;
820 
821     /// A stack of values whose lifetimes end at the end of some surrounding
822     /// evaluation frame.
823     llvm::SmallVector<Cleanup, 16> CleanupStack;
824 
825     /// EvaluatingDecl - This is the declaration whose initializer is being
826     /// evaluated, if any.
827     APValue::LValueBase EvaluatingDecl;
828 
829     enum class EvaluatingDeclKind {
830       None,
831       /// We're evaluating the construction of EvaluatingDecl.
832       Ctor,
833       /// We're evaluating the destruction of EvaluatingDecl.
834       Dtor,
835     };
836     EvaluatingDeclKind IsEvaluatingDecl = EvaluatingDeclKind::None;
837 
838     /// EvaluatingDeclValue - This is the value being constructed for the
839     /// declaration whose initializer is being evaluated, if any.
840     APValue *EvaluatingDeclValue;
841 
842     /// Set of objects that are currently being constructed.
843     llvm::DenseMap<ObjectUnderConstruction, ConstructionPhase>
844         ObjectsUnderConstruction;
845 
846     /// Current heap allocations, along with the location where each was
847     /// allocated. We use std::map here because we need stable addresses
848     /// for the stored APValues.
849     std::map<DynamicAllocLValue, DynAlloc, DynAllocOrder> HeapAllocs;
850 
851     /// The number of heap allocations performed so far in this evaluation.
852     unsigned NumHeapAllocs = 0;
853 
854     struct EvaluatingConstructorRAII {
855       EvalInfo &EI;
856       ObjectUnderConstruction Object;
857       bool DidInsert;
EvaluatingConstructorRAII__anon6b379bbb0311::EvalInfo::EvaluatingConstructorRAII858       EvaluatingConstructorRAII(EvalInfo &EI, ObjectUnderConstruction Object,
859                                 bool HasBases)
860           : EI(EI), Object(Object) {
861         DidInsert =
862             EI.ObjectsUnderConstruction
863                 .insert({Object, HasBases ? ConstructionPhase::Bases
864                                           : ConstructionPhase::AfterBases})
865                 .second;
866       }
finishedConstructingBases__anon6b379bbb0311::EvalInfo::EvaluatingConstructorRAII867       void finishedConstructingBases() {
868         EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterBases;
869       }
finishedConstructingFields__anon6b379bbb0311::EvalInfo::EvaluatingConstructorRAII870       void finishedConstructingFields() {
871         EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterFields;
872       }
~EvaluatingConstructorRAII__anon6b379bbb0311::EvalInfo::EvaluatingConstructorRAII873       ~EvaluatingConstructorRAII() {
874         if (DidInsert) EI.ObjectsUnderConstruction.erase(Object);
875       }
876     };
877 
878     struct EvaluatingDestructorRAII {
879       EvalInfo &EI;
880       ObjectUnderConstruction Object;
881       bool DidInsert;
EvaluatingDestructorRAII__anon6b379bbb0311::EvalInfo::EvaluatingDestructorRAII882       EvaluatingDestructorRAII(EvalInfo &EI, ObjectUnderConstruction Object)
883           : EI(EI), Object(Object) {
884         DidInsert = EI.ObjectsUnderConstruction
885                         .insert({Object, ConstructionPhase::Destroying})
886                         .second;
887       }
startedDestroyingBases__anon6b379bbb0311::EvalInfo::EvaluatingDestructorRAII888       void startedDestroyingBases() {
889         EI.ObjectsUnderConstruction[Object] =
890             ConstructionPhase::DestroyingBases;
891       }
~EvaluatingDestructorRAII__anon6b379bbb0311::EvalInfo::EvaluatingDestructorRAII892       ~EvaluatingDestructorRAII() {
893         if (DidInsert)
894           EI.ObjectsUnderConstruction.erase(Object);
895       }
896     };
897 
898     ConstructionPhase
isEvaluatingCtorDtor(APValue::LValueBase Base,ArrayRef<APValue::LValuePathEntry> Path)899     isEvaluatingCtorDtor(APValue::LValueBase Base,
900                          ArrayRef<APValue::LValuePathEntry> Path) {
901       return ObjectsUnderConstruction.lookup({Base, Path});
902     }
903 
904     /// If we're currently speculatively evaluating, the outermost call stack
905     /// depth at which we can mutate state, otherwise 0.
906     unsigned SpeculativeEvaluationDepth = 0;
907 
908     /// The current array initialization index, if we're performing array
909     /// initialization.
910     uint64_t ArrayInitIndex = -1;
911 
912     /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
913     /// notes attached to it will also be stored, otherwise they will not be.
914     bool HasActiveDiagnostic;
915 
916     /// Have we emitted a diagnostic explaining why we couldn't constant
917     /// fold (not just why it's not strictly a constant expression)?
918     bool HasFoldFailureDiagnostic;
919 
920     /// Whether or not we're in a context where the front end requires a
921     /// constant value.
922     bool InConstantContext;
923 
924     /// Whether we're checking that an expression is a potential constant
925     /// expression. If so, do not fail on constructs that could become constant
926     /// later on (such as a use of an undefined global).
927     bool CheckingPotentialConstantExpression = false;
928 
929     /// Whether we're checking for an expression that has undefined behavior.
930     /// If so, we will produce warnings if we encounter an operation that is
931     /// always undefined.
932     ///
933     /// Note that we still need to evaluate the expression normally when this
934     /// is set; this is used when evaluating ICEs in C.
935     bool CheckingForUndefinedBehavior = false;
936 
937     enum EvaluationMode {
938       /// Evaluate as a constant expression. Stop if we find that the expression
939       /// is not a constant expression.
940       EM_ConstantExpression,
941 
942       /// Evaluate as a constant expression. Stop if we find that the expression
943       /// is not a constant expression. Some expressions can be retried in the
944       /// optimizer if we don't constant fold them here, but in an unevaluated
945       /// context we try to fold them immediately since the optimizer never
946       /// gets a chance to look at it.
947       EM_ConstantExpressionUnevaluated,
948 
949       /// Fold the expression to a constant. Stop if we hit a side-effect that
950       /// we can't model.
951       EM_ConstantFold,
952 
953       /// Evaluate in any way we know how. Don't worry about side-effects that
954       /// can't be modeled.
955       EM_IgnoreSideEffects,
956     } EvalMode;
957 
958     /// Are we checking whether the expression is a potential constant
959     /// expression?
checkingPotentialConstantExpression() const960     bool checkingPotentialConstantExpression() const override  {
961       return CheckingPotentialConstantExpression;
962     }
963 
964     /// Are we checking an expression for overflow?
965     // FIXME: We should check for any kind of undefined or suspicious behavior
966     // in such constructs, not just overflow.
checkingForUndefinedBehavior() const967     bool checkingForUndefinedBehavior() const override {
968       return CheckingForUndefinedBehavior;
969     }
970 
EvalInfo(const ASTContext & C,Expr::EvalStatus & S,EvaluationMode Mode)971     EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode)
972         : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr),
973           CallStackDepth(0), NextCallIndex(1),
974           StepsLeft(C.getLangOpts().ConstexprStepLimit),
975           EnableNewConstInterp(C.getLangOpts().EnableNewConstInterp),
976           BottomFrame(*this, SourceLocation(), nullptr, nullptr, CallRef()),
977           EvaluatingDecl((const ValueDecl *)nullptr),
978           EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false),
979           HasFoldFailureDiagnostic(false), InConstantContext(false),
980           EvalMode(Mode) {}
981 
~EvalInfo()982     ~EvalInfo() {
983       discardCleanups();
984     }
985 
setEvaluatingDecl(APValue::LValueBase Base,APValue & Value,EvaluatingDeclKind EDK=EvaluatingDeclKind::Ctor)986     void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value,
987                            EvaluatingDeclKind EDK = EvaluatingDeclKind::Ctor) {
988       EvaluatingDecl = Base;
989       IsEvaluatingDecl = EDK;
990       EvaluatingDeclValue = &Value;
991     }
992 
CheckCallLimit(SourceLocation Loc)993     bool CheckCallLimit(SourceLocation Loc) {
994       // Don't perform any constexpr calls (other than the call we're checking)
995       // when checking a potential constant expression.
996       if (checkingPotentialConstantExpression() && CallStackDepth > 1)
997         return false;
998       if (NextCallIndex == 0) {
999         // NextCallIndex has wrapped around.
1000         FFDiag(Loc, diag::note_constexpr_call_limit_exceeded);
1001         return false;
1002       }
1003       if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
1004         return true;
1005       FFDiag(Loc, diag::note_constexpr_depth_limit_exceeded)
1006         << getLangOpts().ConstexprCallDepth;
1007       return false;
1008     }
1009 
1010     std::pair<CallStackFrame *, unsigned>
getCallFrameAndDepth(unsigned CallIndex)1011     getCallFrameAndDepth(unsigned CallIndex) {
1012       assert(CallIndex && "no call index in getCallFrameAndDepth");
1013       // We will eventually hit BottomFrame, which has Index 1, so Frame can't
1014       // be null in this loop.
1015       unsigned Depth = CallStackDepth;
1016       CallStackFrame *Frame = CurrentCall;
1017       while (Frame->Index > CallIndex) {
1018         Frame = Frame->Caller;
1019         --Depth;
1020       }
1021       if (Frame->Index == CallIndex)
1022         return {Frame, Depth};
1023       return {nullptr, 0};
1024     }
1025 
nextStep(const Stmt * S)1026     bool nextStep(const Stmt *S) {
1027       if (!StepsLeft) {
1028         FFDiag(S->getBeginLoc(), diag::note_constexpr_step_limit_exceeded);
1029         return false;
1030       }
1031       --StepsLeft;
1032       return true;
1033     }
1034 
1035     APValue *createHeapAlloc(const Expr *E, QualType T, LValue &LV);
1036 
lookupDynamicAlloc(DynamicAllocLValue DA)1037     Optional<DynAlloc*> lookupDynamicAlloc(DynamicAllocLValue DA) {
1038       Optional<DynAlloc*> Result;
1039       auto It = HeapAllocs.find(DA);
1040       if (It != HeapAllocs.end())
1041         Result = &It->second;
1042       return Result;
1043     }
1044 
1045     /// Get the allocated storage for the given parameter of the given call.
getParamSlot(CallRef Call,const ParmVarDecl * PVD)1046     APValue *getParamSlot(CallRef Call, const ParmVarDecl *PVD) {
1047       CallStackFrame *Frame = getCallFrameAndDepth(Call.CallIndex).first;
1048       return Frame ? Frame->getTemporary(Call.getOrigParam(PVD), Call.Version)
1049                    : nullptr;
1050     }
1051 
1052     /// Information about a stack frame for std::allocator<T>::[de]allocate.
1053     struct StdAllocatorCaller {
1054       unsigned FrameIndex;
1055       QualType ElemType;
operator bool__anon6b379bbb0311::EvalInfo::StdAllocatorCaller1056       explicit operator bool() const { return FrameIndex != 0; };
1057     };
1058 
getStdAllocatorCaller(StringRef FnName) const1059     StdAllocatorCaller getStdAllocatorCaller(StringRef FnName) const {
1060       for (const CallStackFrame *Call = CurrentCall; Call != &BottomFrame;
1061            Call = Call->Caller) {
1062         const auto *MD = dyn_cast_or_null<CXXMethodDecl>(Call->Callee);
1063         if (!MD)
1064           continue;
1065         const IdentifierInfo *FnII = MD->getIdentifier();
1066         if (!FnII || !FnII->isStr(FnName))
1067           continue;
1068 
1069         const auto *CTSD =
1070             dyn_cast<ClassTemplateSpecializationDecl>(MD->getParent());
1071         if (!CTSD)
1072           continue;
1073 
1074         const IdentifierInfo *ClassII = CTSD->getIdentifier();
1075         const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
1076         if (CTSD->isInStdNamespace() && ClassII &&
1077             ClassII->isStr("allocator") && TAL.size() >= 1 &&
1078             TAL[0].getKind() == TemplateArgument::Type)
1079           return {Call->Index, TAL[0].getAsType()};
1080       }
1081 
1082       return {};
1083     }
1084 
performLifetimeExtension()1085     void performLifetimeExtension() {
1086       // Disable the cleanups for lifetime-extended temporaries.
1087       CleanupStack.erase(std::remove_if(CleanupStack.begin(),
1088                                         CleanupStack.end(),
1089                                         [](Cleanup &C) {
1090                                           return !C.isDestroyedAtEndOf(
1091                                               ScopeKind::FullExpression);
1092                                         }),
1093                          CleanupStack.end());
1094      }
1095 
1096     /// Throw away any remaining cleanups at the end of evaluation. If any
1097     /// cleanups would have had a side-effect, note that as an unmodeled
1098     /// side-effect and return false. Otherwise, return true.
discardCleanups()1099     bool discardCleanups() {
1100       for (Cleanup &C : CleanupStack) {
1101         if (C.hasSideEffect() && !noteSideEffect()) {
1102           CleanupStack.clear();
1103           return false;
1104         }
1105       }
1106       CleanupStack.clear();
1107       return true;
1108     }
1109 
1110   private:
getCurrentFrame()1111     interp::Frame *getCurrentFrame() override { return CurrentCall; }
getBottomFrame() const1112     const interp::Frame *getBottomFrame() const override { return &BottomFrame; }
1113 
hasActiveDiagnostic()1114     bool hasActiveDiagnostic() override { return HasActiveDiagnostic; }
setActiveDiagnostic(bool Flag)1115     void setActiveDiagnostic(bool Flag) override { HasActiveDiagnostic = Flag; }
1116 
setFoldFailureDiagnostic(bool Flag)1117     void setFoldFailureDiagnostic(bool Flag) override {
1118       HasFoldFailureDiagnostic = Flag;
1119     }
1120 
getEvalStatus() const1121     Expr::EvalStatus &getEvalStatus() const override { return EvalStatus; }
1122 
getCtx() const1123     ASTContext &getCtx() const override { return Ctx; }
1124 
1125     // If we have a prior diagnostic, it will be noting that the expression
1126     // isn't a constant expression. This diagnostic is more important,
1127     // unless we require this evaluation to produce a constant expression.
1128     //
1129     // FIXME: We might want to show both diagnostics to the user in
1130     // EM_ConstantFold mode.
hasPriorDiagnostic()1131     bool hasPriorDiagnostic() override {
1132       if (!EvalStatus.Diag->empty()) {
1133         switch (EvalMode) {
1134         case EM_ConstantFold:
1135         case EM_IgnoreSideEffects:
1136           if (!HasFoldFailureDiagnostic)
1137             break;
1138           // We've already failed to fold something. Keep that diagnostic.
1139           LLVM_FALLTHROUGH;
1140         case EM_ConstantExpression:
1141         case EM_ConstantExpressionUnevaluated:
1142           setActiveDiagnostic(false);
1143           return true;
1144         }
1145       }
1146       return false;
1147     }
1148 
getCallStackDepth()1149     unsigned getCallStackDepth() override { return CallStackDepth; }
1150 
1151   public:
1152     /// Should we continue evaluation after encountering a side-effect that we
1153     /// couldn't model?
keepEvaluatingAfterSideEffect()1154     bool keepEvaluatingAfterSideEffect() {
1155       switch (EvalMode) {
1156       case EM_IgnoreSideEffects:
1157         return true;
1158 
1159       case EM_ConstantExpression:
1160       case EM_ConstantExpressionUnevaluated:
1161       case EM_ConstantFold:
1162         // By default, assume any side effect might be valid in some other
1163         // evaluation of this expression from a different context.
1164         return checkingPotentialConstantExpression() ||
1165                checkingForUndefinedBehavior();
1166       }
1167       llvm_unreachable("Missed EvalMode case");
1168     }
1169 
1170     /// Note that we have had a side-effect, and determine whether we should
1171     /// keep evaluating.
noteSideEffect()1172     bool noteSideEffect() {
1173       EvalStatus.HasSideEffects = true;
1174       return keepEvaluatingAfterSideEffect();
1175     }
1176 
1177     /// Should we continue evaluation after encountering undefined behavior?
keepEvaluatingAfterUndefinedBehavior()1178     bool keepEvaluatingAfterUndefinedBehavior() {
1179       switch (EvalMode) {
1180       case EM_IgnoreSideEffects:
1181       case EM_ConstantFold:
1182         return true;
1183 
1184       case EM_ConstantExpression:
1185       case EM_ConstantExpressionUnevaluated:
1186         return checkingForUndefinedBehavior();
1187       }
1188       llvm_unreachable("Missed EvalMode case");
1189     }
1190 
1191     /// Note that we hit something that was technically undefined behavior, but
1192     /// that we can evaluate past it (such as signed overflow or floating-point
1193     /// division by zero.)
noteUndefinedBehavior()1194     bool noteUndefinedBehavior() override {
1195       EvalStatus.HasUndefinedBehavior = true;
1196       return keepEvaluatingAfterUndefinedBehavior();
1197     }
1198 
1199     /// Should we continue evaluation as much as possible after encountering a
1200     /// construct which can't be reduced to a value?
keepEvaluatingAfterFailure() const1201     bool keepEvaluatingAfterFailure() const override {
1202       if (!StepsLeft)
1203         return false;
1204 
1205       switch (EvalMode) {
1206       case EM_ConstantExpression:
1207       case EM_ConstantExpressionUnevaluated:
1208       case EM_ConstantFold:
1209       case EM_IgnoreSideEffects:
1210         return checkingPotentialConstantExpression() ||
1211                checkingForUndefinedBehavior();
1212       }
1213       llvm_unreachable("Missed EvalMode case");
1214     }
1215 
1216     /// Notes that we failed to evaluate an expression that other expressions
1217     /// directly depend on, and determine if we should keep evaluating. This
1218     /// should only be called if we actually intend to keep evaluating.
1219     ///
1220     /// Call noteSideEffect() instead if we may be able to ignore the value that
1221     /// we failed to evaluate, e.g. if we failed to evaluate Foo() in:
1222     ///
1223     /// (Foo(), 1)      // use noteSideEffect
1224     /// (Foo() || true) // use noteSideEffect
1225     /// Foo() + 1       // use noteFailure
noteFailure()1226     LLVM_NODISCARD bool noteFailure() {
1227       // Failure when evaluating some expression often means there is some
1228       // subexpression whose evaluation was skipped. Therefore, (because we
1229       // don't track whether we skipped an expression when unwinding after an
1230       // evaluation failure) every evaluation failure that bubbles up from a
1231       // subexpression implies that a side-effect has potentially happened. We
1232       // skip setting the HasSideEffects flag to true until we decide to
1233       // continue evaluating after that point, which happens here.
1234       bool KeepGoing = keepEvaluatingAfterFailure();
1235       EvalStatus.HasSideEffects |= KeepGoing;
1236       return KeepGoing;
1237     }
1238 
1239     class ArrayInitLoopIndex {
1240       EvalInfo &Info;
1241       uint64_t OuterIndex;
1242 
1243     public:
ArrayInitLoopIndex(EvalInfo & Info)1244       ArrayInitLoopIndex(EvalInfo &Info)
1245           : Info(Info), OuterIndex(Info.ArrayInitIndex) {
1246         Info.ArrayInitIndex = 0;
1247       }
~ArrayInitLoopIndex()1248       ~ArrayInitLoopIndex() { Info.ArrayInitIndex = OuterIndex; }
1249 
operator uint64_t&()1250       operator uint64_t&() { return Info.ArrayInitIndex; }
1251     };
1252   };
1253 
1254   /// Object used to treat all foldable expressions as constant expressions.
1255   struct FoldConstant {
1256     EvalInfo &Info;
1257     bool Enabled;
1258     bool HadNoPriorDiags;
1259     EvalInfo::EvaluationMode OldMode;
1260 
FoldConstant__anon6b379bbb0311::FoldConstant1261     explicit FoldConstant(EvalInfo &Info, bool Enabled)
1262       : Info(Info),
1263         Enabled(Enabled),
1264         HadNoPriorDiags(Info.EvalStatus.Diag &&
1265                         Info.EvalStatus.Diag->empty() &&
1266                         !Info.EvalStatus.HasSideEffects),
1267         OldMode(Info.EvalMode) {
1268       if (Enabled)
1269         Info.EvalMode = EvalInfo::EM_ConstantFold;
1270     }
keepDiagnostics__anon6b379bbb0311::FoldConstant1271     void keepDiagnostics() { Enabled = false; }
~FoldConstant__anon6b379bbb0311::FoldConstant1272     ~FoldConstant() {
1273       if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() &&
1274           !Info.EvalStatus.HasSideEffects)
1275         Info.EvalStatus.Diag->clear();
1276       Info.EvalMode = OldMode;
1277     }
1278   };
1279 
1280   /// RAII object used to set the current evaluation mode to ignore
1281   /// side-effects.
1282   struct IgnoreSideEffectsRAII {
1283     EvalInfo &Info;
1284     EvalInfo::EvaluationMode OldMode;
IgnoreSideEffectsRAII__anon6b379bbb0311::IgnoreSideEffectsRAII1285     explicit IgnoreSideEffectsRAII(EvalInfo &Info)
1286         : Info(Info), OldMode(Info.EvalMode) {
1287       Info.EvalMode = EvalInfo::EM_IgnoreSideEffects;
1288     }
1289 
~IgnoreSideEffectsRAII__anon6b379bbb0311::IgnoreSideEffectsRAII1290     ~IgnoreSideEffectsRAII() { Info.EvalMode = OldMode; }
1291   };
1292 
1293   /// RAII object used to optionally suppress diagnostics and side-effects from
1294   /// a speculative evaluation.
1295   class SpeculativeEvaluationRAII {
1296     EvalInfo *Info = nullptr;
1297     Expr::EvalStatus OldStatus;
1298     unsigned OldSpeculativeEvaluationDepth;
1299 
moveFromAndCancel(SpeculativeEvaluationRAII && Other)1300     void moveFromAndCancel(SpeculativeEvaluationRAII &&Other) {
1301       Info = Other.Info;
1302       OldStatus = Other.OldStatus;
1303       OldSpeculativeEvaluationDepth = Other.OldSpeculativeEvaluationDepth;
1304       Other.Info = nullptr;
1305     }
1306 
maybeRestoreState()1307     void maybeRestoreState() {
1308       if (!Info)
1309         return;
1310 
1311       Info->EvalStatus = OldStatus;
1312       Info->SpeculativeEvaluationDepth = OldSpeculativeEvaluationDepth;
1313     }
1314 
1315   public:
1316     SpeculativeEvaluationRAII() = default;
1317 
SpeculativeEvaluationRAII(EvalInfo & Info,SmallVectorImpl<PartialDiagnosticAt> * NewDiag=nullptr)1318     SpeculativeEvaluationRAII(
1319         EvalInfo &Info, SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr)
1320         : Info(&Info), OldStatus(Info.EvalStatus),
1321           OldSpeculativeEvaluationDepth(Info.SpeculativeEvaluationDepth) {
1322       Info.EvalStatus.Diag = NewDiag;
1323       Info.SpeculativeEvaluationDepth = Info.CallStackDepth + 1;
1324     }
1325 
1326     SpeculativeEvaluationRAII(const SpeculativeEvaluationRAII &Other) = delete;
SpeculativeEvaluationRAII(SpeculativeEvaluationRAII && Other)1327     SpeculativeEvaluationRAII(SpeculativeEvaluationRAII &&Other) {
1328       moveFromAndCancel(std::move(Other));
1329     }
1330 
operator =(SpeculativeEvaluationRAII && Other)1331     SpeculativeEvaluationRAII &operator=(SpeculativeEvaluationRAII &&Other) {
1332       maybeRestoreState();
1333       moveFromAndCancel(std::move(Other));
1334       return *this;
1335     }
1336 
~SpeculativeEvaluationRAII()1337     ~SpeculativeEvaluationRAII() { maybeRestoreState(); }
1338   };
1339 
1340   /// RAII object wrapping a full-expression or block scope, and handling
1341   /// the ending of the lifetime of temporaries created within it.
1342   template<ScopeKind Kind>
1343   class ScopeRAII {
1344     EvalInfo &Info;
1345     unsigned OldStackSize;
1346   public:
ScopeRAII(EvalInfo & Info)1347     ScopeRAII(EvalInfo &Info)
1348         : Info(Info), OldStackSize(Info.CleanupStack.size()) {
1349       // Push a new temporary version. This is needed to distinguish between
1350       // temporaries created in different iterations of a loop.
1351       Info.CurrentCall->pushTempVersion();
1352     }
destroy(bool RunDestructors=true)1353     bool destroy(bool RunDestructors = true) {
1354       bool OK = cleanup(Info, RunDestructors, OldStackSize);
1355       OldStackSize = -1U;
1356       return OK;
1357     }
~ScopeRAII()1358     ~ScopeRAII() {
1359       if (OldStackSize != -1U)
1360         destroy(false);
1361       // Body moved to a static method to encourage the compiler to inline away
1362       // instances of this class.
1363       Info.CurrentCall->popTempVersion();
1364     }
1365   private:
cleanup(EvalInfo & Info,bool RunDestructors,unsigned OldStackSize)1366     static bool cleanup(EvalInfo &Info, bool RunDestructors,
1367                         unsigned OldStackSize) {
1368       assert(OldStackSize <= Info.CleanupStack.size() &&
1369              "running cleanups out of order?");
1370 
1371       // Run all cleanups for a block scope, and non-lifetime-extended cleanups
1372       // for a full-expression scope.
1373       bool Success = true;
1374       for (unsigned I = Info.CleanupStack.size(); I > OldStackSize; --I) {
1375         if (Info.CleanupStack[I - 1].isDestroyedAtEndOf(Kind)) {
1376           if (!Info.CleanupStack[I - 1].endLifetime(Info, RunDestructors)) {
1377             Success = false;
1378             break;
1379           }
1380         }
1381       }
1382 
1383       // Compact any retained cleanups.
1384       auto NewEnd = Info.CleanupStack.begin() + OldStackSize;
1385       if (Kind != ScopeKind::Block)
1386         NewEnd =
1387             std::remove_if(NewEnd, Info.CleanupStack.end(), [](Cleanup &C) {
1388               return C.isDestroyedAtEndOf(Kind);
1389             });
1390       Info.CleanupStack.erase(NewEnd, Info.CleanupStack.end());
1391       return Success;
1392     }
1393   };
1394   typedef ScopeRAII<ScopeKind::Block> BlockScopeRAII;
1395   typedef ScopeRAII<ScopeKind::FullExpression> FullExpressionRAII;
1396   typedef ScopeRAII<ScopeKind::Call> CallScopeRAII;
1397 }
1398 
checkSubobject(EvalInfo & Info,const Expr * E,CheckSubobjectKind CSK)1399 bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
1400                                          CheckSubobjectKind CSK) {
1401   if (Invalid)
1402     return false;
1403   if (isOnePastTheEnd()) {
1404     Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
1405       << CSK;
1406     setInvalid();
1407     return false;
1408   }
1409   // Note, we do not diagnose if isMostDerivedAnUnsizedArray(), because there
1410   // must actually be at least one array element; even a VLA cannot have a
1411   // bound of zero. And if our index is nonzero, we already had a CCEDiag.
1412   return true;
1413 }
1414 
diagnoseUnsizedArrayPointerArithmetic(EvalInfo & Info,const Expr * E)1415 void SubobjectDesignator::diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info,
1416                                                                 const Expr *E) {
1417   Info.CCEDiag(E, diag::note_constexpr_unsized_array_indexed);
1418   // Do not set the designator as invalid: we can represent this situation,
1419   // and correct handling of __builtin_object_size requires us to do so.
1420 }
1421 
diagnosePointerArithmetic(EvalInfo & Info,const Expr * E,const APSInt & N)1422 void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
1423                                                     const Expr *E,
1424                                                     const APSInt &N) {
1425   // If we're complaining, we must be able to statically determine the size of
1426   // the most derived array.
1427   if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement)
1428     Info.CCEDiag(E, diag::note_constexpr_array_index)
1429       << N << /*array*/ 0
1430       << static_cast<unsigned>(getMostDerivedArraySize());
1431   else
1432     Info.CCEDiag(E, diag::note_constexpr_array_index)
1433       << N << /*non-array*/ 1;
1434   setInvalid();
1435 }
1436 
CallStackFrame(EvalInfo & Info,SourceLocation CallLoc,const FunctionDecl * Callee,const LValue * This,CallRef Call)1437 CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
1438                                const FunctionDecl *Callee, const LValue *This,
1439                                CallRef Call)
1440     : Info(Info), Caller(Info.CurrentCall), Callee(Callee), This(This),
1441       Arguments(Call), CallLoc(CallLoc), Index(Info.NextCallIndex++) {
1442   Info.CurrentCall = this;
1443   ++Info.CallStackDepth;
1444 }
1445 
~CallStackFrame()1446 CallStackFrame::~CallStackFrame() {
1447   assert(Info.CurrentCall == this && "calls retired out of order");
1448   --Info.CallStackDepth;
1449   Info.CurrentCall = Caller;
1450 }
1451 
isRead(AccessKinds AK)1452 static bool isRead(AccessKinds AK) {
1453   return AK == AK_Read || AK == AK_ReadObjectRepresentation;
1454 }
1455 
isModification(AccessKinds AK)1456 static bool isModification(AccessKinds AK) {
1457   switch (AK) {
1458   case AK_Read:
1459   case AK_ReadObjectRepresentation:
1460   case AK_MemberCall:
1461   case AK_DynamicCast:
1462   case AK_TypeId:
1463     return false;
1464   case AK_Assign:
1465   case AK_Increment:
1466   case AK_Decrement:
1467   case AK_Construct:
1468   case AK_Destroy:
1469     return true;
1470   }
1471   llvm_unreachable("unknown access kind");
1472 }
1473 
isAnyAccess(AccessKinds AK)1474 static bool isAnyAccess(AccessKinds AK) {
1475   return isRead(AK) || isModification(AK);
1476 }
1477 
1478 /// Is this an access per the C++ definition?
isFormalAccess(AccessKinds AK)1479 static bool isFormalAccess(AccessKinds AK) {
1480   return isAnyAccess(AK) && AK != AK_Construct && AK != AK_Destroy;
1481 }
1482 
1483 /// Is this kind of axcess valid on an indeterminate object value?
isValidIndeterminateAccess(AccessKinds AK)1484 static bool isValidIndeterminateAccess(AccessKinds AK) {
1485   switch (AK) {
1486   case AK_Read:
1487   case AK_Increment:
1488   case AK_Decrement:
1489     // These need the object's value.
1490     return false;
1491 
1492   case AK_ReadObjectRepresentation:
1493   case AK_Assign:
1494   case AK_Construct:
1495   case AK_Destroy:
1496     // Construction and destruction don't need the value.
1497     return true;
1498 
1499   case AK_MemberCall:
1500   case AK_DynamicCast:
1501   case AK_TypeId:
1502     // These aren't really meaningful on scalars.
1503     return true;
1504   }
1505   llvm_unreachable("unknown access kind");
1506 }
1507 
1508 namespace {
1509   struct ComplexValue {
1510   private:
1511     bool IsInt;
1512 
1513   public:
1514     APSInt IntReal, IntImag;
1515     APFloat FloatReal, FloatImag;
1516 
ComplexValue__anon6b379bbb0611::ComplexValue1517     ComplexValue() : FloatReal(APFloat::Bogus()), FloatImag(APFloat::Bogus()) {}
1518 
makeComplexFloat__anon6b379bbb0611::ComplexValue1519     void makeComplexFloat() { IsInt = false; }
isComplexFloat__anon6b379bbb0611::ComplexValue1520     bool isComplexFloat() const { return !IsInt; }
getComplexFloatReal__anon6b379bbb0611::ComplexValue1521     APFloat &getComplexFloatReal() { return FloatReal; }
getComplexFloatImag__anon6b379bbb0611::ComplexValue1522     APFloat &getComplexFloatImag() { return FloatImag; }
1523 
makeComplexInt__anon6b379bbb0611::ComplexValue1524     void makeComplexInt() { IsInt = true; }
isComplexInt__anon6b379bbb0611::ComplexValue1525     bool isComplexInt() const { return IsInt; }
getComplexIntReal__anon6b379bbb0611::ComplexValue1526     APSInt &getComplexIntReal() { return IntReal; }
getComplexIntImag__anon6b379bbb0611::ComplexValue1527     APSInt &getComplexIntImag() { return IntImag; }
1528 
moveInto__anon6b379bbb0611::ComplexValue1529     void moveInto(APValue &v) const {
1530       if (isComplexFloat())
1531         v = APValue(FloatReal, FloatImag);
1532       else
1533         v = APValue(IntReal, IntImag);
1534     }
setFrom__anon6b379bbb0611::ComplexValue1535     void setFrom(const APValue &v) {
1536       assert(v.isComplexFloat() || v.isComplexInt());
1537       if (v.isComplexFloat()) {
1538         makeComplexFloat();
1539         FloatReal = v.getComplexFloatReal();
1540         FloatImag = v.getComplexFloatImag();
1541       } else {
1542         makeComplexInt();
1543         IntReal = v.getComplexIntReal();
1544         IntImag = v.getComplexIntImag();
1545       }
1546     }
1547   };
1548 
1549   struct LValue {
1550     APValue::LValueBase Base;
1551     CharUnits Offset;
1552     SubobjectDesignator Designator;
1553     bool IsNullPtr : 1;
1554     bool InvalidBase : 1;
1555 
getLValueBase__anon6b379bbb0611::LValue1556     const APValue::LValueBase getLValueBase() const { return Base; }
getLValueOffset__anon6b379bbb0611::LValue1557     CharUnits &getLValueOffset() { return Offset; }
getLValueOffset__anon6b379bbb0611::LValue1558     const CharUnits &getLValueOffset() const { return Offset; }
getLValueDesignator__anon6b379bbb0611::LValue1559     SubobjectDesignator &getLValueDesignator() { return Designator; }
getLValueDesignator__anon6b379bbb0611::LValue1560     const SubobjectDesignator &getLValueDesignator() const { return Designator;}
isNullPointer__anon6b379bbb0611::LValue1561     bool isNullPointer() const { return IsNullPtr;}
1562 
getLValueCallIndex__anon6b379bbb0611::LValue1563     unsigned getLValueCallIndex() const { return Base.getCallIndex(); }
getLValueVersion__anon6b379bbb0611::LValue1564     unsigned getLValueVersion() const { return Base.getVersion(); }
1565 
moveInto__anon6b379bbb0611::LValue1566     void moveInto(APValue &V) const {
1567       if (Designator.Invalid)
1568         V = APValue(Base, Offset, APValue::NoLValuePath(), IsNullPtr);
1569       else {
1570         assert(!InvalidBase && "APValues can't handle invalid LValue bases");
1571         V = APValue(Base, Offset, Designator.Entries,
1572                     Designator.IsOnePastTheEnd, IsNullPtr);
1573       }
1574     }
setFrom__anon6b379bbb0611::LValue1575     void setFrom(ASTContext &Ctx, const APValue &V) {
1576       assert(V.isLValue() && "Setting LValue from a non-LValue?");
1577       Base = V.getLValueBase();
1578       Offset = V.getLValueOffset();
1579       InvalidBase = false;
1580       Designator = SubobjectDesignator(Ctx, V);
1581       IsNullPtr = V.isNullPointer();
1582     }
1583 
set__anon6b379bbb0611::LValue1584     void set(APValue::LValueBase B, bool BInvalid = false) {
1585 #ifndef NDEBUG
1586       // We only allow a few types of invalid bases. Enforce that here.
1587       if (BInvalid) {
1588         const auto *E = B.get<const Expr *>();
1589         assert((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) &&
1590                "Unexpected type of invalid base");
1591       }
1592 #endif
1593 
1594       Base = B;
1595       Offset = CharUnits::fromQuantity(0);
1596       InvalidBase = BInvalid;
1597       Designator = SubobjectDesignator(getType(B));
1598       IsNullPtr = false;
1599     }
1600 
setNull__anon6b379bbb0611::LValue1601     void setNull(ASTContext &Ctx, QualType PointerTy) {
1602       Base = (const ValueDecl *)nullptr;
1603       Offset =
1604           CharUnits::fromQuantity(Ctx.getTargetNullPointerValue(PointerTy));
1605       InvalidBase = false;
1606       Designator = SubobjectDesignator(PointerTy->getPointeeType());
1607       IsNullPtr = true;
1608     }
1609 
setInvalid__anon6b379bbb0611::LValue1610     void setInvalid(APValue::LValueBase B, unsigned I = 0) {
1611       set(B, true);
1612     }
1613 
toString__anon6b379bbb0611::LValue1614     std::string toString(ASTContext &Ctx, QualType T) const {
1615       APValue Printable;
1616       moveInto(Printable);
1617       return Printable.getAsString(Ctx, T);
1618     }
1619 
1620   private:
1621     // Check that this LValue is not based on a null pointer. If it is, produce
1622     // a diagnostic and mark the designator as invalid.
1623     template <typename GenDiagType>
checkNullPointerDiagnosingWith__anon6b379bbb0611::LValue1624     bool checkNullPointerDiagnosingWith(const GenDiagType &GenDiag) {
1625       if (Designator.Invalid)
1626         return false;
1627       if (IsNullPtr) {
1628         GenDiag();
1629         Designator.setInvalid();
1630         return false;
1631       }
1632       return true;
1633     }
1634 
1635   public:
checkNullPointer__anon6b379bbb0611::LValue1636     bool checkNullPointer(EvalInfo &Info, const Expr *E,
1637                           CheckSubobjectKind CSK) {
1638       return checkNullPointerDiagnosingWith([&Info, E, CSK] {
1639         Info.CCEDiag(E, diag::note_constexpr_null_subobject) << CSK;
1640       });
1641     }
1642 
checkNullPointerForFoldAccess__anon6b379bbb0611::LValue1643     bool checkNullPointerForFoldAccess(EvalInfo &Info, const Expr *E,
1644                                        AccessKinds AK) {
1645       return checkNullPointerDiagnosingWith([&Info, E, AK] {
1646         Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
1647       });
1648     }
1649 
1650     // Check this LValue refers to an object. If not, set the designator to be
1651     // invalid and emit a diagnostic.
checkSubobject__anon6b379bbb0611::LValue1652     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
1653       return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) &&
1654              Designator.checkSubobject(Info, E, CSK);
1655     }
1656 
addDecl__anon6b379bbb0611::LValue1657     void addDecl(EvalInfo &Info, const Expr *E,
1658                  const Decl *D, bool Virtual = false) {
1659       if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
1660         Designator.addDeclUnchecked(D, Virtual);
1661     }
addUnsizedArray__anon6b379bbb0611::LValue1662     void addUnsizedArray(EvalInfo &Info, const Expr *E, QualType ElemTy) {
1663       if (!Designator.Entries.empty()) {
1664         Info.CCEDiag(E, diag::note_constexpr_unsupported_unsized_array);
1665         Designator.setInvalid();
1666         return;
1667       }
1668       if (checkSubobject(Info, E, CSK_ArrayToPointer)) {
1669         assert(getType(Base)->isPointerType() || getType(Base)->isArrayType());
1670         Designator.FirstEntryIsAnUnsizedArray = true;
1671         Designator.addUnsizedArrayUnchecked(ElemTy);
1672       }
1673     }
addArray__anon6b379bbb0611::LValue1674     void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
1675       if (checkSubobject(Info, E, CSK_ArrayToPointer))
1676         Designator.addArrayUnchecked(CAT);
1677     }
addComplex__anon6b379bbb0611::LValue1678     void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
1679       if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
1680         Designator.addComplexUnchecked(EltTy, Imag);
1681     }
clearIsNullPointer__anon6b379bbb0611::LValue1682     void clearIsNullPointer() {
1683       IsNullPtr = false;
1684     }
adjustOffsetAndIndex__anon6b379bbb0611::LValue1685     void adjustOffsetAndIndex(EvalInfo &Info, const Expr *E,
1686                               const APSInt &Index, CharUnits ElementSize) {
1687       // An index of 0 has no effect. (In C, adding 0 to a null pointer is UB,
1688       // but we're not required to diagnose it and it's valid in C++.)
1689       if (!Index)
1690         return;
1691 
1692       // Compute the new offset in the appropriate width, wrapping at 64 bits.
1693       // FIXME: When compiling for a 32-bit target, we should use 32-bit
1694       // offsets.
1695       uint64_t Offset64 = Offset.getQuantity();
1696       uint64_t ElemSize64 = ElementSize.getQuantity();
1697       uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
1698       Offset = CharUnits::fromQuantity(Offset64 + ElemSize64 * Index64);
1699 
1700       if (checkNullPointer(Info, E, CSK_ArrayIndex))
1701         Designator.adjustIndex(Info, E, Index);
1702       clearIsNullPointer();
1703     }
adjustOffset__anon6b379bbb0611::LValue1704     void adjustOffset(CharUnits N) {
1705       Offset += N;
1706       if (N.getQuantity())
1707         clearIsNullPointer();
1708     }
1709   };
1710 
1711   struct MemberPtr {
MemberPtr__anon6b379bbb0611::MemberPtr1712     MemberPtr() {}
MemberPtr__anon6b379bbb0611::MemberPtr1713     explicit MemberPtr(const ValueDecl *Decl) :
1714       DeclAndIsDerivedMember(Decl, false), Path() {}
1715 
1716     /// The member or (direct or indirect) field referred to by this member
1717     /// pointer, or 0 if this is a null member pointer.
getDecl__anon6b379bbb0611::MemberPtr1718     const ValueDecl *getDecl() const {
1719       return DeclAndIsDerivedMember.getPointer();
1720     }
1721     /// Is this actually a member of some type derived from the relevant class?
isDerivedMember__anon6b379bbb0611::MemberPtr1722     bool isDerivedMember() const {
1723       return DeclAndIsDerivedMember.getInt();
1724     }
1725     /// Get the class which the declaration actually lives in.
getContainingRecord__anon6b379bbb0611::MemberPtr1726     const CXXRecordDecl *getContainingRecord() const {
1727       return cast<CXXRecordDecl>(
1728           DeclAndIsDerivedMember.getPointer()->getDeclContext());
1729     }
1730 
moveInto__anon6b379bbb0611::MemberPtr1731     void moveInto(APValue &V) const {
1732       V = APValue(getDecl(), isDerivedMember(), Path);
1733     }
setFrom__anon6b379bbb0611::MemberPtr1734     void setFrom(const APValue &V) {
1735       assert(V.isMemberPointer());
1736       DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
1737       DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
1738       Path.clear();
1739       ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
1740       Path.insert(Path.end(), P.begin(), P.end());
1741     }
1742 
1743     /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
1744     /// whether the member is a member of some class derived from the class type
1745     /// of the member pointer.
1746     llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
1747     /// Path - The path of base/derived classes from the member declaration's
1748     /// class (exclusive) to the class type of the member pointer (inclusive).
1749     SmallVector<const CXXRecordDecl*, 4> Path;
1750 
1751     /// Perform a cast towards the class of the Decl (either up or down the
1752     /// hierarchy).
castBack__anon6b379bbb0611::MemberPtr1753     bool castBack(const CXXRecordDecl *Class) {
1754       assert(!Path.empty());
1755       const CXXRecordDecl *Expected;
1756       if (Path.size() >= 2)
1757         Expected = Path[Path.size() - 2];
1758       else
1759         Expected = getContainingRecord();
1760       if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
1761         // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
1762         // if B does not contain the original member and is not a base or
1763         // derived class of the class containing the original member, the result
1764         // of the cast is undefined.
1765         // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
1766         // (D::*). We consider that to be a language defect.
1767         return false;
1768       }
1769       Path.pop_back();
1770       return true;
1771     }
1772     /// Perform a base-to-derived member pointer cast.
castToDerived__anon6b379bbb0611::MemberPtr1773     bool castToDerived(const CXXRecordDecl *Derived) {
1774       if (!getDecl())
1775         return true;
1776       if (!isDerivedMember()) {
1777         Path.push_back(Derived);
1778         return true;
1779       }
1780       if (!castBack(Derived))
1781         return false;
1782       if (Path.empty())
1783         DeclAndIsDerivedMember.setInt(false);
1784       return true;
1785     }
1786     /// Perform a derived-to-base member pointer cast.
castToBase__anon6b379bbb0611::MemberPtr1787     bool castToBase(const CXXRecordDecl *Base) {
1788       if (!getDecl())
1789         return true;
1790       if (Path.empty())
1791         DeclAndIsDerivedMember.setInt(true);
1792       if (isDerivedMember()) {
1793         Path.push_back(Base);
1794         return true;
1795       }
1796       return castBack(Base);
1797     }
1798   };
1799 
1800   /// Compare two member pointers, which are assumed to be of the same type.
operator ==(const MemberPtr & LHS,const MemberPtr & RHS)1801   static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
1802     if (!LHS.getDecl() || !RHS.getDecl())
1803       return !LHS.getDecl() && !RHS.getDecl();
1804     if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
1805       return false;
1806     return LHS.Path == RHS.Path;
1807   }
1808 }
1809 
1810 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
1811 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
1812                             const LValue &This, const Expr *E,
1813                             bool AllowNonLiteralTypes = false);
1814 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
1815                            bool InvalidBaseOK = false);
1816 static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info,
1817                             bool InvalidBaseOK = false);
1818 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
1819                                   EvalInfo &Info);
1820 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
1821 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
1822 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
1823                                     EvalInfo &Info);
1824 static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
1825 static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
1826 static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
1827                            EvalInfo &Info);
1828 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result);
1829 
1830 /// Evaluate an integer or fixed point expression into an APResult.
1831 static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
1832                                         EvalInfo &Info);
1833 
1834 /// Evaluate only a fixed point expression into an APResult.
1835 static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
1836                                EvalInfo &Info);
1837 
1838 //===----------------------------------------------------------------------===//
1839 // Misc utilities
1840 //===----------------------------------------------------------------------===//
1841 
1842 /// Negate an APSInt in place, converting it to a signed form if necessary, and
1843 /// preserving its value (by extending by up to one bit as needed).
negateAsSigned(APSInt & Int)1844 static void negateAsSigned(APSInt &Int) {
1845   if (Int.isUnsigned() || Int.isMinSignedValue()) {
1846     Int = Int.extend(Int.getBitWidth() + 1);
1847     Int.setIsSigned(true);
1848   }
1849   Int = -Int;
1850 }
1851 
1852 template<typename KeyT>
createTemporary(const KeyT * Key,QualType T,ScopeKind Scope,LValue & LV)1853 APValue &CallStackFrame::createTemporary(const KeyT *Key, QualType T,
1854                                          ScopeKind Scope, LValue &LV) {
1855   unsigned Version = getTempVersion();
1856   APValue::LValueBase Base(Key, Index, Version);
1857   LV.set(Base);
1858   return createLocal(Base, Key, T, Scope);
1859 }
1860 
1861 /// Allocate storage for a parameter of a function call made in this frame.
createParam(CallRef Args,const ParmVarDecl * PVD,LValue & LV)1862 APValue &CallStackFrame::createParam(CallRef Args, const ParmVarDecl *PVD,
1863                                      LValue &LV) {
1864   assert(Args.CallIndex == Index && "creating parameter in wrong frame");
1865   APValue::LValueBase Base(PVD, Index, Args.Version);
1866   LV.set(Base);
1867   // We always destroy parameters at the end of the call, even if we'd allow
1868   // them to live to the end of the full-expression at runtime, in order to
1869   // give portable results and match other compilers.
1870   return createLocal(Base, PVD, PVD->getType(), ScopeKind::Call);
1871 }
1872 
createLocal(APValue::LValueBase Base,const void * Key,QualType T,ScopeKind Scope)1873 APValue &CallStackFrame::createLocal(APValue::LValueBase Base, const void *Key,
1874                                      QualType T, ScopeKind Scope) {
1875   assert(Base.getCallIndex() == Index && "lvalue for wrong frame");
1876   unsigned Version = Base.getVersion();
1877   APValue &Result = Temporaries[MapKeyTy(Key, Version)];
1878   assert(Result.isAbsent() && "local created multiple times");
1879 
1880   // If we're creating a local immediately in the operand of a speculative
1881   // evaluation, don't register a cleanup to be run outside the speculative
1882   // evaluation context, since we won't actually be able to initialize this
1883   // object.
1884   if (Index <= Info.SpeculativeEvaluationDepth) {
1885     if (T.isDestructedType())
1886       Info.noteSideEffect();
1887   } else {
1888     Info.CleanupStack.push_back(Cleanup(&Result, Base, T, Scope));
1889   }
1890   return Result;
1891 }
1892 
createHeapAlloc(const Expr * E,QualType T,LValue & LV)1893 APValue *EvalInfo::createHeapAlloc(const Expr *E, QualType T, LValue &LV) {
1894   if (NumHeapAllocs > DynamicAllocLValue::getMaxIndex()) {
1895     FFDiag(E, diag::note_constexpr_heap_alloc_limit_exceeded);
1896     return nullptr;
1897   }
1898 
1899   DynamicAllocLValue DA(NumHeapAllocs++);
1900   LV.set(APValue::LValueBase::getDynamicAlloc(DA, T));
1901   auto Result = HeapAllocs.emplace(std::piecewise_construct,
1902                                    std::forward_as_tuple(DA), std::tuple<>());
1903   assert(Result.second && "reused a heap alloc index?");
1904   Result.first->second.AllocExpr = E;
1905   return &Result.first->second.Value;
1906 }
1907 
1908 /// Produce a string describing the given constexpr call.
describe(raw_ostream & Out)1909 void CallStackFrame::describe(raw_ostream &Out) {
1910   unsigned ArgIndex = 0;
1911   bool IsMemberCall = isa<CXXMethodDecl>(Callee) &&
1912                       !isa<CXXConstructorDecl>(Callee) &&
1913                       cast<CXXMethodDecl>(Callee)->isInstance();
1914 
1915   if (!IsMemberCall)
1916     Out << *Callee << '(';
1917 
1918   if (This && IsMemberCall) {
1919     APValue Val;
1920     This->moveInto(Val);
1921     Val.printPretty(Out, Info.Ctx,
1922                     This->Designator.MostDerivedType);
1923     // FIXME: Add parens around Val if needed.
1924     Out << "->" << *Callee << '(';
1925     IsMemberCall = false;
1926   }
1927 
1928   for (FunctionDecl::param_const_iterator I = Callee->param_begin(),
1929        E = Callee->param_end(); I != E; ++I, ++ArgIndex) {
1930     if (ArgIndex > (unsigned)IsMemberCall)
1931       Out << ", ";
1932 
1933     const ParmVarDecl *Param = *I;
1934     APValue *V = Info.getParamSlot(Arguments, Param);
1935     if (V)
1936       V->printPretty(Out, Info.Ctx, Param->getType());
1937     else
1938       Out << "<...>";
1939 
1940     if (ArgIndex == 0 && IsMemberCall)
1941       Out << "->" << *Callee << '(';
1942   }
1943 
1944   Out << ')';
1945 }
1946 
1947 /// Evaluate an expression to see if it had side-effects, and discard its
1948 /// result.
1949 /// \return \c true if the caller should keep evaluating.
EvaluateIgnoredValue(EvalInfo & Info,const Expr * E)1950 static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
1951   assert(!E->isValueDependent());
1952   APValue Scratch;
1953   if (!Evaluate(Scratch, Info, E))
1954     // We don't need the value, but we might have skipped a side effect here.
1955     return Info.noteSideEffect();
1956   return true;
1957 }
1958 
1959 /// Should this call expression be treated as a string literal?
IsStringLiteralCall(const CallExpr * E)1960 static bool IsStringLiteralCall(const CallExpr *E) {
1961   unsigned Builtin = E->getBuiltinCallee();
1962   return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
1963           Builtin == Builtin::BI__builtin___NSStringMakeConstantString);
1964 }
1965 
IsGlobalLValue(APValue::LValueBase B)1966 static bool IsGlobalLValue(APValue::LValueBase B) {
1967   // C++11 [expr.const]p3 An address constant expression is a prvalue core
1968   // constant expression of pointer type that evaluates to...
1969 
1970   // ... a null pointer value, or a prvalue core constant expression of type
1971   // std::nullptr_t.
1972   if (!B) return true;
1973 
1974   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
1975     // ... the address of an object with static storage duration,
1976     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1977       return VD->hasGlobalStorage();
1978     if (isa<TemplateParamObjectDecl>(D))
1979       return true;
1980     // ... the address of a function,
1981     // ... the address of a GUID [MS extension],
1982     return isa<FunctionDecl>(D) || isa<MSGuidDecl>(D);
1983   }
1984 
1985   if (B.is<TypeInfoLValue>() || B.is<DynamicAllocLValue>())
1986     return true;
1987 
1988   const Expr *E = B.get<const Expr*>();
1989   switch (E->getStmtClass()) {
1990   default:
1991     return false;
1992   case Expr::CompoundLiteralExprClass: {
1993     const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
1994     return CLE->isFileScope() && CLE->isLValue();
1995   }
1996   case Expr::MaterializeTemporaryExprClass:
1997     // A materialized temporary might have been lifetime-extended to static
1998     // storage duration.
1999     return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static;
2000   // A string literal has static storage duration.
2001   case Expr::StringLiteralClass:
2002   case Expr::PredefinedExprClass:
2003   case Expr::ObjCStringLiteralClass:
2004   case Expr::ObjCEncodeExprClass:
2005     return true;
2006   case Expr::ObjCBoxedExprClass:
2007     return cast<ObjCBoxedExpr>(E)->isExpressibleAsConstantInitializer();
2008   case Expr::CallExprClass:
2009     return IsStringLiteralCall(cast<CallExpr>(E));
2010   // For GCC compatibility, &&label has static storage duration.
2011   case Expr::AddrLabelExprClass:
2012     return true;
2013   // A Block literal expression may be used as the initialization value for
2014   // Block variables at global or local static scope.
2015   case Expr::BlockExprClass:
2016     return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
2017   case Expr::ImplicitValueInitExprClass:
2018     // FIXME:
2019     // We can never form an lvalue with an implicit value initialization as its
2020     // base through expression evaluation, so these only appear in one case: the
2021     // implicit variable declaration we invent when checking whether a constexpr
2022     // constructor can produce a constant expression. We must assume that such
2023     // an expression might be a global lvalue.
2024     return true;
2025   }
2026 }
2027 
GetLValueBaseDecl(const LValue & LVal)2028 static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
2029   return LVal.Base.dyn_cast<const ValueDecl*>();
2030 }
2031 
IsLiteralLValue(const LValue & Value)2032 static bool IsLiteralLValue(const LValue &Value) {
2033   if (Value.getLValueCallIndex())
2034     return false;
2035   const Expr *E = Value.Base.dyn_cast<const Expr*>();
2036   return E && !isa<MaterializeTemporaryExpr>(E);
2037 }
2038 
IsWeakLValue(const LValue & Value)2039 static bool IsWeakLValue(const LValue &Value) {
2040   const ValueDecl *Decl = GetLValueBaseDecl(Value);
2041   return Decl && Decl->isWeak();
2042 }
2043 
isZeroSized(const LValue & Value)2044 static bool isZeroSized(const LValue &Value) {
2045   const ValueDecl *Decl = GetLValueBaseDecl(Value);
2046   if (Decl && isa<VarDecl>(Decl)) {
2047     QualType Ty = Decl->getType();
2048     if (Ty->isArrayType())
2049       return Ty->isIncompleteType() ||
2050              Decl->getASTContext().getTypeSize(Ty) == 0;
2051   }
2052   return false;
2053 }
2054 
HasSameBase(const LValue & A,const LValue & B)2055 static bool HasSameBase(const LValue &A, const LValue &B) {
2056   if (!A.getLValueBase())
2057     return !B.getLValueBase();
2058   if (!B.getLValueBase())
2059     return false;
2060 
2061   if (A.getLValueBase().getOpaqueValue() !=
2062       B.getLValueBase().getOpaqueValue())
2063     return false;
2064 
2065   return A.getLValueCallIndex() == B.getLValueCallIndex() &&
2066          A.getLValueVersion() == B.getLValueVersion();
2067 }
2068 
NoteLValueLocation(EvalInfo & Info,APValue::LValueBase Base)2069 static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
2070   assert(Base && "no location for a null lvalue");
2071   const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
2072 
2073   // For a parameter, find the corresponding call stack frame (if it still
2074   // exists), and point at the parameter of the function definition we actually
2075   // invoked.
2076   if (auto *PVD = dyn_cast_or_null<ParmVarDecl>(VD)) {
2077     unsigned Idx = PVD->getFunctionScopeIndex();
2078     for (CallStackFrame *F = Info.CurrentCall; F; F = F->Caller) {
2079       if (F->Arguments.CallIndex == Base.getCallIndex() &&
2080           F->Arguments.Version == Base.getVersion() && F->Callee &&
2081           Idx < F->Callee->getNumParams()) {
2082         VD = F->Callee->getParamDecl(Idx);
2083         break;
2084       }
2085     }
2086   }
2087 
2088   if (VD)
2089     Info.Note(VD->getLocation(), diag::note_declared_at);
2090   else if (const Expr *E = Base.dyn_cast<const Expr*>())
2091     Info.Note(E->getExprLoc(), diag::note_constexpr_temporary_here);
2092   else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) {
2093     // FIXME: Produce a note for dangling pointers too.
2094     if (Optional<DynAlloc*> Alloc = Info.lookupDynamicAlloc(DA))
2095       Info.Note((*Alloc)->AllocExpr->getExprLoc(),
2096                 diag::note_constexpr_dynamic_alloc_here);
2097   }
2098   // We have no information to show for a typeid(T) object.
2099 }
2100 
2101 enum class CheckEvaluationResultKind {
2102   ConstantExpression,
2103   FullyInitialized,
2104 };
2105 
2106 /// Materialized temporaries that we've already checked to determine if they're
2107 /// initializsed by a constant expression.
2108 using CheckedTemporaries =
2109     llvm::SmallPtrSet<const MaterializeTemporaryExpr *, 8>;
2110 
2111 static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
2112                                   EvalInfo &Info, SourceLocation DiagLoc,
2113                                   QualType Type, const APValue &Value,
2114                                   ConstantExprKind Kind,
2115                                   SourceLocation SubobjectLoc,
2116                                   CheckedTemporaries &CheckedTemps);
2117 
2118 /// Check that this reference or pointer core constant expression is a valid
2119 /// value for an address or reference constant expression. Return true if we
2120 /// can fold this expression, whether or not it's a constant expression.
CheckLValueConstantExpression(EvalInfo & Info,SourceLocation Loc,QualType Type,const LValue & LVal,ConstantExprKind Kind,CheckedTemporaries & CheckedTemps)2121 static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
2122                                           QualType Type, const LValue &LVal,
2123                                           ConstantExprKind Kind,
2124                                           CheckedTemporaries &CheckedTemps) {
2125   bool IsReferenceType = Type->isReferenceType();
2126 
2127   APValue::LValueBase Base = LVal.getLValueBase();
2128   const SubobjectDesignator &Designator = LVal.getLValueDesignator();
2129 
2130   const Expr *BaseE = Base.dyn_cast<const Expr *>();
2131   const ValueDecl *BaseVD = Base.dyn_cast<const ValueDecl*>();
2132 
2133   // Additional restrictions apply in a template argument. We only enforce the
2134   // C++20 restrictions here; additional syntactic and semantic restrictions
2135   // are applied elsewhere.
2136   if (isTemplateArgument(Kind)) {
2137     int InvalidBaseKind = -1;
2138     StringRef Ident;
2139     if (Base.is<TypeInfoLValue>())
2140       InvalidBaseKind = 0;
2141     else if (isa_and_nonnull<StringLiteral>(BaseE))
2142       InvalidBaseKind = 1;
2143     else if (isa_and_nonnull<MaterializeTemporaryExpr>(BaseE) ||
2144              isa_and_nonnull<LifetimeExtendedTemporaryDecl>(BaseVD))
2145       InvalidBaseKind = 2;
2146     else if (auto *PE = dyn_cast_or_null<PredefinedExpr>(BaseE)) {
2147       InvalidBaseKind = 3;
2148       Ident = PE->getIdentKindName();
2149     }
2150 
2151     if (InvalidBaseKind != -1) {
2152       Info.FFDiag(Loc, diag::note_constexpr_invalid_template_arg)
2153           << IsReferenceType << !Designator.Entries.empty() << InvalidBaseKind
2154           << Ident;
2155       return false;
2156     }
2157   }
2158 
2159   if (auto *FD = dyn_cast_or_null<FunctionDecl>(BaseVD)) {
2160     if (FD->isConsteval()) {
2161       Info.FFDiag(Loc, diag::note_consteval_address_accessible)
2162           << !Type->isAnyPointerType();
2163       Info.Note(FD->getLocation(), diag::note_declared_at);
2164       return false;
2165     }
2166   }
2167 
2168   // Check that the object is a global. Note that the fake 'this' object we
2169   // manufacture when checking potential constant expressions is conservatively
2170   // assumed to be global here.
2171   if (!IsGlobalLValue(Base)) {
2172     if (Info.getLangOpts().CPlusPlus11) {
2173       const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
2174       Info.FFDiag(Loc, diag::note_constexpr_non_global, 1)
2175         << IsReferenceType << !Designator.Entries.empty()
2176         << !!VD << VD;
2177 
2178       auto *VarD = dyn_cast_or_null<VarDecl>(VD);
2179       if (VarD && VarD->isConstexpr()) {
2180         // Non-static local constexpr variables have unintuitive semantics:
2181         //   constexpr int a = 1;
2182         //   constexpr const int *p = &a;
2183         // ... is invalid because the address of 'a' is not constant. Suggest
2184         // adding a 'static' in this case.
2185         Info.Note(VarD->getLocation(), diag::note_constexpr_not_static)
2186             << VarD
2187             << FixItHint::CreateInsertion(VarD->getBeginLoc(), "static ");
2188       } else {
2189         NoteLValueLocation(Info, Base);
2190       }
2191     } else {
2192       Info.FFDiag(Loc);
2193     }
2194     // Don't allow references to temporaries to escape.
2195     return false;
2196   }
2197   assert((Info.checkingPotentialConstantExpression() ||
2198           LVal.getLValueCallIndex() == 0) &&
2199          "have call index for global lvalue");
2200 
2201   if (Base.is<DynamicAllocLValue>()) {
2202     Info.FFDiag(Loc, diag::note_constexpr_dynamic_alloc)
2203         << IsReferenceType << !Designator.Entries.empty();
2204     NoteLValueLocation(Info, Base);
2205     return false;
2206   }
2207 
2208   if (BaseVD) {
2209     if (const VarDecl *Var = dyn_cast<const VarDecl>(BaseVD)) {
2210       // Check if this is a thread-local variable.
2211       if (Var->getTLSKind())
2212         // FIXME: Diagnostic!
2213         return false;
2214 
2215       // A dllimport variable never acts like a constant, unless we're
2216       // evaluating a value for use only in name mangling.
2217       if (!isForManglingOnly(Kind) && Var->hasAttr<DLLImportAttr>())
2218         // FIXME: Diagnostic!
2219         return false;
2220     }
2221     if (const auto *FD = dyn_cast<const FunctionDecl>(BaseVD)) {
2222       // __declspec(dllimport) must be handled very carefully:
2223       // We must never initialize an expression with the thunk in C++.
2224       // Doing otherwise would allow the same id-expression to yield
2225       // different addresses for the same function in different translation
2226       // units.  However, this means that we must dynamically initialize the
2227       // expression with the contents of the import address table at runtime.
2228       //
2229       // The C language has no notion of ODR; furthermore, it has no notion of
2230       // dynamic initialization.  This means that we are permitted to
2231       // perform initialization with the address of the thunk.
2232       if (Info.getLangOpts().CPlusPlus && !isForManglingOnly(Kind) &&
2233           FD->hasAttr<DLLImportAttr>())
2234         // FIXME: Diagnostic!
2235         return false;
2236     }
2237   } else if (const auto *MTE =
2238                  dyn_cast_or_null<MaterializeTemporaryExpr>(BaseE)) {
2239     if (CheckedTemps.insert(MTE).second) {
2240       QualType TempType = getType(Base);
2241       if (TempType.isDestructedType()) {
2242         Info.FFDiag(MTE->getExprLoc(),
2243                     diag::note_constexpr_unsupported_temporary_nontrivial_dtor)
2244             << TempType;
2245         return false;
2246       }
2247 
2248       APValue *V = MTE->getOrCreateValue(false);
2249       assert(V && "evasluation result refers to uninitialised temporary");
2250       if (!CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression,
2251                                  Info, MTE->getExprLoc(), TempType, *V,
2252                                  Kind, SourceLocation(), CheckedTemps))
2253         return false;
2254     }
2255   }
2256 
2257   // Allow address constant expressions to be past-the-end pointers. This is
2258   // an extension: the standard requires them to point to an object.
2259   if (!IsReferenceType)
2260     return true;
2261 
2262   // A reference constant expression must refer to an object.
2263   if (!Base) {
2264     // FIXME: diagnostic
2265     Info.CCEDiag(Loc);
2266     return true;
2267   }
2268 
2269   // Does this refer one past the end of some object?
2270   if (!Designator.Invalid && Designator.isOnePastTheEnd()) {
2271     Info.FFDiag(Loc, diag::note_constexpr_past_end, 1)
2272       << !Designator.Entries.empty() << !!BaseVD << BaseVD;
2273     NoteLValueLocation(Info, Base);
2274   }
2275 
2276   return true;
2277 }
2278 
2279 /// Member pointers are constant expressions unless they point to a
2280 /// non-virtual dllimport member function.
CheckMemberPointerConstantExpression(EvalInfo & Info,SourceLocation Loc,QualType Type,const APValue & Value,ConstantExprKind Kind)2281 static bool CheckMemberPointerConstantExpression(EvalInfo &Info,
2282                                                  SourceLocation Loc,
2283                                                  QualType Type,
2284                                                  const APValue &Value,
2285                                                  ConstantExprKind Kind) {
2286   const ValueDecl *Member = Value.getMemberPointerDecl();
2287   const auto *FD = dyn_cast_or_null<CXXMethodDecl>(Member);
2288   if (!FD)
2289     return true;
2290   if (FD->isConsteval()) {
2291     Info.FFDiag(Loc, diag::note_consteval_address_accessible) << /*pointer*/ 0;
2292     Info.Note(FD->getLocation(), diag::note_declared_at);
2293     return false;
2294   }
2295   return isForManglingOnly(Kind) || FD->isVirtual() ||
2296          !FD->hasAttr<DLLImportAttr>();
2297 }
2298 
2299 /// Check that this core constant expression is of literal type, and if not,
2300 /// produce an appropriate diagnostic.
CheckLiteralType(EvalInfo & Info,const Expr * E,const LValue * This=nullptr)2301 static bool CheckLiteralType(EvalInfo &Info, const Expr *E,
2302                              const LValue *This = nullptr) {
2303   if (!E->isRValue() || E->getType()->isLiteralType(Info.Ctx))
2304     return true;
2305 
2306   // C++1y: A constant initializer for an object o [...] may also invoke
2307   // constexpr constructors for o and its subobjects even if those objects
2308   // are of non-literal class types.
2309   //
2310   // C++11 missed this detail for aggregates, so classes like this:
2311   //   struct foo_t { union { int i; volatile int j; } u; };
2312   // are not (obviously) initializable like so:
2313   //   __attribute__((__require_constant_initialization__))
2314   //   static const foo_t x = {{0}};
2315   // because "i" is a subobject with non-literal initialization (due to the
2316   // volatile member of the union). See:
2317   //   http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1677
2318   // Therefore, we use the C++1y behavior.
2319   if (This && Info.EvaluatingDecl == This->getLValueBase())
2320     return true;
2321 
2322   // Prvalue constant expressions must be of literal types.
2323   if (Info.getLangOpts().CPlusPlus11)
2324     Info.FFDiag(E, diag::note_constexpr_nonliteral)
2325       << E->getType();
2326   else
2327     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2328   return false;
2329 }
2330 
CheckEvaluationResult(CheckEvaluationResultKind CERK,EvalInfo & Info,SourceLocation DiagLoc,QualType Type,const APValue & Value,ConstantExprKind Kind,SourceLocation SubobjectLoc,CheckedTemporaries & CheckedTemps)2331 static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
2332                                   EvalInfo &Info, SourceLocation DiagLoc,
2333                                   QualType Type, const APValue &Value,
2334                                   ConstantExprKind Kind,
2335                                   SourceLocation SubobjectLoc,
2336                                   CheckedTemporaries &CheckedTemps) {
2337   if (!Value.hasValue()) {
2338     Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized)
2339       << true << Type;
2340     if (SubobjectLoc.isValid())
2341       Info.Note(SubobjectLoc, diag::note_constexpr_subobject_declared_here);
2342     return false;
2343   }
2344 
2345   // We allow _Atomic(T) to be initialized from anything that T can be
2346   // initialized from.
2347   if (const AtomicType *AT = Type->getAs<AtomicType>())
2348     Type = AT->getValueType();
2349 
2350   // Core issue 1454: For a literal constant expression of array or class type,
2351   // each subobject of its value shall have been initialized by a constant
2352   // expression.
2353   if (Value.isArray()) {
2354     QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
2355     for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
2356       if (!CheckEvaluationResult(CERK, Info, DiagLoc, EltTy,
2357                                  Value.getArrayInitializedElt(I), Kind,
2358                                  SubobjectLoc, CheckedTemps))
2359         return false;
2360     }
2361     if (!Value.hasArrayFiller())
2362       return true;
2363     return CheckEvaluationResult(CERK, Info, DiagLoc, EltTy,
2364                                  Value.getArrayFiller(), Kind, SubobjectLoc,
2365                                  CheckedTemps);
2366   }
2367   if (Value.isUnion() && Value.getUnionField()) {
2368     return CheckEvaluationResult(
2369         CERK, Info, DiagLoc, Value.getUnionField()->getType(),
2370         Value.getUnionValue(), Kind, Value.getUnionField()->getLocation(),
2371         CheckedTemps);
2372   }
2373   if (Value.isStruct()) {
2374     RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
2375     if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
2376       unsigned BaseIndex = 0;
2377       for (const CXXBaseSpecifier &BS : CD->bases()) {
2378         if (!CheckEvaluationResult(CERK, Info, DiagLoc, BS.getType(),
2379                                    Value.getStructBase(BaseIndex), Kind,
2380                                    BS.getBeginLoc(), CheckedTemps))
2381           return false;
2382         ++BaseIndex;
2383       }
2384     }
2385     for (const auto *I : RD->fields()) {
2386       if (I->isUnnamedBitfield())
2387         continue;
2388 
2389       if (!CheckEvaluationResult(CERK, Info, DiagLoc, I->getType(),
2390                                  Value.getStructField(I->getFieldIndex()),
2391                                  Kind, I->getLocation(), CheckedTemps))
2392         return false;
2393     }
2394   }
2395 
2396   if (Value.isLValue() &&
2397       CERK == CheckEvaluationResultKind::ConstantExpression) {
2398     LValue LVal;
2399     LVal.setFrom(Info.Ctx, Value);
2400     return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal, Kind,
2401                                          CheckedTemps);
2402   }
2403 
2404   if (Value.isMemberPointer() &&
2405       CERK == CheckEvaluationResultKind::ConstantExpression)
2406     return CheckMemberPointerConstantExpression(Info, DiagLoc, Type, Value, Kind);
2407 
2408   // Everything else is fine.
2409   return true;
2410 }
2411 
2412 /// Check that this core constant expression value is a valid value for a
2413 /// constant expression. If not, report an appropriate diagnostic. Does not
2414 /// check that the expression is of literal type.
CheckConstantExpression(EvalInfo & Info,SourceLocation DiagLoc,QualType Type,const APValue & Value,ConstantExprKind Kind)2415 static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
2416                                     QualType Type, const APValue &Value,
2417                                     ConstantExprKind Kind) {
2418   // Nothing to check for a constant expression of type 'cv void'.
2419   if (Type->isVoidType())
2420     return true;
2421 
2422   CheckedTemporaries CheckedTemps;
2423   return CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression,
2424                                Info, DiagLoc, Type, Value, Kind,
2425                                SourceLocation(), CheckedTemps);
2426 }
2427 
2428 /// Check that this evaluated value is fully-initialized and can be loaded by
2429 /// an lvalue-to-rvalue conversion.
CheckFullyInitialized(EvalInfo & Info,SourceLocation DiagLoc,QualType Type,const APValue & Value)2430 static bool CheckFullyInitialized(EvalInfo &Info, SourceLocation DiagLoc,
2431                                   QualType Type, const APValue &Value) {
2432   CheckedTemporaries CheckedTemps;
2433   return CheckEvaluationResult(
2434       CheckEvaluationResultKind::FullyInitialized, Info, DiagLoc, Type, Value,
2435       ConstantExprKind::Normal, SourceLocation(), CheckedTemps);
2436 }
2437 
2438 /// Enforce C++2a [expr.const]/4.17, which disallows new-expressions unless
2439 /// "the allocated storage is deallocated within the evaluation".
CheckMemoryLeaks(EvalInfo & Info)2440 static bool CheckMemoryLeaks(EvalInfo &Info) {
2441   if (!Info.HeapAllocs.empty()) {
2442     // We can still fold to a constant despite a compile-time memory leak,
2443     // so long as the heap allocation isn't referenced in the result (we check
2444     // that in CheckConstantExpression).
2445     Info.CCEDiag(Info.HeapAllocs.begin()->second.AllocExpr,
2446                  diag::note_constexpr_memory_leak)
2447         << unsigned(Info.HeapAllocs.size() - 1);
2448   }
2449   return true;
2450 }
2451 
EvalPointerValueAsBool(const APValue & Value,bool & Result)2452 static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
2453   // A null base expression indicates a null pointer.  These are always
2454   // evaluatable, and they are false unless the offset is zero.
2455   if (!Value.getLValueBase()) {
2456     Result = !Value.getLValueOffset().isZero();
2457     return true;
2458   }
2459 
2460   // We have a non-null base.  These are generally known to be true, but if it's
2461   // a weak declaration it can be null at runtime.
2462   Result = true;
2463   const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
2464   return !Decl || !Decl->isWeak();
2465 }
2466 
HandleConversionToBool(const APValue & Val,bool & Result)2467 static bool HandleConversionToBool(const APValue &Val, bool &Result) {
2468   switch (Val.getKind()) {
2469   case APValue::None:
2470   case APValue::Indeterminate:
2471     return false;
2472   case APValue::Int:
2473     Result = Val.getInt().getBoolValue();
2474     return true;
2475   case APValue::FixedPoint:
2476     Result = Val.getFixedPoint().getBoolValue();
2477     return true;
2478   case APValue::Float:
2479     Result = !Val.getFloat().isZero();
2480     return true;
2481   case APValue::ComplexInt:
2482     Result = Val.getComplexIntReal().getBoolValue() ||
2483              Val.getComplexIntImag().getBoolValue();
2484     return true;
2485   case APValue::ComplexFloat:
2486     Result = !Val.getComplexFloatReal().isZero() ||
2487              !Val.getComplexFloatImag().isZero();
2488     return true;
2489   case APValue::LValue:
2490     return EvalPointerValueAsBool(Val, Result);
2491   case APValue::MemberPointer:
2492     Result = Val.getMemberPointerDecl();
2493     return true;
2494   case APValue::Vector:
2495   case APValue::Array:
2496   case APValue::Struct:
2497   case APValue::Union:
2498   case APValue::AddrLabelDiff:
2499     return false;
2500   }
2501 
2502   llvm_unreachable("unknown APValue kind");
2503 }
2504 
EvaluateAsBooleanCondition(const Expr * E,bool & Result,EvalInfo & Info)2505 static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
2506                                        EvalInfo &Info) {
2507   assert(!E->isValueDependent());
2508   assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition");
2509   APValue Val;
2510   if (!Evaluate(Val, Info, E))
2511     return false;
2512   return HandleConversionToBool(Val, Result);
2513 }
2514 
2515 template<typename T>
HandleOverflow(EvalInfo & Info,const Expr * E,const T & SrcValue,QualType DestType)2516 static bool HandleOverflow(EvalInfo &Info, const Expr *E,
2517                            const T &SrcValue, QualType DestType) {
2518   Info.CCEDiag(E, diag::note_constexpr_overflow)
2519     << SrcValue << DestType;
2520   return Info.noteUndefinedBehavior();
2521 }
2522 
HandleFloatToIntCast(EvalInfo & Info,const Expr * E,QualType SrcType,const APFloat & Value,QualType DestType,APSInt & Result)2523 static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
2524                                  QualType SrcType, const APFloat &Value,
2525                                  QualType DestType, APSInt &Result) {
2526   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
2527   // Determine whether we are converting to unsigned or signed.
2528   bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
2529 
2530   Result = APSInt(DestWidth, !DestSigned);
2531   bool ignored;
2532   if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
2533       & APFloat::opInvalidOp)
2534     return HandleOverflow(Info, E, Value, DestType);
2535   return true;
2536 }
2537 
2538 /// Get rounding mode used for evaluation of the specified expression.
2539 /// \param[out] DynamicRM Is set to true is the requested rounding mode is
2540 ///                       dynamic.
2541 /// If rounding mode is unknown at compile time, still try to evaluate the
2542 /// expression. If the result is exact, it does not depend on rounding mode.
