1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the LiveDebugVariables analysis.
10 //
11 // Remove all DBG_VALUE instructions referencing virtual registers and replace
12 // them with a data structure tracking where live user variables are kept - in a
13 // virtual register or in a stack slot.
14 //
15 // Allow the data structure to be updated during register allocation when values
16 // are moved between registers and stack slots. Finally emit new DBG_VALUE
17 // instructions after register allocation is complete.
18 //
19 //===----------------------------------------------------------------------===//
20 
21 #include "LiveDebugVariables.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/IntervalMap.h"
25 #include "llvm/ADT/MapVector.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/CodeGen/LexicalScopes.h"
32 #include "llvm/CodeGen/LiveInterval.h"
33 #include "llvm/CodeGen/LiveIntervals.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineDominators.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineInstr.h"
38 #include "llvm/CodeGen/MachineInstrBuilder.h"
39 #include "llvm/CodeGen/MachineOperand.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/SlotIndexes.h"
42 #include "llvm/CodeGen/TargetInstrInfo.h"
43 #include "llvm/CodeGen/TargetOpcodes.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/CodeGen/VirtRegMap.h"
47 #include "llvm/Config/llvm-config.h"
48 #include "llvm/IR/DebugInfoMetadata.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/InitializePasses.h"
53 #include "llvm/MC/MCRegisterInfo.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <iterator>
62 #include <memory>
63 #include <utility>
64 
65 using namespace llvm;
66 
67 #define DEBUG_TYPE "livedebugvars"
68 
69 static cl::opt<bool>
70 EnableLDV("live-debug-variables", cl::init(true),
71           cl::desc("Enable the live debug variables pass"), cl::Hidden);
72 
73 STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted");
74 STATISTIC(NumInsertedDebugLabels, "Number of DBG_LABELs inserted");
75 
76 char LiveDebugVariables::ID = 0;
77 
78 INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE,
79                 "Debug Variable Analysis", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)80 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
81 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
82 INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE,
83                 "Debug Variable Analysis", false, false)
84 
85 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const {
86   AU.addRequired<MachineDominatorTree>();
87   AU.addRequiredTransitive<LiveIntervals>();
88   AU.setPreservesAll();
89   MachineFunctionPass::getAnalysisUsage(AU);
90 }
91 
LiveDebugVariables()92 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) {
93   initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
94 }
95 
96 enum : unsigned { UndefLocNo = ~0U };
97 
98 namespace {
99 /// Describes a debug variable value by location number and expression along
100 /// with some flags about the original usage of the location.
101 class DbgVariableValue {
102 public:
DbgVariableValue(ArrayRef<unsigned> NewLocs,bool WasIndirect,bool WasList,const DIExpression & Expr)103   DbgVariableValue(ArrayRef<unsigned> NewLocs, bool WasIndirect, bool WasList,
104                    const DIExpression &Expr)
105       : WasIndirect(WasIndirect), WasList(WasList), Expression(&Expr) {
106     assert(!(WasIndirect && WasList) &&
107            "DBG_VALUE_LISTs should not be indirect.");
108     SmallVector<unsigned> LocNoVec;
109     for (unsigned LocNo : NewLocs) {
110       auto It = find(LocNoVec, LocNo);
111       if (It == LocNoVec.end())
112         LocNoVec.push_back(LocNo);
113       else {
114         // Loc duplicates an element in LocNos; replace references to Op
115         // with references to the duplicating element.
116         unsigned OpIdx = LocNoVec.size();
117         unsigned DuplicatingIdx = std::distance(LocNoVec.begin(), It);
118         Expression =
119             DIExpression::replaceArg(Expression, OpIdx, DuplicatingIdx);
120       }
121     }
122     // FIXME: Debug values referencing 64+ unique machine locations are rare and
123     // currently unsupported for performance reasons. If we can verify that
124     // performance is acceptable for such debug values, we can increase the
125     // bit-width of LocNoCount to 14 to enable up to 16384 unique machine
126     // locations. We will also need to verify that this does not cause issues
127     // with LiveDebugVariables' use of IntervalMap.
128     if (LocNoVec.size() < 64) {
129       LocNoCount = LocNoVec.size();
130       if (LocNoCount > 0) {
131         LocNos = std::make_unique<unsigned[]>(LocNoCount);
132         std::copy(LocNoVec.begin(), LocNoVec.end(), loc_nos_begin());
133       }
134     } else {
135       LLVM_DEBUG(dbgs() << "Found debug value with 64+ unique machine "
136                            "locations, dropping...\n");
137       LocNoCount = 1;
138       // Turn this into an undef debug value list; right now, the simplest form
139       // of this is an expression with one arg, and an undef debug operand.
140       Expression =
141           DIExpression::get(Expr.getContext(), {dwarf::DW_OP_LLVM_arg, 0,
142                                                 dwarf::DW_OP_stack_value});
143       if (auto FragmentInfoOpt = Expr.getFragmentInfo())
144         Expression = *DIExpression::createFragmentExpression(
145             Expression, FragmentInfoOpt->OffsetInBits,
146             FragmentInfoOpt->SizeInBits);
147       LocNos = std::make_unique<unsigned[]>(LocNoCount);
148       LocNos[0] = UndefLocNo;
149     }
150   }
151 
DbgVariableValue()152   DbgVariableValue() : LocNoCount(0), WasIndirect(0), WasList(0) {}
DbgVariableValue(const DbgVariableValue & Other)153   DbgVariableValue(const DbgVariableValue &Other)
154       : LocNoCount(Other.LocNoCount), WasIndirect(Other.getWasIndirect()),
155         WasList(Other.getWasList()), Expression(Other.getExpression()) {
156     if (Other.getLocNoCount()) {
157       LocNos.reset(new unsigned[Other.getLocNoCount()]);
158       std::copy(Other.loc_nos_begin(), Other.loc_nos_end(), loc_nos_begin());
159     }
160   }
161 
operator =(const DbgVariableValue & Other)162   DbgVariableValue &operator=(const DbgVariableValue &Other) {
163     if (this == &Other)
164       return *this;
165     if (Other.getLocNoCount()) {
166       LocNos.reset(new unsigned[Other.getLocNoCount()]);
167       std::copy(Other.loc_nos_begin(), Other.loc_nos_end(), loc_nos_begin());
168     } else {
169       LocNos.release();
170     }
171     LocNoCount = Other.getLocNoCount();
172     WasIndirect = Other.getWasIndirect();
173     WasList = Other.getWasList();
174     Expression = Other.getExpression();
175     return *this;
176   }
177 
getExpression() const178   const DIExpression *getExpression() const { return Expression; }
getLocNoCount() const179   uint8_t getLocNoCount() const { return LocNoCount; }
containsLocNo(unsigned LocNo) const180   bool containsLocNo(unsigned LocNo) const {
181     return is_contained(loc_nos(), LocNo);
182   }
getWasIndirect() const183   bool getWasIndirect() const { return WasIndirect; }
getWasList() const184   bool getWasList() const { return WasList; }
isUndef() const185   bool isUndef() const { return LocNoCount == 0 || containsLocNo(UndefLocNo); }
186 
decrementLocNosAfterPivot(unsigned Pivot) const187   DbgVariableValue decrementLocNosAfterPivot(unsigned Pivot) const {
188     SmallVector<unsigned, 4> NewLocNos;
189     for (unsigned LocNo : loc_nos())
190       NewLocNos.push_back(LocNo != UndefLocNo && LocNo > Pivot ? LocNo - 1
191                                                                : LocNo);
192     return DbgVariableValue(NewLocNos, WasIndirect, WasList, *Expression);
193   }
194 
remapLocNos(ArrayRef<unsigned> LocNoMap) const195   DbgVariableValue remapLocNos(ArrayRef<unsigned> LocNoMap) const {
196     SmallVector<unsigned> NewLocNos;
197     for (unsigned LocNo : loc_nos())
198       // Undef values don't exist in locations (and thus not in LocNoMap
199       // either) so skip over them. See getLocationNo().
200       NewLocNos.push_back(LocNo == UndefLocNo ? UndefLocNo : LocNoMap[LocNo]);
201     return DbgVariableValue(NewLocNos, WasIndirect, WasList, *Expression);
202   }
203 
changeLocNo(unsigned OldLocNo,unsigned NewLocNo) const204   DbgVariableValue changeLocNo(unsigned OldLocNo, unsigned NewLocNo) const {
205     SmallVector<unsigned> NewLocNos;
206     NewLocNos.assign(loc_nos_begin(), loc_nos_end());
207     auto OldLocIt = find(NewLocNos, OldLocNo);
208     assert(OldLocIt != NewLocNos.end() && "Old location must be present.");
209     *OldLocIt = NewLocNo;
210     return DbgVariableValue(NewLocNos, WasIndirect, WasList, *Expression);
211   }
212 
hasLocNoGreaterThan(unsigned LocNo) const213   bool hasLocNoGreaterThan(unsigned LocNo) const {
214     return any_of(loc_nos(),
215                   [LocNo](unsigned ThisLocNo) { return ThisLocNo > LocNo; });
216   }
217 
printLocNos(llvm::raw_ostream & OS) const218   void printLocNos(llvm::raw_ostream &OS) const {
219     for (const unsigned &Loc : loc_nos())
220       OS << (&Loc == loc_nos_begin() ? " " : ", ") << Loc;
221   }
222 
operator ==(const DbgVariableValue & LHS,const DbgVariableValue & RHS)223   friend inline bool operator==(const DbgVariableValue &LHS,
224                                 const DbgVariableValue &RHS) {
225     if (std::tie(LHS.LocNoCount, LHS.WasIndirect, LHS.WasList,
226                  LHS.Expression) !=
227         std::tie(RHS.LocNoCount, RHS.WasIndirect, RHS.WasList, RHS.Expression))
228       return false;
229     return std::equal(LHS.loc_nos_begin(), LHS.loc_nos_end(),
230                       RHS.loc_nos_begin());
231   }
232 
operator !=(const DbgVariableValue & LHS,const DbgVariableValue & RHS)233   friend inline bool operator!=(const DbgVariableValue &LHS,
234                                 const DbgVariableValue &RHS) {
235     return !(LHS == RHS);
236   }
237 
loc_nos_begin()238   unsigned *loc_nos_begin() { return LocNos.get(); }
loc_nos_begin() const239   const unsigned *loc_nos_begin() const { return LocNos.get(); }
loc_nos_end()240   unsigned *loc_nos_end() { return LocNos.get() + LocNoCount; }
loc_nos_end() const241   const unsigned *loc_nos_end() const { return LocNos.get() + LocNoCount; }
loc_nos() const242   ArrayRef<unsigned> loc_nos() const {
243     return ArrayRef<unsigned>(LocNos.get(), LocNoCount);
244   }
245 
246 private:
247   // IntervalMap requires the value object to be very small, to the extent
248   // that we do not have enough room for an std::vector. Using a C-style array
249   // (with a unique_ptr wrapper for convenience) allows us to optimize for this
250   // specific case by packing the array size into only 6 bits (it is highly
251   // unlikely that any debug value will need 64+ locations).
