1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/BranchProbabilityInfo.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/MemoryLocation.h"
33 #include "llvm/Analysis/ProfileSummaryInfo.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/Analysis/VectorUtils.h"
37 #include "llvm/CodeGen/Analysis.h"
38 #include "llvm/CodeGen/FunctionLoweringInfo.h"
39 #include "llvm/CodeGen/GCMetadata.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineInstrBuilder.h"
45 #include "llvm/CodeGen/MachineJumpTableInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
53 #include "llvm/CodeGen/StackMaps.h"
54 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
55 #include "llvm/CodeGen/TargetFrameLowering.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetOpcodes.h"
58 #include "llvm/CodeGen/TargetRegisterInfo.h"
59 #include "llvm/CodeGen/TargetSubtargetInfo.h"
60 #include "llvm/CodeGen/WinEHFuncInfo.h"
61 #include "llvm/IR/Argument.h"
62 #include "llvm/IR/Attributes.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/CFG.h"
65 #include "llvm/IR/CallingConv.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/ConstantRange.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugInfoMetadata.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GetElementPtrTypeIterator.h"
74 #include "llvm/IR/InlineAsm.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/IntrinsicsAArch64.h"
80 #include "llvm/IR/IntrinsicsWebAssembly.h"
81 #include "llvm/IR/LLVMContext.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Module.h"
84 #include "llvm/IR/Operator.h"
85 #include "llvm/IR/PatternMatch.h"
86 #include "llvm/IR/Statepoint.h"
87 #include "llvm/IR/Type.h"
88 #include "llvm/IR/User.h"
89 #include "llvm/IR/Value.h"
90 #include "llvm/MC/MCContext.h"
91 #include "llvm/MC/MCSymbol.h"
92 #include "llvm/Support/AtomicOrdering.h"
93 #include "llvm/Support/Casting.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/MathExtras.h"
98 #include "llvm/Support/raw_ostream.h"
99 #include "llvm/Target/TargetIntrinsicInfo.h"
100 #include "llvm/Target/TargetMachine.h"
101 #include "llvm/Target/TargetOptions.h"
102 #include "llvm/Transforms/Utils/Local.h"
103 #include <cstddef>
104 #include <cstring>
105 #include <iterator>
106 #include <limits>
107 #include <numeric>
108 #include <tuple>
109 
110 using namespace llvm;
111 using namespace PatternMatch;
112 using namespace SwitchCG;
113 
114 #define DEBUG_TYPE "isel"
115 
116 /// LimitFloatPrecision - Generate low-precision inline sequences for
117 /// some float libcalls (6, 8 or 12 bits).
118 static unsigned LimitFloatPrecision;
119 
120 static cl::opt<bool>
121     InsertAssertAlign("insert-assert-align", cl::init(true),
122                       cl::desc("Insert the experimental `assertalign` node."),
123                       cl::ReallyHidden);
124 
125 static cl::opt<unsigned, true>
126     LimitFPPrecision("limit-float-precision",
127                      cl::desc("Generate low-precision inline sequences "
128                               "for some float libcalls"),
129                      cl::location(LimitFloatPrecision), cl::Hidden,
130                      cl::init(0));
131 
132 static cl::opt<unsigned> SwitchPeelThreshold(
133     "switch-peel-threshold", cl::Hidden, cl::init(66),
134     cl::desc("Set the case probability threshold for peeling the case from a "
135              "switch statement. A value greater than 100 will void this "
136              "optimization"));
137 
138 // Limit the width of DAG chains. This is important in general to prevent
139 // DAG-based analysis from blowing up. For example, alias analysis and
140 // load clustering may not complete in reasonable time. It is difficult to
141 // recognize and avoid this situation within each individual analysis, and
142 // future analyses are likely to have the same behavior. Limiting DAG width is
143 // the safe approach and will be especially important with global DAGs.
144 //
145 // MaxParallelChains default is arbitrarily high to avoid affecting
146 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
147 // sequence over this should have been converted to llvm.memcpy by the
148 // frontend. It is easy to induce this behavior with .ll code such as:
149 // %buffer = alloca [4096 x i8]
150 // %data = load [4096 x i8]* %argPtr
151 // store [4096 x i8] %data, [4096 x i8]* %buffer
152 static const unsigned MaxParallelChains = 64;
153 
154 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
155                                       const SDValue *Parts, unsigned NumParts,
156                                       MVT PartVT, EVT ValueVT, const Value *V,
157                                       Optional<CallingConv::ID> CC);
158 
159 /// getCopyFromParts - Create a value that contains the specified legal parts
160 /// combined into the value they represent.  If the parts combine to a type
161 /// larger than ValueVT then AssertOp can be used to specify whether the extra
162 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
163 /// (ISD::AssertSext).