2543 /// So return "tonearest" mode instead of "dynamic".
getActiveRoundingMode(EvalInfo & Info,const Expr * E,bool & DynamicRM)2544 static llvm::RoundingMode getActiveRoundingMode(EvalInfo &Info, const Expr *E,
2545                                                 bool &DynamicRM) {
2546   llvm::RoundingMode RM =
2547       E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()).getRoundingMode();
2548   DynamicRM = (RM == llvm::RoundingMode::Dynamic);
2549   if (DynamicRM)
2550     RM = llvm::RoundingMode::NearestTiesToEven;
2551   return RM;
2552 }
2553 
2554 /// Check if the given evaluation result is allowed for constant evaluation.
checkFloatingPointResult(EvalInfo & Info,const Expr * E,APFloat::opStatus St)2555 static bool checkFloatingPointResult(EvalInfo &Info, const Expr *E,
2556                                      APFloat::opStatus St) {
2557   // In a constant context, assume that any dynamic rounding mode or FP
2558   // exception state matches the default floating-point environment.
2559   if (Info.InConstantContext)
2560     return true;
2561 
2562   FPOptions FPO = E->getFPFeaturesInEffect(Info.Ctx.getLangOpts());
2563   if ((St & APFloat::opInexact) &&
2564       FPO.getRoundingMode() == llvm::RoundingMode::Dynamic) {
2565     // Inexact result means that it depends on rounding mode. If the requested
2566     // mode is dynamic, the evaluation cannot be made in compile time.
2567     Info.FFDiag(E, diag::note_constexpr_dynamic_rounding);
2568     return false;
2569   }
2570 
2571   if ((St != APFloat::opOK) &&
2572       (FPO.getRoundingMode() == llvm::RoundingMode::Dynamic ||
2573        FPO.getFPExceptionMode() != LangOptions::FPE_Ignore ||
2574        FPO.getAllowFEnvAccess())) {
2575     Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
2576     return false;
2577   }
2578 
2579   if ((St & APFloat::opStatus::opInvalidOp) &&
2580       FPO.getFPExceptionMode() != LangOptions::FPE_Ignore) {
2581     // There is no usefully definable result.
2582     Info.FFDiag(E);
2583     return false;
2584   }
2585 
2586   // FIXME: if:
2587   // - evaluation triggered other FP exception, and
2588   // - exception mode is not "ignore", and
2589   // - the expression being evaluated is not a part of global variable
2590   //   initializer,
2591   // the evaluation probably need to be rejected.
2592   return true;
2593 }
2594 
HandleFloatToFloatCast(EvalInfo & Info,const Expr * E,QualType SrcType,QualType DestType,APFloat & Result)2595 static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
2596                                    QualType SrcType, QualType DestType,
2597                                    APFloat &Result) {
2598   assert(isa<CastExpr>(E) || isa<CompoundAssignOperator>(E));
2599   bool DynamicRM;
2600   llvm::RoundingMode RM = getActiveRoundingMode(Info, E, DynamicRM);
2601   APFloat::opStatus St;
2602   APFloat Value = Result;
2603   bool ignored;
2604   St = Result.convert(Info.Ctx.getFloatTypeSemantics(DestType), RM, &ignored);
2605   return checkFloatingPointResult(Info, E, St);
2606 }
2607 
HandleIntToIntCast(EvalInfo & Info,const Expr * E,QualType DestType,QualType SrcType,const APSInt & Value)2608 static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
2609                                  QualType DestType, QualType SrcType,
2610                                  const APSInt &Value) {
2611   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
2612   // Figure out if this is a truncate, extend or noop cast.
2613   // If the input is signed, do a sign extend, noop, or truncate.
2614   APSInt Result = Value.extOrTrunc(DestWidth);
2615   Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
2616   if (DestType->isBooleanType())
2617     Result = Value.getBoolValue();
2618   return Result;
2619 }
2620 
HandleIntToFloatCast(EvalInfo & Info,const Expr * E,const FPOptions FPO,QualType SrcType,const APSInt & Value,QualType DestType,APFloat & Result)2621 static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
2622                                  const FPOptions FPO,
2623                                  QualType SrcType, const APSInt &Value,
2624                                  QualType DestType, APFloat &Result) {
2625   Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
2626   APFloat::opStatus St = Result.convertFromAPInt(Value, Value.isSigned(),
2627        APFloat::rmNearestTiesToEven);
2628   if (!Info.InConstantContext && St != llvm::APFloatBase::opOK &&
2629       FPO.isFPConstrained()) {
2630     Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
2631     return false;
2632   }
2633   return true;
2634 }
2635 
truncateBitfieldValue(EvalInfo & Info,const Expr * E,APValue & Value,const FieldDecl * FD)2636 static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E,
2637                                   APValue &Value, const FieldDecl *FD) {
2638   assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield");
2639 
2640   if (!Value.isInt()) {
2641     // Trying to store a pointer-cast-to-integer into a bitfield.
2642     // FIXME: In this case, we should provide the diagnostic for casting
2643     // a pointer to an integer.
2644     assert(Value.isLValue() && "integral value neither int nor lvalue?");
2645     Info.FFDiag(E);
2646     return false;
2647   }
2648 
2649   APSInt &Int = Value.getInt();
2650   unsigned OldBitWidth = Int.getBitWidth();
2651   unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx);
2652   if (NewBitWidth < OldBitWidth)
2653     Int = Int.trunc(NewBitWidth).extend(OldBitWidth);
2654   return true;
2655 }
2656 
EvalAndBitcastToAPInt(EvalInfo & Info,const Expr * E,llvm::APInt & Res)2657 static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
2658                                   llvm::APInt &Res) {
2659   APValue SVal;
2660   if (!Evaluate(SVal, Info, E))
2661     return false;
2662   if (SVal.isInt()) {
2663     Res = SVal.getInt();
2664     return true;
2665   }
2666   if (SVal.isFloat()) {
2667     Res = SVal.getFloat().bitcastToAPInt();
2668     return true;
2669   }
2670   if (SVal.isVector()) {
2671     QualType VecTy = E->getType();
2672     unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
2673     QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
2674     unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
2675     bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
2676     Res = llvm::APInt::getNullValue(VecSize);
2677     for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
2678       APValue &Elt = SVal.getVectorElt(i);
2679       llvm::APInt EltAsInt;
2680       if (Elt.isInt()) {
2681         EltAsInt = Elt.getInt();
2682       } else if (Elt.isFloat()) {
2683         EltAsInt = Elt.getFloat().bitcastToAPInt();
2684       } else {
2685         // Don't try to handle vectors of anything other than int or float
2686         // (not sure if it's possible to hit this case).
2687         Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2688         return false;
2689       }
2690       unsigned BaseEltSize = EltAsInt.getBitWidth();
2691       if (BigEndian)
2692         Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
2693       else
2694         Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
2695     }
2696     return true;
2697   }
2698   // Give up if the input isn't an int, float, or vector.  For example, we
2699   // reject "(v4i16)(intptr_t)&a".
2700   Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2701   return false;
2702 }
2703 
2704 /// Perform the given integer operation, which is known to need at most BitWidth
2705 /// bits, and check for overflow in the original type (if that type was not an
2706 /// unsigned type).
2707 template<typename Operation>
CheckedIntArithmetic(EvalInfo & Info,const Expr * E,const APSInt & LHS,const APSInt & RHS,unsigned BitWidth,Operation Op,APSInt & Result)2708 static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
2709                                  const APSInt &LHS, const APSInt &RHS,
2710                                  unsigned BitWidth, Operation Op,
2711                                  APSInt &Result) {
2712   if (LHS.isUnsigned()) {
2713     Result = Op(LHS, RHS);
2714     return true;
2715   }
2716 
2717   APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
2718   Result = Value.trunc(LHS.getBitWidth());
2719   if (Result.extend(BitWidth) != Value) {
2720     if (Info.checkingForUndefinedBehavior())
2721       Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
2722                                        diag::warn_integer_constant_overflow)
2723           << Result.toString(10) << E->getType();
2724     return HandleOverflow(Info, E, Value, E->getType());
2725   }
2726   return true;
2727 }
2728 
2729 /// Perform the given binary integer operation.
handleIntIntBinOp(EvalInfo & Info,const Expr * E,const APSInt & LHS,BinaryOperatorKind Opcode,APSInt RHS,APSInt & Result)2730 static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS,
2731                               BinaryOperatorKind Opcode, APSInt RHS,
2732                               APSInt &Result) {
2733   switch (Opcode) {
2734   default:
2735     Info.FFDiag(E);
2736     return false;
2737   case BO_Mul:
2738     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2,
2739                                 std::multiplies<APSInt>(), Result);
2740   case BO_Add:
2741     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
2742                                 std::plus<APSInt>(), Result);
2743   case BO_Sub:
2744     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
2745                                 std::minus<APSInt>(), Result);
2746   case BO_And: Result = LHS & RHS; return true;
2747   case BO_Xor: Result = LHS ^ RHS; return true;
2748   case BO_Or:  Result = LHS | RHS; return true;
2749   case BO_Div:
2750   case BO_Rem:
2751     if (RHS == 0) {
2752       Info.FFDiag(E, diag::note_expr_divide_by_zero);
2753       return false;
2754     }
2755     Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS);
2756     // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports
2757     // this operation and gives the two's complement result.
2758     if (RHS.isNegative() && RHS.isAllOnesValue() &&
2759         LHS.isSigned() && LHS.isMinSignedValue())
2760       return HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1),
2761                             E->getType());
2762     return true;
2763   case BO_Shl: {
2764     if (Info.getLangOpts().OpenCL)
2765       // OpenCL 6.3j: shift values are effectively % word size of LHS.
2766       RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
2767                     static_cast<uint64_t>(LHS.getBitWidth() - 1)),
2768                     RHS.isUnsigned());
2769     else if (RHS.isSigned() && RHS.isNegative()) {
2770       // During constant-folding, a negative shift is an opposite shift. Such
2771       // a shift is not a constant expression.
2772       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
2773       RHS = -RHS;
2774       goto shift_right;
2775     }
2776   shift_left:
2777     // C++11 [expr.shift]p1: Shift width must be less than the bit width of
2778     // the shifted type.
2779     unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
2780     if (SA != RHS) {
2781       Info.CCEDiag(E, diag::note_constexpr_large_shift)
2782         << RHS << E->getType() << LHS.getBitWidth();
2783     } else if (LHS.isSigned() && !Info.getLangOpts().CPlusPlus20) {
2784       // C++11 [expr.shift]p2: A signed left shift must have a non-negative
2785       // operand, and must not overflow the corresponding unsigned type.
2786       // C++2a [expr.shift]p2: E1 << E2 is the unique value congruent to
2787       // E1 x 2^E2 module 2^N.
2788       if (LHS.isNegative())
2789         Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
2790       else if (LHS.countLeadingZeros() < SA)
2791         Info.CCEDiag(E, diag::note_constexpr_lshift_discards);
2792     }
2793     Result = LHS << SA;
2794     return true;
2795   }
2796   case BO_Shr: {
2797     if (Info.getLangOpts().OpenCL)
2798       // OpenCL 6.3j: shift values are effectively % word size of LHS.
2799       RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
2800                     static_cast<uint64_t>(LHS.getBitWidth() - 1)),
2801                     RHS.isUnsigned());
2802     else if (RHS.isSigned() && RHS.isNegative()) {
2803       // During constant-folding, a negative shift is an opposite shift. Such a
2804       // shift is not a constant expression.
2805       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
2806       RHS = -RHS;
2807       goto shift_left;
2808     }
2809   shift_right:
2810     // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
2811     // shifted type.
2812     unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
2813     if (SA != RHS)
2814       Info.CCEDiag(E, diag::note_constexpr_large_shift)
2815         << RHS << E->getType() << LHS.getBitWidth();
2816     Result = LHS >> SA;
2817     return true;
2818   }
2819 
2820   case BO_LT: Result = LHS < RHS; return true;
2821   case BO_GT: Result = LHS > RHS; return true;
2822   case BO_LE: Result = LHS <= RHS; return true;
2823   case BO_GE: Result = LHS >= RHS; return true;
2824   case BO_EQ: Result = LHS == RHS; return true;
2825   case BO_NE: Result = LHS != RHS; return true;
2826   case BO_Cmp:
2827     llvm_unreachable("BO_Cmp should be handled elsewhere");
2828   }
2829 }
2830 
2831 /// Perform the given binary floating-point operation, in-place, on LHS.
handleFloatFloatBinOp(EvalInfo & Info,const BinaryOperator * E,APFloat & LHS,BinaryOperatorKind Opcode,const APFloat & RHS)2832 static bool handleFloatFloatBinOp(EvalInfo &Info, const BinaryOperator *E,
2833                                   APFloat &LHS, BinaryOperatorKind Opcode,
2834                                   const APFloat &RHS) {
2835   bool DynamicRM;
2836   llvm::RoundingMode RM = getActiveRoundingMode(Info, E, DynamicRM);
2837   APFloat::opStatus St;
2838   switch (Opcode) {
2839   default:
2840     Info.FFDiag(E);
2841     return false;
2842   case BO_Mul:
2843     St = LHS.multiply(RHS, RM);
2844     break;
2845   case BO_Add:
2846     St = LHS.add(RHS, RM);
2847     break;
2848   case BO_Sub:
2849     St = LHS.subtract(RHS, RM);
2850     break;
2851   case BO_Div:
2852     // [expr.mul]p4:
2853     //   If the second operand of / or % is zero the behavior is undefined.
2854     if (RHS.isZero())
2855       Info.CCEDiag(E, diag::note_expr_divide_by_zero);
2856     St = LHS.divide(RHS, RM);
2857     break;
2858   }
2859 
2860   // [expr.pre]p4:
2861   //   If during the evaluation of an expression, the result is not
2862   //   mathematically defined [...], the behavior is undefined.
2863   // FIXME: C++ rules require us to not conform to IEEE 754 here.
2864   if (LHS.isNaN()) {
2865     Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
2866     return Info.noteUndefinedBehavior();
2867   }
2868 
2869   return checkFloatingPointResult(Info, E, St);
2870 }
2871 
handleLogicalOpForVector(const APInt & LHSValue,BinaryOperatorKind Opcode,const APInt & RHSValue,APInt & Result)2872 static bool handleLogicalOpForVector(const APInt &LHSValue,
2873                                      BinaryOperatorKind Opcode,
2874                                      const APInt &RHSValue, APInt &Result) {
2875   bool LHS = (LHSValue != 0);
2876   bool RHS = (RHSValue != 0);
2877 
2878   if (Opcode == BO_LAnd)
2879     Result = LHS && RHS;
2880   else
2881     Result = LHS || RHS;
2882   return true;
2883 }
handleLogicalOpForVector(const APFloat & LHSValue,BinaryOperatorKind Opcode,const APFloat & RHSValue,APInt & Result)2884 static bool handleLogicalOpForVector(const APFloat &LHSValue,
2885                                      BinaryOperatorKind Opcode,
2886                                      const APFloat &RHSValue, APInt &Result) {
2887   bool LHS = !LHSValue.isZero();
2888   bool RHS = !RHSValue.isZero();
2889 
2890   if (Opcode == BO_LAnd)
2891     Result = LHS && RHS;
2892   else
2893     Result = LHS || RHS;
2894   return true;
2895 }
2896 
handleLogicalOpForVector(const APValue & LHSValue,BinaryOperatorKind Opcode,const APValue & RHSValue,APInt & Result)2897 static bool handleLogicalOpForVector(const APValue &LHSValue,
2898                                      BinaryOperatorKind Opcode,
2899                                      const APValue &RHSValue, APInt &Result) {
2900   // The result is always an int type, however operands match the first.
2901   if (LHSValue.getKind() == APValue::Int)
2902     return handleLogicalOpForVector(LHSValue.getInt(), Opcode,
2903                                     RHSValue.getInt(), Result);
2904   assert(LHSValue.getKind() == APValue::Float && "Should be no other options");
2905   return handleLogicalOpForVector(LHSValue.getFloat(), Opcode,
2906                                   RHSValue.getFloat(), Result);
2907 }
2908 
2909 template <typename APTy>
2910 static bool
handleCompareOpForVectorHelper(const APTy & LHSValue,BinaryOperatorKind Opcode,const APTy & RHSValue,APInt & Result)2911 handleCompareOpForVectorHelper(const APTy &LHSValue, BinaryOperatorKind Opcode,
2912                                const APTy &RHSValue, APInt &Result) {
2913   switch (Opcode) {
2914   default:
2915     llvm_unreachable("unsupported binary operator");
2916   case BO_EQ:
2917     Result = (LHSValue == RHSValue);
2918     break;
2919   case BO_NE:
2920     Result = (LHSValue != RHSValue);
2921     break;
2922   case BO_LT:
2923     Result = (LHSValue < RHSValue);
2924     break;
2925   case BO_GT:
2926     Result = (LHSValue > RHSValue);
2927     break;
2928   case BO_LE:
2929     Result = (LHSValue <= RHSValue);
2930     break;
2931   case BO_GE:
2932     Result = (LHSValue >= RHSValue);
2933     break;
2934   }
2935 
2936   return true;
2937 }
2938 
handleCompareOpForVector(const APValue & LHSValue,BinaryOperatorKind Opcode,const APValue & RHSValue,APInt & Result)2939 static bool handleCompareOpForVector(const APValue &LHSValue,
2940                                      BinaryOperatorKind Opcode,
2941                                      const APValue &RHSValue, APInt &Result) {
2942   // The result is always an int type, however operands match the first.
2943   if (LHSValue.getKind() == APValue::Int)
2944     return handleCompareOpForVectorHelper(LHSValue.getInt(), Opcode,
2945                                           RHSValue.getInt(), Result);
2946   assert(LHSValue.getKind() == APValue::Float && "Should be no other options");
2947   return handleCompareOpForVectorHelper(LHSValue.getFloat(), Opcode,
2948                                         RHSValue.getFloat(), Result);
2949 }
2950 
2951 // Perform binary operations for vector types, in place on the LHS.
handleVectorVectorBinOp(EvalInfo & Info,const BinaryOperator * E,BinaryOperatorKind Opcode,APValue & LHSValue,const APValue & RHSValue)2952 static bool handleVectorVectorBinOp(EvalInfo &Info, const BinaryOperator *E,
2953                                     BinaryOperatorKind Opcode,
2954                                     APValue &LHSValue,
2955                                     const APValue &RHSValue) {
2956   assert(Opcode != BO_PtrMemD && Opcode != BO_PtrMemI &&
2957          "Operation not supported on vector types");
2958 
2959   const auto *VT = E->getType()->castAs<VectorType>();
2960   unsigned NumElements = VT->getNumElements();
2961   QualType EltTy = VT->getElementType();
2962 
2963   // In the cases (typically C as I've observed) where we aren't evaluating
2964   // constexpr but are checking for cases where the LHS isn't yet evaluatable,
2965   // just give up.
2966   if (!LHSValue.isVector()) {
2967     assert(LHSValue.isLValue() &&
2968            "A vector result that isn't a vector OR uncalculated LValue");
2969     Info.FFDiag(E);
2970     return false;
2971   }
2972 
2973   assert(LHSValue.getVectorLength() == NumElements &&
2974          RHSValue.getVectorLength() == NumElements && "Different vector sizes");
2975 
2976   SmallVector<APValue, 4> ResultElements;
2977 
2978   for (unsigned EltNum = 0; EltNum < NumElements; ++EltNum) {
2979     APValue LHSElt = LHSValue.getVectorElt(EltNum);
2980     APValue RHSElt = RHSValue.getVectorElt(EltNum);
2981 
2982     if (EltTy->isIntegerType()) {
2983       APSInt EltResult{Info.Ctx.getIntWidth(EltTy),
2984                        EltTy->isUnsignedIntegerType()};
2985       bool Success = true;
2986 
2987       if (BinaryOperator::isLogicalOp(Opcode))
2988         Success = handleLogicalOpForVector(LHSElt, Opcode, RHSElt, EltResult);
2989       else if (BinaryOperator::isComparisonOp(Opcode))
2990         Success = handleCompareOpForVector(LHSElt, Opcode, RHSElt, EltResult);
2991       else
2992         Success = handleIntIntBinOp(Info, E, LHSElt.getInt(), Opcode,
2993                                     RHSElt.getInt(), EltResult);
2994 
2995       if (!Success) {
2996         Info.FFDiag(E);
2997         return false;
2998       }
2999       ResultElements.emplace_back(EltResult);
3000 
3001     } else if (EltTy->isFloatingType()) {
3002       assert(LHSElt.getKind() == APValue::Float &&
3003              RHSElt.getKind() == APValue::Float &&
3004              "Mismatched LHS/RHS/Result Type");
3005       APFloat LHSFloat = LHSElt.getFloat();
3006 
3007       if (!handleFloatFloatBinOp(Info, E, LHSFloat, Opcode,
3008                                  RHSElt.getFloat())) {
3009         Info.FFDiag(E);
3010         return false;
3011       }
3012 
3013       ResultElements.emplace_back(LHSFloat);
3014     }
3015   }
3016 
3017   LHSValue = APValue(ResultElements.data(), ResultElements.size());
3018   return true;
3019 }
3020 
3021 /// Cast an lvalue referring to a base subobject to a derived class, by
3022 /// truncating the lvalue's path to the given length.
CastToDerivedClass(EvalInfo & Info,const Expr * E,LValue & Result,const RecordDecl * TruncatedType,unsigned TruncatedElements)3023 static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
3024                                const RecordDecl *TruncatedType,
3025                                unsigned TruncatedElements) {
3026   SubobjectDesignator &D = Result.Designator;
3027 
3028   // Check we actually point to a derived class object.
3029   if (TruncatedElements == D.Entries.size())
3030     return true;
3031   assert(TruncatedElements >= D.MostDerivedPathLength &&
3032          "not casting to a derived class");
3033   if (!Result.checkSubobject(Info, E, CSK_Derived))
3034     return false;
3035 
3036   // Truncate the path to the subobject, and remove any derived-to-base offsets.
3037   const RecordDecl *RD = TruncatedType;
3038   for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
3039     if (RD->isInvalidDecl()) return false;
3040     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
3041     const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
3042     if (isVirtualBaseClass(D.Entries[I]))
3043       Result.Offset -= Layout.getVBaseClassOffset(Base);
3044     else
3045       Result.Offset -= Layout.getBaseClassOffset(Base);
3046     RD = Base;
3047   }
3048   D.Entries.resize(TruncatedElements);
3049   return true;
3050 }
3051 
HandleLValueDirectBase(EvalInfo & Info,const Expr * E,LValue & Obj,const CXXRecordDecl * Derived,const CXXRecordDecl * Base,const ASTRecordLayout * RL=nullptr)3052 static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
3053                                    const CXXRecordDecl *Derived,
3054                                    const CXXRecordDecl *Base,
3055                                    const ASTRecordLayout *RL = nullptr) {
3056   if (!RL) {
3057     if (Derived->isInvalidDecl()) return false;
3058     RL = &Info.Ctx.getASTRecordLayout(Derived);
3059   }
3060 
3061   Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
3062   Obj.addDecl(Info, E, Base, /*Virtual*/ false);
3063   return true;
3064 }
3065 
HandleLValueBase(EvalInfo & Info,const Expr * E,LValue & Obj,const CXXRecordDecl * DerivedDecl,const CXXBaseSpecifier * Base)3066 static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
3067                              const CXXRecordDecl *DerivedDecl,
3068                              const CXXBaseSpecifier *Base) {
3069   const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
3070 
3071   if (!Base->isVirtual())
3072     return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
3073 
3074   SubobjectDesignator &D = Obj.Designator;
3075   if (D.Invalid)
3076     return false;
3077 
3078   // Extract most-derived object and corresponding type.
3079   DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
3080   if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
3081     return false;
3082 
3083   // Find the virtual base class.
3084   if (DerivedDecl->isInvalidDecl()) return false;
3085   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
3086   Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
3087   Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
3088   return true;
3089 }
3090 
HandleLValueBasePath(EvalInfo & Info,const CastExpr * E,QualType Type,LValue & Result)3091 static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E,
3092                                  QualType Type, LValue &Result) {
3093   for (CastExpr::path_const_iterator PathI = E->path_begin(),
3094                                      PathE = E->path_end();
3095        PathI != PathE; ++PathI) {
3096     if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
3097                           *PathI))
3098       return false;
3099     Type = (*PathI)->getType();
3100   }
3101   return true;
3102 }
3103 
3104 /// Cast an lvalue referring to a derived class to a known base subobject.
CastToBaseClass(EvalInfo & Info,const Expr * E,LValue & Result,const CXXRecordDecl * DerivedRD,const CXXRecordDecl * BaseRD)3105 static bool CastToBaseClass(EvalInfo &Info, const Expr *E, LValue &Result,
3106                             const CXXRecordDecl *DerivedRD,
3107                             const CXXRecordDecl *BaseRD) {
3108   CXXBasePaths Paths(/*FindAmbiguities=*/false,
3109                      /*RecordPaths=*/true, /*DetectVirtual=*/false);
3110   if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
3111     llvm_unreachable("Class must be derived from the passed in base class!");
3112 
3113   for (CXXBasePathElement &Elem : Paths.front())
3114     if (!HandleLValueBase(Info, E, Result, Elem.Class, Elem.Base))
3115       return false;
3116   return true;
3117 }
3118 
3119 /// Update LVal to refer to the given field, which must be a member of the type
3120 /// currently described by LVal.
HandleLValueMember(EvalInfo & Info,const Expr * E,LValue & LVal,const FieldDecl * FD,const ASTRecordLayout * RL=nullptr)3121 static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
3122                                const FieldDecl *FD,
3123                                const ASTRecordLayout *RL = nullptr) {
3124   if (!RL) {
3125     if (FD->getParent()->isInvalidDecl()) return false;
3126     RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
3127   }
3128 
3129   unsigned I = FD->getFieldIndex();
3130   LVal.adjustOffset(Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I)));
3131   LVal.addDecl(Info, E, FD);
3132   return true;
3133 }
3134 
3135 /// Update LVal to refer to the given indirect field.
HandleLValueIndirectMember(EvalInfo & Info,const Expr * E,LValue & LVal,const IndirectFieldDecl * IFD)3136 static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
3137                                        LValue &LVal,
3138                                        const IndirectFieldDecl *IFD) {
3139   for (const auto *C : IFD->chain())
3140     if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C)))
3141       return false;
3142   return true;
3143 }
3144 
3145 /// Get the size of the given type in char units.
HandleSizeof(EvalInfo & Info,SourceLocation Loc,QualType Type,CharUnits & Size)3146 static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
3147                          QualType Type, CharUnits &Size) {
3148   // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
3149   // extension.
3150   if (Type->isVoidType() || Type->isFunctionType()) {
3151     Size = CharUnits::One();
3152     return true;
3153   }
3154 
3155   if (Type->isDependentType()) {
3156     Info.FFDiag(Loc);
3157     return false;
3158   }
3159 
3160   if (!Type->isConstantSizeType()) {
3161     // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
3162     // FIXME: Better diagnostic.
3163     Info.FFDiag(Loc);
3164     return false;
3165   }
3166 
3167   Size = Info.Ctx.getTypeSizeInChars(Type);
3168   return true;
3169 }
3170 
3171 /// Update a pointer value to model pointer arithmetic.
3172 /// \param Info - Information about the ongoing evaluation.
3173 /// \param E - The expression being evaluated, for diagnostic purposes.
3174 /// \param LVal - The pointer value to be updated.
3175 /// \param EltTy - The pointee type represented by LVal.
3176 /// \param Adjustment - The adjustment, in objects of type EltTy, to add.
HandleLValueArrayAdjustment(EvalInfo & Info,const Expr * E,LValue & LVal,QualType EltTy,APSInt Adjustment)3177 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
3178                                         LValue &LVal, QualType EltTy,
3179                                         APSInt Adjustment) {
3180   CharUnits SizeOfPointee;
3181   if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
3182     return false;
3183 
3184   LVal.adjustOffsetAndIndex(Info, E, Adjustment, SizeOfPointee);
3185   return true;
3186 }
3187 
HandleLValueArrayAdjustment(EvalInfo & Info,const Expr * E,LValue & LVal,QualType EltTy,int64_t Adjustment)3188 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
3189                                         LValue &LVal, QualType EltTy,
3190                                         int64_t Adjustment) {
3191   return HandleLValueArrayAdjustment(Info, E, LVal, EltTy,
3192                                      APSInt::get(Adjustment));
3193 }
3194 
3195 /// Update an lvalue to refer to a component of a complex number.
3196 /// \param Info - Information about the ongoing evaluation.
3197 /// \param LVal - The lvalue to be updated.
3198 /// \param EltTy - The complex number's component type.
3199 /// \param Imag - False for the real component, true for the imaginary.
HandleLValueComplexElement(EvalInfo & Info,const Expr * E,LValue & LVal,QualType EltTy,bool Imag)3200 static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
3201                                        LValue &LVal, QualType EltTy,
3202                                        bool Imag) {
3203   if (Imag) {
3204     CharUnits SizeOfComponent;
3205     if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
3206       return false;
3207     LVal.Offset += SizeOfComponent;
3208   }
3209   LVal.addComplex(Info, E, EltTy, Imag);
3210   return true;
3211 }
3212 
3213 /// Try to evaluate the initializer for a variable declaration.
3214 ///
3215 /// \param Info   Information about the ongoing evaluation.
3216 /// \param E      An expression to be used when printing diagnostics.
3217 /// \param VD     The variable whose initializer should be obtained.
3218 /// \param Version The version of the variable within the frame.
3219 /// \param Frame  The frame in which the variable was created. Must be null
3220 ///               if this variable is not local to the evaluation.
3221 /// \param Result Filled in with a pointer to the value of the variable.
evaluateVarDeclInit(EvalInfo & Info,const Expr * E,const VarDecl * VD,CallStackFrame * Frame,unsigned Version,APValue * & Result)3222 static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
3223                                 const VarDecl *VD, CallStackFrame *Frame,
3224                                 unsigned Version, APValue *&Result) {
3225   APValue::LValueBase Base(VD, Frame ? Frame->Index : 0, Version);
3226 
3227   // If this is a local variable, dig out its value.
3228   if (Frame) {
3229     Result = Frame->getTemporary(VD, Version);
3230     if (Result)
3231       return true;
3232 
3233     if (!isa<ParmVarDecl>(VD)) {
3234       // Assume variables referenced within a lambda's call operator that were
3235       // not declared within the call operator are captures and during checking
3236       // of a potential constant expression, assume they are unknown constant
3237       // expressions.
3238       assert(isLambdaCallOperator(Frame->Callee) &&
3239              (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) &&
3240              "missing value for local variable");
3241       if (Info.checkingPotentialConstantExpression())
3242         return false;
3243       // FIXME: This diagnostic is bogus; we do support captures. Is this code
3244       // still reachable at all?
3245       Info.FFDiag(E->getBeginLoc(),
3246                   diag::note_unimplemented_constexpr_lambda_feature_ast)
3247           << "captures not currently allowed";
3248       return false;
3249     }
3250   }
3251 
3252   // If we're currently evaluating the initializer of this declaration, use that
3253   // in-flight value.
3254   if (Info.EvaluatingDecl == Base) {
3255     Result = Info.EvaluatingDeclValue;
3256     return true;
3257   }
3258 
3259   if (isa<ParmVarDecl>(VD)) {
3260     // Assume parameters of a potential constant expression are usable in
3261     // constant expressions.
3262     if (!Info.checkingPotentialConstantExpression() ||
3263         !Info.CurrentCall->Callee ||
3264         !Info.CurrentCall->Callee->Equals(VD->getDeclContext())) {
3265       if (Info.getLangOpts().CPlusPlus11) {
3266         Info.FFDiag(E, diag::note_constexpr_function_param_value_unknown)
3267             << VD;
3268         NoteLValueLocation(Info, Base);
3269       } else {
3270         Info.FFDiag(E);
3271       }
3272     }
3273     return false;
3274   }
3275 
3276   // Dig out the initializer, and use the declaration which it's attached to.
3277   // FIXME: We should eventually check whether the variable has a reachable
3278   // initializing declaration.
3279   const Expr *Init = VD->getAnyInitializer(VD);
3280   if (!Init) {
3281     // Don't diagnose during potential constant expression checking; an
3282     // initializer might be added later.
3283     if (!Info.checkingPotentialConstantExpression()) {
3284       Info.FFDiag(E, diag::note_constexpr_var_init_unknown, 1)
3285         << VD;
3286       NoteLValueLocation(Info, Base);
3287     }
3288     return false;
3289   }
3290 
3291   if (Init->isValueDependent()) {
3292     // The DeclRefExpr is not value-dependent, but the variable it refers to
3293     // has a value-dependent initializer. This should only happen in
3294     // constant-folding cases, where the variable is not actually of a suitable
3295     // type for use in a constant expression (otherwise the DeclRefExpr would
3296     // have been value-dependent too), so diagnose that.
3297     assert(!VD->mightBeUsableInConstantExpressions(Info.Ctx));
3298     if (!Info.checkingPotentialConstantExpression()) {
3299       Info.FFDiag(E, Info.getLangOpts().CPlusPlus11
3300                          ? diag::note_constexpr_ltor_non_constexpr
3301                          : diag::note_constexpr_ltor_non_integral, 1)
3302           << VD << VD->getType();
3303       NoteLValueLocation(Info, Base);
3304     }
3305     return false;
3306   }
3307 
3308   // Check that we can fold the initializer. In C++, we will have already done
3309   // this in the cases where it matters for conformance.
3310   if (!VD->evaluateValue()) {
3311     Info.FFDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD;
3312     NoteLValueLocation(Info, Base);
3313     return false;
3314   }
3315 
3316   // Check that the variable is actually usable in constant expressions. For a
3317   // const integral variable or a reference, we might have a non-constant
3318   // initializer that we can nonetheless evaluate the initializer for. Such
3319   // variables are not usable in constant expressions. In C++98, the
3320   // initializer also syntactically needs to be an ICE.
3321   //
3322   // FIXME: We don't diagnose cases that aren't potentially usable in constant
3323   // expressions here; doing so would regress diagnostics for things like
3324   // reading from a volatile constexpr variable.
3325   if ((Info.getLangOpts().CPlusPlus && !VD->hasConstantInitialization() &&
3326        VD->mightBeUsableInConstantExpressions(Info.Ctx)) ||
3327       ((Info.getLangOpts().CPlusPlus || Info.getLangOpts().OpenCL) &&
3328        !Info.getLangOpts().CPlusPlus11 && !VD->hasICEInitializer(Info.Ctx))) {
3329     Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD;
3330     NoteLValueLocation(Info, Base);
3331   }
3332 
3333   // Never use the initializer of a weak variable, not even for constant
3334   // folding. We can't be sure that this is the definition that will be used.
3335   if (VD->isWeak()) {
3336     Info.FFDiag(E, diag::note_constexpr_var_init_weak) << VD;
3337     NoteLValueLocation(Info, Base);
3338     return false;
3339   }
3340 
3341   Result = VD->getEvaluatedValue();
3342   return true;
3343 }
3344 
3345 /// Get the base index of the given base class within an APValue representing
3346 /// the given derived class.
getBaseIndex(const CXXRecordDecl * Derived,const CXXRecordDecl * Base)3347 static unsigned getBaseIndex(const CXXRecordDecl *Derived,
3348                              const CXXRecordDecl *Base) {
3349   Base = Base->getCanonicalDecl();
3350   unsigned Index = 0;
3351   for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
3352          E = Derived->bases_end(); I != E; ++I, ++Index) {
3353     if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
3354       return Index;
3355   }
3356 
3357   llvm_unreachable("base class missing from derived class's bases list");
3358 }
3359 
3360 /// Extract the value of a character from a string literal.
extractStringLiteralCharacter(EvalInfo & Info,const Expr * Lit,uint64_t Index)3361 static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
3362                                             uint64_t Index) {
3363   assert(!isa<SourceLocExpr>(Lit) &&
3364          "SourceLocExpr should have already been converted to a StringLiteral");
3365 
3366   // FIXME: Support MakeStringConstant
3367   if (const auto *ObjCEnc = dyn_cast<ObjCEncodeExpr>(Lit)) {
3368     std::string Str;
3369     Info.Ctx.getObjCEncodingForType(ObjCEnc->getEncodedType(), Str);
3370     assert(Index <= Str.size() && "Index too large");
3371     return APSInt::getUnsigned(Str.c_str()[Index]);
3372   }
3373 
3374   if (auto PE = dyn_cast<PredefinedExpr>(Lit))
3375     Lit = PE->getFunctionName();
3376   const StringLiteral *S = cast<StringLiteral>(Lit);
3377   const ConstantArrayType *CAT =
3378       Info.Ctx.getAsConstantArrayType(S->getType());
3379   assert(CAT && "string literal isn't an array");
3380   QualType CharType = CAT->getElementType();
3381   assert(CharType->isIntegerType() && "unexpected character type");
3382 
3383   APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
3384                CharType->isUnsignedIntegerType());
3385   if (Index < S->getLength())
3386     Value = S->getCodeUnit(Index);
3387   return Value;
3388 }
3389 
3390 // Expand a string literal into an array of characters.
3391 //
3392 // FIXME: This is inefficient; we should probably introduce something similar
3393 // to the LLVM ConstantDataArray to make this cheaper.
expandStringLiteral(EvalInfo & Info,const StringLiteral * S,APValue & Result,QualType AllocType=QualType ())3394 static void expandStringLiteral(EvalInfo &Info, const StringLiteral *S,
3395                                 APValue &Result,
3396                                 QualType AllocType = QualType()) {
3397   const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
3398       AllocType.isNull() ? S->getType() : AllocType);
3399   assert(CAT && "string literal isn't an array");
3400   QualType CharType = CAT->getElementType();
3401   assert(CharType->isIntegerType() && "unexpected character type");
3402 
3403   unsigned Elts = CAT->getSize().getZExtValue();
3404   Result = APValue(APValue::UninitArray(),
3405                    std::min(S->getLength(), Elts), Elts);
3406   APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
3407                CharType->isUnsignedIntegerType());
3408   if (Result.hasArrayFiller())
3409     Result.getArrayFiller() = APValue(Value);
3410   for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
3411     Value = S->getCodeUnit(I);
3412     Result.getArrayInitializedElt(I) = APValue(Value);
3413   }
3414 }
3415 
3416 // Expand an array so that it has more than Index filled elements.
expandArray(APValue & Array,unsigned Index)3417 static void expandArray(APValue &Array, unsigned Index) {
3418   unsigned Size = Array.getArraySize();
3419   assert(Index < Size);
3420 
3421   // Always at least double the number of elements for which we store a value.
3422   unsigned OldElts = Array.getArrayInitializedElts();
3423   unsigned NewElts = std::max(Index+1, OldElts * 2);
3424   NewElts = std::min(Size, std::max(NewElts, 8u));
3425 
3426   // Copy the data across.
3427   APValue NewValue(APValue::UninitArray(), NewElts, Size);
3428   for (unsigned I = 0; I != OldElts; ++I)
3429     NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I));
3430   for (unsigned I = OldElts; I != NewElts; ++I)
3431     NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
3432   if (NewValue.hasArrayFiller())
3433     NewValue.getArrayFiller() = Array.getArrayFiller();
3434   Array.swap(NewValue);
3435 }
3436 
3437 /// Determine whether a type would actually be read by an lvalue-to-rvalue
3438 /// conversion. If it's of class type, we may assume that the copy operation
3439 /// is trivial. Note that this is never true for a union type with fields
3440 /// (because the copy always "reads" the active member) and always true for
3441 /// a non-class type.
3442 static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD);
isReadByLvalueToRvalueConversion(QualType T)3443 static bool isReadByLvalueToRvalueConversion(QualType T) {
3444   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3445   return !RD || isReadByLvalueToRvalueConversion(RD);
3446 }
isReadByLvalueToRvalueConversion(const CXXRecordDecl * RD)3447 static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD) {
3448   // FIXME: A trivial copy of a union copies the object representation, even if
3449   // the union is empty.
3450   if (RD->isUnion())
3451     return !RD->field_empty();
3452   if (RD->isEmpty())
3453     return false;
3454 
3455   for (auto *Field : RD->fields())
3456     if (!Field->isUnnamedBitfield() &&
3457         isReadByLvalueToRvalueConversion(Field->getType()))
3458       return true;
3459 
3460   for (auto &BaseSpec : RD->bases())
3461     if (isReadByLvalueToRvalueConversion(BaseSpec.getType()))
3462       return true;
3463 
3464   return false;
3465 }
3466 
3467 /// Diagnose an attempt to read from any unreadable field within the specified
3468 /// type, which might be a class type.
diagnoseMutableFields(EvalInfo & Info,const Expr * E,AccessKinds AK,QualType T)3469 static bool diagnoseMutableFields(EvalInfo &Info, const Expr *E, AccessKinds AK,
3470                                   QualType T) {
3471   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3472   if (!RD)
3473     return false;
3474 
3475   if (!RD->hasMutableFields())
3476     return false;
3477 
3478   for (auto *Field : RD->fields()) {
3479     // If we're actually going to read this field in some way, then it can't
3480     // be mutable. If we're in a union, then assigning to a mutable field
3481     // (even an empty one) can change the active member, so that's not OK.
3482     // FIXME: Add core issue number for the union case.
3483     if (Field->isMutable() &&
3484         (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) {
3485       Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) << AK << Field;
3486       Info.Note(Field->getLocation(), diag::note_declared_at);
3487       return true;
3488     }
3489 
3490     if (diagnoseMutableFields(Info, E, AK, Field->getType()))
3491       return true;
3492   }
3493 
3494   for (auto &BaseSpec : RD->bases())
3495     if (diagnoseMutableFields(Info, E, AK, BaseSpec.getType()))
3496       return true;
3497 
3498   // All mutable fields were empty, and thus not actually read.
3499   return false;
3500 }
3501 
lifetimeStartedInEvaluation(EvalInfo & Info,APValue::LValueBase Base,bool MutableSubobject=false)3502 static bool lifetimeStartedInEvaluation(EvalInfo &Info,
3503                                         APValue::LValueBase Base,
3504                                         bool MutableSubobject = false) {
3505   // A temporary or transient heap allocation we created.
3506   if (Base.getCallIndex() || Base.is<DynamicAllocLValue>())
3507     return true;
3508 
3509   switch (Info.IsEvaluatingDecl) {
3510   case EvalInfo::EvaluatingDeclKind::None:
3511     return false;
3512 
3513   case EvalInfo::EvaluatingDeclKind::Ctor:
3514     // The variable whose initializer we're evaluating.
3515     if (Info.EvaluatingDecl == Base)
3516       return true;
3517 
3518     // A temporary lifetime-extended by the variable whose initializer we're
3519     // evaluating.
3520     if (auto *BaseE = Base.dyn_cast<const Expr *>())
3521       if (auto *BaseMTE = dyn_cast<MaterializeTemporaryExpr>(BaseE))
3522         return Info.EvaluatingDecl == BaseMTE->getExtendingDecl();
3523     return false;
3524 
3525   case EvalInfo::EvaluatingDeclKind::Dtor:
3526     // C++2a [expr.const]p6:
3527     //   [during constant destruction] the lifetime of a and its non-mutable
3528     //   subobjects (but not its mutable subobjects) [are] considered to start
3529     //   within e.
3530     if (MutableSubobject || Base != Info.EvaluatingDecl)
3531       return false;
3532     // FIXME: We can meaningfully extend this to cover non-const objects, but
3533     // we will need special handling: we should be able to access only
3534     // subobjects of such objects that are themselves declared const.
3535     QualType T = getType(Base);
3536     return T.isConstQualified() || T->isReferenceType();
3537   }
3538 
3539   llvm_unreachable("unknown evaluating decl kind");
3540 }
3541 
3542 namespace {
3543 /// A handle to a complete object (an object that is not a subobject of
3544 /// another object).
3545 struct CompleteObject {
3546   /// The identity of the object.
3547   APValue::LValueBase Base;
3548   /// The value of the complete object.
3549   APValue *Value;
3550   /// The type of the complete object.
3551   QualType Type;
3552 
CompleteObject__anon6b379bbb0911::CompleteObject3553   CompleteObject() : Value(nullptr) {}
CompleteObject__anon6b379bbb0911::CompleteObject3554   CompleteObject(APValue::LValueBase Base, APValue *Value, QualType Type)
3555       : Base(Base), Value(Value), Type(Type) {}
3556 
mayAccessMutableMembers__anon6b379bbb0911::CompleteObject3557   bool mayAccessMutableMembers(EvalInfo &Info, AccessKinds AK) const {
3558     // If this isn't a "real" access (eg, if it's just accessing the type
3559     // info), allow it. We assume the type doesn't change dynamically for
3560     // subobjects of constexpr objects (even though we'd hit UB here if it
3561     // did). FIXME: Is this right?
3562     if (!isAnyAccess(AK))
3563       return true;
3564 
3565     // In C++14 onwards, it is permitted to read a mutable member whose
3566     // lifetime began within the evaluation.
3567     // FIXME: Should we also allow this in C++11?
3568     if (!Info.getLangOpts().CPlusPlus14)
3569       return false;
3570     return lifetimeStartedInEvaluation(Info, Base, /*MutableSubobject*/true);
3571   }
3572 
operator bool__anon6b379bbb0911::CompleteObject3573   explicit operator bool() const { return !Type.isNull(); }
3574 };
3575 } // end anonymous namespace
3576 
getSubobjectType(QualType ObjType,QualType SubobjType,bool IsMutable=false)3577 static QualType getSubobjectType(QualType ObjType, QualType SubobjType,
3578                                  bool IsMutable = false) {
3579   // C++ [basic.type.qualifier]p1:
3580   // - A const object is an object of type const T or a non-mutable subobject
3581   //   of a const object.
3582   if (ObjType.isConstQualified() && !IsMutable)
3583     SubobjType.addConst();
3584   // - A volatile object is an object of type const T or a subobject of a
3585   //   volatile object.
3586   if (ObjType.isVolatileQualified())
3587     SubobjType.addVolatile();
3588   return SubobjType;
3589 }
3590 
3591 /// Find the designated sub-object of an rvalue.
3592 template<typename SubobjectHandler>
3593 typename SubobjectHandler::result_type
findSubobject(EvalInfo & Info,const Expr * E,const CompleteObject & Obj,const SubobjectDesignator & Sub,SubobjectHandler & handler)3594 findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
3595               const SubobjectDesignator &Sub, SubobjectHandler &handler) {
3596   if (Sub.Invalid)
3597     // A diagnostic will have already been produced.
3598     return handler.failed();
3599   if (Sub.isOnePastTheEnd() || Sub.isMostDerivedAnUnsizedArray()) {
3600     if (Info.getLangOpts().CPlusPlus11)
3601       Info.FFDiag(E, Sub.isOnePastTheEnd()
3602                          ? diag::note_constexpr_access_past_end
3603                          : diag::note_constexpr_access_unsized_array)
3604           << handler.AccessKind;
3605     else
3606       Info.FFDiag(E);
3607     return handler.failed();
3608   }
3609 
3610   APValue *O = Obj.Value;
3611   QualType ObjType = Obj.Type;
3612   const FieldDecl *LastField = nullptr;
3613   const FieldDecl *VolatileField = nullptr;
3614 
3615   // Walk the designator's path to find the subobject.
3616   for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) {
3617     // Reading an indeterminate value is undefined, but assigning over one is OK.
3618     if ((O->isAbsent() && !(handler.AccessKind == AK_Construct && I == N)) ||
3619         (O->isIndeterminate() &&
3620          !isValidIndeterminateAccess(handler.AccessKind))) {
3621       if (!Info.checkingPotentialConstantExpression())
3622         Info.FFDiag(E, diag::note_constexpr_access_uninit)
3623             << handler.AccessKind << O->isIndeterminate();
3624       return handler.failed();
3625     }
3626 
3627     // C++ [class.ctor]p5, C++ [class.dtor]p5:
3628     //    const and volatile semantics are not applied on an object under
3629     //    {con,de}struction.
3630     if ((ObjType.isConstQualified() || ObjType.isVolatileQualified()) &&
3631         ObjType->isRecordType() &&
3632         Info.isEvaluatingCtorDtor(
3633             Obj.Base, llvm::makeArrayRef(Sub.Entries.begin(),
3634                                          Sub.Entries.begin() + I)) !=
3635                           ConstructionPhase::None) {
3636       ObjType = Info.Ctx.getCanonicalType(ObjType);
3637       ObjType.removeLocalConst();
3638       ObjType.removeLocalVolatile();
3639     }
3640 
3641     // If this is our last pass, check that the final object type is OK.
3642     if (I == N || (I == N - 1 && ObjType->isAnyComplexType())) {
3643       // Accesses to volatile objects are prohibited.
3644       if (ObjType.isVolatileQualified() && isFormalAccess(handler.AccessKind)) {
3645         if (Info.getLangOpts().CPlusPlus) {
3646           int DiagKind;
3647           SourceLocation Loc;
3648           const NamedDecl *Decl = nullptr;
3649           if (VolatileField) {
3650             DiagKind = 2;
3651             Loc = VolatileField->getLocation();
3652             Decl = VolatileField;
3653           } else if (auto *VD = Obj.Base.dyn_cast<const ValueDecl*>()) {
3654             DiagKind = 1;
3655             Loc = VD->getLocation();
3656             Decl = VD;
3657           } else {
3658             DiagKind = 0;
3659             if (auto *E = Obj.Base.dyn_cast<const Expr *>())
3660               Loc = E->getExprLoc();
3661           }
3662           Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1)
3663               << handler.AccessKind << DiagKind << Decl;
3664           Info.Note(Loc, diag::note_constexpr_volatile_here) << DiagKind;
3665         } else {
3666           Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
3667         }
3668         return handler.failed();
3669       }
3670 
3671       // If we are reading an object of class type, there may still be more
3672       // things we need to check: if there are any mutable subobjects, we
3673       // cannot perform this read. (This only happens when performing a trivial
3674       // copy or assignment.)
3675       if (ObjType->isRecordType() &&
3676           !Obj.mayAccessMutableMembers(Info, handler.AccessKind) &&
3677           diagnoseMutableFields(Info, E, handler.AccessKind, ObjType))
3678         return handler.failed();
3679     }
3680 
3681     if (I == N) {
3682       if (!handler.found(*O, ObjType))
3683         return false;
3684 
3685       // If we modified a bit-field, truncate it to the right width.
3686       if (isModification(handler.AccessKind) &&
3687           LastField && LastField->isBitField() &&
3688           !truncateBitfieldValue(Info, E, *O, LastField))
3689         return false;
3690 
3691       return true;
3692     }
3693 
3694     LastField = nullptr;
3695     if (ObjType->isArrayType()) {
3696       // Next subobject is an array element.
3697       const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
3698       assert(CAT && "vla in literal type?");
3699       uint64_t Index = Sub.Entries[I].getAsArrayIndex();
3700       if (CAT->getSize().ule(Index)) {
3701         // Note, it should not be possible to form a pointer with a valid
3702         // designator which points more than one past the end of the array.
3703         if (Info.getLangOpts().CPlusPlus11)
3704           Info.FFDiag(E, diag::note_constexpr_access_past_end)
3705             << handler.AccessKind;
3706         else
3707           Info.FFDiag(E);
3708         return handler.failed();
3709       }
3710 
3711       ObjType = CAT->getElementType();
3712 
3713       if (O->getArrayInitializedElts() > Index)
3714         O = &O->getArrayInitializedElt(Index);
3715       else if (!isRead(handler.AccessKind)) {
3716         expandArray(*O, Index);
3717         O = &O->getArrayInitializedElt(Index);
3718       } else
3719         O = &O->getArrayFiller();
3720     } else if (ObjType->isAnyComplexType()) {
3721       // Next subobject is a complex number.
3722       uint64_t Index = Sub.Entries[I].getAsArrayIndex();
3723       if (Index > 1) {
3724         if (Info.getLangOpts().CPlusPlus11)
3725           Info.FFDiag(E, diag::note_constexpr_access_past_end)
3726             << handler.AccessKind;
3727         else
3728           Info.FFDiag(E);
3729         return handler.failed();
3730       }
3731 
3732       ObjType = getSubobjectType(
3733           ObjType, ObjType->castAs<ComplexType>()->getElementType());
3734 
3735       assert(I == N - 1 && "extracting subobject of scalar?");
3736       if (O->isComplexInt()) {
3737         return handler.found(Index ? O->getComplexIntImag()
3738                                    : O->getComplexIntReal(), ObjType);
3739       } else {
3740         assert(O->isComplexFloat());
3741         return handler.found(Index ? O->getComplexFloatImag()
3742                                    : O->getComplexFloatReal(), ObjType);
3743       }
3744     } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
3745       if (Field->isMutable() &&
3746           !Obj.mayAccessMutableMembers(Info, handler.AccessKind)) {
3747         Info.FFDiag(E, diag::note_constexpr_access_mutable, 1)
3748           << handler.AccessKind << Field;
3749         Info.Note(Field->getLocation(), diag::note_declared_at);
3750         return handler.failed();
3751       }
3752 
3753       // Next subobject is a class, struct or union field.
3754       RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
3755       if (RD->isUnion()) {
3756         const FieldDecl *UnionField = O->getUnionField();
3757         if (!UnionField ||
3758             UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
3759           if (I == N - 1 && handler.AccessKind == AK_Construct) {
3760             // Placement new onto an inactive union member makes it active.
3761             O->setUnion(Field, APValue());
3762           } else {
3763             // FIXME: If O->getUnionValue() is absent, report that there's no
3764             // active union member rather than reporting the prior active union
3765             // member. We'll need to fix nullptr_t to not use APValue() as its
3766             // representation first.
3767             Info.FFDiag(E, diag::note_constexpr_access_inactive_union_member)
3768                 << handler.AccessKind << Field << !UnionField << UnionField;
3769             return handler.failed();
3770           }
3771         }
3772         O = &O->getUnionValue();
3773       } else
3774         O = &O->getStructField(Field->getFieldIndex());
3775 
3776       ObjType = getSubobjectType(ObjType, Field->getType(), Field->isMutable());
3777       LastField = Field;
3778       if (Field->getType().isVolatileQualified())
3779         VolatileField = Field;
3780     } else {
3781       // Next subobject is a base class.
3782       const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
3783       const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
3784       O = &O->getStructBase(getBaseIndex(Derived, Base));
3785 
3786       ObjType = getSubobjectType(ObjType, Info.Ctx.getRecordType(Base));
3787     }
3788   }
3789 }
3790 
3791 namespace {
3792 struct ExtractSubobjectHandler {
3793   EvalInfo &Info;
3794   const Expr *E;
3795   APValue &Result;
3796   const AccessKinds AccessKind;
3797 
3798   typedef bool result_type;
failed__anon6b379bbb0a11::ExtractSubobjectHandler3799   bool failed() { return false; }
found__anon6b379bbb0a11::ExtractSubobjectHandler3800   bool found(APValue &Subobj, QualType SubobjType) {
3801     Result = Subobj;
3802     if (AccessKind == AK_ReadObjectRepresentation)
3803       return true;
3804     return CheckFullyInitialized(Info, E->getExprLoc(), SubobjType, Result);
3805   }
found__anon6b379bbb0a11::ExtractSubobjectHandler3806   bool found(APSInt &Value, QualType SubobjType) {
3807     Result = APValue(Value);
3808     return true;
3809   }
found__anon6b379bbb0a11::ExtractSubobjectHandler3810   bool found(APFloat &Value, QualType SubobjType) {
3811     Result = APValue(Value);
3812     return true;
3813   }
3814 };
3815 } // end anonymous namespace
3816 
3817 /// Extract the designated sub-object of an rvalue.
extractSubobject(EvalInfo & Info,const Expr * E,const CompleteObject & Obj,const SubobjectDesignator & Sub,APValue & Result,AccessKinds AK=AK_Read)3818 static bool extractSubobject(EvalInfo &Info, const Expr *E,
3819                              const CompleteObject &Obj,
3820                              const SubobjectDesignator &Sub, APValue &Result,
3821                              AccessKinds AK = AK_Read) {
3822   assert(AK == AK_Read || AK == AK_ReadObjectRepresentation);
3823   ExtractSubobjectHandler Handler = {Info, E, Result, AK};
3824   return findSubobject(Info, E, Obj, Sub, Handler);
3825 }
3826 
3827 namespace {
3828 struct ModifySubobjectHandler {
3829   EvalInfo &Info;
3830   APValue &NewVal;
3831   const Expr *E;
3832 
3833   typedef bool result_type;
3834   static const AccessKinds AccessKind = AK_Assign;
3835 
checkConst__anon6b379bbb0b11::ModifySubobjectHandler3836   bool checkConst(QualType QT) {
3837     // Assigning to a const object has undefined behavior.
3838     if (QT.isConstQualified()) {
3839       Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
3840       return false;
3841     }
3842     return true;
3843   }
3844 
failed__anon6b379bbb0b11::ModifySubobjectHandler3845   bool failed() { return false; }
found__anon6b379bbb0b11::ModifySubobjectHandler3846   bool found(APValue &Subobj, QualType SubobjType) {
3847     if (!checkConst(SubobjType))
3848       return false;
3849     // We've been given ownership of NewVal, so just swap it in.
3850     Subobj.swap(NewVal);
3851     return true;
3852   }
found__anon6b379bbb0b11::ModifySubobjectHandler3853   bool found(APSInt &Value, QualType SubobjType) {
3854     if (!checkConst(SubobjType))
3855       return false;
3856     if (!NewVal.isInt()) {
3857       // Maybe trying to write a cast pointer value into a complex?
3858       Info.FFDiag(E);
3859       return false;
3860     }
3861     Value = NewVal.getInt();
3862     return true;
3863   }
found__anon6b379bbb0b11::ModifySubobjectHandler3864   bool found(APFloat &Value, QualType SubobjType) {
3865     if (!checkConst(SubobjType))
3866       return false;
3867     Value = NewVal.getFloat();
3868     return true;
3869   }
3870 };
3871 } // end anonymous namespace
3872 
3873 const AccessKinds ModifySubobjectHandler::AccessKind;
3874 
3875 /// Update the designated sub-object of an rvalue to the given value.
modifySubobject(EvalInfo & Info,const Expr * E,const CompleteObject & Obj,const SubobjectDesignator & Sub,APValue & NewVal)3876 static bool modifySubobject(EvalInfo &Info, const Expr *E,
3877                             const CompleteObject &Obj,
3878                             const SubobjectDesignator &Sub,
3879                             APValue &NewVal) {
3880   ModifySubobjectHandler Handler = { Info, NewVal, E };
3881   return findSubobject(Info, E, Obj, Sub, Handler);
3882 }
3883 
3884 /// Find the position where two subobject designators diverge, or equivalently
3885 /// the length of the common initial subsequence.
FindDesignatorMismatch(QualType ObjType,const SubobjectDesignator & A,const SubobjectDesignator & B,bool & WasArrayIndex)3886 static unsigned FindDesignatorMismatch(QualType ObjType,
3887                                        const SubobjectDesignator &A,
3888                                        const SubobjectDesignator &B,
3889                                        bool &WasArrayIndex) {
3890   unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
3891   for (/**/; I != N; ++I) {
3892     if (!ObjType.isNull() &&
3893         (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
3894       // Next subobject is an array element.
3895       if (A.Entries[I].getAsArrayIndex() != B.Entries[I].getAsArrayIndex()) {
3896         WasArrayIndex = true;
3897         return I;
3898       }
3899       if (ObjType->isAnyComplexType())
3900         ObjType = ObjType->castAs<ComplexType>()->getElementType();
3901       else
3902         ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
3903     } else {
3904       if (A.Entries[I].getAsBaseOrMember() !=
3905           B.Entries[I].getAsBaseOrMember()) {
3906         WasArrayIndex = false;
3907         return I;
3908       }
3909       if (const FieldDecl *FD = getAsField(A.Entries[I]))
3910         // Next subobject is a field.
3911         ObjType = FD->getType();
3912       else
3913         // Next subobject is a base class.
3914         ObjType = QualType();
3915     }
3916   }
3917   WasArrayIndex = false;
3918   return I;
3919 }
3920 
3921 /// Determine whether the given subobject designators refer to elements of the
3922 /// same array object.
AreElementsOfSameArray(QualType ObjType,const SubobjectDesignator & A,const SubobjectDesignator & B)3923 static bool AreElementsOfSameArray(QualType ObjType,
3924                                    const SubobjectDesignator &A,
3925                                    const SubobjectDesignator &B) {
3926   if (A.Entries.size() != B.Entries.size())
3927     return false;
3928 
3929   bool IsArray = A.MostDerivedIsArrayElement;
3930   if (IsArray && A.MostDerivedPathLength != A.Entries.size())
3931     // A is a subobject of the array element.
3932     return false;
3933 
3934   // If A (and B) designates an array element, the last entry will be the array
3935   // index. That doesn't have to match. Otherwise, we're in the 'implicit array
3936   // of length 1' case, and the entire path must match.
3937   bool WasArrayIndex;
3938   unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
3939   return CommonLength >= A.Entries.size() - IsArray;
3940 }
3941 
3942 /// Find the complete object to which an LValue refers.
findCompleteObject(EvalInfo & Info,const Expr * E,AccessKinds AK,const LValue & LVal,QualType LValType)3943 static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E,
3944                                          AccessKinds AK, const LValue &LVal,
3945                                          QualType LValType) {
3946   if (LVal.InvalidBase) {
3947     Info.FFDiag(E);
3948     return CompleteObject();
3949   }
3950 
3951   if (!LVal.Base) {
3952     Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
3953     return CompleteObject();
3954   }
3955 
3956   CallStackFrame *Frame = nullptr;
3957   unsigned Depth = 0;
3958   if (LVal.getLValueCallIndex()) {
3959     std::tie(Frame, Depth) =
3960         Info.getCallFrameAndDepth(LVal.getLValueCallIndex());
3961     if (!Frame) {
3962       Info.FFDiag(E, diag::note_constexpr_lifetime_ended, 1)
3963         << AK << LVal.Base.is<const ValueDecl*>();
3964       NoteLValueLocation(Info, LVal.Base);
3965       return CompleteObject();
3966     }
3967   }
3968 
3969   bool IsAccess = isAnyAccess(AK);
3970 
3971   // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
3972   // is not a constant expression (even if the object is non-volatile). We also
3973   // apply this rule to C++98, in order to conform to the expected 'volatile'
3974   // semantics.
3975   if (isFormalAccess(AK) && LValType.isVolatileQualified()) {
3976     if (Info.getLangOpts().CPlusPlus)
3977       Info.FFDiag(E, diag::note_constexpr_access_volatile_type)
3978         << AK << LValType;
3979     else
3980       Info.FFDiag(E);
3981     return CompleteObject();
3982   }
3983 
3984   // Compute value storage location and type of base object.
3985   APValue *BaseVal = nullptr;
3986   QualType BaseType = getType(LVal.Base);
3987 
3988   if (Info.getLangOpts().CPlusPlus14 && LVal.Base == Info.EvaluatingDecl &&
3989       lifetimeStartedInEvaluation(Info, LVal.Base)) {
3990     // This is the object whose initializer we're evaluating, so its lifetime
3991     // started in the current evaluation.
3992     BaseVal = Info.EvaluatingDeclValue;
3993   } else if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl *>()) {
3994     // Allow reading from a GUID declaration.
3995     if (auto *GD = dyn_cast<MSGuidDecl>(D)) {
3996       if (isModification(AK)) {
3997         // All the remaining cases do not permit modification of the object.
3998         Info.FFDiag(E, diag::note_constexpr_modify_global);
3999         return CompleteObject();
4000       }
4001       APValue &V = GD->getAsAPValue();
4002       if (V.isAbsent()) {
4003         Info.FFDiag(E, diag::note_constexpr_unsupported_layout)
4004             << GD->getType();
4005         return CompleteObject();
4006       }
4007       return CompleteObject(LVal.Base, &V, GD->getType());
4008     }
4009 
4010     // Allow reading from template parameter objects.
4011     if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(D)) {
4012       if (isModification(AK)) {
4013         Info.FFDiag(E, diag::note_constexpr_modify_global);
4014         return CompleteObject();
4015       }
4016       return CompleteObject(LVal.Base, const_cast<APValue *>(&TPO->getValue()),
4017                             TPO->getType());
4018     }
4019 
4020     // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
4021     // In C++11, constexpr, non-volatile variables initialized with constant
4022     // expressions are constant expressions too. Inside constexpr functions,
4023     // parameters are constant expressions even if they're non-const.
4024     // In C++1y, objects local to a constant expression (those with a Frame) are
4025     // both readable and writable inside constant expressions.
4026     // In C, such things can also be folded, although they are not ICEs.
4027     const VarDecl *VD = dyn_cast<VarDecl>(D);
4028     if (VD) {
4029       if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
4030         VD = VDef;
4031     }
4032     if (!VD || VD->isInvalidDecl()) {
4033       Info.FFDiag(E);
4034       return CompleteObject();
4035     }
4036 
4037     bool IsConstant = BaseType.isConstant(Info.Ctx);
4038 
4039     // Unless we're looking at a local variable or argument in a constexpr call,
4040     // the variable we're reading must be const.
4041     if (!Frame) {
4042       if (IsAccess && isa<ParmVarDecl>(VD)) {
4043         // Access of a parameter that's not associated with a frame isn't going
4044         // to work out, but we can leave it to evaluateVarDeclInit to provide a
4045         // suitable diagnostic.
4046       } else if (Info.getLangOpts().CPlusPlus14 &&
4047                  lifetimeStartedInEvaluation(Info, LVal.Base)) {
4048         // OK, we can read and modify an object if we're in the process of
4049         // evaluating its initializer, because its lifetime began in this
4050         // evaluation.
4051       } else if (isModification(AK)) {
4052         // All the remaining cases do not permit modification of the object.
4053         Info.FFDiag(E, diag::note_constexpr_modify_global);
4054         return CompleteObject();
4055       } else if (VD->isConstexpr()) {
4056         // OK, we can read this variable.
4057       } else if (BaseType->isIntegralOrEnumerationType()) {
4058         if (!IsConstant) {
4059           if (!IsAccess)
4060             return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4061           if (Info.getLangOpts().CPlusPlus) {
4062             Info.FFDiag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
4063             Info.Note(VD->getLocation(), diag::note_declared_at);
4064           } else {
4065             Info.FFDiag(E);
4066           }
4067           return CompleteObject();
4068         }
4069       } else if (!IsAccess) {
4070         return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4071       } else if (IsConstant && Info.checkingPotentialConstantExpression() &&
4072                  BaseType->isLiteralType(Info.Ctx) && !VD->hasDefinition()) {
4073         // This variable might end up being constexpr. Don't diagnose it yet.
4074       } else if (IsConstant) {
4075         // Keep evaluating to see what we can do. In particular, we support
4076         // folding of const floating-point types, in order to make static const
4077         // data members of such types (supported as an extension) more useful.
4078         if (Info.getLangOpts().CPlusPlus) {
4079           Info.CCEDiag(E, Info.getLangOpts().CPlusPlus11
4080                               ? diag::note_constexpr_ltor_non_constexpr
4081                               : diag::note_constexpr_ltor_non_integral, 1)
4082               << VD << BaseType;
4083           Info.Note(VD->getLocation(), diag::note_declared_at);
4084         } else {
4085           Info.CCEDiag(E);
4086         }
4087       } else {
4088         // Never allow reading a non-const value.
4089         if (Info.getLangOpts().CPlusPlus) {
4090           Info.FFDiag(E, Info.getLangOpts().CPlusPlus11
4091                              ? diag::note_constexpr_ltor_non_constexpr
4092                              : diag::note_constexpr_ltor_non_integral, 1)
4093               << VD << BaseType;
4094           Info.Note(VD->getLocation(), diag::note_declared_at);
4095         } else {
4096           Info.FFDiag(E);
4097         }
4098         return CompleteObject();
4099       }
4100     }
4101 
4102     if (!evaluateVarDeclInit(Info, E, VD, Frame, LVal.getLValueVersion(), BaseVal))
4103       return CompleteObject();
4104   } else if (DynamicAllocLValue DA = LVal.Base.dyn_cast<DynamicAllocLValue>()) {
4105     Optional<DynAlloc*> Alloc = Info.lookupDynamicAlloc(DA);
4106     if (!Alloc) {
4107       Info.FFDiag(E, diag::note_constexpr_access_deleted_object) << AK;
4108       return CompleteObject();
4109     }
4110     return CompleteObject(LVal.Base, &(*Alloc)->Value,
4111                           LVal.Base.getDynamicAllocType());
4112   } else {
4113     const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
4114 
4115     if (!Frame) {
4116       if (const MaterializeTemporaryExpr *MTE =
4117               dyn_cast_or_null<MaterializeTemporaryExpr>(Base)) {
4118         assert(MTE->getStorageDuration() == SD_Static &&
4119                "should have a frame for a non-global materialized temporary");
4120 
4121         // C++20 [expr.const]p4: [DR2126]
4122         //   An object or reference is usable in constant expressions if it is
4123         //   - a temporary object of non-volatile const-qualified literal type
4124         //     whose lifetime is extended to that of a variable that is usable
4125         //     in constant expressions
4126         //
4127         // C++20 [expr.const]p5:
4128         //  an lvalue-to-rvalue conversion [is not allowed unless it applies to]
4129         //   - a non-volatile glvalue that refers to an object that is usable
4130         //     in constant expressions, or
4131         //   - a non-volatile glvalue of literal type that refers to a
4132         //     non-volatile object whose lifetime began within the evaluation
4133         //     of E;
4134         //
4135         // C++11 misses the 'began within the evaluation of e' check and
4136         // instead allows all temporaries, including things like:
4137         //   int &&r = 1;
4138         //   int x = ++r;
4139         //   constexpr int k = r;
4140         // Therefore we use the C++14-onwards rules in C++11 too.
4141         //
4142         // Note that temporaries whose lifetimes began while evaluating a
4143         // variable's constructor are not usable while evaluating the
4144         // corresponding destructor, not even if they're of const-qualified
4145         // types.
4146         if (!MTE->isUsableInConstantExpressions(Info.Ctx) &&
4147             !lifetimeStartedInEvaluation(Info, LVal.Base)) {
4148           if (!IsAccess)
4149             return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4150           Info.FFDiag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
4151           Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here);
4152           return CompleteObject();
4153         }
4154 
4155         BaseVal = MTE->getOrCreateValue(false);
4156         assert(BaseVal && "got reference to unevaluated temporary");
4157       } else {
4158         if (!IsAccess)
4159           return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4160         APValue Val;
4161         LVal.moveInto(Val);
4162         Info.FFDiag(E, diag::note_constexpr_access_unreadable_object)
4163             << AK
4164             << Val.getAsString(Info.Ctx,
4165                                Info.Ctx.getLValueReferenceType(LValType));
4166         NoteLValueLocation(Info, LVal.Base);
4167         return CompleteObject();
4168       }
4169     } else {
4170       BaseVal = Frame->getTemporary(Base, LVal.Base.getVersion());
4171       assert(BaseVal && "missing value for temporary");
4172     }
4173   }
4174 
4175   // In C++14, we can't safely access any mutable state when we might be
4176   // evaluating after an unmodeled side effect. Parameters are modeled as state
4177   // in the caller, but aren't visible once the call returns, so they can be
4178   // modified in a speculatively-evaluated call.
4179   //
4180   // FIXME: Not all local state is mutable. Allow local constant subobjects
4181   // to be read here (but take care with 'mutable' fields).
4182   unsigned VisibleDepth = Depth;
4183   if (llvm::isa_and_nonnull<ParmVarDecl>(
4184           LVal.Base.dyn_cast<const ValueDecl *>()))
4185     ++VisibleDepth;
4186   if ((Frame && Info.getLangOpts().CPlusPlus14 &&
4187        Info.EvalStatus.HasSideEffects) ||
4188       (isModification(AK) && VisibleDepth < Info.SpeculativeEvaluationDepth))
4189     return CompleteObject();
4190 
4191   return CompleteObject(LVal.getLValueBase(), BaseVal, BaseType);
4192 }
4193 
4194 /// Perform an lvalue-to-rvalue conversion on the given glvalue. This
4195 /// can also be used for 'lvalue-to-lvalue' conversions for looking up the
4196 /// glvalue referred to by an entity of reference type.
4197 ///
4198 /// \param Info - Information about the ongoing evaluation.
4199 /// \param Conv - The expression for which we are performing the conversion.
4200 ///               Used for diagnostics.
4201 /// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
4202 ///               case of a non-class type).
4203 /// \param LVal - The glvalue on which we are attempting to perform this action.
4204 /// \param RVal - The produced value will be placed here.
4205 /// \param WantObjectRepresentation - If true, we're looking for the object
4206 ///               representation rather than the value, and in particular,
4207 ///               there is no requirement that the result be fully initialized.
4208 static bool
handleLValueToRValueConversion(EvalInfo & Info,const Expr * Conv,QualType Type,const LValue & LVal,APValue & RVal,bool WantObjectRepresentation=false)4209 handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv, QualType Type,
4210                                const LValue &LVal, APValue &RVal,
4211                                bool WantObjectRepresentation = false) {
4212   if (LVal.Designator.Invalid)
4213     return false;
4214 
4215   // Check for special cases where there is no existing APValue to look at.
4216   const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
4217 
4218   AccessKinds AK =
4219       WantObjectRepresentation ? AK_ReadObjectRepresentation : AK_Read;
4220 
4221   if (Base && !LVal.getLValueCallIndex() && !Type.isVolatileQualified()) {
4222     if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) {
4223       // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
4224       // initializer until now for such expressions. Such an expression can't be
4225       // an ICE in C, so this only matters for fold.
4226       if (Type.isVolatileQualified()) {
4227         Info.FFDiag(Conv);
4228         return false;
4229       }
4230       APValue Lit;
4231       if (!Evaluate(Lit, Info, CLE->getInitializer()))
4232         return false;
4233       CompleteObject LitObj(LVal.Base, &Lit, Base->getType());
4234       return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal, AK);
4235     } else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) {
4236       // Special-case character extraction so we don't have to construct an
4237       // APValue for the whole string.
4238       assert(LVal.Designator.Entries.size() <= 1 &&
4239              "Can only read characters from string literals");
4240       if (LVal.Designator.Entries.empty()) {
4241         // Fail for now for LValue to RValue conversion of an array.
4242         // (This shouldn't show up in C/C++, but it could be triggered by a
4243         // weird EvaluateAsRValue call from a tool.)
4244         Info.FFDiag(Conv);
4245         return false;
4246       }
4247       if (LVal.Designator.isOnePastTheEnd()) {
4248         if (Info.getLangOpts().CPlusPlus11)
4249           Info.FFDiag(Conv, diag::note_constexpr_access_past_end) << AK;
4250         else
4251           Info.FFDiag(Conv);
4252         return false;
4253       }
4254       uint64_t CharIndex = LVal.Designator.Entries[0].getAsArrayIndex();
4255       RVal = APValue(extractStringLiteralCharacter(Info, Base, CharIndex));
4256       return true;
4257     }
4258   }
4259 
4260   CompleteObject Obj = findCompleteObject(Info, Conv, AK, LVal, Type);
4261   return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal, AK);
4262 }
4263 
4264 /// Perform an assignment of Val to LVal. Takes ownership of Val.
handleAssignment(EvalInfo & Info,const Expr * E,const LValue & LVal,QualType LValType,APValue & Val)4265 static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
4266                              QualType LValType, APValue &Val) {
4267   if (LVal.Designator.Invalid)
4268     return false;
4269 
4270   if (!Info.getLangOpts().CPlusPlus14) {
4271     Info.FFDiag(E);
4272     return false;
4273   }
4274 
4275   CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
4276   return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
4277 }
4278 
4279 namespace {
4280 struct CompoundAssignSubobjectHandler {
4281   EvalInfo &Info;
4282   const CompoundAssignOperator *E;
4283   QualType PromotedLHSType;
4284   BinaryOperatorKind Opcode;
4285   const APValue &RHS;
4286 
4287   static const AccessKinds AccessKind = AK_Assign;
4288 
4289   typedef bool result_type;
4290 
checkConst__anon6b379bbb0c11::CompoundAssignSubobjectHandler4291   bool checkConst(QualType QT) {
4292     // Assigning to a const object has undefined behavior.
4293     if (QT.isConstQualified()) {
4294       Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
4295       return false;
4296     }
4297     return true;
4298   }
4299 
failed__anon6b379bbb0c11::CompoundAssignSubobjectHandler4300   bool failed() { return false; }
found__anon6b379bbb0c11::CompoundAssignSubobjectHandler4301   bool found(APValue &Subobj, QualType SubobjType) {
4302     switch (Subobj.getKind()) {
4303     case APValue::Int:
4304       return found(Subobj.getInt(), SubobjType);
4305     case APValue::Float:
4306       return found(Subobj.getFloat(), SubobjType);
4307     case APValue::ComplexInt:
4308     case APValue::ComplexFloat:
4309       // FIXME: Implement complex compound assignment.
4310       Info.FFDiag(E);
4311       return false;
4312     case APValue::LValue:
4313       return foundPointer(Subobj, SubobjType);
4314     case APValue::Vector:
4315       return foundVector(Subobj, SubobjType);
4316     default:
4317       // FIXME: can this happen?
4318       Info.FFDiag(E);
4319       return false;
4320     }
4321   }
4322 
foundVector__anon6b379bbb0c11::CompoundAssignSubobjectHandler4323   bool foundVector(APValue &Value, QualType SubobjType) {
4324     if (!checkConst(SubobjType))
4325       return false;
4326 
4327     if (!SubobjType->isVectorType()) {
4328       Info.FFDiag(E);
4329       return false;
4330     }
4331     return handleVectorVectorBinOp(Info, E, Opcode, Value, RHS);
4332   }
4333 
found__anon6b379bbb0c11::CompoundAssignSubobjectHandler4334   bool found(APSInt &Value, QualType SubobjType) {
4335     if (!checkConst(SubobjType))
4336       return false;
4337 
4338     if (!SubobjType->isIntegerType()) {
4339       // We don't support compound assignment on integer-cast-to-pointer
4340       // values.