252   std::unique_ptr<unsigned[]> LocNos;
253   uint8_t LocNoCount : 6;
254   bool WasIndirect : 1;
255   bool WasList : 1;
256   const DIExpression *Expression = nullptr;
257 };
258 } // namespace
259 
260 /// Map of where a user value is live to that value.
261 using LocMap = IntervalMap<SlotIndex, DbgVariableValue, 4>;
262 
263 /// Map of stack slot offsets for spilled locations.
264 /// Non-spilled locations are not added to the map.
265 using SpillOffsetMap = DenseMap<unsigned, unsigned>;
266 
267 /// Cache to save the location where it can be used as the starting
268 /// position as input for calling MachineBasicBlock::SkipPHIsLabelsAndDebug.
269 /// This is to prevent MachineBasicBlock::SkipPHIsLabelsAndDebug from
270 /// repeatedly searching the same set of PHIs/Labels/Debug instructions
271 /// if it is called many times for the same block.
272 using BlockSkipInstsMap =
273     DenseMap<MachineBasicBlock *, MachineBasicBlock::iterator>;
274 
275 namespace {
276 
277 class LDVImpl;
278 
279 /// A user value is a part of a debug info user variable.
280 ///
281 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register
282 /// holds part of a user variable. The part is identified by a byte offset.
283 ///
284 /// UserValues are grouped into equivalence classes for easier searching. Two
285 /// user values are related if they are held by the same virtual register. The
286 /// equivalence class is the transitive closure of that relation.
287 class UserValue {
288   const DILocalVariable *Variable; ///< The debug info variable we are part of.
289   /// The part of the variable we describe.
290   const Optional<DIExpression::FragmentInfo> Fragment;
291   DebugLoc dl;            ///< The debug location for the variable. This is
292                           ///< used by dwarf writer to find lexical scope.
293   UserValue *leader;      ///< Equivalence class leader.
294   UserValue *next = nullptr; ///< Next value in equivalence class, or null.
295 
296   /// Numbered locations referenced by locmap.
297   SmallVector<MachineOperand, 4> locations;
298 
299   /// Map of slot indices where this value is live.
300   LocMap locInts;
301 
302   /// Set of interval start indexes that have been trimmed to the
303   /// lexical scope.
304   SmallSet<SlotIndex, 2> trimmedDefs;
305 
306   /// Insert a DBG_VALUE into MBB at Idx for DbgValue.
307   void insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx,
308                         SlotIndex StopIdx, DbgVariableValue DbgValue,
309                         ArrayRef<bool> LocSpills,
310                         ArrayRef<unsigned> SpillOffsets, LiveIntervals &LIS,
311                         const TargetInstrInfo &TII,
312                         const TargetRegisterInfo &TRI,
313                         BlockSkipInstsMap &BBSkipInstsMap);
314 
315   /// Replace OldLocNo ranges with NewRegs ranges where NewRegs
316   /// is live. Returns true if any changes were made.
317   bool splitLocation(unsigned OldLocNo, ArrayRef<Register> NewRegs,
318                      LiveIntervals &LIS);
319 
320 public:
321   /// Create a new UserValue.
UserValue(const DILocalVariable * var,Optional<DIExpression::FragmentInfo> Fragment,DebugLoc L,LocMap::Allocator & alloc)322   UserValue(const DILocalVariable *var,
323             Optional<DIExpression::FragmentInfo> Fragment, DebugLoc L,
324             LocMap::Allocator &alloc)
325       : Variable(var), Fragment(Fragment), dl(std::move(L)), leader(this),
326         locInts(alloc) {}
327 
328   /// Get the leader of this value's equivalence class.
getLeader()329   UserValue *getLeader() {
330     UserValue *l = leader;
331     while (l != l->leader)
332       l = l->leader;
333     return leader = l;
334   }
335 
336   /// Return the next UserValue in the equivalence class.
getNext() const337   UserValue *getNext() const { return next; }
338 
339   /// Merge equivalence classes.
merge(UserValue * L1,UserValue * L2)340   static UserValue *merge(UserValue *L1, UserValue *L2) {
341     L2 = L2->getLeader();
342     if (!L1)
343       return L2;
344     L1 = L1->getLeader();
345     if (L1 == L2)
346       return L1;
347     // Splice L2 before L1's members.
348     UserValue *End = L2;
349     while (End->next) {
350       End->leader = L1;
351       End = End->next;
352     }
353     End->leader = L1;
354     End->next = L1->next;
355     L1->next = L2;
356     return L1;
357   }
358 
359   /// Return the location number that matches Loc.
360   ///
361   /// For undef values we always return location number UndefLocNo without
362   /// inserting anything in locations. Since locations is a vector and the
363   /// location number is the position in the vector and UndefLocNo is ~0,
364   /// we would need a very big vector to put the value at the right position.
getLocationNo(const MachineOperand & LocMO)365   unsigned getLocationNo(const MachineOperand &LocMO) {
366     if (LocMO.isReg()) {
367       if (LocMO.getReg() == 0)
368         return UndefLocNo;
369       // For register locations we dont care about use/def and other flags.
370       for (unsigned i = 0, e = locations.size(); i != e; ++i)
371         if (locations[i].isReg() &&
372             locations[i].getReg() == LocMO.getReg() &&
373             locations[i].getSubReg() == LocMO.getSubReg())
374           return i;
375     } else
376       for (unsigned i = 0, e = locations.size(); i != e; ++i)
377         if (LocMO.isIdenticalTo(locations[i]))
378           return i;
379     locations.push_back(LocMO);
380     // We are storing a MachineOperand outside a MachineInstr.
381     locations.back().clearParent();
382     // Don't store def operands.
383     if (locations.back().isReg()) {
384       if (locations.back().isDef())
385         locations.back().setIsDead(false);
386       locations.back().setIsUse();
387     }
388     return locations.size() - 1;
389   }
390 
391   /// Remove (recycle) a location number. If \p LocNo still is used by the
392   /// locInts nothing is done.
removeLocationIfUnused(unsigned LocNo)393   void removeLocationIfUnused(unsigned LocNo) {
394     // Bail out if LocNo still is used.
395     for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) {
396       const DbgVariableValue &DbgValue = I.value();
397       if (DbgValue.containsLocNo(LocNo))
398         return;
399     }
400     // Remove the entry in the locations vector, and adjust all references to
401     // location numbers above the removed entry.
402     locations.erase(locations.begin() + LocNo);
403     for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) {
404       const DbgVariableValue &DbgValue = I.value();
405       if (DbgValue.hasLocNoGreaterThan(LocNo))
406         I.setValueUnchecked(DbgValue.decrementLocNosAfterPivot(LocNo));
407     }
408   }
409 
410   /// Ensure that all virtual register locations are mapped.
411   void mapVirtRegs(LDVImpl *LDV);
412 
413   /// Add a definition point to this user value.
addDef(SlotIndex Idx,ArrayRef<MachineOperand> LocMOs,bool IsIndirect,bool IsList,const DIExpression & Expr)414   void addDef(SlotIndex Idx, ArrayRef<MachineOperand> LocMOs, bool IsIndirect,
415               bool IsList, const DIExpression &Expr) {
416     SmallVector<unsigned> Locs;
417     for (MachineOperand Op : LocMOs)
418       Locs.push_back(getLocationNo(Op));
419     DbgVariableValue DbgValue(Locs, IsIndirect, IsList, Expr);
420     // Add a singular (Idx,Idx) -> value mapping.
421     LocMap::iterator I = locInts.find(Idx);
422     if (!I.valid() || I.start() != Idx)
423       I.insert(Idx, Idx.getNextSlot(), std::move(DbgValue));
424     else
425       // A later DBG_VALUE at the same SlotIndex overrides the old location.
426       I.setValue(std::move(DbgValue));
427   }
428 
429   /// Extend the current definition as far as possible down.
430   ///
431   /// Stop when meeting an existing def or when leaving the live
432   /// range of VNI. End points where VNI is no longer live are added to Kills.
433   ///
434   /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a
435   /// data-flow analysis to propagate them beyond basic block boundaries.
436   ///
437   /// \param Idx Starting point for the definition.
438   /// \param DbgValue value to propagate.
439   /// \param LiveIntervalInfo For each location number key in this map,
440   /// restricts liveness to where the LiveRange has the value equal to the\
441   /// VNInfo.
442   /// \param [out] Kills Append end points of VNI's live range to Kills.
443   /// \param LIS Live intervals analysis.
444   void extendDef(SlotIndex Idx, DbgVariableValue DbgValue,
445                  SmallDenseMap<unsigned, std::pair<LiveRange *, const VNInfo *>>
446                      &LiveIntervalInfo,
447                  Optional<std::pair<SlotIndex, SmallVector<unsigned>>> &Kills,
448                  LiveIntervals &LIS);
449 
450   /// The value in LI may be copies to other registers. Determine if
451   /// any of the copies are available at the kill points, and add defs if
452   /// possible.
453   ///
454   /// \param DbgValue Location number of LI->reg, and DIExpression.
455   /// \param LocIntervals Scan for copies of the value for each location in the
456   /// corresponding LiveInterval->reg.