getCopyFromParts(SelectionDAG & DAG,const SDLoc & DL,const SDValue * Parts,unsigned NumParts,MVT PartVT,EVT ValueVT,const Value * V,Optional<CallingConv::ID> CC=None,Optional<ISD::NodeType> AssertOp=None)164 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
165                                 const SDValue *Parts, unsigned NumParts,
166                                 MVT PartVT, EVT ValueVT, const Value *V,
167                                 Optional<CallingConv::ID> CC = None,
168                                 Optional<ISD::NodeType> AssertOp = None) {
169   // Let the target assemble the parts if it wants to
170   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
171   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
172                                                    PartVT, ValueVT, CC))
173     return Val;
174 
175   if (ValueVT.isVector())
176     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
177                                   CC);
178 
179   assert(NumParts > 0 && "No parts to assemble!");
180   SDValue Val = Parts[0];
181 
182   if (NumParts > 1) {
183     // Assemble the value from multiple parts.
184     if (ValueVT.isInteger()) {
185       unsigned PartBits = PartVT.getSizeInBits();
186       unsigned ValueBits = ValueVT.getSizeInBits();
187 
188       // Assemble the power of 2 part.
189       unsigned RoundParts =
190           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
191       unsigned RoundBits = PartBits * RoundParts;
192       EVT RoundVT = RoundBits == ValueBits ?
193         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
194       SDValue Lo, Hi;
195 
196       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
197 
198       if (RoundParts > 2) {
199         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
200                               PartVT, HalfVT, V);
201         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
202                               RoundParts / 2, PartVT, HalfVT, V);
203       } else {
204         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
205         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
206       }
207 
208       if (DAG.getDataLayout().isBigEndian())
209         std::swap(Lo, Hi);
210 
211       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
212 
213       if (RoundParts < NumParts) {
214         // Assemble the trailing non-power-of-2 part.
215         unsigned OddParts = NumParts - RoundParts;
216         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
217         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
218                               OddVT, V, CC);
219 
220         // Combine the round and odd parts.
221         Lo = Val;
222         if (DAG.getDataLayout().isBigEndian())
223           std::swap(Lo, Hi);
224         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
225         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
226         Hi =
227             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
228                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
229                                         TLI.getPointerTy(DAG.getDataLayout())));
230         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
231         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
232       }
233     } else if (PartVT.isFloatingPoint()) {
234       // FP split into multiple FP parts (for ppcf128)
235       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
236              "Unexpected split");
237       SDValue Lo, Hi;
238       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
239       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
240       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
241         std::swap(Lo, Hi);
242       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
243     } else {
244       // FP split into integer parts (soft fp)
245       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
246              !PartVT.isVector() && "Unexpected split");
247       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
248       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
249     }
250   }
251 
252   // There is now one part, held in Val.  Correct it to match ValueVT.
253   // PartEVT is the type of the register class that holds the value.
254   // ValueVT is the type of the inline asm operation.
255   EVT PartEVT = Val.getValueType();
256 
257   if (PartEVT == ValueVT)
258     return Val;
259 
260   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
261       ValueVT.bitsLT(PartEVT)) {
262     // For an FP value in an integer part, we need to truncate to the right
263     // width first.
264     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
265     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
266   }
267 
268   // Handle types that have the same size.
269   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
270     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
271 
272   // Handle types with different sizes.
273   if (PartEVT.isInteger() && ValueVT.isInteger()) {
274     if (ValueVT.bitsLT(PartEVT)) {
275       // For a truncate, see if we have any information to
276       // indicate whether the truncated bits will always be
277       // zero or sign-extension.
278       if (AssertOp.hasValue())
279         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
280                           DAG.getValueType(ValueVT));
281       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
282     }
283     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
284   }
285 
286   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
287     // FP_ROUND's are always exact here.
288     if (ValueVT.bitsLT(Val.getValueType()))
289       return DAG.getNode(
290           ISD::FP_ROUND, DL, ValueVT, Val,
291           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
292 
293     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
294   }
295 
296   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
297   // then truncating.