4341       Info.FFDiag(E);
4342       return false;
4343     }
4344 
4345     if (RHS.isInt()) {
4346       APSInt LHS =
4347           HandleIntToIntCast(Info, E, PromotedLHSType, SubobjType, Value);
4348       if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS))
4349         return false;
4350       Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS);
4351       return true;
4352     } else if (RHS.isFloat()) {
4353       const FPOptions FPO = E->getFPFeaturesInEffect(
4354                                     Info.Ctx.getLangOpts());
4355       APFloat FValue(0.0);
4356       return HandleIntToFloatCast(Info, E, FPO, SubobjType, Value,
4357                                   PromotedLHSType, FValue) &&
4358              handleFloatFloatBinOp(Info, E, FValue, Opcode, RHS.getFloat()) &&
4359              HandleFloatToIntCast(Info, E, PromotedLHSType, FValue, SubobjType,
4360                                   Value);
4361     }
4362 
4363     Info.FFDiag(E);
4364     return false;
4365   }
found__anon6b379bbb0c11::CompoundAssignSubobjectHandler4366   bool found(APFloat &Value, QualType SubobjType) {
4367     return checkConst(SubobjType) &&
4368            HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType,
4369                                   Value) &&
4370            handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) &&
4371            HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value);
4372   }
foundPointer__anon6b379bbb0c11::CompoundAssignSubobjectHandler4373   bool foundPointer(APValue &Subobj, QualType SubobjType) {
4374     if (!checkConst(SubobjType))
4375       return false;
4376 
4377     QualType PointeeType;
4378     if (const PointerType *PT = SubobjType->getAs<PointerType>())
4379       PointeeType = PT->getPointeeType();
4380 
4381     if (PointeeType.isNull() || !RHS.isInt() ||
4382         (Opcode != BO_Add && Opcode != BO_Sub)) {
4383       Info.FFDiag(E);
4384       return false;
4385     }
4386 
4387     APSInt Offset = RHS.getInt();
4388     if (Opcode == BO_Sub)
4389       negateAsSigned(Offset);
4390 
4391     LValue LVal;
4392     LVal.setFrom(Info.Ctx, Subobj);
4393     if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset))
4394       return false;
4395     LVal.moveInto(Subobj);
4396     return true;
4397   }
4398 };
4399 } // end anonymous namespace
4400 
4401 const AccessKinds CompoundAssignSubobjectHandler::AccessKind;
4402 
4403 /// Perform a compound assignment of LVal <op>= RVal.
handleCompoundAssignment(EvalInfo & Info,const CompoundAssignOperator * E,const LValue & LVal,QualType LValType,QualType PromotedLValType,BinaryOperatorKind Opcode,const APValue & RVal)4404 static bool handleCompoundAssignment(EvalInfo &Info,
4405                                      const CompoundAssignOperator *E,
4406                                      const LValue &LVal, QualType LValType,
4407                                      QualType PromotedLValType,
4408                                      BinaryOperatorKind Opcode,
4409                                      const APValue &RVal) {
4410   if (LVal.Designator.Invalid)
4411     return false;
4412 
4413   if (!Info.getLangOpts().CPlusPlus14) {
4414     Info.FFDiag(E);
4415     return false;
4416   }
4417 
4418   CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
4419   CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode,
4420                                              RVal };
4421   return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
4422 }
4423 
4424 namespace {
4425 struct IncDecSubobjectHandler {
4426   EvalInfo &Info;
4427   const UnaryOperator *E;
4428   AccessKinds AccessKind;
4429   APValue *Old;
4430 
4431   typedef bool result_type;
4432 
checkConst__anon6b379bbb0d11::IncDecSubobjectHandler4433   bool checkConst(QualType QT) {
4434     // Assigning to a const object has undefined behavior.
4435     if (QT.isConstQualified()) {
4436       Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
4437       return false;
4438     }
4439     return true;
4440   }
4441 
failed__anon6b379bbb0d11::IncDecSubobjectHandler4442   bool failed() { return false; }
found__anon6b379bbb0d11::IncDecSubobjectHandler4443   bool found(APValue &Subobj, QualType SubobjType) {
4444     // Stash the old value. Also clear Old, so we don't clobber it later
4445     // if we're post-incrementing a complex.
4446     if (Old) {
4447       *Old = Subobj;
4448       Old = nullptr;
4449     }
4450 
4451     switch (Subobj.getKind()) {
4452     case APValue::Int:
4453       return found(Subobj.getInt(), SubobjType);
4454     case APValue::Float:
4455       return found(Subobj.getFloat(), SubobjType);
4456     case APValue::ComplexInt:
4457       return found(Subobj.getComplexIntReal(),
4458                    SubobjType->castAs<ComplexType>()->getElementType()
4459                      .withCVRQualifiers(SubobjType.getCVRQualifiers()));
4460     case APValue::ComplexFloat:
4461       return found(Subobj.getComplexFloatReal(),
4462                    SubobjType->castAs<ComplexType>()->getElementType()
4463                      .withCVRQualifiers(SubobjType.getCVRQualifiers()));
4464     case APValue::LValue:
4465       return foundPointer(Subobj, SubobjType);
4466     default:
4467       // FIXME: can this happen?
4468       Info.FFDiag(E);
4469       return false;
4470     }
4471   }
found__anon6b379bbb0d11::IncDecSubobjectHandler4472   bool found(APSInt &Value, QualType SubobjType) {
4473     if (!checkConst(SubobjType))
4474       return false;
4475 
4476     if (!SubobjType->isIntegerType()) {
4477       // We don't support increment / decrement on integer-cast-to-pointer
4478       // values.
4479       Info.FFDiag(E);
4480       return false;
4481     }
4482 
4483     if (Old) *Old = APValue(Value);
4484 
4485     // bool arithmetic promotes to int, and the conversion back to bool
4486     // doesn't reduce mod 2^n, so special-case it.
4487     if (SubobjType->isBooleanType()) {
4488       if (AccessKind == AK_Increment)
4489         Value = 1;
4490       else
4491         Value = !Value;
4492       return true;
4493     }
4494 
4495     bool WasNegative = Value.isNegative();
4496     if (AccessKind == AK_Increment) {
4497       ++Value;
4498 
4499       if (!WasNegative && Value.isNegative() && E->canOverflow()) {
4500         APSInt ActualValue(Value, /*IsUnsigned*/true);
4501         return HandleOverflow(Info, E, ActualValue, SubobjType);
4502       }
4503     } else {
4504       --Value;
4505 
4506       if (WasNegative && !Value.isNegative() && E->canOverflow()) {
4507         unsigned BitWidth = Value.getBitWidth();
4508         APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false);
4509         ActualValue.setBit(BitWidth);
4510         return HandleOverflow(Info, E, ActualValue, SubobjType);
4511       }
4512     }
4513     return true;
4514   }
found__anon6b379bbb0d11::IncDecSubobjectHandler4515   bool found(APFloat &Value, QualType SubobjType) {
4516     if (!checkConst(SubobjType))
4517       return false;
4518 
4519     if (Old) *Old = APValue(Value);
4520 
4521     APFloat One(Value.getSemantics(), 1);
4522     if (AccessKind == AK_Increment)
4523       Value.add(One, APFloat::rmNearestTiesToEven);
4524     else
4525       Value.subtract(One, APFloat::rmNearestTiesToEven);
4526     return true;
4527   }
foundPointer__anon6b379bbb0d11::IncDecSubobjectHandler4528   bool foundPointer(APValue &Subobj, QualType SubobjType) {
4529     if (!checkConst(SubobjType))
4530       return false;
4531 
4532     QualType PointeeType;
4533     if (const PointerType *PT = SubobjType->getAs<PointerType>())
4534       PointeeType = PT->getPointeeType();
4535     else {
4536       Info.FFDiag(E);
4537       return false;
4538     }
4539 
4540     LValue LVal;
4541     LVal.setFrom(Info.Ctx, Subobj);
4542     if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
4543                                      AccessKind == AK_Increment ? 1 : -1))
4544       return false;
4545     LVal.moveInto(Subobj);
4546     return true;
4547   }
4548 };
4549 } // end anonymous namespace
4550 
4551 /// Perform an increment or decrement on LVal.
handleIncDec(EvalInfo & Info,const Expr * E,const LValue & LVal,QualType LValType,bool IsIncrement,APValue * Old)4552 static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
4553                          QualType LValType, bool IsIncrement, APValue *Old) {
4554   if (LVal.Designator.Invalid)
4555     return false;
4556 
4557   if (!Info.getLangOpts().CPlusPlus14) {
4558     Info.FFDiag(E);
4559     return false;
4560   }
4561 
4562   AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
4563   CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
4564   IncDecSubobjectHandler Handler = {Info, cast<UnaryOperator>(E), AK, Old};
4565   return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
4566 }
4567 
4568 /// Build an lvalue for the object argument of a member function call.
EvaluateObjectArgument(EvalInfo & Info,const Expr * Object,LValue & This)4569 static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
4570                                    LValue &This) {
4571   if (Object->getType()->isPointerType() && Object->isRValue())
4572     return EvaluatePointer(Object, This, Info);
4573 
4574   if (Object->isGLValue())
4575     return EvaluateLValue(Object, This, Info);
4576 
4577   if (Object->getType()->isLiteralType(Info.Ctx))
4578     return EvaluateTemporary(Object, This, Info);
4579 
4580   Info.FFDiag(Object, diag::note_constexpr_nonliteral) << Object->getType();
4581   return false;
4582 }
4583 
4584 /// HandleMemberPointerAccess - Evaluate a member access operation and build an
4585 /// lvalue referring to the result.
4586 ///
4587 /// \param Info - Information about the ongoing evaluation.
4588 /// \param LV - An lvalue referring to the base of the member pointer.
4589 /// \param RHS - The member pointer expression.
4590 /// \param IncludeMember - Specifies whether the member itself is included in
4591 ///        the resulting LValue subobject designator. This is not possible when
4592 ///        creating a bound member function.
4593 /// \return The field or method declaration to which the member pointer refers,
4594 ///         or 0 if evaluation fails.
HandleMemberPointerAccess(EvalInfo & Info,QualType LVType,LValue & LV,const Expr * RHS,bool IncludeMember=true)4595 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
4596                                                   QualType LVType,
4597                                                   LValue &LV,
4598                                                   const Expr *RHS,
4599                                                   bool IncludeMember = true) {
4600   MemberPtr MemPtr;
4601   if (!EvaluateMemberPointer(RHS, MemPtr, Info))
4602     return nullptr;
4603 
4604   // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
4605   // member value, the behavior is undefined.
4606   if (!MemPtr.getDecl()) {
4607     // FIXME: Specific diagnostic.
4608     Info.FFDiag(RHS);
4609     return nullptr;
4610   }
4611 
4612   if (MemPtr.isDerivedMember()) {
4613     // This is a member of some derived class. Truncate LV appropriately.
4614     // The end of the derived-to-base path for the base object must match the
4615     // derived-to-base path for the member pointer.
4616     if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
4617         LV.Designator.Entries.size()) {
4618       Info.FFDiag(RHS);
4619       return nullptr;
4620     }
4621     unsigned PathLengthToMember =
4622         LV.Designator.Entries.size() - MemPtr.Path.size();
4623     for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
4624       const CXXRecordDecl *LVDecl = getAsBaseClass(
4625           LV.Designator.Entries[PathLengthToMember + I]);
4626       const CXXRecordDecl *MPDecl = MemPtr.Path[I];
4627       if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) {
4628         Info.FFDiag(RHS);
4629         return nullptr;
4630       }
4631     }
4632 
4633     // Truncate the lvalue to the appropriate derived class.
4634     if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(),
4635                             PathLengthToMember))
4636       return nullptr;
4637   } else if (!MemPtr.Path.empty()) {
4638     // Extend the LValue path with the member pointer's path.
4639     LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
4640                                   MemPtr.Path.size() + IncludeMember);
4641 
4642     // Walk down to the appropriate base class.
4643     if (const PointerType *PT = LVType->getAs<PointerType>())
4644       LVType = PT->getPointeeType();
4645     const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
4646     assert(RD && "member pointer access on non-class-type expression");
4647     // The first class in the path is that of the lvalue.
4648     for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
4649       const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
4650       if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base))
4651         return nullptr;
4652       RD = Base;
4653     }
4654     // Finally cast to the class containing the member.
4655     if (!HandleLValueDirectBase(Info, RHS, LV, RD,
4656                                 MemPtr.getContainingRecord()))
4657       return nullptr;
4658   }
4659 
4660   // Add the member. Note that we cannot build bound member functions here.
4661   if (IncludeMember) {
4662     if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
4663       if (!HandleLValueMember(Info, RHS, LV, FD))
4664         return nullptr;
4665     } else if (const IndirectFieldDecl *IFD =
4666                  dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
4667       if (!HandleLValueIndirectMember(Info, RHS, LV, IFD))
4668         return nullptr;
4669     } else {
4670       llvm_unreachable("can't construct reference to bound member function");
4671     }
4672   }
4673 
4674   return MemPtr.getDecl();
4675 }
4676 
HandleMemberPointerAccess(EvalInfo & Info,const BinaryOperator * BO,LValue & LV,bool IncludeMember=true)4677 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
4678                                                   const BinaryOperator *BO,
4679                                                   LValue &LV,
4680                                                   bool IncludeMember = true) {
4681   assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
4682 
4683   if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) {
4684     if (Info.noteFailure()) {
4685       MemberPtr MemPtr;
4686       EvaluateMemberPointer(BO->getRHS(), MemPtr, Info);
4687     }
4688     return nullptr;
4689   }
4690 
4691   return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV,
4692                                    BO->getRHS(), IncludeMember);
4693 }
4694 
4695 /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
4696 /// the provided lvalue, which currently refers to the base object.
HandleBaseToDerivedCast(EvalInfo & Info,const CastExpr * E,LValue & Result)4697 static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
4698                                     LValue &Result) {
4699   SubobjectDesignator &D = Result.Designator;
4700   if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
4701     return false;
4702 
4703   QualType TargetQT = E->getType();
4704   if (const PointerType *PT = TargetQT->getAs<PointerType>())
4705     TargetQT = PT->getPointeeType();
4706 
4707   // Check this cast lands within the final derived-to-base subobject path.
4708   if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
4709     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
4710       << D.MostDerivedType << TargetQT;
4711     return false;
4712   }
4713 
4714   // Check the type of the final cast. We don't need to check the path,
4715   // since a cast can only be formed if the path is unique.
4716   unsigned NewEntriesSize = D.Entries.size() - E->path_size();
4717   const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
4718   const CXXRecordDecl *FinalType;
4719   if (NewEntriesSize == D.MostDerivedPathLength)
4720     FinalType = D.MostDerivedType->getAsCXXRecordDecl();
4721   else
4722     FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
4723   if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
4724     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
4725       << D.MostDerivedType << TargetQT;
4726     return false;
4727   }
4728 
4729   // Truncate the lvalue to the appropriate derived class.
4730   return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
4731 }
4732 
4733 /// Get the value to use for a default-initialized object of type T.
4734 /// Return false if it encounters something invalid.
getDefaultInitValue(QualType T,APValue & Result)4735 static bool getDefaultInitValue(QualType T, APValue &Result) {
4736   bool Success = true;
4737   if (auto *RD = T->getAsCXXRecordDecl()) {
4738     if (RD->isInvalidDecl()) {
4739       Result = APValue();
4740       return false;
4741     }
4742     if (RD->isUnion()) {
4743       Result = APValue((const FieldDecl *)nullptr);
4744       return true;
4745     }
4746     Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
4747                      std::distance(RD->field_begin(), RD->field_end()));
4748 
4749     unsigned Index = 0;
4750     for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
4751                                                   End = RD->bases_end();
4752          I != End; ++I, ++Index)
4753       Success &= getDefaultInitValue(I->getType(), Result.getStructBase(Index));
4754 
4755     for (const auto *I : RD->fields()) {
4756       if (I->isUnnamedBitfield())
4757         continue;
4758       Success &= getDefaultInitValue(I->getType(),
4759                                      Result.getStructField(I->getFieldIndex()));
4760     }
4761     return Success;
4762   }
4763 
4764   if (auto *AT =
4765           dyn_cast_or_null<ConstantArrayType>(T->getAsArrayTypeUnsafe())) {
4766     Result = APValue(APValue::UninitArray(), 0, AT->getSize().getZExtValue());
4767     if (Result.hasArrayFiller())
4768       Success &=
4769           getDefaultInitValue(AT->getElementType(), Result.getArrayFiller());
4770 
4771     return Success;
4772   }
4773 
4774   Result = APValue::IndeterminateValue();
4775   return true;
4776 }
4777 
4778 namespace {
4779 enum EvalStmtResult {
4780   /// Evaluation failed.
4781   ESR_Failed,
4782   /// Hit a 'return' statement.
4783   ESR_Returned,
4784   /// Evaluation succeeded.
4785   ESR_Succeeded,
4786   /// Hit a 'continue' statement.
4787   ESR_Continue,
4788   /// Hit a 'break' statement.
4789   ESR_Break,
4790   /// Still scanning for 'case' or 'default' statement.
4791   ESR_CaseNotFound
4792 };
4793 }
4794 
EvaluateVarDecl(EvalInfo & Info,const VarDecl * VD)4795 static bool EvaluateVarDecl(EvalInfo &Info, const VarDecl *VD) {
4796   // We don't need to evaluate the initializer for a static local.
4797   if (!VD->hasLocalStorage())
4798     return true;
4799 
4800   LValue Result;
4801   APValue &Val = Info.CurrentCall->createTemporary(VD, VD->getType(),
4802                                                    ScopeKind::Block, Result);
4803 
4804   const Expr *InitE = VD->getInit();
4805   if (!InitE) {
4806     if (VD->getType()->isDependentType())
4807       return Info.noteSideEffect();
4808     return getDefaultInitValue(VD->getType(), Val);
4809   }
4810   if (InitE->isValueDependent())
4811     return false;
4812 
4813   if (!EvaluateInPlace(Val, Info, Result, InitE)) {
4814     // Wipe out any partially-computed value, to allow tracking that this
4815     // evaluation failed.
4816     Val = APValue();
4817     return false;
4818   }
4819 
4820   return true;
4821 }
4822 
EvaluateDecl(EvalInfo & Info,const Decl * D)4823 static bool EvaluateDecl(EvalInfo &Info, const Decl *D) {
4824   bool OK = true;
4825 
4826   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
4827     OK &= EvaluateVarDecl(Info, VD);
4828 
4829   if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(D))
4830     for (auto *BD : DD->bindings())
4831       if (auto *VD = BD->getHoldingVar())
4832         OK &= EvaluateDecl(Info, VD);
4833 
4834   return OK;
4835 }
4836 
EvaluateDependentExpr(const Expr * E,EvalInfo & Info)4837 static bool EvaluateDependentExpr(const Expr *E, EvalInfo &Info) {
4838   assert(E->isValueDependent());
4839   if (Info.noteSideEffect())
4840     return true;
4841   assert(E->containsErrors() && "valid value-dependent expression should never "
4842                                 "reach invalid code path.");
4843   return false;
4844 }
4845 
4846 /// Evaluate a condition (either a variable declaration or an expression).
EvaluateCond(EvalInfo & Info,const VarDecl * CondDecl,const Expr * Cond,bool & Result)4847 static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
4848                          const Expr *Cond, bool &Result) {
4849   if (Cond->isValueDependent())
4850     return false;
4851   FullExpressionRAII Scope(Info);
4852   if (CondDecl && !EvaluateDecl(Info, CondDecl))
4853     return false;
4854   if (!EvaluateAsBooleanCondition(Cond, Result, Info))
4855     return false;
4856   return Scope.destroy();
4857 }
4858 
4859 namespace {
4860 /// A location where the result (returned value) of evaluating a
4861 /// statement should be stored.
4862 struct StmtResult {
4863   /// The APValue that should be filled in with the returned value.
4864   APValue &Value;
4865   /// The location containing the result, if any (used to support RVO).
4866   const LValue *Slot;
4867 };
4868 
4869 struct TempVersionRAII {
4870   CallStackFrame &Frame;
4871 
TempVersionRAII__anon6b379bbb0f11::TempVersionRAII4872   TempVersionRAII(CallStackFrame &Frame) : Frame(Frame) {
4873     Frame.pushTempVersion();
4874   }
4875 
~TempVersionRAII__anon6b379bbb0f11::TempVersionRAII4876   ~TempVersionRAII() {
4877     Frame.popTempVersion();
4878   }
4879 };
4880 
4881 }
4882 
4883 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
4884                                    const Stmt *S,
4885                                    const SwitchCase *SC = nullptr);
4886 
4887 /// Evaluate the body of a loop, and translate the result as appropriate.
EvaluateLoopBody(StmtResult & Result,EvalInfo & Info,const Stmt * Body,const SwitchCase * Case=nullptr)4888 static EvalStmtResult EvaluateLoopBody(StmtResult &Result, EvalInfo &Info,
4889                                        const Stmt *Body,
4890                                        const SwitchCase *Case = nullptr) {
4891   BlockScopeRAII Scope(Info);
4892 
4893   EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case);
4894   if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
4895     ESR = ESR_Failed;
4896 
4897   switch (ESR) {
4898   case ESR_Break:
4899     return ESR_Succeeded;
4900   case ESR_Succeeded:
4901   case ESR_Continue:
4902     return ESR_Continue;
4903   case ESR_Failed:
4904   case ESR_Returned:
4905   case ESR_CaseNotFound:
4906     return ESR;
4907   }
4908   llvm_unreachable("Invalid EvalStmtResult!");
4909 }
4910 
4911 /// Evaluate a switch statement.
EvaluateSwitch(StmtResult & Result,EvalInfo & Info,const SwitchStmt * SS)4912 static EvalStmtResult EvaluateSwitch(StmtResult &Result, EvalInfo &Info,
4913                                      const SwitchStmt *SS) {
4914   BlockScopeRAII Scope(Info);
4915 
4916   // Evaluate the switch condition.
4917   APSInt Value;
4918   {
4919     if (const Stmt *Init = SS->getInit()) {
4920       EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
4921       if (ESR != ESR_Succeeded) {
4922         if (ESR != ESR_Failed && !Scope.destroy())
4923           ESR = ESR_Failed;
4924         return ESR;
4925       }
4926     }
4927 
4928     FullExpressionRAII CondScope(Info);
4929     if (SS->getConditionVariable() &&
4930         !EvaluateDecl(Info, SS->getConditionVariable()))
4931       return ESR_Failed;
4932     if (!EvaluateInteger(SS->getCond(), Value, Info))
4933       return ESR_Failed;
4934     if (!CondScope.destroy())
4935       return ESR_Failed;
4936   }
4937 
4938   // Find the switch case corresponding to the value of the condition.
4939   // FIXME: Cache this lookup.
4940   const SwitchCase *Found = nullptr;
4941   for (const SwitchCase *SC = SS->getSwitchCaseList(); SC;
4942        SC = SC->getNextSwitchCase()) {
4943     if (isa<DefaultStmt>(SC)) {
4944       Found = SC;
4945       continue;
4946     }
4947 
4948     const CaseStmt *CS = cast<CaseStmt>(SC);
4949     APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx);
4950     APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx)
4951                               : LHS;
4952     if (LHS <= Value && Value <= RHS) {
4953       Found = SC;
4954       break;
4955     }
4956   }
4957 
4958   if (!Found)
4959     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
4960 
4961   // Search the switch body for the switch case and evaluate it from there.
4962   EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found);
4963   if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
4964     return ESR_Failed;
4965 
4966   switch (ESR) {
4967   case ESR_Break:
4968     return ESR_Succeeded;
4969   case ESR_Succeeded:
4970   case ESR_Continue:
4971   case ESR_Failed:
4972   case ESR_Returned:
4973     return ESR;
4974   case ESR_CaseNotFound:
4975     // This can only happen if the switch case is nested within a statement
4976     // expression. We have no intention of supporting that.
4977     Info.FFDiag(Found->getBeginLoc(),
4978                 diag::note_constexpr_stmt_expr_unsupported);
4979     return ESR_Failed;
4980   }
4981   llvm_unreachable("Invalid EvalStmtResult!");
4982 }
4983 
4984 // Evaluate a statement.
EvaluateStmt(StmtResult & Result,EvalInfo & Info,const Stmt * S,const SwitchCase * Case)4985 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
4986                                    const Stmt *S, const SwitchCase *Case) {
4987   if (!Info.nextStep(S))
4988     return ESR_Failed;
4989 
4990   // If we're hunting down a 'case' or 'default' label, recurse through
4991   // substatements until we hit the label.
4992   if (Case) {
4993     switch (S->getStmtClass()) {
4994     case Stmt::CompoundStmtClass:
4995       // FIXME: Precompute which substatement of a compound statement we
4996       // would jump to, and go straight there rather than performing a
4997       // linear scan each time.
4998     case Stmt::LabelStmtClass:
4999     case Stmt::AttributedStmtClass:
5000     case Stmt::DoStmtClass:
5001       break;
5002 
5003     case Stmt::CaseStmtClass:
5004     case Stmt::DefaultStmtClass:
5005       if (Case == S)
5006         Case = nullptr;
5007       break;
5008 
5009     case Stmt::IfStmtClass: {
5010       // FIXME: Precompute which side of an 'if' we would jump to, and go
5011       // straight there rather than scanning both sides.
5012       const IfStmt *IS = cast<IfStmt>(S);
5013 
5014       // Wrap the evaluation in a block scope, in case it's a DeclStmt
5015       // preceded by our switch label.
5016       BlockScopeRAII Scope(Info);
5017 
5018       // Step into the init statement in case it brings an (uninitialized)
5019       // variable into scope.
5020       if (const Stmt *Init = IS->getInit()) {
5021         EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case);
5022         if (ESR != ESR_CaseNotFound) {
5023           assert(ESR != ESR_Succeeded);
5024           return ESR;
5025         }
5026       }
5027 
5028       // Condition variable must be initialized if it exists.
5029       // FIXME: We can skip evaluating the body if there's a condition
5030       // variable, as there can't be any case labels within it.
5031       // (The same is true for 'for' statements.)
5032 
5033       EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case);
5034       if (ESR == ESR_Failed)
5035         return ESR;
5036       if (ESR != ESR_CaseNotFound)
5037         return Scope.destroy() ? ESR : ESR_Failed;
5038       if (!IS->getElse())
5039         return ESR_CaseNotFound;
5040 
5041       ESR = EvaluateStmt(Result, Info, IS->getElse(), Case);
5042       if (ESR == ESR_Failed)
5043         return ESR;
5044       if (ESR != ESR_CaseNotFound)
5045         return Scope.destroy() ? ESR : ESR_Failed;
5046       return ESR_CaseNotFound;
5047     }
5048 
5049     case Stmt::WhileStmtClass: {
5050       EvalStmtResult ESR =
5051           EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case);
5052       if (ESR != ESR_Continue)
5053         return ESR;
5054       break;
5055     }
5056 
5057     case Stmt::ForStmtClass: {
5058       const ForStmt *FS = cast<ForStmt>(S);
5059       BlockScopeRAII Scope(Info);
5060 
5061       // Step into the init statement in case it brings an (uninitialized)
5062       // variable into scope.
5063       if (const Stmt *Init = FS->getInit()) {
5064         EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case);
5065         if (ESR != ESR_CaseNotFound) {
5066           assert(ESR != ESR_Succeeded);
5067           return ESR;
5068         }
5069       }
5070 
5071       EvalStmtResult ESR =
5072           EvaluateLoopBody(Result, Info, FS->getBody(), Case);
5073       if (ESR != ESR_Continue)
5074         return ESR;
5075       if (const auto *Inc = FS->getInc()) {
5076         if (Inc->isValueDependent()) {
5077           if (!EvaluateDependentExpr(Inc, Info))
5078             return ESR_Failed;
5079         } else {
5080           FullExpressionRAII IncScope(Info);
5081           if (!EvaluateIgnoredValue(Info, Inc) || !IncScope.destroy())
5082             return ESR_Failed;
5083         }
5084       }
5085       break;
5086     }
5087 
5088     case Stmt::DeclStmtClass: {
5089       // Start the lifetime of any uninitialized variables we encounter. They
5090       // might be used by the selected branch of the switch.
5091       const DeclStmt *DS = cast<DeclStmt>(S);
5092       for (const auto *D : DS->decls()) {
5093         if (const auto *VD = dyn_cast<VarDecl>(D)) {
5094           if (VD->hasLocalStorage() && !VD->getInit())
5095             if (!EvaluateVarDecl(Info, VD))
5096               return ESR_Failed;
5097           // FIXME: If the variable has initialization that can't be jumped
5098           // over, bail out of any immediately-surrounding compound-statement
5099           // too. There can't be any case labels here.
5100         }
5101       }
5102       return ESR_CaseNotFound;
5103     }
5104 
5105     default:
5106       return ESR_CaseNotFound;
5107     }
5108   }
5109 
5110   switch (S->getStmtClass()) {
5111   default:
5112     if (const Expr *E = dyn_cast<Expr>(S)) {
5113       if (E->isValueDependent()) {
5114         if (!EvaluateDependentExpr(E, Info))
5115           return ESR_Failed;
5116       } else {
5117         // Don't bother evaluating beyond an expression-statement which couldn't
5118         // be evaluated.
5119         // FIXME: Do we need the FullExpressionRAII object here?
5120         // VisitExprWithCleanups should create one when necessary.
5121         FullExpressionRAII Scope(Info);
5122         if (!EvaluateIgnoredValue(Info, E) || !Scope.destroy())
5123           return ESR_Failed;
5124       }
5125       return ESR_Succeeded;
5126     }
5127 
5128     Info.FFDiag(S->getBeginLoc());
5129     return ESR_Failed;
5130 
5131   case Stmt::NullStmtClass:
5132     return ESR_Succeeded;
5133 
5134   case Stmt::DeclStmtClass: {
5135     const DeclStmt *DS = cast<DeclStmt>(S);
5136     for (const auto *D : DS->decls()) {
5137       // Each declaration initialization is its own full-expression.
5138       FullExpressionRAII Scope(Info);
5139       if (!EvaluateDecl(Info, D) && !Info.noteFailure())
5140         return ESR_Failed;
5141       if (!Scope.destroy())
5142         return ESR_Failed;
5143     }
5144     return ESR_Succeeded;
5145   }
5146 
5147   case Stmt::ReturnStmtClass: {
5148     const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
5149     FullExpressionRAII Scope(Info);
5150     if (RetExpr && RetExpr->isValueDependent()) {
5151       EvaluateDependentExpr(RetExpr, Info);
5152       // We know we returned, but we don't know what the value is.
5153       return ESR_Failed;
5154     }
5155     if (RetExpr &&
5156         !(Result.Slot
5157               ? EvaluateInPlace(Result.Value, Info, *Result.Slot, RetExpr)
5158               : Evaluate(Result.Value, Info, RetExpr)))
5159       return ESR_Failed;
5160     return Scope.destroy() ? ESR_Returned : ESR_Failed;
5161   }
5162 
5163   case Stmt::CompoundStmtClass: {
5164     BlockScopeRAII Scope(Info);
5165 
5166     const CompoundStmt *CS = cast<CompoundStmt>(S);
5167     for (const auto *BI : CS->body()) {
5168       EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case);
5169       if (ESR == ESR_Succeeded)
5170         Case = nullptr;
5171       else if (ESR != ESR_CaseNotFound) {
5172         if (ESR != ESR_Failed && !Scope.destroy())
5173           return ESR_Failed;
5174         return ESR;
5175       }
5176     }
5177     if (Case)
5178       return ESR_CaseNotFound;
5179     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5180   }
5181 
5182   case Stmt::IfStmtClass: {
5183     const IfStmt *IS = cast<IfStmt>(S);
5184 
5185     // Evaluate the condition, as either a var decl or as an expression.
5186     BlockScopeRAII Scope(Info);
5187     if (const Stmt *Init = IS->getInit()) {
5188       EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
5189       if (ESR != ESR_Succeeded) {
5190         if (ESR != ESR_Failed && !Scope.destroy())
5191           return ESR_Failed;
5192         return ESR;
5193       }
5194     }
5195     bool Cond;
5196     if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(), Cond))
5197       return ESR_Failed;
5198 
5199     if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
5200       EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt);
5201       if (ESR != ESR_Succeeded) {
5202         if (ESR != ESR_Failed && !Scope.destroy())
5203           return ESR_Failed;
5204         return ESR;
5205       }
5206     }
5207     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5208   }
5209 
5210   case Stmt::WhileStmtClass: {
5211     const WhileStmt *WS = cast<WhileStmt>(S);
5212     while (true) {
5213       BlockScopeRAII Scope(Info);
5214       bool Continue;
5215       if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(),
5216                         Continue))
5217         return ESR_Failed;
5218       if (!Continue)
5219         break;
5220 
5221       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody());
5222       if (ESR != ESR_Continue) {
5223         if (ESR != ESR_Failed && !Scope.destroy())
5224           return ESR_Failed;
5225         return ESR;
5226       }
5227       if (!Scope.destroy())
5228         return ESR_Failed;
5229     }
5230     return ESR_Succeeded;
5231   }
5232 
5233   case Stmt::DoStmtClass: {
5234     const DoStmt *DS = cast<DoStmt>(S);
5235     bool Continue;
5236     do {
5237       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case);
5238       if (ESR != ESR_Continue)
5239         return ESR;
5240       Case = nullptr;
5241 
5242       if (DS->getCond()->isValueDependent()) {
5243         EvaluateDependentExpr(DS->getCond(), Info);
5244         // Bailout as we don't know whether to keep going or terminate the loop.
5245         return ESR_Failed;
5246       }
5247       FullExpressionRAII CondScope(Info);
5248       if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info) ||
5249           !CondScope.destroy())
5250         return ESR_Failed;
5251     } while (Continue);
5252     return ESR_Succeeded;
5253   }
5254 
5255   case Stmt::ForStmtClass: {
5256     const ForStmt *FS = cast<ForStmt>(S);
5257     BlockScopeRAII ForScope(Info);
5258     if (FS->getInit()) {
5259       EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
5260       if (ESR != ESR_Succeeded) {
5261         if (ESR != ESR_Failed && !ForScope.destroy())
5262           return ESR_Failed;
5263         return ESR;
5264       }
5265     }
5266     while (true) {
5267       BlockScopeRAII IterScope(Info);
5268       bool Continue = true;
5269       if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(),
5270                                          FS->getCond(), Continue))
5271         return ESR_Failed;
5272       if (!Continue)
5273         break;
5274 
5275       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody());
5276       if (ESR != ESR_Continue) {
5277         if (ESR != ESR_Failed && (!IterScope.destroy() || !ForScope.destroy()))
5278           return ESR_Failed;
5279         return ESR;
5280       }
5281 
5282       if (const auto *Inc = FS->getInc()) {
5283         if (Inc->isValueDependent()) {
5284           if (!EvaluateDependentExpr(Inc, Info))
5285             return ESR_Failed;
5286         } else {
5287           FullExpressionRAII IncScope(Info);
5288           if (!EvaluateIgnoredValue(Info, Inc) || !IncScope.destroy())
5289             return ESR_Failed;
5290         }
5291       }
5292 
5293       if (!IterScope.destroy())
5294         return ESR_Failed;
5295     }
5296     return ForScope.destroy() ? ESR_Succeeded : ESR_Failed;
5297   }
5298 
5299   case Stmt::CXXForRangeStmtClass: {
5300     const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S);
5301     BlockScopeRAII Scope(Info);
5302 
5303     // Evaluate the init-statement if present.
5304     if (FS->getInit()) {
5305       EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
5306       if (ESR != ESR_Succeeded) {
5307         if (ESR != ESR_Failed && !Scope.destroy())
5308           return ESR_Failed;
5309         return ESR;
5310       }
5311     }
5312 
5313     // Initialize the __range variable.
5314     EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt());
5315     if (ESR != ESR_Succeeded) {
5316       if (ESR != ESR_Failed && !Scope.destroy())
5317         return ESR_Failed;
5318       return ESR;
5319     }
5320 
5321     // Create the __begin and __end iterators.
5322     ESR = EvaluateStmt(Result, Info, FS->getBeginStmt());
5323     if (ESR != ESR_Succeeded) {
5324       if (ESR != ESR_Failed && !Scope.destroy())
5325         return ESR_Failed;
5326       return ESR;
5327     }
5328     ESR = EvaluateStmt(Result, Info, FS->getEndStmt());
5329     if (ESR != ESR_Succeeded) {
5330       if (ESR != ESR_Failed && !Scope.destroy())
5331         return ESR_Failed;
5332       return ESR;
5333     }
5334 
5335     while (true) {
5336       // Condition: __begin != __end.
5337       {
5338         if (FS->getCond()->isValueDependent()) {
5339           EvaluateDependentExpr(FS->getCond(), Info);
5340           // We don't know whether to keep going or terminate the loop.
5341           return ESR_Failed;
5342         }
5343         bool Continue = true;
5344         FullExpressionRAII CondExpr(Info);
5345         if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info))
5346           return ESR_Failed;
5347         if (!Continue)
5348           break;
5349       }
5350 
5351       // User's variable declaration, initialized by *__begin.
5352       BlockScopeRAII InnerScope(Info);
5353       ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt());
5354       if (ESR != ESR_Succeeded) {
5355         if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
5356           return ESR_Failed;
5357         return ESR;
5358       }
5359 
5360       // Loop body.
5361       ESR = EvaluateLoopBody(Result, Info, FS->getBody());
5362       if (ESR != ESR_Continue) {
5363         if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
5364           return ESR_Failed;
5365         return ESR;
5366       }
5367       if (FS->getInc()->isValueDependent()) {
5368         if (!EvaluateDependentExpr(FS->getInc(), Info))
5369           return ESR_Failed;
5370       } else {
5371         // Increment: ++__begin
5372         if (!EvaluateIgnoredValue(Info, FS->getInc()))
5373           return ESR_Failed;
5374       }
5375 
5376       if (!InnerScope.destroy())
5377         return ESR_Failed;
5378     }
5379 
5380     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5381   }
5382 
5383   case Stmt::SwitchStmtClass:
5384     return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S));
5385 
5386   case Stmt::ContinueStmtClass:
5387     return ESR_Continue;
5388 
5389   case Stmt::BreakStmtClass:
5390     return ESR_Break;
5391 
5392   case Stmt::LabelStmtClass:
5393     return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case);
5394 
5395   case Stmt::AttributedStmtClass:
5396     // As a general principle, C++11 attributes can be ignored without
5397     // any semantic impact.
5398     return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(),
5399                         Case);
5400 
5401   case Stmt::CaseStmtClass:
5402   case Stmt::DefaultStmtClass:
5403     return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case);
5404   case Stmt::CXXTryStmtClass:
5405     // Evaluate try blocks by evaluating all sub statements.
5406     return EvaluateStmt(Result, Info, cast<CXXTryStmt>(S)->getTryBlock(), Case);
5407   }
5408 }
5409 
5410 /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
5411 /// default constructor. If so, we'll fold it whether or not it's marked as
5412 /// constexpr. If it is marked as constexpr, we will never implicitly define it,
5413 /// so we need special handling.
CheckTrivialDefaultConstructor(EvalInfo & Info,SourceLocation Loc,const CXXConstructorDecl * CD,bool IsValueInitialization)5414 static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
5415                                            const CXXConstructorDecl *CD,
5416                                            bool IsValueInitialization) {
5417   if (!CD->isTrivial() || !CD->isDefaultConstructor())
5418     return false;
5419 
5420   // Value-initialization does not call a trivial default constructor, so such a
5421   // call is a core constant expression whether or not the constructor is
5422   // constexpr.
5423   if (!CD->isConstexpr() && !IsValueInitialization) {
5424     if (Info.getLangOpts().CPlusPlus11) {
5425       // FIXME: If DiagDecl is an implicitly-declared special member function,
5426       // we should be much more explicit about why it's not constexpr.
5427       Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
5428         << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
5429       Info.Note(CD->getLocation(), diag::note_declared_at);
5430     } else {
5431       Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
5432     }
5433   }
5434   return true;
5435 }
5436 
5437 /// CheckConstexprFunction - Check that a function can be called in a constant
5438 /// expression.
CheckConstexprFunction(EvalInfo & Info,SourceLocation CallLoc,const FunctionDecl * Declaration,const FunctionDecl * Definition,const Stmt * Body)5439 static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
5440                                    const FunctionDecl *Declaration,
5441                                    const FunctionDecl *Definition,
5442                                    const Stmt *Body) {
5443   // Potential constant expressions can contain calls to declared, but not yet
5444   // defined, constexpr functions.
5445   if (Info.checkingPotentialConstantExpression() && !Definition &&
5446       Declaration->isConstexpr())
5447     return false;
5448 
5449   // Bail out if the function declaration itself is invalid.  We will
5450   // have produced a relevant diagnostic while parsing it, so just
5451   // note the problematic sub-expression.
5452   if (Declaration->isInvalidDecl()) {
5453     Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5454     return false;
5455   }
5456 
5457   // DR1872: An instantiated virtual constexpr function can't be called in a
5458   // constant expression (prior to C++20). We can still constant-fold such a
5459   // call.
5460   if (!Info.Ctx.getLangOpts().CPlusPlus20 && isa<CXXMethodDecl>(Declaration) &&
5461       cast<CXXMethodDecl>(Declaration)->isVirtual())
5462     Info.CCEDiag(CallLoc, diag::note_constexpr_virtual_call);
5463 
5464   if (Definition && Definition->isInvalidDecl()) {
5465     Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5466     return false;
5467   }
5468 
5469   // Can we evaluate this function call?
5470   if (Definition && Definition->isConstexpr() && Body)
5471     return true;
5472 
5473   if (Info.getLangOpts().CPlusPlus11) {
5474     const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
5475 
5476     // If this function is not constexpr because it is an inherited
5477     // non-constexpr constructor, diagnose that directly.
5478     auto *CD = dyn_cast<CXXConstructorDecl>(DiagDecl);
5479     if (CD && CD->isInheritingConstructor()) {
5480       auto *Inherited = CD->getInheritedConstructor().getConstructor();
5481       if (!Inherited->isConstexpr())
5482         DiagDecl = CD = Inherited;
5483     }
5484 
5485     // FIXME: If DiagDecl is an implicitly-declared special member function
5486     // or an inheriting constructor, we should be much more explicit about why
5487     // it's not constexpr.
5488     if (CD && CD->isInheritingConstructor())
5489       Info.FFDiag(CallLoc, diag::note_constexpr_invalid_inhctor, 1)
5490         << CD->getInheritedConstructor().getConstructor()->getParent();
5491     else
5492       Info.FFDiag(CallLoc, diag::note_constexpr_invalid_function, 1)
5493         << DiagDecl->isConstexpr() << (bool)CD << DiagDecl;
5494     Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
5495   } else {
5496     Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5497   }
5498   return false;
5499 }
5500 
5501 namespace {
5502 struct CheckDynamicTypeHandler {
5503   AccessKinds AccessKind;
5504   typedef bool result_type;
failed__anon6b379bbb1011::CheckDynamicTypeHandler5505   bool failed() { return false; }
found__anon6b379bbb1011::CheckDynamicTypeHandler5506   bool found(APValue &Subobj, QualType SubobjType) { return true; }
found__anon6b379bbb1011::CheckDynamicTypeHandler5507   bool found(APSInt &Value, QualType SubobjType) { return true; }
found__anon6b379bbb1011::CheckDynamicTypeHandler5508   bool found(APFloat &Value, QualType SubobjType) { return true; }
5509 };
5510 } // end anonymous namespace
5511 
5512 /// Check that we can access the notional vptr of an object / determine its
5513 /// dynamic type.
checkDynamicType(EvalInfo & Info,const Expr * E,const LValue & This,AccessKinds AK,bool Polymorphic)5514 static bool checkDynamicType(EvalInfo &Info, const Expr *E, const LValue &This,
5515                              AccessKinds AK, bool Polymorphic) {
5516   if (This.Designator.Invalid)
5517     return false;
5518 
5519   CompleteObject Obj = findCompleteObject(Info, E, AK, This, QualType());
5520 
5521   if (!Obj)
5522     return false;
5523 
5524   if (!Obj.Value) {
5525     // The object is not usable in constant expressions, so we can't inspect
5526     // its value to see if it's in-lifetime or what the active union members
5527     // are. We can still check for a one-past-the-end lvalue.
5528     if (This.Designator.isOnePastTheEnd() ||
5529         This.Designator.isMostDerivedAnUnsizedArray()) {
5530       Info.FFDiag(E, This.Designator.isOnePastTheEnd()
5531                          ? diag::note_constexpr_access_past_end
5532                          : diag::note_constexpr_access_unsized_array)
5533           << AK;
5534       return false;
5535     } else if (Polymorphic) {
5536       // Conservatively refuse to perform a polymorphic operation if we would
5537       // not be able to read a notional 'vptr' value.
5538       APValue Val;
5539       This.moveInto(Val);
5540       QualType StarThisType =
5541           Info.Ctx.getLValueReferenceType(This.Designator.getType(Info.Ctx));
5542       Info.FFDiag(E, diag::note_constexpr_polymorphic_unknown_dynamic_type)
5543           << AK << Val.getAsString(Info.Ctx, StarThisType);
5544       return false;
5545     }
5546     return true;
5547   }
5548 
5549   CheckDynamicTypeHandler Handler{AK};
5550   return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
5551 }
5552 
5553 /// Check that the pointee of the 'this' pointer in a member function call is
5554 /// either within its lifetime or in its period of construction or destruction.
5555 static bool
checkNonVirtualMemberCallThisPointer(EvalInfo & Info,const Expr * E,const LValue & This,const CXXMethodDecl * NamedMember)5556 checkNonVirtualMemberCallThisPointer(EvalInfo &Info, const Expr *E,
5557                                      const LValue &This,
5558                                      const CXXMethodDecl *NamedMember) {
5559   return checkDynamicType(
5560       Info, E, This,
5561       isa<CXXDestructorDecl>(NamedMember) ? AK_Destroy : AK_MemberCall, false);
5562 }
5563 
5564 struct DynamicType {
5565   /// The dynamic class type of the object.
5566   const CXXRecordDecl *Type;
5567   /// The corresponding path length in the lvalue.
5568   unsigned PathLength;
5569 };
5570 
getBaseClassType(SubobjectDesignator & Designator,unsigned PathLength)5571 static const CXXRecordDecl *getBaseClassType(SubobjectDesignator &Designator,
5572                                              unsigned PathLength) {
5573   assert(PathLength >= Designator.MostDerivedPathLength && PathLength <=
5574       Designator.Entries.size() && "invalid path length");
5575   return (PathLength == Designator.MostDerivedPathLength)
5576              ? Designator.MostDerivedType->getAsCXXRecordDecl()
5577              : getAsBaseClass(Designator.Entries[PathLength - 1]);
5578 }
5579 
5580 /// Determine the dynamic type of an object.
ComputeDynamicType(EvalInfo & Info,const Expr * E,LValue & This,AccessKinds AK)5581 static Optional<DynamicType> ComputeDynamicType(EvalInfo &Info, const Expr *E,
5582                                                 LValue &This, AccessKinds AK) {
5583   // If we don't have an lvalue denoting an object of class type, there is no
5584   // meaningful dynamic type. (We consider objects of non-class type to have no
5585   // dynamic type.)
5586   if (!checkDynamicType(Info, E, This, AK, true))
5587     return None;
5588 
5589   // Refuse to compute a dynamic type in the presence of virtual bases. This
5590   // shouldn't happen other than in constant-folding situations, since literal
5591   // types can't have virtual bases.
5592   //
5593   // Note that consumers of DynamicType assume that the type has no virtual
5594   // bases, and will need modifications if this restriction is relaxed.
5595   const CXXRecordDecl *Class =
5596       This.Designator.MostDerivedType->getAsCXXRecordDecl();
5597   if (!Class || Class->getNumVBases()) {
5598     Info.FFDiag(E);
5599     return None;
5600   }
5601 
5602   // FIXME: For very deep class hierarchies, it might be beneficial to use a
5603   // binary search here instead. But the overwhelmingly common case is that
5604   // we're not in the middle of a constructor, so it probably doesn't matter
5605   // in practice.
5606   ArrayRef<APValue::LValuePathEntry> Path = This.Designator.Entries;
5607   for (unsigned PathLength = This.Designator.MostDerivedPathLength;
5608        PathLength <= Path.size(); ++PathLength) {
5609     switch (Info.isEvaluatingCtorDtor(This.getLValueBase(),
5610                                       Path.slice(0, PathLength))) {
5611     case ConstructionPhase::Bases:
5612     case ConstructionPhase::DestroyingBases:
5613       // We're constructing or destroying a base class. This is not the dynamic
5614       // type.
5615       break;
5616 
5617     case ConstructionPhase::None:
5618     case ConstructionPhase::AfterBases:
5619     case ConstructionPhase::AfterFields:
5620     case ConstructionPhase::Destroying:
5621       // We've finished constructing the base classes and not yet started
5622       // destroying them again, so this is the dynamic type.
5623       return DynamicType{getBaseClassType(This.Designator, PathLength),
5624                          PathLength};
5625     }
5626   }
5627 
5628   // CWG issue 1517: we're constructing a base class of the object described by
5629   // 'This', so that object has not yet begun its period of construction and
5630   // any polymorphic operation on it results in undefined behavior.
5631   Info.FFDiag(E);
5632   return None;
5633 }
5634 
5635 /// Perform virtual dispatch.
HandleVirtualDispatch(EvalInfo & Info,const Expr * E,LValue & This,const CXXMethodDecl * Found,llvm::SmallVectorImpl<QualType> & CovariantAdjustmentPath)5636 static const CXXMethodDecl *HandleVirtualDispatch(
5637     EvalInfo &Info, const Expr *E, LValue &This, const CXXMethodDecl *Found,
5638     llvm::SmallVectorImpl<QualType> &CovariantAdjustmentPath) {
5639   Optional<DynamicType> DynType = ComputeDynamicType(
5640       Info, E, This,
5641       isa<CXXDestructorDecl>(Found) ? AK_Destroy : AK_MemberCall);
5642   if (!DynType)
5643     return nullptr;
5644 
5645   // Find the final overrider. It must be declared in one of the classes on the
5646   // path from the dynamic type to the static type.
5647   // FIXME: If we ever allow literal types to have virtual base classes, that
5648   // won't be true.
5649   const CXXMethodDecl *Callee = Found;
5650   unsigned PathLength = DynType->PathLength;
5651   for (/**/; PathLength <= This.Designator.Entries.size(); ++PathLength) {
5652     const CXXRecordDecl *Class = getBaseClassType(This.Designator, PathLength);
5653     const CXXMethodDecl *Overrider =
5654         Found->getCorrespondingMethodDeclaredInClass(Class, false);
5655     if (Overrider) {
5656       Callee = Overrider;
5657       break;
5658     }
5659   }
5660 
5661   // C++2a [class.abstract]p6:
5662   //   the effect of making a virtual call to a pure virtual function [...] is
5663   //   undefined
5664   if (Callee->isPure()) {
5665     Info.FFDiag(E, diag::note_constexpr_pure_virtual_call, 1) << Callee;
5666     Info.Note(Callee->getLocation(), diag::note_declared_at);
5667     return nullptr;
5668   }
5669 
5670   // If necessary, walk the rest of the path to determine the sequence of
5671   // covariant adjustment steps to apply.
5672   if (!Info.Ctx.hasSameUnqualifiedType(Callee->getReturnType(),
5673                                        Found->getReturnType())) {
5674     CovariantAdjustmentPath.push_back(Callee->getReturnType());
5675     for (unsigned CovariantPathLength = PathLength + 1;
5676          CovariantPathLength != This.Designator.Entries.size();
5677          ++CovariantPathLength) {
5678       const CXXRecordDecl *NextClass =
5679           getBaseClassType(This.Designator, CovariantPathLength);
5680       const CXXMethodDecl *Next =
5681           Found->getCorrespondingMethodDeclaredInClass(NextClass, false);
5682       if (Next && !Info.Ctx.hasSameUnqualifiedType(
5683                       Next->getReturnType(), CovariantAdjustmentPath.back()))
5684         CovariantAdjustmentPath.push_back(Next->getReturnType());
5685     }
5686     if (!Info.Ctx.hasSameUnqualifiedType(Found->getReturnType(),
5687                                          CovariantAdjustmentPath.back()))
5688       CovariantAdjustmentPath.push_back(Found->getReturnType());
5689   }
5690 
5691   // Perform 'this' adjustment.
5692   if (!CastToDerivedClass(Info, E, This, Callee->getParent(), PathLength))
5693     return nullptr;
5694 
5695   return Callee;
5696 }
5697 
5698 /// Perform the adjustment from a value returned by a virtual function to
5699 /// a value of the statically expected type, which may be a pointer or
5700 /// reference to a base class of the returned type.
HandleCovariantReturnAdjustment(EvalInfo & Info,const Expr * E,APValue & Result,ArrayRef<QualType> Path)5701 static bool HandleCovariantReturnAdjustment(EvalInfo &Info, const Expr *E,
5702                                             APValue &Result,
5703                                             ArrayRef<QualType> Path) {
5704   assert(Result.isLValue() &&
5705          "unexpected kind of APValue for covariant return");
5706   if (Result.isNullPointer())
5707     return true;
5708 
5709   LValue LVal;
5710   LVal.setFrom(Info.Ctx, Result);
5711 
5712   const CXXRecordDecl *OldClass = Path[0]->getPointeeCXXRecordDecl();
5713   for (unsigned I = 1; I != Path.size(); ++I) {
5714     const CXXRecordDecl *NewClass = Path[I]->getPointeeCXXRecordDecl();
5715     assert(OldClass && NewClass && "unexpected kind of covariant return");
5716     if (OldClass != NewClass &&
5717         !CastToBaseClass(Info, E, LVal, OldClass, NewClass))
5718       return false;
5719     OldClass = NewClass;
5720   }
5721 
5722   LVal.moveInto(Result);
5723   return true;
5724 }
5725 
5726 /// Determine whether \p Base, which is known to be a direct base class of
5727 /// \p Derived, is a public base class.
isBaseClassPublic(const CXXRecordDecl * Derived,const CXXRecordDecl * Base)5728 static bool isBaseClassPublic(const CXXRecordDecl *Derived,
5729                               const CXXRecordDecl *Base) {
5730   for (const CXXBaseSpecifier &BaseSpec : Derived->bases()) {
5731     auto *BaseClass = BaseSpec.getType()->getAsCXXRecordDecl();
5732     if (BaseClass && declaresSameEntity(BaseClass, Base))
5733       return BaseSpec.getAccessSpecifier() == AS_public;
5734   }
5735   llvm_unreachable("Base is not a direct base of Derived");
5736 }
5737 
5738 /// Apply the given dynamic cast operation on the provided lvalue.
5739 ///
5740 /// This implements the hard case of dynamic_cast, requiring a "runtime check"
5741 /// to find a suitable target subobject.
HandleDynamicCast(EvalInfo & Info,const ExplicitCastExpr * E,LValue & Ptr)5742 static bool HandleDynamicCast(EvalInfo &Info, const ExplicitCastExpr *E,
5743                               LValue &Ptr) {
5744   // We can't do anything with a non-symbolic pointer value.
5745   SubobjectDesignator &D = Ptr.Designator;
5746   if (D.Invalid)
5747     return false;
5748 
5749   // C++ [expr.dynamic.cast]p6:
5750   //   If v is a null pointer value, the result is a null pointer value.
5751   if (Ptr.isNullPointer() && !E->isGLValue())
5752     return true;
5753 
5754   // For all the other cases, we need the pointer to point to an object within
5755   // its lifetime / period of construction / destruction, and we need to know
5756   // its dynamic type.
5757   Optional<DynamicType> DynType =
5758       ComputeDynamicType(Info, E, Ptr, AK_DynamicCast);
5759   if (!DynType)
5760     return false;
5761 
5762   // C++ [expr.dynamic.cast]p7:
5763   //   If T is "pointer to cv void", then the result is a pointer to the most
5764   //   derived object
5765   if (E->getType()->isVoidPointerType())
5766     return CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength);
5767 
5768   const CXXRecordDecl *C = E->getTypeAsWritten()->getPointeeCXXRecordDecl();
5769   assert(C && "dynamic_cast target is not void pointer nor class");
5770   CanQualType CQT = Info.Ctx.getCanonicalType(Info.Ctx.getRecordType(C));
5771 
5772   auto RuntimeCheckFailed = [&] (CXXBasePaths *Paths) {
5773     // C++ [expr.dynamic.cast]p9:
5774     if (!E->isGLValue()) {
5775       //   The value of a failed cast to pointer type is the null pointer value
5776       //   of the required result type.
5777       Ptr.setNull(Info.Ctx, E->getType());
5778       return true;
5779     }
5780 
5781     //   A failed cast to reference type throws [...] std::bad_cast.
5782     unsigned DiagKind;
5783     if (!Paths && (declaresSameEntity(DynType->Type, C) ||
5784                    DynType->Type->isDerivedFrom(C)))
5785       DiagKind = 0;
5786     else if (!Paths || Paths->begin() == Paths->end())
5787       DiagKind = 1;
5788     else if (Paths->isAmbiguous(CQT))
5789       DiagKind = 2;
5790     else {
5791       assert(Paths->front().Access != AS_public && "why did the cast fail?");
5792       DiagKind = 3;
5793     }
5794     Info.FFDiag(E, diag::note_constexpr_dynamic_cast_to_reference_failed)
5795         << DiagKind << Ptr.Designator.getType(Info.Ctx)
5796         << Info.Ctx.getRecordType(DynType->Type)
5797         << E->getType().getUnqualifiedType();
5798     return false;
5799   };
5800 
5801   // Runtime check, phase 1:
5802   //   Walk from the base subobject towards the derived object looking for the
5803   //   target type.
5804   for (int PathLength = Ptr.Designator.Entries.size();
5805        PathLength >= (int)DynType->PathLength; --PathLength) {
5806     const CXXRecordDecl *Class = getBaseClassType(Ptr.Designator, PathLength);
5807     if (declaresSameEntity(Class, C))
5808       return CastToDerivedClass(Info, E, Ptr, Class, PathLength);
5809     // We can only walk across public inheritance edges.
5810     if (PathLength > (int)DynType->PathLength &&
5811         !isBaseClassPublic(getBaseClassType(Ptr.Designator, PathLength - 1),
5812                            Class))
5813       return RuntimeCheckFailed(nullptr);
5814   }
5815 
5816   // Runtime check, phase 2:
5817   //   Search the dynamic type for an unambiguous public base of type C.
5818   CXXBasePaths Paths(/*FindAmbiguities=*/true,
5819                      /*RecordPaths=*/true, /*DetectVirtual=*/false);
5820   if (DynType->Type->isDerivedFrom(C, Paths) && !Paths.isAmbiguous(CQT) &&
5821       Paths.front().Access == AS_public) {
5822     // Downcast to the dynamic type...
5823     if (!CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength))
5824       return false;
5825     // ... then upcast to the chosen base class subobject.
5826     for (CXXBasePathElement &Elem : Paths.front())
5827       if (!HandleLValueBase(Info, E, Ptr, Elem.Class, Elem.Base))
5828         return false;
5829     return true;
5830   }
5831 
5832   // Otherwise, the runtime check fails.
5833   return RuntimeCheckFailed(&Paths);
5834 }
5835 
5836 namespace {
5837 struct StartLifetimeOfUnionMemberHandler {
5838   EvalInfo &Info;
5839   const Expr *LHSExpr;
5840   const FieldDecl *Field;
5841   bool DuringInit;
5842   bool Failed = false;
5843   static const AccessKinds AccessKind = AK_Assign;
5844 
5845   typedef bool result_type;
failed__anon6b379bbb1211::StartLifetimeOfUnionMemberHandler5846   bool failed() { return Failed; }
found__anon6b379bbb1211::StartLifetimeOfUnionMemberHandler5847   bool found(APValue &Subobj, QualType SubobjType) {
5848     // We are supposed to perform no initialization but begin the lifetime of
5849     // the object. We interpret that as meaning to do what default
5850     // initialization of the object would do if all constructors involved were
5851     // trivial:
5852     //  * All base, non-variant member, and array element subobjects' lifetimes
5853     //    begin
5854     //  * No variant members' lifetimes begin
5855     //  * All scalar subobjects whose lifetimes begin have indeterminate values
5856     assert(SubobjType->isUnionType());
5857     if (declaresSameEntity(Subobj.getUnionField(), Field)) {
5858       // This union member is already active. If it's also in-lifetime, there's
5859       // nothing to do.
5860       if (Subobj.getUnionValue().hasValue())
5861         return true;
5862     } else if (DuringInit) {
5863       // We're currently in the process of initializing a different union
5864       // member.  If we carried on, that initialization would attempt to
5865       // store to an inactive union member, resulting in undefined behavior.
5866       Info.FFDiag(LHSExpr,
5867                   diag::note_constexpr_union_member_change_during_init);
5868       return false;
5869     }
5870     APValue Result;
5871     Failed = !getDefaultInitValue(Field->getType(), Result);
5872     Subobj.setUnion(Field, Result);
5873     return true;
5874   }
found__anon6b379bbb1211::StartLifetimeOfUnionMemberHandler5875   bool found(APSInt &Value, QualType SubobjType) {
5876     llvm_unreachable("wrong value kind for union object");
5877   }
found__anon6b379bbb1211::StartLifetimeOfUnionMemberHandler5878   bool found(APFloat &Value, QualType SubobjType) {
5879     llvm_unreachable("wrong value kind for union object");
5880   }
5881 };
5882 } // end anonymous namespace
5883 
5884 const AccessKinds StartLifetimeOfUnionMemberHandler::AccessKind;
5885 
5886 /// Handle a builtin simple-assignment or a call to a trivial assignment
5887 /// operator whose left-hand side might involve a union member access. If it
5888 /// does, implicitly start the lifetime of any accessed union elements per
5889 /// C++20 [class.union]5.
HandleUnionActiveMemberChange(EvalInfo & Info,const Expr * LHSExpr,const LValue & LHS)5890 static bool HandleUnionActiveMemberChange(EvalInfo &Info, const Expr *LHSExpr,
5891                                           const LValue &LHS) {
5892   if (LHS.InvalidBase || LHS.Designator.Invalid)
5893     return false;
5894 
5895   llvm::SmallVector<std::pair<unsigned, const FieldDecl*>, 4> UnionPathLengths;
5896   // C++ [class.union]p5:
5897   //   define the set S(E) of subexpressions of E as follows:
5898   unsigned PathLength = LHS.Designator.Entries.size();
5899   for (const Expr *E = LHSExpr; E != nullptr;) {
5900     //   -- If E is of the form A.B, S(E) contains the elements of S(A)...
5901     if (auto *ME = dyn_cast<MemberExpr>(E)) {
5902       auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
5903       // Note that we can't implicitly start the lifetime of a reference,
5904       // so we don't need to proceed any further if we reach one.
5905       if (!FD || FD->getType()->isReferenceType())
5906         break;
5907 
5908       //    ... and also contains A.B if B names a union member ...
5909       if (FD->getParent()->isUnion()) {
5910         //    ... of a non-class, non-array type, or of a class type with a
5911         //    trivial default constructor that is not deleted, or an array of
5912         //    such types.
5913         auto *RD =
5914             FD->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
5915         if (!RD || RD->hasTrivialDefaultConstructor())
5916           UnionPathLengths.push_back({PathLength - 1, FD});
5917       }
5918 
5919       E = ME->getBase();
5920       --PathLength;
5921       assert(declaresSameEntity(FD,
5922                                 LHS.Designator.Entries[PathLength]
5923                                     .getAsBaseOrMember().getPointer()));
5924 
5925       //   -- If E is of the form A[B] and is interpreted as a built-in array
5926       //      subscripting operator, S(E) is [S(the array operand, if any)].
5927     } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(E)) {
5928       // Step over an ArrayToPointerDecay implicit cast.
5929       auto *Base = ASE->getBase()->IgnoreImplicit();
5930       if (!Base->getType()->isArrayType())
5931         break;
5932 
5933       E = Base;
5934       --PathLength;
5935 
5936     } else if (auto *ICE = dyn_cast<ImplicitCastExpr>(E)) {
5937       // Step over a derived-to-base conversion.
5938       E = ICE->getSubExpr();
5939       if (ICE->getCastKind() == CK_NoOp)
5940         continue;
5941       if (ICE->getCastKind() != CK_DerivedToBase &&
5942           ICE->getCastKind() != CK_UncheckedDerivedToBase)
5943         break;
5944       // Walk path backwards as we walk up from the base to the derived class.
5945       for (const CXXBaseSpecifier *Elt : llvm::reverse(ICE->path())) {
5946         --PathLength;
5947         (void)Elt;
5948         assert(declaresSameEntity(Elt->getType()->getAsCXXRecordDecl(),
5949                                   LHS.Designator.Entries[PathLength]
5950                                       .getAsBaseOrMember().getPointer()));
5951       }
5952 
5953     //   -- Otherwise, S(E) is empty.
5954     } else {
5955       break;
5956     }
5957   }
5958 
5959   // Common case: no unions' lifetimes are started.
5960   if (UnionPathLengths.empty())
5961     return true;
5962 
5963   //   if modification of X [would access an inactive union member], an object
5964   //   of the type of X is implicitly created
5965   CompleteObject Obj =
5966       findCompleteObject(Info, LHSExpr, AK_Assign, LHS, LHSExpr->getType());
5967   if (!Obj)
5968     return false;
5969   for (std::pair<unsigned, const FieldDecl *> LengthAndField :
5970            llvm::reverse(UnionPathLengths)) {
5971     // Form a designator for the union object.
5972     SubobjectDesignator D = LHS.Designator;
5973     D.truncate(Info.Ctx, LHS.Base, LengthAndField.first);
5974 
5975     bool DuringInit = Info.isEvaluatingCtorDtor(LHS.Base, D.Entries) ==
5976                       ConstructionPhase::AfterBases;
5977     StartLifetimeOfUnionMemberHandler StartLifetime{
5978         Info, LHSExpr, LengthAndField.second, DuringInit};
5979     if (!findSubobject(Info, LHSExpr, Obj, D, StartLifetime))
5980       return false;
5981   }
5982 
5983   return true;
5984 }
5985 
EvaluateCallArg(const ParmVarDecl * PVD,const Expr * Arg,CallRef Call,EvalInfo & Info,bool NonNull=false)5986 static bool EvaluateCallArg(const ParmVarDecl *PVD, const Expr *Arg,
5987                             CallRef Call, EvalInfo &Info,
5988                             bool NonNull = false) {
5989   LValue LV;
5990   // Create the parameter slot and register its destruction. For a vararg
5991   // argument, create a temporary.
5992   // FIXME: For calling conventions that destroy parameters in the callee,
5993   // should we consider performing destruction when the function returns
5994   // instead?
5995   APValue &V = PVD ? Info.CurrentCall->createParam(Call, PVD, LV)
5996                    : Info.CurrentCall->createTemporary(Arg, Arg->getType(),
5997                                                        ScopeKind::Call, LV);
5998   if (!EvaluateInPlace(V, Info, LV, Arg))
5999     return false;
6000 
6001   // Passing a null pointer to an __attribute__((nonnull)) parameter results in
6002   // undefined behavior, so is non-constant.
6003   if (NonNull && V.isLValue() && V.isNullPointer()) {
6004     Info.CCEDiag(Arg, diag::note_non_null_attribute_failed);
6005     return false;
6006   }
6007 
6008   return true;
6009 }
6010 
6011 /// Evaluate the arguments to a function call.
EvaluateArgs(ArrayRef<const Expr * > Args,CallRef Call,EvalInfo & Info,const FunctionDecl * Callee,bool RightToLeft=false)6012 static bool EvaluateArgs(ArrayRef<const Expr *> Args, CallRef Call,
6013                          EvalInfo &Info, const FunctionDecl *Callee,
6014                          bool RightToLeft = false) {
6015   bool Success = true;
6016   llvm::SmallBitVector ForbiddenNullArgs;
6017   if (Callee->hasAttr<NonNullAttr>()) {
6018     ForbiddenNullArgs.resize(Args.size());
6019     for (const auto *Attr : Callee->specific_attrs<NonNullAttr>()) {
6020       if (!Attr->args_size()) {
6021         ForbiddenNullArgs.set();
6022         break;
6023       } else
6024         for (auto Idx : Attr->args()) {
6025           unsigned ASTIdx = Idx.getASTIndex();
6026           if (ASTIdx >= Args.size())
6027             continue;
6028           ForbiddenNullArgs[ASTIdx] = 1;
6029         }
6030     }
6031   }
6032   for (unsigned I = 0; I < Args.size(); I++) {
6033     unsigned Idx = RightToLeft ? Args.size() - I - 1 : I;
6034     const ParmVarDecl *PVD =
6035         Idx < Callee->getNumParams() ? Callee->getParamDecl(Idx) : nullptr;
6036     bool NonNull = !ForbiddenNullArgs.empty() && ForbiddenNullArgs[Idx];
6037     if (!EvaluateCallArg(PVD, Args[Idx], Call, Info, NonNull)) {
6038       // If we're checking for a potential constant expression, evaluate all
6039       // initializers even if some of them fail.
6040       if (!Info.noteFailure())
6041         return false;
6042       Success = false;
6043     }
6044   }
6045   return Success;
6046 }
6047 
6048 /// Perform a trivial copy from Param, which is the parameter of a copy or move
6049 /// constructor or assignment operator.
handleTrivialCopy(EvalInfo & Info,const ParmVarDecl * Param,const Expr * E,APValue & Result,bool CopyObjectRepresentation)6050 static bool handleTrivialCopy(EvalInfo &Info, const ParmVarDecl *Param,
6051                               const Expr *E, APValue &Result,
6052                               bool CopyObjectRepresentation) {
6053   // Find the reference argument.
6054   CallStackFrame *Frame = Info.CurrentCall;
6055   APValue *RefValue = Info.getParamSlot(Frame->Arguments, Param);
6056   if (!RefValue) {
6057     Info.FFDiag(E);
6058     return false;
6059   }
6060 
6061   // Copy out the contents of the RHS object.
6062   LValue RefLValue;
6063   RefLValue.setFrom(Info.Ctx, *RefValue);
6064   return handleLValueToRValueConversion(
6065       Info, E, Param->getType().getNonReferenceType(), RefLValue, Result,
6066       CopyObjectRepresentation);
6067 }
6068 
6069 /// Evaluate a function call.
HandleFunctionCall(SourceLocation CallLoc,const FunctionDecl * Callee,const LValue * This,ArrayRef<const Expr * > Args,CallRef Call,const Stmt * Body,EvalInfo & Info,APValue & Result,const LValue * ResultSlot)6070 static bool HandleFunctionCall(SourceLocation CallLoc,
6071                                const FunctionDecl *Callee, const LValue *This,
6072                                ArrayRef<const Expr *> Args, CallRef Call,
6073                                const Stmt *Body, EvalInfo &Info,
6074                                APValue &Result, const LValue *ResultSlot) {
6075   if (!Info.CheckCallLimit(CallLoc))
6076     return false;
6077 
6078   CallStackFrame Frame(Info, CallLoc, Callee, This, Call);
6079 
6080   // For a trivial copy or move assignment, perform an APValue copy. This is
6081   // essential for unions, where the operations performed by the assignment
6082   // operator cannot be represented as statements.
6083   //
6084   // Skip this for non-union classes with no fields; in that case, the defaulted
6085   // copy/move does not actually read the object.
6086   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee);
6087   if (MD && MD->isDefaulted() &&
6088       (MD->getParent()->isUnion() ||
6089        (MD->isTrivial() &&
6090         isReadByLvalueToRvalueConversion(MD->getParent())))) {
6091     assert(This &&
6092            (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()));
6093     APValue RHSValue;
6094     if (!handleTrivialCopy(Info, MD->getParamDecl(0), Args[0], RHSValue,
6095                            MD->getParent()->isUnion()))
6096       return false;
6097     if (Info.getLangOpts().CPlusPlus20 && MD->isTrivial() &&
6098         !HandleUnionActiveMemberChange(Info, Args[0], *This))
6099       return false;
6100     if (!handleAssignment(Info, Args[0], *This, MD->getThisType(),
6101                           RHSValue))
6102       return false;
6103     This->moveInto(Result);
6104     return true;
6105   } else if (MD && isLambdaCallOperator(MD)) {
6106     // We're in a lambda; determine the lambda capture field maps unless we're
6107     // just constexpr checking a lambda's call operator. constexpr checking is
6108     // done before the captures have been added to the closure object (unless
6109     // we're inferring constexpr-ness), so we don't have access to them in this
6110     // case. But since we don't need the captures to constexpr check, we can
6111     // just ignore them.
6112     if (!Info.checkingPotentialConstantExpression())
6113       MD->getParent()->getCaptureFields(Frame.LambdaCaptureFields,
6114                                         Frame.LambdaThisCaptureField);
6115   }
6116 
6117   StmtResult Ret = {Result, ResultSlot};
6118   EvalStmtResult ESR = EvaluateStmt(Ret, Info, Body);
6119   if (ESR == ESR_Succeeded) {
6120     if (Callee->getReturnType()->isVoidType())
6121       return true;
6122     Info.FFDiag(Callee->getEndLoc(), diag::note_constexpr_no_return);
6123   }
6124   return ESR == ESR_Returned;
6125 }
6126 
6127 /// Evaluate a constructor call.
HandleConstructorCall(const Expr * E,const LValue & This,CallRef Call,const CXXConstructorDecl * Definition,EvalInfo & Info,APValue & Result)6128 static bool HandleConstructorCall(const Expr *E, const LValue &This,
6129                                   CallRef Call,
6130                                   const CXXConstructorDecl *Definition,
6131                                   EvalInfo &Info, APValue &Result) {
6132   SourceLocation CallLoc = E->getExprLoc();
6133   if (!Info.CheckCallLimit(CallLoc))
6134     return false;
6135 
6136   const CXXRecordDecl *RD = Definition->getParent();
6137   if (RD->getNumVBases()) {
6138     Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
6139     return false;
6140   }
6141 
6142   EvalInfo::EvaluatingConstructorRAII EvalObj(
6143       Info,
6144       ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
6145       RD->getNumBases());
6146   CallStackFrame Frame(Info, CallLoc, Definition, &This, Call);
6147 
6148   // FIXME: Creating an APValue just to hold a nonexistent return value is
6149   // wasteful.
6150   APValue RetVal;
6151   StmtResult Ret = {RetVal, nullptr};
6152 
6153   // If it's a delegating constructor, delegate.
6154   if (Definition->isDelegatingConstructor()) {
6155     CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
6156     if ((*I)->getInit()->isValueDependent()) {
6157       if (!EvaluateDependentExpr((*I)->getInit(), Info))
6158         return false;
6159     } else {
6160       FullExpressionRAII InitScope(Info);
6161       if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()) ||
6162           !InitScope.destroy())
6163         return false;
6164     }
6165     return EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed;
6166   }
6167 
6168   // For a trivial copy or move constructor, perform an APValue copy. This is
6169   // essential for unions (or classes with anonymous union members), where the
6170   // operations performed by the constructor cannot be represented by
6171   // ctor-initializers.
6172   //
6173   // Skip this for empty non-union classes; we should not perform an
6174   // lvalue-to-rvalue conversion on them because their copy constructor does not
6175   // actually read them.
6176   if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() &&
6177       (Definition->getParent()->isUnion() ||
6178        (Definition->isTrivial() &&
6179         isReadByLvalueToRvalueConversion(Definition->getParent())))) {
6180     return handleTrivialCopy(Info, Definition->getParamDecl(0), E, Result,
6181                              Definition->getParent()->isUnion());
6182   }
6183 
6184   // Reserve space for the struct members.
6185   if (!Result.hasValue()) {
6186     if (!RD->isUnion())
6187       Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
6188                        std::distance(RD->field_begin(), RD->field_end()));
6189     else
6190       // A union starts with no active member.
6191       Result = APValue((const FieldDecl*)nullptr);
6192   }
6193 
6194   if (RD->isInvalidDecl()) return false;
6195   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6196 
6197   // A scope for temporaries lifetime-extended by reference members.
6198   BlockScopeRAII LifetimeExtendedScope(Info);
6199 
6200   bool Success = true;
6201   unsigned BasesSeen = 0;
6202 #ifndef NDEBUG
6203   CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
6204 #endif
6205   CXXRecordDecl::field_iterator FieldIt = RD->field_begin();
6206   auto SkipToField = [&](FieldDecl *FD, bool Indirect) {
6207     // We might be initializing the same field again if this is an indirect
6208     // field initialization.
6209     if (FieldIt == RD->field_end() ||
6210         FieldIt->getFieldIndex() > FD->getFieldIndex()) {
6211       assert(Indirect && "fields out of order?");
6212       return;
6213     }
6214 
6215     // Default-initialize any fields with no explicit initializer.
6216     for (; !declaresSameEntity(*FieldIt, FD); ++FieldIt) {
6217       assert(FieldIt != RD->field_end() && "missing field?");
6218       if (!FieldIt->isUnnamedBitfield())
6219         Success &= getDefaultInitValue(
6220             FieldIt->getType(),
6221             Result.getStructField(FieldIt->getFieldIndex()));
6222     }
6223     ++FieldIt;
6224   };
6225   for (const auto *I : Definition->inits()) {
6226     LValue Subobject = This;
6227     LValue SubobjectParent = This;
6228     APValue *Value = &Result;
6229 
6230     // Determine the subobject to initialize.