457   /// \param KilledAt The point where the range of DbgValue could be extended.
458   /// \param [in,out] NewDefs Append (Idx, DbgValue) of inserted defs here.
459   void addDefsFromCopies(
460       DbgVariableValue DbgValue,
461       SmallVectorImpl<std::pair<unsigned, LiveInterval *>> &LocIntervals,
462       SlotIndex KilledAt,
463       SmallVectorImpl<std::pair<SlotIndex, DbgVariableValue>> &NewDefs,
464       MachineRegisterInfo &MRI, LiveIntervals &LIS);
465 
466   /// Compute the live intervals of all locations after collecting all their
467   /// def points.
468   void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
469                         LiveIntervals &LIS, LexicalScopes &LS);
470 
471   /// Replace OldReg ranges with NewRegs ranges where NewRegs is
472   /// live. Returns true if any changes were made.
473   bool splitRegister(Register OldReg, ArrayRef<Register> NewRegs,
474                      LiveIntervals &LIS);
475 
476   /// Rewrite virtual register locations according to the provided virtual
477   /// register map. Record the stack slot offsets for the locations that
478   /// were spilled.
479   void rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF,
480                         const TargetInstrInfo &TII,
481                         const TargetRegisterInfo &TRI,
482                         SpillOffsetMap &SpillOffsets);
483 
484   /// Recreate DBG_VALUE instruction from data structures.
485   void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
486                        const TargetInstrInfo &TII,
487                        const TargetRegisterInfo &TRI,
488                        const SpillOffsetMap &SpillOffsets,
489                        BlockSkipInstsMap &BBSkipInstsMap);
490 
491   /// Return DebugLoc of this UserValue.
getDebugLoc()492   const DebugLoc &getDebugLoc() { return dl; }
493 
494   void print(raw_ostream &, const TargetRegisterInfo *);
495 };
496 
497 /// A user label is a part of a debug info user label.
498 class UserLabel {
499   const DILabel *Label; ///< The debug info label we are part of.
500   DebugLoc dl;          ///< The debug location for the label. This is
501                         ///< used by dwarf writer to find lexical scope.
502   SlotIndex loc;        ///< Slot used by the debug label.
503 
504   /// Insert a DBG_LABEL into MBB at Idx.
505   void insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx,
506                         LiveIntervals &LIS, const TargetInstrInfo &TII,
507                         BlockSkipInstsMap &BBSkipInstsMap);
508 
509 public:
510   /// Create a new UserLabel.
UserLabel(const DILabel * label,DebugLoc L,SlotIndex Idx)511   UserLabel(const DILabel *label, DebugLoc L, SlotIndex Idx)
512       : Label(label), dl(std::move(L)), loc(Idx) {}
513 
514   /// Does this UserLabel match the parameters?
matches(const DILabel * L,const DILocation * IA,const SlotIndex Index) const515   bool matches(const DILabel *L, const DILocation *IA,
516              const SlotIndex Index) const {
517     return Label == L && dl->getInlinedAt() == IA && loc == Index;
518   }
519 
520   /// Recreate DBG_LABEL instruction from data structures.
521   void emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII,
522                       BlockSkipInstsMap &BBSkipInstsMap);
523 
524   /// Return DebugLoc of this UserLabel.
getDebugLoc()525   const DebugLoc &getDebugLoc() { return dl; }
526 
527   void print(raw_ostream &, const TargetRegisterInfo *);
528 };
529 
530 /// Implementation of the LiveDebugVariables pass.
531 class LDVImpl {
532   LiveDebugVariables &pass;
533   LocMap::Allocator allocator;
534   MachineFunction *MF = nullptr;
535   LiveIntervals *LIS;
536   const TargetRegisterInfo *TRI;
537 
538   using StashedInstrRef =
539       std::tuple<unsigned, unsigned, const DILocalVariable *,
540                  const DIExpression *, DebugLoc>;
541   std::map<SlotIndex, std::vector<StashedInstrRef>> StashedInstrReferences;
542 
543   /// Whether emitDebugValues is called.
544   bool EmitDone = false;
545 
546   /// Whether the machine function is modified during the pass.
547   bool ModifiedMF = false;
548 
549   /// All allocated UserValue instances.
550   SmallVector<std::unique_ptr<UserValue>, 8> userValues;
551 
552   /// All allocated UserLabel instances.
553   SmallVector<std::unique_ptr<UserLabel>, 2> userLabels;
554 
555   /// Map virtual register to eq class leader.
556   using VRMap = DenseMap<unsigned, UserValue *>;
557   VRMap virtRegToEqClass;
558 
559   /// Map to find existing UserValue instances.
560   using UVMap = DenseMap<DebugVariable, UserValue *>;
561   UVMap userVarMap;
562 
563   /// Find or create a UserValue.
564   UserValue *getUserValue(const DILocalVariable *Var,
565                           Optional<DIExpression::FragmentInfo> Fragment,
566                           const DebugLoc &DL);
567 
568   /// Find the EC leader for VirtReg or null.
569   UserValue *lookupVirtReg(Register VirtReg);
570 
571   /// Add DBG_VALUE instruction to our maps.
572   ///
573   /// \param MI DBG_VALUE instruction
574   /// \param Idx Last valid SLotIndex before instruction.
575   ///
576   /// \returns True if the DBG_VALUE instruction should be deleted.
577   bool handleDebugValue(MachineInstr &MI, SlotIndex Idx);
578 
579   /// Track a DBG_INSTR_REF. This needs to be removed from the MachineFunction
580   /// during regalloc -- but there's no need to maintain live ranges, as we
581   /// refer to a value rather than a location.
582   ///
583   /// \param MI DBG_INSTR_REF instruction
584   /// \param Idx Last valid SlotIndex before instruction
585   ///
586   /// \returns True if the DBG_VALUE instruction should be deleted.
587   bool handleDebugInstrRef(MachineInstr &MI, SlotIndex Idx);
588 
589   /// Add DBG_LABEL instruction to UserLabel.
590   ///
591   /// \param MI DBG_LABEL instruction
592   /// \param Idx Last valid SlotIndex before instruction.
593   ///
594   /// \returns True if the DBG_LABEL instruction should be deleted.
595   bool handleDebugLabel(MachineInstr &MI, SlotIndex Idx);
596 
597   /// Collect and erase all DBG_VALUE instructions, adding a UserValue def
598   /// for each instruction.
599   ///
600   /// \param mf MachineFunction to be scanned.
601   ///
602   /// \returns True if any debug values were found.
603   bool collectDebugValues(MachineFunction &mf);
604 
605   /// Compute the live intervals of all user values after collecting all
606   /// their def points.
607   void computeIntervals();
608 
609 public:
LDVImpl(LiveDebugVariables * ps)610   LDVImpl(LiveDebugVariables *ps) : pass(*ps) {}
611 
612   bool runOnMachineFunction(MachineFunction &mf);
613 
614   /// Release all memory.
clear()615   void clear() {
616     MF = nullptr;
617     StashedInstrReferences.clear();
618     userValues.clear();
619     userLabels.clear();
620     virtRegToEqClass.clear();
621     userVarMap.clear();
622     // Make sure we call emitDebugValues if the machine function was modified.
623     assert((!ModifiedMF || EmitDone) &&
624            "Dbg values are not emitted in LDV");
625     EmitDone = false;
626     ModifiedMF = false;
627   }
628 
629   /// Map virtual register to an equivalence class.
630   void mapVirtReg(Register VirtReg, UserValue *EC);
631 
632   /// Replace all references to OldReg with NewRegs.
633   void splitRegister(Register OldReg, ArrayRef<Register> NewRegs);
634 
635   /// Recreate DBG_VALUE instruction from data structures.
636   void emitDebugValues(VirtRegMap *VRM);
637 
638   void print(raw_ostream&);
639 };
640 
641 } // end anonymous namespace
642 
643 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
printDebugLoc(const DebugLoc & DL,raw_ostream & CommentOS,const LLVMContext & Ctx)644 static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS,
645                           const LLVMContext &Ctx) {
646   if (!DL)
647     return;
648 
649   auto *Scope = cast<DIScope>(DL.getScope());
650   // Omit the directory, because it's likely to be long and uninteresting.
651   CommentOS << Scope->getFilename();
652   CommentOS << ':' << DL.getLine();
653   if (DL.getCol() != 0)
654     CommentOS << ':' << DL.getCol();
655 
656   DebugLoc InlinedAtDL = DL.getInlinedAt();
657   if (!InlinedAtDL)
658     return;
659 
660   CommentOS << " @[ ";
661   printDebugLoc(InlinedAtDL, CommentOS, Ctx);
662   CommentOS << " ]";
663 }
664 
printExtendedName(raw_ostream & OS,const DINode * Node,const DILocation * DL)665 static void printExtendedName(raw_ostream &OS, const DINode *Node,
666                               const DILocation *DL) {
667   const LLVMContext &Ctx = Node->getContext();
668   StringRef Res;
669   unsigned Line = 0;
670   if (const auto *V = dyn_cast<const DILocalVariable>(Node)) {
671     Res = V->getName();
672     Line = V->getLine();
673   } else if (const auto *L = dyn_cast<const DILabel>(Node)) {
674     Res = L->getName();
675     Line = L->getLine();
676   }
677 
678   if (!Res.empty())
679     OS << Res << "," << Line;
680   auto *InlinedAt = DL ? DL->getInlinedAt() : nullptr;
681   if (InlinedAt) {
682     if (DebugLoc InlinedAtDL = InlinedAt) {
683       OS << " @[";
684       printDebugLoc(InlinedAtDL, OS, Ctx);
685       OS << "]";
686     }
687   }
688 }
689 
print(raw_ostream & OS,const TargetRegisterInfo * TRI)690 void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) {
691   OS << "!\"";
692   printExtendedName(OS, Variable, dl);
693 
694   OS << "\"\t";
695   for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) {
696     OS << " [" << I.start() << ';' << I.stop() << "):";
697     if (I.value().isUndef())
698       OS << " undef";
699     else {
700       I.value().printLocNos(OS);
701       if (I.value().getWasIndirect())
702         OS << " ind";
703       else if (I.value().getWasList())
704         OS << " list";
705     }
706   }
707   for (unsigned i = 0, e = locations.size(); i != e; ++i) {
708     OS << " Loc" << i << '=';
709     locations[i].print(OS, TRI);
710   }
711   OS << '\n';
712 }
713 
print(raw_ostream & OS,const TargetRegisterInfo * TRI)714 void UserLabel::print(raw_ostream &OS, const TargetRegisterInfo *TRI) {
715   OS << "!\"";
716   printExtendedName(OS, Label, dl);
717 
718   OS << "\"\t";
719   OS << loc;
720   OS << '\n';
721 }
722 
print(raw_ostream & OS)723 void LDVImpl::print(raw_ostream &OS) {
724   OS << "********** DEBUG VARIABLES **********\n";
725   for (auto &userValue : userValues)
726     userValue->print(OS, TRI);
727   OS << "********** DEBUG LABELS **********\n";
728   for (auto &userLabel : userLabels)
729     userLabel->print(OS, TRI);
730 }
731 #endif
732 
mapVirtRegs(LDVImpl * LDV)733 void UserValue::mapVirtRegs(LDVImpl *LDV) {
734   for (unsigned i = 0, e = locations.size(); i != e; ++i)
735     if (locations[i].isReg() &&
736         Register::isVirtualRegister(locations[i].getReg()))
737       LDV->mapVirtReg(locations[i].getReg(), this);
738 }
739 
getUserValue(const DILocalVariable * Var,Optional<DIExpression::FragmentInfo> Fragment,const DebugLoc & DL)740 UserValue *LDVImpl::getUserValue(const DILocalVariable *Var,
741                                  Optional<DIExpression::FragmentInfo> Fragment,
742                                  const DebugLoc &DL) {
743   // FIXME: Handle partially overlapping fragments. See
744   // https://reviews.llvm.org/D70121#1849741.