298   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
299       ValueVT.bitsLT(PartEVT)) {
300     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
301     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
302   }
303 
304   report_fatal_error("Unknown mismatch in getCopyFromParts!");
305 }
306 
diagnosePossiblyInvalidConstraint(LLVMContext & Ctx,const Value * V,const Twine & ErrMsg)307 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
308                                               const Twine &ErrMsg) {
309   const Instruction *I = dyn_cast_or_null<Instruction>(V);
310   if (!V)
311     return Ctx.emitError(ErrMsg);
312 
313   const char *AsmError = ", possible invalid constraint for vector type";
314   if (const CallInst *CI = dyn_cast<CallInst>(I))
315     if (CI->isInlineAsm())
316       return Ctx.emitError(I, ErrMsg + AsmError);
317 
318   return Ctx.emitError(I, ErrMsg);
319 }
320 
321 /// getCopyFromPartsVector - Create a value that contains the specified legal
322 /// parts combined into the value they represent.  If the parts combine to a
323 /// type larger than ValueVT then AssertOp can be used to specify whether the
324 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
325 /// ValueVT (ISD::AssertSext).
getCopyFromPartsVector(SelectionDAG & DAG,const SDLoc & DL,const SDValue * Parts,unsigned NumParts,MVT PartVT,EVT ValueVT,const Value * V,Optional<CallingConv::ID> CallConv)326 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
327                                       const SDValue *Parts, unsigned NumParts,
328                                       MVT PartVT, EVT ValueVT, const Value *V,
329                                       Optional<CallingConv::ID> CallConv) {
330   assert(ValueVT.isVector() && "Not a vector value");
331   assert(NumParts > 0 && "No parts to assemble!");
332   const bool IsABIRegCopy = CallConv.hasValue();
333 
334   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
335   SDValue Val = Parts[0];
336 
337   // Handle a multi-element vector.
338   if (NumParts > 1) {
339     EVT IntermediateVT;
340     MVT RegisterVT;
341     unsigned NumIntermediates;
342     unsigned NumRegs;
343 
344     if (IsABIRegCopy) {
345       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
346           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
347           NumIntermediates, RegisterVT);
348     } else {
349       NumRegs =
350           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
351                                      NumIntermediates, RegisterVT);
352     }
353 
354     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
355     NumParts = NumRegs; // Silence a compiler warning.
356     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
357     assert(RegisterVT.getSizeInBits() ==
358            Parts[0].getSimpleValueType().getSizeInBits() &&
359            "Part type sizes don't match!");
360 
361     // Assemble the parts into intermediate operands.
362     SmallVector<SDValue, 8> Ops(NumIntermediates);
363     if (NumIntermediates == NumParts) {
364       // If the register was not expanded, truncate or copy the value,
365       // as appropriate.
366       for (unsigned i = 0; i != NumParts; ++i)
367         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
368                                   PartVT, IntermediateVT, V, CallConv);
369     } else if (NumParts > 0) {
370       // If the intermediate type was expanded, build the intermediate
371       // operands from the parts.
372       assert(NumParts % NumIntermediates == 0 &&
373              "Must expand into a divisible number of parts!");
374       unsigned Factor = NumParts / NumIntermediates;
375       for (unsigned i = 0; i != NumIntermediates; ++i)
376         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
377                                   PartVT, IntermediateVT, V, CallConv);
378     }
379 
380     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
381     // intermediate operands.
382     EVT BuiltVectorTy =
383         IntermediateVT.isVector()
384             ? EVT::getVectorVT(
385                   *DAG.getContext(), IntermediateVT.getScalarType(),
386                   IntermediateVT.getVectorElementCount() * NumParts)
387             : EVT::getVectorVT(*DAG.getContext(),
388                                IntermediateVT.getScalarType(),
389                                NumIntermediates);
390     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
391                                                 : ISD::BUILD_VECTOR,
392                       DL, BuiltVectorTy, Ops);
393   }
394 
395   // There is now one part, held in Val.  Correct it to match ValueVT.
396   EVT PartEVT = Val.getValueType();
397 
398   if (PartEVT == ValueVT)
399     return Val;
400 
401   if (PartEVT.isVector()) {
402     // If the element type of the source/dest vectors are the same, but the
403     // parts vector has more elements than the value vector, then we have a
404     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
405     // elements we want.
406     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
407       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
408               ValueVT.getVectorElementCount().getKnownMinValue()) &&
409              (PartEVT.getVectorElementCount().isScalable() ==
410               ValueVT.getVectorElementCount().isScalable()) &&
411              "Cannot narrow, it would be a lossy transformation");
412       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
413                          DAG.getVectorIdxConstant(0, DL));
414     }
415 
416     // Vector/Vector bitcast.
417     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
418       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
419 
420     assert(PartEVT.getVectorElementCount() == ValueVT.getVectorElementCount() &&
421       "Cannot handle this kind of promotion");
422     // Promoted vector extract
423     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
424 
425   }
426 
427   // Trivial bitcast if the types are the same size and the destination
428   // vector type is legal.