6231     FieldDecl *FD = nullptr;
6232     if (I->isBaseInitializer()) {
6233       QualType BaseType(I->getBaseClass(), 0);
6234 #ifndef NDEBUG
6235       // Non-virtual base classes are initialized in the order in the class
6236       // definition. We have already checked for virtual base classes.
6237       assert(!BaseIt->isVirtual() && "virtual base for literal type");
6238       assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
6239              "base class initializers not in expected order");
6240       ++BaseIt;
6241 #endif
6242       if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD,
6243                                   BaseType->getAsCXXRecordDecl(), &Layout))
6244         return false;
6245       Value = &Result.getStructBase(BasesSeen++);
6246     } else if ((FD = I->getMember())) {
6247       if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout))
6248         return false;
6249       if (RD->isUnion()) {
6250         Result = APValue(FD);
6251         Value = &Result.getUnionValue();
6252       } else {
6253         SkipToField(FD, false);
6254         Value = &Result.getStructField(FD->getFieldIndex());
6255       }
6256     } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) {
6257       // Walk the indirect field decl's chain to find the object to initialize,
6258       // and make sure we've initialized every step along it.
6259       auto IndirectFieldChain = IFD->chain();
6260       for (auto *C : IndirectFieldChain) {
6261         FD = cast<FieldDecl>(C);
6262         CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
6263         // Switch the union field if it differs. This happens if we had
6264         // preceding zero-initialization, and we're now initializing a union
6265         // subobject other than the first.
6266         // FIXME: In this case, the values of the other subobjects are
6267         // specified, since zero-initialization sets all padding bits to zero.
6268         if (!Value->hasValue() ||
6269             (Value->isUnion() && Value->getUnionField() != FD)) {
6270           if (CD->isUnion())
6271             *Value = APValue(FD);
6272           else
6273             // FIXME: This immediately starts the lifetime of all members of
6274             // an anonymous struct. It would be preferable to strictly start
6275             // member lifetime in initialization order.
6276             Success &= getDefaultInitValue(Info.Ctx.getRecordType(CD), *Value);
6277         }
6278         // Store Subobject as its parent before updating it for the last element
6279         // in the chain.
6280         if (C == IndirectFieldChain.back())
6281           SubobjectParent = Subobject;
6282         if (!HandleLValueMember(Info, I->getInit(), Subobject, FD))
6283           return false;
6284         if (CD->isUnion())
6285           Value = &Value->getUnionValue();
6286         else {
6287           if (C == IndirectFieldChain.front() && !RD->isUnion())
6288             SkipToField(FD, true);
6289           Value = &Value->getStructField(FD->getFieldIndex());
6290         }
6291       }
6292     } else {
6293       llvm_unreachable("unknown base initializer kind");
6294     }
6295 
6296     // Need to override This for implicit field initializers as in this case
6297     // This refers to innermost anonymous struct/union containing initializer,
6298     // not to currently constructed class.
6299     const Expr *Init = I->getInit();
6300     if (Init->isValueDependent()) {
6301       if (!EvaluateDependentExpr(Init, Info))
6302         return false;
6303     } else {
6304       ThisOverrideRAII ThisOverride(*Info.CurrentCall, &SubobjectParent,
6305                                     isa<CXXDefaultInitExpr>(Init));
6306       FullExpressionRAII InitScope(Info);
6307       if (!EvaluateInPlace(*Value, Info, Subobject, Init) ||
6308           (FD && FD->isBitField() &&
6309            !truncateBitfieldValue(Info, Init, *Value, FD))) {
6310         // If we're checking for a potential constant expression, evaluate all
6311         // initializers even if some of them fail.
6312         if (!Info.noteFailure())
6313           return false;
6314         Success = false;
6315       }
6316     }
6317 
6318     // This is the point at which the dynamic type of the object becomes this
6319     // class type.
6320     if (I->isBaseInitializer() && BasesSeen == RD->getNumBases())
6321       EvalObj.finishedConstructingBases();
6322   }
6323 
6324   // Default-initialize any remaining fields.
6325   if (!RD->isUnion()) {
6326     for (; FieldIt != RD->field_end(); ++FieldIt) {
6327       if (!FieldIt->isUnnamedBitfield())
6328         Success &= getDefaultInitValue(
6329             FieldIt->getType(),
6330             Result.getStructField(FieldIt->getFieldIndex()));
6331     }
6332   }
6333 
6334   EvalObj.finishedConstructingFields();
6335 
6336   return Success &&
6337          EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed &&
6338          LifetimeExtendedScope.destroy();
6339 }
6340 
HandleConstructorCall(const Expr * E,const LValue & This,ArrayRef<const Expr * > Args,const CXXConstructorDecl * Definition,EvalInfo & Info,APValue & Result)6341 static bool HandleConstructorCall(const Expr *E, const LValue &This,
6342                                   ArrayRef<const Expr*> Args,
6343                                   const CXXConstructorDecl *Definition,
6344                                   EvalInfo &Info, APValue &Result) {
6345   CallScopeRAII CallScope(Info);
6346   CallRef Call = Info.CurrentCall->createCall(Definition);
6347   if (!EvaluateArgs(Args, Call, Info, Definition))
6348     return false;
6349 
6350   return HandleConstructorCall(E, This, Call, Definition, Info, Result) &&
6351          CallScope.destroy();
6352 }
6353 
HandleDestructionImpl(EvalInfo & Info,SourceLocation CallLoc,const LValue & This,APValue & Value,QualType T)6354 static bool HandleDestructionImpl(EvalInfo &Info, SourceLocation CallLoc,
6355                                   const LValue &This, APValue &Value,
6356                                   QualType T) {
6357   // Objects can only be destroyed while they're within their lifetimes.
6358   // FIXME: We have no representation for whether an object of type nullptr_t
6359   // is in its lifetime; it usually doesn't matter. Perhaps we should model it
6360   // as indeterminate instead?
6361   if (Value.isAbsent() && !T->isNullPtrType()) {
6362     APValue Printable;
6363     This.moveInto(Printable);
6364     Info.FFDiag(CallLoc, diag::note_constexpr_destroy_out_of_lifetime)
6365       << Printable.getAsString(Info.Ctx, Info.Ctx.getLValueReferenceType(T));
6366     return false;
6367   }
6368 
6369   // Invent an expression for location purposes.
6370   // FIXME: We shouldn't need to do this.
6371   OpaqueValueExpr LocE(CallLoc, Info.Ctx.IntTy, VK_RValue);
6372 
6373   // For arrays, destroy elements right-to-left.
6374   if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(T)) {
6375     uint64_t Size = CAT->getSize().getZExtValue();
6376     QualType ElemT = CAT->getElementType();
6377 
6378     LValue ElemLV = This;
6379     ElemLV.addArray(Info, &LocE, CAT);
6380     if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, Size))
6381       return false;
6382 
6383     // Ensure that we have actual array elements available to destroy; the
6384     // destructors might mutate the value, so we can't run them on the array
6385     // filler.
6386     if (Size && Size > Value.getArrayInitializedElts())
6387       expandArray(Value, Value.getArraySize() - 1);
6388 
6389     for (; Size != 0; --Size) {
6390       APValue &Elem = Value.getArrayInitializedElt(Size - 1);
6391       if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, -1) ||
6392           !HandleDestructionImpl(Info, CallLoc, ElemLV, Elem, ElemT))
6393         return false;
6394     }
6395 
6396     // End the lifetime of this array now.
6397     Value = APValue();
6398     return true;
6399   }
6400 
6401   const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
6402   if (!RD) {
6403     if (T.isDestructedType()) {
6404       Info.FFDiag(CallLoc, diag::note_constexpr_unsupported_destruction) << T;
6405       return false;
6406     }
6407 
6408     Value = APValue();
6409     return true;
6410   }
6411 
6412   if (RD->getNumVBases()) {
6413     Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
6414     return false;
6415   }
6416 
6417   const CXXDestructorDecl *DD = RD->getDestructor();
6418   if (!DD && !RD->hasTrivialDestructor()) {
6419     Info.FFDiag(CallLoc);
6420     return false;
6421   }
6422 
6423   if (!DD || DD->isTrivial() ||
6424       (RD->isAnonymousStructOrUnion() && RD->isUnion())) {
6425     // A trivial destructor just ends the lifetime of the object. Check for
6426     // this case before checking for a body, because we might not bother
6427     // building a body for a trivial destructor. Note that it doesn't matter
6428     // whether the destructor is constexpr in this case; all trivial
6429     // destructors are constexpr.
6430     //
6431     // If an anonymous union would be destroyed, some enclosing destructor must
6432     // have been explicitly defined, and the anonymous union destruction should
6433     // have no effect.
6434     Value = APValue();
6435     return true;
6436   }
6437 
6438   if (!Info.CheckCallLimit(CallLoc))
6439     return false;
6440 
6441   const FunctionDecl *Definition = nullptr;
6442   const Stmt *Body = DD->getBody(Definition);
6443 
6444   if (!CheckConstexprFunction(Info, CallLoc, DD, Definition, Body))
6445     return false;
6446 
6447   CallStackFrame Frame(Info, CallLoc, Definition, &This, CallRef());
6448 
6449   // We're now in the period of destruction of this object.
6450   unsigned BasesLeft = RD->getNumBases();
6451   EvalInfo::EvaluatingDestructorRAII EvalObj(
6452       Info,
6453       ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries});
6454   if (!EvalObj.DidInsert) {
6455     // C++2a [class.dtor]p19:
6456     //   the behavior is undefined if the destructor is invoked for an object
6457     //   whose lifetime has ended
6458     // (Note that formally the lifetime ends when the period of destruction
6459     // begins, even though certain uses of the object remain valid until the
6460     // period of destruction ends.)
6461     Info.FFDiag(CallLoc, diag::note_constexpr_double_destroy);
6462     return false;
6463   }
6464 
6465   // FIXME: Creating an APValue just to hold a nonexistent return value is
6466   // wasteful.
6467   APValue RetVal;
6468   StmtResult Ret = {RetVal, nullptr};
6469   if (EvaluateStmt(Ret, Info, Definition->getBody()) == ESR_Failed)
6470     return false;
6471 
6472   // A union destructor does not implicitly destroy its members.
6473   if (RD->isUnion())
6474     return true;
6475 
6476   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6477 
6478   // We don't have a good way to iterate fields in reverse, so collect all the
6479   // fields first and then walk them backwards.
6480   SmallVector<FieldDecl*, 16> Fields(RD->field_begin(), RD->field_end());
6481   for (const FieldDecl *FD : llvm::reverse(Fields)) {
6482     if (FD->isUnnamedBitfield())
6483       continue;
6484 
6485     LValue Subobject = This;
6486     if (!HandleLValueMember(Info, &LocE, Subobject, FD, &Layout))
6487       return false;
6488 
6489     APValue *SubobjectValue = &Value.getStructField(FD->getFieldIndex());
6490     if (!HandleDestructionImpl(Info, CallLoc, Subobject, *SubobjectValue,
6491                                FD->getType()))
6492       return false;
6493   }
6494 
6495   if (BasesLeft != 0)
6496     EvalObj.startedDestroyingBases();
6497 
6498   // Destroy base classes in reverse order.
6499   for (const CXXBaseSpecifier &Base : llvm::reverse(RD->bases())) {
6500     --BasesLeft;
6501 
6502     QualType BaseType = Base.getType();
6503     LValue Subobject = This;
6504     if (!HandleLValueDirectBase(Info, &LocE, Subobject, RD,
6505                                 BaseType->getAsCXXRecordDecl(), &Layout))
6506       return false;
6507 
6508     APValue *SubobjectValue = &Value.getStructBase(BasesLeft);
6509     if (!HandleDestructionImpl(Info, CallLoc, Subobject, *SubobjectValue,
6510                                BaseType))
6511       return false;
6512   }
6513   assert(BasesLeft == 0 && "NumBases was wrong?");
6514 
6515   // The period of destruction ends now. The object is gone.
6516   Value = APValue();
6517   return true;
6518 }
6519 
6520 namespace {
6521 struct DestroyObjectHandler {
6522   EvalInfo &Info;
6523   const Expr *E;
6524   const LValue &This;
6525   const AccessKinds AccessKind;
6526 
6527   typedef bool result_type;
failed__anon6b379bbb1411::DestroyObjectHandler6528   bool failed() { return false; }
found__anon6b379bbb1411::DestroyObjectHandler6529   bool found(APValue &Subobj, QualType SubobjType) {
6530     return HandleDestructionImpl(Info, E->getExprLoc(), This, Subobj,
6531                                  SubobjType);
6532   }
found__anon6b379bbb1411::DestroyObjectHandler6533   bool found(APSInt &Value, QualType SubobjType) {
6534     Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
6535     return false;
6536   }
found__anon6b379bbb1411::DestroyObjectHandler6537   bool found(APFloat &Value, QualType SubobjType) {
6538     Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
6539     return false;
6540   }
6541 };
6542 }
6543 
6544 /// Perform a destructor or pseudo-destructor call on the given object, which
6545 /// might in general not be a complete object.
HandleDestruction(EvalInfo & Info,const Expr * E,const LValue & This,QualType ThisType)6546 static bool HandleDestruction(EvalInfo &Info, const Expr *E,
6547                               const LValue &This, QualType ThisType) {
6548   CompleteObject Obj = findCompleteObject(Info, E, AK_Destroy, This, ThisType);
6549   DestroyObjectHandler Handler = {Info, E, This, AK_Destroy};
6550   return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
6551 }
6552 
6553 /// Destroy and end the lifetime of the given complete object.
HandleDestruction(EvalInfo & Info,SourceLocation Loc,APValue::LValueBase LVBase,APValue & Value,QualType T)6554 static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
6555                               APValue::LValueBase LVBase, APValue &Value,
6556                               QualType T) {
6557   // If we've had an unmodeled side-effect, we can't rely on mutable state
6558   // (such as the object we're about to destroy) being correct.
6559   if (Info.EvalStatus.HasSideEffects)
6560     return false;
6561 
6562   LValue LV;
6563   LV.set({LVBase});
6564   return HandleDestructionImpl(Info, Loc, LV, Value, T);
6565 }
6566 
6567 /// Perform a call to 'perator new' or to `__builtin_operator_new'.
HandleOperatorNewCall(EvalInfo & Info,const CallExpr * E,LValue & Result)6568 static bool HandleOperatorNewCall(EvalInfo &Info, const CallExpr *E,
6569                                   LValue &Result) {
6570   if (Info.checkingPotentialConstantExpression() ||
6571       Info.SpeculativeEvaluationDepth)
6572     return false;
6573 
6574   // This is permitted only within a call to std::allocator<T>::allocate.
6575   auto Caller = Info.getStdAllocatorCaller("allocate");
6576   if (!Caller) {
6577     Info.FFDiag(E->getExprLoc(), Info.getLangOpts().CPlusPlus20
6578                                      ? diag::note_constexpr_new_untyped
6579                                      : diag::note_constexpr_new);
6580     return false;
6581   }
6582 
6583   QualType ElemType = Caller.ElemType;
6584   if (ElemType->isIncompleteType() || ElemType->isFunctionType()) {
6585     Info.FFDiag(E->getExprLoc(),
6586                 diag::note_constexpr_new_not_complete_object_type)
6587         << (ElemType->isIncompleteType() ? 0 : 1) << ElemType;
6588     return false;
6589   }
6590 
6591   APSInt ByteSize;
6592   if (!EvaluateInteger(E->getArg(0), ByteSize, Info))
6593     return false;
6594   bool IsNothrow = false;
6595   for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I) {
6596     EvaluateIgnoredValue(Info, E->getArg(I));
6597     IsNothrow |= E->getType()->isNothrowT();
6598   }
6599 
6600   CharUnits ElemSize;
6601   if (!HandleSizeof(Info, E->getExprLoc(), ElemType, ElemSize))
6602     return false;
6603   APInt Size, Remainder;
6604   APInt ElemSizeAP(ByteSize.getBitWidth(), ElemSize.getQuantity());
6605   APInt::udivrem(ByteSize, ElemSizeAP, Size, Remainder);
6606   if (Remainder != 0) {
6607     // This likely indicates a bug in the implementation of 'std::allocator'.
6608     Info.FFDiag(E->getExprLoc(), diag::note_constexpr_operator_new_bad_size)
6609         << ByteSize << APSInt(ElemSizeAP, true) << ElemType;
6610     return false;
6611   }
6612 
6613   if (ByteSize.getActiveBits() > ConstantArrayType::getMaxSizeBits(Info.Ctx)) {
6614     if (IsNothrow) {
6615       Result.setNull(Info.Ctx, E->getType());
6616       return true;
6617     }
6618 
6619     Info.FFDiag(E, diag::note_constexpr_new_too_large) << APSInt(Size, true);
6620     return false;
6621   }
6622 
6623   QualType AllocType = Info.Ctx.getConstantArrayType(ElemType, Size, nullptr,
6624                                                      ArrayType::Normal, 0);
6625   APValue *Val = Info.createHeapAlloc(E, AllocType, Result);
6626   *Val = APValue(APValue::UninitArray(), 0, Size.getZExtValue());
6627   Result.addArray(Info, E, cast<ConstantArrayType>(AllocType));
6628   return true;
6629 }
6630 
hasVirtualDestructor(QualType T)6631 static bool hasVirtualDestructor(QualType T) {
6632   if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
6633     if (CXXDestructorDecl *DD = RD->getDestructor())
6634       return DD->isVirtual();
6635   return false;
6636 }
6637 
getVirtualOperatorDelete(QualType T)6638 static const FunctionDecl *getVirtualOperatorDelete(QualType T) {
6639   if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
6640     if (CXXDestructorDecl *DD = RD->getDestructor())
6641       return DD->isVirtual() ? DD->getOperatorDelete() : nullptr;
6642   return nullptr;
6643 }
6644 
6645 /// Check that the given object is a suitable pointer to a heap allocation that
6646 /// still exists and is of the right kind for the purpose of a deletion.
6647 ///
6648 /// On success, returns the heap allocation to deallocate. On failure, produces
6649 /// a diagnostic and returns None.
CheckDeleteKind(EvalInfo & Info,const Expr * E,const LValue & Pointer,DynAlloc::Kind DeallocKind)6650 static Optional<DynAlloc *> CheckDeleteKind(EvalInfo &Info, const Expr *E,
6651                                             const LValue &Pointer,
6652                                             DynAlloc::Kind DeallocKind) {
6653   auto PointerAsString = [&] {
6654     return Pointer.toString(Info.Ctx, Info.Ctx.VoidPtrTy);
6655   };
6656 
6657   DynamicAllocLValue DA = Pointer.Base.dyn_cast<DynamicAllocLValue>();
6658   if (!DA) {
6659     Info.FFDiag(E, diag::note_constexpr_delete_not_heap_alloc)
6660         << PointerAsString();
6661     if (Pointer.Base)
6662       NoteLValueLocation(Info, Pointer.Base);
6663     return None;
6664   }
6665 
6666   Optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA);
6667   if (!Alloc) {
6668     Info.FFDiag(E, diag::note_constexpr_double_delete);
6669     return None;
6670   }
6671 
6672   QualType AllocType = Pointer.Base.getDynamicAllocType();
6673   if (DeallocKind != (*Alloc)->getKind()) {
6674     Info.FFDiag(E, diag::note_constexpr_new_delete_mismatch)
6675         << DeallocKind << (*Alloc)->getKind() << AllocType;
6676     NoteLValueLocation(Info, Pointer.Base);
6677     return None;
6678   }
6679 
6680   bool Subobject = false;
6681   if (DeallocKind == DynAlloc::New) {
6682     Subobject = Pointer.Designator.MostDerivedPathLength != 0 ||
6683                 Pointer.Designator.isOnePastTheEnd();
6684   } else {
6685     Subobject = Pointer.Designator.Entries.size() != 1 ||
6686                 Pointer.Designator.Entries[0].getAsArrayIndex() != 0;
6687   }
6688   if (Subobject) {
6689     Info.FFDiag(E, diag::note_constexpr_delete_subobject)
6690         << PointerAsString() << Pointer.Designator.isOnePastTheEnd();
6691     return None;
6692   }
6693 
6694   return Alloc;
6695 }
6696 
6697 // Perform a call to 'operator delete' or '__builtin_operator_delete'.
HandleOperatorDeleteCall(EvalInfo & Info,const CallExpr * E)6698 bool HandleOperatorDeleteCall(EvalInfo &Info, const CallExpr *E) {
6699   if (Info.checkingPotentialConstantExpression() ||
6700       Info.SpeculativeEvaluationDepth)
6701     return false;
6702 
6703   // This is permitted only within a call to std::allocator<T>::deallocate.
6704   if (!Info.getStdAllocatorCaller("deallocate")) {
6705     Info.FFDiag(E->getExprLoc());
6706     return true;
6707   }
6708 
6709   LValue Pointer;
6710   if (!EvaluatePointer(E->getArg(0), Pointer, Info))
6711     return false;
6712   for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I)
6713     EvaluateIgnoredValue(Info, E->getArg(I));
6714 
6715   if (Pointer.Designator.Invalid)
6716     return false;
6717 
6718   // Deleting a null pointer would have no effect, but it's not permitted by
6719   // std::allocator<T>::deallocate's contract.
6720   if (Pointer.isNullPointer()) {
6721     Info.CCEDiag(E->getExprLoc(), diag::note_constexpr_deallocate_null);
6722     return true;
6723   }
6724 
6725   if (!CheckDeleteKind(Info, E, Pointer, DynAlloc::StdAllocator))
6726     return false;
6727 
6728   Info.HeapAllocs.erase(Pointer.Base.get<DynamicAllocLValue>());
6729   return true;
6730 }
6731 
6732 //===----------------------------------------------------------------------===//
6733 // Generic Evaluation
6734 //===----------------------------------------------------------------------===//
6735 namespace {
6736 
6737 class BitCastBuffer {
6738   // FIXME: We're going to need bit-level granularity when we support
6739   // bit-fields.
6740   // FIXME: Its possible under the C++ standard for 'char' to not be 8 bits, but
6741   // we don't support a host or target where that is the case. Still, we should
6742   // use a more generic type in case we ever do.
6743   SmallVector<Optional<unsigned char>, 32> Bytes;
6744 
6745   static_assert(std::numeric_limits<unsigned char>::digits >= 8,
6746                 "Need at least 8 bit unsigned char");
6747 
6748   bool TargetIsLittleEndian;
6749 
6750 public:
BitCastBuffer(CharUnits Width,bool TargetIsLittleEndian)6751   BitCastBuffer(CharUnits Width, bool TargetIsLittleEndian)
6752       : Bytes(Width.getQuantity()),
6753         TargetIsLittleEndian(TargetIsLittleEndian) {}
6754 
6755   LLVM_NODISCARD
readObject(CharUnits Offset,CharUnits Width,SmallVectorImpl<unsigned char> & Output) const6756   bool readObject(CharUnits Offset, CharUnits Width,
6757                   SmallVectorImpl<unsigned char> &Output) const {
6758     for (CharUnits I = Offset, E = Offset + Width; I != E; ++I) {
6759       // If a byte of an integer is uninitialized, then the whole integer is
6760       // uninitalized.
6761       if (!Bytes[I.getQuantity()])
6762         return false;
6763       Output.push_back(*Bytes[I.getQuantity()]);
6764     }
6765     if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
6766       std::reverse(Output.begin(), Output.end());
6767     return true;
6768   }
6769 
writeObject(CharUnits Offset,SmallVectorImpl<unsigned char> & Input)6770   void writeObject(CharUnits Offset, SmallVectorImpl<unsigned char> &Input) {
6771     if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
6772       std::reverse(Input.begin(), Input.end());
6773 
6774     size_t Index = 0;
6775     for (unsigned char Byte : Input) {
6776       assert(!Bytes[Offset.getQuantity() + Index] && "overwriting a byte?");
6777       Bytes[Offset.getQuantity() + Index] = Byte;
6778       ++Index;
6779     }
6780   }
6781 
size()6782   size_t size() { return Bytes.size(); }
6783 };
6784 
6785 /// Traverse an APValue to produce an BitCastBuffer, emulating how the current
6786 /// target would represent the value at runtime.
6787 class APValueToBufferConverter {
6788   EvalInfo &Info;
6789   BitCastBuffer Buffer;
6790   const CastExpr *BCE;
6791 
APValueToBufferConverter(EvalInfo & Info,CharUnits ObjectWidth,const CastExpr * BCE)6792   APValueToBufferConverter(EvalInfo &Info, CharUnits ObjectWidth,
6793                            const CastExpr *BCE)
6794       : Info(Info),
6795         Buffer(ObjectWidth, Info.Ctx.getTargetInfo().isLittleEndian()),
6796         BCE(BCE) {}
6797 
visit(const APValue & Val,QualType Ty)6798   bool visit(const APValue &Val, QualType Ty) {
6799     return visit(Val, Ty, CharUnits::fromQuantity(0));
6800   }
6801 
6802   // Write out Val with type Ty into Buffer starting at Offset.
visit(const APValue & Val,QualType Ty,CharUnits Offset)6803   bool visit(const APValue &Val, QualType Ty, CharUnits Offset) {
6804     assert((size_t)Offset.getQuantity() <= Buffer.size());
6805 
6806     // As a special case, nullptr_t has an indeterminate value.
6807     if (Ty->isNullPtrType())
6808       return true;
6809 
6810     // Dig through Src to find the byte at SrcOffset.
6811     switch (Val.getKind()) {
6812     case APValue::Indeterminate:
6813     case APValue::None:
6814       return true;
6815 
6816     case APValue::Int:
6817       return visitInt(Val.getInt(), Ty, Offset);
6818     case APValue::Float:
6819       return visitFloat(Val.getFloat(), Ty, Offset);
6820     case APValue::Array:
6821       return visitArray(Val, Ty, Offset);
6822     case APValue::Struct:
6823       return visitRecord(Val, Ty, Offset);
6824 
6825     case APValue::ComplexInt:
6826     case APValue::ComplexFloat:
6827     case APValue::Vector:
6828     case APValue::FixedPoint:
6829       // FIXME: We should support these.
6830 
6831     case APValue::Union:
6832     case APValue::MemberPointer:
6833     case APValue::AddrLabelDiff: {
6834       Info.FFDiag(BCE->getBeginLoc(),
6835                   diag::note_constexpr_bit_cast_unsupported_type)
6836           << Ty;
6837       return false;
6838     }
6839 
6840     case APValue::LValue:
6841       llvm_unreachable("LValue subobject in bit_cast?");
6842     }
6843     llvm_unreachable("Unhandled APValue::ValueKind");
6844   }
6845 
visitRecord(const APValue & Val,QualType Ty,CharUnits Offset)6846   bool visitRecord(const APValue &Val, QualType Ty, CharUnits Offset) {
6847     const RecordDecl *RD = Ty->getAsRecordDecl();
6848     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6849 
6850     // Visit the base classes.
6851     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
6852       for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
6853         const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
6854         CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
6855 
6856         if (!visitRecord(Val.getStructBase(I), BS.getType(),
6857                          Layout.getBaseClassOffset(BaseDecl) + Offset))
6858           return false;
6859       }
6860     }
6861 
6862     // Visit the fields.
6863     unsigned FieldIdx = 0;
6864     for (FieldDecl *FD : RD->fields()) {
6865       if (FD->isBitField()) {
6866         Info.FFDiag(BCE->getBeginLoc(),
6867                     diag::note_constexpr_bit_cast_unsupported_bitfield);
6868         return false;
6869       }
6870 
6871       uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx);
6872 
6873       assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0 &&
6874              "only bit-fields can have sub-char alignment");
6875       CharUnits FieldOffset =
6876           Info.Ctx.toCharUnitsFromBits(FieldOffsetBits) + Offset;
6877       QualType FieldTy = FD->getType();
6878       if (!visit(Val.getStructField(FieldIdx), FieldTy, FieldOffset))
6879         return false;
6880       ++FieldIdx;
6881     }
6882 
6883     return true;
6884   }
6885 
visitArray(const APValue & Val,QualType Ty,CharUnits Offset)6886   bool visitArray(const APValue &Val, QualType Ty, CharUnits Offset) {
6887     const auto *CAT =
6888         dyn_cast_or_null<ConstantArrayType>(Ty->getAsArrayTypeUnsafe());
6889     if (!CAT)
6890       return false;
6891 
6892     CharUnits ElemWidth = Info.Ctx.getTypeSizeInChars(CAT->getElementType());
6893     unsigned NumInitializedElts = Val.getArrayInitializedElts();
6894     unsigned ArraySize = Val.getArraySize();
6895     // First, initialize the initialized elements.
6896     for (unsigned I = 0; I != NumInitializedElts; ++I) {
6897       const APValue &SubObj = Val.getArrayInitializedElt(I);
6898       if (!visit(SubObj, CAT->getElementType(), Offset + I * ElemWidth))
6899         return false;
6900     }
6901 
6902     // Next, initialize the rest of the array using the filler.
6903     if (Val.hasArrayFiller()) {
6904       const APValue &Filler = Val.getArrayFiller();
6905       for (unsigned I = NumInitializedElts; I != ArraySize; ++I) {
6906         if (!visit(Filler, CAT->getElementType(), Offset + I * ElemWidth))
6907           return false;
6908       }
6909     }
6910 
6911     return true;
6912   }
6913 
visitInt(const APSInt & Val,QualType Ty,CharUnits Offset)6914   bool visitInt(const APSInt &Val, QualType Ty, CharUnits Offset) {
6915     APSInt AdjustedVal = Val;
6916     unsigned Width = AdjustedVal.getBitWidth();
6917     if (Ty->isBooleanType()) {
6918       Width = Info.Ctx.getTypeSize(Ty);
6919       AdjustedVal = AdjustedVal.extend(Width);
6920     }
6921 
6922     SmallVector<unsigned char, 8> Bytes(Width / 8);
6923     llvm::StoreIntToMemory(AdjustedVal, &*Bytes.begin(), Width / 8);
6924     Buffer.writeObject(Offset, Bytes);
6925     return true;
6926   }
6927 
visitFloat(const APFloat & Val,QualType Ty,CharUnits Offset)6928   bool visitFloat(const APFloat &Val, QualType Ty, CharUnits Offset) {
6929     APSInt AsInt(Val.bitcastToAPInt());
6930     return visitInt(AsInt, Ty, Offset);
6931   }
6932 
6933 public:
convert(EvalInfo & Info,const APValue & Src,const CastExpr * BCE)6934   static Optional<BitCastBuffer> convert(EvalInfo &Info, const APValue &Src,
6935                                          const CastExpr *BCE) {
6936     CharUnits DstSize = Info.Ctx.getTypeSizeInChars(BCE->getType());
6937     APValueToBufferConverter Converter(Info, DstSize, BCE);
6938     if (!Converter.visit(Src, BCE->getSubExpr()->getType()))
6939       return None;
6940     return Converter.Buffer;
6941   }
6942 };
6943 
6944 /// Write an BitCastBuffer into an APValue.
6945 class BufferToAPValueConverter {
6946   EvalInfo &Info;
6947   const BitCastBuffer &Buffer;
6948   const CastExpr *BCE;
6949 
BufferToAPValueConverter(EvalInfo & Info,const BitCastBuffer & Buffer,const CastExpr * BCE)6950   BufferToAPValueConverter(EvalInfo &Info, const BitCastBuffer &Buffer,
6951                            const CastExpr *BCE)
6952       : Info(Info), Buffer(Buffer), BCE(BCE) {}
6953 
6954   // Emit an unsupported bit_cast type error. Sema refuses to build a bit_cast
6955   // with an invalid type, so anything left is a deficiency on our part (FIXME).
6956   // Ideally this will be unreachable.
unsupportedType(QualType Ty)6957   llvm::NoneType unsupportedType(QualType Ty) {
6958     Info.FFDiag(BCE->getBeginLoc(),
6959                 diag::note_constexpr_bit_cast_unsupported_type)
6960         << Ty;
6961     return None;
6962   }
6963 
unrepresentableValue(QualType Ty,const APSInt & Val)6964   llvm::NoneType unrepresentableValue(QualType Ty, const APSInt &Val) {
6965     Info.FFDiag(BCE->getBeginLoc(),
6966                 diag::note_constexpr_bit_cast_unrepresentable_value)
6967         << Ty << Val.toString(/*Radix=*/10);
6968     return None;
6969   }
6970 
visit(const BuiltinType * T,CharUnits Offset,const EnumType * EnumSugar=nullptr)6971   Optional<APValue> visit(const BuiltinType *T, CharUnits Offset,
6972                           const EnumType *EnumSugar = nullptr) {
6973     if (T->isNullPtrType()) {
6974       uint64_t NullValue = Info.Ctx.getTargetNullPointerValue(QualType(T, 0));
6975       return APValue((Expr *)nullptr,
6976                      /*Offset=*/CharUnits::fromQuantity(NullValue),
6977                      APValue::NoLValuePath{}, /*IsNullPtr=*/true);
6978     }
6979 
6980     CharUnits SizeOf = Info.Ctx.getTypeSizeInChars(T);
6981 
6982     // Work around floating point types that contain unused padding bytes. This
6983     // is really just `long double` on x86, which is the only fundamental type
6984     // with padding bytes.
6985     if (T->isRealFloatingType()) {
6986       const llvm::fltSemantics &Semantics =
6987           Info.Ctx.getFloatTypeSemantics(QualType(T, 0));
6988       unsigned NumBits = llvm::APFloatBase::getSizeInBits(Semantics);
6989       assert(NumBits % 8 == 0);
6990       CharUnits NumBytes = CharUnits::fromQuantity(NumBits / 8);
6991       if (NumBytes != SizeOf)
6992         SizeOf = NumBytes;
6993     }
6994 
6995     SmallVector<uint8_t, 8> Bytes;
6996     if (!Buffer.readObject(Offset, SizeOf, Bytes)) {
6997       // If this is std::byte or unsigned char, then its okay to store an
6998       // indeterminate value.
6999       bool IsStdByte = EnumSugar && EnumSugar->isStdByteType();
7000       bool IsUChar =
7001           !EnumSugar && (T->isSpecificBuiltinType(BuiltinType::UChar) ||
7002                          T->isSpecificBuiltinType(BuiltinType::Char_U));
7003       if (!IsStdByte && !IsUChar) {
7004         QualType DisplayType(EnumSugar ? (const Type *)EnumSugar : T, 0);
7005         Info.FFDiag(BCE->getExprLoc(),
7006                     diag::note_constexpr_bit_cast_indet_dest)
7007             << DisplayType << Info.Ctx.getLangOpts().CharIsSigned;
7008         return None;
7009       }
7010 
7011       return APValue::IndeterminateValue();
7012     }
7013 
7014     APSInt Val(SizeOf.getQuantity() * Info.Ctx.getCharWidth(), true);
7015     llvm::LoadIntFromMemory(Val, &*Bytes.begin(), Bytes.size());
7016 
7017     if (T->isIntegralOrEnumerationType()) {
7018       Val.setIsSigned(T->isSignedIntegerOrEnumerationType());
7019 
7020       unsigned IntWidth = Info.Ctx.getIntWidth(QualType(T, 0));
7021       if (IntWidth != Val.getBitWidth()) {
7022         APSInt Truncated = Val.trunc(IntWidth);
7023         if (Truncated.extend(Val.getBitWidth()) != Val)
7024           return unrepresentableValue(QualType(T, 0), Val);
7025         Val = Truncated;
7026       }
7027 
7028       return APValue(Val);
7029     }
7030 
7031     if (T->isRealFloatingType()) {
7032       const llvm::fltSemantics &Semantics =
7033           Info.Ctx.getFloatTypeSemantics(QualType(T, 0));
7034       return APValue(APFloat(Semantics, Val));
7035     }
7036 
7037     return unsupportedType(QualType(T, 0));
7038   }
7039 
visit(const RecordType * RTy,CharUnits Offset)7040   Optional<APValue> visit(const RecordType *RTy, CharUnits Offset) {
7041     const RecordDecl *RD = RTy->getAsRecordDecl();
7042     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
7043 
7044     unsigned NumBases = 0;
7045     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
7046       NumBases = CXXRD->getNumBases();
7047 
7048     APValue ResultVal(APValue::UninitStruct(), NumBases,
7049                       std::distance(RD->field_begin(), RD->field_end()));
7050 
7051     // Visit the base classes.
7052     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
7053       for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
7054         const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
7055         CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
7056         if (BaseDecl->isEmpty() ||
7057             Info.Ctx.getASTRecordLayout(BaseDecl).getNonVirtualSize().isZero())
7058           continue;
7059 
7060         Optional<APValue> SubObj = visitType(
7061             BS.getType(), Layout.getBaseClassOffset(BaseDecl) + Offset);
7062         if (!SubObj)
7063           return None;
7064         ResultVal.getStructBase(I) = *SubObj;
7065       }
7066     }
7067 
7068     // Visit the fields.
7069     unsigned FieldIdx = 0;
7070     for (FieldDecl *FD : RD->fields()) {
7071       // FIXME: We don't currently support bit-fields. A lot of the logic for
7072       // this is in CodeGen, so we need to factor it around.
7073       if (FD->isBitField()) {
7074         Info.FFDiag(BCE->getBeginLoc(),
7075                     diag::note_constexpr_bit_cast_unsupported_bitfield);
7076         return None;
7077       }
7078 
7079       uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx);
7080       assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0);
7081 
7082       CharUnits FieldOffset =
7083           CharUnits::fromQuantity(FieldOffsetBits / Info.Ctx.getCharWidth()) +
7084           Offset;
7085       QualType FieldTy = FD->getType();
7086       Optional<APValue> SubObj = visitType(FieldTy, FieldOffset);
7087       if (!SubObj)
7088         return None;
7089       ResultVal.getStructField(FieldIdx) = *SubObj;
7090       ++FieldIdx;
7091     }
7092 
7093     return ResultVal;
7094   }
7095 
visit(const EnumType * Ty,CharUnits Offset)7096   Optional<APValue> visit(const EnumType *Ty, CharUnits Offset) {
7097     QualType RepresentationType = Ty->getDecl()->getIntegerType();
7098     assert(!RepresentationType.isNull() &&
7099            "enum forward decl should be caught by Sema");
7100     const auto *AsBuiltin =
7101         RepresentationType.getCanonicalType()->castAs<BuiltinType>();
7102     // Recurse into the underlying type. Treat std::byte transparently as
7103     // unsigned char.
7104     return visit(AsBuiltin, Offset, /*EnumTy=*/Ty);
7105   }
7106 
visit(const ConstantArrayType * Ty,CharUnits Offset)7107   Optional<APValue> visit(const ConstantArrayType *Ty, CharUnits Offset) {
7108     size_t Size = Ty->getSize().getLimitedValue();
7109     CharUnits ElementWidth = Info.Ctx.getTypeSizeInChars(Ty->getElementType());
7110 
7111     APValue ArrayValue(APValue::UninitArray(), Size, Size);
7112     for (size_t I = 0; I != Size; ++I) {
7113       Optional<APValue> ElementValue =
7114           visitType(Ty->getElementType(), Offset + I * ElementWidth);
7115       if (!ElementValue)
7116         return None;
7117       ArrayValue.getArrayInitializedElt(I) = std::move(*ElementValue);
7118     }
7119 
7120     return ArrayValue;
7121   }
7122 
visit(const Type * Ty,CharUnits Offset)7123   Optional<APValue> visit(const Type *Ty, CharUnits Offset) {
7124     return unsupportedType(QualType(Ty, 0));
7125   }
7126 
visitType(QualType Ty,CharUnits Offset)7127   Optional<APValue> visitType(QualType Ty, CharUnits Offset) {
7128     QualType Can = Ty.getCanonicalType();
7129 
7130     switch (Can->getTypeClass()) {
7131 #define TYPE(Class, Base)                                                      \
7132   case Type::Class:                                                            \
7133     return visit(cast<Class##Type>(Can.getTypePtr()), Offset);
7134 #define ABSTRACT_TYPE(Class, Base)
7135 #define NON_CANONICAL_TYPE(Class, Base)                                        \
7136   case Type::Class:                                                            \
7137     llvm_unreachable("non-canonical type should be impossible!");
7138 #define DEPENDENT_TYPE(Class, Base)                                            \
7139   case Type::Class:                                                            \
7140     llvm_unreachable(                                                          \
7141         "dependent types aren't supported in the constant evaluator!");
7142 #define NON_CANONICAL_UNLESS_DEPENDENT(Class, Base)                            \
7143   case Type::Class:                                                            \
7144     llvm_unreachable("either dependent or not canonical!");
7145 #include "clang/AST/TypeNodes.inc"
7146     }
7147     llvm_unreachable("Unhandled Type::TypeClass");
7148   }
7149 
7150 public:
7151   // Pull out a full value of type DstType.
convert(EvalInfo & Info,BitCastBuffer & Buffer,const CastExpr * BCE)7152   static Optional<APValue> convert(EvalInfo &Info, BitCastBuffer &Buffer,
7153                                    const CastExpr *BCE) {
7154     BufferToAPValueConverter Converter(Info, Buffer, BCE);
7155     return Converter.visitType(BCE->getType(), CharUnits::fromQuantity(0));
7156   }
7157 };
7158 
checkBitCastConstexprEligibilityType(SourceLocation Loc,QualType Ty,EvalInfo * Info,const ASTContext & Ctx,bool CheckingDest)7159 static bool checkBitCastConstexprEligibilityType(SourceLocation Loc,
7160                                                  QualType Ty, EvalInfo *Info,
7161                                                  const ASTContext &Ctx,
7162                                                  bool CheckingDest) {
7163   Ty = Ty.getCanonicalType();
7164 
7165   auto diag = [&](int Reason) {
7166     if (Info)
7167       Info->FFDiag(Loc, diag::note_constexpr_bit_cast_invalid_type)
7168           << CheckingDest << (Reason == 4) << Reason;
7169     return false;
7170   };
7171   auto note = [&](int Construct, QualType NoteTy, SourceLocation NoteLoc) {
7172     if (Info)
7173       Info->Note(NoteLoc, diag::note_constexpr_bit_cast_invalid_subtype)
7174           << NoteTy << Construct << Ty;
7175     return false;
7176   };
7177 
7178   if (Ty->isUnionType())
7179     return diag(0);
7180   if (Ty->isPointerType())
7181     return diag(1);
7182   if (Ty->isMemberPointerType())
7183     return diag(2);
7184   if (Ty.isVolatileQualified())
7185     return diag(3);
7186 
7187   if (RecordDecl *Record = Ty->getAsRecordDecl()) {
7188     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Record)) {
7189       for (CXXBaseSpecifier &BS : CXXRD->bases())
7190         if (!checkBitCastConstexprEligibilityType(Loc, BS.getType(), Info, Ctx,
7191                                                   CheckingDest))
7192           return note(1, BS.getType(), BS.getBeginLoc());
7193     }
7194     for (FieldDecl *FD : Record->fields()) {
7195       if (FD->getType()->isReferenceType())
7196         return diag(4);
7197       if (!checkBitCastConstexprEligibilityType(Loc, FD->getType(), Info, Ctx,
7198                                                 CheckingDest))
7199         return note(0, FD->getType(), FD->getBeginLoc());
7200     }
7201   }
7202 
7203   if (Ty->isArrayType() &&
7204       !checkBitCastConstexprEligibilityType(Loc, Ctx.getBaseElementType(Ty),
7205                                             Info, Ctx, CheckingDest))
7206     return false;
7207 
7208   return true;
7209 }
7210 
checkBitCastConstexprEligibility(EvalInfo * Info,const ASTContext & Ctx,const CastExpr * BCE)7211 static bool checkBitCastConstexprEligibility(EvalInfo *Info,
7212                                              const ASTContext &Ctx,
7213                                              const CastExpr *BCE) {
7214   bool DestOK = checkBitCastConstexprEligibilityType(
7215       BCE->getBeginLoc(), BCE->getType(), Info, Ctx, true);
7216   bool SourceOK = DestOK && checkBitCastConstexprEligibilityType(
7217                                 BCE->getBeginLoc(),
7218                                 BCE->getSubExpr()->getType(), Info, Ctx, false);
7219   return SourceOK;
7220 }
7221 
handleLValueToRValueBitCast(EvalInfo & Info,APValue & DestValue,APValue & SourceValue,const CastExpr * BCE)7222 static bool handleLValueToRValueBitCast(EvalInfo &Info, APValue &DestValue,
7223                                         APValue &SourceValue,
7224                                         const CastExpr *BCE) {
7225   assert(CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 &&
7226          "no host or target supports non 8-bit chars");
7227   assert(SourceValue.isLValue() &&
7228          "LValueToRValueBitcast requires an lvalue operand!");
7229 
7230   if (!checkBitCastConstexprEligibility(&Info, Info.Ctx, BCE))
7231     return false;
7232 
7233   LValue SourceLValue;
7234   APValue SourceRValue;
7235   SourceLValue.setFrom(Info.Ctx, SourceValue);
7236   if (!handleLValueToRValueConversion(
7237           Info, BCE, BCE->getSubExpr()->getType().withConst(), SourceLValue,
7238           SourceRValue, /*WantObjectRepresentation=*/true))
7239     return false;
7240 
7241   // Read out SourceValue into a char buffer.
7242   Optional<BitCastBuffer> Buffer =
7243       APValueToBufferConverter::convert(Info, SourceRValue, BCE);
7244   if (!Buffer)
7245     return false;
7246 
7247   // Write out the buffer into a new APValue.
7248   Optional<APValue> MaybeDestValue =
7249       BufferToAPValueConverter::convert(Info, *Buffer, BCE);
7250   if (!MaybeDestValue)
7251     return false;
7252 
7253   DestValue = std::move(*MaybeDestValue);
7254   return true;
7255 }
7256 
7257 template <class Derived>
7258 class ExprEvaluatorBase
7259   : public ConstStmtVisitor<Derived, bool> {
7260 private:
getDerived()7261   Derived &getDerived() { return static_cast<Derived&>(*this); }
DerivedSuccess(const APValue & V,const Expr * E)7262   bool DerivedSuccess(const APValue &V, const Expr *E) {
7263     return getDerived().Success(V, E);
7264   }
DerivedZeroInitialization(const Expr * E)7265   bool DerivedZeroInitialization(const Expr *E) {
7266     return getDerived().ZeroInitialization(E);
7267   }
7268 
7269   // Check whether a conditional operator with a non-constant condition is a
7270   // potential constant expression. If neither arm is a potential constant
7271   // expression, then the conditional operator is not either.
7272   template<typename ConditionalOperator>
CheckPotentialConstantConditional(const ConditionalOperator * E)7273   void CheckPotentialConstantConditional(const ConditionalOperator *E) {
7274     assert(Info.checkingPotentialConstantExpression());
7275 
7276     // Speculatively evaluate both arms.
7277     SmallVector<PartialDiagnosticAt, 8> Diag;
7278     {
7279       SpeculativeEvaluationRAII Speculate(Info, &Diag);
7280       StmtVisitorTy::Visit(E->getFalseExpr());
7281       if (Diag.empty())
7282         return;
7283     }
7284 
7285     {
7286       SpeculativeEvaluationRAII Speculate(Info, &Diag);
7287       Diag.clear();
7288       StmtVisitorTy::Visit(E->getTrueExpr());
7289       if (Diag.empty())
7290         return;
7291     }
7292 
7293     Error(E, diag::note_constexpr_conditional_never_const);
7294   }
7295 
7296 
7297   template<typename ConditionalOperator>
HandleConditionalOperator(const ConditionalOperator * E)7298   bool HandleConditionalOperator(const ConditionalOperator *E) {
7299     bool BoolResult;
7300     if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
7301       if (Info.checkingPotentialConstantExpression() && Info.noteFailure()) {
7302         CheckPotentialConstantConditional(E);
7303         return false;
7304       }
7305       if (Info.noteFailure()) {
7306         StmtVisitorTy::Visit(E->getTrueExpr());
7307         StmtVisitorTy::Visit(E->getFalseExpr());
7308       }
7309       return false;
7310     }
7311 
7312     Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
7313     return StmtVisitorTy::Visit(EvalExpr);
7314   }
7315 
7316 protected:
7317   EvalInfo &Info;
7318   typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy;
7319   typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
7320 
CCEDiag(const Expr * E,diag::kind D)7321   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
7322     return Info.CCEDiag(E, D);
7323   }
7324 
ZeroInitialization(const Expr * E)7325   bool ZeroInitialization(const Expr *E) { return Error(E); }
7326 
7327 public:
ExprEvaluatorBase(EvalInfo & Info)7328   ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
7329 
getEvalInfo()7330   EvalInfo &getEvalInfo() { return Info; }
7331 
7332   /// Report an evaluation error. This should only be called when an error is
7333   /// first discovered. When propagating an error, just return false.
Error(const Expr * E,diag::kind D)7334   bool Error(const Expr *E, diag::kind D) {
7335     Info.FFDiag(E, D);
7336     return false;
7337   }
Error(const Expr * E)7338   bool Error(const Expr *E) {
7339     return Error(E, diag::note_invalid_subexpr_in_const_expr);
7340   }
7341 
VisitStmt(const Stmt *)7342   bool VisitStmt(const Stmt *) {
7343     llvm_unreachable("Expression evaluator should not be called on stmts");
7344   }
VisitExpr(const Expr * E)7345   bool VisitExpr(const Expr *E) {
7346     return Error(E);
7347   }
7348 
VisitConstantExpr(const ConstantExpr * E)7349   bool VisitConstantExpr(const ConstantExpr *E) {
7350     if (E->hasAPValueResult())
7351       return DerivedSuccess(E->getAPValueResult(), E);
7352 
7353     return StmtVisitorTy::Visit(E->getSubExpr());
7354   }
7355 
VisitParenExpr(const ParenExpr * E)7356   bool VisitParenExpr(const ParenExpr *E)
7357     { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitUnaryExtension(const UnaryOperator * E)7358   bool VisitUnaryExtension(const UnaryOperator *E)
7359     { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitUnaryPlus(const UnaryOperator * E)7360   bool VisitUnaryPlus(const UnaryOperator *E)
7361     { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitChooseExpr(const ChooseExpr * E)7362   bool VisitChooseExpr(const ChooseExpr *E)
7363     { return StmtVisitorTy::Visit(E->getChosenSubExpr()); }
VisitGenericSelectionExpr(const GenericSelectionExpr * E)7364   bool VisitGenericSelectionExpr(const GenericSelectionExpr *E)
7365     { return StmtVisitorTy::Visit(E->getResultExpr()); }
VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr * E)7366   bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
7367     { return StmtVisitorTy::Visit(E->getReplacement()); }
VisitCXXDefaultArgExpr(const CXXDefaultArgExpr * E)7368   bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) {
7369     TempVersionRAII RAII(*Info.CurrentCall);
7370     SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
7371     return StmtVisitorTy::Visit(E->getExpr());
7372   }
VisitCXXDefaultInitExpr(const CXXDefaultInitExpr * E)7373   bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
7374     TempVersionRAII RAII(*Info.CurrentCall);
7375     // The initializer may not have been parsed yet, or might be erroneous.
7376     if (!E->getExpr())
7377       return Error(E);
7378     SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
7379     return StmtVisitorTy::Visit(E->getExpr());
7380   }
7381 
VisitExprWithCleanups(const ExprWithCleanups * E)7382   bool VisitExprWithCleanups(const ExprWithCleanups *E) {
7383     FullExpressionRAII Scope(Info);
7384     return StmtVisitorTy::Visit(E->getSubExpr()) && Scope.destroy();
7385   }
7386 
7387   // Temporaries are registered when created, so we don't care about
7388   // CXXBindTemporaryExpr.
VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr * E)7389   bool VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
7390     return StmtVisitorTy::Visit(E->getSubExpr());
7391   }
7392 
VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr * E)7393   bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
7394     CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
7395     return static_cast<Derived*>(this)->VisitCastExpr(E);
7396   }
VisitCXXDynamicCastExpr(const CXXDynamicCastExpr * E)7397   bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
7398     if (!Info.Ctx.getLangOpts().CPlusPlus20)
7399       CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
7400     return static_cast<Derived*>(this)->VisitCastExpr(E);
7401   }
VisitBuiltinBitCastExpr(const BuiltinBitCastExpr * E)7402   bool VisitBuiltinBitCastExpr(const BuiltinBitCastExpr *E) {
7403     return static_cast<Derived*>(this)->VisitCastExpr(E);
7404   }
7405 
VisitBinaryOperator(const BinaryOperator * E)7406   bool VisitBinaryOperator(const BinaryOperator *E) {
7407     switch (E->getOpcode()) {
7408     default:
7409       return Error(E);
7410 
7411     case BO_Comma:
7412       VisitIgnoredValue(E->getLHS());
7413       return StmtVisitorTy::Visit(E->getRHS());
7414 
7415     case BO_PtrMemD:
7416     case BO_PtrMemI: {
7417       LValue Obj;
7418       if (!HandleMemberPointerAccess(Info, E, Obj))
7419         return false;
7420       APValue Result;
7421       if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
7422         return false;
7423       return DerivedSuccess(Result, E);
7424     }
7425     }
7426   }
7427 
VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator * E)7428   bool VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator *E) {
7429     return StmtVisitorTy::Visit(E->getSemanticForm());
7430   }
7431 
VisitBinaryConditionalOperator(const BinaryConditionalOperator * E)7432   bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
7433     // Evaluate and cache the common expression. We treat it as a temporary,
7434     // even though it's not quite the same thing.
7435     LValue CommonLV;
7436     if (!Evaluate(Info.CurrentCall->createTemporary(
7437                       E->getOpaqueValue(),
7438                       getStorageType(Info.Ctx, E->getOpaqueValue()),
7439                       ScopeKind::FullExpression, CommonLV),
7440                   Info, E->getCommon()))
7441       return false;
7442 
7443     return HandleConditionalOperator(E);
7444   }
7445 
VisitConditionalOperator(const ConditionalOperator * E)7446   bool VisitConditionalOperator(const ConditionalOperator *E) {
7447     bool IsBcpCall = false;
7448     // If the condition (ignoring parens) is a __builtin_constant_p call,
7449     // the result is a constant expression if it can be folded without
7450     // side-effects. This is an important GNU extension. See GCC PR38377
7451     // for discussion.
7452     if (const CallExpr *CallCE =
7453           dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
7454       if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
7455         IsBcpCall = true;
7456 
7457     // Always assume __builtin_constant_p(...) ? ... : ... is a potential
7458     // constant expression; we can't check whether it's potentially foldable.
7459     // FIXME: We should instead treat __builtin_constant_p as non-constant if
7460     // it would return 'false' in this mode.
7461     if (Info.checkingPotentialConstantExpression() && IsBcpCall)
7462       return false;
7463 
7464     FoldConstant Fold(Info, IsBcpCall);
7465     if (!HandleConditionalOperator(E)) {
7466       Fold.keepDiagnostics();
7467       return false;
7468     }
7469 
7470     return true;
7471   }
7472 
VisitOpaqueValueExpr(const OpaqueValueExpr * E)7473   bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
7474     if (APValue *Value = Info.CurrentCall->getCurrentTemporary(E))
7475       return DerivedSuccess(*Value, E);
7476 
7477     const Expr *Source = E->getSourceExpr();
7478     if (!Source)
7479       return Error(E);
7480     if (Source == E) { // sanity checking.
7481       assert(0 && "OpaqueValueExpr recursively refers to itself");
7482       return Error(E);
7483     }
7484     return StmtVisitorTy::Visit(Source);
7485   }
7486 
VisitPseudoObjectExpr(const PseudoObjectExpr * E)7487   bool VisitPseudoObjectExpr(const PseudoObjectExpr *E) {
7488     for (const Expr *SemE : E->semantics()) {
7489       if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) {
7490         // FIXME: We can't handle the case where an OpaqueValueExpr is also the
7491         // result expression: there could be two different LValues that would
7492         // refer to the same object in that case, and we can't model that.
7493         if (SemE == E->getResultExpr())
7494           return Error(E);
7495 
7496         // Unique OVEs get evaluated if and when we encounter them when
7497         // emitting the rest of the semantic form, rather than eagerly.
7498         if (OVE->isUnique())
7499           continue;
7500 
7501         LValue LV;
7502         if (!Evaluate(Info.CurrentCall->createTemporary(
7503                           OVE, getStorageType(Info.Ctx, OVE),
7504                           ScopeKind::FullExpression, LV),
7505                       Info, OVE->getSourceExpr()))
7506           return false;
7507       } else if (SemE == E->getResultExpr()) {
7508         if (!StmtVisitorTy::Visit(SemE))
7509           return false;
7510       } else {
7511         if (!EvaluateIgnoredValue(Info, SemE))
7512           return false;
7513       }
7514     }
7515     return true;
7516   }
7517 
VisitCallExpr(const CallExpr * E)7518   bool VisitCallExpr(const CallExpr *E) {
7519     APValue Result;
7520     if (!handleCallExpr(E, Result, nullptr))
7521       return false;
7522     return DerivedSuccess(Result, E);
7523   }
7524 
handleCallExpr(const CallExpr * E,APValue & Result,const LValue * ResultSlot)7525   bool handleCallExpr(const CallExpr *E, APValue &Result,
7526                      const LValue *ResultSlot) {
7527     CallScopeRAII CallScope(Info);
7528 
7529     const Expr *Callee = E->getCallee()->IgnoreParens();
7530     QualType CalleeType = Callee->getType();
7531 
7532     const FunctionDecl *FD = nullptr;
7533     LValue *This = nullptr, ThisVal;
7534     auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
7535     bool HasQualifier = false;
7536 
7537     CallRef Call;
7538 
7539     // Extract function decl and 'this' pointer from the callee.
7540     if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
7541       const CXXMethodDecl *Member = nullptr;
7542       if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
7543         // Explicit bound member calls, such as x.f() or p->g();
7544         if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
7545           return false;
7546         Member = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
7547         if (!Member)
7548           return Error(Callee);
7549         This = &ThisVal;
7550         HasQualifier = ME->hasQualifier();
7551       } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
7552         // Indirect bound member calls ('.*' or '->*').
7553         const ValueDecl *D =
7554             HandleMemberPointerAccess(Info, BE, ThisVal, false);
7555         if (!D)
7556           return false;
7557         Member = dyn_cast<CXXMethodDecl>(D);
7558         if (!Member)
7559           return Error(Callee);
7560         This = &ThisVal;
7561       } else if (const auto *PDE = dyn_cast<CXXPseudoDestructorExpr>(Callee)) {
7562         if (!Info.getLangOpts().CPlusPlus20)
7563           Info.CCEDiag(PDE, diag::note_constexpr_pseudo_destructor);
7564         return EvaluateObjectArgument(Info, PDE->getBase(), ThisVal) &&
7565                HandleDestruction(Info, PDE, ThisVal, PDE->getDestroyedType());
7566       } else
7567         return Error(Callee);
7568       FD = Member;
7569     } else if (CalleeType->isFunctionPointerType()) {
7570       LValue CalleeLV;
7571       if (!EvaluatePointer(Callee, CalleeLV, Info))
7572         return false;
7573 
7574       if (!CalleeLV.getLValueOffset().isZero())
7575         return Error(Callee);
7576       FD = dyn_cast_or_null<FunctionDecl>(
7577           CalleeLV.getLValueBase().dyn_cast<const ValueDecl *>());
7578       if (!FD)
7579         return Error(Callee);
7580       // Don't call function pointers which have been cast to some other type.
7581       // Per DR (no number yet), the caller and callee can differ in noexcept.
7582       if (!Info.Ctx.hasSameFunctionTypeIgnoringExceptionSpec(
7583         CalleeType->getPointeeType(), FD->getType())) {
7584         return Error(E);
7585       }
7586 
7587       // For an (overloaded) assignment expression, evaluate the RHS before the
7588       // LHS.
7589       auto *OCE = dyn_cast<CXXOperatorCallExpr>(E);
7590       if (OCE && OCE->isAssignmentOp()) {
7591         assert(Args.size() == 2 && "wrong number of arguments in assignment");
7592         Call = Info.CurrentCall->createCall(FD);
7593         if (!EvaluateArgs(isa<CXXMethodDecl>(FD) ? Args.slice(1) : Args, Call,
7594                           Info, FD, /*RightToLeft=*/true))
7595           return false;
7596       }
7597 
7598       // Overloaded operator calls to member functions are represented as normal
7599       // calls with '*this' as the first argument.
7600       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
7601       if (MD && !MD->isStatic()) {
7602         // FIXME: When selecting an implicit conversion for an overloaded
7603         // operator delete, we sometimes try to evaluate calls to conversion
7604         // operators without a 'this' parameter!
7605         if (Args.empty())
7606           return Error(E);
7607 
7608         if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
7609           return false;
7610         This = &ThisVal;
7611         Args = Args.slice(1);
7612       } else if (MD && MD->isLambdaStaticInvoker()) {
7613         // Map the static invoker for the lambda back to the call operator.
7614         // Conveniently, we don't have to slice out the 'this' argument (as is
7615         // being done for the non-static case), since a static member function
7616         // doesn't have an implicit argument passed in.
7617         const CXXRecordDecl *ClosureClass = MD->getParent();
7618         assert(
7619             ClosureClass->captures_begin() == ClosureClass->captures_end() &&
7620             "Number of captures must be zero for conversion to function-ptr");
7621 
7622         const CXXMethodDecl *LambdaCallOp =
7623             ClosureClass->getLambdaCallOperator();
7624 
7625         // Set 'FD', the function that will be called below, to the call
7626         // operator.  If the closure object represents a generic lambda, find
7627         // the corresponding specialization of the call operator.
7628 
7629         if (ClosureClass->isGenericLambda()) {
7630           assert(MD->isFunctionTemplateSpecialization() &&
7631                  "A generic lambda's static-invoker function must be a "
7632                  "template specialization");
7633           const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
7634           FunctionTemplateDecl *CallOpTemplate =
7635               LambdaCallOp->getDescribedFunctionTemplate();
7636           void *InsertPos = nullptr;
7637           FunctionDecl *CorrespondingCallOpSpecialization =
7638               CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
7639           assert(CorrespondingCallOpSpecialization &&
7640                  "We must always have a function call operator specialization "
7641                  "that corresponds to our static invoker specialization");
7642           FD = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
7643         } else
7644           FD = LambdaCallOp;
7645       } else if (FD->isReplaceableGlobalAllocationFunction()) {
7646         if (FD->getDeclName().getCXXOverloadedOperator() == OO_New ||
7647             FD->getDeclName().getCXXOverloadedOperator() == OO_Array_New) {
7648           LValue Ptr;
7649           if (!HandleOperatorNewCall(Info, E, Ptr))
7650             return false;
7651           Ptr.moveInto(Result);
7652           return CallScope.destroy();
7653         } else {
7654           return HandleOperatorDeleteCall(Info, E) && CallScope.destroy();
7655         }
7656       }
7657     } else
7658       return Error(E);
7659 
7660     // Evaluate the arguments now if we've not already done so.
7661     if (!Call) {
7662       Call = Info.CurrentCall->createCall(FD);
7663       if (!EvaluateArgs(Args, Call, Info, FD))
7664         return false;
7665     }
7666 
7667     SmallVector<QualType, 4> CovariantAdjustmentPath;
7668     if (This) {
7669       auto *NamedMember = dyn_cast<CXXMethodDecl>(FD);
7670       if (NamedMember && NamedMember->isVirtual() && !HasQualifier) {
7671         // Perform virtual dispatch, if necessary.
7672         FD = HandleVirtualDispatch(Info, E, *This, NamedMember,
7673                                    CovariantAdjustmentPath);
7674         if (!FD)
7675           return false;
7676       } else {
7677         // Check that the 'this' pointer points to an object of the right type.
7678         // FIXME: If this is an assignment operator call, we may need to change
7679         // the active union member before we check this.
7680         if (!checkNonVirtualMemberCallThisPointer(Info, E, *This, NamedMember))
7681           return false;
7682       }
7683     }
7684 
7685     // Destructor calls are different enough that they have their own codepath.
7686     if (auto *DD = dyn_cast<CXXDestructorDecl>(FD)) {
7687       assert(This && "no 'this' pointer for destructor call");
7688       return HandleDestruction(Info, E, *This,
7689                                Info.Ctx.getRecordType(DD->getParent())) &&
7690              CallScope.destroy();
7691     }
7692 
7693     const FunctionDecl *Definition = nullptr;
7694     Stmt *Body = FD->getBody(Definition);
7695 
7696     if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body) ||
7697         !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Call,
7698                             Body, Info, Result, ResultSlot))
7699       return false;
7700 
7701     if (!CovariantAdjustmentPath.empty() &&
7702         !HandleCovariantReturnAdjustment(Info, E, Result,
7703                                          CovariantAdjustmentPath))
7704       return false;
7705 
7706     return CallScope.destroy();
7707   }
7708 
VisitCompoundLiteralExpr(const CompoundLiteralExpr * E)7709   bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
7710     return StmtVisitorTy::Visit(E->getInitializer());
7711   }
VisitInitListExpr(const InitListExpr * E)7712   bool VisitInitListExpr(const InitListExpr *E) {
7713     if (E->getNumInits() == 0)
7714       return DerivedZeroInitialization(E);
7715     if (E->getNumInits() == 1)
7716       return StmtVisitorTy::Visit(E->getInit(0));
7717     return Error(E);
7718   }
VisitImplicitValueInitExpr(const ImplicitValueInitExpr * E)7719   bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
7720     return DerivedZeroInitialization(E);
7721   }
VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr * E)7722   bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
7723     return DerivedZeroInitialization(E);
7724   }
VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr * E)7725   bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
7726     return DerivedZeroInitialization(E);
7727   }
7728 
7729   /// A member expression where the object is a prvalue is itself a prvalue.
VisitMemberExpr(const MemberExpr * E)7730   bool VisitMemberExpr(const MemberExpr *E) {
7731     assert(!Info.Ctx.getLangOpts().CPlusPlus11 &&
7732            "missing temporary materialization conversion");
7733     assert(!E->isArrow() && "missing call to bound member function?");
7734 
7735     APValue Val;
7736     if (!Evaluate(Val, Info, E->getBase()))
7737       return false;
7738 
7739     QualType BaseTy = E->getBase()->getType();
7740 
7741     const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
7742     if (!FD) return Error(E);
7743     assert(!FD->getType()->isReferenceType() && "prvalue reference?");
7744     assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
7745            FD->getParent()->getCanonicalDecl() && "record / field mismatch");
7746 
7747     // Note: there is no lvalue base here. But this case should only ever
7748     // happen in C or in C++98, where we cannot be evaluating a constexpr
7749     // constructor, which is the only case the base matters.
7750     CompleteObject Obj(APValue::LValueBase(), &Val, BaseTy);
7751     SubobjectDesignator Designator(BaseTy);
7752     Designator.addDeclUnchecked(FD);
7753 
7754     APValue Result;
7755     return extractSubobject(Info, E, Obj, Designator, Result) &&
7756            DerivedSuccess(Result, E);
7757   }
7758 
VisitExtVectorElementExpr(const ExtVectorElementExpr * E)7759   bool VisitExtVectorElementExpr(const ExtVectorElementExpr *E) {
7760     APValue Val;
7761     if (!Evaluate(Val, Info, E->getBase()))
7762       return false;
7763 
7764     if (Val.isVector()) {
7765       SmallVector<uint32_t, 4> Indices;
7766       E->getEncodedElementAccess(Indices);
7767       if (Indices.size() == 1) {
7768         // Return scalar.
7769         return DerivedSuccess(Val.getVectorElt(Indices[0]), E);
7770       } else {
7771         // Construct new APValue vector.
7772         SmallVector<APValue, 4> Elts;
7773         for (unsigned I = 0; I < Indices.size(); ++I) {
7774           Elts.push_back(Val.getVectorElt(Indices[I]));
7775         }
7776         APValue VecResult(Elts.data(), Indices.size());
7777         return DerivedSuccess(VecResult, E);
7778       }
7779     }
7780 
7781     return false;
7782   }
7783 
VisitCastExpr(const CastExpr * E)7784   bool VisitCastExpr(const CastExpr *E) {
7785     switch (E->getCastKind()) {
7786     default:
7787       break;
7788 
7789     case CK_AtomicToNonAtomic: {
7790       APValue AtomicVal;
7791       // This does not need to be done in place even for class/array types:
7792       // atomic-to-non-atomic conversion implies copying the object
7793       // representation.
7794       if (!Evaluate(AtomicVal, Info, E->getSubExpr()))
7795         return false;
7796       return DerivedSuccess(AtomicVal, E);
7797     }
7798 
7799     case CK_NoOp:
7800     case CK_UserDefinedConversion:
7801       return StmtVisitorTy::Visit(E->getSubExpr());
7802 
7803     case CK_LValueToRValue: {
7804       LValue LVal;
7805       if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
7806         return false;
7807       APValue RVal;
7808       // Note, we use the subexpression's type in order to retain cv-qualifiers.
7809       if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
7810                                           LVal, RVal))
7811         return false;
7812       return DerivedSuccess(RVal, E);
7813     }
7814     case CK_LValueToRValueBitCast: {
7815       APValue DestValue, SourceValue;
7816       if (!Evaluate(SourceValue, Info, E->getSubExpr()))
7817         return false;
7818       if (!handleLValueToRValueBitCast(Info, DestValue, SourceValue, E))
7819         return false;
7820       return DerivedSuccess(DestValue, E);
7821     }
7822 
7823     case CK_AddressSpaceConversion: {
7824       APValue Value;
7825       if (!Evaluate(Value, Info, E->getSubExpr()))
7826         return false;
7827       return DerivedSuccess(Value, E);
7828     }
7829     }
7830 
7831     return Error(E);
7832   }
7833 
VisitUnaryPostInc(const UnaryOperator * UO)7834   bool VisitUnaryPostInc(const UnaryOperator *UO) {
7835     return VisitUnaryPostIncDec(UO);
7836   }
VisitUnaryPostDec(const UnaryOperator * UO)7837   bool VisitUnaryPostDec(const UnaryOperator *UO) {
7838     return VisitUnaryPostIncDec(UO);
7839   }
VisitUnaryPostIncDec(const UnaryOperator * UO)7840   bool VisitUnaryPostIncDec(const UnaryOperator *UO) {
7841     if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
7842       return Error(UO);
7843 
7844     LValue LVal;
7845     if (!EvaluateLValue(UO->getSubExpr(), LVal, Info))
7846       return false;
7847     APValue RVal;
7848     if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
7849                       UO->isIncrementOp(), &RVal))
7850       return false;
7851     return DerivedSuccess(RVal, UO);
7852   }
7853 
VisitStmtExpr(const StmtExpr * E)7854   bool VisitStmtExpr(const StmtExpr *E) {
7855     // We will have checked the full-expressions inside the statement expression
7856     // when they were completed, and don't need to check them again now.
7857     llvm::SaveAndRestore<bool> NotCheckingForUB(
7858         Info.CheckingForUndefinedBehavior, false);
7859 
7860     const CompoundStmt *CS = E->getSubStmt();
7861     if (CS->body_empty())
7862       return true;
7863 
7864     BlockScopeRAII Scope(Info);
7865     for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
7866                                            BE = CS->body_end();
7867          /**/; ++BI) {
7868       if (BI + 1 == BE) {
7869         const Expr *FinalExpr = dyn_cast<Expr>(*BI);
7870         if (!FinalExpr) {
7871           Info.FFDiag((*BI)->getBeginLoc(),
7872                       diag::note_constexpr_stmt_expr_unsupported);
7873           return false;
7874         }
7875         return this->Visit(FinalExpr) && Scope.destroy();
7876       }
7877 
7878       APValue ReturnValue;
7879       StmtResult Result = { ReturnValue, nullptr };
7880       EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI);
7881       if (ESR != ESR_Succeeded) {
7882         // FIXME: If the statement-expression terminated due to 'return',
7883         // 'break', or 'continue', it would be nice to propagate that to
7884         // the outer statement evaluation rather than bailing out.
7885         if (ESR != ESR_Failed)
7886           Info.FFDiag((*BI)->getBeginLoc(),
7887                       diag::note_constexpr_stmt_expr_unsupported);
7888         return false;
7889       }
7890     }
7891 
7892     llvm_unreachable("Return from function from the loop above.");
7893   }
7894 
7895   /// Visit a value which is evaluated, but whose value is ignored.
VisitIgnoredValue(const Expr * E)7896   void VisitIgnoredValue(const Expr *E) {
7897     EvaluateIgnoredValue(Info, E);
7898   }
7899 
7900   /// Potentially visit a MemberExpr's base expression.
VisitIgnoredBaseExpression(const Expr * E)7901   void VisitIgnoredBaseExpression(const Expr *E) {
7902     // While MSVC doesn't evaluate the base expression, it does diagnose the
7903     // presence of side-effecting behavior.
7904     if (Info.getLangOpts().MSVCCompat && !E->HasSideEffects(Info.Ctx))
7905       return;
7906     VisitIgnoredValue(E);
7907   }
7908 };
7909 
7910 } // namespace
7911 
7912 //===----------------------------------------------------------------------===//
7913 // Common base class for lvalue and temporary evaluation.
7914 //===----------------------------------------------------------------------===//
7915 namespace {
7916 template<class Derived>
7917 class LValueExprEvaluatorBase
7918   : public ExprEvaluatorBase<Derived> {
7919 protected:
7920   LValue &Result;
7921   bool InvalidBaseOK;
7922   typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
7923   typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy;
7924 
Success(APValue::LValueBase B)7925   bool Success(APValue::LValueBase B) {
7926     Result.set(B);
7927     return true;
7928   }
7929 
evaluatePointer(const Expr * E,LValue & Result)7930   bool evaluatePointer(const Expr *E, LValue &Result) {
7931     return EvaluatePointer(E, Result, this->Info, InvalidBaseOK);
7932   }
7933 
7934 public:
LValueExprEvaluatorBase(EvalInfo & Info,LValue & Result,bool InvalidBaseOK)7935   LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result, bool InvalidBaseOK)
7936       : ExprEvaluatorBaseTy(Info), Result(Result),
7937         InvalidBaseOK(InvalidBaseOK) {}
7938 
Success(const APValue & V,const Expr * E)7939   bool Success(const APValue &V, const Expr *E) {
7940     Result.setFrom(this->Info.Ctx, V);
7941     return true;
7942   }
7943 
VisitMemberExpr(const MemberExpr * E)7944   bool VisitMemberExpr(const MemberExpr *E) {
7945     // Handle non-static data members.
7946     QualType BaseTy;
7947     bool EvalOK;
7948     if (E->isArrow()) {
7949       EvalOK = evaluatePointer(E->getBase(), Result);
7950       BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
7951     } else if (E->getBase()->isRValue()) {
7952       assert(E->getBase()->getType()->isRecordType());
7953       EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info);
7954       BaseTy = E->getBase()->getType();
7955     } else {
7956       EvalOK = this->Visit(E->getBase());
7957       BaseTy = E->getBase()->getType();
7958     }
7959     if (!EvalOK) {
7960       if (!InvalidBaseOK)
7961         return false;
7962       Result.setInvalid(E);
7963       return true;
7964     }
7965 
7966     const ValueDecl *MD = E->getMemberDecl();
7967     if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
7968       assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
7969              FD->getParent()->getCanonicalDecl() && "record / field mismatch");
7970       (void)BaseTy;
7971       if (!HandleLValueMember(this->Info, E, Result, FD))
7972         return false;
7973     } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
7974       if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
7975         return false;
7976     } else
7977       return this->Error(E);
7978 
7979     if (MD->getType()->isReferenceType()) {
7980       APValue RefValue;
7981       if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
7982                                           RefValue))
7983         return false;
7984       return Success(RefValue, E);
7985     }
7986     return true;
7987   }
7988 
VisitBinaryOperator(const BinaryOperator * E)7989   bool VisitBinaryOperator(const BinaryOperator *E) {
7990     switch (E->getOpcode()) {
7991     default:
7992       return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
7993 
7994     case BO_PtrMemD:
7995     case BO_PtrMemI:
7996       return HandleMemberPointerAccess(this->Info, E, Result);
7997     }
7998   }
7999 
VisitCastExpr(const CastExpr * E)8000   bool VisitCastExpr(const CastExpr *E) {
8001     switch (E->getCastKind()) {
8002     default:
8003       return ExprEvaluatorBaseTy::VisitCastExpr(E);
8004 
8005     case CK_DerivedToBase:
8006     case CK_UncheckedDerivedToBase:
8007       if (!this->Visit(E->getSubExpr()))
8008         return false;
8009 
8010       // Now figure out the necessary offset to add to the base LV to get from
8011       // the derived class to the base class.
8012       return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(),
8013                                   Result);
8014     }
8015   }
8016 };
8017 }
8018 
8019 //===----------------------------------------------------------------------===//
8020 // LValue Evaluation
8021 //
8022 // This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
8023 // function designators (in C), decl references to void objects (in C), and
8024 // temporaries (if building with -Wno-address-of-temporary).
8025 //
8026 // LValue evaluation produces values comprising a base expression of one of the
8027 // following types:
8028 // - Declarations
8029 //  * VarDecl
8030 //  * FunctionDecl
8031 // - Literals
8032 //  * CompoundLiteralExpr in C (and in global scope in C++)
8033 //  * StringLiteral
8034 //  * PredefinedExpr
8035 //  * ObjCStringLiteralExpr
8036 //  * ObjCEncodeExpr
8037 //  * AddrLabelExpr
8038 //  * BlockExpr
8039 //  * CallExpr for a MakeStringConstant builtin
8040 // - typeid(T) expressions, as TypeInfoLValues
8041 // - Locals and temporaries
8042 //  * MaterializeTemporaryExpr
8043 //  * Any Expr, with a CallIndex indicating the function in which the temporary
8044 //    was evaluated, for cases where the MaterializeTemporaryExpr is missing
8045 //    from the AST (FIXME).