745   DebugVariable ID(Var, Fragment, DL->getInlinedAt());
746   UserValue *&UV = userVarMap[ID];
747   if (!UV) {
748     userValues.push_back(
749         std::make_unique<UserValue>(Var, Fragment, DL, allocator));
750     UV = userValues.back().get();
751   }
752   return UV;
753 }
754 
mapVirtReg(Register VirtReg,UserValue * EC)755 void LDVImpl::mapVirtReg(Register VirtReg, UserValue *EC) {
756   assert(Register::isVirtualRegister(VirtReg) && "Only map VirtRegs");
757   UserValue *&Leader = virtRegToEqClass[VirtReg];
758   Leader = UserValue::merge(Leader, EC);
759 }
760 
lookupVirtReg(Register VirtReg)761 UserValue *LDVImpl::lookupVirtReg(Register VirtReg) {
762   if (UserValue *UV = virtRegToEqClass.lookup(VirtReg))
763     return UV->getLeader();
764   return nullptr;
765 }
766 
handleDebugValue(MachineInstr & MI,SlotIndex Idx)767 bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) {
768   // DBG_VALUE loc, offset, variable, expr
769   // DBG_VALUE_LIST variable, expr, locs...
770   if (!MI.isDebugValue()) {
771     LLVM_DEBUG(dbgs() << "Can't handle non-DBG_VALUE*: " << MI);
772     return false;
773   }
774   if (!MI.getDebugVariableOp().isMetadata()) {
775     LLVM_DEBUG(dbgs() << "Can't handle DBG_VALUE* with invalid variable: "
776                       << MI);
777     return false;
778   }
779   if (MI.isNonListDebugValue() &&
780       (MI.getNumOperands() != 4 ||
781        !(MI.getDebugOffset().isImm() || MI.getDebugOffset().isReg()))) {
782     LLVM_DEBUG(dbgs() << "Can't handle malformed DBG_VALUE: " << MI);
783     return false;
784   }
785 
786   // Detect invalid DBG_VALUE instructions, with a debug-use of a virtual
787   // register that hasn't been defined yet. If we do not remove those here, then
788   // the re-insertion of the DBG_VALUE instruction after register allocation
789   // will be incorrect.
790   // TODO: If earlier passes are corrected to generate sane debug information
791   // (and if the machine verifier is improved to catch this), then these checks
792   // could be removed or replaced by asserts.
793   bool Discard = false;
794   for (const MachineOperand &Op : MI.debug_operands()) {
795     if (Op.isReg() && Register::isVirtualRegister(Op.getReg())) {
796       const Register Reg = Op.getReg();
797       if (!LIS->hasInterval(Reg)) {
798         // The DBG_VALUE is described by a virtual register that does not have a
799         // live interval. Discard the DBG_VALUE.
800         Discard = true;
801         LLVM_DEBUG(dbgs() << "Discarding debug info (no LIS interval): " << Idx
802                           << " " << MI);
803       } else {
804         // The DBG_VALUE is only valid if either Reg is live out from Idx, or
805         // Reg is defined dead at Idx (where Idx is the slot index for the
806         // instruction preceding the DBG_VALUE).
807         const LiveInterval &LI = LIS->getInterval(Reg);
808         LiveQueryResult LRQ = LI.Query(Idx);
809         if (!LRQ.valueOutOrDead()) {
810           // We have found a DBG_VALUE with the value in a virtual register that
811           // is not live. Discard the DBG_VALUE.
812           Discard = true;
813           LLVM_DEBUG(dbgs() << "Discarding debug info (reg not live): " << Idx
814                             << " " << MI);
815         }
816       }
817     }
818   }
819 
820   // Get or create the UserValue for (variable,offset) here.
821   bool IsIndirect = MI.isDebugOffsetImm();
822   if (IsIndirect)
823     assert(MI.getDebugOffset().getImm() == 0 &&
824            "DBG_VALUE with nonzero offset");
825   bool IsList = MI.isDebugValueList();
826   const DILocalVariable *Var = MI.getDebugVariable();
827   const DIExpression *Expr = MI.getDebugExpression();
828   UserValue *UV = getUserValue(Var, Expr->getFragmentInfo(), MI.getDebugLoc());
829   if (!Discard)
830     UV->addDef(Idx,
831                ArrayRef<MachineOperand>(MI.debug_operands().begin(),
832                                         MI.debug_operands().end()),
833                IsIndirect, IsList, *Expr);
834   else {
835     MachineOperand MO = MachineOperand::CreateReg(0U, false);
836     MO.setIsDebug();
837     // We should still pass a list the same size as MI.debug_operands() even if
838     // all MOs are undef, so that DbgVariableValue can correctly adjust the
839     // expression while removing the duplicated undefs.
840     SmallVector<MachineOperand, 4> UndefMOs(MI.getNumDebugOperands(), MO);
841     UV->addDef(Idx, UndefMOs, false, IsList, *Expr);
842   }
843   return true;
844 }
845 
handleDebugInstrRef(MachineInstr & MI,SlotIndex Idx)846 bool LDVImpl::handleDebugInstrRef(MachineInstr &MI, SlotIndex Idx) {
847   assert(MI.isDebugRef());
848   unsigned InstrNum = MI.getOperand(0).getImm();
849   unsigned OperandNum = MI.getOperand(1).getImm();
850   auto *Var = MI.getDebugVariable();
851   auto *Expr = MI.getDebugExpression();
852   auto &DL = MI.getDebugLoc();
853   StashedInstrRef Stashed =
854       std::make_tuple(InstrNum, OperandNum, Var, Expr, DL);
855   StashedInstrReferences[Idx].push_back(Stashed);
856   return true;
857 }
858 
handleDebugLabel(MachineInstr & MI,SlotIndex Idx)859 bool LDVImpl::handleDebugLabel(MachineInstr &MI, SlotIndex Idx) {
860   // DBG_LABEL label
861   if (MI.getNumOperands() != 1 || !MI.getOperand(0).isMetadata()) {
862     LLVM_DEBUG(dbgs() << "Can't handle " << MI);
863     return false;
864   }
865 
866   // Get or create the UserLabel for label here.
867   const DILabel *Label = MI.getDebugLabel();
868   const DebugLoc &DL = MI.getDebugLoc();
869   bool Found = false;
870   for (auto const &L : userLabels) {
871     if (L->matches(Label, DL->getInlinedAt(), Idx)) {
872       Found = true;
873       break;
874     }
875   }
876   if (!Found)
877     userLabels.push_back(std::make_unique<UserLabel>(Label, DL, Idx));
878 
879   return true;
880 }
881 
collectDebugValues(MachineFunction & mf)882 bool LDVImpl::collectDebugValues(MachineFunction &mf) {
883   bool Changed = false;
884   for (MachineBasicBlock &MBB : mf) {
885     for (MachineBasicBlock::iterator MBBI = MBB.begin(), MBBE = MBB.end();
886          MBBI != MBBE;) {
887       // Use the first debug instruction in the sequence to get a SlotIndex
888       // for following consecutive debug instructions.
889       if (!MBBI->isDebugOrPseudoInstr()) {
890         ++MBBI;
891         continue;
892       }
893       // Debug instructions has no slot index. Use the previous
894       // non-debug instruction's SlotIndex as its SlotIndex.
895       SlotIndex Idx =
896           MBBI == MBB.begin()
897               ? LIS->getMBBStartIdx(&MBB)
898               : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot();
899       // Handle consecutive debug instructions with the same slot index.
900       do {
901         // Only handle DBG_VALUE in handleDebugValue(). Skip all other
902         // kinds of debug instructions.
903         if ((MBBI->isDebugValue() && handleDebugValue(*MBBI, Idx)) ||
904             (MBBI->isDebugRef() && handleDebugInstrRef(*MBBI, Idx)) ||
905             (MBBI->isDebugLabel() && handleDebugLabel(*MBBI, Idx))) {
906           MBBI = MBB.erase(MBBI);
907           Changed = true;
908         } else
909           ++MBBI;
910       } while (MBBI != MBBE && MBBI->isDebugOrPseudoInstr());
911     }
912   }
913   return Changed;
914 }
915 
extendDef(SlotIndex Idx,DbgVariableValue DbgValue,SmallDenseMap<unsigned,std::pair<LiveRange *,const VNInfo * >> & LiveIntervalInfo,Optional<std::pair<SlotIndex,SmallVector<unsigned>>> & Kills,LiveIntervals & LIS)916 void UserValue::extendDef(
917     SlotIndex Idx, DbgVariableValue DbgValue,
918     SmallDenseMap<unsigned, std::pair<LiveRange *, const VNInfo *>>
919         &LiveIntervalInfo,
920     Optional<std::pair<SlotIndex, SmallVector<unsigned>>> &Kills,
921     LiveIntervals &LIS) {
922   SlotIndex Start = Idx;
923   MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start);
924   SlotIndex Stop = LIS.getMBBEndIdx(MBB);
925   LocMap::iterator I = locInts.find(Start);
926 
927   // Limit to the intersection of the VNIs' live ranges.