429   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
430       TLI.isTypeLegal(ValueVT))
431     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
432 
433   if (ValueVT.getVectorNumElements() != 1) {
434      // Certain ABIs require that vectors are passed as integers. For vectors
435      // are the same size, this is an obvious bitcast.
436      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
437        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
438      } else if (ValueVT.bitsLT(PartEVT)) {
439        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
440        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
441        // Drop the extra bits.
442        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
443        return DAG.getBitcast(ValueVT, Val);
444      }
445 
446      diagnosePossiblyInvalidConstraint(
447          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
448      return DAG.getUNDEF(ValueVT);
449   }
450 
451   // Handle cases such as i8 -> <1 x i1>
452   EVT ValueSVT = ValueVT.getVectorElementType();
453   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
454     if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits())
455       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
456     else
457       Val = ValueVT.isFloatingPoint()
458                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
459                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
460   }
461 
462   return DAG.getBuildVector(ValueVT, DL, Val);
463 }
464 
465 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
466                                  SDValue Val, SDValue *Parts, unsigned NumParts,
467                                  MVT PartVT, const Value *V,
468                                  Optional<CallingConv::ID> CallConv);
469 
470 /// getCopyToParts - Create a series of nodes that contain the specified value
471 /// split into legal parts.  If the parts contain more bits than Val, then, for
472 /// integers, ExtendKind can be used to specify how to generate the extra bits.
getCopyToParts(SelectionDAG & DAG,const SDLoc & DL,SDValue Val,SDValue * Parts,unsigned NumParts,MVT PartVT,const Value * V,Optional<CallingConv::ID> CallConv=None,ISD::NodeType ExtendKind=ISD::ANY_EXTEND)473 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
474                            SDValue *Parts, unsigned NumParts, MVT PartVT,
475                            const Value *V,
476                            Optional<CallingConv::ID> CallConv = None,
477                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
478   // Let the target split the parts if it wants to
479   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
480   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
481                                       CallConv))
482     return;
483   EVT ValueVT = Val.getValueType();
484 
485   // Handle the vector case separately.
486   if (ValueVT.isVector())
487     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
488                                 CallConv);
489 
490   unsigned PartBits = PartVT.getSizeInBits();
491   unsigned OrigNumParts = NumParts;
492   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
493          "Copying to an illegal type!");
494 
495   if (NumParts == 0)
496     return;
497 
498   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
499   EVT PartEVT = PartVT;
500   if (PartEVT == ValueVT) {
501     assert(NumParts == 1 && "No-op copy with multiple parts!");
502     Parts[0] = Val;
503     return;
504   }
505 
506   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
507     // If the parts cover more bits than the value has, promote the value.
508     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
509       assert(NumParts == 1 && "Do not know what to promote to!");
510       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
511     } else {
512       if (ValueVT.isFloatingPoint()) {
513         // FP values need to be bitcast, then extended if they are being put
514         // into a larger container.
515         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
516         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
517       }
518       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
519              ValueVT.isInteger() &&
520              "Unknown mismatch!");
521       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
522       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
523       if (PartVT == MVT::x86mmx)
524         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
525     }
526   } else if (PartBits == ValueVT.getSizeInBits()) {
527     // Different types of the same size.
528     assert(NumParts == 1 && PartEVT != ValueVT);
529     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
530   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
531     // If the parts cover less bits than value has, truncate the value.
532     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
533            ValueVT.isInteger() &&
534            "Unknown mismatch!");
535     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
536     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
537     if (PartVT == MVT::x86mmx)
538       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
539   }
540 
541   // The value may have changed - recompute ValueVT.
542   ValueVT = Val.getValueType();
543   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
544          "Failed to tile the value with PartVT!");
545 
546   if (NumParts == 1) {
547     if (PartEVT != ValueVT) {
548       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
549                                         "scalar-to-vector conversion failed");
550       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
551     }
552 
553     Parts[0] = Val;
554     return;
555   }
556 
557   // Expand the value into multiple parts.
558   if (NumParts & (NumParts - 1)) {
559     // The number of parts is not a power of 2.  Split off and copy the tail.
560     assert(PartVT.isInteger() && ValueVT.isInteger() &&
561            "Do not know what to expand to!");
562     unsigned RoundParts = 1 << Log2_32(NumParts);
563     unsigned RoundBits = RoundParts * PartBits;
564     unsigned OddParts = NumParts - RoundParts;
565     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
566       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
567 
568     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
569                    CallConv);
570 
571     if (DAG.getDataLayout().isBigEndian())
572       // The odd parts were reversed by getCopyToParts - unreverse them.