8046 //  * A MaterializeTemporaryExpr that has static storage duration, with no
8047 //    CallIndex, for a lifetime-extended temporary.
8048 //  * The ConstantExpr that is currently being evaluated during evaluation of an
8049 //    immediate invocation.
8050 // plus an offset in bytes.
8051 //===----------------------------------------------------------------------===//
8052 namespace {
8053 class LValueExprEvaluator
8054   : public LValueExprEvaluatorBase<LValueExprEvaluator> {
8055 public:
LValueExprEvaluator(EvalInfo & Info,LValue & Result,bool InvalidBaseOK)8056   LValueExprEvaluator(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) :
8057     LValueExprEvaluatorBaseTy(Info, Result, InvalidBaseOK) {}
8058 
8059   bool VisitVarDecl(const Expr *E, const VarDecl *VD);
8060   bool VisitUnaryPreIncDec(const UnaryOperator *UO);
8061 
8062   bool VisitDeclRefExpr(const DeclRefExpr *E);
VisitPredefinedExpr(const PredefinedExpr * E)8063   bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
8064   bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
8065   bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
8066   bool VisitMemberExpr(const MemberExpr *E);
VisitStringLiteral(const StringLiteral * E)8067   bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
VisitObjCEncodeExpr(const ObjCEncodeExpr * E)8068   bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
8069   bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
8070   bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
8071   bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
8072   bool VisitUnaryDeref(const UnaryOperator *E);
8073   bool VisitUnaryReal(const UnaryOperator *E);
8074   bool VisitUnaryImag(const UnaryOperator *E);
VisitUnaryPreInc(const UnaryOperator * UO)8075   bool VisitUnaryPreInc(const UnaryOperator *UO) {
8076     return VisitUnaryPreIncDec(UO);
8077   }
VisitUnaryPreDec(const UnaryOperator * UO)8078   bool VisitUnaryPreDec(const UnaryOperator *UO) {
8079     return VisitUnaryPreIncDec(UO);
8080   }
8081   bool VisitBinAssign(const BinaryOperator *BO);
8082   bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);
8083 
VisitCastExpr(const CastExpr * E)8084   bool VisitCastExpr(const CastExpr *E) {
8085     switch (E->getCastKind()) {
8086     default:
8087       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
8088 
8089     case CK_LValueBitCast:
8090       this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
8091       if (!Visit(E->getSubExpr()))
8092         return false;
8093       Result.Designator.setInvalid();
8094       return true;
8095 
8096     case CK_BaseToDerived:
8097       if (!Visit(E->getSubExpr()))
8098         return false;
8099       return HandleBaseToDerivedCast(Info, E, Result);
8100 
8101     case CK_Dynamic:
8102       if (!Visit(E->getSubExpr()))
8103         return false;
8104       return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result);
8105     }
8106   }
8107 };
8108 } // end anonymous namespace
8109 
8110 /// Evaluate an expression as an lvalue. This can be legitimately called on
8111 /// expressions which are not glvalues, in three cases:
8112 ///  * function designators in C, and
8113 ///  * "extern void" objects
8114 ///  * @selector() expressions in Objective-C
EvaluateLValue(const Expr * E,LValue & Result,EvalInfo & Info,bool InvalidBaseOK)8115 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
8116                            bool InvalidBaseOK) {
8117   assert(!E->isValueDependent());
8118   assert(E->isGLValue() || E->getType()->isFunctionType() ||
8119          E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E));
8120   return LValueExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
8121 }
8122 
VisitDeclRefExpr(const DeclRefExpr * E)8123 bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
8124   const NamedDecl *D = E->getDecl();
8125   if (isa<FunctionDecl, MSGuidDecl, TemplateParamObjectDecl>(D))
8126     return Success(cast<ValueDecl>(D));
8127   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
8128     return VisitVarDecl(E, VD);
8129   if (const BindingDecl *BD = dyn_cast<BindingDecl>(D))
8130     return Visit(BD->getBinding());
8131   return Error(E);
8132 }
8133 
8134 
VisitVarDecl(const Expr * E,const VarDecl * VD)8135 bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
8136 
8137   // If we are within a lambda's call operator, check whether the 'VD' referred
8138   // to within 'E' actually represents a lambda-capture that maps to a
8139   // data-member/field within the closure object, and if so, evaluate to the
8140   // field or what the field refers to.
8141   if (Info.CurrentCall && isLambdaCallOperator(Info.CurrentCall->Callee) &&
8142       isa<DeclRefExpr>(E) &&
8143       cast<DeclRefExpr>(E)->refersToEnclosingVariableOrCapture()) {
8144     // We don't always have a complete capture-map when checking or inferring if
8145     // the function call operator meets the requirements of a constexpr function
8146     // - but we don't need to evaluate the captures to determine constexprness
8147     // (dcl.constexpr C++17).
8148     if (Info.checkingPotentialConstantExpression())
8149       return false;
8150 
8151     if (auto *FD = Info.CurrentCall->LambdaCaptureFields.lookup(VD)) {
8152       // Start with 'Result' referring to the complete closure object...
8153       Result = *Info.CurrentCall->This;
8154       // ... then update it to refer to the field of the closure object
8155       // that represents the capture.
8156       if (!HandleLValueMember(Info, E, Result, FD))
8157         return false;
8158       // And if the field is of reference type, update 'Result' to refer to what
8159       // the field refers to.
8160       if (FD->getType()->isReferenceType()) {
8161         APValue RVal;
8162         if (!handleLValueToRValueConversion(Info, E, FD->getType(), Result,
8163                                             RVal))
8164           return false;
8165         Result.setFrom(Info.Ctx, RVal);
8166       }
8167       return true;
8168     }
8169   }
8170 
8171   CallStackFrame *Frame = nullptr;
8172   unsigned Version = 0;
8173   if (VD->hasLocalStorage()) {
8174     // Only if a local variable was declared in the function currently being
8175     // evaluated, do we expect to be able to find its value in the current
8176     // frame. (Otherwise it was likely declared in an enclosing context and
8177     // could either have a valid evaluatable value (for e.g. a constexpr
8178     // variable) or be ill-formed (and trigger an appropriate evaluation
8179     // diagnostic)).
8180     CallStackFrame *CurrFrame = Info.CurrentCall;
8181     if (CurrFrame->Callee && CurrFrame->Callee->Equals(VD->getDeclContext())) {
8182       // Function parameters are stored in some caller's frame. (Usually the
8183       // immediate caller, but for an inherited constructor they may be more
8184       // distant.)
8185       if (auto *PVD = dyn_cast<ParmVarDecl>(VD)) {
8186         if (CurrFrame->Arguments) {
8187           VD = CurrFrame->Arguments.getOrigParam(PVD);
8188           Frame =
8189               Info.getCallFrameAndDepth(CurrFrame->Arguments.CallIndex).first;
8190           Version = CurrFrame->Arguments.Version;
8191         }
8192       } else {
8193         Frame = CurrFrame;
8194         Version = CurrFrame->getCurrentTemporaryVersion(VD);
8195       }
8196     }
8197   }
8198 
8199   if (!VD->getType()->isReferenceType()) {
8200     if (Frame) {
8201       Result.set({VD, Frame->Index, Version});
8202       return true;
8203     }
8204     return Success(VD);
8205   }
8206 
8207   if (!Info.getLangOpts().CPlusPlus11) {
8208     Info.CCEDiag(E, diag::note_constexpr_ltor_non_integral, 1)
8209         << VD << VD->getType();
8210     Info.Note(VD->getLocation(), diag::note_declared_at);
8211   }
8212 
8213   APValue *V;
8214   if (!evaluateVarDeclInit(Info, E, VD, Frame, Version, V))
8215     return false;
8216   if (!V->hasValue()) {
8217     // FIXME: Is it possible for V to be indeterminate here? If so, we should
8218     // adjust the diagnostic to say that.
8219     if (!Info.checkingPotentialConstantExpression())
8220       Info.FFDiag(E, diag::note_constexpr_use_uninit_reference);
8221     return false;
8222   }
8223   return Success(*V, E);
8224 }
8225 
VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr * E)8226 bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
8227     const MaterializeTemporaryExpr *E) {
8228   // Walk through the expression to find the materialized temporary itself.
8229   SmallVector<const Expr *, 2> CommaLHSs;
8230   SmallVector<SubobjectAdjustment, 2> Adjustments;
8231   const Expr *Inner =
8232       E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
8233 
8234   // If we passed any comma operators, evaluate their LHSs.
8235   for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
8236     if (!EvaluateIgnoredValue(Info, CommaLHSs[I]))
8237       return false;
8238 
8239   // A materialized temporary with static storage duration can appear within the
8240   // result of a constant expression evaluation, so we need to preserve its
8241   // value for use outside this evaluation.
8242   APValue *Value;
8243   if (E->getStorageDuration() == SD_Static) {
8244     // FIXME: What about SD_Thread?
8245     Value = E->getOrCreateValue(true);
8246     *Value = APValue();
8247     Result.set(E);
8248   } else {
8249     Value = &Info.CurrentCall->createTemporary(
8250         E, E->getType(),
8251         E->getStorageDuration() == SD_FullExpression ? ScopeKind::FullExpression
8252                                                      : ScopeKind::Block,
8253         Result);
8254   }
8255 
8256   QualType Type = Inner->getType();
8257 
8258   // Materialize the temporary itself.
8259   if (!EvaluateInPlace(*Value, Info, Result, Inner)) {
8260     *Value = APValue();
8261     return false;
8262   }
8263 
8264   // Adjust our lvalue to refer to the desired subobject.
8265   for (unsigned I = Adjustments.size(); I != 0; /**/) {
8266     --I;
8267     switch (Adjustments[I].Kind) {
8268     case SubobjectAdjustment::DerivedToBaseAdjustment:
8269       if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath,
8270                                 Type, Result))
8271         return false;
8272       Type = Adjustments[I].DerivedToBase.BasePath->getType();
8273       break;
8274 
8275     case SubobjectAdjustment::FieldAdjustment:
8276       if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field))
8277         return false;
8278       Type = Adjustments[I].Field->getType();
8279       break;
8280 
8281     case SubobjectAdjustment::MemberPointerAdjustment:
8282       if (!HandleMemberPointerAccess(this->Info, Type, Result,
8283                                      Adjustments[I].Ptr.RHS))
8284         return false;
8285       Type = Adjustments[I].Ptr.MPT->getPointeeType();
8286       break;
8287     }
8288   }
8289 
8290   return true;
8291 }
8292 
8293 bool
VisitCompoundLiteralExpr(const CompoundLiteralExpr * E)8294 LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
8295   assert((!Info.getLangOpts().CPlusPlus || E->isFileScope()) &&
8296          "lvalue compound literal in c++?");
8297   // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
8298   // only see this when folding in C, so there's no standard to follow here.
8299   return Success(E);
8300 }
8301 
VisitCXXTypeidExpr(const CXXTypeidExpr * E)8302 bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
8303   TypeInfoLValue TypeInfo;
8304 
8305   if (!E->isPotentiallyEvaluated()) {
8306     if (E->isTypeOperand())
8307       TypeInfo = TypeInfoLValue(E->getTypeOperand(Info.Ctx).getTypePtr());
8308     else
8309       TypeInfo = TypeInfoLValue(E->getExprOperand()->getType().getTypePtr());
8310   } else {
8311     if (!Info.Ctx.getLangOpts().CPlusPlus20) {
8312       Info.CCEDiag(E, diag::note_constexpr_typeid_polymorphic)
8313         << E->getExprOperand()->getType()
8314         << E->getExprOperand()->getSourceRange();
8315     }
8316 
8317     if (!Visit(E->getExprOperand()))
8318       return false;
8319 
8320     Optional<DynamicType> DynType =
8321         ComputeDynamicType(Info, E, Result, AK_TypeId);
8322     if (!DynType)
8323       return false;
8324 
8325     TypeInfo =
8326         TypeInfoLValue(Info.Ctx.getRecordType(DynType->Type).getTypePtr());
8327   }
8328 
8329   return Success(APValue::LValueBase::getTypeInfo(TypeInfo, E->getType()));
8330 }
8331 
VisitCXXUuidofExpr(const CXXUuidofExpr * E)8332 bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
8333   return Success(E->getGuidDecl());
8334 }
8335 
VisitMemberExpr(const MemberExpr * E)8336 bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
8337   // Handle static data members.
8338   if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
8339     VisitIgnoredBaseExpression(E->getBase());
8340     return VisitVarDecl(E, VD);
8341   }
8342 
8343   // Handle static member functions.
8344   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
8345     if (MD->isStatic()) {
8346       VisitIgnoredBaseExpression(E->getBase());
8347       return Success(MD);
8348     }
8349   }
8350 
8351   // Handle non-static data members.
8352   return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
8353 }
8354 
VisitArraySubscriptExpr(const ArraySubscriptExpr * E)8355 bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
8356   // FIXME: Deal with vectors as array subscript bases.
8357   if (E->getBase()->getType()->isVectorType())
8358     return Error(E);
8359 
8360   APSInt Index;
8361   bool Success = true;
8362 
8363   // C++17's rules require us to evaluate the LHS first, regardless of which
8364   // side is the base.
8365   for (const Expr *SubExpr : {E->getLHS(), E->getRHS()}) {
8366     if (SubExpr == E->getBase() ? !evaluatePointer(SubExpr, Result)
8367                                 : !EvaluateInteger(SubExpr, Index, Info)) {
8368       if (!Info.noteFailure())
8369         return false;
8370       Success = false;
8371     }
8372   }
8373 
8374   return Success &&
8375          HandleLValueArrayAdjustment(Info, E, Result, E->getType(), Index);
8376 }
8377 
VisitUnaryDeref(const UnaryOperator * E)8378 bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
8379   return evaluatePointer(E->getSubExpr(), Result);
8380 }
8381 
VisitUnaryReal(const UnaryOperator * E)8382 bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
8383   if (!Visit(E->getSubExpr()))
8384     return false;
8385   // __real is a no-op on scalar lvalues.
8386   if (E->getSubExpr()->getType()->isAnyComplexType())
8387     HandleLValueComplexElement(Info, E, Result, E->getType(), false);
8388   return true;
8389 }
8390 
VisitUnaryImag(const UnaryOperator * E)8391 bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
8392   assert(E->getSubExpr()->getType()->isAnyComplexType() &&
8393          "lvalue __imag__ on scalar?");
8394   if (!Visit(E->getSubExpr()))
8395     return false;
8396   HandleLValueComplexElement(Info, E, Result, E->getType(), true);
8397   return true;
8398 }
8399 
VisitUnaryPreIncDec(const UnaryOperator * UO)8400 bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
8401   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8402     return Error(UO);
8403 
8404   if (!this->Visit(UO->getSubExpr()))
8405     return false;
8406 
8407   return handleIncDec(
8408       this->Info, UO, Result, UO->getSubExpr()->getType(),
8409       UO->isIncrementOp(), nullptr);
8410 }
8411 
VisitCompoundAssignOperator(const CompoundAssignOperator * CAO)8412 bool LValueExprEvaluator::VisitCompoundAssignOperator(
8413     const CompoundAssignOperator *CAO) {
8414   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8415     return Error(CAO);
8416 
8417   bool Success = true;
8418 
8419   // C++17 onwards require that we evaluate the RHS first.
8420   APValue RHS;
8421   if (!Evaluate(RHS, this->Info, CAO->getRHS())) {
8422     if (!Info.noteFailure())
8423       return false;
8424     Success = false;
8425   }
8426 
8427   // The overall lvalue result is the result of evaluating the LHS.
8428   if (!this->Visit(CAO->getLHS()) || !Success)
8429     return false;
8430 
8431   return handleCompoundAssignment(
8432       this->Info, CAO,
8433       Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
8434       CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS);
8435 }
8436 
VisitBinAssign(const BinaryOperator * E)8437 bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
8438   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8439     return Error(E);
8440 
8441   bool Success = true;
8442 
8443   // C++17 onwards require that we evaluate the RHS first.
8444   APValue NewVal;
8445   if (!Evaluate(NewVal, this->Info, E->getRHS())) {
8446     if (!Info.noteFailure())
8447       return false;
8448     Success = false;
8449   }
8450 
8451   if (!this->Visit(E->getLHS()) || !Success)
8452     return false;
8453 
8454   if (Info.getLangOpts().CPlusPlus20 &&
8455       !HandleUnionActiveMemberChange(Info, E->getLHS(), Result))
8456     return false;
8457 
8458   return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
8459                           NewVal);
8460 }
8461 
8462 //===----------------------------------------------------------------------===//
8463 // Pointer Evaluation
8464 //===----------------------------------------------------------------------===//
8465 
8466 /// Attempts to compute the number of bytes available at the pointer
8467 /// returned by a function with the alloc_size attribute. Returns true if we
8468 /// were successful. Places an unsigned number into `Result`.
8469 ///
8470 /// This expects the given CallExpr to be a call to a function with an
8471 /// alloc_size attribute.
getBytesReturnedByAllocSizeCall(const ASTContext & Ctx,const CallExpr * Call,llvm::APInt & Result)8472 static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
8473                                             const CallExpr *Call,
8474                                             llvm::APInt &Result) {
8475   const AllocSizeAttr *AllocSize = getAllocSizeAttr(Call);
8476 
8477   assert(AllocSize && AllocSize->getElemSizeParam().isValid());
8478   unsigned SizeArgNo = AllocSize->getElemSizeParam().getASTIndex();
8479   unsigned BitsInSizeT = Ctx.getTypeSize(Ctx.getSizeType());
8480   if (Call->getNumArgs() <= SizeArgNo)
8481     return false;
8482 
8483   auto EvaluateAsSizeT = [&](const Expr *E, APSInt &Into) {
8484     Expr::EvalResult ExprResult;
8485     if (!E->EvaluateAsInt(ExprResult, Ctx, Expr::SE_AllowSideEffects))
8486       return false;
8487     Into = ExprResult.Val.getInt();
8488     if (Into.isNegative() || !Into.isIntN(BitsInSizeT))
8489       return false;
8490     Into = Into.zextOrSelf(BitsInSizeT);
8491     return true;
8492   };
8493 
8494   APSInt SizeOfElem;
8495   if (!EvaluateAsSizeT(Call->getArg(SizeArgNo), SizeOfElem))
8496     return false;
8497 
8498   if (!AllocSize->getNumElemsParam().isValid()) {
8499     Result = std::move(SizeOfElem);
8500     return true;
8501   }
8502 
8503   APSInt NumberOfElems;
8504   unsigned NumArgNo = AllocSize->getNumElemsParam().getASTIndex();
8505   if (!EvaluateAsSizeT(Call->getArg(NumArgNo), NumberOfElems))
8506     return false;
8507 
8508   bool Overflow;
8509   llvm::APInt BytesAvailable = SizeOfElem.umul_ov(NumberOfElems, Overflow);
8510   if (Overflow)
8511     return false;
8512 
8513   Result = std::move(BytesAvailable);
8514   return true;
8515 }
8516 
8517 /// Convenience function. LVal's base must be a call to an alloc_size
8518 /// function.
getBytesReturnedByAllocSizeCall(const ASTContext & Ctx,const LValue & LVal,llvm::APInt & Result)8519 static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
8520                                             const LValue &LVal,
8521                                             llvm::APInt &Result) {
8522   assert(isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
8523          "Can't get the size of a non alloc_size function");
8524   const auto *Base = LVal.getLValueBase().get<const Expr *>();
8525   const CallExpr *CE = tryUnwrapAllocSizeCall(Base);
8526   return getBytesReturnedByAllocSizeCall(Ctx, CE, Result);
8527 }
8528 
8529 /// Attempts to evaluate the given LValueBase as the result of a call to
8530 /// a function with the alloc_size attribute. If it was possible to do so, this
8531 /// function will return true, make Result's Base point to said function call,
8532 /// and mark Result's Base as invalid.
evaluateLValueAsAllocSize(EvalInfo & Info,APValue::LValueBase Base,LValue & Result)8533 static bool evaluateLValueAsAllocSize(EvalInfo &Info, APValue::LValueBase Base,
8534                                       LValue &Result) {
8535   if (Base.isNull())
8536     return false;
8537 
8538   // Because we do no form of static analysis, we only support const variables.
8539   //
8540   // Additionally, we can't support parameters, nor can we support static
8541   // variables (in the latter case, use-before-assign isn't UB; in the former,
8542   // we have no clue what they'll be assigned to).
8543   const auto *VD =
8544       dyn_cast_or_null<VarDecl>(Base.dyn_cast<const ValueDecl *>());
8545   if (!VD || !VD->isLocalVarDecl() || !VD->getType().isConstQualified())
8546     return false;
8547 
8548   const Expr *Init = VD->getAnyInitializer();
8549   if (!Init)
8550     return false;
8551 
8552   const Expr *E = Init->IgnoreParens();
8553   if (!tryUnwrapAllocSizeCall(E))
8554     return false;
8555 
8556   // Store E instead of E unwrapped so that the type of the LValue's base is
8557   // what the user wanted.
8558   Result.setInvalid(E);
8559 
8560   QualType Pointee = E->getType()->castAs<PointerType>()->getPointeeType();
8561   Result.addUnsizedArray(Info, E, Pointee);
8562   return true;
8563 }
8564 
8565 namespace {
8566 class PointerExprEvaluator
8567   : public ExprEvaluatorBase<PointerExprEvaluator> {
8568   LValue &Result;
8569   bool InvalidBaseOK;
8570 
Success(const Expr * E)8571   bool Success(const Expr *E) {
8572     Result.set(E);
8573     return true;
8574   }
8575 
evaluateLValue(const Expr * E,LValue & Result)8576   bool evaluateLValue(const Expr *E, LValue &Result) {
8577     return EvaluateLValue(E, Result, Info, InvalidBaseOK);
8578   }
8579 
evaluatePointer(const Expr * E,LValue & Result)8580   bool evaluatePointer(const Expr *E, LValue &Result) {
8581     return EvaluatePointer(E, Result, Info, InvalidBaseOK);
8582   }
8583 
8584   bool visitNonBuiltinCallExpr(const CallExpr *E);
8585 public:
8586 
PointerExprEvaluator(EvalInfo & info,LValue & Result,bool InvalidBaseOK)8587   PointerExprEvaluator(EvalInfo &info, LValue &Result, bool InvalidBaseOK)
8588       : ExprEvaluatorBaseTy(info), Result(Result),
8589         InvalidBaseOK(InvalidBaseOK) {}
8590 
Success(const APValue & V,const Expr * E)8591   bool Success(const APValue &V, const Expr *E) {
8592     Result.setFrom(Info.Ctx, V);
8593     return true;
8594   }
ZeroInitialization(const Expr * E)8595   bool ZeroInitialization(const Expr *E) {
8596     Result.setNull(Info.Ctx, E->getType());
8597     return true;
8598   }
8599 
8600   bool VisitBinaryOperator(const BinaryOperator *E);
8601   bool VisitCastExpr(const CastExpr* E);
8602   bool VisitUnaryAddrOf(const UnaryOperator *E);
VisitObjCStringLiteral(const ObjCStringLiteral * E)8603   bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
8604       { return Success(E); }
VisitObjCBoxedExpr(const ObjCBoxedExpr * E)8605   bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
8606     if (E->isExpressibleAsConstantInitializer())
8607       return Success(E);
8608     if (Info.noteFailure())
8609       EvaluateIgnoredValue(Info, E->getSubExpr());
8610     return Error(E);
8611   }
VisitAddrLabelExpr(const AddrLabelExpr * E)8612   bool VisitAddrLabelExpr(const AddrLabelExpr *E)
8613       { return Success(E); }
8614   bool VisitCallExpr(const CallExpr *E);
8615   bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
VisitBlockExpr(const BlockExpr * E)8616   bool VisitBlockExpr(const BlockExpr *E) {
8617     if (!E->getBlockDecl()->hasCaptures())
8618       return Success(E);
8619     return Error(E);
8620   }
VisitCXXThisExpr(const CXXThisExpr * E)8621   bool VisitCXXThisExpr(const CXXThisExpr *E) {
8622     // Can't look at 'this' when checking a potential constant expression.
8623     if (Info.checkingPotentialConstantExpression())
8624       return false;
8625     if (!Info.CurrentCall->This) {
8626       if (Info.getLangOpts().CPlusPlus11)
8627         Info.FFDiag(E, diag::note_constexpr_this) << E->isImplicit();
8628       else
8629         Info.FFDiag(E);
8630       return false;
8631     }
8632     Result = *Info.CurrentCall->This;
8633     // If we are inside a lambda's call operator, the 'this' expression refers
8634     // to the enclosing '*this' object (either by value or reference) which is
8635     // either copied into the closure object's field that represents the '*this'
8636     // or refers to '*this'.
8637     if (isLambdaCallOperator(Info.CurrentCall->Callee)) {
8638       // Ensure we actually have captured 'this'. (an error will have
8639       // been previously reported if not).
8640       if (!Info.CurrentCall->LambdaThisCaptureField)
8641         return false;
8642 
8643       // Update 'Result' to refer to the data member/field of the closure object
8644       // that represents the '*this' capture.
8645       if (!HandleLValueMember(Info, E, Result,
8646                              Info.CurrentCall->LambdaThisCaptureField))
8647         return false;
8648       // If we captured '*this' by reference, replace the field with its referent.
8649       if (Info.CurrentCall->LambdaThisCaptureField->getType()
8650               ->isPointerType()) {
8651         APValue RVal;
8652         if (!handleLValueToRValueConversion(Info, E, E->getType(), Result,
8653                                             RVal))
8654           return false;
8655 
8656         Result.setFrom(Info.Ctx, RVal);
8657       }
8658     }
8659     return true;
8660   }
8661 
8662   bool VisitCXXNewExpr(const CXXNewExpr *E);
8663 
VisitSourceLocExpr(const SourceLocExpr * E)8664   bool VisitSourceLocExpr(const SourceLocExpr *E) {
8665     assert(E->isStringType() && "SourceLocExpr isn't a pointer type?");
8666     APValue LValResult = E->EvaluateInContext(
8667         Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
8668     Result.setFrom(Info.Ctx, LValResult);
8669     return true;
8670   }
8671 
8672   // FIXME: Missing: @protocol, @selector
8673 };
8674 } // end anonymous namespace
8675 
EvaluatePointer(const Expr * E,LValue & Result,EvalInfo & Info,bool InvalidBaseOK)8676 static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info,
8677                             bool InvalidBaseOK) {
8678   assert(!E->isValueDependent());
8679   assert(E->isRValue() && E->getType()->hasPointerRepresentation());
8680   return PointerExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
8681 }
8682 
VisitBinaryOperator(const BinaryOperator * E)8683 bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
8684   if (E->getOpcode() != BO_Add &&
8685       E->getOpcode() != BO_Sub)
8686     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
8687 
8688   const Expr *PExp = E->getLHS();
8689   const Expr *IExp = E->getRHS();
8690   if (IExp->getType()->isPointerType())
8691     std::swap(PExp, IExp);
8692 
8693   bool EvalPtrOK = evaluatePointer(PExp, Result);
8694   if (!EvalPtrOK && !Info.noteFailure())
8695     return false;
8696 
8697   llvm::APSInt Offset;
8698   if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
8699     return false;
8700 
8701   if (E->getOpcode() == BO_Sub)
8702     negateAsSigned(Offset);
8703 
8704   QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
8705   return HandleLValueArrayAdjustment(Info, E, Result, Pointee, Offset);
8706 }
8707 
VisitUnaryAddrOf(const UnaryOperator * E)8708 bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
8709   return evaluateLValue(E->getSubExpr(), Result);
8710 }
8711 
VisitCastExpr(const CastExpr * E)8712 bool PointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
8713   const Expr *SubExpr = E->getSubExpr();
8714 
8715   switch (E->getCastKind()) {
8716   default:
8717     break;
8718   case CK_BitCast:
8719   case CK_CPointerToObjCPointerCast:
8720   case CK_BlockPointerToObjCPointerCast:
8721   case CK_AnyPointerToBlockPointerCast:
8722   case CK_AddressSpaceConversion:
8723     if (!Visit(SubExpr))
8724       return false;
8725     // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
8726     // permitted in constant expressions in C++11. Bitcasts from cv void* are
8727     // also static_casts, but we disallow them as a resolution to DR1312.
8728     if (!E->getType()->isVoidPointerType()) {
8729       if (!Result.InvalidBase && !Result.Designator.Invalid &&
8730           !Result.IsNullPtr &&
8731           Info.Ctx.hasSameUnqualifiedType(Result.Designator.getType(Info.Ctx),
8732                                           E->getType()->getPointeeType()) &&
8733           Info.getStdAllocatorCaller("allocate")) {
8734         // Inside a call to std::allocator::allocate and friends, we permit
8735         // casting from void* back to cv1 T* for a pointer that points to a
8736         // cv2 T.
8737       } else {
8738         Result.Designator.setInvalid();
8739         if (SubExpr->getType()->isVoidPointerType())
8740           CCEDiag(E, diag::note_constexpr_invalid_cast)
8741             << 3 << SubExpr->getType();
8742         else
8743           CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
8744       }
8745     }
8746     if (E->getCastKind() == CK_AddressSpaceConversion && Result.IsNullPtr)
8747       ZeroInitialization(E);
8748     return true;
8749 
8750   case CK_DerivedToBase:
8751   case CK_UncheckedDerivedToBase:
8752     if (!evaluatePointer(E->getSubExpr(), Result))
8753       return false;
8754     if (!Result.Base && Result.Offset.isZero())
8755       return true;
8756 
8757     // Now figure out the necessary offset to add to the base LV to get from
8758     // the derived class to the base class.
8759     return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()->
8760                                   castAs<PointerType>()->getPointeeType(),
8761                                 Result);
8762 
8763   case CK_BaseToDerived:
8764     if (!Visit(E->getSubExpr()))
8765       return false;
8766     if (!Result.Base && Result.Offset.isZero())
8767       return true;
8768     return HandleBaseToDerivedCast(Info, E, Result);
8769 
8770   case CK_Dynamic:
8771     if (!Visit(E->getSubExpr()))
8772       return false;
8773     return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result);
8774 
8775   case CK_NullToPointer:
8776     VisitIgnoredValue(E->getSubExpr());
8777     return ZeroInitialization(E);
8778 
8779   case CK_IntegralToPointer: {
8780     CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
8781 
8782     APValue Value;
8783     if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
8784       break;
8785 
8786     if (Value.isInt()) {
8787       unsigned Size = Info.Ctx.getTypeSize(E->getType());
8788       uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
8789       Result.Base = (Expr*)nullptr;
8790       Result.InvalidBase = false;
8791       Result.Offset = CharUnits::fromQuantity(N);
8792       Result.Designator.setInvalid();
8793       Result.IsNullPtr = false;
8794       return true;
8795     } else {
8796       // Cast is of an lvalue, no need to change value.
8797       Result.setFrom(Info.Ctx, Value);
8798       return true;
8799     }
8800   }
8801 
8802   case CK_ArrayToPointerDecay: {
8803     if (SubExpr->isGLValue()) {
8804       if (!evaluateLValue(SubExpr, Result))
8805         return false;
8806     } else {
8807       APValue &Value = Info.CurrentCall->createTemporary(
8808           SubExpr, SubExpr->getType(), ScopeKind::FullExpression, Result);
8809       if (!EvaluateInPlace(Value, Info, Result, SubExpr))
8810         return false;
8811     }
8812     // The result is a pointer to the first element of the array.
8813     auto *AT = Info.Ctx.getAsArrayType(SubExpr->getType());
8814     if (auto *CAT = dyn_cast<ConstantArrayType>(AT))
8815       Result.addArray(Info, E, CAT);
8816     else
8817       Result.addUnsizedArray(Info, E, AT->getElementType());
8818     return true;
8819   }
8820 
8821   case CK_FunctionToPointerDecay:
8822     return evaluateLValue(SubExpr, Result);
8823 
8824   case CK_LValueToRValue: {
8825     LValue LVal;
8826     if (!evaluateLValue(E->getSubExpr(), LVal))
8827       return false;
8828 
8829     APValue RVal;
8830     // Note, we use the subexpression's type in order to retain cv-qualifiers.
8831     if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
8832                                         LVal, RVal))
8833       return InvalidBaseOK &&
8834              evaluateLValueAsAllocSize(Info, LVal.Base, Result);
8835     return Success(RVal, E);
8836   }
8837   }
8838 
8839   return ExprEvaluatorBaseTy::VisitCastExpr(E);
8840 }
8841 
GetAlignOfType(EvalInfo & Info,QualType T,UnaryExprOrTypeTrait ExprKind)8842 static CharUnits GetAlignOfType(EvalInfo &Info, QualType T,
8843                                 UnaryExprOrTypeTrait ExprKind) {
8844   // C++ [expr.alignof]p3:
8845   //     When alignof is applied to a reference type, the result is the
8846   //     alignment of the referenced type.
8847   if (const ReferenceType *Ref = T->getAs<ReferenceType>())
8848     T = Ref->getPointeeType();
8849 
8850   if (T.getQualifiers().hasUnaligned())
8851     return CharUnits::One();
8852 
8853   const bool AlignOfReturnsPreferred =
8854       Info.Ctx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;
8855 
8856   // __alignof is defined to return the preferred alignment.
8857   // Before 8, clang returned the preferred alignment for alignof and _Alignof
8858   // as well.
8859   if (ExprKind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
8860     return Info.Ctx.toCharUnitsFromBits(
8861       Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
8862   // alignof and _Alignof are defined to return the ABI alignment.
8863   else if (ExprKind == UETT_AlignOf)
8864     return Info.Ctx.getTypeAlignInChars(T.getTypePtr());
8865   else
8866     llvm_unreachable("GetAlignOfType on a non-alignment ExprKind");
8867 }
8868 
GetAlignOfExpr(EvalInfo & Info,const Expr * E,UnaryExprOrTypeTrait ExprKind)8869 static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E,
8870                                 UnaryExprOrTypeTrait ExprKind) {
8871   E = E->IgnoreParens();
8872 
8873   // The kinds of expressions that we have special-case logic here for
8874   // should be kept up to date with the special checks for those
8875   // expressions in Sema.
8876 
8877   // alignof decl is always accepted, even if it doesn't make sense: we default
8878   // to 1 in those cases.
8879   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
8880     return Info.Ctx.getDeclAlign(DRE->getDecl(),
8881                                  /*RefAsPointee*/true);
8882 
8883   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
8884     return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
8885                                  /*RefAsPointee*/true);
8886 
8887   return GetAlignOfType(Info, E->getType(), ExprKind);
8888 }
8889 
getBaseAlignment(EvalInfo & Info,const LValue & Value)8890 static CharUnits getBaseAlignment(EvalInfo &Info, const LValue &Value) {
8891   if (const auto *VD = Value.Base.dyn_cast<const ValueDecl *>())
8892     return Info.Ctx.getDeclAlign(VD);
8893   if (const auto *E = Value.Base.dyn_cast<const Expr *>())
8894     return GetAlignOfExpr(Info, E, UETT_AlignOf);
8895   return GetAlignOfType(Info, Value.Base.getTypeInfoType(), UETT_AlignOf);
8896 }
8897 
8898 /// Evaluate the value of the alignment argument to __builtin_align_{up,down},
8899 /// __builtin_is_aligned and __builtin_assume_aligned.
getAlignmentArgument(const Expr * E,QualType ForType,EvalInfo & Info,APSInt & Alignment)8900 static bool getAlignmentArgument(const Expr *E, QualType ForType,
8901                                  EvalInfo &Info, APSInt &Alignment) {
8902   if (!EvaluateInteger(E, Alignment, Info))
8903     return false;
8904   if (Alignment < 0 || !Alignment.isPowerOf2()) {
8905     Info.FFDiag(E, diag::note_constexpr_invalid_alignment) << Alignment;
8906     return false;
8907   }
8908   unsigned SrcWidth = Info.Ctx.getIntWidth(ForType);
8909   APSInt MaxValue(APInt::getOneBitSet(SrcWidth, SrcWidth - 1));
8910   if (APSInt::compareValues(Alignment, MaxValue) > 0) {
8911     Info.FFDiag(E, diag::note_constexpr_alignment_too_big)
8912         << MaxValue << ForType << Alignment;
8913     return false;
8914   }
8915   // Ensure both alignment and source value have the same bit width so that we
8916   // don't assert when computing the resulting value.
8917   APSInt ExtAlignment =
8918       APSInt(Alignment.zextOrTrunc(SrcWidth), /*isUnsigned=*/true);
8919   assert(APSInt::compareValues(Alignment, ExtAlignment) == 0 &&
8920          "Alignment should not be changed by ext/trunc");
8921   Alignment = ExtAlignment;
8922   assert(Alignment.getBitWidth() == SrcWidth);
8923   return true;
8924 }
8925 
8926 // To be clear: this happily visits unsupported builtins. Better name welcomed.
visitNonBuiltinCallExpr(const CallExpr * E)8927 bool PointerExprEvaluator::visitNonBuiltinCallExpr(const CallExpr *E) {
8928   if (ExprEvaluatorBaseTy::VisitCallExpr(E))
8929     return true;
8930 
8931   if (!(InvalidBaseOK && getAllocSizeAttr(E)))
8932     return false;
8933 
8934   Result.setInvalid(E);
8935   QualType PointeeTy = E->getType()->castAs<PointerType>()->getPointeeType();
8936   Result.addUnsizedArray(Info, E, PointeeTy);
8937   return true;
8938 }
8939 
VisitCallExpr(const CallExpr * E)8940 bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
8941   if (IsStringLiteralCall(E))
8942     return Success(E);
8943 
8944   if (unsigned BuiltinOp = E->getBuiltinCallee())
8945     return VisitBuiltinCallExpr(E, BuiltinOp);
8946 
8947   return visitNonBuiltinCallExpr(E);
8948 }
8949 
8950 // Determine if T is a character type for which we guarantee that
8951 // sizeof(T) == 1.
isOneByteCharacterType(QualType T)8952 static bool isOneByteCharacterType(QualType T) {
8953   return T->isCharType() || T->isChar8Type();
8954 }
8955 
VisitBuiltinCallExpr(const CallExpr * E,unsigned BuiltinOp)8956 bool PointerExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
8957                                                 unsigned BuiltinOp) {
8958   switch (BuiltinOp) {
8959   case Builtin::BI__builtin_addressof:
8960     return evaluateLValue(E->getArg(0), Result);
8961   case Builtin::BI__builtin_assume_aligned: {
8962     // We need to be very careful here because: if the pointer does not have the
8963     // asserted alignment, then the behavior is undefined, and undefined
8964     // behavior is non-constant.
8965     if (!evaluatePointer(E->getArg(0), Result))
8966       return false;
8967 
8968     LValue OffsetResult(Result);
8969     APSInt Alignment;
8970     if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info,
8971                               Alignment))
8972       return false;
8973     CharUnits Align = CharUnits::fromQuantity(Alignment.getZExtValue());
8974 
8975     if (E->getNumArgs() > 2) {
8976       APSInt Offset;
8977       if (!EvaluateInteger(E->getArg(2), Offset, Info))
8978         return false;
8979 
8980       int64_t AdditionalOffset = -Offset.getZExtValue();
8981       OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset);
8982     }
8983 
8984     // If there is a base object, then it must have the correct alignment.
8985     if (OffsetResult.Base) {
8986       CharUnits BaseAlignment = getBaseAlignment(Info, OffsetResult);
8987 
8988       if (BaseAlignment < Align) {
8989         Result.Designator.setInvalid();
8990         // FIXME: Add support to Diagnostic for long / long long.
8991         CCEDiag(E->getArg(0),
8992                 diag::note_constexpr_baa_insufficient_alignment) << 0
8993           << (unsigned)BaseAlignment.getQuantity()
8994           << (unsigned)Align.getQuantity();
8995         return false;
8996       }
8997     }
8998 
8999     // The offset must also have the correct alignment.
9000     if (OffsetResult.Offset.alignTo(Align) != OffsetResult.Offset) {
9001       Result.Designator.setInvalid();
9002 
9003       (OffsetResult.Base
9004            ? CCEDiag(E->getArg(0),
9005                      diag::note_constexpr_baa_insufficient_alignment) << 1
9006            : CCEDiag(E->getArg(0),
9007                      diag::note_constexpr_baa_value_insufficient_alignment))
9008         << (int)OffsetResult.Offset.getQuantity()
9009         << (unsigned)Align.getQuantity();
9010       return false;
9011     }
9012 
9013     return true;
9014   }
9015   case Builtin::BI__builtin_align_up:
9016   case Builtin::BI__builtin_align_down: {
9017     if (!evaluatePointer(E->getArg(0), Result))
9018       return false;
9019     APSInt Alignment;
9020     if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info,
9021                               Alignment))
9022       return false;
9023     CharUnits BaseAlignment = getBaseAlignment(Info, Result);
9024     CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Result.Offset);
9025     // For align_up/align_down, we can return the same value if the alignment
9026     // is known to be greater or equal to the requested value.
9027     if (PtrAlign.getQuantity() >= Alignment)
9028       return true;
9029 
9030     // The alignment could be greater than the minimum at run-time, so we cannot
9031     // infer much about the resulting pointer value. One case is possible:
9032     // For `_Alignas(32) char buf[N]; __builtin_align_down(&buf[idx], 32)` we
9033     // can infer the correct index if the requested alignment is smaller than
9034     // the base alignment so we can perform the computation on the offset.
9035     if (BaseAlignment.getQuantity() >= Alignment) {
9036       assert(Alignment.getBitWidth() <= 64 &&
9037              "Cannot handle > 64-bit address-space");
9038       uint64_t Alignment64 = Alignment.getZExtValue();
9039       CharUnits NewOffset = CharUnits::fromQuantity(
9040           BuiltinOp == Builtin::BI__builtin_align_down
9041               ? llvm::alignDown(Result.Offset.getQuantity(), Alignment64)
9042               : llvm::alignTo(Result.Offset.getQuantity(), Alignment64));
9043       Result.adjustOffset(NewOffset - Result.Offset);
9044       // TODO: diagnose out-of-bounds values/only allow for arrays?
9045       return true;
9046     }
9047     // Otherwise, we cannot constant-evaluate the result.
9048     Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_adjust)
9049         << Alignment;
9050     return false;
9051   }
9052   case Builtin::BI__builtin_operator_new:
9053     return HandleOperatorNewCall(Info, E, Result);
9054   case Builtin::BI__builtin_launder:
9055     return evaluatePointer(E->getArg(0), Result);
9056   case Builtin::BIstrchr:
9057   case Builtin::BIwcschr:
9058   case Builtin::BImemchr:
9059   case Builtin::BIwmemchr:
9060     if (Info.getLangOpts().CPlusPlus11)
9061       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
9062         << /*isConstexpr*/0 << /*isConstructor*/0
9063         << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
9064     else
9065       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
9066     LLVM_FALLTHROUGH;
9067   case Builtin::BI__builtin_strchr:
9068   case Builtin::BI__builtin_wcschr:
9069   case Builtin::BI__builtin_memchr:
9070   case Builtin::BI__builtin_char_memchr:
9071   case Builtin::BI__builtin_wmemchr: {
9072     if (!Visit(E->getArg(0)))
9073       return false;
9074     APSInt Desired;
9075     if (!EvaluateInteger(E->getArg(1), Desired, Info))
9076       return false;
9077     uint64_t MaxLength = uint64_t(-1);
9078     if (BuiltinOp != Builtin::BIstrchr &&
9079         BuiltinOp != Builtin::BIwcschr &&
9080         BuiltinOp != Builtin::BI__builtin_strchr &&
9081         BuiltinOp != Builtin::BI__builtin_wcschr) {
9082       APSInt N;
9083       if (!EvaluateInteger(E->getArg(2), N, Info))
9084         return false;
9085       MaxLength = N.getExtValue();
9086     }
9087     // We cannot find the value if there are no candidates to match against.
9088     if (MaxLength == 0u)
9089       return ZeroInitialization(E);
9090     if (!Result.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
9091         Result.Designator.Invalid)
9092       return false;
9093     QualType CharTy = Result.Designator.getType(Info.Ctx);
9094     bool IsRawByte = BuiltinOp == Builtin::BImemchr ||
9095                      BuiltinOp == Builtin::BI__builtin_memchr;
9096     assert(IsRawByte ||
9097            Info.Ctx.hasSameUnqualifiedType(
9098                CharTy, E->getArg(0)->getType()->getPointeeType()));
9099     // Pointers to const void may point to objects of incomplete type.
9100     if (IsRawByte && CharTy->isIncompleteType()) {
9101       Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy;
9102       return false;
9103     }
9104     // Give up on byte-oriented matching against multibyte elements.
9105     // FIXME: We can compare the bytes in the correct order.
9106     if (IsRawByte && !isOneByteCharacterType(CharTy)) {
9107       Info.FFDiag(E, diag::note_constexpr_memchr_unsupported)
9108           << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'")
9109           << CharTy;
9110       return false;
9111     }
9112     // Figure out what value we're actually looking for (after converting to
9113     // the corresponding unsigned type if necessary).
9114     uint64_t DesiredVal;
9115     bool StopAtNull = false;
9116     switch (BuiltinOp) {
9117     case Builtin::BIstrchr:
9118     case Builtin::BI__builtin_strchr:
9119       // strchr compares directly to the passed integer, and therefore
9120       // always fails if given an int that is not a char.
9121       if (!APSInt::isSameValue(HandleIntToIntCast(Info, E, CharTy,
9122                                                   E->getArg(1)->getType(),
9123                                                   Desired),
9124                                Desired))
9125         return ZeroInitialization(E);
9126       StopAtNull = true;
9127       LLVM_FALLTHROUGH;
9128     case Builtin::BImemchr:
9129     case Builtin::BI__builtin_memchr:
9130     case Builtin::BI__builtin_char_memchr:
9131       // memchr compares by converting both sides to unsigned char. That's also
9132       // correct for strchr if we get this far (to cope with plain char being
9133       // unsigned in the strchr case).
9134       DesiredVal = Desired.trunc(Info.Ctx.getCharWidth()).getZExtValue();
9135       break;
9136 
9137     case Builtin::BIwcschr:
9138     case Builtin::BI__builtin_wcschr:
9139       StopAtNull = true;
9140       LLVM_FALLTHROUGH;
9141     case Builtin::BIwmemchr:
9142     case Builtin::BI__builtin_wmemchr:
9143       // wcschr and wmemchr are given a wchar_t to look for. Just use it.
9144       DesiredVal = Desired.getZExtValue();
9145       break;
9146     }
9147 
9148     for (; MaxLength; --MaxLength) {
9149       APValue Char;
9150       if (!handleLValueToRValueConversion(Info, E, CharTy, Result, Char) ||
9151           !Char.isInt())
9152         return false;
9153       if (Char.getInt().getZExtValue() == DesiredVal)
9154         return true;
9155       if (StopAtNull && !Char.getInt())
9156         break;
9157       if (!HandleLValueArrayAdjustment(Info, E, Result, CharTy, 1))
9158         return false;
9159     }
9160     // Not found: return nullptr.
9161     return ZeroInitialization(E);
9162   }
9163 
9164   case Builtin::BImemcpy:
9165   case Builtin::BImemmove:
9166   case Builtin::BIwmemcpy:
9167   case Builtin::BIwmemmove:
9168     if (Info.getLangOpts().CPlusPlus11)
9169       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
9170         << /*isConstexpr*/0 << /*isConstructor*/0
9171         << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
9172     else
9173       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
9174     LLVM_FALLTHROUGH;
9175   case Builtin::BI__builtin_memcpy:
9176   case Builtin::BI__builtin_memmove:
9177   case Builtin::BI__builtin_wmemcpy:
9178   case Builtin::BI__builtin_wmemmove: {
9179     bool WChar = BuiltinOp == Builtin::BIwmemcpy ||
9180                  BuiltinOp == Builtin::BIwmemmove ||
9181                  BuiltinOp == Builtin::BI__builtin_wmemcpy ||
9182                  BuiltinOp == Builtin::BI__builtin_wmemmove;
9183     bool Move = BuiltinOp == Builtin::BImemmove ||
9184                 BuiltinOp == Builtin::BIwmemmove ||
9185                 BuiltinOp == Builtin::BI__builtin_memmove ||
9186                 BuiltinOp == Builtin::BI__builtin_wmemmove;
9187 
9188     // The result of mem* is the first argument.
9189     if (!Visit(E->getArg(0)))
9190       return false;
9191     LValue Dest = Result;
9192 
9193     LValue Src;
9194     if (!EvaluatePointer(E->getArg(1), Src, Info))
9195       return false;
9196 
9197     APSInt N;
9198     if (!EvaluateInteger(E->getArg(2), N, Info))
9199       return false;
9200     assert(!N.isSigned() && "memcpy and friends take an unsigned size");
9201 
9202     // If the size is zero, we treat this as always being a valid no-op.
9203     // (Even if one of the src and dest pointers is null.)
9204     if (!N)
9205       return true;
9206 
9207     // Otherwise, if either of the operands is null, we can't proceed. Don't
9208     // try to determine the type of the copied objects, because there aren't
9209     // any.
9210     if (!Src.Base || !Dest.Base) {
9211       APValue Val;
9212       (!Src.Base ? Src : Dest).moveInto(Val);
9213       Info.FFDiag(E, diag::note_constexpr_memcpy_null)
9214           << Move << WChar << !!Src.Base
9215           << Val.getAsString(Info.Ctx, E->getArg(0)->getType());
9216       return false;
9217     }
9218     if (Src.Designator.Invalid || Dest.Designator.Invalid)
9219       return false;
9220 
9221     // We require that Src and Dest are both pointers to arrays of
9222     // trivially-copyable type. (For the wide version, the designator will be
9223     // invalid if the designated object is not a wchar_t.)
9224     QualType T = Dest.Designator.getType(Info.Ctx);
9225     QualType SrcT = Src.Designator.getType(Info.Ctx);
9226     if (!Info.Ctx.hasSameUnqualifiedType(T, SrcT)) {
9227       // FIXME: Consider using our bit_cast implementation to support this.
9228       Info.FFDiag(E, diag::note_constexpr_memcpy_type_pun) << Move << SrcT << T;
9229       return false;
9230     }
9231     if (T->isIncompleteType()) {
9232       Info.FFDiag(E, diag::note_constexpr_memcpy_incomplete_type) << Move << T;
9233       return false;
9234     }
9235     if (!T.isTriviallyCopyableType(Info.Ctx)) {
9236       Info.FFDiag(E, diag::note_constexpr_memcpy_nontrivial) << Move << T;
9237       return false;
9238     }
9239 
9240     // Figure out how many T's we're copying.
9241     uint64_t TSize = Info.Ctx.getTypeSizeInChars(T).getQuantity();
9242     if (!WChar) {
9243       uint64_t Remainder;
9244       llvm::APInt OrigN = N;
9245       llvm::APInt::udivrem(OrigN, TSize, N, Remainder);
9246       if (Remainder) {
9247         Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
9248             << Move << WChar << 0 << T << OrigN.toString(10, /*Signed*/false)
9249             << (unsigned)TSize;
9250         return false;
9251       }
9252     }
9253 
9254     // Check that the copying will remain within the arrays, just so that we
9255     // can give a more meaningful diagnostic. This implicitly also checks that
9256     // N fits into 64 bits.
9257     uint64_t RemainingSrcSize = Src.Designator.validIndexAdjustments().second;
9258     uint64_t RemainingDestSize = Dest.Designator.validIndexAdjustments().second;
9259     if (N.ugt(RemainingSrcSize) || N.ugt(RemainingDestSize)) {
9260       Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
9261           << Move << WChar << (N.ugt(RemainingSrcSize) ? 1 : 2) << T
9262           << N.toString(10, /*Signed*/false);
9263       return false;
9264     }
9265     uint64_t NElems = N.getZExtValue();
9266     uint64_t NBytes = NElems * TSize;
9267 
9268     // Check for overlap.
9269     int Direction = 1;
9270     if (HasSameBase(Src, Dest)) {
9271       uint64_t SrcOffset = Src.getLValueOffset().getQuantity();
9272       uint64_t DestOffset = Dest.getLValueOffset().getQuantity();
9273       if (DestOffset >= SrcOffset && DestOffset - SrcOffset < NBytes) {
9274         // Dest is inside the source region.
9275         if (!Move) {
9276           Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
9277           return false;
9278         }
9279         // For memmove and friends, copy backwards.
9280         if (!HandleLValueArrayAdjustment(Info, E, Src, T, NElems - 1) ||
9281             !HandleLValueArrayAdjustment(Info, E, Dest, T, NElems - 1))
9282           return false;
9283         Direction = -1;
9284       } else if (!Move && SrcOffset >= DestOffset &&
9285                  SrcOffset - DestOffset < NBytes) {
9286         // Src is inside the destination region for memcpy: invalid.
9287         Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
9288         return false;
9289       }
9290     }
9291 
9292     while (true) {
9293       APValue Val;
9294       // FIXME: Set WantObjectRepresentation to true if we're copying a
9295       // char-like type?
9296       if (!handleLValueToRValueConversion(Info, E, T, Src, Val) ||
9297           !handleAssignment(Info, E, Dest, T, Val))
9298         return false;
9299       // Do not iterate past the last element; if we're copying backwards, that
9300       // might take us off the start of the array.
9301       if (--NElems == 0)
9302         return true;
9303       if (!HandleLValueArrayAdjustment(Info, E, Src, T, Direction) ||
9304           !HandleLValueArrayAdjustment(Info, E, Dest, T, Direction))
9305         return false;
9306     }
9307   }
9308 
9309   default:
9310     break;
9311   }
9312 
9313   return visitNonBuiltinCallExpr(E);
9314 }
9315 
9316 static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
9317                                      APValue &Result, const InitListExpr *ILE,
9318                                      QualType AllocType);
9319 static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This,
9320                                           APValue &Result,
9321                                           const CXXConstructExpr *CCE,
9322                                           QualType AllocType);
9323 
VisitCXXNewExpr(const CXXNewExpr * E)9324 bool PointerExprEvaluator::VisitCXXNewExpr(const CXXNewExpr *E) {
9325   if (!Info.getLangOpts().CPlusPlus20)
9326     Info.CCEDiag(E, diag::note_constexpr_new);
9327 
9328   // We cannot speculatively evaluate a delete expression.
9329   if (Info.SpeculativeEvaluationDepth)
9330     return false;
9331 
9332   FunctionDecl *OperatorNew = E->getOperatorNew();
9333 
9334   bool IsNothrow = false;
9335   bool IsPlacement = false;
9336   if (OperatorNew->isReservedGlobalPlacementOperator() &&
9337       Info.CurrentCall->isStdFunction() && !E->isArray()) {
9338     // FIXME Support array placement new.
9339     assert(E->getNumPlacementArgs() == 1);
9340     if (!EvaluatePointer(E->getPlacementArg(0), Result, Info))
9341       return false;
9342     if (Result.Designator.Invalid)
9343       return false;
9344     IsPlacement = true;
9345   } else if (!OperatorNew->isReplaceableGlobalAllocationFunction()) {
9346     Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
9347         << isa<CXXMethodDecl>(OperatorNew) << OperatorNew;
9348     return false;
9349   } else if (E->getNumPlacementArgs()) {
9350     // The only new-placement list we support is of the form (std::nothrow).
9351     //
9352     // FIXME: There is no restriction on this, but it's not clear that any
9353     // other form makes any sense. We get here for cases such as:
9354     //
9355     //   new (std::align_val_t{N}) X(int)
9356     //
9357     // (which should presumably be valid only if N is a multiple of
9358     // alignof(int), and in any case can't be deallocated unless N is
9359     // alignof(X) and X has new-extended alignment).
9360     if (E->getNumPlacementArgs() != 1 ||
9361         !E->getPlacementArg(0)->getType()->isNothrowT())
9362       return Error(E, diag::note_constexpr_new_placement);
9363 
9364     LValue Nothrow;
9365     if (!EvaluateLValue(E->getPlacementArg(0), Nothrow, Info))
9366       return false;
9367     IsNothrow = true;
9368   }
9369 
9370   const Expr *Init = E->getInitializer();
9371   const InitListExpr *ResizedArrayILE = nullptr;
9372   const CXXConstructExpr *ResizedArrayCCE = nullptr;
9373   bool ValueInit = false;
9374 
9375   QualType AllocType = E->getAllocatedType();
9376   if (Optional<const Expr*> ArraySize = E->getArraySize()) {
9377     const Expr *Stripped = *ArraySize;
9378     for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped);
9379          Stripped = ICE->getSubExpr())
9380       if (ICE->getCastKind() != CK_NoOp &&
9381           ICE->getCastKind() != CK_IntegralCast)
9382         break;
9383 
9384     llvm::APSInt ArrayBound;
9385     if (!EvaluateInteger(Stripped, ArrayBound, Info))
9386       return false;
9387 
9388     // C++ [expr.new]p9:
9389     //   The expression is erroneous if:
9390     //   -- [...] its value before converting to size_t [or] applying the
9391     //      second standard conversion sequence is less than zero
9392     if (ArrayBound.isSigned() && ArrayBound.isNegative()) {
9393       if (IsNothrow)
9394         return ZeroInitialization(E);
9395 
9396       Info.FFDiag(*ArraySize, diag::note_constexpr_new_negative)
9397           << ArrayBound << (*ArraySize)->getSourceRange();
9398       return false;
9399     }
9400 
9401     //   -- its value is such that the size of the allocated object would
9402     //      exceed the implementation-defined limit
9403     if (ConstantArrayType::getNumAddressingBits(Info.Ctx, AllocType,
9404                                                 ArrayBound) >
9405         ConstantArrayType::getMaxSizeBits(Info.Ctx)) {
9406       if (IsNothrow)
9407         return ZeroInitialization(E);
9408 
9409       Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_large)
9410         << ArrayBound << (*ArraySize)->getSourceRange();
9411       return false;
9412     }
9413 
9414     //   -- the new-initializer is a braced-init-list and the number of
9415     //      array elements for which initializers are provided [...]
9416     //      exceeds the number of elements to initialize
9417     if (!Init) {
9418       // No initialization is performed.
9419     } else if (isa<CXXScalarValueInitExpr>(Init) ||
9420                isa<ImplicitValueInitExpr>(Init)) {
9421       ValueInit = true;
9422     } else if (auto *CCE = dyn_cast<CXXConstructExpr>(Init)) {
9423       ResizedArrayCCE = CCE;
9424     } else {
9425       auto *CAT = Info.Ctx.getAsConstantArrayType(Init->getType());
9426       assert(CAT && "unexpected type for array initializer");
9427 
9428       unsigned Bits =
9429           std::max(CAT->getSize().getBitWidth(), ArrayBound.getBitWidth());
9430       llvm::APInt InitBound = CAT->getSize().zextOrSelf(Bits);
9431       llvm::APInt AllocBound = ArrayBound.zextOrSelf(Bits);
9432       if (InitBound.ugt(AllocBound)) {
9433         if (IsNothrow)
9434           return ZeroInitialization(E);
9435 
9436         Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_small)
9437             << AllocBound.toString(10, /*Signed=*/false)
9438             << InitBound.toString(10, /*Signed=*/false)
9439             << (*ArraySize)->getSourceRange();
9440         return false;
9441       }
9442 
9443       // If the sizes differ, we must have an initializer list, and we need
9444       // special handling for this case when we initialize.
9445       if (InitBound != AllocBound)
9446         ResizedArrayILE = cast<InitListExpr>(Init);
9447     }
9448 
9449     AllocType = Info.Ctx.getConstantArrayType(AllocType, ArrayBound, nullptr,
9450                                               ArrayType::Normal, 0);
9451   } else {
9452     assert(!AllocType->isArrayType() &&
9453            "array allocation with non-array new");
9454   }
9455 
9456   APValue *Val;
9457   if (IsPlacement) {
9458     AccessKinds AK = AK_Construct;
9459     struct FindObjectHandler {
9460       EvalInfo &Info;
9461       const Expr *E;
9462       QualType AllocType;
9463       const AccessKinds AccessKind;
9464       APValue *Value;
9465 
9466       typedef bool result_type;
9467       bool failed() { return false; }
9468       bool found(APValue &Subobj, QualType SubobjType) {
9469         // FIXME: Reject the cases where [basic.life]p8 would not permit the
9470         // old name of the object to be used to name the new object.
9471         if (!Info.Ctx.hasSameUnqualifiedType(SubobjType, AllocType)) {
9472           Info.FFDiag(E, diag::note_constexpr_placement_new_wrong_type) <<
9473             SubobjType << AllocType;
9474           return false;
9475         }
9476         Value = &Subobj;
9477         return true;
9478       }
9479       bool found(APSInt &Value, QualType SubobjType) {
9480         Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
9481         return false;
9482       }
9483       bool found(APFloat &Value, QualType SubobjType) {
9484         Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
9485         return false;
9486       }
9487     } Handler = {Info, E, AllocType, AK, nullptr};
9488 
9489     CompleteObject Obj = findCompleteObject(Info, E, AK, Result, AllocType);
9490     if (!Obj || !findSubobject(Info, E, Obj, Result.Designator, Handler))
9491       return false;
9492 
9493     Val = Handler.Value;
9494 
9495     // [basic.life]p1:
9496     //   The lifetime of an object o of type T ends when [...] the storage
9497     //   which the object occupies is [...] reused by an object that is not
9498     //   nested within o (6.6.2).
9499     *Val = APValue();
9500   } else {
9501     // Perform the allocation and obtain a pointer to the resulting object.
9502     Val = Info.createHeapAlloc(E, AllocType, Result);
9503     if (!Val)
9504       return false;
9505   }
9506 
9507   if (ValueInit) {
9508     ImplicitValueInitExpr VIE(AllocType);
9509     if (!EvaluateInPlace(*Val, Info, Result, &VIE))
9510       return false;
9511   } else if (ResizedArrayILE) {
9512     if (!EvaluateArrayNewInitList(Info, Result, *Val, ResizedArrayILE,
9513                                   AllocType))
9514       return false;
9515   } else if (ResizedArrayCCE) {
9516     if (!EvaluateArrayNewConstructExpr(Info, Result, *Val, ResizedArrayCCE,
9517                                        AllocType))
9518       return false;
9519   } else if (Init) {
9520     if (!EvaluateInPlace(*Val, Info, Result, Init))
9521       return false;
9522   } else if (!getDefaultInitValue(AllocType, *Val)) {
9523     return false;
9524   }
9525 
9526   // Array new returns a pointer to the first element, not a pointer to the
9527   // array.
9528   if (auto *AT = AllocType->getAsArrayTypeUnsafe())
9529     Result.addArray(Info, E, cast<ConstantArrayType>(AT));
9530 
9531   return true;
9532 }
9533 //===----------------------------------------------------------------------===//
9534 // Member Pointer Evaluation
9535 //===----------------------------------------------------------------------===//
9536 
9537 namespace {
9538 class MemberPointerExprEvaluator
9539   : public ExprEvaluatorBase<MemberPointerExprEvaluator> {
9540   MemberPtr &Result;
9541 
Success(const ValueDecl * D)9542   bool Success(const ValueDecl *D) {
9543     Result = MemberPtr(D);
9544     return true;
9545   }
9546 public:
9547 
MemberPointerExprEvaluator(EvalInfo & Info,MemberPtr & Result)9548   MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
9549     : ExprEvaluatorBaseTy(Info), Result(Result) {}
9550 
Success(const APValue & V,const Expr * E)9551   bool Success(const APValue &V, const Expr *E) {
9552     Result.setFrom(V);
9553     return true;
9554   }
ZeroInitialization(const Expr * E)9555   bool ZeroInitialization(const Expr *E) {
9556     return Success((const ValueDecl*)nullptr);
9557   }
9558 
9559   bool VisitCastExpr(const CastExpr *E);
9560   bool VisitUnaryAddrOf(const UnaryOperator *E);
9561 };
9562 } // end anonymous namespace
9563 
EvaluateMemberPointer(const Expr * E,MemberPtr & Result,EvalInfo & Info)9564 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
9565                                   EvalInfo &Info) {
9566   assert(!E->isValueDependent());
9567   assert(E->isRValue() && E->getType()->isMemberPointerType());
9568   return MemberPointerExprEvaluator(Info, Result).Visit(E);
9569 }
9570 
VisitCastExpr(const CastExpr * E)9571 bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
9572   switch (E->getCastKind()) {
9573   default:
9574     return ExprEvaluatorBaseTy::VisitCastExpr(E);
9575 
9576   case CK_NullToMemberPointer:
9577     VisitIgnoredValue(E->getSubExpr());
9578     return ZeroInitialization(E);
9579 
9580   case CK_BaseToDerivedMemberPointer: {
9581     if (!Visit(E->getSubExpr()))
9582       return false;
9583     if (E->path_empty())
9584       return true;
9585     // Base-to-derived member pointer casts store the path in derived-to-base
9586     // order, so iterate backwards. The CXXBaseSpecifier also provides us with
9587     // the wrong end of the derived->base arc, so stagger the path by one class.
9588     typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
9589     for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
9590          PathI != PathE; ++PathI) {
9591       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
9592       const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
9593       if (!Result.castToDerived(Derived))
9594         return Error(E);
9595     }
9596     const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
9597     if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
9598       return Error(E);
9599     return true;
9600   }
9601 
9602   case CK_DerivedToBaseMemberPointer:
9603     if (!Visit(E->getSubExpr()))
9604       return false;
9605     for (CastExpr::path_const_iterator PathI = E->path_begin(),
9606          PathE = E->path_end(); PathI != PathE; ++PathI) {
9607       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
9608       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
9609       if (!Result.castToBase(Base))
9610         return Error(E);
9611     }
9612     return true;
9613   }
9614 }
9615 
VisitUnaryAddrOf(const UnaryOperator * E)9616 bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
9617   // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
9618   // member can be formed.
9619   return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
9620 }
9621 
9622 //===----------------------------------------------------------------------===//
9623 // Record Evaluation
9624 //===----------------------------------------------------------------------===//
9625 
9626 namespace {
9627   class RecordExprEvaluator
9628   : public ExprEvaluatorBase<RecordExprEvaluator> {
9629     const LValue &This;
9630     APValue &Result;
9631   public:
9632 
RecordExprEvaluator(EvalInfo & info,const LValue & This,APValue & Result)9633     RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
9634       : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
9635 
Success(const APValue & V,const Expr * E)9636     bool Success(const APValue &V, const Expr *E) {
9637       Result = V;
9638       return true;
9639     }
ZeroInitialization(const Expr * E)9640     bool ZeroInitialization(const Expr *E) {
9641       return ZeroInitialization(E, E->getType());
9642     }
9643     bool ZeroInitialization(const Expr *E, QualType T);
9644 
VisitCallExpr(const CallExpr * E)9645     bool VisitCallExpr(const CallExpr *E) {
9646       return handleCallExpr(E, Result, &This);
9647     }
9648     bool VisitCastExpr(const CastExpr *E);
9649     bool VisitInitListExpr(const InitListExpr *E);
VisitCXXConstructExpr(const CXXConstructExpr * E)9650     bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
9651       return VisitCXXConstructExpr(E, E->getType());
9652     }
9653     bool VisitLambdaExpr(const LambdaExpr *E);
9654     bool VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
9655     bool VisitCXXConstructExpr(const CXXConstructExpr *E, QualType T);
9656     bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E);
9657     bool VisitBinCmp(const BinaryOperator *E);
9658   };
9659 }
9660 
9661 /// Perform zero-initialization on an object of non-union class type.
9662 /// C++11 [dcl.init]p5:
9663 ///  To zero-initialize an object or reference of type T means:
9664 ///    [...]
9665 ///    -- if T is a (possibly cv-qualified) non-union class type,
9666 ///       each non-static data member and each base-class subobject is
9667 ///       zero-initialized
HandleClassZeroInitialization(EvalInfo & Info,const Expr * E,const RecordDecl * RD,const LValue & This,APValue & Result)9668 static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
9669                                           const RecordDecl *RD,
9670                                           const LValue &This, APValue &Result) {
9671   assert(!RD->isUnion() && "Expected non-union class type");
9672   const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
9673   Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
9674                    std::distance(RD->field_begin(), RD->field_end()));
9675 
9676   if (RD->isInvalidDecl()) return false;
9677   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
9678 
9679   if (CD) {
9680     unsigned Index = 0;
9681     for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
9682            End = CD->bases_end(); I != End; ++I, ++Index) {
9683       const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
9684       LValue Subobject = This;
9685       if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
9686         return false;
9687       if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
9688                                          Result.getStructBase(Index)))
9689         return false;
9690     }
9691   }
9692 
9693   for (const auto *I : RD->fields()) {
9694     // -- if T is a reference type, no initialization is performed.
9695     if (I->isUnnamedBitfield() || I->getType()->isReferenceType())
9696       continue;
9697 
9698     LValue Subobject = This;
9699     if (!HandleLValueMember(Info, E, Subobject, I, &Layout))
9700       return false;
9701 
9702     ImplicitValueInitExpr VIE(I->getType());
9703     if (!EvaluateInPlace(
9704           Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
9705       return false;
9706   }
9707 
9708   return true;
9709 }
9710 
ZeroInitialization(const Expr * E,QualType T)9711 bool RecordExprEvaluator::ZeroInitialization(const Expr *E, QualType T) {
9712   const RecordDecl *RD = T->castAs<RecordType>()->getDecl();
9713   if (RD->isInvalidDecl()) return false;
9714   if (RD->isUnion()) {
9715     // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
9716     // object's first non-static named data member is zero-initialized
9717     RecordDecl::field_iterator I = RD->field_begin();
9718     while (I != RD->field_end() && (*I)->isUnnamedBitfield())
9719       ++I;
9720     if (I == RD->field_end()) {
9721       Result = APValue((const FieldDecl*)nullptr);
9722       return true;
9723     }
9724 
9725     LValue Subobject = This;
9726     if (!HandleLValueMember(Info, E, Subobject, *I))
9727       return false;
9728     Result = APValue(*I);
9729     ImplicitValueInitExpr VIE(I->getType());
9730     return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
9731   }
9732 
9733   if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
9734     Info.FFDiag(E, diag::note_constexpr_virtual_base) << RD;
9735     return false;
9736   }
9737 
9738   return HandleClassZeroInitialization(Info, E, RD, This, Result);
9739 }
9740 
VisitCastExpr(const CastExpr * E)9741 bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
9742   switch (E->getCastKind()) {
9743   default:
9744     return ExprEvaluatorBaseTy::VisitCastExpr(E);
9745 
9746   case CK_ConstructorConversion:
9747     return Visit(E->getSubExpr());
9748 
9749   case CK_DerivedToBase:
9750   case CK_UncheckedDerivedToBase: {
9751     APValue DerivedObject;
9752     if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
9753       return false;
9754     if (!DerivedObject.isStruct())
9755       return Error(E->getSubExpr());
9756 
9757     // Derived-to-base rvalue conversion: just slice off the derived part.
9758     APValue *Value = &DerivedObject;
9759     const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
9760     for (CastExpr::path_const_iterator PathI = E->path_begin(),
9761          PathE = E->path_end(); PathI != PathE; ++PathI) {
9762       assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
9763       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
9764       Value = &Value->getStructBase(getBaseIndex(RD, Base));
9765       RD = Base;
9766     }
9767     Result = *Value;
9768     return true;
9769   }
9770   }
9771 }
9772 
VisitInitListExpr(const InitListExpr * E)9773 bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
9774   if (E->isTransparent())
9775     return Visit(E->getInit(0));
9776 
9777   const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
9778   if (RD->isInvalidDecl()) return false;
9779   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
9780   auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
9781 
9782   EvalInfo::EvaluatingConstructorRAII EvalObj(
9783       Info,
9784       ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
9785       CXXRD && CXXRD->getNumBases());
9786 
9787   if (RD->isUnion()) {
9788     const FieldDecl *Field = E->getInitializedFieldInUnion();
9789     Result = APValue(Field);
9790     if (!Field)
9791       return true;
9792 
9793     // If the initializer list for a union does not contain any elements, the
9794     // first element of the union is value-initialized.
9795     // FIXME: The element should be initialized from an initializer list.
9796     //        Is this difference ever observable for initializer lists which
9797     //        we don't build?
9798     ImplicitValueInitExpr VIE(Field->getType());
9799     const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;
9800 
9801     LValue Subobject = This;
9802     if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
9803       return false;
9804 
9805     // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
9806     ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
9807                                   isa<CXXDefaultInitExpr>(InitExpr));
9808 
9809     if (EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr)) {
9810       if (Field->isBitField())
9811         return truncateBitfieldValue(Info, InitExpr, Result.getUnionValue(),
9812                                      Field);
9813       return true;
9814     }
9815 
9816     return false;
9817   }
9818 
9819   if (!Result.hasValue())
9820     Result = APValue(APValue::UninitStruct(), CXXRD ? CXXRD->getNumBases() : 0,
9821                      std::distance(RD->field_begin(), RD->field_end()));
9822   unsigned ElementNo = 0;
9823   bool Success = true;
9824 
9825   // Initialize base classes.
9826   if (CXXRD && CXXRD->getNumBases()) {
9827     for (const auto &Base : CXXRD->bases()) {
9828       assert(ElementNo < E->getNumInits() && "missing init for base class");
9829       const Expr *Init = E->getInit(ElementNo);
9830 
9831       LValue Subobject = This;
9832       if (!HandleLValueBase(Info, Init, Subobject, CXXRD, &Base))
9833         return false;
9834 
9835       APValue &FieldVal = Result.getStructBase(ElementNo);
9836       if (!EvaluateInPlace(FieldVal, Info, Subobject, Init)) {
9837         if (!Info.noteFailure())
9838           return false;
9839         Success = false;
9840       }
9841       ++ElementNo;
9842     }
9843 
9844     EvalObj.finishedConstructingBases();
9845   }
9846 
9847   // Initialize members.
9848   for (const auto *Field : RD->fields()) {
9849     // Anonymous bit-fields are not considered members of the class for
9850     // purposes of aggregate initialization.
9851     if (Field->isUnnamedBitfield())
9852       continue;
9853 
9854     LValue Subobject = This;
9855 
9856     bool HaveInit = ElementNo < E->getNumInits();
9857 
9858     // FIXME: Diagnostics here should point to the end of the initializer
9859     // list, not the start.
9860     if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E,
9861                             Subobject, Field, &Layout))
9862       return false;
9863 
9864     // Perform an implicit value-initialization for members beyond the end of
9865     // the initializer list.
9866     ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
9867     const Expr *Init = HaveInit ? E->getInit(ElementNo++) : &VIE;
9868 
9869     // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
9870     ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
9871                                   isa<CXXDefaultInitExpr>(Init));
9872 
9873     APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
9874     if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) ||
9875         (Field->isBitField() && !truncateBitfieldValue(Info, Init,
9876                                                        FieldVal, Field))) {
9877       if (!Info.noteFailure())
9878         return false;
9879       Success = false;
9880     }
9881   }
9882 
9883   EvalObj.finishedConstructingFields();
9884 
9885   return Success;
9886 }
9887 
VisitCXXConstructExpr(const CXXConstructExpr * E,QualType T)9888 bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
9889                                                 QualType T) {
9890   // Note that E's type is not necessarily the type of our class here; we might
9891   // be initializing an array element instead.
9892   const CXXConstructorDecl *FD = E->getConstructor();
9893   if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
9894 
9895   bool ZeroInit = E->requiresZeroInitialization();
9896   if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
9897     // If we've already performed zero-initialization, we're already done.
9898     if (Result.hasValue())
9899       return true;
9900 
9901     if (ZeroInit)
9902       return ZeroInitialization(E, T);
9903 
9904     return getDefaultInitValue(T, Result);
9905   }
9906 
9907   const FunctionDecl *Definition = nullptr;
9908   auto Body = FD->getBody(Definition);
9909 
9910   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
9911     return false;
9912 
9913   // Avoid materializing a temporary for an elidable copy/move constructor.
9914   if (E->isElidable() && !ZeroInit)
9915     if (const MaterializeTemporaryExpr *ME
9916           = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0)))
9917       return Visit(ME->getSubExpr());
9918 
9919   if (ZeroInit && !ZeroInitialization(E, T))
9920     return false;
9921 
9922   auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
9923   return HandleConstructorCall(E, This, Args,
9924                                cast<CXXConstructorDecl>(Definition), Info,
9925                                Result);
9926 }
9927 
VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr * E)9928 bool RecordExprEvaluator::VisitCXXInheritedCtorInitExpr(
9929     const CXXInheritedCtorInitExpr *E) {
9930   if (!Info.CurrentCall) {
9931     assert(Info.checkingPotentialConstantExpression());
9932     return false;
9933   }
9934 
9935   const CXXConstructorDecl *FD = E->getConstructor();
9936   if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl())
9937     return false;
9938 
9939   const FunctionDecl *Definition = nullptr;
9940   auto Body = FD->getBody(Definition);
9941 
9942   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
9943     return false;
9944 
9945   return HandleConstructorCall(E, This, Info.CurrentCall->Arguments,
9946                                cast<CXXConstructorDecl>(Definition), Info,
9947                                Result);
9948 }
9949 
VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr * E)9950 bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
9951     const CXXStdInitializerListExpr *E) {
9952   const ConstantArrayType *ArrayType =
9953       Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
9954 
9955   LValue Array;
9956   if (!EvaluateLValue(E->getSubExpr(), Array, Info))
9957     return false;
9958 
9959   // Get a pointer to the first element of the array.