928   for (auto &LII : LiveIntervalInfo) {
929     LiveRange *LR = LII.second.first;
930     assert(LR && LII.second.second && "Missing range info for Idx.");
931     LiveInterval::Segment *Segment = LR->getSegmentContaining(Start);
932     assert(Segment && Segment->valno == LII.second.second &&
933            "Invalid VNInfo for Idx given?");
934     if (Segment->end < Stop) {
935       Stop = Segment->end;
936       Kills = {Stop, {LII.first}};
937     } else if (Segment->end == Stop && Kills.hasValue()) {
938       // If multiple locations end at the same place, track all of them in
939       // Kills.
940       Kills->second.push_back(LII.first);
941     }
942   }
943 
944   // There could already be a short def at Start.
945   if (I.valid() && I.start() <= Start) {
946     // Stop when meeting a different location or an already extended interval.
947     Start = Start.getNextSlot();
948     if (I.value() != DbgValue || I.stop() != Start) {
949       // Clear `Kills`, as we have a new def available.
950       Kills = None;
951       return;
952     }
953     // This is a one-slot placeholder. Just skip it.
954     ++I;
955   }
956 
957   // Limited by the next def.
958   if (I.valid() && I.start() < Stop) {
959     Stop = I.start();
960     // Clear `Kills`, as we have a new def available.
961     Kills = None;
962   }
963 
964   if (Start < Stop) {
965     DbgVariableValue ExtDbgValue(DbgValue);
966     I.insert(Start, Stop, std::move(ExtDbgValue));
967   }
968 }
969 
addDefsFromCopies(DbgVariableValue DbgValue,SmallVectorImpl<std::pair<unsigned,LiveInterval * >> & LocIntervals,SlotIndex KilledAt,SmallVectorImpl<std::pair<SlotIndex,DbgVariableValue>> & NewDefs,MachineRegisterInfo & MRI,LiveIntervals & LIS)970 void UserValue::addDefsFromCopies(
971     DbgVariableValue DbgValue,
972     SmallVectorImpl<std::pair<unsigned, LiveInterval *>> &LocIntervals,
973     SlotIndex KilledAt,
974     SmallVectorImpl<std::pair<SlotIndex, DbgVariableValue>> &NewDefs,
975     MachineRegisterInfo &MRI, LiveIntervals &LIS) {
976   // Don't track copies from physregs, there are too many uses.
977   if (any_of(LocIntervals, [](auto LocI) {
978         return !Register::isVirtualRegister(LocI.second->reg());
979       }))
980     return;
981 
982   // Collect all the (vreg, valno) pairs that are copies of LI.
983   SmallDenseMap<unsigned,
984                 SmallVector<std::pair<LiveInterval *, const VNInfo *>, 4>>
985       CopyValues;
986   for (auto &LocInterval : LocIntervals) {
987     unsigned LocNo = LocInterval.first;
988     LiveInterval *LI = LocInterval.second;
989     for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg())) {
990       MachineInstr *MI = MO.getParent();
991       // Copies of the full value.
992       if (MO.getSubReg() || !MI->isCopy())
993         continue;
994       Register DstReg = MI->getOperand(0).getReg();
995 
996       // Don't follow copies to physregs. These are usually setting up call
997       // arguments, and the argument registers are always call clobbered. We are
998       // better off in the source register which could be a callee-saved
999       // register, or it could be spilled.
1000       if (!Register::isVirtualRegister(DstReg))
1001         continue;
1002 
1003       // Is the value extended to reach this copy? If not, another def may be
1004       // blocking it, or we are looking at a wrong value of LI.
1005       SlotIndex Idx = LIS.getInstructionIndex(*MI);
1006       LocMap::iterator I = locInts.find(Idx.getRegSlot(true));
1007       if (!I.valid() || I.value() != DbgValue)
1008         continue;
1009 
1010       if (!LIS.hasInterval(DstReg))
1011         continue;
1012       LiveInterval *DstLI = &LIS.getInterval(DstReg);
1013       const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot());
1014       assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value");
1015       CopyValues[LocNo].push_back(std::make_pair(DstLI, DstVNI));
1016     }
1017   }
1018 
1019   if (CopyValues.empty())
1020     return;
1021 
1022 #if !defined(NDEBUG)
1023   for (auto &LocInterval : LocIntervals)
1024     LLVM_DEBUG(dbgs() << "Got " << CopyValues[LocInterval.first].size()
1025                       << " copies of " << *LocInterval.second << '\n');
1026 #endif
1027 
1028   // Try to add defs of the copied values for the kill point. Check that there
1029   // isn't already a def at Idx.
1030   LocMap::iterator I = locInts.find(KilledAt);
1031   if (I.valid() && I.start() <= KilledAt)
1032     return;
1033   DbgVariableValue NewValue(DbgValue);
1034   for (auto &LocInterval : LocIntervals) {
1035     unsigned LocNo = LocInterval.first;
1036     bool FoundCopy = false;
1037     for (auto &LIAndVNI : CopyValues[LocNo]) {
1038       LiveInterval *DstLI = LIAndVNI.first;
1039       const VNInfo *DstVNI = LIAndVNI.second;
1040       if (DstLI->getVNInfoAt(KilledAt) != DstVNI)
1041         continue;
1042       LLVM_DEBUG(dbgs() << "Kill at " << KilledAt << " covered by valno #"
1043                         << DstVNI->id << " in " << *DstLI << '\n');
1044       MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def);
1045       assert(CopyMI && CopyMI->isCopy() && "Bad copy value");
1046       unsigned NewLocNo = getLocationNo(CopyMI->getOperand(0));
1047       NewValue = NewValue.changeLocNo(LocNo, NewLocNo);
1048       FoundCopy = true;
1049       break;
1050     }
1051     // If there are any killed locations we can't find a copy for, we can't
1052     // extend the variable value.
1053     if (!FoundCopy)
1054       return;
1055   }
1056   I.insert(KilledAt, KilledAt.getNextSlot(), NewValue);
1057   NewDefs.push_back(std::make_pair(KilledAt, NewValue));
1058 }
1059 
computeIntervals(MachineRegisterInfo & MRI,const TargetRegisterInfo & TRI,LiveIntervals & LIS,LexicalScopes & LS)1060 void UserValue::computeIntervals(MachineRegisterInfo &MRI,
1061                                  const TargetRegisterInfo &TRI,
1062                                  LiveIntervals &LIS, LexicalScopes &LS) {
1063   SmallVector<std::pair<SlotIndex, DbgVariableValue>, 16> Defs;
1064 
1065   // Collect all defs to be extended (Skipping undefs).
1066   for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I)
1067     if (!I.value().isUndef())
1068       Defs.push_back(std::make_pair(I.start(), I.value()));
1069 
1070   // Extend all defs, and possibly add new ones along the way.
1071   for (unsigned i = 0; i != Defs.size(); ++i) {
1072     SlotIndex Idx = Defs[i].first;
1073     DbgVariableValue DbgValue = Defs[i].second;
1074     SmallDenseMap<unsigned, std::pair<LiveRange *, const VNInfo *>> LIs;
1075     SmallVector<const VNInfo *, 4> VNIs;
1076     bool ShouldExtendDef = false;
1077     for (unsigned LocNo : DbgValue.loc_nos()) {
1078       const MachineOperand &LocMO = locations[LocNo];
1079       if (!LocMO.isReg() || !Register::isVirtualRegister(LocMO.getReg())) {
1080         ShouldExtendDef |= !LocMO.isReg();
1081         continue;
1082       }
1083       ShouldExtendDef = true;
1084       LiveInterval *LI = nullptr;
1085       const VNInfo *VNI = nullptr;
1086       if (LIS.hasInterval(LocMO.getReg())) {
1087         LI = &LIS.getInterval(LocMO.getReg());
1088         VNI = LI->getVNInfoAt(Idx);
1089       }
1090       if (LI && VNI)
1091         LIs[LocNo] = {LI, VNI};
1092     }
1093     if (ShouldExtendDef) {
1094       Optional<std::pair<SlotIndex, SmallVector<unsigned>>> Kills;
1095       extendDef(Idx, DbgValue, LIs, Kills, LIS);
1096 
1097       if (Kills) {
1098         SmallVector<std::pair<unsigned, LiveInterval *>, 2> KilledLocIntervals;
1099         bool AnySubreg = false;
1100         for (unsigned LocNo : Kills->second) {
1101           const MachineOperand &LocMO = this->locations[LocNo];
1102           if (LocMO.getSubReg()) {
1103             AnySubreg = true;
1104             break;
1105           }
1106           LiveInterval *LI = &LIS.getInterval(LocMO.getReg());
1107           KilledLocIntervals.push_back({LocNo, LI});
1108         }
1109 
1110         // FIXME: Handle sub-registers in addDefsFromCopies. The problem is that
1111         // if the original location for example is %vreg0:sub_hi, and we find a
1112         // full register copy in addDefsFromCopies (at the moment it only
1113         // handles full register copies), then we must add the sub1 sub-register
1114         // index to the new location. However, that is only possible if the new
1115         // virtual register is of the same regclass (or if there is an
1116         // equivalent sub-register in that regclass). For now, simply skip
1117         // handling copies if a sub-register is involved.
1118         if (!AnySubreg)
1119           addDefsFromCopies(DbgValue, KilledLocIntervals, Kills->first, Defs,
1120                             MRI, LIS);
1121       }
1122     }
1123 
1124     // For physregs, we only mark the start slot idx. DwarfDebug will see it
1125     // as if the DBG_VALUE is valid up until the end of the basic block, or
1126     // the next def of the physical register. So we do not need to extend the
1127     // range. It might actually happen that the DBG_VALUE is the last use of
1128     // the physical register (e.g. if this is an unused input argument to a
1129     // function).
1130   }
1131 
1132   // The computed intervals may extend beyond the range of the debug
1133   // location's lexical scope. In this case, splitting of an interval
1134   // can result in an interval outside of the scope being created,
1135   // causing extra unnecessary DBG_VALUEs to be emitted. To prevent
1136   // this, trim the intervals to the lexical scope.
1137 
1138   LexicalScope *Scope = LS.findLexicalScope(dl);
1139   if (!Scope)
1140     return;
1141 
1142   SlotIndex PrevEnd;
1143   LocMap::iterator I = locInts.begin();
1144 
1145   // Iterate over the lexical scope ranges. Each time round the loop
1146   // we check the intervals for overlap with the end of the previous
1147   // range and the start of the next. The first range is handled as
1148   // a special case where there is no PrevEnd.
1149   for (const InsnRange &Range : Scope->getRanges()) {
1150     SlotIndex RStart = LIS.getInstructionIndex(*Range.first);
1151     SlotIndex REnd = LIS.getInstructionIndex(*Range.second);
1152 
1153     // Variable locations at the first instruction of a block should be
1154     // based on the block's SlotIndex, not the first instruction's index.
1155     if (Range.first == Range.first->getParent()->begin())
1156       RStart = LIS.getSlotIndexes()->getIndexBefore(*Range.first);
1157 
1158     // At the start of each iteration I has been advanced so that
1159     // I.stop() >= PrevEnd. Check for overlap.
1160     if (PrevEnd && I.start() < PrevEnd) {
1161       SlotIndex IStop = I.stop();
1162       DbgVariableValue DbgValue = I.value();
1163 
1164       // Stop overlaps previous end - trim the end of the interval to
1165       // the scope range.
1166       I.setStopUnchecked(PrevEnd);
1167       ++I;
1168 
1169       // If the interval also overlaps the start of the "next" (i.e.
1170       // current) range create a new interval for the remainder (which
1171       // may be further trimmed).
1172       if (RStart < IStop)
1173         I.insert(RStart, IStop, DbgValue);
1174     }
1175 
1176     // Advance I so that I.stop() >= RStart, and check for overlap.
1177     I.advanceTo(RStart);
1178     if (!I.valid())
1179       return;
1180 
1181     if (I.start() < RStart) {
1182       // Interval start overlaps range - trim to the scope range.
1183       I.setStartUnchecked(RStart);
1184       // Remember that this interval was trimmed.
1185       trimmedDefs.insert(RStart);
1186     }
1187 
1188     // The end of a lexical scope range is the last instruction in the
1189     // range. To convert to an interval we need the index of the
1190     // instruction after it.
1191     REnd = REnd.getNextIndex();
1192 
1193     // Advance I to first interval outside current range.
1194     I.advanceTo(REnd);
1195     if (!I.valid())
1196       return;
1197 
1198     PrevEnd = REnd;
1199   }
1200 
1201   // Check for overlap with end of final range.
1202   if (PrevEnd && I.start() < PrevEnd)
1203     I.setStopUnchecked(PrevEnd);
1204 }
1205 
computeIntervals()1206 void LDVImpl::computeIntervals() {
1207   LexicalScopes LS;
1208   LS.initialize(*MF);
1209 
1210   for (unsigned i = 0, e = userValues.size(); i != e; ++i) {
1211     userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS);
1212     userValues[i]->mapVirtRegs(this);
1213   }
1214 }
1215 
runOnMachineFunction(MachineFunction & mf)1216 bool LDVImpl::runOnMachineFunction(MachineFunction &mf) {
1217   clear();
1218   MF = &mf;
1219   LIS = &pass.getAnalysis<LiveIntervals>();
1220   TRI = mf.getSubtarget().getRegisterInfo();
1221   LLVM_DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: "
1222                     << mf.getName() << " **********\n");
1223 
1224   bool Changed = collectDebugValues(mf);
1225   computeIntervals();
1226   LLVM_DEBUG(print(dbgs()));
1227   ModifiedMF = Changed;
1228   return Changed;
1229 }
1230 
removeDebugInstrs(MachineFunction & mf)1231 static void removeDebugInstrs(MachineFunction &mf) {
1232   for (MachineBasicBlock &MBB : mf) {
1233     for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) {
1234       if (!MBBI->isDebugInstr()) {
1235         ++MBBI;
1236         continue;
1237       }
1238       MBBI = MBB.erase(MBBI);
1239     }
1240   }
1241 }
1242 
runOnMachineFunction(MachineFunction & mf)1243 bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) {
1244   if (!EnableLDV)
1245     return false;
1246   if (!mf.getFunction().getSubprogram()) {
1247     removeDebugInstrs(mf);
1248     return false;
1249   }
1250   if (!pImpl)
1251     pImpl = new LDVImpl(this);
1252   return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf);
1253 }
1254 
releaseMemory()1255 void LiveDebugVariables::releaseMemory() {
1256   if (pImpl)
1257     static_cast<LDVImpl*>(pImpl)->clear();
1258 }
1259 
~LiveDebugVariables()1260 LiveDebugVariables::~LiveDebugVariables() {
1261   if (pImpl)
1262     delete static_cast<LDVImpl*>(pImpl);
1263 }
1264 
1265 //===----------------------------------------------------------------------===//
1266 //                           Live Range Splitting
1267 //===----------------------------------------------------------------------===//
1268 
1269 bool
splitLocation(unsigned OldLocNo,ArrayRef<Register> NewRegs,LiveIntervals & LIS)1270 UserValue::splitLocation(unsigned OldLocNo, ArrayRef<Register> NewRegs,
1271                          LiveIntervals& LIS) {
1272   LLVM_DEBUG({
1273     dbgs() << "Splitting Loc" << OldLocNo << '\t';
1274     print(dbgs(), nullptr);
1275   });
1276   bool DidChange = false;
1277   LocMap::iterator LocMapI;
1278   LocMapI.setMap(locInts);
1279   for (unsigned i = 0; i != NewRegs.size(); ++i) {
1280     LiveInterval *LI = &LIS.getInterval(NewRegs[i]);
1281     if (LI->empty())
1282       continue;
1283 
1284     // Don't allocate the new LocNo until it is needed.
1285     unsigned NewLocNo = UndefLocNo;
1286 
1287     // Iterate over the overlaps between locInts and LI.
1288     LocMapI.find(LI->beginIndex());
1289     if (!LocMapI.valid())
1290       continue;
1291     LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start());
1292     LiveInterval::iterator LIE = LI->end();
1293     while (LocMapI.valid() && LII != LIE) {
1294       // At this point, we know that LocMapI.stop() > LII->start.
1295       LII = LI->advanceTo(LII, LocMapI.start());
1296       if (LII == LIE)
1297         break;
1298 
1299       // Now LII->end > LocMapI.start(). Do we have an overlap?
1300       if (LocMapI.value().containsLocNo(OldLocNo) &&
1301           LII->start < LocMapI.stop()) {
1302         // Overlapping correct location. Allocate NewLocNo now.
1303         if (NewLocNo == UndefLocNo) {
1304           MachineOperand MO = MachineOperand::CreateReg(LI->reg(), false);
1305           MO.setSubReg(locations[OldLocNo].getSubReg());
1306           NewLocNo = getLocationNo(MO);
1307           DidChange = true;
1308         }
1309 
1310         SlotIndex LStart = LocMapI.start();
1311         SlotIndex LStop = LocMapI.stop();
1312         DbgVariableValue OldDbgValue = LocMapI.value();
1313 
1314         // Trim LocMapI down to the LII overlap.
1315         if (LStart < LII->start)
1316           LocMapI.setStartUnchecked(LII->start);
1317         if (LStop > LII->end)
1318           LocMapI.setStopUnchecked(LII->end);
1319 
1320         // Change the value in the overlap. This may trigger coalescing.
1321         LocMapI.setValue(OldDbgValue.changeLocNo(OldLocNo, NewLocNo));
1322 
1323         // Re-insert any removed OldDbgValue ranges.
1324         if (LStart < LocMapI.start()) {
1325           LocMapI.insert(LStart, LocMapI.start(), OldDbgValue);
1326           ++LocMapI;
1327           assert(LocMapI.valid() && "Unexpected coalescing");
1328         }
1329         if (LStop > LocMapI.stop()) {
1330           ++LocMapI;
1331           LocMapI.insert(LII->end, LStop, OldDbgValue);
1332           --LocMapI;
1333         }
1334       }
1335 
1336       // Advance to the next overlap.
1337       if (LII->end < LocMapI.stop()) {
1338         if (++LII == LIE)
1339           break;
1340         LocMapI.advanceTo(LII->start);
1341       } else {
1342         ++LocMapI;
1343         if (!LocMapI.valid())
1344           break;
1345         LII = LI->advanceTo(LII, LocMapI.start());
1346       }
1347     }
1348   }
1349 
1350   // Finally, remove OldLocNo unless it is still used by some interval in the
1351   // locInts map. One case when OldLocNo still is in use is when the register
1352   // has been spilled. In such situations the spilled register is kept as a
1353   // location until rewriteLocations is called (VirtRegMap is mapping the old
1354   // register to the spill slot). So for a while we can have locations that map
1355   // to virtual registers that have been removed from both the MachineFunction
1356   // and from LiveIntervals.
1357   //
1358   // We may also just be using the location for a value with a different
1359   // expression.
1360   removeLocationIfUnused(OldLocNo);
1361 
1362   LLVM_DEBUG({
1363     dbgs() << "Split result: \t";
1364     print(dbgs(), nullptr);
1365   });
1366   return DidChange;
1367 }
1368 
1369 bool
splitRegister(Register OldReg,ArrayRef<Register> NewRegs,LiveIntervals & LIS)1370 UserValue::splitRegister(Register OldReg, ArrayRef<Register> NewRegs,
1371                          LiveIntervals &LIS) {
1372   bool DidChange = false;
1373   // Split locations referring to OldReg. Iterate backwards so splitLocation can
1374   // safely erase unused locations.