9960   Array.addArray(Info, E, ArrayType);
9961 
9962   auto InvalidType = [&] {
9963     Info.FFDiag(E, diag::note_constexpr_unsupported_layout)
9964       << E->getType();
9965     return false;
9966   };
9967 
9968   // FIXME: Perform the checks on the field types in SemaInit.
9969   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
9970   RecordDecl::field_iterator Field = Record->field_begin();
9971   if (Field == Record->field_end())
9972     return InvalidType();
9973 
9974   // Start pointer.
9975   if (!Field->getType()->isPointerType() ||
9976       !Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
9977                             ArrayType->getElementType()))
9978     return InvalidType();
9979 
9980   // FIXME: What if the initializer_list type has base classes, etc?
9981   Result = APValue(APValue::UninitStruct(), 0, 2);
9982   Array.moveInto(Result.getStructField(0));
9983 
9984   if (++Field == Record->field_end())
9985     return InvalidType();
9986 
9987   if (Field->getType()->isPointerType() &&
9988       Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
9989                            ArrayType->getElementType())) {
9990     // End pointer.
9991     if (!HandleLValueArrayAdjustment(Info, E, Array,
9992                                      ArrayType->getElementType(),
9993                                      ArrayType->getSize().getZExtValue()))
9994       return false;
9995     Array.moveInto(Result.getStructField(1));
9996   } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType()))
9997     // Length.
9998     Result.getStructField(1) = APValue(APSInt(ArrayType->getSize()));
9999   else
10000     return InvalidType();
10001 
10002   if (++Field != Record->field_end())
10003     return InvalidType();
10004 
10005   return true;
10006 }
10007 
VisitLambdaExpr(const LambdaExpr * E)10008 bool RecordExprEvaluator::VisitLambdaExpr(const LambdaExpr *E) {
10009   const CXXRecordDecl *ClosureClass = E->getLambdaClass();
10010   if (ClosureClass->isInvalidDecl())
10011     return false;
10012 
10013   const size_t NumFields =
10014       std::distance(ClosureClass->field_begin(), ClosureClass->field_end());
10015 
10016   assert(NumFields == (size_t)std::distance(E->capture_init_begin(),
10017                                             E->capture_init_end()) &&
10018          "The number of lambda capture initializers should equal the number of "
10019          "fields within the closure type");
10020 
10021   Result = APValue(APValue::UninitStruct(), /*NumBases*/0, NumFields);
10022   // Iterate through all the lambda's closure object's fields and initialize
10023   // them.
10024   auto *CaptureInitIt = E->capture_init_begin();
10025   const LambdaCapture *CaptureIt = ClosureClass->captures_begin();
10026   bool Success = true;
10027   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(ClosureClass);
10028   for (const auto *Field : ClosureClass->fields()) {
10029     assert(CaptureInitIt != E->capture_init_end());
10030     // Get the initializer for this field
10031     Expr *const CurFieldInit = *CaptureInitIt++;
10032 
10033     // If there is no initializer, either this is a VLA or an error has
10034     // occurred.
10035     if (!CurFieldInit)
10036       return Error(E);
10037 
10038     LValue Subobject = This;
10039 
10040     if (!HandleLValueMember(Info, E, Subobject, Field, &Layout))
10041       return false;
10042 
10043     APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
10044     if (!EvaluateInPlace(FieldVal, Info, Subobject, CurFieldInit)) {
10045       if (!Info.keepEvaluatingAfterFailure())
10046         return false;
10047       Success = false;
10048     }
10049     ++CaptureIt;
10050   }
10051   return Success;
10052 }
10053 
EvaluateRecord(const Expr * E,const LValue & This,APValue & Result,EvalInfo & Info)10054 static bool EvaluateRecord(const Expr *E, const LValue &This,
10055                            APValue &Result, EvalInfo &Info) {
10056   assert(!E->isValueDependent());
10057   assert(E->isRValue() && E->getType()->isRecordType() &&
10058          "can't evaluate expression as a record rvalue");
10059   return RecordExprEvaluator(Info, This, Result).Visit(E);
10060 }
10061 
10062 //===----------------------------------------------------------------------===//
10063 // Temporary Evaluation
10064 //
10065 // Temporaries are represented in the AST as rvalues, but generally behave like
10066 // lvalues. The full-object of which the temporary is a subobject is implicitly
10067 // materialized so that a reference can bind to it.
10068 //===----------------------------------------------------------------------===//
10069 namespace {
10070 class TemporaryExprEvaluator
10071   : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
10072 public:
TemporaryExprEvaluator(EvalInfo & Info,LValue & Result)10073   TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
10074     LValueExprEvaluatorBaseTy(Info, Result, false) {}
10075 
10076   /// Visit an expression which constructs the value of this temporary.
VisitConstructExpr(const Expr * E)10077   bool VisitConstructExpr(const Expr *E) {
10078     APValue &Value = Info.CurrentCall->createTemporary(
10079         E, E->getType(), ScopeKind::FullExpression, Result);
10080     return EvaluateInPlace(Value, Info, Result, E);
10081   }
10082 
VisitCastExpr(const CastExpr * E)10083   bool VisitCastExpr(const CastExpr *E) {
10084     switch (E->getCastKind()) {
10085     default:
10086       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
10087 
10088     case CK_ConstructorConversion:
10089       return VisitConstructExpr(E->getSubExpr());
10090     }
10091   }
VisitInitListExpr(const InitListExpr * E)10092   bool VisitInitListExpr(const InitListExpr *E) {
10093     return VisitConstructExpr(E);
10094   }
VisitCXXConstructExpr(const CXXConstructExpr * E)10095   bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
10096     return VisitConstructExpr(E);
10097   }
VisitCallExpr(const CallExpr * E)10098   bool VisitCallExpr(const CallExpr *E) {
10099     return VisitConstructExpr(E);
10100   }
VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr * E)10101   bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) {
10102     return VisitConstructExpr(E);
10103   }
VisitLambdaExpr(const LambdaExpr * E)10104   bool VisitLambdaExpr(const LambdaExpr *E) {
10105     return VisitConstructExpr(E);
10106   }
10107 };
10108 } // end anonymous namespace
10109 
10110 /// Evaluate an expression of record type as a temporary.
EvaluateTemporary(const Expr * E,LValue & Result,EvalInfo & Info)10111 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
10112   assert(!E->isValueDependent());
10113   assert(E->isRValue() && E->getType()->isRecordType());
10114   return TemporaryExprEvaluator(Info, Result).Visit(E);
10115 }
10116 
10117 //===----------------------------------------------------------------------===//
10118 // Vector Evaluation
10119 //===----------------------------------------------------------------------===//
10120 
10121 namespace {
10122   class VectorExprEvaluator
10123   : public ExprEvaluatorBase<VectorExprEvaluator> {
10124     APValue &Result;
10125   public:
10126 
VectorExprEvaluator(EvalInfo & info,APValue & Result)10127     VectorExprEvaluator(EvalInfo &info, APValue &Result)
10128       : ExprEvaluatorBaseTy(info), Result(Result) {}
10129 
Success(ArrayRef<APValue> V,const Expr * E)10130     bool Success(ArrayRef<APValue> V, const Expr *E) {
10131       assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
10132       // FIXME: remove this APValue copy.
10133       Result = APValue(V.data(), V.size());
10134       return true;
10135     }
Success(const APValue & V,const Expr * E)10136     bool Success(const APValue &V, const Expr *E) {
10137       assert(V.isVector());
10138       Result = V;
10139       return true;
10140     }
10141     bool ZeroInitialization(const Expr *E);
10142 
VisitUnaryReal(const UnaryOperator * E)10143     bool VisitUnaryReal(const UnaryOperator *E)
10144       { return Visit(E->getSubExpr()); }
10145     bool VisitCastExpr(const CastExpr* E);
10146     bool VisitInitListExpr(const InitListExpr *E);
10147     bool VisitUnaryImag(const UnaryOperator *E);
10148     bool VisitBinaryOperator(const BinaryOperator *E);
10149     // FIXME: Missing: unary -, unary ~, conditional operator (for GNU
10150     //                 conditional select), shufflevector, ExtVectorElementExpr
10151   };
10152 } // end anonymous namespace
10153 
EvaluateVector(const Expr * E,APValue & Result,EvalInfo & Info)10154 static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
10155   assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue");
10156   return VectorExprEvaluator(Info, Result).Visit(E);
10157 }
10158 
VisitCastExpr(const CastExpr * E)10159 bool VectorExprEvaluator::VisitCastExpr(const CastExpr *E) {
10160   const VectorType *VTy = E->getType()->castAs<VectorType>();
10161   unsigned NElts = VTy->getNumElements();
10162 
10163   const Expr *SE = E->getSubExpr();
10164   QualType SETy = SE->getType();
10165 
10166   switch (E->getCastKind()) {
10167   case CK_VectorSplat: {
10168     APValue Val = APValue();
10169     if (SETy->isIntegerType()) {
10170       APSInt IntResult;
10171       if (!EvaluateInteger(SE, IntResult, Info))
10172         return false;
10173       Val = APValue(std::move(IntResult));
10174     } else if (SETy->isRealFloatingType()) {
10175       APFloat FloatResult(0.0);
10176       if (!EvaluateFloat(SE, FloatResult, Info))
10177         return false;
10178       Val = APValue(std::move(FloatResult));
10179     } else {
10180       return Error(E);
10181     }
10182 
10183     // Splat and create vector APValue.
10184     SmallVector<APValue, 4> Elts(NElts, Val);
10185     return Success(Elts, E);
10186   }
10187   case CK_BitCast: {
10188     // Evaluate the operand into an APInt we can extract from.
10189     llvm::APInt SValInt;
10190     if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
10191       return false;
10192     // Extract the elements
10193     QualType EltTy = VTy->getElementType();
10194     unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
10195     bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
10196     SmallVector<APValue, 4> Elts;
10197     if (EltTy->isRealFloatingType()) {
10198       const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
10199       unsigned FloatEltSize = EltSize;
10200       if (&Sem == &APFloat::x87DoubleExtended())
10201         FloatEltSize = 80;
10202       for (unsigned i = 0; i < NElts; i++) {
10203         llvm::APInt Elt;
10204         if (BigEndian)
10205           Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize);
10206         else
10207           Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize);
10208         Elts.push_back(APValue(APFloat(Sem, Elt)));
10209       }
10210     } else if (EltTy->isIntegerType()) {
10211       for (unsigned i = 0; i < NElts; i++) {
10212         llvm::APInt Elt;
10213         if (BigEndian)
10214           Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
10215         else
10216           Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
10217         Elts.push_back(APValue(APSInt(Elt, !EltTy->isSignedIntegerType())));
10218       }
10219     } else {
10220       return Error(E);
10221     }
10222     return Success(Elts, E);
10223   }
10224   default:
10225     return ExprEvaluatorBaseTy::VisitCastExpr(E);
10226   }
10227 }
10228 
10229 bool
VisitInitListExpr(const InitListExpr * E)10230 VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
10231   const VectorType *VT = E->getType()->castAs<VectorType>();
10232   unsigned NumInits = E->getNumInits();
10233   unsigned NumElements = VT->getNumElements();
10234 
10235   QualType EltTy = VT->getElementType();
10236   SmallVector<APValue, 4> Elements;
10237 
10238   // The number of initializers can be less than the number of
10239   // vector elements. For OpenCL, this can be due to nested vector
10240   // initialization. For GCC compatibility, missing trailing elements
10241   // should be initialized with zeroes.
10242   unsigned CountInits = 0, CountElts = 0;
10243   while (CountElts < NumElements) {
10244     // Handle nested vector initialization.
10245     if (CountInits < NumInits
10246         && E->getInit(CountInits)->getType()->isVectorType()) {
10247       APValue v;
10248       if (!EvaluateVector(E->getInit(CountInits), v, Info))
10249         return Error(E);
10250       unsigned vlen = v.getVectorLength();
10251       for (unsigned j = 0; j < vlen; j++)
10252         Elements.push_back(v.getVectorElt(j));
10253       CountElts += vlen;
10254     } else if (EltTy->isIntegerType()) {
10255       llvm::APSInt sInt(32);
10256       if (CountInits < NumInits) {
10257         if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
10258           return false;
10259       } else // trailing integer zero.
10260         sInt = Info.Ctx.MakeIntValue(0, EltTy);
10261       Elements.push_back(APValue(sInt));
10262       CountElts++;
10263     } else {
10264       llvm::APFloat f(0.0);
10265       if (CountInits < NumInits) {
10266         if (!EvaluateFloat(E->getInit(CountInits), f, Info))
10267           return false;
10268       } else // trailing float zero.
10269         f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
10270       Elements.push_back(APValue(f));
10271       CountElts++;
10272     }
10273     CountInits++;
10274   }
10275   return Success(Elements, E);
10276 }
10277 
10278 bool
ZeroInitialization(const Expr * E)10279 VectorExprEvaluator::ZeroInitialization(const Expr *E) {
10280   const auto *VT = E->getType()->castAs<VectorType>();
10281   QualType EltTy = VT->getElementType();
10282   APValue ZeroElement;
10283   if (EltTy->isIntegerType())
10284     ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
10285   else
10286     ZeroElement =
10287         APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
10288 
10289   SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
10290   return Success(Elements, E);
10291 }
10292 
VisitUnaryImag(const UnaryOperator * E)10293 bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
10294   VisitIgnoredValue(E->getSubExpr());
10295   return ZeroInitialization(E);
10296 }
10297 
VisitBinaryOperator(const BinaryOperator * E)10298 bool VectorExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
10299   BinaryOperatorKind Op = E->getOpcode();
10300   assert(Op != BO_PtrMemD && Op != BO_PtrMemI && Op != BO_Cmp &&
10301          "Operation not supported on vector types");
10302 
10303   if (Op == BO_Comma)
10304     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
10305 
10306   Expr *LHS = E->getLHS();
10307   Expr *RHS = E->getRHS();
10308 
10309   assert(LHS->getType()->isVectorType() && RHS->getType()->isVectorType() &&
10310          "Must both be vector types");
10311   // Checking JUST the types are the same would be fine, except shifts don't
10312   // need to have their types be the same (since you always shift by an int).
10313   assert(LHS->getType()->castAs<VectorType>()->getNumElements() ==
10314              E->getType()->castAs<VectorType>()->getNumElements() &&
10315          RHS->getType()->castAs<VectorType>()->getNumElements() ==
10316              E->getType()->castAs<VectorType>()->getNumElements() &&
10317          "All operands must be the same size.");
10318 
10319   APValue LHSValue;
10320   APValue RHSValue;
10321   bool LHSOK = Evaluate(LHSValue, Info, LHS);
10322   if (!LHSOK && !Info.noteFailure())
10323     return false;
10324   if (!Evaluate(RHSValue, Info, RHS) || !LHSOK)
10325     return false;
10326 
10327   if (!handleVectorVectorBinOp(Info, E, Op, LHSValue, RHSValue))
10328     return false;
10329 
10330   return Success(LHSValue, E);
10331 }
10332 
10333 //===----------------------------------------------------------------------===//
10334 // Array Evaluation
10335 //===----------------------------------------------------------------------===//
10336 
10337 namespace {
10338   class ArrayExprEvaluator
10339   : public ExprEvaluatorBase<ArrayExprEvaluator> {
10340     const LValue &This;
10341     APValue &Result;
10342   public:
10343 
ArrayExprEvaluator(EvalInfo & Info,const LValue & This,APValue & Result)10344     ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
10345       : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
10346 
Success(const APValue & V,const Expr * E)10347     bool Success(const APValue &V, const Expr *E) {
10348       assert(V.isArray() && "expected array");
10349       Result = V;
10350       return true;
10351     }
10352 
ZeroInitialization(const Expr * E)10353     bool ZeroInitialization(const Expr *E) {
10354       const ConstantArrayType *CAT =
10355           Info.Ctx.getAsConstantArrayType(E->getType());
10356       if (!CAT) {
10357         if (E->getType()->isIncompleteArrayType()) {
10358           // We can be asked to zero-initialize a flexible array member; this
10359           // is represented as an ImplicitValueInitExpr of incomplete array
10360           // type. In this case, the array has zero elements.
10361           Result = APValue(APValue::UninitArray(), 0, 0);
10362           return true;
10363         }
10364         // FIXME: We could handle VLAs here.
10365         return Error(E);
10366       }
10367 
10368       Result = APValue(APValue::UninitArray(), 0,
10369                        CAT->getSize().getZExtValue());
10370       if (!Result.hasArrayFiller()) return true;
10371 
10372       // Zero-initialize all elements.
10373       LValue Subobject = This;
10374       Subobject.addArray(Info, E, CAT);
10375       ImplicitValueInitExpr VIE(CAT->getElementType());
10376       return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
10377     }
10378 
VisitCallExpr(const CallExpr * E)10379     bool VisitCallExpr(const CallExpr *E) {
10380       return handleCallExpr(E, Result, &This);
10381     }
10382     bool VisitInitListExpr(const InitListExpr *E,
10383                            QualType AllocType = QualType());
10384     bool VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E);
10385     bool VisitCXXConstructExpr(const CXXConstructExpr *E);
10386     bool VisitCXXConstructExpr(const CXXConstructExpr *E,
10387                                const LValue &Subobject,
10388                                APValue *Value, QualType Type);
VisitStringLiteral(const StringLiteral * E,QualType AllocType=QualType ())10389     bool VisitStringLiteral(const StringLiteral *E,
10390                             QualType AllocType = QualType()) {
10391       expandStringLiteral(Info, E, Result, AllocType);
10392       return true;
10393     }
10394   };
10395 } // end anonymous namespace
10396 
EvaluateArray(const Expr * E,const LValue & This,APValue & Result,EvalInfo & Info)10397 static bool EvaluateArray(const Expr *E, const LValue &This,
10398                           APValue &Result, EvalInfo &Info) {
10399   assert(!E->isValueDependent());
10400   assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue");
10401   return ArrayExprEvaluator(Info, This, Result).Visit(E);
10402 }
10403 
EvaluateArrayNewInitList(EvalInfo & Info,LValue & This,APValue & Result,const InitListExpr * ILE,QualType AllocType)10404 static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
10405                                      APValue &Result, const InitListExpr *ILE,
10406                                      QualType AllocType) {
10407   assert(!ILE->isValueDependent());
10408   assert(ILE->isRValue() && ILE->getType()->isArrayType() &&
10409          "not an array rvalue");
10410   return ArrayExprEvaluator(Info, This, Result)
10411       .VisitInitListExpr(ILE, AllocType);
10412 }
10413 
EvaluateArrayNewConstructExpr(EvalInfo & Info,LValue & This,APValue & Result,const CXXConstructExpr * CCE,QualType AllocType)10414 static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This,
10415                                           APValue &Result,
10416                                           const CXXConstructExpr *CCE,
10417                                           QualType AllocType) {
10418   assert(!CCE->isValueDependent());
10419   assert(CCE->isRValue() && CCE->getType()->isArrayType() &&
10420          "not an array rvalue");
10421   return ArrayExprEvaluator(Info, This, Result)
10422       .VisitCXXConstructExpr(CCE, This, &Result, AllocType);
10423 }
10424 
10425 // Return true iff the given array filler may depend on the element index.
MaybeElementDependentArrayFiller(const Expr * FillerExpr)10426 static bool MaybeElementDependentArrayFiller(const Expr *FillerExpr) {
10427   // For now, just allow non-class value-initialization and initialization
10428   // lists comprised of them.
10429   if (isa<ImplicitValueInitExpr>(FillerExpr))
10430     return false;
10431   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(FillerExpr)) {
10432     for (unsigned I = 0, E = ILE->getNumInits(); I != E; ++I) {
10433       if (MaybeElementDependentArrayFiller(ILE->getInit(I)))
10434         return true;
10435     }
10436     return false;
10437   }
10438   return true;
10439 }
10440 
VisitInitListExpr(const InitListExpr * E,QualType AllocType)10441 bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E,
10442                                            QualType AllocType) {
10443   const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
10444       AllocType.isNull() ? E->getType() : AllocType);
10445   if (!CAT)
10446     return Error(E);
10447 
10448   // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
10449   // an appropriately-typed string literal enclosed in braces.
10450   if (E->isStringLiteralInit()) {
10451     auto *SL = dyn_cast<StringLiteral>(E->getInit(0)->IgnoreParens());
10452     // FIXME: Support ObjCEncodeExpr here once we support it in
10453     // ArrayExprEvaluator generally.
10454     if (!SL)
10455       return Error(E);
10456     return VisitStringLiteral(SL, AllocType);
10457   }
10458 
10459   bool Success = true;
10460 
10461   assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
10462          "zero-initialized array shouldn't have any initialized elts");
10463   APValue Filler;
10464   if (Result.isArray() && Result.hasArrayFiller())
10465     Filler = Result.getArrayFiller();
10466 
10467   unsigned NumEltsToInit = E->getNumInits();
10468   unsigned NumElts = CAT->getSize().getZExtValue();
10469   const Expr *FillerExpr = E->hasArrayFiller() ? E->getArrayFiller() : nullptr;
10470 
10471   // If the initializer might depend on the array index, run it for each
10472   // array element.
10473   if (NumEltsToInit != NumElts && MaybeElementDependentArrayFiller(FillerExpr))
10474     NumEltsToInit = NumElts;
10475 
10476   LLVM_DEBUG(llvm::dbgs() << "The number of elements to initialize: "
10477                           << NumEltsToInit << ".\n");
10478 
10479   Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);
10480 
10481   // If the array was previously zero-initialized, preserve the
10482   // zero-initialized values.
10483   if (Filler.hasValue()) {
10484     for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
10485       Result.getArrayInitializedElt(I) = Filler;
10486     if (Result.hasArrayFiller())
10487       Result.getArrayFiller() = Filler;
10488   }
10489 
10490   LValue Subobject = This;
10491   Subobject.addArray(Info, E, CAT);
10492   for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
10493     const Expr *Init =
10494         Index < E->getNumInits() ? E->getInit(Index) : FillerExpr;
10495     if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
10496                          Info, Subobject, Init) ||
10497         !HandleLValueArrayAdjustment(Info, Init, Subobject,
10498                                      CAT->getElementType(), 1)) {
10499       if (!Info.noteFailure())
10500         return false;
10501       Success = false;
10502     }
10503   }
10504 
10505   if (!Result.hasArrayFiller())
10506     return Success;
10507 
10508   // If we get here, we have a trivial filler, which we can just evaluate
10509   // once and splat over the rest of the array elements.
10510   assert(FillerExpr && "no array filler for incomplete init list");
10511   return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject,
10512                          FillerExpr) && Success;
10513 }
10514 
VisitArrayInitLoopExpr(const ArrayInitLoopExpr * E)10515 bool ArrayExprEvaluator::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
10516   LValue CommonLV;
10517   if (E->getCommonExpr() &&
10518       !Evaluate(Info.CurrentCall->createTemporary(
10519                     E->getCommonExpr(),
10520                     getStorageType(Info.Ctx, E->getCommonExpr()),
10521                     ScopeKind::FullExpression, CommonLV),
10522                 Info, E->getCommonExpr()->getSourceExpr()))
10523     return false;
10524 
10525   auto *CAT = cast<ConstantArrayType>(E->getType()->castAsArrayTypeUnsafe());
10526 
10527   uint64_t Elements = CAT->getSize().getZExtValue();
10528   Result = APValue(APValue::UninitArray(), Elements, Elements);
10529 
10530   LValue Subobject = This;
10531   Subobject.addArray(Info, E, CAT);
10532 
10533   bool Success = true;
10534   for (EvalInfo::ArrayInitLoopIndex Index(Info); Index != Elements; ++Index) {
10535     if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
10536                          Info, Subobject, E->getSubExpr()) ||
10537         !HandleLValueArrayAdjustment(Info, E, Subobject,
10538                                      CAT->getElementType(), 1)) {
10539       if (!Info.noteFailure())
10540         return false;
10541       Success = false;
10542     }
10543   }
10544 
10545   return Success;
10546 }
10547 
VisitCXXConstructExpr(const CXXConstructExpr * E)10548 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
10549   return VisitCXXConstructExpr(E, This, &Result, E->getType());
10550 }
10551 
VisitCXXConstructExpr(const CXXConstructExpr * E,const LValue & Subobject,APValue * Value,QualType Type)10552 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
10553                                                const LValue &Subobject,
10554                                                APValue *Value,
10555                                                QualType Type) {
10556   bool HadZeroInit = Value->hasValue();
10557 
10558   if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) {
10559     unsigned N = CAT->getSize().getZExtValue();
10560 
10561     // Preserve the array filler if we had prior zero-initialization.
10562     APValue Filler =
10563       HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
10564                                              : APValue();
10565 
10566     *Value = APValue(APValue::UninitArray(), N, N);
10567 
10568     if (HadZeroInit)
10569       for (unsigned I = 0; I != N; ++I)
10570         Value->getArrayInitializedElt(I) = Filler;
10571 
10572     // Initialize the elements.
10573     LValue ArrayElt = Subobject;
10574     ArrayElt.addArray(Info, E, CAT);
10575     for (unsigned I = 0; I != N; ++I)
10576       if (!VisitCXXConstructExpr(E, ArrayElt, &Value->getArrayInitializedElt(I),
10577                                  CAT->getElementType()) ||
10578           !HandleLValueArrayAdjustment(Info, E, ArrayElt,
10579                                        CAT->getElementType(), 1))
10580         return false;
10581 
10582     return true;
10583   }
10584 
10585   if (!Type->isRecordType())
10586     return Error(E);
10587 
10588   return RecordExprEvaluator(Info, Subobject, *Value)
10589              .VisitCXXConstructExpr(E, Type);
10590 }
10591 
10592 //===----------------------------------------------------------------------===//
10593 // Integer Evaluation
10594 //
10595 // As a GNU extension, we support casting pointers to sufficiently-wide integer
10596 // types and back in constant folding. Integer values are thus represented
10597 // either as an integer-valued APValue, or as an lvalue-valued APValue.
10598 //===----------------------------------------------------------------------===//
10599 
10600 namespace {
10601 class IntExprEvaluator
10602         : public ExprEvaluatorBase<IntExprEvaluator> {
10603   APValue &Result;
10604 public:
IntExprEvaluator(EvalInfo & info,APValue & result)10605   IntExprEvaluator(EvalInfo &info, APValue &result)
10606       : ExprEvaluatorBaseTy(info), Result(result) {}
10607 
Success(const llvm::APSInt & SI,const Expr * E,APValue & Result)10608   bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
10609     assert(E->getType()->isIntegralOrEnumerationType() &&
10610            "Invalid evaluation result.");
10611     assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
10612            "Invalid evaluation result.");
10613     assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
10614            "Invalid evaluation result.");
10615     Result = APValue(SI);
10616     return true;
10617   }
Success(const llvm::APSInt & SI,const Expr * E)10618   bool Success(const llvm::APSInt &SI, const Expr *E) {
10619     return Success(SI, E, Result);
10620   }
10621 
Success(const llvm::APInt & I,const Expr * E,APValue & Result)10622   bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
10623     assert(E->getType()->isIntegralOrEnumerationType() &&
10624            "Invalid evaluation result.");
10625     assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
10626            "Invalid evaluation result.");
10627     Result = APValue(APSInt(I));
10628     Result.getInt().setIsUnsigned(
10629                             E->getType()->isUnsignedIntegerOrEnumerationType());
10630     return true;
10631   }
Success(const llvm::APInt & I,const Expr * E)10632   bool Success(const llvm::APInt &I, const Expr *E) {
10633     return Success(I, E, Result);
10634   }
10635 
Success(uint64_t Value,const Expr * E,APValue & Result)10636   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
10637     assert(E->getType()->isIntegralOrEnumerationType() &&
10638            "Invalid evaluation result.");
10639     Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
10640     return true;
10641   }
Success(uint64_t Value,const Expr * E)10642   bool Success(uint64_t Value, const Expr *E) {
10643     return Success(Value, E, Result);
10644   }
10645 
Success(CharUnits Size,const Expr * E)10646   bool Success(CharUnits Size, const Expr *E) {
10647     return Success(Size.getQuantity(), E);
10648   }
10649 
Success(const APValue & V,const Expr * E)10650   bool Success(const APValue &V, const Expr *E) {
10651     if (V.isLValue() || V.isAddrLabelDiff() || V.isIndeterminate()) {
10652       Result = V;
10653       return true;
10654     }
10655     return Success(V.getInt(), E);
10656   }
10657 
ZeroInitialization(const Expr * E)10658   bool ZeroInitialization(const Expr *E) { return Success(0, E); }
10659 
10660   //===--------------------------------------------------------------------===//
10661   //                            Visitor Methods
10662   //===--------------------------------------------------------------------===//
10663 
VisitIntegerLiteral(const IntegerLiteral * E)10664   bool VisitIntegerLiteral(const IntegerLiteral *E) {
10665     return Success(E->getValue(), E);
10666   }
VisitCharacterLiteral(const CharacterLiteral * E)10667   bool VisitCharacterLiteral(const CharacterLiteral *E) {
10668     return Success(E->getValue(), E);
10669   }
10670 
10671   bool CheckReferencedDecl(const Expr *E, const Decl *D);
VisitDeclRefExpr(const DeclRefExpr * E)10672   bool VisitDeclRefExpr(const DeclRefExpr *E) {
10673     if (CheckReferencedDecl(E, E->getDecl()))
10674       return true;
10675 
10676     return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
10677   }
VisitMemberExpr(const MemberExpr * E)10678   bool VisitMemberExpr(const MemberExpr *E) {
10679     if (CheckReferencedDecl(E, E->getMemberDecl())) {
10680       VisitIgnoredBaseExpression(E->getBase());
10681       return true;
10682     }
10683 
10684     return ExprEvaluatorBaseTy::VisitMemberExpr(E);
10685   }
10686 
10687   bool VisitCallExpr(const CallExpr *E);
10688   bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
10689   bool VisitBinaryOperator(const BinaryOperator *E);
10690   bool VisitOffsetOfExpr(const OffsetOfExpr *E);
10691   bool VisitUnaryOperator(const UnaryOperator *E);
10692 
10693   bool VisitCastExpr(const CastExpr* E);
10694   bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
10695 
VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr * E)10696   bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
10697     return Success(E->getValue(), E);
10698   }
10699 
VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr * E)10700   bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
10701     return Success(E->getValue(), E);
10702   }
10703 
VisitArrayInitIndexExpr(const ArrayInitIndexExpr * E)10704   bool VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
10705     if (Info.ArrayInitIndex == uint64_t(-1)) {
10706       // We were asked to evaluate this subexpression independent of the
10707       // enclosing ArrayInitLoopExpr. We can't do that.
10708       Info.FFDiag(E);
10709       return false;
10710     }
10711     return Success(Info.ArrayInitIndex, E);
10712   }
10713 
10714   // Note, GNU defines __null as an integer, not a pointer.
VisitGNUNullExpr(const GNUNullExpr * E)10715   bool VisitGNUNullExpr(const GNUNullExpr *E) {
10716     return ZeroInitialization(E);
10717   }
10718 
VisitTypeTraitExpr(const TypeTraitExpr * E)10719   bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
10720     return Success(E->getValue(), E);
10721   }
10722 
VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr * E)10723   bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
10724     return Success(E->getValue(), E);
10725   }
10726 
VisitExpressionTraitExpr(const ExpressionTraitExpr * E)10727   bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
10728     return Success(E->getValue(), E);
10729   }
10730 
10731   bool VisitUnaryReal(const UnaryOperator *E);
10732   bool VisitUnaryImag(const UnaryOperator *E);
10733 
10734   bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
10735   bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
10736   bool VisitSourceLocExpr(const SourceLocExpr *E);
10737   bool VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E);
10738   bool VisitRequiresExpr(const RequiresExpr *E);
10739   // FIXME: Missing: array subscript of vector, member of vector
10740 };
10741 
10742 class FixedPointExprEvaluator
10743     : public ExprEvaluatorBase<FixedPointExprEvaluator> {
10744   APValue &Result;
10745 
10746  public:
FixedPointExprEvaluator(EvalInfo & info,APValue & result)10747   FixedPointExprEvaluator(EvalInfo &info, APValue &result)
10748       : ExprEvaluatorBaseTy(info), Result(result) {}
10749 
Success(const llvm::APInt & I,const Expr * E)10750   bool Success(const llvm::APInt &I, const Expr *E) {
10751     return Success(
10752         APFixedPoint(I, Info.Ctx.getFixedPointSemantics(E->getType())), E);
10753   }
10754 
Success(uint64_t Value,const Expr * E)10755   bool Success(uint64_t Value, const Expr *E) {
10756     return Success(
10757         APFixedPoint(Value, Info.Ctx.getFixedPointSemantics(E->getType())), E);
10758   }
10759 
Success(const APValue & V,const Expr * E)10760   bool Success(const APValue &V, const Expr *E) {
10761     return Success(V.getFixedPoint(), E);
10762   }
10763 
Success(const APFixedPoint & V,const Expr * E)10764   bool Success(const APFixedPoint &V, const Expr *E) {
10765     assert(E->getType()->isFixedPointType() && "Invalid evaluation result.");
10766     assert(V.getWidth() == Info.Ctx.getIntWidth(E->getType()) &&
10767            "Invalid evaluation result.");
10768     Result = APValue(V);
10769     return true;
10770   }
10771 
10772   //===--------------------------------------------------------------------===//
10773   //                            Visitor Methods
10774   //===--------------------------------------------------------------------===//
10775 
VisitFixedPointLiteral(const FixedPointLiteral * E)10776   bool VisitFixedPointLiteral(const FixedPointLiteral *E) {
10777     return Success(E->getValue(), E);
10778   }
10779 
10780   bool VisitCastExpr(const CastExpr *E);
10781   bool VisitUnaryOperator(const UnaryOperator *E);
10782   bool VisitBinaryOperator(const BinaryOperator *E);
10783 };
10784 } // end anonymous namespace
10785 
10786 /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
10787 /// produce either the integer value or a pointer.
10788 ///
10789 /// GCC has a heinous extension which folds casts between pointer types and
10790 /// pointer-sized integral types. We support this by allowing the evaluation of
10791 /// an integer rvalue to produce a pointer (represented as an lvalue) instead.
10792 /// Some simple arithmetic on such values is supported (they are treated much
10793 /// like char*).
EvaluateIntegerOrLValue(const Expr * E,APValue & Result,EvalInfo & Info)10794 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
10795                                     EvalInfo &Info) {
10796   assert(!E->isValueDependent());
10797   assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType());
10798   return IntExprEvaluator(Info, Result).Visit(E);
10799 }
10800 
EvaluateInteger(const Expr * E,APSInt & Result,EvalInfo & Info)10801 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
10802   assert(!E->isValueDependent());
10803   APValue Val;
10804   if (!EvaluateIntegerOrLValue(E, Val, Info))
10805     return false;
10806   if (!Val.isInt()) {
10807     // FIXME: It would be better to produce the diagnostic for casting
10808     //        a pointer to an integer.
10809     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
10810     return false;
10811   }
10812   Result = Val.getInt();
10813   return true;
10814 }
10815 
VisitSourceLocExpr(const SourceLocExpr * E)10816 bool IntExprEvaluator::VisitSourceLocExpr(const SourceLocExpr *E) {
10817   APValue Evaluated = E->EvaluateInContext(
10818       Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
10819   return Success(Evaluated, E);
10820 }
10821 
EvaluateFixedPoint(const Expr * E,APFixedPoint & Result,EvalInfo & Info)10822 static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
10823                                EvalInfo &Info) {
10824   assert(!E->isValueDependent());
10825   if (E->getType()->isFixedPointType()) {
10826     APValue Val;
10827     if (!FixedPointExprEvaluator(Info, Val).Visit(E))
10828       return false;
10829     if (!Val.isFixedPoint())
10830       return false;
10831 
10832     Result = Val.getFixedPoint();
10833     return true;
10834   }
10835   return false;
10836 }
10837 
EvaluateFixedPointOrInteger(const Expr * E,APFixedPoint & Result,EvalInfo & Info)10838 static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
10839                                         EvalInfo &Info) {
10840   assert(!E->isValueDependent());
10841   if (E->getType()->isIntegerType()) {
10842     auto FXSema = Info.Ctx.getFixedPointSemantics(E->getType());
10843     APSInt Val;
10844     if (!EvaluateInteger(E, Val, Info))
10845       return false;
10846     Result = APFixedPoint(Val, FXSema);
10847     return true;
10848   } else if (E->getType()->isFixedPointType()) {
10849     return EvaluateFixedPoint(E, Result, Info);
10850   }
10851   return false;
10852 }
10853 
10854 /// Check whether the given declaration can be directly converted to an integral
10855 /// rvalue. If not, no diagnostic is produced; there are other things we can
10856 /// try.
CheckReferencedDecl(const Expr * E,const Decl * D)10857 bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
10858   // Enums are integer constant exprs.
10859   if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
10860     // Check for signedness/width mismatches between E type and ECD value.
10861     bool SameSign = (ECD->getInitVal().isSigned()
10862                      == E->getType()->isSignedIntegerOrEnumerationType());
10863     bool SameWidth = (ECD->getInitVal().getBitWidth()
10864                       == Info.Ctx.getIntWidth(E->getType()));
10865     if (SameSign && SameWidth)
10866       return Success(ECD->getInitVal(), E);
10867     else {
10868       // Get rid of mismatch (otherwise Success assertions will fail)
10869       // by computing a new value matching the type of E.
10870       llvm::APSInt Val = ECD->getInitVal();
10871       if (!SameSign)
10872         Val.setIsSigned(!ECD->getInitVal().isSigned());
10873       if (!SameWidth)
10874         Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
10875       return Success(Val, E);
10876     }
10877   }
10878   return false;
10879 }
10880 
10881 /// Values returned by __builtin_classify_type, chosen to match the values
10882 /// produced by GCC's builtin.
10883 enum class GCCTypeClass {
10884   None = -1,
10885   Void = 0,
10886   Integer = 1,
10887   // GCC reserves 2 for character types, but instead classifies them as
10888   // integers.
10889   Enum = 3,
10890   Bool = 4,
10891   Pointer = 5,
10892   // GCC reserves 6 for references, but appears to never use it (because
10893   // expressions never have reference type, presumably).
10894   PointerToDataMember = 7,
10895   RealFloat = 8,
10896   Complex = 9,
10897   // GCC reserves 10 for functions, but does not use it since GCC version 6 due
10898   // to decay to pointer. (Prior to version 6 it was only used in C++ mode).
10899   // GCC claims to reserve 11 for pointers to member functions, but *actually*
10900   // uses 12 for that purpose, same as for a class or struct. Maybe it
10901   // internally implements a pointer to member as a struct?  Who knows.
10902   PointerToMemberFunction = 12, // Not a bug, see above.
10903   ClassOrStruct = 12,
10904   Union = 13,
10905   // GCC reserves 14 for arrays, but does not use it since GCC version 6 due to
10906   // decay to pointer. (Prior to version 6 it was only used in C++ mode).
10907   // GCC reserves 15 for strings, but actually uses 5 (pointer) for string
10908   // literals.
10909 };
10910 
10911 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
10912 /// as GCC.
10913 static GCCTypeClass
EvaluateBuiltinClassifyType(QualType T,const LangOptions & LangOpts)10914 EvaluateBuiltinClassifyType(QualType T, const LangOptions &LangOpts) {
10915   assert(!T->isDependentType() && "unexpected dependent type");
10916 
10917   QualType CanTy = T.getCanonicalType();
10918   const BuiltinType *BT = dyn_cast<BuiltinType>(CanTy);
10919 
10920   switch (CanTy->getTypeClass()) {
10921 #define TYPE(ID, BASE)
10922 #define DEPENDENT_TYPE(ID, BASE) case Type::ID:
10923 #define NON_CANONICAL_TYPE(ID, BASE) case Type::ID:
10924 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(ID, BASE) case Type::ID:
10925 #include "clang/AST/TypeNodes.inc"
10926   case Type::Auto:
10927   case Type::DeducedTemplateSpecialization:
10928       llvm_unreachable("unexpected non-canonical or dependent type");
10929 
10930   case Type::Builtin:
10931     switch (BT->getKind()) {
10932 #define BUILTIN_TYPE(ID, SINGLETON_ID)
10933 #define SIGNED_TYPE(ID, SINGLETON_ID) \
10934     case BuiltinType::ID: return GCCTypeClass::Integer;
10935 #define FLOATING_TYPE(ID, SINGLETON_ID) \
10936     case BuiltinType::ID: return GCCTypeClass::RealFloat;
10937 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID) \
10938     case BuiltinType::ID: break;
10939 #include "clang/AST/BuiltinTypes.def"
10940     case BuiltinType::Void:
10941       return GCCTypeClass::Void;
10942 
10943     case BuiltinType::Bool:
10944       return GCCTypeClass::Bool;
10945 
10946     case BuiltinType::Char_U:
10947     case BuiltinType::UChar:
10948     case BuiltinType::WChar_U:
10949     case BuiltinType::Char8:
10950     case BuiltinType::Char16:
10951     case BuiltinType::Char32:
10952     case BuiltinType::UShort:
10953     case BuiltinType::UInt:
10954     case BuiltinType::ULong:
10955     case BuiltinType::ULongLong:
10956     case BuiltinType::UInt128:
10957       return GCCTypeClass::Integer;
10958 
10959     case BuiltinType::UShortAccum:
10960     case BuiltinType::UAccum:
10961     case BuiltinType::ULongAccum:
10962     case BuiltinType::UShortFract:
10963     case BuiltinType::UFract:
10964     case BuiltinType::ULongFract:
10965     case BuiltinType::SatUShortAccum:
10966     case BuiltinType::SatUAccum:
10967     case BuiltinType::SatULongAccum:
10968     case BuiltinType::SatUShortFract:
10969     case BuiltinType::SatUFract:
10970     case BuiltinType::SatULongFract:
10971       return GCCTypeClass::None;
10972 
10973     case BuiltinType::NullPtr:
10974 
10975     case BuiltinType::ObjCId:
10976     case BuiltinType::ObjCClass:
10977     case BuiltinType::ObjCSel:
10978 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
10979     case BuiltinType::Id:
10980 #include "clang/Basic/OpenCLImageTypes.def"
10981 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
10982     case BuiltinType::Id:
10983 #include "clang/Basic/OpenCLExtensionTypes.def"
10984     case BuiltinType::OCLSampler:
10985     case BuiltinType::OCLEvent:
10986     case BuiltinType::OCLClkEvent:
10987     case BuiltinType::OCLQueue:
10988     case BuiltinType::OCLReserveID:
10989 #define SVE_TYPE(Name, Id, SingletonId) \
10990     case BuiltinType::Id:
10991 #include "clang/Basic/AArch64SVEACLETypes.def"
10992 #define PPC_VECTOR_TYPE(Name, Id, Size) \
10993     case BuiltinType::Id:
10994 #include "clang/Basic/PPCTypes.def"
10995 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
10996 #include "clang/Basic/RISCVVTypes.def"
10997       return GCCTypeClass::None;
10998 
10999     case BuiltinType::Dependent:
11000       llvm_unreachable("unexpected dependent type");
11001     };
11002     llvm_unreachable("unexpected placeholder type");
11003 
11004   case Type::Enum:
11005     return LangOpts.CPlusPlus ? GCCTypeClass::Enum : GCCTypeClass::Integer;
11006 
11007   case Type::Pointer:
11008   case Type::ConstantArray:
11009   case Type::VariableArray:
11010   case Type::IncompleteArray:
11011   case Type::FunctionNoProto:
11012   case Type::FunctionProto:
11013     return GCCTypeClass::Pointer;
11014 
11015   case Type::MemberPointer:
11016     return CanTy->isMemberDataPointerType()
11017                ? GCCTypeClass::PointerToDataMember
11018                : GCCTypeClass::PointerToMemberFunction;
11019 
11020   case Type::Complex:
11021     return GCCTypeClass::Complex;
11022 
11023   case Type::Record:
11024     return CanTy->isUnionType() ? GCCTypeClass::Union
11025                                 : GCCTypeClass::ClassOrStruct;
11026 
11027   case Type::Atomic:
11028     // GCC classifies _Atomic T the same as T.
11029     return EvaluateBuiltinClassifyType(
11030         CanTy->castAs<AtomicType>()->getValueType(), LangOpts);
11031 
11032   case Type::BlockPointer:
11033   case Type::Vector:
11034   case Type::ExtVector:
11035   case Type::ConstantMatrix:
11036   case Type::ObjCObject:
11037   case Type::ObjCInterface:
11038   case Type::ObjCObjectPointer:
11039   case Type::Pipe:
11040   case Type::ExtInt:
11041     // GCC classifies vectors as None. We follow its lead and classify all
11042     // other types that don't fit into the regular classification the same way.
11043     return GCCTypeClass::None;
11044 
11045   case Type::LValueReference:
11046   case Type::RValueReference:
11047     llvm_unreachable("invalid type for expression");
11048   }
11049 
11050   llvm_unreachable("unexpected type class");
11051 }
11052 
11053 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
11054 /// as GCC.
11055 static GCCTypeClass
EvaluateBuiltinClassifyType(const CallExpr * E,const LangOptions & LangOpts)11056 EvaluateBuiltinClassifyType(const CallExpr *E, const LangOptions &LangOpts) {
11057   // If no argument was supplied, default to None. This isn't
11058   // ideal, however it is what gcc does.
11059   if (E->getNumArgs() == 0)
11060     return GCCTypeClass::None;
11061 
11062   // FIXME: Bizarrely, GCC treats a call with more than one argument as not
11063   // being an ICE, but still folds it to a constant using the type of the first
11064   // argument.
11065   return EvaluateBuiltinClassifyType(E->getArg(0)->getType(), LangOpts);
11066 }
11067 
11068 /// EvaluateBuiltinConstantPForLValue - Determine the result of
11069 /// __builtin_constant_p when applied to the given pointer.
11070 ///
11071 /// A pointer is only "constant" if it is null (or a pointer cast to integer)
11072 /// or it points to the first character of a string literal.
EvaluateBuiltinConstantPForLValue(const APValue & LV)11073 static bool EvaluateBuiltinConstantPForLValue(const APValue &LV) {
11074   APValue::LValueBase Base = LV.getLValueBase();
11075   if (Base.isNull()) {
11076     // A null base is acceptable.
11077     return true;
11078   } else if (const Expr *E = Base.dyn_cast<const Expr *>()) {
11079     if (!isa<StringLiteral>(E))
11080       return false;
11081     return LV.getLValueOffset().isZero();
11082   } else if (Base.is<TypeInfoLValue>()) {
11083     // Surprisingly, GCC considers __builtin_constant_p(&typeid(int)) to
11084     // evaluate to true.
11085     return true;
11086   } else {
11087     // Any other base is not constant enough for GCC.
11088     return false;
11089   }
11090 }
11091 
11092 /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
11093 /// GCC as we can manage.
EvaluateBuiltinConstantP(EvalInfo & Info,const Expr * Arg)11094 static bool EvaluateBuiltinConstantP(EvalInfo &Info, const Expr *Arg) {
11095   // This evaluation is not permitted to have side-effects, so evaluate it in
11096   // a speculative evaluation context.
11097   SpeculativeEvaluationRAII SpeculativeEval(Info);
11098 
11099   // Constant-folding is always enabled for the operand of __builtin_constant_p
11100   // (even when the enclosing evaluation context otherwise requires a strict
11101   // language-specific constant expression).
11102   FoldConstant Fold(Info, true);
11103 
11104   QualType ArgType = Arg->getType();
11105 
11106   // __builtin_constant_p always has one operand. The rules which gcc follows
11107   // are not precisely documented, but are as follows:
11108   //
11109   //  - If the operand is of integral, floating, complex or enumeration type,
11110   //    and can be folded to a known value of that type, it returns 1.
11111   //  - If the operand can be folded to a pointer to the first character
11112   //    of a string literal (or such a pointer cast to an integral type)
11113   //    or to a null pointer or an integer cast to a pointer, it returns 1.
11114   //
11115   // Otherwise, it returns 0.
11116   //
11117   // FIXME: GCC also intends to return 1 for literals of aggregate types, but
11118   // its support for this did not work prior to GCC 9 and is not yet well
11119   // understood.
11120   if (ArgType->isIntegralOrEnumerationType() || ArgType->isFloatingType() ||
11121       ArgType->isAnyComplexType() || ArgType->isPointerType() ||
11122       ArgType->isNullPtrType()) {
11123     APValue V;
11124     if (!::EvaluateAsRValue(Info, Arg, V) || Info.EvalStatus.HasSideEffects) {
11125       Fold.keepDiagnostics();
11126       return false;
11127     }
11128 
11129     // For a pointer (possibly cast to integer), there are special rules.
11130     if (V.getKind() == APValue::LValue)
11131       return EvaluateBuiltinConstantPForLValue(V);
11132 
11133     // Otherwise, any constant value is good enough.
11134     return V.hasValue();
11135   }
11136 
11137   // Anything else isn't considered to be sufficiently constant.
11138   return false;
11139 }
11140 
11141 /// Retrieves the "underlying object type" of the given expression,
11142 /// as used by __builtin_object_size.
getObjectType(APValue::LValueBase B)11143 static QualType getObjectType(APValue::LValueBase B) {
11144   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
11145     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
11146       return VD->getType();
11147   } else if (const Expr *E = B.dyn_cast<const Expr*>()) {
11148     if (isa<CompoundLiteralExpr>(E))
11149       return E->getType();
11150   } else if (B.is<TypeInfoLValue>()) {
11151     return B.getTypeInfoType();
11152   } else if (B.is<DynamicAllocLValue>()) {
11153     return B.getDynamicAllocType();
11154   }
11155 
11156   return QualType();
11157 }
11158 
11159 /// A more selective version of E->IgnoreParenCasts for
11160 /// tryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only
11161 /// to change the type of E.
11162 /// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo`
11163 ///
11164 /// Always returns an RValue with a pointer representation.
ignorePointerCastsAndParens(const Expr * E)11165 static const Expr *ignorePointerCastsAndParens(const Expr *E) {
11166   assert(E->isRValue() && E->getType()->hasPointerRepresentation());
11167 
11168   auto *NoParens = E->IgnoreParens();
11169   auto *Cast = dyn_cast<CastExpr>(NoParens);
11170   if (Cast == nullptr)
11171     return NoParens;
11172 
11173   // We only conservatively allow a few kinds of casts, because this code is
11174   // inherently a simple solution that seeks to support the common case.
11175   auto CastKind = Cast->getCastKind();
11176   if (CastKind != CK_NoOp && CastKind != CK_BitCast &&
11177       CastKind != CK_AddressSpaceConversion)
11178     return NoParens;
11179 
11180   auto *SubExpr = Cast->getSubExpr();
11181   if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isRValue())
11182     return NoParens;
11183   return ignorePointerCastsAndParens(SubExpr);
11184 }
11185 
11186 /// Checks to see if the given LValue's Designator is at the end of the LValue's
11187 /// record layout. e.g.
11188 ///   struct { struct { int a, b; } fst, snd; } obj;
11189 ///   obj.fst   // no
11190 ///   obj.snd   // yes
11191 ///   obj.fst.a // no
11192 ///   obj.fst.b // no
11193 ///   obj.snd.a // no
11194 ///   obj.snd.b // yes
11195 ///
11196 /// Please note: this function is specialized for how __builtin_object_size
11197 /// views "objects".
11198 ///
11199 /// If this encounters an invalid RecordDecl or otherwise cannot determine the
11200 /// correct result, it will always return true.
isDesignatorAtObjectEnd(const ASTContext & Ctx,const LValue & LVal)11201 static bool isDesignatorAtObjectEnd(const ASTContext &Ctx, const LValue &LVal) {
11202   assert(!LVal.Designator.Invalid);
11203 
11204   auto IsLastOrInvalidFieldDecl = [&Ctx](const FieldDecl *FD, bool &Invalid) {
11205     const RecordDecl *Parent = FD->getParent();
11206     Invalid = Parent->isInvalidDecl();
11207     if (Invalid || Parent->isUnion())
11208       return true;
11209     const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(Parent);
11210     return FD->getFieldIndex() + 1 == Layout.getFieldCount();
11211   };
11212 
11213   auto &Base = LVal.getLValueBase();
11214   if (auto *ME = dyn_cast_or_null<MemberExpr>(Base.dyn_cast<const Expr *>())) {
11215     if (auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
11216       bool Invalid;
11217       if (!IsLastOrInvalidFieldDecl(FD, Invalid))
11218         return Invalid;
11219     } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(ME->getMemberDecl())) {
11220       for (auto *FD : IFD->chain()) {
11221         bool Invalid;
11222         if (!IsLastOrInvalidFieldDecl(cast<FieldDecl>(FD), Invalid))
11223           return Invalid;
11224       }
11225     }
11226   }
11227 
11228   unsigned I = 0;
11229   QualType BaseType = getType(Base);
11230   if (LVal.Designator.FirstEntryIsAnUnsizedArray) {
11231     // If we don't know the array bound, conservatively assume we're looking at
11232     // the final array element.
11233     ++I;
11234     if (BaseType->isIncompleteArrayType())
11235       BaseType = Ctx.getAsArrayType(BaseType)->getElementType();
11236     else
11237       BaseType = BaseType->castAs<PointerType>()->getPointeeType();
11238   }
11239 
11240   for (unsigned E = LVal.Designator.Entries.size(); I != E; ++I) {
11241     const auto &Entry = LVal.Designator.Entries[I];
11242     if (BaseType->isArrayType()) {
11243       // Because __builtin_object_size treats arrays as objects, we can ignore
11244       // the index iff this is the last array in the Designator.
11245       if (I + 1 == E)
11246         return true;
11247       const auto *CAT = cast<ConstantArrayType>(Ctx.getAsArrayType(BaseType));
11248       uint64_t Index = Entry.getAsArrayIndex();
11249       if (Index + 1 != CAT->getSize())
11250         return false;
11251       BaseType = CAT->getElementType();
11252     } else if (BaseType->isAnyComplexType()) {
11253       const auto *CT = BaseType->castAs<ComplexType>();
11254       uint64_t Index = Entry.getAsArrayIndex();
11255       if (Index != 1)
11256         return false;
11257       BaseType = CT->getElementType();
11258     } else if (auto *FD = getAsField(Entry)) {
11259       bool Invalid;
11260       if (!IsLastOrInvalidFieldDecl(FD, Invalid))
11261         return Invalid;
11262       BaseType = FD->getType();
11263     } else {
11264       assert(getAsBaseClass(Entry) && "Expecting cast to a base class");
11265       return false;
11266     }
11267   }
11268   return true;
11269 }
11270 
11271 /// Tests to see if the LValue has a user-specified designator (that isn't
11272 /// necessarily valid). Note that this always returns 'true' if the LValue has
11273 /// an unsized array as its first designator entry, because there's currently no
11274 /// way to tell if the user typed *foo or foo[0].
refersToCompleteObject(const LValue & LVal)11275 static bool refersToCompleteObject(const LValue &LVal) {
11276   if (LVal.Designator.Invalid)
11277     return false;
11278 
11279   if (!LVal.Designator.Entries.empty())
11280     return LVal.Designator.isMostDerivedAnUnsizedArray();
11281 
11282   if (!LVal.InvalidBase)
11283     return true;
11284 
11285   // If `E` is a MemberExpr, then the first part of the designator is hiding in
11286   // the LValueBase.
11287   const auto *E = LVal.Base.dyn_cast<const Expr *>();
11288   return !E || !isa<MemberExpr>(E);
11289 }
11290 
11291 /// Attempts to detect a user writing into a piece of memory that's impossible
11292 /// to figure out the size of by just using types.
isUserWritingOffTheEnd(const ASTContext & Ctx,const LValue & LVal)11293 static bool isUserWritingOffTheEnd(const ASTContext &Ctx, const LValue &LVal) {
11294   const SubobjectDesignator &Designator = LVal.Designator;
11295   // Notes:
11296   // - Users can only write off of the end when we have an invalid base. Invalid
11297   //   bases imply we don't know where the memory came from.
11298   // - We used to be a bit more aggressive here; we'd only be conservative if
11299   //   the array at the end was flexible, or if it had 0 or 1 elements. This
11300   //   broke some common standard library extensions (PR30346), but was
11301   //   otherwise seemingly fine. It may be useful to reintroduce this behavior
11302   //   with some sort of list. OTOH, it seems that GCC is always
11303   //   conservative with the last element in structs (if it's an array), so our
11304   //   current behavior is more compatible than an explicit list approach would
11305   //   be.
11306   return LVal.InvalidBase &&
11307          Designator.Entries.size() == Designator.MostDerivedPathLength &&
11308          Designator.MostDerivedIsArrayElement &&
11309          isDesignatorAtObjectEnd(Ctx, LVal);
11310 }
11311 
11312 /// Converts the given APInt to CharUnits, assuming the APInt is unsigned.
11313 /// Fails if the conversion would cause loss of precision.
convertUnsignedAPIntToCharUnits(const llvm::APInt & Int,CharUnits & Result)11314 static bool convertUnsignedAPIntToCharUnits(const llvm::APInt &Int,
11315                                             CharUnits &Result) {
11316   auto CharUnitsMax = std::numeric_limits<CharUnits::QuantityType>::max();
11317   if (Int.ugt(CharUnitsMax))
11318     return false;
11319   Result = CharUnits::fromQuantity(Int.getZExtValue());
11320   return true;
11321 }
11322 
11323 /// Helper for tryEvaluateBuiltinObjectSize -- Given an LValue, this will
11324 /// determine how many bytes exist from the beginning of the object to either
11325 /// the end of the current subobject, or the end of the object itself, depending
11326 /// on what the LValue looks like + the value of Type.
11327 ///
11328 /// If this returns false, the value of Result is undefined.
determineEndOffset(EvalInfo & Info,SourceLocation ExprLoc,unsigned Type,const LValue & LVal,CharUnits & EndOffset)11329 static bool determineEndOffset(EvalInfo &Info, SourceLocation ExprLoc,
11330                                unsigned Type, const LValue &LVal,
11331                                CharUnits &EndOffset) {
11332   bool DetermineForCompleteObject = refersToCompleteObject(LVal);
11333 
11334   auto CheckedHandleSizeof = [&](QualType Ty, CharUnits &Result) {
11335     if (Ty.isNull() || Ty->isIncompleteType() || Ty->isFunctionType())
11336       return false;
11337     return HandleSizeof(Info, ExprLoc, Ty, Result);
11338   };
11339 
11340   // We want to evaluate the size of the entire object. This is a valid fallback
11341   // for when Type=1 and the designator is invalid, because we're asked for an
11342   // upper-bound.
11343   if (!(Type & 1) || LVal.Designator.Invalid || DetermineForCompleteObject) {
11344     // Type=3 wants a lower bound, so we can't fall back to this.
11345     if (Type == 3 && !DetermineForCompleteObject)
11346       return false;
11347 
11348     llvm::APInt APEndOffset;
11349     if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
11350         getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
11351       return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
11352 
11353     if (LVal.InvalidBase)
11354       return false;
11355 
11356     QualType BaseTy = getObjectType(LVal.getLValueBase());
11357     return CheckedHandleSizeof(BaseTy, EndOffset);
11358   }
11359 
11360   // We want to evaluate the size of a subobject.
11361   const SubobjectDesignator &Designator = LVal.Designator;
11362 
11363   // The following is a moderately common idiom in C:
11364   //
11365   // struct Foo { int a; char c[1]; };
11366   // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar));
11367   // strcpy(&F->c[0], Bar);
11368   //
11369   // In order to not break too much legacy code, we need to support it.
11370   if (isUserWritingOffTheEnd(Info.Ctx, LVal)) {
11371     // If we can resolve this to an alloc_size call, we can hand that back,
11372     // because we know for certain how many bytes there are to write to.
11373     llvm::APInt APEndOffset;
11374     if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
11375         getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
11376       return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
11377 
11378     // If we cannot determine the size of the initial allocation, then we can't
11379     // given an accurate upper-bound. However, we are still able to give
11380     // conservative lower-bounds for Type=3.
11381     if (Type == 1)
11382       return false;
11383   }
11384 
11385   CharUnits BytesPerElem;
11386   if (!CheckedHandleSizeof(Designator.MostDerivedType, BytesPerElem))
11387     return false;
11388 
11389   // According to the GCC documentation, we want the size of the subobject
11390   // denoted by the pointer. But that's not quite right -- what we actually
11391   // want is the size of the immediately-enclosing array, if there is one.
11392   int64_t ElemsRemaining;
11393   if (Designator.MostDerivedIsArrayElement &&
11394       Designator.Entries.size() == Designator.MostDerivedPathLength) {
11395     uint64_t ArraySize = Designator.getMostDerivedArraySize();
11396     uint64_t ArrayIndex = Designator.Entries.back().getAsArrayIndex();
11397     ElemsRemaining = ArraySize <= ArrayIndex ? 0 : ArraySize - ArrayIndex;
11398   } else {
11399     ElemsRemaining = Designator.isOnePastTheEnd() ? 0 : 1;
11400   }
11401 
11402   EndOffset = LVal.getLValueOffset() + BytesPerElem * ElemsRemaining;
11403   return true;
11404 }
11405 
11406 /// Tries to evaluate the __builtin_object_size for @p E. If successful,
11407 /// returns true and stores the result in @p Size.
11408 ///
11409 /// If @p WasError is non-null, this will report whether the failure to evaluate
11410 /// is to be treated as an Error in IntExprEvaluator.
tryEvaluateBuiltinObjectSize(const Expr * E,unsigned Type,EvalInfo & Info,uint64_t & Size)11411 static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type,
11412                                          EvalInfo &Info, uint64_t &Size) {
11413   // Determine the denoted object.
11414   LValue LVal;
11415   {
11416     // The operand of __builtin_object_size is never evaluated for side-effects.
11417     // If there are any, but we can determine the pointed-to object anyway, then
11418     // ignore the side-effects.
11419     SpeculativeEvaluationRAII SpeculativeEval(Info);
11420     IgnoreSideEffectsRAII Fold(Info);
11421 
11422     if (E->isGLValue()) {
11423       // It's possible for us to be given GLValues if we're called via
11424       // Expr::tryEvaluateObjectSize.
11425       APValue RVal;
11426       if (!EvaluateAsRValue(Info, E, RVal))
11427         return false;
11428       LVal.setFrom(Info.Ctx, RVal);
11429     } else if (!EvaluatePointer(ignorePointerCastsAndParens(E), LVal, Info,
11430                                 /*InvalidBaseOK=*/true))
11431       return false;
11432   }
11433 
11434   // If we point to before the start of the object, there are no accessible
11435   // bytes.
11436   if (LVal.getLValueOffset().isNegative()) {
11437     Size = 0;
11438     return true;
11439   }
11440 
11441   CharUnits EndOffset;
11442   if (!determineEndOffset(Info, E->getExprLoc(), Type, LVal, EndOffset))
11443     return false;
11444 
11445   // If we've fallen outside of the end offset, just pretend there's nothing to
11446   // write to/read from.
11447   if (EndOffset <= LVal.getLValueOffset())
11448     Size = 0;
11449   else
11450     Size = (EndOffset - LVal.getLValueOffset()).getQuantity();
11451   return true;
11452 }
11453 
VisitCallExpr(const CallExpr * E)11454 bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
11455   if (unsigned BuiltinOp = E->getBuiltinCallee())
11456     return VisitBuiltinCallExpr(E, BuiltinOp);
11457 
11458   return ExprEvaluatorBaseTy::VisitCallExpr(E);
11459 }
11460 
getBuiltinAlignArguments(const CallExpr * E,EvalInfo & Info,APValue & Val,APSInt & Alignment)11461 static bool getBuiltinAlignArguments(const CallExpr *E, EvalInfo &Info,
11462                                      APValue &Val, APSInt &Alignment) {
11463   QualType SrcTy = E->getArg(0)->getType();
11464   if (!getAlignmentArgument(E->getArg(1), SrcTy, Info, Alignment))
11465     return false;
11466   // Even though we are evaluating integer expressions we could get a pointer
11467   // argument for the __builtin_is_aligned() case.
11468   if (SrcTy->isPointerType()) {
11469     LValue Ptr;
11470     if (!EvaluatePointer(E->getArg(0), Ptr, Info))
11471       return false;
11472     Ptr.moveInto(Val);
11473   } else if (!SrcTy->isIntegralOrEnumerationType()) {
11474     Info.FFDiag(E->getArg(0));
11475     return false;
11476   } else {
11477     APSInt SrcInt;
11478     if (!EvaluateInteger(E->getArg(0), SrcInt, Info))
11479       return false;
11480     assert(SrcInt.getBitWidth() >= Alignment.getBitWidth() &&
11481            "Bit widths must be the same");
11482     Val = APValue(SrcInt);
11483   }
11484   assert(Val.hasValue());
11485   return true;
11486 }
11487 
VisitBuiltinCallExpr(const CallExpr * E,unsigned BuiltinOp)11488 bool IntExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
11489                                             unsigned BuiltinOp) {
11490   switch (BuiltinOp) {
11491   default:
11492     return ExprEvaluatorBaseTy::VisitCallExpr(E);
11493 
11494   case Builtin::BI__builtin_dynamic_object_size:
11495   case Builtin::BI__builtin_object_size: {
11496     // The type was checked when we built the expression.
11497     unsigned Type =
11498         E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
11499     assert(Type <= 3 && "unexpected type");
11500 
11501     uint64_t Size;
11502     if (tryEvaluateBuiltinObjectSize(E->getArg(0), Type, Info, Size))
11503       return Success(Size, E);
11504 
11505     if (E->getArg(0)->HasSideEffects(Info.Ctx))
11506       return Success((Type & 2) ? 0 : -1, E);
11507 
11508     // Expression had no side effects, but we couldn't statically determine the
11509     // size of the referenced object.
11510     switch (Info.EvalMode) {
11511     case EvalInfo::EM_ConstantExpression:
11512     case EvalInfo::EM_ConstantFold:
11513     case EvalInfo::EM_IgnoreSideEffects:
11514       // Leave it to IR generation.
11515       return Error(E);
11516     case EvalInfo::EM_ConstantExpressionUnevaluated:
11517       // Reduce it to a constant now.
11518       return Success((Type & 2) ? 0 : -1, E);
11519     }
11520 
11521     llvm_unreachable("unexpected EvalMode");
11522   }
11523 
11524   case Builtin::BI__builtin_os_log_format_buffer_size: {
11525     analyze_os_log::OSLogBufferLayout Layout;
11526     analyze_os_log::computeOSLogBufferLayout(Info.Ctx, E, Layout);
11527     return Success(Layout.size().getQuantity(), E);
11528   }
11529 
11530   case Builtin::BI__builtin_is_aligned: {
11531     APValue Src;
11532     APSInt Alignment;
11533     if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
11534       return false;
11535     if (Src.isLValue()) {
11536       // If we evaluated a pointer, check the minimum known alignment.
11537       LValue Ptr;
11538       Ptr.setFrom(Info.Ctx, Src);
11539       CharUnits BaseAlignment = getBaseAlignment(Info, Ptr);
11540       CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Ptr.Offset);
11541       // We can return true if the known alignment at the computed offset is
11542       // greater than the requested alignment.
11543       assert(PtrAlign.isPowerOfTwo());
11544       assert(Alignment.isPowerOf2());
11545       if (PtrAlign.getQuantity() >= Alignment)
11546         return Success(1, E);
11547       // If the alignment is not known to be sufficient, some cases could still
11548       // be aligned at run time. However, if the requested alignment is less or
11549       // equal to the base alignment and the offset is not aligned, we know that
11550       // the run-time value can never be aligned.
11551       if (BaseAlignment.getQuantity() >= Alignment &&
11552           PtrAlign.getQuantity() < Alignment)
11553         return Success(0, E);
11554       // Otherwise we can't infer whether the value is sufficiently aligned.
11555       // TODO: __builtin_is_aligned(__builtin_align_{down,up{(expr, N), N)
11556       //  in cases where we can't fully evaluate the pointer.
11557       Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_compute)
11558           << Alignment;
11559       return false;
11560     }
11561     assert(Src.isInt());
11562     return Success((Src.getInt() & (Alignment - 1)) == 0 ? 1 : 0, E);
11563   }
11564   case Builtin::BI__builtin_align_up: {
11565     APValue Src;
11566     APSInt Alignment;
11567     if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
11568       return false;
11569     if (!Src.isInt())
11570       return Error(E);
11571     APSInt AlignedVal =
11572         APSInt((Src.getInt() + (Alignment - 1)) & ~(Alignment - 1),
11573                Src.getInt().isUnsigned());
11574     assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth());
11575     return Success(AlignedVal, E);
11576   }
11577   case Builtin::BI__builtin_align_down: {
11578     APValue Src;
11579     APSInt Alignment;
11580     if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
11581       return false;
11582     if (!Src.isInt())
11583       return Error(E);
11584     APSInt AlignedVal =
11585         APSInt(Src.getInt() & ~(Alignment - 1), Src.getInt().isUnsigned());
11586     assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth());
11587     return Success(AlignedVal, E);
11588   }
11589 
11590   case Builtin::BI__builtin_bitreverse8:
11591   case Builtin::BI__builtin_bitreverse16:
11592   case Builtin::BI__builtin_bitreverse32:
11593   case Builtin::BI__builtin_bitreverse64: {
11594     APSInt Val;
11595     if (!EvaluateInteger(E->getArg(0), Val, Info))
11596       return false;
11597 
11598     return Success(Val.reverseBits(), E);
11599   }
11600 
11601   case Builtin::BI__builtin_bswap16:
11602   case Builtin::BI__builtin_bswap32:
11603   case Builtin::BI__builtin_bswap64: {
11604     APSInt Val;
11605     if (!EvaluateInteger(E->getArg(0), Val, Info))
11606       return false;
11607 
11608     return Success(Val.byteSwap(), E);
11609   }
11610 
11611   case Builtin::BI__builtin_classify_type:
11612     return Success((int)EvaluateBuiltinClassifyType(E, Info.getLangOpts()), E);
11613 
11614   case Builtin::BI__builtin_clrsb:
11615   case Builtin::BI__builtin_clrsbl:
11616   case Builtin::BI__builtin_clrsbll: {
11617     APSInt Val;
11618     if (!EvaluateInteger(E->getArg(0), Val, Info))
11619       return false;
11620 
11621     return Success(Val.getBitWidth() - Val.getMinSignedBits(), E);
11622   }
11623 
11624   case Builtin::BI__builtin_clz:
11625   case Builtin::BI__builtin_clzl:
11626   case Builtin::BI__builtin_clzll:
11627   case Builtin::BI__builtin_clzs: {
11628     APSInt Val;
11629     if (!EvaluateInteger(E->getArg(0), Val, Info))
11630       return false;
11631     if (!Val)
11632       return Error(E);
11633 
11634     return Success(Val.countLeadingZeros(), E);
11635   }
11636 
11637   case Builtin::BI__builtin_constant_p: {
11638     const Expr *Arg = E->getArg(0);
11639     if (EvaluateBuiltinConstantP(Info, Arg))
11640       return Success(true, E);
11641     if (Info.InConstantContext || Arg->HasSideEffects(Info.Ctx)) {
11642       // Outside a constant context, eagerly evaluate to false in the presence
11643       // of side-effects in order to avoid -Wunsequenced false-positives in
11644       // a branch on __builtin_constant_p(expr).
11645       return Success(false, E);
11646     }
11647     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
11648     return false;
11649   }
11650 
11651   case Builtin::BI__builtin_is_constant_evaluated: {
11652     const auto *Callee = Info.CurrentCall->getCallee();
11653     if (Info.InConstantContext && !Info.CheckingPotentialConstantExpression &&
11654         (Info.CallStackDepth == 1 ||
11655          (Info.CallStackDepth == 2 && Callee->isInStdNamespace() &&
11656           Callee->getIdentifier() &&
11657           Callee->getIdentifier()->isStr("is_constant_evaluated")))) {
11658       // FIXME: Find a better way to avoid duplicated diagnostics.
11659       if (Info.EvalStatus.Diag)
11660         Info.report((Info.CallStackDepth == 1) ? E->getExprLoc()
11661                                                : Info.CurrentCall->CallLoc,
11662                     diag::warn_is_constant_evaluated_always_true_constexpr)
11663             << (Info.CallStackDepth == 1 ? "__builtin_is_constant_evaluated"
11664                                          : "std::is_constant_evaluated");
11665     }
11666 
11667     return Success(Info.InConstantContext, E);
11668   }
11669 
11670   case Builtin::BI__builtin_ctz:
11671   case Builtin::BI__builtin_ctzl:
11672   case Builtin::BI__builtin_ctzll:
11673   case Builtin::BI__builtin_ctzs: {
11674     APSInt Val;
11675     if (!EvaluateInteger(E->getArg(0), Val, Info))
11676       return false;
11677     if (!Val)
11678       return Error(E);
11679 
11680     return Success(Val.countTrailingZeros(), E);
11681   }
11682 
11683   case Builtin::BI__builtin_eh_return_data_regno: {
11684     int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
11685     Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
11686     return Success(Operand, E);
11687   }
11688 
11689   case Builtin::BI__builtin_expect:
11690   case Builtin::BI__builtin_expect_with_probability:
11691     return Visit(E->getArg(0));
11692 
11693   case Builtin::BI__builtin_ffs:
11694   case Builtin::BI__builtin_ffsl:
11695   case Builtin::BI__builtin_ffsll: {
11696     APSInt Val;
11697     if (!EvaluateInteger(E->getArg(0), Val, Info))
11698       return false;
11699 
11700     unsigned N = Val.countTrailingZeros();
11701     return Success(N == Val.getBitWidth() ? 0 : N + 1, E);
11702   }
11703 
11704   case Builtin::BI__builtin_fpclassify: {
11705     APFloat Val(0.0);
11706     if (!EvaluateFloat(E->getArg(5), Val, Info))
11707       return false;
11708     unsigned Arg;
11709     switch (Val.getCategory()) {
11710     case APFloat::fcNaN: Arg = 0; break;
11711     case APFloat::fcInfinity: Arg = 1; break;
11712     case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break;
11713     case APFloat::fcZero: Arg = 4; break;
11714     }
11715     return Visit(E->getArg(Arg));
11716   }
11717 
11718   case Builtin::BI__builtin_isinf_sign: {
11719     APFloat Val(0.0);
11720     return EvaluateFloat(E->getArg(0), Val, Info) &&
11721            Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E);
11722   }
11723 
11724   case Builtin::BI__builtin_isinf: {
11725     APFloat Val(0.0);
11726     return EvaluateFloat(E->getArg(0), Val, Info) &&
11727            Success(Val.isInfinity() ? 1 : 0, E);
11728   }
11729 
11730   case Builtin::BI__builtin_isfinite: {
11731     APFloat Val(0.0);
11732     return EvaluateFloat(E->getArg(0), Val, Info) &&
11733            Success(Val.isFinite() ? 1 : 0, E);
11734   }
11735 
11736   case Builtin::BI__builtin_isnan: {
11737     APFloat Val(0.0);
11738     return EvaluateFloat(E->getArg(0), Val, Info) &&
11739            Success(Val.isNaN() ? 1 : 0, E);
11740   }
11741 
11742   case Builtin::BI__builtin_isnormal: {
11743     APFloat Val(0.0);
11744     return EvaluateFloat(E->getArg(0), Val, Info) &&
11745            Success(Val.isNormal() ? 1 : 0, E);
11746   }
11747 
11748   case Builtin::BI__builtin_parity:
11749   case Builtin::BI__builtin_parityl:
11750   case Builtin::BI__builtin_parityll: {
11751     APSInt Val;
11752     if (!EvaluateInteger(E->getArg(0), Val, Info))
11753       return false;
11754 
11755     return Success(Val.countPopulation() % 2, E);
11756   }
11757 
11758   case Builtin::BI__builtin_popcount:
11759   case Builtin::BI__builtin_popcountl:
11760   case Builtin::BI__builtin_popcountll: {
11761     APSInt Val;
11762     if (!EvaluateInteger(E->getArg(0), Val, Info))
11763       return false;
11764 
11765     return Success(Val.countPopulation(), E);
11766   }
11767 
11768   case Builtin::BI__builtin_rotateleft8:
11769   case Builtin::BI__builtin_rotateleft16:
11770   case Builtin::BI__builtin_rotateleft32:
11771   case Builtin::BI__builtin_rotateleft64:
11772   case Builtin::BI_rotl8: // Microsoft variants of rotate right
11773   case Builtin::BI_rotl16:
11774   case Builtin::BI_rotl:
11775   case Builtin::BI_lrotl:
11776   case Builtin::BI_rotl64: {
11777     APSInt Val, Amt;
11778     if (!EvaluateInteger(E->getArg(0), Val, Info) ||
11779         !EvaluateInteger(E->getArg(1), Amt, Info))
11780       return false;
11781 
11782     return Success(Val.rotl(Amt.urem(Val.getBitWidth())), E);
11783   }
11784 
11785   case Builtin::BI__builtin_rotateright8:
11786   case Builtin::BI__builtin_rotateright16:
11787   case Builtin::BI__builtin_rotateright32:
11788   case Builtin::BI__builtin_rotateright64:
11789   case Builtin::BI_rotr8: // Microsoft variants of rotate right
11790   case Builtin::BI_rotr16:
11791   case Builtin::BI_rotr:
11792   case Builtin::BI_lrotr:
11793   case Builtin::BI_rotr64: {
11794     APSInt Val, Amt;
11795     if (!EvaluateInteger(E->getArg(0), Val, Info) ||
11796         !EvaluateInteger(E->getArg(1), Amt, Info))
11797       return false;
11798 
11799     return Success(Val.rotr(Amt.urem(Val.getBitWidth())), E);
11800   }
11801 
11802   case Builtin::BIstrlen:
11803   case Builtin::BIwcslen:
11804     // A call to strlen is not a constant expression.