1375   for (unsigned i = locations.size(); i ; --i) {
1376     unsigned LocNo = i-1;
1377     const MachineOperand *Loc = &locations[LocNo];
1378     if (!Loc->isReg() || Loc->getReg() != OldReg)
1379       continue;
1380     DidChange |= splitLocation(LocNo, NewRegs, LIS);
1381   }
1382   return DidChange;
1383 }
1384 
splitRegister(Register OldReg,ArrayRef<Register> NewRegs)1385 void LDVImpl::splitRegister(Register OldReg, ArrayRef<Register> NewRegs) {
1386   bool DidChange = false;
1387   for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext())
1388     DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS);
1389 
1390   if (!DidChange)
1391     return;
1392 
1393   // Map all of the new virtual registers.
1394   UserValue *UV = lookupVirtReg(OldReg);
1395   for (unsigned i = 0; i != NewRegs.size(); ++i)
1396     mapVirtReg(NewRegs[i], UV);
1397 }
1398 
1399 void LiveDebugVariables::
splitRegister(Register OldReg,ArrayRef<Register> NewRegs,LiveIntervals & LIS)1400 splitRegister(Register OldReg, ArrayRef<Register> NewRegs, LiveIntervals &LIS) {
1401   if (pImpl)
1402     static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs);
1403 }
1404 
rewriteLocations(VirtRegMap & VRM,const MachineFunction & MF,const TargetInstrInfo & TII,const TargetRegisterInfo & TRI,SpillOffsetMap & SpillOffsets)1405 void UserValue::rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF,
1406                                  const TargetInstrInfo &TII,
1407                                  const TargetRegisterInfo &TRI,
1408                                  SpillOffsetMap &SpillOffsets) {
1409   // Build a set of new locations with new numbers so we can coalesce our
1410   // IntervalMap if two vreg intervals collapse to the same physical location.
1411   // Use MapVector instead of SetVector because MapVector::insert returns the
1412   // position of the previously or newly inserted element. The boolean value
1413   // tracks if the location was produced by a spill.
1414   // FIXME: This will be problematic if we ever support direct and indirect
1415   // frame index locations, i.e. expressing both variables in memory and
1416   // 'int x, *px = &x'. The "spilled" bit must become part of the location.
1417   MapVector<MachineOperand, std::pair<bool, unsigned>> NewLocations;
1418   SmallVector<unsigned, 4> LocNoMap(locations.size());
1419   for (unsigned I = 0, E = locations.size(); I != E; ++I) {
1420     bool Spilled = false;
1421     unsigned SpillOffset = 0;
1422     MachineOperand Loc = locations[I];
1423     // Only virtual registers are rewritten.
1424     if (Loc.isReg() && Loc.getReg() &&
1425         Register::isVirtualRegister(Loc.getReg())) {
1426       Register VirtReg = Loc.getReg();
1427       if (VRM.isAssignedReg(VirtReg) &&
1428           Register::isPhysicalRegister(VRM.getPhys(VirtReg))) {
1429         // This can create a %noreg operand in rare cases when the sub-register
1430         // index is no longer available. That means the user value is in a
1431         // non-existent sub-register, and %noreg is exactly what we want.
1432         Loc.substPhysReg(VRM.getPhys(VirtReg), TRI);
1433       } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) {
1434         // Retrieve the stack slot offset.
1435         unsigned SpillSize;
1436         const MachineRegisterInfo &MRI = MF.getRegInfo();
1437         const TargetRegisterClass *TRC = MRI.getRegClass(VirtReg);
1438         bool Success = TII.getStackSlotRange(TRC, Loc.getSubReg(), SpillSize,
1439                                              SpillOffset, MF);
1440 
1441         // FIXME: Invalidate the location if the offset couldn't be calculated.
1442         (void)Success;
1443 
1444         Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg));
1445         Spilled = true;
1446       } else {
1447         Loc.setReg(0);
1448         Loc.setSubReg(0);
1449       }
1450     }
1451 
1452     // Insert this location if it doesn't already exist and record a mapping
1453     // from the old number to the new number.
1454     auto InsertResult = NewLocations.insert({Loc, {Spilled, SpillOffset}});
1455     unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first);
1456     LocNoMap[I] = NewLocNo;
1457   }
1458 
1459   // Rewrite the locations and record the stack slot offsets for spills.
1460   locations.clear();
1461   SpillOffsets.clear();
1462   for (auto &Pair : NewLocations) {
1463     bool Spilled;
1464     unsigned SpillOffset;
1465     std::tie(Spilled, SpillOffset) = Pair.second;
1466     locations.push_back(Pair.first);
1467     if (Spilled) {
1468       unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair);
1469       SpillOffsets[NewLocNo] = SpillOffset;
1470     }
1471   }
1472 
1473   // Update the interval map, but only coalesce left, since intervals to the
1474   // right use the old location numbers. This should merge two contiguous
1475   // DBG_VALUE intervals with different vregs that were allocated to the same
1476   // physical register.
1477   for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) {
1478     I.setValueUnchecked(I.value().remapLocNos(LocNoMap));
1479     I.setStart(I.start());
1480   }
1481 }
1482 
1483 /// Find an iterator for inserting a DBG_VALUE instruction.
1484 static MachineBasicBlock::iterator
findInsertLocation(MachineBasicBlock * MBB,SlotIndex Idx,LiveIntervals & LIS,BlockSkipInstsMap & BBSkipInstsMap)1485 findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx, LiveIntervals &LIS,
1486                    BlockSkipInstsMap &BBSkipInstsMap) {
1487   SlotIndex Start = LIS.getMBBStartIdx(MBB);
1488   Idx = Idx.getBaseIndex();
1489 
1490   // Try to find an insert location by going backwards from Idx.
1491   MachineInstr *MI;
1492   while (!(MI = LIS.getInstructionFromIndex(Idx))) {
1493     // We've reached the beginning of MBB.
1494     if (Idx == Start) {
1495       // Retrieve the last PHI/Label/Debug location found when calling
1496       // SkipPHIsLabelsAndDebug last time. Start searching from there.
1497       //
1498       // Note the iterator kept in BBSkipInstsMap is one step back based
1499       // on the iterator returned by SkipPHIsLabelsAndDebug last time.
1500       // One exception is when SkipPHIsLabelsAndDebug returns MBB->begin(),
1501       // BBSkipInstsMap won't save it. This is to consider the case that
1502       // new instructions may be inserted at the beginning of MBB after
1503       // last call of SkipPHIsLabelsAndDebug. If we save MBB->begin() in
1504       // BBSkipInstsMap, after new non-phi/non-label/non-debug instructions
1505       // are inserted at the beginning of the MBB, the iterator in
1506       // BBSkipInstsMap won't point to the beginning of the MBB anymore.
1507       // Therefore The next search in SkipPHIsLabelsAndDebug will skip those
1508       // newly added instructions and that is unwanted.
1509       MachineBasicBlock::iterator BeginIt;
1510       auto MapIt = BBSkipInstsMap.find(MBB);
1511       if (MapIt == BBSkipInstsMap.end())
1512         BeginIt = MBB->begin();
1513       else
1514         BeginIt = std::next(MapIt->second);
1515       auto I = MBB->SkipPHIsLabelsAndDebug(BeginIt);
1516       if (I != BeginIt)
1517         BBSkipInstsMap[MBB] = std::prev(I);
1518       return I;
1519     }
1520     Idx = Idx.getPrevIndex();
1521   }
1522 
1523   // Don't insert anything after the first terminator, though.
1524   return MI->isTerminator() ? MBB->getFirstTerminator() :
1525                               std::next(MachineBasicBlock::iterator(MI));
1526 }
1527 
1528 /// Find an iterator for inserting the next DBG_VALUE instruction
1529 /// (or end if no more insert locations found).
1530 static MachineBasicBlock::iterator
findNextInsertLocation(MachineBasicBlock * MBB,MachineBasicBlock::iterator I,SlotIndex StopIdx,ArrayRef<MachineOperand> LocMOs,LiveIntervals & LIS,const TargetRegisterInfo & TRI)1531 findNextInsertLocation(MachineBasicBlock *MBB, MachineBasicBlock::iterator I,
1532                        SlotIndex StopIdx, ArrayRef<MachineOperand> LocMOs,
1533                        LiveIntervals &LIS, const TargetRegisterInfo &TRI) {
1534   SmallVector<Register, 4> Regs;
1535   for (const MachineOperand &LocMO : LocMOs)
1536     if (LocMO.isReg())
1537       Regs.push_back(LocMO.getReg());
1538   if (Regs.empty())
1539     return MBB->instr_end();
1540 
1541   // Find the next instruction in the MBB that define the register Reg.
1542   while (I != MBB->end() && !I->isTerminator()) {
1543     if (!LIS.isNotInMIMap(*I) &&
1544         SlotIndex::isEarlierEqualInstr(StopIdx, LIS.getInstructionIndex(*I)))
1545       break;
1546     if (any_of(Regs, [&I, &TRI](Register &Reg) {
1547           return I->definesRegister(Reg, &TRI);
1548         }))
1549       // The insert location is directly after the instruction/bundle.
1550       return std::next(I);
1551     ++I;
1552   }
1553   return MBB->end();
1554 }
1555 
insertDebugValue(MachineBasicBlock * MBB,SlotIndex StartIdx,SlotIndex StopIdx,DbgVariableValue DbgValue,ArrayRef<bool> LocSpills,ArrayRef<unsigned> SpillOffsets,LiveIntervals & LIS,const TargetInstrInfo & TII,const TargetRegisterInfo & TRI,BlockSkipInstsMap & BBSkipInstsMap)1556 void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx,
1557                                  SlotIndex StopIdx, DbgVariableValue DbgValue,
1558                                  ArrayRef<bool> LocSpills,
1559                                  ArrayRef<unsigned> SpillOffsets,
1560                                  LiveIntervals &LIS, const TargetInstrInfo &TII,
1561                                  const TargetRegisterInfo &TRI,
1562                                  BlockSkipInstsMap &BBSkipInstsMap) {
1563   SlotIndex MBBEndIdx = LIS.getMBBEndIdx(&*MBB);
1564   // Only search within the current MBB.
1565   StopIdx = (MBBEndIdx < StopIdx) ? MBBEndIdx : StopIdx;
1566   MachineBasicBlock::iterator I =
1567       findInsertLocation(MBB, StartIdx, LIS, BBSkipInstsMap);
1568   // Undef values don't exist in locations so create new "noreg" register MOs
1569   // for them. See getLocationNo().
1570   SmallVector<MachineOperand, 8> MOs;
1571   if (DbgValue.isUndef()) {
1572     MOs.assign(DbgValue.loc_nos().size(),
1573                MachineOperand::CreateReg(
1574                    /* Reg */ 0, /* isDef */ false, /* isImp */ false,
1575                    /* isKill */ false, /* isDead */ false,
1576                    /* isUndef */ false, /* isEarlyClobber */ false,
1577                    /* SubReg */ 0, /* isDebug */ true));
1578   } else {
1579     for (unsigned LocNo : DbgValue.loc_nos())
1580       MOs.push_back(locations[LocNo]);
1581   }
1582 
1583   ++NumInsertedDebugValues;
1584 
1585   assert(cast<DILocalVariable>(Variable)
1586              ->isValidLocationForIntrinsic(getDebugLoc()) &&
1587          "Expected inlined-at fields to agree");
1588 
1589   // If the location was spilled, the new DBG_VALUE will be indirect. If the
1590   // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate
1591   // that the original virtual register was a pointer. Also, add the stack slot
1592   // offset for the spilled register to the expression.
1593   const DIExpression *Expr = DbgValue.getExpression();
1594   bool IsIndirect = DbgValue.getWasIndirect();
1595   bool IsList = DbgValue.getWasList();
1596   for (unsigned I = 0, E = LocSpills.size(); I != E; ++I) {
1597     if (LocSpills[I]) {
1598       if (!IsList) {
1599         uint8_t DIExprFlags = DIExpression::ApplyOffset;
1600         if (IsIndirect)
1601           DIExprFlags |= DIExpression::DerefAfter;
1602         Expr = DIExpression::prepend(Expr, DIExprFlags, SpillOffsets[I]);
1603         IsIndirect = true;
1604       } else {
1605         SmallVector<uint64_t, 4> Ops;
1606         DIExpression::appendOffset(Ops, SpillOffsets[I]);
1607         Ops.push_back(dwarf::DW_OP_deref);
1608         Expr = DIExpression::appendOpsToArg(Expr, Ops, I);
1609       }
1610     }
1611 
1612     assert((!LocSpills[I] || MOs[I].isFI()) &&
1613            "a spilled location must be a frame index");
1614   }
1615 
1616   unsigned DbgValueOpcode =
1617       IsList ? TargetOpcode::DBG_VALUE_LIST : TargetOpcode::DBG_VALUE;
1618   do {
1619     BuildMI(*MBB, I, getDebugLoc(), TII.get(DbgValueOpcode), IsIndirect, MOs,
1620             Variable, Expr);
1621 
1622     // Continue and insert DBG_VALUES after every redefinition of a register
1623     // associated with the debug value within the range
1624     I = findNextInsertLocation(MBB, I, StopIdx, MOs, LIS, TRI);
1625   } while (I != MBB->end());
1626 }
1627 
insertDebugLabel(MachineBasicBlock * MBB,SlotIndex Idx,LiveIntervals & LIS,const TargetInstrInfo & TII,BlockSkipInstsMap & BBSkipInstsMap)1628 void UserLabel::insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx,
1629                                  LiveIntervals &LIS, const TargetInstrInfo &TII,
1630                                  BlockSkipInstsMap &BBSkipInstsMap) {
1631   MachineBasicBlock::iterator I =
1632       findInsertLocation(MBB, Idx, LIS, BBSkipInstsMap);
1633   ++NumInsertedDebugLabels;
1634   BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_LABEL))
1635       .addMetadata(Label);
1636 }
1637 
emitDebugValues(VirtRegMap * VRM,LiveIntervals & LIS,const TargetInstrInfo & TII,const TargetRegisterInfo & TRI,const SpillOffsetMap & SpillOffsets,BlockSkipInstsMap & BBSkipInstsMap)1638 void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
1639                                 const TargetInstrInfo &TII,
1640                                 const TargetRegisterInfo &TRI,
1641                                 const SpillOffsetMap &SpillOffsets,
1642                                 BlockSkipInstsMap &BBSkipInstsMap) {
1643   MachineFunction::iterator MFEnd = VRM->getMachineFunction().end();
1644 
1645   for (LocMap::const_iterator I = locInts.begin(); I.valid();) {
1646     SlotIndex Start = I.start();
1647     SlotIndex Stop = I.stop();
1648     DbgVariableValue DbgValue = I.value();
1649 
1650     SmallVector<bool> SpilledLocs;
1651     SmallVector<unsigned> LocSpillOffsets;
1652     for (unsigned LocNo : DbgValue.loc_nos()) {
1653       auto SpillIt =
1654           !DbgValue.isUndef() ? SpillOffsets.find(LocNo) : SpillOffsets.end();
1655       bool Spilled = SpillIt != SpillOffsets.end();
1656       SpilledLocs.push_back(Spilled);
1657       LocSpillOffsets.push_back(Spilled ? SpillIt->second : 0);
1658     }
1659 
1660     // If the interval start was trimmed to the lexical scope insert the
1661     // DBG_VALUE at the previous index (otherwise it appears after the
1662     // first instruction in the range).
1663     if (trimmedDefs.count(Start))
1664       Start = Start.getPrevIndex();
1665 
1666     LLVM_DEBUG(auto &dbg = dbgs(); dbg << "\t[" << Start << ';' << Stop << "):";
1667                DbgValue.printLocNos(dbg));
1668     MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
1669     SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB);
1670 
1671     LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd);
1672     insertDebugValue(&*MBB, Start, Stop, DbgValue, SpilledLocs, LocSpillOffsets,
1673                      LIS, TII, TRI, BBSkipInstsMap);
1674     // This interval may span multiple basic blocks.
1675     // Insert a DBG_VALUE into each one.
1676     while (Stop > MBBEnd) {
1677       // Move to the next block.
1678       Start = MBBEnd;
1679       if (++MBB == MFEnd)
1680         break;
1681       MBBEnd = LIS.getMBBEndIdx(&*MBB);
1682       LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd);
1683       insertDebugValue(&*MBB, Start, Stop, DbgValue, SpilledLocs,
1684                        LocSpillOffsets, LIS, TII, TRI, BBSkipInstsMap);
1685     }
1686     LLVM_DEBUG(dbgs() << '\n');
1687     if (MBB == MFEnd)
1688       break;
1689 
1690     ++I;
1691   }
1692 }
1693 
emitDebugLabel(LiveIntervals & LIS,const TargetInstrInfo & TII,BlockSkipInstsMap & BBSkipInstsMap)1694 void UserLabel::emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII,
1695                                BlockSkipInstsMap &BBSkipInstsMap) {
1696   LLVM_DEBUG(dbgs() << "\t" << loc);
1697   MachineFunction::iterator MBB = LIS.getMBBFromIndex(loc)->getIterator();
1698 
1699   LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB));
1700   insertDebugLabel(&*MBB, loc, LIS, TII, BBSkipInstsMap);
1701 
1702   LLVM_DEBUG(dbgs() << '\n');
1703 }
1704 
emitDebugValues(VirtRegMap * VRM)1705 void LDVImpl::emitDebugValues(VirtRegMap *VRM) {
1706   LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n");
1707   if (!MF)
1708     return;
1709 
1710   BlockSkipInstsMap BBSkipInstsMap;
1711   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1712   SpillOffsetMap SpillOffsets;
1713   for (auto &userValue : userValues) {
1714     LLVM_DEBUG(userValue->print(dbgs(), TRI));
1715     userValue->rewriteLocations(*VRM, *MF, *TII, *TRI, SpillOffsets);
1716     userValue->emitDebugValues(VRM, *LIS, *TII, *TRI, SpillOffsets,
1717                                BBSkipInstsMap);
1718   }
1719   LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG LABELS **********\n");
1720   for (auto &userLabel : userLabels) {
1721     LLVM_DEBUG(userLabel->print(dbgs(), TRI));
1722     userLabel->emitDebugLabel(*LIS, *TII, BBSkipInstsMap);
1723   }
1724 
1725   LLVM_DEBUG(dbgs() << "********** EMITTING INSTR REFERENCES **********\n");
1726 
1727   // Re-insert any DBG_INSTR_REFs back in the position they were. Ordering
1728   // is preserved by vector.
1729   auto Slots = LIS->getSlotIndexes();
1730   const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_INSTR_REF);
1731   for (auto &P : StashedInstrReferences) {
1732     const SlotIndex &Idx = P.first;
1733     auto *MBB = Slots->getMBBFromIndex(Idx);
1734     MachineBasicBlock::iterator insertPos =
1735         findInsertLocation(MBB, Idx, *LIS, BBSkipInstsMap);
1736     for (auto &Stashed : P.second) {
1737       auto MIB = BuildMI(*MF, std::get<4>(Stashed), RefII);
1738       MIB.addImm(std::get<0>(Stashed));
1739       MIB.addImm(std::get<1>(Stashed));
1740       MIB.addMetadata(std::get<2>(Stashed));
1741       MIB.addMetadata(std::get<3>(Stashed));
1742       MachineInstr *New = MIB;
1743       MBB->insert(insertPos, New);
1744     }
1745   }
1746 
1747   EmitDone = true;
1748   BBSkipInstsMap.clear();
1749 }
1750 
emitDebugValues(VirtRegMap * VRM)1751 void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) {
1752   if (pImpl)
1753     static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM);
1754 }
1755 
1756 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const1757 LLVM_DUMP_METHOD void LiveDebugVariables::dump() const {
1758   if (pImpl)
1759     static_cast<LDVImpl*>(pImpl)->print(dbgs());
1760 }
1761 #endif
1762