11805     if (Info.getLangOpts().CPlusPlus11)
11806       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
11807         << /*isConstexpr*/0 << /*isConstructor*/0
11808         << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
11809     else
11810       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
11811     LLVM_FALLTHROUGH;
11812   case Builtin::BI__builtin_strlen:
11813   case Builtin::BI__builtin_wcslen: {
11814     // As an extension, we support __builtin_strlen() as a constant expression,
11815     // and support folding strlen() to a constant.
11816     LValue String;
11817     if (!EvaluatePointer(E->getArg(0), String, Info))
11818       return false;
11819 
11820     QualType CharTy = E->getArg(0)->getType()->getPointeeType();
11821 
11822     // Fast path: if it's a string literal, search the string value.
11823     if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>(
11824             String.getLValueBase().dyn_cast<const Expr *>())) {
11825       // The string literal may have embedded null characters. Find the first
11826       // one and truncate there.
11827       StringRef Str = S->getBytes();
11828       int64_t Off = String.Offset.getQuantity();
11829       if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() &&
11830           S->getCharByteWidth() == 1 &&
11831           // FIXME: Add fast-path for wchar_t too.
11832           Info.Ctx.hasSameUnqualifiedType(CharTy, Info.Ctx.CharTy)) {
11833         Str = Str.substr(Off);
11834 
11835         StringRef::size_type Pos = Str.find(0);
11836         if (Pos != StringRef::npos)
11837           Str = Str.substr(0, Pos);
11838 
11839         return Success(Str.size(), E);
11840       }
11841 
11842       // Fall through to slow path to issue appropriate diagnostic.
11843     }
11844 
11845     // Slow path: scan the bytes of the string looking for the terminating 0.
11846     for (uint64_t Strlen = 0; /**/; ++Strlen) {
11847       APValue Char;
11848       if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) ||
11849           !Char.isInt())
11850         return false;
11851       if (!Char.getInt())
11852         return Success(Strlen, E);
11853       if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1))
11854         return false;
11855     }
11856   }
11857 
11858   case Builtin::BIstrcmp:
11859   case Builtin::BIwcscmp:
11860   case Builtin::BIstrncmp:
11861   case Builtin::BIwcsncmp:
11862   case Builtin::BImemcmp:
11863   case Builtin::BIbcmp:
11864   case Builtin::BIwmemcmp:
11865     // A call to strlen is not a constant expression.
11866     if (Info.getLangOpts().CPlusPlus11)
11867       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
11868         << /*isConstexpr*/0 << /*isConstructor*/0
11869         << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
11870     else
11871       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
11872     LLVM_FALLTHROUGH;
11873   case Builtin::BI__builtin_strcmp:
11874   case Builtin::BI__builtin_wcscmp:
11875   case Builtin::BI__builtin_strncmp:
11876   case Builtin::BI__builtin_wcsncmp:
11877   case Builtin::BI__builtin_memcmp:
11878   case Builtin::BI__builtin_bcmp:
11879   case Builtin::BI__builtin_wmemcmp: {
11880     LValue String1, String2;
11881     if (!EvaluatePointer(E->getArg(0), String1, Info) ||
11882         !EvaluatePointer(E->getArg(1), String2, Info))
11883       return false;
11884 
11885     uint64_t MaxLength = uint64_t(-1);
11886     if (BuiltinOp != Builtin::BIstrcmp &&
11887         BuiltinOp != Builtin::BIwcscmp &&
11888         BuiltinOp != Builtin::BI__builtin_strcmp &&
11889         BuiltinOp != Builtin::BI__builtin_wcscmp) {
11890       APSInt N;
11891       if (!EvaluateInteger(E->getArg(2), N, Info))
11892         return false;
11893       MaxLength = N.getExtValue();
11894     }
11895 
11896     // Empty substrings compare equal by definition.
11897     if (MaxLength == 0u)
11898       return Success(0, E);
11899 
11900     if (!String1.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
11901         !String2.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
11902         String1.Designator.Invalid || String2.Designator.Invalid)
11903       return false;
11904 
11905     QualType CharTy1 = String1.Designator.getType(Info.Ctx);
11906     QualType CharTy2 = String2.Designator.getType(Info.Ctx);
11907 
11908     bool IsRawByte = BuiltinOp == Builtin::BImemcmp ||
11909                      BuiltinOp == Builtin::BIbcmp ||
11910                      BuiltinOp == Builtin::BI__builtin_memcmp ||
11911                      BuiltinOp == Builtin::BI__builtin_bcmp;
11912 
11913     assert(IsRawByte ||
11914            (Info.Ctx.hasSameUnqualifiedType(
11915                 CharTy1, E->getArg(0)->getType()->getPointeeType()) &&
11916             Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2)));
11917 
11918     // For memcmp, allow comparing any arrays of '[[un]signed] char' or
11919     // 'char8_t', but no other types.
11920     if (IsRawByte &&
11921         !(isOneByteCharacterType(CharTy1) && isOneByteCharacterType(CharTy2))) {
11922       // FIXME: Consider using our bit_cast implementation to support this.
11923       Info.FFDiag(E, diag::note_constexpr_memcmp_unsupported)
11924           << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'")
11925           << CharTy1 << CharTy2;
11926       return false;
11927     }
11928 
11929     const auto &ReadCurElems = [&](APValue &Char1, APValue &Char2) {
11930       return handleLValueToRValueConversion(Info, E, CharTy1, String1, Char1) &&
11931              handleLValueToRValueConversion(Info, E, CharTy2, String2, Char2) &&
11932              Char1.isInt() && Char2.isInt();
11933     };
11934     const auto &AdvanceElems = [&] {
11935       return HandleLValueArrayAdjustment(Info, E, String1, CharTy1, 1) &&
11936              HandleLValueArrayAdjustment(Info, E, String2, CharTy2, 1);
11937     };
11938 
11939     bool StopAtNull =
11940         (BuiltinOp != Builtin::BImemcmp && BuiltinOp != Builtin::BIbcmp &&
11941          BuiltinOp != Builtin::BIwmemcmp &&
11942          BuiltinOp != Builtin::BI__builtin_memcmp &&
11943          BuiltinOp != Builtin::BI__builtin_bcmp &&
11944          BuiltinOp != Builtin::BI__builtin_wmemcmp);
11945     bool IsWide = BuiltinOp == Builtin::BIwcscmp ||
11946                   BuiltinOp == Builtin::BIwcsncmp ||
11947                   BuiltinOp == Builtin::BIwmemcmp ||
11948                   BuiltinOp == Builtin::BI__builtin_wcscmp ||
11949                   BuiltinOp == Builtin::BI__builtin_wcsncmp ||
11950                   BuiltinOp == Builtin::BI__builtin_wmemcmp;
11951 
11952     for (; MaxLength; --MaxLength) {
11953       APValue Char1, Char2;
11954       if (!ReadCurElems(Char1, Char2))
11955         return false;
11956       if (Char1.getInt().ne(Char2.getInt())) {
11957         if (IsWide) // wmemcmp compares with wchar_t signedness.
11958           return Success(Char1.getInt() < Char2.getInt() ? -1 : 1, E);
11959         // memcmp always compares unsigned chars.
11960         return Success(Char1.getInt().ult(Char2.getInt()) ? -1 : 1, E);
11961       }
11962       if (StopAtNull && !Char1.getInt())
11963         return Success(0, E);
11964       assert(!(StopAtNull && !Char2.getInt()));
11965       if (!AdvanceElems())
11966         return false;
11967     }
11968     // We hit the strncmp / memcmp limit.
11969     return Success(0, E);
11970   }
11971 
11972   case Builtin::BI__atomic_always_lock_free:
11973   case Builtin::BI__atomic_is_lock_free:
11974   case Builtin::BI__c11_atomic_is_lock_free: {
11975     APSInt SizeVal;
11976     if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
11977       return false;
11978 
11979     // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
11980     // of two less than or equal to the maximum inline atomic width, we know it
11981     // is lock-free.  If the size isn't a power of two, or greater than the
11982     // maximum alignment where we promote atomics, we know it is not lock-free
11983     // (at least not in the sense of atomic_is_lock_free).  Otherwise,
11984     // the answer can only be determined at runtime; for example, 16-byte
11985     // atomics have lock-free implementations on some, but not all,
11986     // x86-64 processors.
11987 
11988     // Check power-of-two.
11989     CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
11990     if (Size.isPowerOfTwo()) {
11991       // Check against inlining width.
11992       unsigned InlineWidthBits =
11993           Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
11994       if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
11995         if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
11996             Size == CharUnits::One() ||
11997             E->getArg(1)->isNullPointerConstant(Info.Ctx,
11998                                                 Expr::NPC_NeverValueDependent))
11999           // OK, we will inline appropriately-aligned operations of this size,
12000           // and _Atomic(T) is appropriately-aligned.
12001           return Success(1, E);
12002 
12003         QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
12004           castAs<PointerType>()->getPointeeType();
12005         if (!PointeeType->isIncompleteType() &&
12006             Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
12007           // OK, we will inline operations on this object.
12008           return Success(1, E);
12009         }
12010       }
12011     }
12012 
12013     return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
12014         Success(0, E) : Error(E);
12015   }
12016   case Builtin::BI__builtin_add_overflow:
12017   case Builtin::BI__builtin_sub_overflow:
12018   case Builtin::BI__builtin_mul_overflow:
12019   case Builtin::BI__builtin_sadd_overflow:
12020   case Builtin::BI__builtin_uadd_overflow:
12021   case Builtin::BI__builtin_uaddl_overflow:
12022   case Builtin::BI__builtin_uaddll_overflow:
12023   case Builtin::BI__builtin_usub_overflow:
12024   case Builtin::BI__builtin_usubl_overflow:
12025   case Builtin::BI__builtin_usubll_overflow:
12026   case Builtin::BI__builtin_umul_overflow:
12027   case Builtin::BI__builtin_umull_overflow:
12028   case Builtin::BI__builtin_umulll_overflow:
12029   case Builtin::BI__builtin_saddl_overflow:
12030   case Builtin::BI__builtin_saddll_overflow:
12031   case Builtin::BI__builtin_ssub_overflow:
12032   case Builtin::BI__builtin_ssubl_overflow:
12033   case Builtin::BI__builtin_ssubll_overflow:
12034   case Builtin::BI__builtin_smul_overflow:
12035   case Builtin::BI__builtin_smull_overflow:
12036   case Builtin::BI__builtin_smulll_overflow: {
12037     LValue ResultLValue;
12038     APSInt LHS, RHS;
12039 
12040     QualType ResultType = E->getArg(2)->getType()->getPointeeType();
12041     if (!EvaluateInteger(E->getArg(0), LHS, Info) ||
12042         !EvaluateInteger(E->getArg(1), RHS, Info) ||
12043         !EvaluatePointer(E->getArg(2), ResultLValue, Info))
12044       return false;
12045 
12046     APSInt Result;
12047     bool DidOverflow = false;
12048 
12049     // If the types don't have to match, enlarge all 3 to the largest of them.
12050     if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
12051         BuiltinOp == Builtin::BI__builtin_sub_overflow ||
12052         BuiltinOp == Builtin::BI__builtin_mul_overflow) {
12053       bool IsSigned = LHS.isSigned() || RHS.isSigned() ||
12054                       ResultType->isSignedIntegerOrEnumerationType();
12055       bool AllSigned = LHS.isSigned() && RHS.isSigned() &&
12056                       ResultType->isSignedIntegerOrEnumerationType();
12057       uint64_t LHSSize = LHS.getBitWidth();
12058       uint64_t RHSSize = RHS.getBitWidth();
12059       uint64_t ResultSize = Info.Ctx.getTypeSize(ResultType);
12060       uint64_t MaxBits = std::max(std::max(LHSSize, RHSSize), ResultSize);
12061 
12062       // Add an additional bit if the signedness isn't uniformly agreed to. We
12063       // could do this ONLY if there is a signed and an unsigned that both have
12064       // MaxBits, but the code to check that is pretty nasty.  The issue will be
12065       // caught in the shrink-to-result later anyway.
12066       if (IsSigned && !AllSigned)
12067         ++MaxBits;
12068 
12069       LHS = APSInt(LHS.extOrTrunc(MaxBits), !IsSigned);
12070       RHS = APSInt(RHS.extOrTrunc(MaxBits), !IsSigned);
12071       Result = APSInt(MaxBits, !IsSigned);
12072     }
12073 
12074     // Find largest int.
12075     switch (BuiltinOp) {
12076     default:
12077       llvm_unreachable("Invalid value for BuiltinOp");
12078     case Builtin::BI__builtin_add_overflow:
12079     case Builtin::BI__builtin_sadd_overflow:
12080     case Builtin::BI__builtin_saddl_overflow:
12081     case Builtin::BI__builtin_saddll_overflow:
12082     case Builtin::BI__builtin_uadd_overflow:
12083     case Builtin::BI__builtin_uaddl_overflow:
12084     case Builtin::BI__builtin_uaddll_overflow:
12085       Result = LHS.isSigned() ? LHS.sadd_ov(RHS, DidOverflow)
12086                               : LHS.uadd_ov(RHS, DidOverflow);
12087       break;
12088     case Builtin::BI__builtin_sub_overflow:
12089     case Builtin::BI__builtin_ssub_overflow:
12090     case Builtin::BI__builtin_ssubl_overflow:
12091     case Builtin::BI__builtin_ssubll_overflow:
12092     case Builtin::BI__builtin_usub_overflow:
12093     case Builtin::BI__builtin_usubl_overflow:
12094     case Builtin::BI__builtin_usubll_overflow:
12095       Result = LHS.isSigned() ? LHS.ssub_ov(RHS, DidOverflow)
12096                               : LHS.usub_ov(RHS, DidOverflow);
12097       break;
12098     case Builtin::BI__builtin_mul_overflow:
12099     case Builtin::BI__builtin_smul_overflow:
12100     case Builtin::BI__builtin_smull_overflow:
12101     case Builtin::BI__builtin_smulll_overflow:
12102     case Builtin::BI__builtin_umul_overflow:
12103     case Builtin::BI__builtin_umull_overflow:
12104     case Builtin::BI__builtin_umulll_overflow:
12105       Result = LHS.isSigned() ? LHS.smul_ov(RHS, DidOverflow)
12106                               : LHS.umul_ov(RHS, DidOverflow);
12107       break;
12108     }
12109 
12110     // In the case where multiple sizes are allowed, truncate and see if
12111     // the values are the same.
12112     if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
12113         BuiltinOp == Builtin::BI__builtin_sub_overflow ||
12114         BuiltinOp == Builtin::BI__builtin_mul_overflow) {
12115       // APSInt doesn't have a TruncOrSelf, so we use extOrTrunc instead,
12116       // since it will give us the behavior of a TruncOrSelf in the case where
12117       // its parameter <= its size.  We previously set Result to be at least the
12118       // type-size of the result, so getTypeSize(ResultType) <= Result.BitWidth
12119       // will work exactly like TruncOrSelf.
12120       APSInt Temp = Result.extOrTrunc(Info.Ctx.getTypeSize(ResultType));
12121       Temp.setIsSigned(ResultType->isSignedIntegerOrEnumerationType());
12122 
12123       if (!APSInt::isSameValue(Temp, Result))
12124         DidOverflow = true;
12125       Result = Temp;
12126     }
12127 
12128     APValue APV{Result};
12129     if (!handleAssignment(Info, E, ResultLValue, ResultType, APV))
12130       return false;
12131     return Success(DidOverflow, E);
12132   }
12133   }
12134 }
12135 
12136 /// Determine whether this is a pointer past the end of the complete
12137 /// object referred to by the lvalue.
isOnePastTheEndOfCompleteObject(const ASTContext & Ctx,const LValue & LV)12138 static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx,
12139                                             const LValue &LV) {
12140   // A null pointer can be viewed as being "past the end" but we don't
12141   // choose to look at it that way here.
12142   if (!LV.getLValueBase())
12143     return false;
12144 
12145   // If the designator is valid and refers to a subobject, we're not pointing
12146   // past the end.
12147   if (!LV.getLValueDesignator().Invalid &&
12148       !LV.getLValueDesignator().isOnePastTheEnd())
12149     return false;
12150 
12151   // A pointer to an incomplete type might be past-the-end if the type's size is
12152   // zero.  We cannot tell because the type is incomplete.
12153   QualType Ty = getType(LV.getLValueBase());
12154   if (Ty->isIncompleteType())
12155     return true;
12156 
12157   // We're a past-the-end pointer if we point to the byte after the object,
12158   // no matter what our type or path is.
12159   auto Size = Ctx.getTypeSizeInChars(Ty);
12160   return LV.getLValueOffset() == Size;
12161 }
12162 
12163 namespace {
12164 
12165 /// Data recursive integer evaluator of certain binary operators.
12166 ///
12167 /// We use a data recursive algorithm for binary operators so that we are able
12168 /// to handle extreme cases of chained binary operators without causing stack
12169 /// overflow.
12170 class DataRecursiveIntBinOpEvaluator {
12171   struct EvalResult {
12172     APValue Val;
12173     bool Failed;
12174 
EvalResult__anon6b379bbb2811::DataRecursiveIntBinOpEvaluator::EvalResult12175     EvalResult() : Failed(false) { }
12176 
swap__anon6b379bbb2811::DataRecursiveIntBinOpEvaluator::EvalResult12177     void swap(EvalResult &RHS) {
12178       Val.swap(RHS.Val);
12179       Failed = RHS.Failed;
12180       RHS.Failed = false;
12181     }
12182   };
12183 
12184   struct Job {
12185     const Expr *E;
12186     EvalResult LHSResult; // meaningful only for binary operator expression.
12187     enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
12188 
12189     Job() = default;
12190     Job(Job &&) = default;
12191 
startSpeculativeEval__anon6b379bbb2811::DataRecursiveIntBinOpEvaluator::Job12192     void startSpeculativeEval(EvalInfo &Info) {
12193       SpecEvalRAII = SpeculativeEvaluationRAII(Info);
12194     }
12195 
12196   private:
12197     SpeculativeEvaluationRAII SpecEvalRAII;
12198   };
12199 
12200   SmallVector<Job, 16> Queue;
12201 
12202   IntExprEvaluator &IntEval;
12203   EvalInfo &Info;
12204   APValue &FinalResult;
12205 
12206 public:
DataRecursiveIntBinOpEvaluator(IntExprEvaluator & IntEval,APValue & Result)12207   DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
12208     : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
12209 
12210   /// True if \param E is a binary operator that we are going to handle
12211   /// data recursively.
12212   /// We handle binary operators that are comma, logical, or that have operands
12213   /// with integral or enumeration type.
shouldEnqueue(const BinaryOperator * E)12214   static bool shouldEnqueue(const BinaryOperator *E) {
12215     return E->getOpcode() == BO_Comma || E->isLogicalOp() ||
12216            (E->isRValue() && E->getType()->isIntegralOrEnumerationType() &&
12217             E->getLHS()->getType()->isIntegralOrEnumerationType() &&
12218             E->getRHS()->getType()->isIntegralOrEnumerationType());
12219   }
12220 
Traverse(const BinaryOperator * E)12221   bool Traverse(const BinaryOperator *E) {
12222     enqueue(E);
12223     EvalResult PrevResult;
12224     while (!Queue.empty())
12225       process(PrevResult);
12226 
12227     if (PrevResult.Failed) return false;
12228 
12229     FinalResult.swap(PrevResult.Val);
12230     return true;
12231   }
12232 
12233 private:
Success(uint64_t Value,const Expr * E,APValue & Result)12234   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
12235     return IntEval.Success(Value, E, Result);
12236   }
Success(const APSInt & Value,const Expr * E,APValue & Result)12237   bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
12238     return IntEval.Success(Value, E, Result);
12239   }
Error(const Expr * E)12240   bool Error(const Expr *E) {
12241     return IntEval.Error(E);
12242   }
Error(const Expr * E,diag::kind D)12243   bool Error(const Expr *E, diag::kind D) {
12244     return IntEval.Error(E, D);
12245   }
12246 
CCEDiag(const Expr * E,diag::kind D)12247   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
12248     return Info.CCEDiag(E, D);
12249   }
12250 
12251   // Returns true if visiting the RHS is necessary, false otherwise.
12252   bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
12253                          bool &SuppressRHSDiags);
12254 
12255   bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
12256                   const BinaryOperator *E, APValue &Result);
12257 
EvaluateExpr(const Expr * E,EvalResult & Result)12258   void EvaluateExpr(const Expr *E, EvalResult &Result) {
12259     Result.Failed = !Evaluate(Result.Val, Info, E);
12260     if (Result.Failed)
12261       Result.Val = APValue();
12262   }
12263 
12264   void process(EvalResult &Result);
12265 
enqueue(const Expr * E)12266   void enqueue(const Expr *E) {
12267     E = E->IgnoreParens();
12268     Queue.resize(Queue.size()+1);
12269     Queue.back().E = E;
12270     Queue.back().Kind = Job::AnyExprKind;
12271   }
12272 };
12273 
12274 }
12275 
12276 bool DataRecursiveIntBinOpEvaluator::
VisitBinOpLHSOnly(EvalResult & LHSResult,const BinaryOperator * E,bool & SuppressRHSDiags)12277        VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
12278                          bool &SuppressRHSDiags) {
12279   if (E->getOpcode() == BO_Comma) {
12280     // Ignore LHS but note if we could not evaluate it.
12281     if (LHSResult.Failed)
12282       return Info.noteSideEffect();
12283     return true;
12284   }
12285 
12286   if (E->isLogicalOp()) {
12287     bool LHSAsBool;
12288     if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) {
12289       // We were able to evaluate the LHS, see if we can get away with not
12290       // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
12291       if (LHSAsBool == (E->getOpcode() == BO_LOr)) {
12292         Success(LHSAsBool, E, LHSResult.Val);
12293         return false; // Ignore RHS
12294       }
12295     } else {
12296       LHSResult.Failed = true;
12297 
12298       // Since we weren't able to evaluate the left hand side, it
12299       // might have had side effects.
12300       if (!Info.noteSideEffect())
12301         return false;
12302 
12303       // We can't evaluate the LHS; however, sometimes the result
12304       // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
12305       // Don't ignore RHS and suppress diagnostics from this arm.
12306       SuppressRHSDiags = true;
12307     }
12308 
12309     return true;
12310   }
12311 
12312   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
12313          E->getRHS()->getType()->isIntegralOrEnumerationType());
12314 
12315   if (LHSResult.Failed && !Info.noteFailure())
12316     return false; // Ignore RHS;
12317 
12318   return true;
12319 }
12320 
addOrSubLValueAsInteger(APValue & LVal,const APSInt & Index,bool IsSub)12321 static void addOrSubLValueAsInteger(APValue &LVal, const APSInt &Index,
12322                                     bool IsSub) {
12323   // Compute the new offset in the appropriate width, wrapping at 64 bits.
12324   // FIXME: When compiling for a 32-bit target, we should use 32-bit
12325   // offsets.
12326   assert(!LVal.hasLValuePath() && "have designator for integer lvalue");
12327   CharUnits &Offset = LVal.getLValueOffset();
12328   uint64_t Offset64 = Offset.getQuantity();
12329   uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
12330   Offset = CharUnits::fromQuantity(IsSub ? Offset64 - Index64
12331                                          : Offset64 + Index64);
12332 }
12333 
12334 bool DataRecursiveIntBinOpEvaluator::
VisitBinOp(const EvalResult & LHSResult,const EvalResult & RHSResult,const BinaryOperator * E,APValue & Result)12335        VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
12336                   const BinaryOperator *E, APValue &Result) {
12337   if (E->getOpcode() == BO_Comma) {
12338     if (RHSResult.Failed)
12339       return false;
12340     Result = RHSResult.Val;
12341     return true;
12342   }
12343 
12344   if (E->isLogicalOp()) {
12345     bool lhsResult, rhsResult;
12346     bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
12347     bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
12348 
12349     if (LHSIsOK) {
12350       if (RHSIsOK) {
12351         if (E->getOpcode() == BO_LOr)
12352           return Success(lhsResult || rhsResult, E, Result);
12353         else
12354           return Success(lhsResult && rhsResult, E, Result);
12355       }
12356     } else {
12357       if (RHSIsOK) {
12358         // We can't evaluate the LHS; however, sometimes the result
12359         // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
12360         if (rhsResult == (E->getOpcode() == BO_LOr))
12361           return Success(rhsResult, E, Result);
12362       }
12363     }
12364 
12365     return false;
12366   }
12367 
12368   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
12369          E->getRHS()->getType()->isIntegralOrEnumerationType());
12370 
12371   if (LHSResult.Failed || RHSResult.Failed)
12372     return false;
12373 
12374   const APValue &LHSVal = LHSResult.Val;
12375   const APValue &RHSVal = RHSResult.Val;
12376 
12377   // Handle cases like (unsigned long)&a + 4.
12378   if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
12379     Result = LHSVal;
12380     addOrSubLValueAsInteger(Result, RHSVal.getInt(), E->getOpcode() == BO_Sub);
12381     return true;
12382   }
12383 
12384   // Handle cases like 4 + (unsigned long)&a
12385   if (E->getOpcode() == BO_Add &&
12386       RHSVal.isLValue() && LHSVal.isInt()) {
12387     Result = RHSVal;
12388     addOrSubLValueAsInteger(Result, LHSVal.getInt(), /*IsSub*/false);
12389     return true;
12390   }
12391 
12392   if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
12393     // Handle (intptr_t)&&A - (intptr_t)&&B.
12394     if (!LHSVal.getLValueOffset().isZero() ||
12395         !RHSVal.getLValueOffset().isZero())
12396       return false;
12397     const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
12398     const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
12399     if (!LHSExpr || !RHSExpr)
12400       return false;
12401     const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
12402     const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
12403     if (!LHSAddrExpr || !RHSAddrExpr)
12404       return false;
12405     // Make sure both labels come from the same function.
12406     if (LHSAddrExpr->getLabel()->getDeclContext() !=
12407         RHSAddrExpr->getLabel()->getDeclContext())
12408       return false;
12409     Result = APValue(LHSAddrExpr, RHSAddrExpr);
12410     return true;
12411   }
12412 
12413   // All the remaining cases expect both operands to be an integer
12414   if (!LHSVal.isInt() || !RHSVal.isInt())
12415     return Error(E);
12416 
12417   // Set up the width and signedness manually, in case it can't be deduced
12418   // from the operation we're performing.
12419   // FIXME: Don't do this in the cases where we can deduce it.
12420   APSInt Value(Info.Ctx.getIntWidth(E->getType()),
12421                E->getType()->isUnsignedIntegerOrEnumerationType());
12422   if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(),
12423                          RHSVal.getInt(), Value))
12424     return false;
12425   return Success(Value, E, Result);
12426 }
12427 
process(EvalResult & Result)12428 void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
12429   Job &job = Queue.back();
12430 
12431   switch (job.Kind) {
12432     case Job::AnyExprKind: {
12433       if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
12434         if (shouldEnqueue(Bop)) {
12435           job.Kind = Job::BinOpKind;
12436           enqueue(Bop->getLHS());
12437           return;
12438         }
12439       }
12440 
12441       EvaluateExpr(job.E, Result);
12442       Queue.pop_back();
12443       return;
12444     }
12445 
12446     case Job::BinOpKind: {
12447       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
12448       bool SuppressRHSDiags = false;
12449       if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
12450         Queue.pop_back();
12451         return;
12452       }
12453       if (SuppressRHSDiags)
12454         job.startSpeculativeEval(Info);
12455       job.LHSResult.swap(Result);
12456       job.Kind = Job::BinOpVisitedLHSKind;
12457       enqueue(Bop->getRHS());
12458       return;
12459     }
12460 
12461     case Job::BinOpVisitedLHSKind: {
12462       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
12463       EvalResult RHS;
12464       RHS.swap(Result);
12465       Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
12466       Queue.pop_back();
12467       return;
12468     }
12469   }
12470 
12471   llvm_unreachable("Invalid Job::Kind!");
12472 }
12473 
12474 namespace {
12475 enum class CmpResult {
12476   Unequal,
12477   Less,
12478   Equal,
12479   Greater,
12480   Unordered,
12481 };
12482 }
12483 
12484 template <class SuccessCB, class AfterCB>
12485 static bool
EvaluateComparisonBinaryOperator(EvalInfo & Info,const BinaryOperator * E,SuccessCB && Success,AfterCB && DoAfter)12486 EvaluateComparisonBinaryOperator(EvalInfo &Info, const BinaryOperator *E,
12487                                  SuccessCB &&Success, AfterCB &&DoAfter) {
12488   assert(!E->isValueDependent());
12489   assert(E->isComparisonOp() && "expected comparison operator");
12490   assert((E->getOpcode() == BO_Cmp ||
12491           E->getType()->isIntegralOrEnumerationType()) &&
12492          "unsupported binary expression evaluation");
12493   auto Error = [&](const Expr *E) {
12494     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
12495     return false;
12496   };
12497 
12498   bool IsRelational = E->isRelationalOp() || E->getOpcode() == BO_Cmp;
12499   bool IsEquality = E->isEqualityOp();
12500 
12501   QualType LHSTy = E->getLHS()->getType();
12502   QualType RHSTy = E->getRHS()->getType();
12503 
12504   if (LHSTy->isIntegralOrEnumerationType() &&
12505       RHSTy->isIntegralOrEnumerationType()) {
12506     APSInt LHS, RHS;
12507     bool LHSOK = EvaluateInteger(E->getLHS(), LHS, Info);
12508     if (!LHSOK && !Info.noteFailure())
12509       return false;
12510     if (!EvaluateInteger(E->getRHS(), RHS, Info) || !LHSOK)
12511       return false;
12512     if (LHS < RHS)
12513       return Success(CmpResult::Less, E);
12514     if (LHS > RHS)
12515       return Success(CmpResult::Greater, E);
12516     return Success(CmpResult::Equal, E);
12517   }
12518 
12519   if (LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) {
12520     APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHSTy));
12521     APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHSTy));
12522 
12523     bool LHSOK = EvaluateFixedPointOrInteger(E->getLHS(), LHSFX, Info);
12524     if (!LHSOK && !Info.noteFailure())
12525       return false;
12526     if (!EvaluateFixedPointOrInteger(E->getRHS(), RHSFX, Info) || !LHSOK)
12527       return false;
12528     if (LHSFX < RHSFX)
12529       return Success(CmpResult::Less, E);
12530     if (LHSFX > RHSFX)
12531       return Success(CmpResult::Greater, E);
12532     return Success(CmpResult::Equal, E);
12533   }
12534 
12535   if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) {
12536     ComplexValue LHS, RHS;
12537     bool LHSOK;
12538     if (E->isAssignmentOp()) {
12539       LValue LV;
12540       EvaluateLValue(E->getLHS(), LV, Info);
12541       LHSOK = false;
12542     } else if (LHSTy->isRealFloatingType()) {
12543       LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info);
12544       if (LHSOK) {
12545         LHS.makeComplexFloat();
12546         LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics());
12547       }
12548     } else {
12549       LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
12550     }
12551     if (!LHSOK && !Info.noteFailure())
12552       return false;
12553 
12554     if (E->getRHS()->getType()->isRealFloatingType()) {
12555       if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK)
12556         return false;
12557       RHS.makeComplexFloat();
12558       RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics());
12559     } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
12560       return false;
12561 
12562     if (LHS.isComplexFloat()) {
12563       APFloat::cmpResult CR_r =
12564         LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
12565       APFloat::cmpResult CR_i =
12566         LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
12567       bool IsEqual = CR_r == APFloat::cmpEqual && CR_i == APFloat::cmpEqual;
12568       return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E);
12569     } else {
12570       assert(IsEquality && "invalid complex comparison");
12571       bool IsEqual = LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
12572                      LHS.getComplexIntImag() == RHS.getComplexIntImag();
12573       return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E);
12574     }
12575   }
12576 
12577   if (LHSTy->isRealFloatingType() &&
12578       RHSTy->isRealFloatingType()) {
12579     APFloat RHS(0.0), LHS(0.0);
12580 
12581     bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
12582     if (!LHSOK && !Info.noteFailure())
12583       return false;
12584 
12585     if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
12586       return false;
12587 
12588     assert(E->isComparisonOp() && "Invalid binary operator!");
12589     llvm::APFloatBase::cmpResult APFloatCmpResult = LHS.compare(RHS);
12590     if (!Info.InConstantContext &&
12591         APFloatCmpResult == APFloat::cmpUnordered &&
12592         E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()).isFPConstrained()) {
12593       // Note: Compares may raise invalid in some cases involving NaN or sNaN.
12594       Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
12595       return false;
12596     }
12597     auto GetCmpRes = [&]() {
12598       switch (APFloatCmpResult) {
12599       case APFloat::cmpEqual:
12600         return CmpResult::Equal;
12601       case APFloat::cmpLessThan:
12602         return CmpResult::Less;
12603       case APFloat::cmpGreaterThan:
12604         return CmpResult::Greater;
12605       case APFloat::cmpUnordered:
12606         return CmpResult::Unordered;
12607       }
12608       llvm_unreachable("Unrecognised APFloat::cmpResult enum");
12609     };
12610     return Success(GetCmpRes(), E);
12611   }
12612 
12613   if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
12614     LValue LHSValue, RHSValue;
12615 
12616     bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
12617     if (!LHSOK && !Info.noteFailure())
12618       return false;
12619 
12620     if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
12621       return false;
12622 
12623     // Reject differing bases from the normal codepath; we special-case
12624     // comparisons to null.
12625     if (!HasSameBase(LHSValue, RHSValue)) {
12626       // Inequalities and subtractions between unrelated pointers have
12627       // unspecified or undefined behavior.
12628       if (!IsEquality) {
12629         Info.FFDiag(E, diag::note_constexpr_pointer_comparison_unspecified);
12630         return false;
12631       }
12632       // A constant address may compare equal to the address of a symbol.
12633       // The one exception is that address of an object cannot compare equal
12634       // to a null pointer constant.
12635       if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
12636           (!RHSValue.Base && !RHSValue.Offset.isZero()))
12637         return Error(E);
12638       // It's implementation-defined whether distinct literals will have
12639       // distinct addresses. In clang, the result of such a comparison is
12640       // unspecified, so it is not a constant expression. However, we do know
12641       // that the address of a literal will be non-null.
12642       if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
12643           LHSValue.Base && RHSValue.Base)
12644         return Error(E);
12645       // We can't tell whether weak symbols will end up pointing to the same
12646       // object.
12647       if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
12648         return Error(E);
12649       // We can't compare the address of the start of one object with the
12650       // past-the-end address of another object, per C++ DR1652.
12651       if ((LHSValue.Base && LHSValue.Offset.isZero() &&
12652            isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue)) ||
12653           (RHSValue.Base && RHSValue.Offset.isZero() &&
12654            isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue)))
12655         return Error(E);
12656       // We can't tell whether an object is at the same address as another
12657       // zero sized object.
12658       if ((RHSValue.Base && isZeroSized(LHSValue)) ||
12659           (LHSValue.Base && isZeroSized(RHSValue)))
12660         return Error(E);
12661       return Success(CmpResult::Unequal, E);
12662     }
12663 
12664     const CharUnits &LHSOffset = LHSValue.getLValueOffset();
12665     const CharUnits &RHSOffset = RHSValue.getLValueOffset();
12666 
12667     SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
12668     SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
12669 
12670     // C++11 [expr.rel]p3:
12671     //   Pointers to void (after pointer conversions) can be compared, with a
12672     //   result defined as follows: If both pointers represent the same
12673     //   address or are both the null pointer value, the result is true if the
12674     //   operator is <= or >= and false otherwise; otherwise the result is
12675     //   unspecified.
12676     // We interpret this as applying to pointers to *cv* void.
12677     if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset && IsRelational)
12678       Info.CCEDiag(E, diag::note_constexpr_void_comparison);
12679 
12680     // C++11 [expr.rel]p2:
12681     // - If two pointers point to non-static data members of the same object,
12682     //   or to subobjects or array elements fo such members, recursively, the
12683     //   pointer to the later declared member compares greater provided the
12684     //   two members have the same access control and provided their class is
12685     //   not a union.
12686     //   [...]
12687     // - Otherwise pointer comparisons are unspecified.
12688     if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && IsRelational) {
12689       bool WasArrayIndex;
12690       unsigned Mismatch = FindDesignatorMismatch(
12691           getType(LHSValue.Base), LHSDesignator, RHSDesignator, WasArrayIndex);
12692       // At the point where the designators diverge, the comparison has a
12693       // specified value if:
12694       //  - we are comparing array indices
12695       //  - we are comparing fields of a union, or fields with the same access
12696       // Otherwise, the result is unspecified and thus the comparison is not a
12697       // constant expression.
12698       if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
12699           Mismatch < RHSDesignator.Entries.size()) {
12700         const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
12701         const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
12702         if (!LF && !RF)
12703           Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
12704         else if (!LF)
12705           Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
12706               << getAsBaseClass(LHSDesignator.Entries[Mismatch])
12707               << RF->getParent() << RF;
12708         else if (!RF)
12709           Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
12710               << getAsBaseClass(RHSDesignator.Entries[Mismatch])
12711               << LF->getParent() << LF;
12712         else if (!LF->getParent()->isUnion() &&
12713                  LF->getAccess() != RF->getAccess())
12714           Info.CCEDiag(E,
12715                        diag::note_constexpr_pointer_comparison_differing_access)
12716               << LF << LF->getAccess() << RF << RF->getAccess()
12717               << LF->getParent();
12718       }
12719     }
12720 
12721     // The comparison here must be unsigned, and performed with the same
12722     // width as the pointer.
12723     unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
12724     uint64_t CompareLHS = LHSOffset.getQuantity();
12725     uint64_t CompareRHS = RHSOffset.getQuantity();
12726     assert(PtrSize <= 64 && "Unexpected pointer width");
12727     uint64_t Mask = ~0ULL >> (64 - PtrSize);
12728     CompareLHS &= Mask;
12729     CompareRHS &= Mask;
12730 
12731     // If there is a base and this is a relational operator, we can only
12732     // compare pointers within the object in question; otherwise, the result
12733     // depends on where the object is located in memory.
12734     if (!LHSValue.Base.isNull() && IsRelational) {
12735       QualType BaseTy = getType(LHSValue.Base);
12736       if (BaseTy->isIncompleteType())
12737         return Error(E);
12738       CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
12739       uint64_t OffsetLimit = Size.getQuantity();
12740       if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
12741         return Error(E);
12742     }
12743 
12744     if (CompareLHS < CompareRHS)
12745       return Success(CmpResult::Less, E);
12746     if (CompareLHS > CompareRHS)
12747       return Success(CmpResult::Greater, E);
12748     return Success(CmpResult::Equal, E);
12749   }
12750 
12751   if (LHSTy->isMemberPointerType()) {
12752     assert(IsEquality && "unexpected member pointer operation");
12753     assert(RHSTy->isMemberPointerType() && "invalid comparison");
12754 
12755     MemberPtr LHSValue, RHSValue;
12756 
12757     bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
12758     if (!LHSOK && !Info.noteFailure())
12759       return false;
12760 
12761     if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
12762       return false;
12763 
12764     // C++11 [expr.eq]p2:
12765     //   If both operands are null, they compare equal. Otherwise if only one is
12766     //   null, they compare unequal.
12767     if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
12768       bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
12769       return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E);
12770     }
12771 
12772     //   Otherwise if either is a pointer to a virtual member function, the
12773     //   result is unspecified.
12774     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
12775       if (MD->isVirtual())
12776         Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
12777     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
12778       if (MD->isVirtual())
12779         Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
12780 
12781     //   Otherwise they compare equal if and only if they would refer to the
12782     //   same member of the same most derived object or the same subobject if
12783     //   they were dereferenced with a hypothetical object of the associated
12784     //   class type.
12785     bool Equal = LHSValue == RHSValue;
12786     return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E);
12787   }
12788 
12789   if (LHSTy->isNullPtrType()) {
12790     assert(E->isComparisonOp() && "unexpected nullptr operation");
12791     assert(RHSTy->isNullPtrType() && "missing pointer conversion");
12792     // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
12793     // are compared, the result is true of the operator is <=, >= or ==, and
12794     // false otherwise.
12795     return Success(CmpResult::Equal, E);
12796   }
12797 
12798   return DoAfter();
12799 }
12800 
VisitBinCmp(const BinaryOperator * E)12801 bool RecordExprEvaluator::VisitBinCmp(const BinaryOperator *E) {
12802   if (!CheckLiteralType(Info, E))
12803     return false;
12804 
12805   auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) {
12806     ComparisonCategoryResult CCR;
12807     switch (CR) {
12808     case CmpResult::Unequal:
12809       llvm_unreachable("should never produce Unequal for three-way comparison");
12810     case CmpResult::Less:
12811       CCR = ComparisonCategoryResult::Less;
12812       break;
12813     case CmpResult::Equal:
12814       CCR = ComparisonCategoryResult::Equal;
12815       break;
12816     case CmpResult::Greater:
12817       CCR = ComparisonCategoryResult::Greater;
12818       break;
12819     case CmpResult::Unordered:
12820       CCR = ComparisonCategoryResult::Unordered;
12821       break;
12822     }
12823     // Evaluation succeeded. Lookup the information for the comparison category
12824     // type and fetch the VarDecl for the result.
12825     const ComparisonCategoryInfo &CmpInfo =
12826         Info.Ctx.CompCategories.getInfoForType(E->getType());
12827     const VarDecl *VD = CmpInfo.getValueInfo(CmpInfo.makeWeakResult(CCR))->VD;
12828     // Check and evaluate the result as a constant expression.
12829     LValue LV;
12830     LV.set(VD);
12831     if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
12832       return false;
12833     return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result,
12834                                    ConstantExprKind::Normal);
12835   };
12836   return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() {
12837     return ExprEvaluatorBaseTy::VisitBinCmp(E);
12838   });
12839 }
12840 
VisitBinaryOperator(const BinaryOperator * E)12841 bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
12842   // We don't support assignment in C. C++ assignments don't get here because
12843   // assignment is an lvalue in C++.
12844   if (E->isAssignmentOp()) {
12845     Error(E);
12846     if (!Info.noteFailure())
12847       return false;
12848   }
12849 
12850   if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
12851     return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
12852 
12853   assert((!E->getLHS()->getType()->isIntegralOrEnumerationType() ||
12854           !E->getRHS()->getType()->isIntegralOrEnumerationType()) &&
12855          "DataRecursiveIntBinOpEvaluator should have handled integral types");
12856 
12857   if (E->isComparisonOp()) {
12858     // Evaluate builtin binary comparisons by evaluating them as three-way
12859     // comparisons and then translating the result.
12860     auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) {
12861       assert((CR != CmpResult::Unequal || E->isEqualityOp()) &&
12862              "should only produce Unequal for equality comparisons");
12863       bool IsEqual   = CR == CmpResult::Equal,
12864            IsLess    = CR == CmpResult::Less,
12865            IsGreater = CR == CmpResult::Greater;
12866       auto Op = E->getOpcode();
12867       switch (Op) {
12868       default:
12869         llvm_unreachable("unsupported binary operator");
12870       case BO_EQ:
12871       case BO_NE:
12872         return Success(IsEqual == (Op == BO_EQ), E);
12873       case BO_LT:
12874         return Success(IsLess, E);
12875       case BO_GT:
12876         return Success(IsGreater, E);
12877       case BO_LE:
12878         return Success(IsEqual || IsLess, E);
12879       case BO_GE:
12880         return Success(IsEqual || IsGreater, E);
12881       }
12882     };
12883     return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() {
12884       return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
12885     });
12886   }
12887 
12888   QualType LHSTy = E->getLHS()->getType();
12889   QualType RHSTy = E->getRHS()->getType();
12890 
12891   if (LHSTy->isPointerType() && RHSTy->isPointerType() &&
12892       E->getOpcode() == BO_Sub) {
12893     LValue LHSValue, RHSValue;
12894 
12895     bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
12896     if (!LHSOK && !Info.noteFailure())
12897       return false;
12898 
12899     if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
12900       return false;
12901 
12902     // Reject differing bases from the normal codepath; we special-case
12903     // comparisons to null.
12904     if (!HasSameBase(LHSValue, RHSValue)) {
12905       // Handle &&A - &&B.
12906       if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
12907         return Error(E);
12908       const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr *>();
12909       const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr *>();
12910       if (!LHSExpr || !RHSExpr)
12911         return Error(E);
12912       const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
12913       const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
12914       if (!LHSAddrExpr || !RHSAddrExpr)
12915         return Error(E);
12916       // Make sure both labels come from the same function.
12917       if (LHSAddrExpr->getLabel()->getDeclContext() !=
12918           RHSAddrExpr->getLabel()->getDeclContext())
12919         return Error(E);
12920       return Success(APValue(LHSAddrExpr, RHSAddrExpr), E);
12921     }
12922     const CharUnits &LHSOffset = LHSValue.getLValueOffset();
12923     const CharUnits &RHSOffset = RHSValue.getLValueOffset();
12924 
12925     SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
12926     SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
12927 
12928     // C++11 [expr.add]p6:
12929     //   Unless both pointers point to elements of the same array object, or
12930     //   one past the last element of the array object, the behavior is
12931     //   undefined.
12932     if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
12933         !AreElementsOfSameArray(getType(LHSValue.Base), LHSDesignator,
12934                                 RHSDesignator))
12935       Info.CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
12936 
12937     QualType Type = E->getLHS()->getType();
12938     QualType ElementType = Type->castAs<PointerType>()->getPointeeType();
12939 
12940     CharUnits ElementSize;
12941     if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
12942       return false;
12943 
12944     // As an extension, a type may have zero size (empty struct or union in
12945     // C, array of zero length). Pointer subtraction in such cases has
12946     // undefined behavior, so is not constant.
12947     if (ElementSize.isZero()) {
12948       Info.FFDiag(E, diag::note_constexpr_pointer_subtraction_zero_size)
12949           << ElementType;
12950       return false;
12951     }
12952 
12953     // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
12954     // and produce incorrect results when it overflows. Such behavior
12955     // appears to be non-conforming, but is common, so perhaps we should
12956     // assume the standard intended for such cases to be undefined behavior
12957     // and check for them.
12958 
12959     // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
12960     // overflow in the final conversion to ptrdiff_t.
12961     APSInt LHS(llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
12962     APSInt RHS(llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
12963     APSInt ElemSize(llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true),
12964                     false);
12965     APSInt TrueResult = (LHS - RHS) / ElemSize;
12966     APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
12967 
12968     if (Result.extend(65) != TrueResult &&
12969         !HandleOverflow(Info, E, TrueResult, E->getType()))
12970       return false;
12971     return Success(Result, E);
12972   }
12973 
12974   return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
12975 }
12976 
12977 /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
12978 /// a result as the expression's type.
VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr * E)12979 bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
12980                                     const UnaryExprOrTypeTraitExpr *E) {
12981   switch(E->getKind()) {
12982   case UETT_PreferredAlignOf:
12983   case UETT_AlignOf: {
12984     if (E->isArgumentType())
12985       return Success(GetAlignOfType(Info, E->getArgumentType(), E->getKind()),
12986                      E);
12987     else
12988       return Success(GetAlignOfExpr(Info, E->getArgumentExpr(), E->getKind()),
12989                      E);
12990   }
12991 
12992   case UETT_VecStep: {
12993     QualType Ty = E->getTypeOfArgument();
12994 
12995     if (Ty->isVectorType()) {
12996       unsigned n = Ty->castAs<VectorType>()->getNumElements();
12997 
12998       // The vec_step built-in functions that take a 3-component
12999       // vector return 4. (OpenCL 1.1 spec 6.11.12)
13000       if (n == 3)
13001         n = 4;
13002 
13003       return Success(n, E);
13004     } else
13005       return Success(1, E);
13006   }
13007 
13008   case UETT_SizeOf: {
13009     QualType SrcTy = E->getTypeOfArgument();
13010     // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
13011     //   the result is the size of the referenced type."
13012     if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
13013       SrcTy = Ref->getPointeeType();
13014 
13015     CharUnits Sizeof;
13016     if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
13017       return false;
13018     return Success(Sizeof, E);
13019   }
13020   case UETT_OpenMPRequiredSimdAlign:
13021     assert(E->isArgumentType());
13022     return Success(
13023         Info.Ctx.toCharUnitsFromBits(
13024                     Info.Ctx.getOpenMPDefaultSimdAlign(E->getArgumentType()))
13025             .getQuantity(),
13026         E);
13027   }
13028 
13029   llvm_unreachable("unknown expr/type trait");
13030 }
13031 
VisitOffsetOfExpr(const OffsetOfExpr * OOE)13032 bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
13033   CharUnits Result;
13034   unsigned n = OOE->getNumComponents();
13035   if (n == 0)
13036     return Error(OOE);
13037   QualType CurrentType = OOE->getTypeSourceInfo()->getType();
13038   for (unsigned i = 0; i != n; ++i) {
13039     OffsetOfNode ON = OOE->getComponent(i);
13040     switch (ON.getKind()) {
13041     case OffsetOfNode::Array: {
13042       const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
13043       APSInt IdxResult;
13044       if (!EvaluateInteger(Idx, IdxResult, Info))
13045         return false;
13046       const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
13047       if (!AT)
13048         return Error(OOE);
13049       CurrentType = AT->getElementType();
13050       CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
13051       Result += IdxResult.getSExtValue() * ElementSize;
13052       break;
13053     }
13054 
13055     case OffsetOfNode::Field: {
13056       FieldDecl *MemberDecl = ON.getField();
13057       const RecordType *RT = CurrentType->getAs<RecordType>();
13058       if (!RT)
13059         return Error(OOE);
13060       RecordDecl *RD = RT->getDecl();
13061       if (RD->isInvalidDecl()) return false;
13062       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
13063       unsigned i = MemberDecl->getFieldIndex();
13064       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
13065       Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
13066       CurrentType = MemberDecl->getType().getNonReferenceType();
13067       break;
13068     }
13069 
13070     case OffsetOfNode::Identifier:
13071       llvm_unreachable("dependent __builtin_offsetof");
13072 
13073     case OffsetOfNode::Base: {
13074       CXXBaseSpecifier *BaseSpec = ON.getBase();
13075       if (BaseSpec->isVirtual())
13076         return Error(OOE);
13077 
13078       // Find the layout of the class whose base we are looking into.
13079       const RecordType *RT = CurrentType->getAs<RecordType>();
13080       if (!RT)
13081         return Error(OOE);
13082       RecordDecl *RD = RT->getDecl();
13083       if (RD->isInvalidDecl()) return false;
13084       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
13085 
13086       // Find the base class itself.
13087       CurrentType = BaseSpec->getType();
13088       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
13089       if (!BaseRT)
13090         return Error(OOE);
13091 
13092       // Add the offset to the base.
13093       Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
13094       break;
13095     }
13096     }
13097   }
13098   return Success(Result, OOE);
13099 }
13100 
VisitUnaryOperator(const UnaryOperator * E)13101 bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
13102   switch (E->getOpcode()) {
13103   default:
13104     // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
13105     // See C99 6.6p3.
13106     return Error(E);
13107   case UO_Extension:
13108     // FIXME: Should extension allow i-c-e extension expressions in its scope?
13109     // If so, we could clear the diagnostic ID.
13110     return Visit(E->getSubExpr());
13111   case UO_Plus:
13112     // The result is just the value.
13113     return Visit(E->getSubExpr());
13114   case UO_Minus: {
13115     if (!Visit(E->getSubExpr()))
13116       return false;
13117     if (!Result.isInt()) return Error(E);
13118     const APSInt &Value = Result.getInt();
13119     if (Value.isSigned() && Value.isMinSignedValue() && E->canOverflow() &&
13120         !HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
13121                         E->getType()))
13122       return false;
13123     return Success(-Value, E);
13124   }
13125   case UO_Not: {
13126     if (!Visit(E->getSubExpr()))
13127       return false;
13128     if (!Result.isInt()) return Error(E);
13129     return Success(~Result.getInt(), E);
13130   }
13131   case UO_LNot: {
13132     bool bres;
13133     if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
13134       return false;
13135     return Success(!bres, E);
13136   }
13137   }
13138 }
13139 
13140 /// HandleCast - This is used to evaluate implicit or explicit casts where the
13141 /// result type is integer.
VisitCastExpr(const CastExpr * E)13142 bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
13143   const Expr *SubExpr = E->getSubExpr();
13144   QualType DestType = E->getType();
13145   QualType SrcType = SubExpr->getType();
13146 
13147   switch (E->getCastKind()) {
13148   case CK_BaseToDerived:
13149   case CK_DerivedToBase:
13150   case CK_UncheckedDerivedToBase:
13151   case CK_Dynamic:
13152   case CK_ToUnion:
13153   case CK_ArrayToPointerDecay:
13154   case CK_FunctionToPointerDecay:
13155   case CK_NullToPointer:
13156   case CK_NullToMemberPointer:
13157   case CK_BaseToDerivedMemberPointer:
13158   case CK_DerivedToBaseMemberPointer:
13159   case CK_ReinterpretMemberPointer:
13160   case CK_ConstructorConversion:
13161   case CK_IntegralToPointer:
13162   case CK_ToVoid:
13163   case CK_VectorSplat:
13164   case CK_IntegralToFloating:
13165   case CK_FloatingCast:
13166   case CK_CPointerToObjCPointerCast:
13167   case CK_BlockPointerToObjCPointerCast:
13168   case CK_AnyPointerToBlockPointerCast:
13169   case CK_ObjCObjectLValueCast:
13170   case CK_FloatingRealToComplex:
13171   case CK_FloatingComplexToReal:
13172   case CK_FloatingComplexCast:
13173   case CK_FloatingComplexToIntegralComplex:
13174   case CK_IntegralRealToComplex:
13175   case CK_IntegralComplexCast:
13176   case CK_IntegralComplexToFloatingComplex:
13177   case CK_BuiltinFnToFnPtr:
13178   case CK_ZeroToOCLOpaqueType:
13179   case CK_NonAtomicToAtomic:
13180   case CK_AddressSpaceConversion:
13181   case CK_IntToOCLSampler:
13182   case CK_FloatingToFixedPoint:
13183   case CK_FixedPointToFloating:
13184   case CK_FixedPointCast:
13185   case CK_IntegralToFixedPoint:
13186   case CK_MatrixCast:
13187     llvm_unreachable("invalid cast kind for integral value");
13188 
13189   case CK_BitCast:
13190   case CK_Dependent:
13191   case CK_LValueBitCast:
13192   case CK_ARCProduceObject:
13193   case CK_ARCConsumeObject:
13194   case CK_ARCReclaimReturnedObject:
13195   case CK_ARCExtendBlockObject:
13196   case CK_CopyAndAutoreleaseBlockObject:
13197     return Error(E);
13198 
13199   case CK_UserDefinedConversion:
13200   case CK_LValueToRValue:
13201   case CK_AtomicToNonAtomic:
13202   case CK_NoOp:
13203   case CK_LValueToRValueBitCast:
13204     return ExprEvaluatorBaseTy::VisitCastExpr(E);
13205 
13206   case CK_MemberPointerToBoolean:
13207   case CK_PointerToBoolean:
13208   case CK_IntegralToBoolean:
13209   case CK_FloatingToBoolean:
13210   case CK_BooleanToSignedIntegral:
13211   case CK_FloatingComplexToBoolean:
13212   case CK_IntegralComplexToBoolean: {
13213     bool BoolResult;
13214     if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
13215       return false;
13216     uint64_t IntResult = BoolResult;
13217     if (BoolResult && E->getCastKind() == CK_BooleanToSignedIntegral)
13218       IntResult = (uint64_t)-1;
13219     return Success(IntResult, E);
13220   }
13221 
13222   case CK_FixedPointToIntegral: {
13223     APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SrcType));
13224     if (!EvaluateFixedPoint(SubExpr, Src, Info))
13225       return false;
13226     bool Overflowed;
13227     llvm::APSInt Result = Src.convertToInt(
13228         Info.Ctx.getIntWidth(DestType),
13229         DestType->isSignedIntegerOrEnumerationType(), &Overflowed);
13230     if (Overflowed && !HandleOverflow(Info, E, Result, DestType))
13231       return false;
13232     return Success(Result, E);
13233   }
13234 
13235   case CK_FixedPointToBoolean: {
13236     // Unsigned padding does not affect this.
13237     APValue Val;
13238     if (!Evaluate(Val, Info, SubExpr))
13239       return false;
13240     return Success(Val.getFixedPoint().getBoolValue(), E);
13241   }
13242 
13243   case CK_IntegralCast: {
13244     if (!Visit(SubExpr))
13245       return false;
13246 
13247     if (!Result.isInt()) {
13248       // Allow casts of address-of-label differences if they are no-ops
13249       // or narrowing.  (The narrowing case isn't actually guaranteed to
13250       // be constant-evaluatable except in some narrow cases which are hard
13251       // to detect here.  We let it through on the assumption the user knows
13252       // what they are doing.)
13253       if (Result.isAddrLabelDiff())
13254         return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
13255       // Only allow casts of lvalues if they are lossless.
13256       return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
13257     }
13258 
13259     return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
13260                                       Result.getInt()), E);
13261   }
13262 
13263   case CK_PointerToIntegral: {
13264     CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
13265 
13266     LValue LV;
13267     if (!EvaluatePointer(SubExpr, LV, Info))
13268       return false;
13269 
13270     if (LV.getLValueBase()) {
13271       // Only allow based lvalue casts if they are lossless.
13272       // FIXME: Allow a larger integer size than the pointer size, and allow
13273       // narrowing back down to pointer width in subsequent integral casts.
13274       // FIXME: Check integer type's active bits, not its type size.
13275       if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
13276         return Error(E);
13277 
13278       LV.Designator.setInvalid();
13279       LV.moveInto(Result);
13280       return true;
13281     }
13282 
13283     APSInt AsInt;
13284     APValue V;
13285     LV.moveInto(V);
13286     if (!V.toIntegralConstant(AsInt, SrcType, Info.Ctx))
13287       llvm_unreachable("Can't cast this!");
13288 
13289     return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
13290   }
13291 
13292   case CK_IntegralComplexToReal: {
13293     ComplexValue C;
13294     if (!EvaluateComplex(SubExpr, C, Info))
13295       return false;
13296     return Success(C.getComplexIntReal(), E);
13297   }
13298 
13299   case CK_FloatingToIntegral: {
13300     APFloat F(0.0);
13301     if (!EvaluateFloat(SubExpr, F, Info))
13302       return false;
13303 
13304     APSInt Value;
13305     if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
13306       return false;
13307     return Success(Value, E);
13308   }
13309   }
13310 
13311   llvm_unreachable("unknown cast resulting in integral value");
13312 }
13313 
VisitUnaryReal(const UnaryOperator * E)13314 bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
13315   if (E->getSubExpr()->getType()->isAnyComplexType()) {
13316     ComplexValue LV;
13317     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
13318       return false;
13319     if (!LV.isComplexInt())
13320       return Error(E);
13321     return Success(LV.getComplexIntReal(), E);
13322   }
13323 
13324   return Visit(E->getSubExpr());
13325 }
13326 
VisitUnaryImag(const UnaryOperator * E)13327 bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
13328   if (E->getSubExpr()->getType()->isComplexIntegerType()) {
13329     ComplexValue LV;
13330     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
13331       return false;
13332     if (!LV.isComplexInt())
13333       return Error(E);
13334     return Success(LV.getComplexIntImag(), E);
13335   }
13336 
13337   VisitIgnoredValue(E->getSubExpr());
13338   return Success(0, E);
13339 }
13340 
VisitSizeOfPackExpr(const SizeOfPackExpr * E)13341 bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
13342   return Success(E->getPackLength(), E);
13343 }
13344 
VisitCXXNoexceptExpr(const CXXNoexceptExpr * E)13345 bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
13346   return Success(E->getValue(), E);
13347 }
13348 
VisitConceptSpecializationExpr(const ConceptSpecializationExpr * E)13349 bool IntExprEvaluator::VisitConceptSpecializationExpr(
13350        const ConceptSpecializationExpr *E) {
13351   return Success(E->isSatisfied(), E);
13352 }
13353 
VisitRequiresExpr(const RequiresExpr * E)13354 bool IntExprEvaluator::VisitRequiresExpr(const RequiresExpr *E) {
13355   return Success(E->isSatisfied(), E);
13356 }
13357 
VisitUnaryOperator(const UnaryOperator * E)13358 bool FixedPointExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
13359   switch (E->getOpcode()) {
13360     default:
13361       // Invalid unary operators
13362       return Error(E);
13363     case UO_Plus:
13364       // The result is just the value.
13365       return Visit(E->getSubExpr());
13366     case UO_Minus: {
13367       if (!Visit(E->getSubExpr())) return false;
13368       if (!Result.isFixedPoint())
13369         return Error(E);
13370       bool Overflowed;
13371       APFixedPoint Negated = Result.getFixedPoint().negate(&Overflowed);
13372       if (Overflowed && !HandleOverflow(Info, E, Negated, E->getType()))
13373         return false;
13374       return Success(Negated, E);
13375     }
13376     case UO_LNot: {
13377       bool bres;
13378       if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
13379         return false;
13380       return Success(!bres, E);
13381     }
13382   }
13383 }
13384 
VisitCastExpr(const CastExpr * E)13385 bool FixedPointExprEvaluator::VisitCastExpr(const CastExpr *E) {
13386   const Expr *SubExpr = E->getSubExpr();
13387   QualType DestType = E->getType();
13388   assert(DestType->isFixedPointType() &&
13389          "Expected destination type to be a fixed point type");
13390   auto DestFXSema = Info.Ctx.getFixedPointSemantics(DestType);
13391 
13392   switch (E->getCastKind()) {
13393   case CK_FixedPointCast: {
13394     APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SubExpr->getType()));
13395     if (!EvaluateFixedPoint(SubExpr, Src, Info))
13396       return false;
13397     bool Overflowed;
13398     APFixedPoint Result = Src.convert(DestFXSema, &Overflowed);
13399     if (Overflowed) {
13400       if (Info.checkingForUndefinedBehavior())
13401         Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13402                                          diag::warn_fixedpoint_constant_overflow)
13403           << Result.toString() << E->getType();
13404       if (!HandleOverflow(Info, E, Result, E->getType()))
13405         return false;
13406     }
13407     return Success(Result, E);
13408   }
13409   case CK_IntegralToFixedPoint: {
13410     APSInt Src;
13411     if (!EvaluateInteger(SubExpr, Src, Info))
13412       return false;
13413 
13414     bool Overflowed;
13415     APFixedPoint IntResult = APFixedPoint::getFromIntValue(
13416         Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed);
13417 
13418     if (Overflowed) {
13419       if (Info.checkingForUndefinedBehavior())
13420         Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13421                                          diag::warn_fixedpoint_constant_overflow)
13422           << IntResult.toString() << E->getType();
13423       if (!HandleOverflow(Info, E, IntResult, E->getType()))
13424         return false;
13425     }
13426 
13427     return Success(IntResult, E);
13428   }
13429   case CK_FloatingToFixedPoint: {
13430     APFloat Src(0.0);
13431     if (!EvaluateFloat(SubExpr, Src, Info))
13432       return false;
13433 
13434     bool Overflowed;
13435     APFixedPoint Result = APFixedPoint::getFromFloatValue(
13436         Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed);
13437 
13438     if (Overflowed) {
13439       if (Info.checkingForUndefinedBehavior())
13440         Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13441                                          diag::warn_fixedpoint_constant_overflow)
13442           << Result.toString() << E->getType();
13443       if (!HandleOverflow(Info, E, Result, E->getType()))
13444         return false;
13445     }
13446 
13447     return Success(Result, E);
13448   }
13449   case CK_NoOp:
13450   case CK_LValueToRValue:
13451     return ExprEvaluatorBaseTy::VisitCastExpr(E);
13452   default:
13453     return Error(E);
13454   }
13455 }
13456 
VisitBinaryOperator(const BinaryOperator * E)13457 bool FixedPointExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
13458   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
13459     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
13460 
13461   const Expr *LHS = E->getLHS();
13462   const Expr *RHS = E->getRHS();
13463   FixedPointSemantics ResultFXSema =
13464       Info.Ctx.getFixedPointSemantics(E->getType());
13465 
13466   APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHS->getType()));
13467   if (!EvaluateFixedPointOrInteger(LHS, LHSFX, Info))
13468     return false;
13469   APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHS->getType()));
13470   if (!EvaluateFixedPointOrInteger(RHS, RHSFX, Info))
13471     return false;
13472 
13473   bool OpOverflow = false, ConversionOverflow = false;
13474   APFixedPoint Result(LHSFX.getSemantics());
13475   switch (E->getOpcode()) {
13476   case BO_Add: {
13477     Result = LHSFX.add(RHSFX, &OpOverflow)
13478                   .convert(ResultFXSema, &ConversionOverflow);
13479     break;
13480   }
13481   case BO_Sub: {
13482     Result = LHSFX.sub(RHSFX, &OpOverflow)
13483                   .convert(ResultFXSema, &ConversionOverflow);
13484     break;
13485   }
13486   case BO_Mul: {
13487     Result = LHSFX.mul(RHSFX, &OpOverflow)
13488                   .convert(ResultFXSema, &ConversionOverflow);
13489     break;
13490   }
13491   case BO_Div: {
13492     if (RHSFX.getValue() == 0) {
13493       Info.FFDiag(E, diag::note_expr_divide_by_zero);
13494       return false;
13495     }
13496     Result = LHSFX.div(RHSFX, &OpOverflow)
13497                   .convert(ResultFXSema, &ConversionOverflow);
13498     break;
13499   }
13500   case BO_Shl:
13501   case BO_Shr: {
13502     FixedPointSemantics LHSSema = LHSFX.getSemantics();
13503     llvm::APSInt RHSVal = RHSFX.getValue();
13504 
13505     unsigned ShiftBW =
13506         LHSSema.getWidth() - (unsigned)LHSSema.hasUnsignedPadding();
13507     unsigned Amt = RHSVal.getLimitedValue(ShiftBW - 1);
13508     // Embedded-C 4.1.6.2.2:
13509     //   The right operand must be nonnegative and less than the total number
13510     //   of (nonpadding) bits of the fixed-point operand ...
13511     if (RHSVal.isNegative())
13512       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHSVal;
13513     else if (Amt != RHSVal)
13514       Info.CCEDiag(E, diag::note_constexpr_large_shift)
13515           << RHSVal << E->getType() << ShiftBW;
13516 
13517     if (E->getOpcode() == BO_Shl)
13518       Result = LHSFX.shl(Amt, &OpOverflow);
13519     else
13520       Result = LHSFX.shr(Amt, &OpOverflow);
13521     break;
13522   }
13523   default:
13524     return false;
13525   }
13526   if (OpOverflow || ConversionOverflow) {
13527     if (Info.checkingForUndefinedBehavior())
13528       Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13529                                        diag::warn_fixedpoint_constant_overflow)
13530         << Result.toString() << E->getType();
13531     if (!HandleOverflow(Info, E, Result, E->getType()))
13532       return false;
13533   }
13534   return Success(Result, E);
13535 }
13536 
13537 //===----------------------------------------------------------------------===//
13538 // Float Evaluation
13539 //===----------------------------------------------------------------------===//
13540 
13541 namespace {
13542 class FloatExprEvaluator
13543   : public ExprEvaluatorBase<FloatExprEvaluator> {
13544   APFloat &Result;
13545 public:
FloatExprEvaluator(EvalInfo & info,APFloat & result)13546   FloatExprEvaluator(EvalInfo &info, APFloat &result)
13547     : ExprEvaluatorBaseTy(info), Result(result) {}
13548 
Success(const APValue & V,const Expr * e)13549   bool Success(const APValue &V, const Expr *e) {
13550     Result = V.getFloat();
13551     return true;
13552   }
13553 
ZeroInitialization(const Expr * E)13554   bool ZeroInitialization(const Expr *E) {
13555     Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
13556     return true;
13557   }
13558 
13559   bool VisitCallExpr(const CallExpr *E);
13560 
13561   bool VisitUnaryOperator(const UnaryOperator *E);
13562   bool VisitBinaryOperator(const BinaryOperator *E);
13563   bool VisitFloatingLiteral(const FloatingLiteral *E);
13564   bool VisitCastExpr(const CastExpr *E);
13565 
13566   bool VisitUnaryReal(const UnaryOperator *E);
13567   bool VisitUnaryImag(const UnaryOperator *E);
13568 
13569   // FIXME: Missing: array subscript of vector, member of vector
13570 };
13571 } // end anonymous namespace
13572 
EvaluateFloat(const Expr * E,APFloat & Result,EvalInfo & Info)13573 static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
13574   assert(!E->isValueDependent());
13575   assert(E->isRValue() && E->getType()->isRealFloatingType());
13576   return FloatExprEvaluator(Info, Result).Visit(E);
13577 }
13578 
TryEvaluateBuiltinNaN(const ASTContext & Context,QualType ResultTy,const Expr * Arg,bool SNaN,llvm::APFloat & Result)13579 static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
13580                                   QualType ResultTy,
13581                                   const Expr *Arg,
13582                                   bool SNaN,
13583                                   llvm::APFloat &Result) {
13584   const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
13585   if (!S) return false;
13586 
13587   const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
13588 
13589   llvm::APInt fill;
13590 
13591   // Treat empty strings as if they were zero.
13592   if (S->getString().empty())
13593     fill = llvm::APInt(32, 0);
13594   else if (S->getString().getAsInteger(0, fill))
13595     return false;
13596 
13597   if (Context.getTargetInfo().isNan2008()) {
13598     if (SNaN)
13599       Result = llvm::APFloat::getSNaN(Sem, false, &fill);
13600     else
13601       Result = llvm::APFloat::getQNaN(Sem, false, &fill);
13602   } else {
13603     // Prior to IEEE 754-2008, architectures were allowed to choose whether
13604     // the first bit of their significand was set for qNaN or sNaN. MIPS chose
13605     // a different encoding to what became a standard in 2008, and for pre-
13606     // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as
13607     // sNaN. This is now known as "legacy NaN" encoding.
13608     if (SNaN)
13609       Result = llvm::APFloat::getQNaN(Sem, false, &fill);
13610     else
13611       Result = llvm::APFloat::getSNaN(Sem, false, &fill);
13612   }
13613 
13614   return true;
13615 }
13616 
VisitCallExpr(const CallExpr * E)13617 bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
13618   switch (E->getBuiltinCallee()) {
13619   default:
13620     return ExprEvaluatorBaseTy::VisitCallExpr(E);
13621 
13622   case Builtin::BI__builtin_huge_val:
13623   case Builtin::BI__builtin_huge_valf:
13624   case Builtin::BI__builtin_huge_vall:
13625   case Builtin::BI__builtin_huge_valf128:
13626   case Builtin::BI__builtin_inf:
13627   case Builtin::BI__builtin_inff:
13628   case Builtin::BI__builtin_infl:
13629   case Builtin::BI__builtin_inff128: {
13630     const llvm::fltSemantics &Sem =
13631       Info.Ctx.getFloatTypeSemantics(E->getType());
13632     Result = llvm::APFloat::getInf(Sem);
13633     return true;
13634   }
13635 
13636   case Builtin::BI__builtin_nans:
13637   case Builtin::BI__builtin_nansf:
13638   case Builtin::BI__builtin_nansl:
13639   case Builtin::BI__builtin_nansf128:
13640     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
13641                                true, Result))
13642       return Error(E);
13643     return true;
13644 
13645   case Builtin::BI__builtin_nan:
13646   case Builtin::BI__builtin_nanf:
13647   case Builtin::BI__builtin_nanl:
13648   case Builtin::BI__builtin_nanf128:
13649     // If this is __builtin_nan() turn this into a nan, otherwise we
13650     // can't constant fold it.
13651     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
13652                                false, Result))
13653       return Error(E);
13654     return true;
13655 
13656   case Builtin::BI__builtin_fabs:
13657   case Builtin::BI__builtin_fabsf:
13658   case Builtin::BI__builtin_fabsl:
13659   case Builtin::BI__builtin_fabsf128:
13660     // The C standard says "fabs raises no floating-point exceptions,
13661     // even if x is a signaling NaN. The returned value is independent of
13662     // the current rounding direction mode."  Therefore constant folding can
13663     // proceed without regard to the floating point settings.
13664     // Reference, WG14 N2478 F.10.4.3
13665     if (!EvaluateFloat(E->getArg(0), Result, Info))
13666       return false;
13667 
13668     if (Result.isNegative())
13669       Result.changeSign();
13670     return true;
13671 
13672   // FIXME: Builtin::BI__builtin_powi
13673   // FIXME: Builtin::BI__builtin_powif
13674   // FIXME: Builtin::BI__builtin_powil
13675 
13676   case Builtin::BI__builtin_copysign:
13677   case Builtin::BI__builtin_copysignf:
13678   case Builtin::BI__builtin_copysignl:
13679   case Builtin::BI__builtin_copysignf128: {
13680     APFloat RHS(0.);
13681     if (!EvaluateFloat(E->getArg(0), Result, Info) ||
13682         !EvaluateFloat(E->getArg(1), RHS, Info))
13683       return false;
13684     Result.copySign(RHS);
13685     return true;
13686   }
13687   }
13688 }
13689 
VisitUnaryReal(const UnaryOperator * E)13690 bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
13691   if (E->getSubExpr()->getType()->isAnyComplexType()) {
13692     ComplexValue CV;
13693     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
13694       return false;
13695     Result = CV.FloatReal;
13696     return true;
13697   }
13698 
13699   return Visit(E->getSubExpr());
13700 }
13701 
VisitUnaryImag(const UnaryOperator * E)13702 bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
13703   if (E->getSubExpr()->getType()->isAnyComplexType()) {
13704     ComplexValue CV;
13705     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
13706       return false;
13707     Result = CV.FloatImag;
13708     return true;
13709   }
13710 
13711   VisitIgnoredValue(E->getSubExpr());
13712   const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
13713   Result = llvm::APFloat::getZero(Sem);
13714   return true;
13715 }
13716 
VisitUnaryOperator(const UnaryOperator * E)13717 bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
13718   switch (E->getOpcode()) {
13719   default: return Error(E);
13720   case UO_Plus:
13721     return EvaluateFloat(E->getSubExpr(), Result, Info);
13722   case UO_Minus:
13723     // In C standard, WG14 N2478 F.3 p4
13724     // "the unary - raises no floating point exceptions,
13725     // even if the operand is signalling."
13726     if (!EvaluateFloat(E->getSubExpr(), Result, Info))
13727       return false;
13728     Result.changeSign();
13729     return true;
13730   }
13731 }
13732 
VisitBinaryOperator(const BinaryOperator * E)13733 bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
13734   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
13735     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
13736 
13737   APFloat RHS(0.0);
13738   bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
13739   if (!LHSOK && !Info.noteFailure())
13740     return false;
13741   return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK &&
13742          handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS);
13743 }
13744 
VisitFloatingLiteral(const FloatingLiteral * E)13745 bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
13746   Result = E->getValue();
13747   return true;
13748 }
13749 
VisitCastExpr(const CastExpr * E)13750 bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
13751   const Expr* SubExpr = E->getSubExpr();
13752 
13753   switch (E->getCastKind()) {
13754   default:
13755     return ExprEvaluatorBaseTy::VisitCastExpr(E);
13756 
13757   case CK_IntegralToFloating: {
13758     APSInt IntResult;
13759     const FPOptions FPO = E->getFPFeaturesInEffect(
13760                                   Info.Ctx.getLangOpts());
13761     return EvaluateInteger(SubExpr, IntResult, Info) &&
13762            HandleIntToFloatCast(Info, E, FPO, SubExpr->getType(),
13763                                 IntResult, E->getType(), Result);
13764   }
13765 
13766   case CK_FixedPointToFloating: {
13767     APFixedPoint FixResult(Info.Ctx.getFixedPointSemantics(SubExpr->getType()));
13768     if (!EvaluateFixedPoint(SubExpr, FixResult, Info))
13769       return false;
13770     Result =
13771         FixResult.convertToFloat(Info.Ctx.getFloatTypeSemantics(E->getType()));
13772     return true;
13773   }
13774 
13775   case CK_FloatingCast: {
13776     if (!Visit(SubExpr))
13777       return false;
13778     return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
13779                                   Result);
13780   }
13781 
13782   case CK_FloatingComplexToReal: {
13783     ComplexValue V;
13784     if (!EvaluateComplex(SubExpr, V, Info))
13785       return false;
13786     Result = V.getComplexFloatReal();
13787     return true;
13788   }
13789   }
13790 }
13791 
13792 //===----------------------------------------------------------------------===//
13793 // Complex Evaluation (for float and integer)
13794 //===----------------------------------------------------------------------===//
13795 
13796 namespace {
13797 class ComplexExprEvaluator
13798   : public ExprEvaluatorBase<ComplexExprEvaluator> {
13799   ComplexValue &Result;
13800 
13801 public:
ComplexExprEvaluator(EvalInfo & info,ComplexValue & Result)13802   ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
13803     : ExprEvaluatorBaseTy(info), Result(Result) {}
13804 
Success(const APValue & V,const Expr * e)13805   bool Success(const APValue &V, const Expr *e) {
13806     Result.setFrom(V);
13807     return true;
13808   }
13809 
13810   bool ZeroInitialization(const Expr *E);
13811 
13812   //===--------------------------------------------------------------------===//
13813   //                            Visitor Methods
13814   //===--------------------------------------------------------------------===//
13815 
13816   bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
13817   bool VisitCastExpr(const CastExpr *E);
13818   bool VisitBinaryOperator(const BinaryOperator *E);
13819   bool VisitUnaryOperator(const UnaryOperator *E);
13820   bool VisitInitListExpr(const InitListExpr *E);
13821   bool VisitCallExpr(const CallExpr *E);
13822 };
13823 } // end anonymous namespace
13824 
EvaluateComplex(const Expr * E,ComplexValue & Result,EvalInfo & Info)13825 static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
13826                             EvalInfo &Info) {
13827   assert(!E->isValueDependent());
13828   assert(E->isRValue() && E->getType()->isAnyComplexType());
13829   return ComplexExprEvaluator(Info, Result).Visit(E);
13830 }
13831 
ZeroInitialization(const Expr * E)13832 bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
13833   QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
13834   if (ElemTy->isRealFloatingType()) {
13835     Result.makeComplexFloat();
13836     APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
13837     Result.FloatReal = Zero;
13838     Result.FloatImag = Zero;
13839   } else {
13840     Result.makeComplexInt();
13841     APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
13842     Result.IntReal = Zero;
13843     Result.IntImag = Zero;
13844   }
13845   return true;
13846 }
13847 
VisitImaginaryLiteral(const ImaginaryLiteral * E)13848 bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
13849   const Expr* SubExpr = E->getSubExpr();
13850 
13851   if (SubExpr->getType()->isRealFloatingType()) {
13852     Result.makeComplexFloat();
13853     APFloat &Imag = Result.FloatImag;
13854     if (!EvaluateFloat(SubExpr, Imag, Info))
13855       return false;
13856 
13857     Result.FloatReal = APFloat(Imag.getSemantics());
13858     return true;
13859   } else {
13860     assert(SubExpr->getType()->isIntegerType() &&
13861            "Unexpected imaginary literal.");
13862 
13863     Result.makeComplexInt();
13864     APSInt &Imag = Result.IntImag;
13865     if (!EvaluateInteger(SubExpr, Imag, Info))
13866       return false;
13867 
13868     Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
13869     return true;
13870   }
13871 }
13872 
VisitCastExpr(const CastExpr * E)13873 bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
13874 
13875   switch (E->getCastKind()) {
13876   case CK_BitCast:
13877   case CK_BaseToDerived:
13878   case CK_DerivedToBase:
13879   case CK_UncheckedDerivedToBase:
13880   case CK_Dynamic:
13881   case CK_ToUnion:
13882   case CK_ArrayToPointerDecay:
13883   case CK_FunctionToPointerDecay:
13884   case CK_NullToPointer:
13885   case CK_NullToMemberPointer:
13886   case CK_BaseToDerivedMemberPointer:
13887   case CK_DerivedToBaseMemberPointer:
13888   case CK_MemberPointerToBoolean:
13889   case CK_ReinterpretMemberPointer:
13890   case CK_ConstructorConversion:
13891   case CK_IntegralToPointer:
13892   case CK_PointerToIntegral:
13893   case CK_PointerToBoolean:
13894   case CK_ToVoid:
13895   case CK_VectorSplat:
13896   case CK_IntegralCast:
13897   case CK_BooleanToSignedIntegral:
13898   case CK_IntegralToBoolean:
13899   case CK_IntegralToFloating:
13900   case CK_FloatingToIntegral:
13901   case CK_FloatingToBoolean:
13902   case CK_FloatingCast:
13903   case CK_CPointerToObjCPointerCast:
13904   case CK_BlockPointerToObjCPointerCast:
13905   case CK_AnyPointerToBlockPointerCast:
13906   case CK_ObjCObjectLValueCast:
13907   case CK_FloatingComplexToReal:
13908   case CK_FloatingComplexToBoolean:
13909   case CK_IntegralComplexToReal:
13910   case CK_IntegralComplexToBoolean:
13911   case CK_ARCProduceObject:
13912   case CK_ARCConsumeObject:
13913   case CK_ARCReclaimReturnedObject:
13914   case CK_ARCExtendBlockObject:
13915   case CK_CopyAndAutoreleaseBlockObject:
13916   case CK_BuiltinFnToFnPtr:
13917   case CK_ZeroToOCLOpaqueType:
13918   case CK_NonAtomicToAtomic:
13919   case CK_AddressSpaceConversion:
13920   case CK_IntToOCLSampler:
13921   case CK_FloatingToFixedPoint:
13922   case CK_FixedPointToFloating:
13923   case CK_FixedPointCast:
13924   case CK_FixedPointToBoolean:
13925   case CK_FixedPointToIntegral:
13926   case CK_IntegralToFixedPoint:
13927   case CK_MatrixCast:
13928     llvm_unreachable("invalid cast kind for complex value");
13929 
13930   case CK_LValueToRValue:
13931   case CK_AtomicToNonAtomic:
13932   case CK_NoOp:
13933   case CK_LValueToRValueBitCast:
13934     return ExprEvaluatorBaseTy::VisitCastExpr(E);
13935 
13936   case CK_Dependent:
13937   case CK_LValueBitCast:
13938   case CK_UserDefinedConversion:
13939     return Error(E);
13940 
13941   case CK_FloatingRealToComplex: {
13942     APFloat &Real = Result.FloatReal;
13943     if (!EvaluateFloat(E->getSubExpr(), Real, Info))
13944       return false;
13945 
13946     Result.makeComplexFloat();
13947     Result.FloatImag = APFloat(Real.getSemantics());
13948     return true;
13949   }
13950 
13951   case CK_FloatingComplexCast: {
13952     if (!Visit(E->getSubExpr()))
13953       return false;
13954 
13955     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
13956     QualType From
13957       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
13958 
13959     return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
13960            HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
13961   }
13962 
13963   case CK_FloatingComplexToIntegralComplex: {
13964     if (!Visit(E->getSubExpr()))
13965       return false;
13966 
13967     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
13968     QualType From
13969       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
13970     Result.makeComplexInt();
13971     return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
13972                                 To, Result.IntReal) &&
13973            HandleFloatToIntCast(Info, E, From, Result.FloatImag,
13974                                 To, Result.IntImag);
13975   }
13976 
13977   case CK_IntegralRealToComplex: {
13978     APSInt &Real = Result.IntReal;
13979     if (!EvaluateInteger(E->getSubExpr(), Real, Info))
13980       return false;
13981 
13982     Result.makeComplexInt();
13983     Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
13984     return true;
13985   }
13986 
13987   case CK_IntegralComplexCast: {
13988     if (!Visit(E->getSubExpr()))
13989       return false;
13990 
13991     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
13992     QualType From
13993       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
13994 
13995     Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
13996     Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
13997     return true;
13998   }
13999 
14000   case CK_IntegralComplexToFloatingComplex: {
14001     if (!Visit(E->getSubExpr()))
14002       return false;
14003 
14004     const FPOptions FPO = E->getFPFeaturesInEffect(
14005                                   Info.Ctx.getLangOpts());
14006     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
14007     QualType From
14008       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
14009     Result.makeComplexFloat();
14010     return HandleIntToFloatCast(Info, E, FPO, From, Result.IntReal,
14011                                 To, Result.FloatReal) &&
14012            HandleIntToFloatCast(Info, E, FPO, From, Result.IntImag,
14013                                 To, Result.FloatImag);
14014   }
14015   }
14016 
14017   llvm_unreachable("unknown cast resulting in complex value");
14018 }
14019 
VisitBinaryOperator(const BinaryOperator * E)14020 bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
14021   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
14022     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
14023 
14024   // Track whether the LHS or RHS is real at the type system level. When this is
14025   // the case we can simplify our evaluation strategy.
14026   bool LHSReal = false, RHSReal = false;
14027 
14028   bool LHSOK;
14029   if (E->getLHS()->getType()->isRealFloatingType()) {
14030     LHSReal = true;
14031     APFloat &Real = Result.FloatReal;
14032     LHSOK = EvaluateFloat(E->getLHS(), Real, Info);
14033     if (LHSOK) {
14034       Result.makeComplexFloat();
14035       Result.FloatImag = APFloat(Real.getSemantics());
14036     }
14037   } else {
14038     LHSOK = Visit(E->getLHS());
14039   }
14040   if (!LHSOK && !Info.noteFailure())
14041     return false;
14042 
14043   ComplexValue RHS;
14044   if (E->getRHS()->getType()->isRealFloatingType()) {
14045     RHSReal = true;
14046     APFloat &Real = RHS.FloatReal;
14047     if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK)
14048       return false;
14049     RHS.makeComplexFloat();
14050     RHS.FloatImag = APFloat(Real.getSemantics());
14051   } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
14052     return false;
14053 
14054   assert(!(LHSReal && RHSReal) &&
14055          "Cannot have both operands of a complex operation be real.");
14056   switch (E->getOpcode()) {
14057   default: return Error(E);
14058   case BO_Add:
14059     if (Result.isComplexFloat()) {
14060       Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
14061                                        APFloat::rmNearestTiesToEven);
14062       if (LHSReal)
14063         Result.getComplexFloatImag() = RHS.getComplexFloatImag();
14064       else if (!RHSReal)
14065         Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
14066                                          APFloat::rmNearestTiesToEven);
14067     } else {
14068       Result.getComplexIntReal() += RHS.getComplexIntReal();
14069       Result.getComplexIntImag() += RHS.getComplexIntImag();
14070     }
14071     break;
14072   case BO_Sub:
14073     if (Result.isComplexFloat()) {
14074       Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
14075                                             APFloat::rmNearestTiesToEven);
14076       if (LHSReal) {
14077         Result.getComplexFloatImag() = RHS.getComplexFloatImag();
14078         Result.getComplexFloatImag().changeSign();
14079       } else if (!RHSReal) {
14080         Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
14081                                               APFloat::rmNearestTiesToEven);
14082       }
14083     } else {
14084       Result.getComplexIntReal() -= RHS.getComplexIntReal();
14085       Result.getComplexIntImag() -= RHS.getComplexIntImag();
14086     }
14087     break;
14088   case BO_Mul:
14089     if (Result.isComplexFloat()) {
14090       // This is an implementation of complex multiplication according to the
14091       // constraints laid out in C11 Annex G. The implementation uses the
14092       // following naming scheme:
14093       //   (a + ib) * (c + id)
14094       ComplexValue LHS = Result;
14095       APFloat &A = LHS.getComplexFloatReal();
14096       APFloat &B = LHS.getComplexFloatImag();
14097       APFloat &C = RHS.getComplexFloatReal();
14098       APFloat &D = RHS.getComplexFloatImag();
14099       APFloat &ResR = Result.getComplexFloatReal();
14100       APFloat &ResI = Result.getComplexFloatImag();
14101       if (LHSReal) {
14102         assert(!RHSReal && "Cannot have two real operands for a complex op!");
14103         ResR = A * C;
14104         ResI = A * D;
14105       } else if (RHSReal) {
14106         ResR = C * A;
14107         ResI = C * B;
14108       } else {
14109         // In the fully general case, we need to handle NaNs and infinities
14110         // robustly.
14111         APFloat AC = A * C;
14112         APFloat BD = B * D;
14113         APFloat AD = A * D;
14114         APFloat BC = B * C;
14115         ResR = AC - BD;
14116         ResI = AD + BC;
14117         if (ResR.isNaN() && ResI.isNaN()) {
14118           bool Recalc = false;
14119           if (A.isInfinity() || B.isInfinity()) {
14120             A = APFloat::copySign(
14121                 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
14122             B = APFloat::copySign(
14123                 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
14124             if (C.isNaN())
14125               C = APFloat::copySign(APFloat(C.getSemantics()), C);
14126             if (D.isNaN())
14127               D = APFloat::copySign(APFloat(D.getSemantics()), D);
14128             Recalc = true;
14129           }
14130           if (C.isInfinity() || D.isInfinity()) {
14131             C = APFloat::copySign(
14132                 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
14133             D = APFloat::copySign(
14134                 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
14135             if (A.isNaN())
14136               A = APFloat::copySign(APFloat(A.getSemantics()), A);
14137             if (B.isNaN())
14138               B = APFloat::copySign(APFloat(B.getSemantics()), B);
14139             Recalc = true;
14140           }
14141           if (!Recalc && (AC.isInfinity() || BD.isInfinity() ||
14142                           AD.isInfinity() || BC.isInfinity())) {
14143             if (A.isNaN())
14144               A = APFloat::copySign(APFloat(A.getSemantics()), A);
14145             if (B.isNaN())
14146               B = APFloat::copySign(APFloat(B.getSemantics()), B);
14147             if (C.isNaN())
14148               C = APFloat::copySign(APFloat(C.getSemantics()), C);
14149             if (D.isNaN())
14150               D = APFloat::copySign(APFloat(D.getSemantics()), D);
14151             Recalc = true;
14152           }
14153           if (Recalc) {
14154             ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D);
14155             ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C);
14156           }
14157         }
14158       }
14159     } else {
14160       ComplexValue LHS = Result;
14161       Result.getComplexIntReal() =
14162         (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
14163          LHS.getComplexIntImag() * RHS.getComplexIntImag());
14164       Result.getComplexIntImag() =
14165         (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
14166          LHS.getComplexIntImag() * RHS.getComplexIntReal());
14167     }
14168     break;
14169   case BO_Div:
14170     if (Result.isComplexFloat()) {
14171       // This is an implementation of complex division according to the
14172       // constraints laid out in C11 Annex G. The implementation uses the
14173       // following naming scheme:
14174       //   (a + ib) / (c + id)
14175       ComplexValue LHS = Result;
14176       APFloat &A = LHS.getComplexFloatReal();
14177       APFloat &B = LHS.getComplexFloatImag();
14178       APFloat &C = RHS.getComplexFloatReal();
14179       APFloat &D = RHS.getComplexFloatImag();
14180       APFloat &ResR = Result.getComplexFloatReal();
14181       APFloat &ResI = Result.getComplexFloatImag();
14182       if (RHSReal) {
14183         ResR = A / C;
14184         ResI = B / C;
14185       } else {
14186         if (LHSReal) {
14187           // No real optimizations we can do here, stub out with zero.
14188           B = APFloat::getZero(A.getSemantics());
14189         }
14190         int DenomLogB = 0;
14191         APFloat MaxCD = maxnum(abs(C), abs(D));
14192         if (MaxCD.isFinite()) {
14193           DenomLogB = ilogb(MaxCD);
14194           C = scalbn(C, -DenomLogB, APFloat::rmNearestTiesToEven);
14195           D = scalbn(D, -DenomLogB, APFloat::rmNearestTiesToEven);
14196         }
14197         APFloat Denom = C * C + D * D;
14198         ResR = scalbn((A * C + B * D) / Denom, -DenomLogB,
14199                       APFloat::rmNearestTiesToEven);
14200         ResI = scalbn((B * C - A * D) / Denom, -DenomLogB,
14201                       APFloat::rmNearestTiesToEven);
14202         if (ResR.isNaN() && ResI.isNaN()) {
14203           if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) {
14204             ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A;
14205             ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B;
14206           } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() &&
14207                      D.isFinite()) {
14208             A = APFloat::copySign(
14209                 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
14210             B = APFloat::copySign(
14211                 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
14212             ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D);
14213             ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D);
14214           } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) {
14215             C = APFloat::copySign(
14216                 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
14217             D = APFloat::copySign(
14218                 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
14219             ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D);
14220             ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D);
14221           }
14222         }
14223       }
14224     } else {
14225       if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
14226         return Error(E, diag::note_expr_divide_by_zero);
14227 
14228       ComplexValue LHS = Result;
14229       APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
14230         RHS.getComplexIntImag() * RHS.getComplexIntImag();
14231       Result.getComplexIntReal() =
14232         (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
14233          LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
14234       Result.getComplexIntImag() =
14235         (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
14236          LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
14237     }
14238     break;
14239   }
14240 
14241   return true;
14242 }
14243 
VisitUnaryOperator(const UnaryOperator * E)14244 bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
14245   // Get the operand value into 'Result'.
14246   if (!Visit(E->getSubExpr()))
14247     return false;
14248 
14249   switch (E->getOpcode()) {
14250   default:
14251     return Error(E);
14252   case UO_Extension:
14253     return true;
14254   case UO_Plus:
14255     // The result is always just the subexpr.
14256     return true;
14257   case UO_Minus:
14258     if (Result.isComplexFloat()) {
14259       Result.getComplexFloatReal().changeSign();
14260       Result.getComplexFloatImag().changeSign();
14261     }
14262     else {
14263       Result.getComplexIntReal() = -Result.getComplexIntReal();
14264       Result.getComplexIntImag() = -Result.getComplexIntImag();
14265     }
14266     return true;
14267   case UO_Not:
14268     if (Result.isComplexFloat())
14269       Result.getComplexFloatImag().changeSign();
14270     else
14271       Result.getComplexIntImag() = -Result.getComplexIntImag();
14272     return true;
14273   }
14274 }
14275 
VisitInitListExpr(const InitListExpr * E)14276 bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
14277   if (E->getNumInits() == 2) {
14278     if (E->getType()->isComplexType()) {
14279       Result.makeComplexFloat();
14280       if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
14281         return false;
14282       if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
14283         return false;
14284     } else {
14285       Result.makeComplexInt();
14286       if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
14287         return false;
14288       if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
14289         return false;
14290     }
14291     return true;
14292   }
14293   return ExprEvaluatorBaseTy::VisitInitListExpr(E);
14294 }
14295 
VisitCallExpr(const CallExpr * E)14296 bool ComplexExprEvaluator::VisitCallExpr(const CallExpr *E) {
14297   switch (E->getBuiltinCallee()) {
14298   case Builtin::BI__builtin_complex:
14299     Result.makeComplexFloat();
14300     if (!EvaluateFloat(E->getArg(0), Result.FloatReal, Info))
14301       return false;
14302     if (!EvaluateFloat(E->getArg(1), Result.FloatImag, Info))
14303       return false;
14304     return true;
14305 
14306   default:
14307     break;
14308   }
14309 
14310   return ExprEvaluatorBaseTy::VisitCallExpr(E);
14311 }
14312 
14313 //===----------------------------------------------------------------------===//
14314 // Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
14315 // implicit conversion.
14316 //===----------------------------------------------------------------------===//
14317 
14318 namespace {
14319 class AtomicExprEvaluator :
14320     public ExprEvaluatorBase<AtomicExprEvaluator> {
14321   const LValue *This;
14322   APValue &Result;
14323 public:
AtomicExprEvaluator(EvalInfo & Info,const LValue * This,APValue & Result)14324   AtomicExprEvaluator(EvalInfo &Info, const LValue *This, APValue &Result)
14325       : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
14326 
Success(const APValue & V,const Expr * E)14327   bool Success(const APValue &V, const Expr *E) {
14328     Result = V;
14329     return true;
14330   }
14331 
ZeroInitialization(const Expr * E)14332   bool ZeroInitialization(const Expr *E) {
14333     ImplicitValueInitExpr VIE(
14334         E->getType()->castAs<AtomicType>()->getValueType());
14335     // For atomic-qualified class (and array) types in C++, initialize the
14336     // _Atomic-wrapped subobject directly, in-place.
14337     return This ? EvaluateInPlace(Result, Info, *This, &VIE)
14338                 : Evaluate(Result, Info, &VIE);
14339   }
14340 
VisitCastExpr(const CastExpr * E)14341   bool VisitCastExpr(const CastExpr *E) {
14342     switch (E->getCastKind()) {
14343     default:
14344       return ExprEvaluatorBaseTy::VisitCastExpr(E);
14345     case CK_NonAtomicToAtomic:
14346       return This ? EvaluateInPlace(Result, Info, *This, E->getSubExpr())
14347                   : Evaluate(Result, Info, E->getSubExpr());
14348     }
14349   }
14350 };
14351 } // end anonymous namespace
14352 
EvaluateAtomic(const Expr * E,const LValue * This,APValue & Result,EvalInfo & Info)14353 static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
14354                            EvalInfo &Info) {
14355   assert(!E->isValueDependent());
14356   assert(E->isRValue() && E->getType()->isAtomicType());
14357   return AtomicExprEvaluator(Info, This, Result).Visit(E);
14358 }
14359 
14360 //===----------------------------------------------------------------------===//
14361 // Void expression evaluation, primarily for a cast to void on the LHS of a
14362 // comma operator
14363 //===----------------------------------------------------------------------===//
14364 
14365 namespace {
14366 class VoidExprEvaluator
14367   : public ExprEvaluatorBase<VoidExprEvaluator> {
14368 public:
VoidExprEvaluator(EvalInfo & Info)14369   VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
14370 
Success(const APValue & V,const Expr * e)14371   bool Success(const APValue &V, const Expr *e) { return true; }
14372 
ZeroInitialization(const Expr * E)14373   bool ZeroInitialization(const Expr *E) { return true; }
14374 
VisitCastExpr(const CastExpr * E)14375   bool VisitCastExpr(const CastExpr *E) {
14376     switch (E->getCastKind()) {
14377     default:
14378       return ExprEvaluatorBaseTy::VisitCastExpr(E);
14379     case CK_ToVoid:
14380       VisitIgnoredValue(E->getSubExpr());
14381       return true;
14382     }
14383   }
14384 
VisitCallExpr(const CallExpr * E)14385   bool VisitCallExpr(const CallExpr *E) {
14386     switch (E->getBuiltinCallee()) {
14387     case Builtin::BI__assume:
14388     case Builtin::BI__builtin_assume:
14389       // The argument is not evaluated!
14390       return true;
14391 
14392     case Builtin::BI__builtin_operator_delete:
14393       return HandleOperatorDeleteCall(Info, E);
14394 
14395     default:
14396       break;
14397     }
14398 
14399     return ExprEvaluatorBaseTy::VisitCallExpr(E);
14400   }
14401 
14402   bool VisitCXXDeleteExpr(const CXXDeleteExpr *E);
14403 };
14404 } // end anonymous namespace
14405 
VisitCXXDeleteExpr(const CXXDeleteExpr * E)14406 bool VoidExprEvaluator::VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
14407   // We cannot speculatively evaluate a delete expression.
14408   if (Info.SpeculativeEvaluationDepth)
14409     return false;
14410 
14411   FunctionDecl *OperatorDelete = E->getOperatorDelete();
14412   if (!OperatorDelete->isReplaceableGlobalAllocationFunction()) {
14413     Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
14414         << isa<CXXMethodDecl>(OperatorDelete) << OperatorDelete;
14415     return false;
14416   }
14417 
14418   const Expr *Arg = E->getArgument();
14419 
14420   LValue Pointer;
14421   if (!EvaluatePointer(Arg, Pointer, Info))
14422     return false;
14423   if (Pointer.Designator.Invalid)
14424     return false;
14425 
14426   // Deleting a null pointer has no effect.
14427   if (Pointer.isNullPointer()) {
14428     // This is the only case where we need to produce an extension warning:
14429     // the only other way we can succeed is if we find a dynamic allocation,
14430     // and we will have warned when we allocated it in that case.
14431     if (!Info.getLangOpts().CPlusPlus20)
14432       Info.CCEDiag(E, diag::note_constexpr_new);
14433     return true;
14434   }
14435 
14436   Optional<DynAlloc *> Alloc = CheckDeleteKind(
14437       Info, E, Pointer, E->isArrayForm() ? DynAlloc::ArrayNew : DynAlloc::New);
14438   if (!Alloc)
14439     return false;
14440   QualType AllocType = Pointer.Base.getDynamicAllocType();
14441 
14442   // For the non-array case, the designator must be empty if the static type
14443   // does not have a virtual destructor.
14444   if (!E->isArrayForm() && Pointer.Designator.Entries.size() != 0 &&
14445       !hasVirtualDestructor(Arg->getType()->getPointeeType())) {
14446     Info.FFDiag(E, diag::note_constexpr_delete_base_nonvirt_dtor)
14447         << Arg->getType()->getPointeeType() << AllocType;
14448     return false;
14449   }
14450 
14451   // For a class type with a virtual destructor, the selected operator delete
14452   // is the one looked up when building the destructor.
14453   if (!E->isArrayForm() && !E->isGlobalDelete()) {
14454     const FunctionDecl *VirtualDelete = getVirtualOperatorDelete(AllocType);
14455     if (VirtualDelete &&
14456         !VirtualDelete->isReplaceableGlobalAllocationFunction()) {
14457       Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
14458           << isa<CXXMethodDecl>(VirtualDelete) << VirtualDelete;
14459       return false;
14460     }
14461   }
14462 
14463   if (!HandleDestruction(Info, E->getExprLoc(), Pointer.getLValueBase(),
14464                          (*Alloc)->Value, AllocType))
14465     return false;
14466 
14467   if (!Info.HeapAllocs.erase(Pointer.Base.dyn_cast<DynamicAllocLValue>())) {
14468     // The element was already erased. This means the destructor call also
14469     // deleted the object.
14470     // FIXME: This probably results in undefined behavior before we get this
14471     // far, and should be diagnosed elsewhere first.
14472     Info.FFDiag(E, diag::note_constexpr_double_delete);
14473     return false;
14474   }
14475 
14476   return true;
14477 }
14478 
EvaluateVoid(const Expr * E,EvalInfo & Info)14479 static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
14480   assert(!E->isValueDependent());
14481   assert(E->isRValue() && E->getType()->isVoidType());
14482   return VoidExprEvaluator(Info).Visit(E);
14483 }
14484 
14485 //===----------------------------------------------------------------------===//
14486 // Top level Expr::EvaluateAsRValue method.
14487 //===----------------------------------------------------------------------===//
14488 
Evaluate(APValue & Result,EvalInfo & Info,const Expr * E)14489 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
14490   assert(!E->isValueDependent());
14491   // In C, function designators are not lvalues, but we evaluate them as if they
14492   // are.
14493   QualType T = E->getType();
14494   if (E->isGLValue() || T->isFunctionType()) {
14495     LValue LV;
14496     if (!EvaluateLValue(E, LV, Info))
14497       return false;
14498     LV.moveInto(Result);
14499   } else if (T->isVectorType()) {
14500     if (!EvaluateVector(E, Result, Info))
14501       return false;
14502   } else if (T->isIntegralOrEnumerationType()) {
14503     if (!IntExprEvaluator(Info, Result).Visit(E))
14504       return false;
14505   } else if (T->hasPointerRepresentation()) {
14506     LValue LV;
14507     if (!EvaluatePointer(E, LV, Info))
14508       return false;
14509     LV.moveInto(Result);
14510   } else if (T->isRealFloatingType()) {
14511     llvm::APFloat F(0.0);
14512     if (!EvaluateFloat(E, F, Info))
14513       return false;
14514     Result = APValue(F);
14515   } else if (T->isAnyComplexType()) {
14516     ComplexValue C;
14517     if (!EvaluateComplex(E, C, Info))
14518       return false;
14519     C.moveInto(Result);
14520   } else if (T->isFixedPointType()) {
14521     if (!FixedPointExprEvaluator(Info, Result).Visit(E)) return false;
14522   } else if (T->isMemberPointerType()) {
14523     MemberPtr P;
14524     if (!EvaluateMemberPointer(E, P, Info))
14525       return false;
14526     P.moveInto(Result);
14527     return true;
14528   } else if (T->isArrayType()) {
14529     LValue LV;
14530     APValue &Value =
14531         Info.CurrentCall->createTemporary(E, T, ScopeKind::FullExpression, LV);
14532     if (!EvaluateArray(E, LV, Value, Info))
14533       return false;
14534     Result = Value;
14535   } else if (T->isRecordType()) {
14536     LValue LV;
14537     APValue &Value =
14538         Info.CurrentCall->createTemporary(E, T, ScopeKind::FullExpression, LV);
14539     if (!EvaluateRecord(E, LV, Value, Info))
14540       return false;
14541     Result = Value;
14542   } else if (T->isVoidType()) {
14543     if (!Info.getLangOpts().CPlusPlus11)
14544       Info.CCEDiag(E, diag::note_constexpr_nonliteral)
14545         << E->getType();
14546     if (!EvaluateVoid(E, Info))
14547       return false;
14548   } else if (T->isAtomicType()) {
14549     QualType Unqual = T.getAtomicUnqualifiedType();
14550     if (Unqual->isArrayType() || Unqual->isRecordType()) {
14551       LValue LV;
14552       APValue &Value = Info.CurrentCall->createTemporary(
14553           E, Unqual, ScopeKind::FullExpression, LV);
14554       if (!EvaluateAtomic(E, &LV, Value, Info))
14555         return false;
14556     } else {
14557       if (!EvaluateAtomic(E, nullptr, Result, Info))
14558         return false;
14559     }
14560   } else if (Info.getLangOpts().CPlusPlus11) {
14561     Info.FFDiag(E, diag::note_constexpr_nonliteral) << E->getType();
14562     return false;
14563   } else {
14564     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
14565     return false;
14566   }
14567 
14568   return true;
14569 }
14570 
14571 /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
14572 /// cases, the in-place evaluation is essential, since later initializers for
14573 /// an object can indirectly refer to subobjects which were initialized earlier.
EvaluateInPlace(APValue & Result,EvalInfo & Info,const LValue & This,const Expr * E,bool AllowNonLiteralTypes)14574 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
14575                             const Expr *E, bool AllowNonLiteralTypes) {
14576   assert(!E->isValueDependent());
14577 
14578   if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This))
14579     return false;
14580 
14581   if (E->isRValue()) {
14582     // Evaluate arrays and record types in-place, so that later initializers can
14583     // refer to earlier-initialized members of the object.
14584     QualType T = E->getType();
14585     if (T->isArrayType())
14586       return EvaluateArray(E, This, Result, Info);
14587     else if (T->isRecordType())
14588       return EvaluateRecord(E, This, Result, Info);
14589     else if (T->isAtomicType()) {
14590       QualType Unqual = T.getAtomicUnqualifiedType();
14591       if (Unqual->isArrayType() || Unqual->isRecordType())
14592         return EvaluateAtomic(E, &This, Result, Info);
14593     }
14594   }
14595 
14596   // For any other type, in-place evaluation is unimportant.
14597   return Evaluate(Result, Info, E);
14598 }
14599 
14600 /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
14601 /// lvalue-to-rvalue cast if it is an lvalue.
EvaluateAsRValue(EvalInfo & Info,const Expr * E,APValue & Result)14602 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
14603   assert(!E->isValueDependent());
14604   if (Info.EnableNewConstInterp) {
14605     if (!Info.Ctx.getInterpContext().evaluateAsRValue(Info, E, Result))
14606       return false;
14607   } else {
14608     if (E->getType().isNull())
14609       return false;
14610 
14611     if (!CheckLiteralType(Info, E))
14612       return false;
14613 
14614     if (!::Evaluate(Result, Info, E))
14615       return false;
14616 
14617     if (E->isGLValue()) {
14618       LValue LV;
14619       LV.setFrom(Info.Ctx, Result);
14620       if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
14621         return false;
14622     }
14623   }
14624 
14625   // Check this core constant expression is a constant expression.
14626   return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result,
14627                                  ConstantExprKind::Normal) &&
14628          CheckMemoryLeaks(Info);
14629 }
14630 
FastEvaluateAsRValue(const Expr * Exp,Expr::EvalResult & Result,const ASTContext & Ctx,bool & IsConst)14631 static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
14632                                  const ASTContext &Ctx, bool &IsConst) {
14633   // Fast-path evaluations of integer literals, since we sometimes see files
14634   // containing vast quantities of these.
14635   if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
14636     Result.Val = APValue(APSInt(L->getValue(),
14637                                 L->getType()->isUnsignedIntegerType()));
14638     IsConst = true;
14639     return true;
14640   }
14641 
14642   // This case should be rare, but we need to check it before we check on
14643   // the type below.
14644   if (Exp->getType().isNull()) {
14645     IsConst = false;
14646     return true;
14647   }
14648 
14649   // FIXME: Evaluating values of large array and record types can cause
14650   // performance problems. Only do so in C++11 for now.
14651   if (Exp->isRValue() && (Exp->getType()->isArrayType() ||
14652                           Exp->getType()->isRecordType()) &&
14653       !Ctx.getLangOpts().CPlusPlus11) {
14654     IsConst = false;
14655     return true;
14656   }
14657   return false;
14658 }
14659 
hasUnacceptableSideEffect(Expr::EvalStatus & Result,Expr::SideEffectsKind SEK)14660 static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result,
14661                                       Expr::SideEffectsKind SEK) {
14662   return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) ||
14663          (SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior);
14664 }
14665 
EvaluateAsRValue(const Expr * E,Expr::EvalResult & Result,const ASTContext & Ctx,EvalInfo & Info)14666 static bool EvaluateAsRValue(const Expr *E, Expr::EvalResult &Result,
14667                              const ASTContext &Ctx, EvalInfo &Info) {
14668   assert(!E->isValueDependent());
14669   bool IsConst;
14670   if (FastEvaluateAsRValue(E, Result, Ctx, IsConst))
14671     return IsConst;
14672 
14673   return EvaluateAsRValue(Info, E, Result.Val);
14674 }
14675 
EvaluateAsInt(const Expr * E,Expr::EvalResult & ExprResult,const ASTContext & Ctx,Expr::SideEffectsKind AllowSideEffects,EvalInfo & Info)14676 static bool EvaluateAsInt(const Expr *E, Expr::EvalResult &ExprResult,
14677                           const ASTContext &Ctx,
14678                           Expr::SideEffectsKind AllowSideEffects,
14679                           EvalInfo &Info) {
14680   assert(!E->isValueDependent());
14681   if (!E->getType()->isIntegralOrEnumerationType())
14682     return false;
14683 
14684   if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info) ||
14685       !ExprResult.Val.isInt() ||
14686       hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
14687     return false;
14688 
14689   return true;
14690 }
14691 
EvaluateAsFixedPoint(const Expr * E,Expr::EvalResult & ExprResult,const ASTContext & Ctx,Expr::SideEffectsKind AllowSideEffects,EvalInfo & Info)14692 static bool EvaluateAsFixedPoint(const Expr *E, Expr::EvalResult &ExprResult,
14693                                  const ASTContext &Ctx,
14694                                  Expr::SideEffectsKind AllowSideEffects,
14695                                  EvalInfo &Info) {
14696   assert(!E->isValueDependent());
14697   if (!E->getType()->isFixedPointType())
14698     return false;
14699 
14700   if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info))
14701     return false;
14702 
14703   if (!ExprResult.Val.isFixedPoint() ||
14704       hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
14705     return false;
14706 
14707   return true;
14708 }
14709 
14710 /// EvaluateAsRValue - Return true if this is a constant which we can fold using
14711 /// any crazy technique (that has nothing to do with language standards) that
14712 /// we want to.  If this function returns true, it returns the folded constant
14713 /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
14714 /// will be applied to the result.
EvaluateAsRValue(EvalResult & Result,const ASTContext & Ctx,bool InConstantContext) const14715 bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx,
14716                             bool InConstantContext) const {
14717   assert(!isValueDependent() &&
14718          "Expression evaluator can't be called on a dependent expression.");
14719   EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
14720   Info.InConstantContext = InConstantContext;
14721   return ::EvaluateAsRValue(this, Result, Ctx, Info);
14722 }
14723 
EvaluateAsBooleanCondition(bool & Result,const ASTContext & Ctx,bool InConstantContext) const14724 bool Expr::EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx,
14725                                       bool InConstantContext) const {
14726   assert(!isValueDependent() &&
14727          "Expression evaluator can't be called on a dependent expression.");
14728   EvalResult Scratch;
14729   return EvaluateAsRValue(Scratch, Ctx, InConstantContext) &&
14730          HandleConversionToBool(Scratch.Val, Result);
14731 }
14732 
EvaluateAsInt(EvalResult & Result,const ASTContext & Ctx,SideEffectsKind AllowSideEffects,bool InConstantContext) const14733 bool Expr::EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx,
14734                          SideEffectsKind AllowSideEffects,
14735                          bool InConstantContext) const {
14736   assert(!isValueDependent() &&
14737          "Expression evaluator can't be called on a dependent expression.");
14738   EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
14739   Info.InConstantContext = InConstantContext;
14740   return ::EvaluateAsInt(this, Result, Ctx, AllowSideEffects, Info);
14741 }
14742 
EvaluateAsFixedPoint(EvalResult & Result,const ASTContext & Ctx,SideEffectsKind AllowSideEffects,bool InConstantContext) const14743 bool Expr::EvaluateAsFixedPoint(EvalResult &Result, const ASTContext &Ctx,
14744                                 SideEffectsKind AllowSideEffects,
14745                                 bool InConstantContext) const {
14746   assert(!isValueDependent() &&
14747          "Expression evaluator can't be called on a dependent expression.");
14748   EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
14749   Info.InConstantContext = InConstantContext;
14750   return ::EvaluateAsFixedPoint(this, Result, Ctx, AllowSideEffects, Info);
14751 }
14752 
EvaluateAsFloat(APFloat & Result,const ASTContext & Ctx,SideEffectsKind AllowSideEffects,bool InConstantContext) const14753 bool Expr::EvaluateAsFloat(APFloat &Result, const ASTContext &Ctx,
14754                            SideEffectsKind AllowSideEffects,
14755                            bool InConstantContext) const {
14756   assert(!isValueDependent() &&
14757          "Expression evaluator can't be called on a dependent expression.");
14758 
14759   if (!getType()->isRealFloatingType())
14760     return false;
14761 
14762   EvalResult ExprResult;
14763   if (!EvaluateAsRValue(ExprResult, Ctx, InConstantContext) ||
14764       !ExprResult.Val.isFloat() ||
14765       hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
14766     return false;
14767 
14768   Result = ExprResult.Val.getFloat();
14769   return true;
14770 }
14771 
EvaluateAsLValue(EvalResult & Result,const ASTContext & Ctx,bool InConstantContext) const14772 bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx,
14773                             bool InConstantContext) const {
14774   assert(!isValueDependent() &&
14775          "Expression evaluator can't be called on a dependent expression.");
14776 
14777   EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold);
14778   Info.InConstantContext = InConstantContext;
14779   LValue LV;
14780   CheckedTemporaries CheckedTemps;
14781   if (!EvaluateLValue(this, LV, Info) || !Info.discardCleanups() ||
14782       Result.HasSideEffects ||
14783       !CheckLValueConstantExpression(Info, getExprLoc(),
14784                                      Ctx.getLValueReferenceType(getType()), LV,
14785                                      ConstantExprKind::Normal, CheckedTemps))
14786     return false;
14787 
14788   LV.moveInto(Result.Val);
14789   return true;
14790 }
14791 
EvaluateDestruction(const ASTContext & Ctx,APValue::LValueBase Base,APValue DestroyedValue,QualType Type,SourceLocation Loc,Expr::EvalStatus & EStatus,bool IsConstantDestruction)14792 static bool EvaluateDestruction(const ASTContext &Ctx, APValue::LValueBase Base,
14793                                 APValue DestroyedValue, QualType Type,
14794                                 SourceLocation Loc, Expr::EvalStatus &EStatus,
14795                                 bool IsConstantDestruction) {
14796   EvalInfo Info(Ctx, EStatus,
14797                 IsConstantDestruction ? EvalInfo::EM_ConstantExpression
14798                                       : EvalInfo::EM_ConstantFold);
14799   Info.setEvaluatingDecl(Base, DestroyedValue,
14800                          EvalInfo::EvaluatingDeclKind::Dtor);
14801   Info.InConstantContext = IsConstantDestruction;
14802 
14803   LValue LVal;
14804   LVal.set(Base);
14805 
14806   if (!HandleDestruction(Info, Loc, Base, DestroyedValue, Type) ||
14807       EStatus.HasSideEffects)
14808     return false;
14809 
14810   if (!Info.discardCleanups())
14811     llvm_unreachable("Unhandled cleanup; missing full expression marker?");
14812 
14813   return true;
14814 }
14815 
EvaluateAsConstantExpr(EvalResult & Result,const ASTContext & Ctx,ConstantExprKind Kind) const14816 bool Expr::EvaluateAsConstantExpr(EvalResult &Result, const ASTContext &Ctx,
14817                                   ConstantExprKind Kind) const {
14818   assert(!isValueDependent() &&
14819          "Expression evaluator can't be called on a dependent expression.");
14820 
14821   EvalInfo::EvaluationMode EM = EvalInfo::EM_ConstantExpression;
14822   EvalInfo Info(Ctx, Result, EM);
14823   Info.InConstantContext = true;
14824 
14825   // The type of the object we're initializing is 'const T' for a class NTTP.
14826   QualType T = getType();
14827   if (Kind == ConstantExprKind::ClassTemplateArgument)
14828     T.addConst();
14829 
14830   // If we're evaluating a prvalue, fake up a MaterializeTemporaryExpr to
14831   // represent the result of the evaluation. CheckConstantExpression ensures
14832   // this doesn't escape.
14833   MaterializeTemporaryExpr BaseMTE(T, const_cast<Expr*>(this), true);
14834   APValue::LValueBase Base(&BaseMTE);
14835 
14836   Info.setEvaluatingDecl(Base, Result.Val);
14837   LValue LVal;
14838   LVal.set(Base);
14839 
14840   if (!::EvaluateInPlace(Result.Val, Info, LVal, this) || Result.HasSideEffects)
14841     return false;
14842 
14843   if (!Info.discardCleanups())
14844     llvm_unreachable("Unhandled cleanup; missing full expression marker?");
14845 
14846   if (!CheckConstantExpression(Info, getExprLoc(), getStorageType(Ctx, this),
14847                                Result.Val, Kind))
14848     return false;
14849   if (!CheckMemoryLeaks(Info))
14850     return false;
14851 
14852   // If this is a class template argument, it's required to have constant
14853   // destruction too.
14854   if (Kind == ConstantExprKind::ClassTemplateArgument &&
14855       (!EvaluateDestruction(Ctx, Base, Result.Val, T, getBeginLoc(), Result,
14856                             true) ||
14857        Result.HasSideEffects)) {
14858     // FIXME: Prefix a note to indicate that the problem is lack of constant
14859     // destruction.
14860     return false;
14861   }
14862 
14863   return true;
14864 }
14865 
EvaluateAsInitializer(APValue & Value,const ASTContext & Ctx,const VarDecl * VD,SmallVectorImpl<PartialDiagnosticAt> & Notes,bool IsConstantInitialization) const14866 bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
14867                                  const VarDecl *VD,
14868                                  SmallVectorImpl<PartialDiagnosticAt> &Notes,
14869                                  bool IsConstantInitialization) const {
14870   assert(!isValueDependent() &&
14871          "Expression evaluator can't be called on a dependent expression.");
14872 
14873   // FIXME: Evaluating initializers for large array and record types can cause
14874   // performance problems. Only do so in C++11 for now.
14875   if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
14876       !Ctx.getLangOpts().CPlusPlus11)
14877     return false;
14878 
14879   Expr::EvalStatus EStatus;
14880   EStatus.Diag = &Notes;
14881 
14882   EvalInfo Info(Ctx, EStatus,
14883                 (IsConstantInitialization && Ctx.getLangOpts().CPlusPlus11)
14884                     ? EvalInfo::EM_ConstantExpression
14885                     : EvalInfo::EM_ConstantFold);
14886   Info.setEvaluatingDecl(VD, Value);
14887   Info.InConstantContext = IsConstantInitialization;
14888 
14889   SourceLocation DeclLoc = VD->getLocation();
14890   QualType DeclTy = VD->getType();
14891 
14892   if (Info.EnableNewConstInterp) {
14893     auto &InterpCtx = const_cast<ASTContext &>(Ctx).getInterpContext();
14894     if (!InterpCtx.evaluateAsInitializer(Info, VD, Value))
14895       return false;
14896   } else {
14897     LValue LVal;
14898     LVal.set(VD);
14899 
14900     if (!EvaluateInPlace(Value, Info, LVal, this,
14901                          /*AllowNonLiteralTypes=*/true) ||
14902         EStatus.HasSideEffects)
14903       return false;
14904 
14905     // At this point, any lifetime-extended temporaries are completely
14906     // initialized.
14907     Info.performLifetimeExtension();
14908 
14909     if (!Info.discardCleanups())
14910       llvm_unreachable("Unhandled cleanup; missing full expression marker?");
14911   }
14912   return CheckConstantExpression(Info, DeclLoc, DeclTy, Value,
14913                                  ConstantExprKind::Normal) &&
14914          CheckMemoryLeaks(Info);
14915 }
14916 
evaluateDestruction(SmallVectorImpl<PartialDiagnosticAt> & Notes) const14917 bool VarDecl::evaluateDestruction(
14918     SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
14919   Expr::EvalStatus EStatus;
14920   EStatus.Diag = &Notes;
14921 
14922   // Only treat the destruction as constant destruction if we formally have
14923   // constant initialization (or are usable in a constant expression).
14924   bool IsConstantDestruction = hasConstantInitialization();
14925 
14926   // Make a copy of the value for the destructor to mutate, if we know it.
14927   // Otherwise, treat the value as default-initialized; if the destructor works
14928   // anyway, then the destruction is constant (and must be essentially empty).
14929   APValue DestroyedValue;
14930   if (getEvaluatedValue() && !getEvaluatedValue()->isAbsent())
14931     DestroyedValue = *getEvaluatedValue();
14932   else if (!getDefaultInitValue(getType(), DestroyedValue))
14933     return false;
14934 
14935   if (!EvaluateDestruction(getASTContext(), this, std::move(DestroyedValue),
14936                            getType(), getLocation(), EStatus,
14937                            IsConstantDestruction) ||
14938       EStatus.HasSideEffects)
14939     return false;
14940 
14941   ensureEvaluatedStmt()->HasConstantDestruction = true;
14942   return true;
14943 }
14944 
14945 /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
14946 /// constant folded, but discard the result.
isEvaluatable(const ASTContext & Ctx,SideEffectsKind SEK) const14947 bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const {
14948   assert(!isValueDependent() &&
14949          "Expression evaluator can't be called on a dependent expression.");
14950 
14951   EvalResult Result;
14952   return EvaluateAsRValue(Result, Ctx, /* in constant context */ true) &&
14953          !hasUnacceptableSideEffect(Result, SEK);
14954 }
14955 
EvaluateKnownConstInt(const ASTContext & Ctx,SmallVectorImpl<PartialDiagnosticAt> * Diag) const14956 APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
14957                     SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
14958   assert(!isValueDependent() &&
14959          "Expression evaluator can't be called on a dependent expression.");
14960 
14961   EvalResult EVResult;
14962   EVResult.Diag = Diag;
14963   EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
14964   Info.InConstantContext = true;
14965 
14966   bool Result = ::EvaluateAsRValue(this, EVResult, Ctx, Info);
14967   (void)Result;
14968   assert(Result && "Could not evaluate expression");
14969   assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");
14970 
14971   return EVResult.Val.getInt();
14972 }
14973 
EvaluateKnownConstIntCheckOverflow(const ASTContext & Ctx,SmallVectorImpl<PartialDiagnosticAt> * Diag) const14974 APSInt Expr::EvaluateKnownConstIntCheckOverflow(
14975     const ASTContext &Ctx, SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
14976   assert(!isValueDependent() &&
14977          "Expression evaluator can't be called on a dependent expression.");
14978 
14979   EvalResult EVResult;
14980   EVResult.Diag = Diag;
14981   EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
14982   Info.InConstantContext = true;
14983   Info.CheckingForUndefinedBehavior = true;
14984 
14985   bool Result = ::EvaluateAsRValue(Info, this, EVResult.Val);
14986   (void)Result;
14987   assert(Result && "Could not evaluate expression");
14988   assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");
14989 
14990   return EVResult.Val.getInt();
14991 }
14992 
EvaluateForOverflow(const ASTContext & Ctx) const14993 void Expr::EvaluateForOverflow(const ASTContext &Ctx) const {
14994   assert(!isValueDependent() &&
14995          "Expression evaluator can't be called on a dependent expression.");
14996 
14997   bool IsConst;
14998   EvalResult EVResult;
14999   if (!FastEvaluateAsRValue(this, EVResult, Ctx, IsConst)) {
15000     EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
15001     Info.CheckingForUndefinedBehavior = true;
15002     (void)::EvaluateAsRValue(Info, this, EVResult.Val);
15003   }
15004 }
15005 
isGlobalLValue() const15006 bool Expr::EvalResult::isGlobalLValue() const {
15007   assert(Val.isLValue());
15008   return IsGlobalLValue(Val.getLValueBase());
15009 }
15010 
15011 /// isIntegerConstantExpr - this recursive routine will test if an expression is
15012 /// an integer constant expression.
15013 
15014 /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
15015 /// comma, etc
15016 
15017 // CheckICE - This function does the fundamental ICE checking: the returned
15018 // ICEDiag contains an ICEKind indicating whether the expression is an ICE,
15019 // and a (possibly null) SourceLocation indicating the location of the problem.
15020 //
15021 // Note that to reduce code duplication, this helper does no evaluation
15022 // itself; the caller checks whether the expression is evaluatable, and
15023 // in the rare cases where CheckICE actually cares about the evaluated
15024 // value, it calls into Evaluate.
15025 
15026 namespace {
15027 
15028 enum ICEKind {
15029   /// This expression is an ICE.
15030   IK_ICE,
15031   /// This expression is not an ICE, but if it isn't evaluated, it's
15032   /// a legal subexpression for an ICE. This return value is used to handle
15033   /// the comma operator in C99 mode, and non-constant subexpressions.
15034   IK_ICEIfUnevaluated,
15035   /// This expression is not an ICE, and is not a legal subexpression for one.
15036   IK_NotICE
15037 };
15038 
15039 struct ICEDiag {
15040   ICEKind Kind;
15041   SourceLocation Loc;
15042 
ICEDiag__anon6b379bbb3511::ICEDiag15043   ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
15044 };
15045 
15046 }
15047 
NoDiag()15048 static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
15049 
Worst(ICEDiag A,ICEDiag B)15050 static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
15051 
CheckEvalInICE(const Expr * E,const ASTContext & Ctx)15052 static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) {
15053   Expr::EvalResult EVResult;
15054   Expr::EvalStatus Status;
15055   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
15056 
15057   Info.InConstantContext = true;
15058   if (!::EvaluateAsRValue(E, EVResult, Ctx, Info) || EVResult.HasSideEffects ||
15059       !EVResult.Val.isInt())
15060     return ICEDiag(IK_NotICE, E->getBeginLoc());
15061 
15062   return NoDiag();
15063 }
15064 
CheckICE(const Expr * E,const ASTContext & Ctx)15065 static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) {
15066   assert(!E->isValueDependent() && "Should not see value dependent exprs!");
15067   if (!E->getType()->isIntegralOrEnumerationType())
15068     return ICEDiag(IK_NotICE, E->getBeginLoc());
15069 
15070   switch (E->getStmtClass()) {
15071 #define ABSTRACT_STMT(Node)
15072 #define STMT(Node, Base) case Expr::Node##Class:
15073 #define EXPR(Node, Base)
15074 #include "clang/AST/StmtNodes.inc"
15075   case Expr::PredefinedExprClass:
15076   case Expr::FloatingLiteralClass:
15077   case Expr::ImaginaryLiteralClass:
15078   case Expr::StringLiteralClass:
15079   case Expr::ArraySubscriptExprClass:
15080   case Expr::MatrixSubscriptExprClass:
15081   case Expr::OMPArraySectionExprClass:
15082   case Expr::OMPArrayShapingExprClass:
15083   case Expr::OMPIteratorExprClass:
15084   case Expr::MemberExprClass:
15085   case Expr::CompoundAssignOperatorClass:
15086   case Expr::CompoundLiteralExprClass:
15087   case Expr::ExtVectorElementExprClass:
15088   case Expr::DesignatedInitExprClass:
15089   case Expr::ArrayInitLoopExprClass:
15090   case Expr::ArrayInitIndexExprClass:
15091   case Expr::NoInitExprClass:
15092   case Expr::DesignatedInitUpdateExprClass:
15093   case Expr::ImplicitValueInitExprClass:
15094   case Expr::ParenListExprClass:
15095   case Expr::VAArgExprClass:
15096   case Expr::AddrLabelExprClass:
15097   case Expr::StmtExprClass:
15098   case Expr::CXXMemberCallExprClass:
15099   case Expr::CUDAKernelCallExprClass:
15100   case Expr::CXXAddrspaceCastExprClass:
15101   case Expr::CXXDynamicCastExprClass:
15102   case Expr::CXXTypeidExprClass:
15103   case Expr::CXXUuidofExprClass:
15104   case Expr::MSPropertyRefExprClass:
15105   case Expr::MSPropertySubscriptExprClass:
15106   case Expr::CXXNullPtrLiteralExprClass:
15107   case Expr::UserDefinedLiteralClass:
15108   case Expr::CXXThisExprClass:
15109   case Expr::CXXThrowExprClass:
15110   case Expr::CXXNewExprClass:
15111   case Expr::CXXDeleteExprClass:
15112   case Expr::CXXPseudoDestructorExprClass:
15113   case Expr::UnresolvedLookupExprClass:
15114   case Expr::TypoExprClass:
15115   case Expr::RecoveryExprClass:
15116   case Expr::DependentScopeDeclRefExprClass:
15117   case Expr::CXXConstructExprClass:
15118   case Expr::CXXInheritedCtorInitExprClass:
15119   case Expr::CXXStdInitializerListExprClass:
15120   case Expr::CXXBindTemporaryExprClass:
15121   case Expr::ExprWithCleanupsClass:
15122   case Expr::CXXTemporaryObjectExprClass:
15123   case Expr::CXXUnresolvedConstructExprClass:
15124   case Expr::CXXDependentScopeMemberExprClass:
15125   case Expr::UnresolvedMemberExprClass:
15126   case Expr::ObjCStringLiteralClass:
15127   case Expr::ObjCBoxedExprClass:
15128   case Expr::ObjCArrayLiteralClass:
15129   case Expr::ObjCDictionaryLiteralClass:
15130   case Expr::ObjCEncodeExprClass:
15131   case Expr::ObjCMessageExprClass:
15132   case Expr::ObjCSelectorExprClass:
15133   case Expr::ObjCProtocolExprClass:
15134   case Expr::ObjCIvarRefExprClass:
15135   case Expr::ObjCPropertyRefExprClass:
15136   case Expr::ObjCSubscriptRefExprClass:
15137   case Expr::ObjCIsaExprClass:
15138   case Expr::ObjCAvailabilityCheckExprClass:
15139   case Expr::ShuffleVectorExprClass:
15140   case Expr::ConvertVectorExprClass:
15141   case Expr::BlockExprClass:
15142   case Expr::NoStmtClass:
15143   case Expr::OpaqueValueExprClass:
15144   case Expr::PackExpansionExprClass:
15145   case Expr::SubstNonTypeTemplateParmPackExprClass:
15146   case Expr::FunctionParmPackExprClass:
15147   case Expr::AsTypeExprClass:
15148   case Expr::ObjCIndirectCopyRestoreExprClass:
15149   case Expr::MaterializeTemporaryExprClass:
15150   case Expr::PseudoObjectExprClass:
15151   case Expr::AtomicExprClass:
15152   case Expr::LambdaExprClass:
15153   case Expr::CXXFoldExprClass:
15154   case Expr::CoawaitExprClass:
15155   case Expr::DependentCoawaitExprClass:
15156   case Expr::CoyieldExprClass:
15157     return ICEDiag(IK_NotICE, E->getBeginLoc());
15158 
15159   case Expr::InitListExprClass: {
15160     // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the
15161     // form "T x = { a };" is equivalent to "T x = a;".
15162     // Unless we're initializing a reference, T is a scalar as it is known to be
15163     // of integral or enumeration type.
15164     if (E->isRValue())
15165       if (cast<InitListExpr>(E)->getNumInits() == 1)
15166         return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx);
15167     return ICEDiag(IK_NotICE, E->getBeginLoc());
15168   }
15169 
15170   case Expr::SizeOfPackExprClass:
15171   case Expr::GNUNullExprClass:
15172   case Expr::SourceLocExprClass:
15173     return NoDiag();
15174 
15175   case Expr::SubstNonTypeTemplateParmExprClass:
15176     return
15177       CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
15178 
15179   case Expr::ConstantExprClass:
15180     return CheckICE(cast<ConstantExpr>(E)->getSubExpr(), Ctx);
15181 
15182   case Expr::ParenExprClass:
15183     return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
15184   case Expr::GenericSelectionExprClass:
15185     return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
15186   case Expr::IntegerLiteralClass:
15187   case Expr::FixedPointLiteralClass:
15188   case Expr::CharacterLiteralClass:
15189   case Expr::ObjCBoolLiteralExprClass:
15190   case Expr::CXXBoolLiteralExprClass:
15191   case Expr::CXXScalarValueInitExprClass:
15192   case Expr::TypeTraitExprClass:
15193   case Expr::ConceptSpecializationExprClass:
15194   case Expr::RequiresExprClass:
15195   case Expr::ArrayTypeTraitExprClass:
15196   case Expr::ExpressionTraitExprClass:
15197   case Expr::CXXNoexceptExprClass:
15198     return NoDiag();
15199   case Expr::CallExprClass:
15200   case Expr::CXXOperatorCallExprClass: {
15201     // C99 6.6/3 allows function calls within unevaluated subexpressions of
15202     // constant expressions, but they can never be ICEs because an ICE cannot
15203     // contain an operand of (pointer to) function type.
15204     const CallExpr *CE = cast<CallExpr>(E);
15205     if (CE->getBuiltinCallee())
15206       return CheckEvalInICE(E, Ctx);
15207     return ICEDiag(IK_NotICE, E->getBeginLoc());
15208   }
15209   case Expr::CXXRewrittenBinaryOperatorClass:
15210     return CheckICE(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm(),
15211                     Ctx);
15212   case Expr::DeclRefExprClass: {
15213     const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
15214     if (isa<EnumConstantDecl>(D))
15215       return NoDiag();
15216 
15217     // C++ and OpenCL (FIXME: spec reference?) allow reading const-qualified
15218     // integer variables in constant expressions:
15219     //
15220     // C++ 7.1.5.1p2
15221     //   A variable of non-volatile const-qualified integral or enumeration
15222     //   type initialized by an ICE can be used in ICEs.
15223     //
15224     // We sometimes use CheckICE to check the C++98 rules in C++11 mode. In
15225     // that mode, use of reference variables should not be allowed.
15226     const VarDecl *VD = dyn_cast<VarDecl>(D);
15227     if (VD && VD->isUsableInConstantExpressions(Ctx) &&
15228         !VD->getType()->isReferenceType())
15229       return NoDiag();
15230 
15231     return ICEDiag(IK_NotICE, E->getBeginLoc());
15232   }
15233   case Expr::UnaryOperatorClass: {
15234     const UnaryOperator *Exp = cast<UnaryOperator>(E);
15235     switch (Exp->getOpcode()) {
15236     case UO_PostInc:
15237     case UO_PostDec:
15238     case UO_PreInc:
15239     case UO_PreDec:
15240     case UO_AddrOf:
15241     case UO_Deref:
15242     case UO_Coawait:
15243       // C99 6.6/3 allows increment and decrement within unevaluated
15244       // subexpressions of constant expressions, but they can never be ICEs
15245       // because an ICE cannot contain an lvalue operand.
15246       return ICEDiag(IK_NotICE, E->getBeginLoc());
15247     case UO_Extension:
15248     case UO_LNot:
15249     case UO_Plus:
15250     case UO_Minus:
15251     case UO_Not:
15252     case UO_Real:
15253     case UO_Imag:
15254       return CheckICE(Exp->getSubExpr(), Ctx);
15255     }
15256     llvm_unreachable("invalid unary operator class");
15257   }
15258   case Expr::OffsetOfExprClass: {
15259     // Note that per C99, offsetof must be an ICE. And AFAIK, using
15260     // EvaluateAsRValue matches the proposed gcc behavior for cases like
15261     // "offsetof(struct s{int x[4];}, x[1.0])".  This doesn't affect
15262     // compliance: we should warn earlier for offsetof expressions with
15263     // array subscripts that aren't ICEs, and if the array subscripts
15264     // are ICEs, the value of the offsetof must be an integer constant.
15265     return CheckEvalInICE(E, Ctx);
15266   }
15267   case Expr::UnaryExprOrTypeTraitExprClass: {
15268     const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
15269     if ((Exp->getKind() ==  UETT_SizeOf) &&
15270         Exp->getTypeOfArgument()->isVariableArrayType())
15271       return ICEDiag(IK_NotICE, E->getBeginLoc());
15272     return NoDiag();
15273   }
15274   case Expr::BinaryOperatorClass: {
15275     const BinaryOperator *Exp = cast<BinaryOperator>(E);
15276     switch (Exp->getOpcode()) {
15277     case BO_PtrMemD:
15278     case BO_PtrMemI:
15279     case BO_Assign:
15280     case BO_MulAssign:
15281     case BO_DivAssign:
15282     case BO_RemAssign:
15283     case BO_AddAssign:
15284     case BO_SubAssign:
15285     case BO_ShlAssign:
15286     case BO_ShrAssign:
15287     case BO_AndAssign:
15288     case BO_XorAssign:
15289     case BO_OrAssign:
15290       // C99 6.6/3 allows assignments within unevaluated subexpressions of
15291       // constant expressions, but they can never be ICEs because an ICE cannot
15292       // contain an lvalue operand.
15293       return ICEDiag(IK_NotICE, E->getBeginLoc());
15294 
15295     case BO_Mul:
15296     case BO_Div:
15297     case BO_Rem:
15298     case BO_Add:
15299     case BO_Sub:
15300     case BO_Shl:
15301     case BO_Shr:
15302     case BO_LT:
15303     case BO_GT:
15304     case BO_LE:
15305     case BO_GE:
15306     case BO_EQ:
15307     case BO_NE:
15308     case BO_And:
15309     case BO_Xor:
15310     case BO_Or:
15311     case BO_Comma:
15312     case BO_Cmp: {
15313       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
15314       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
15315       if (Exp->getOpcode() == BO_Div ||
15316           Exp->getOpcode() == BO_Rem) {
15317         // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
15318         // we don't evaluate one.
15319         if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
15320           llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
15321           if (REval == 0)
15322             return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
15323           if (REval.isSigned() && REval.isAllOnesValue()) {
15324             llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
15325             if (LEval.isMinSignedValue())
15326               return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
15327           }
15328         }
15329       }
15330       if (Exp->getOpcode() == BO_Comma) {
15331         if (Ctx.getLangOpts().C99) {
15332           // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
15333           // if it isn't evaluated.
15334           if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
15335             return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
15336         } else {
15337           // In both C89 and C++, commas in ICEs are illegal.
15338           return ICEDiag(IK_NotICE, E->getBeginLoc());
15339         }
15340       }
15341       return Worst(LHSResult, RHSResult);
15342     }
15343     case BO_LAnd:
15344     case BO_LOr: {
15345       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
15346       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
15347       if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
15348         // Rare case where the RHS has a comma "side-effect"; we need
15349         // to actually check the condition to see whether the side
15350         // with the comma is evaluated.
15351         if ((Exp->getOpcode() == BO_LAnd) !=
15352             (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
15353           return RHSResult;
15354         return NoDiag();
15355       }
15356 
15357       return Worst(LHSResult, RHSResult);
15358     }
15359     }
15360     llvm_unreachable("invalid binary operator kind");
15361   }
15362   case Expr::ImplicitCastExprClass:
15363   case Expr::CStyleCastExprClass:
15364   case Expr::CXXFunctionalCastExprClass:
15365   case Expr::CXXStaticCastExprClass:
15366   case Expr::CXXReinterpretCastExprClass:
15367   case Expr::CXXConstCastExprClass:
15368   case Expr::ObjCBridgedCastExprClass: {
15369     const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
15370     if (isa<ExplicitCastExpr>(E)) {
15371       if (const FloatingLiteral *FL
15372             = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
15373         unsigned DestWidth = Ctx.getIntWidth(E->getType());
15374         bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
15375         APSInt IgnoredVal(DestWidth, !DestSigned);
15376         bool Ignored;
15377         // If the value does not fit in the destination type, the behavior is
15378         // undefined, so we are not required to treat it as a constant
15379         // expression.
15380         if (FL->getValue().convertToInteger(IgnoredVal,
15381                                             llvm::APFloat::rmTowardZero,
15382                                             &Ignored) & APFloat::opInvalidOp)
15383           return ICEDiag(IK_NotICE, E->getBeginLoc());
15384         return NoDiag();
15385       }
15386     }
15387     switch (cast<CastExpr>(E)->getCastKind()) {
15388     case CK_LValueToRValue:
15389     case CK_AtomicToNonAtomic:
15390     case CK_NonAtomicToAtomic:
15391     case CK_NoOp:
15392     case CK_IntegralToBoolean:
15393     case CK_IntegralCast:
15394       return CheckICE(SubExpr, Ctx);
15395     default:
15396       return ICEDiag(IK_NotICE, E->getBeginLoc());
15397     }
15398   }
15399   case Expr::BinaryConditionalOperatorClass: {
15400     const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
15401     ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
15402     if (CommonResult.Kind == IK_NotICE) return CommonResult;
15403     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
15404     if (FalseResult.Kind == IK_NotICE) return FalseResult;
15405     if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
15406     if (FalseResult.Kind == IK_ICEIfUnevaluated &&
15407         Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
15408     return FalseResult;
15409   }
15410   case Expr::ConditionalOperatorClass: {
15411     const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
15412     // If the condition (ignoring parens) is a __builtin_constant_p call,
15413     // then only the true side is actually considered in an integer constant
15414     // expression, and it is fully evaluated.  This is an important GNU
15415     // extension.  See GCC PR38377 for discussion.
15416     if (const CallExpr *CallCE
15417         = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
15418       if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
15419         return CheckEvalInICE(E, Ctx);
15420     ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
15421     if (CondResult.Kind == IK_NotICE)
15422       return CondResult;
15423 
15424     ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
15425     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
15426 
15427     if (TrueResult.Kind == IK_NotICE)
15428       return TrueResult;
15429     if (FalseResult.Kind == IK_NotICE)
15430       return FalseResult;
15431     if (CondResult.Kind == IK_ICEIfUnevaluated)
15432       return CondResult;
15433     if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
15434       return NoDiag();
15435     // Rare case where the diagnostics depend on which side is evaluated
15436     // Note that if we get here, CondResult is 0, and at least one of
15437     // TrueResult and FalseResult is non-zero.
15438     if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
15439       return FalseResult;
15440     return TrueResult;
15441   }
15442   case Expr::CXXDefaultArgExprClass:
15443     return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
15444   case Expr::CXXDefaultInitExprClass:
15445     return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
15446   case Expr::ChooseExprClass: {
15447     return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx);
15448   }
15449   case Expr::BuiltinBitCastExprClass: {
15450     if (!checkBitCastConstexprEligibility(nullptr, Ctx, cast<CastExpr>(E)))
15451       return ICEDiag(IK_NotICE, E->getBeginLoc());
15452     return CheckICE(cast<CastExpr>(E)->getSubExpr(), Ctx);
15453   }
15454   }
15455 
15456   llvm_unreachable("Invalid StmtClass!");
15457 }
15458 
15459 /// Evaluate an expression as a C++11 integral constant expression.
EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext & Ctx,const Expr * E,llvm::APSInt * Value,SourceLocation * Loc)15460 static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx,
15461                                                     const Expr *E,
15462                                                     llvm::APSInt *Value,
15463                                                     SourceLocation *Loc) {
15464   if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
15465     if (Loc) *Loc = E->getExprLoc();
15466     return false;
15467   }
15468 
15469   APValue Result;
15470   if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
15471     return false;
15472 
15473   if (!Result.isInt()) {
15474     if (Loc) *Loc = E->getExprLoc();
15475     return false;
15476   }
15477 
15478   if (Value) *Value = Result.getInt();
15479   return true;
15480 }
15481 
isIntegerConstantExpr(const ASTContext & Ctx,SourceLocation * Loc) const15482 bool Expr::isIntegerConstantExpr(const ASTContext &Ctx,
15483                                  SourceLocation *Loc) const {
15484   assert(!isValueDependent() &&
15485          "Expression evaluator can't be called on a dependent expression.");
15486 
15487   if (Ctx.getLangOpts().CPlusPlus11)
15488     return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc);
15489 
15490   ICEDiag D = CheckICE(this, Ctx);
15491   if (D.Kind != IK_ICE) {
15492     if (Loc) *Loc = D.Loc;
15493     return false;
15494   }
15495   return true;
15496 }
15497 
getIntegerConstantExpr(const ASTContext & Ctx,SourceLocation * Loc,bool isEvaluated) const15498 Optional<llvm::APSInt> Expr::getIntegerConstantExpr(const ASTContext &Ctx,
15499                                                     SourceLocation *Loc,
15500                                                     bool isEvaluated) const {
15501   assert(!isValueDependent() &&
15502          "Expression evaluator can't be called on a dependent expression.");
15503 
15504   APSInt Value;
15505 
15506   if (Ctx.getLangOpts().CPlusPlus11) {
15507     if (EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc))
15508       return Value;
15509     return None;
15510   }
15511 
15512   if (!isIntegerConstantExpr(Ctx, Loc))
15513     return None;
15514 
15515   // The only possible side-effects here are due to UB discovered in the
15516   // evaluation (for instance, INT_MAX + 1). In such a case, we are still
15517   // required to treat the expression as an ICE, so we produce the folded
15518   // value.
15519   EvalResult ExprResult;
15520   Expr::EvalStatus Status;
15521   EvalInfo Info(Ctx, Status, EvalInfo::EM_IgnoreSideEffects);
15522   Info.InConstantContext = true;
15523 
15524   if (!::EvaluateAsInt(this, ExprResult, Ctx, SE_AllowSideEffects, Info))
15525     llvm_unreachable("ICE cannot be evaluated!");
15526 
15527   return ExprResult.Val.getInt();
15528 }
15529 
isCXX98IntegralConstantExpr(const ASTContext & Ctx) const15530 bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const {
15531   assert(!isValueDependent() &&
15532          "Expression evaluator can't be called on a dependent expression.");
15533 
15534   return CheckICE(this, Ctx).Kind == IK_ICE;
15535 }
15536 
isCXX11ConstantExpr(const ASTContext & Ctx,APValue * Result,SourceLocation * Loc) const15537 bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result,
15538                                SourceLocation *Loc) const {
15539   assert(!isValueDependent() &&
15540          "Expression evaluator can't be called on a dependent expression.");
15541 
15542   // We support this checking in C++98 mode in order to diagnose compatibility
15543   // issues.
15544   assert(Ctx.getLangOpts().CPlusPlus);
15545 
15546   // Build evaluation settings.
15547   Expr::EvalStatus Status;
15548   SmallVector<PartialDiagnosticAt, 8> Diags;
15549   Status.Diag = &Diags;
15550   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
15551 
15552   APValue Scratch;
15553   bool IsConstExpr =
15554       ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch) &&
15555       // FIXME: We don't produce a diagnostic for this, but the callers that
15556       // call us on arbitrary full-expressions should generally not care.
15557       Info.discardCleanups() && !Status.HasSideEffects;
15558 
15559   if (!Diags.empty()) {
15560     IsConstExpr = false;
15561     if (Loc) *Loc = Diags[0].first;
15562   } else if (!IsConstExpr) {
15563     // FIXME: This shouldn't happen.
15564     if (Loc) *Loc = getExprLoc();
15565   }
15566 
15567   return IsConstExpr;
15568 }
15569 
EvaluateWithSubstitution(APValue & Value,ASTContext & Ctx,const FunctionDecl * Callee,ArrayRef<const Expr * > Args,const Expr * This) const15570 bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
15571                                     const FunctionDecl *Callee,
15572                                     ArrayRef<const Expr*> Args,
15573                                     const Expr *This) const {
15574   assert(!isValueDependent() &&
15575          "Expression evaluator can't be called on a dependent expression.");
15576 
15577   Expr::EvalStatus Status;
15578   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated);
15579   Info.InConstantContext = true;
15580 
15581   LValue ThisVal;
15582   const LValue *ThisPtr = nullptr;
15583   if (This) {
15584 #ifndef NDEBUG
15585     auto *MD = dyn_cast<CXXMethodDecl>(Callee);
15586     assert(MD && "Don't provide `this` for non-methods.");
15587     assert(!MD->isStatic() && "Don't provide `this` for static methods.");
15588 #endif
15589     if (!This->isValueDependent() &&
15590         EvaluateObjectArgument(Info, This, ThisVal) &&
15591         !Info.EvalStatus.HasSideEffects)
15592       ThisPtr = &ThisVal;
15593 
15594     // Ignore any side-effects from a failed evaluation. This is safe because
15595     // they can't interfere with any other argument evaluation.
15596     Info.EvalStatus.HasSideEffects = false;
15597   }
15598 
15599   CallRef Call = Info.CurrentCall->createCall(Callee);
15600   for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
15601        I != E; ++I) {
15602     unsigned Idx = I - Args.begin();
15603     if (Idx >= Callee->getNumParams())
15604       break;
15605     const ParmVarDecl *PVD = Callee->getParamDecl(Idx);
15606     if ((*I)->isValueDependent() ||
15607         !EvaluateCallArg(PVD, *I, Call, Info) ||
15608         Info.EvalStatus.HasSideEffects) {
15609       // If evaluation fails, throw away the argument entirely.
15610       if (APValue *Slot = Info.getParamSlot(Call, PVD))
15611         *Slot = APValue();
15612     }
15613 
15614     // Ignore any side-effects from a failed evaluation. This is safe because
15615     // they can't interfere with any other argument evaluation.
15616     Info.EvalStatus.HasSideEffects = false;
15617   }
15618 
15619   // Parameter cleanups happen in the caller and are not part of this
15620   // evaluation.
15621   Info.discardCleanups();
15622   Info.EvalStatus.HasSideEffects = false;
15623 
15624   // Build fake call to Callee.
15625   CallStackFrame Frame(Info, Callee->getLocation(), Callee, ThisPtr, Call);
15626   // FIXME: Missing ExprWithCleanups in enable_if conditions?
15627   FullExpressionRAII Scope(Info);
15628   return Evaluate(Value, Info, this) && Scope.destroy() &&
15629          !Info.EvalStatus.HasSideEffects;
15630 }
15631 
isPotentialConstantExpr(const FunctionDecl * FD,SmallVectorImpl<PartialDiagnosticAt> & Diags)15632 bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
15633                                    SmallVectorImpl<
15634                                      PartialDiagnosticAt> &Diags) {
15635   // FIXME: It would be useful to check constexpr function templates, but at the
15636   // moment the constant expression evaluator cannot cope with the non-rigorous
15637   // ASTs which we build for dependent expressions.
15638   if (FD->isDependentContext())
15639     return true;
15640 
15641   Expr::EvalStatus Status;
15642   Status.Diag = &Diags;
15643 
15644   EvalInfo Info(FD->getASTContext(), Status, EvalInfo::EM_ConstantExpression);
15645   Info.InConstantContext = true;
15646   Info.CheckingPotentialConstantExpression = true;
15647 
15648   // The constexpr VM attempts to compile all methods to bytecode here.
15649   if (Info.EnableNewConstInterp) {
15650     Info.Ctx.getInterpContext().isPotentialConstantExpr(Info, FD);
15651     return Diags.empty();
15652   }
15653 
15654   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
15655   const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr;
15656 
15657   // Fabricate an arbitrary expression on the stack and pretend that it
15658   // is a temporary being used as the 'this' pointer.
15659   LValue This;
15660   ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
15661   This.set({&VIE, Info.CurrentCall->Index});
15662 
15663   ArrayRef<const Expr*> Args;
15664 
15665   APValue Scratch;
15666   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
15667     // Evaluate the call as a constant initializer, to allow the construction
15668     // of objects of non-literal types.
15669     Info.setEvaluatingDecl(This.getLValueBase(), Scratch);
15670     HandleConstructorCall(&VIE, This, Args, CD, Info, Scratch);
15671   } else {
15672     SourceLocation Loc = FD->getLocation();
15673     HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : nullptr,
15674                        Args, CallRef(), FD->getBody(), Info, Scratch, nullptr);
15675   }
15676 
15677   return Diags.empty();
15678 }
15679 
isPotentialConstantExprUnevaluated(Expr * E,const FunctionDecl * FD,SmallVectorImpl<PartialDiagnosticAt> & Diags)15680 bool Expr::isPotentialConstantExprUnevaluated(Expr *E,
15681                                               const FunctionDecl *FD,
15682                                               SmallVectorImpl<
15683                                                 PartialDiagnosticAt> &Diags) {
15684   assert(!E->isValueDependent() &&
15685          "Expression evaluator can't be called on a dependent expression.");
15686 
15687   Expr::EvalStatus Status;
15688   Status.Diag = &Diags;
15689 
15690   EvalInfo Info(FD->getASTContext(), Status,
15691                 EvalInfo::EM_ConstantExpressionUnevaluated);
15692   Info.InConstantContext = true;
15693   Info.CheckingPotentialConstantExpression = true;
15694 
15695   // Fabricate a call stack frame to give the arguments a plausible cover story.
15696   CallStackFrame Frame(Info, SourceLocation(), FD, /*This*/ nullptr, CallRef());
15697 
15698   APValue ResultScratch;
15699   Evaluate(ResultScratch, Info, E);
15700   return Diags.empty();
15701 }
15702 
tryEvaluateObjectSize(uint64_t & Result,ASTContext & Ctx,unsigned Type) const15703 bool Expr::tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx,
15704                                  unsigned Type) const {
15705   if (!getType()->isPointerType())
15706     return false;
15707 
15708   Expr::EvalStatus Status;
15709   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
15710   return tryEvaluateBuiltinObjectSize(this, Type, Info, Result);
15711 }
15712