573       std::reverse(Parts + RoundParts, Parts + NumParts);
574 
575     NumParts = RoundParts;
576     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
577     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
578   }
579 
580   // The number of parts is a power of 2.  Repeatedly bisect the value using
581   // EXTRACT_ELEMENT.
582   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
583                          EVT::getIntegerVT(*DAG.getContext(),
584                                            ValueVT.getSizeInBits()),
585                          Val);
586 
587   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
588     for (unsigned i = 0; i < NumParts; i += StepSize) {
589       unsigned ThisBits = StepSize * PartBits / 2;
590       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
591       SDValue &Part0 = Parts[i];
592       SDValue &Part1 = Parts[i+StepSize/2];
593 
594       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
595                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
596       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
597                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
598 
599       if (ThisBits == PartBits && ThisVT != PartVT) {
600         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
601         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
602       }
603     }
604   }
605 
606   if (DAG.getDataLayout().isBigEndian())
607     std::reverse(Parts, Parts + OrigNumParts);
608 }
609 
widenVectorToPartType(SelectionDAG & DAG,SDValue Val,const SDLoc & DL,EVT PartVT)610 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
611                                      const SDLoc &DL, EVT PartVT) {
612   if (!PartVT.isVector())
613     return SDValue();
614 
615   EVT ValueVT = Val.getValueType();
616   ElementCount PartNumElts = PartVT.getVectorElementCount();
617   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
618 
619   // We only support widening vectors with equivalent element types and
620   // fixed/scalable properties. If a target needs to widen a fixed-length type
621   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
622   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
623       PartNumElts.isScalable() != ValueNumElts.isScalable() ||
624       PartVT.getVectorElementType() != ValueVT.getVectorElementType())
625     return SDValue();
626 
627   // Widening a scalable vector to another scalable vector is done by inserting
628   // the vector into a larger undef one.
629   if (PartNumElts.isScalable())
630     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
631                        Val, DAG.getVectorIdxConstant(0, DL));
632 
633   EVT ElementVT = PartVT.getVectorElementType();
634   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
635   // undef elements.
636   SmallVector<SDValue, 16> Ops;
637   DAG.ExtractVectorElements(Val, Ops);
638   SDValue EltUndef = DAG.getUNDEF(ElementVT);
639   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
640 
641   // FIXME: Use CONCAT for 2x -> 4x.
642   return DAG.getBuildVector(PartVT, DL, Ops);
643 }
644 
645 /// getCopyToPartsVector - Create a series of nodes that contain the specified
646 /// value split into legal parts.
getCopyToPartsVector(SelectionDAG & DAG,const SDLoc & DL,SDValue Val,SDValue * Parts,unsigned NumParts,MVT PartVT,const Value * V,Optional<CallingConv::ID> CallConv)647 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
648                                  SDValue Val, SDValue *Parts, unsigned NumParts,
649                                  MVT PartVT, const Value *V,
650                                  Optional<CallingConv::ID> CallConv) {
651   EVT ValueVT = Val.getValueType();
652   assert(ValueVT.isVector() && "Not a vector");
653   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
654   const bool IsABIRegCopy = CallConv.hasValue();
655 
656   if (NumParts == 1) {
657     EVT PartEVT = PartVT;
658     if (PartEVT == ValueVT) {
659       // Nothing to do.
660     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
661       // Bitconvert vector->vector case.
662       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
663     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
664       Val = Widened;
665     } else if (PartVT.isVector() &&
666                PartEVT.getVectorElementType().bitsGE(
667                    ValueVT.getVectorElementType()) &&
668                PartEVT.getVectorElementCount() ==
669                    ValueVT.getVectorElementCount()) {
670 
671       // Promoted vector extract
672       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
673     } else {
674       if (ValueVT.getVectorElementCount().isScalar()) {
675         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
676                           DAG.getVectorIdxConstant(0, DL));
677       } else {
678         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
679         assert(PartVT.getFixedSizeInBits() > ValueSize &&
680                "lossy conversion of vector to scalar type");
681         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
682         Val = DAG.getBitcast(IntermediateType, Val);
683         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
684       }
685     }
686 
687     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
688     Parts[0] = Val;
689     return;
690   }
691 
692   // Handle a multi-element vector.
693   EVT IntermediateVT;
694   MVT RegisterVT;
695   unsigned NumIntermediates;
696   unsigned NumRegs;
697   if (IsABIRegCopy) {
698     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
699         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
700         NumIntermediates, RegisterVT);
701   } else {
702     NumRegs =
703         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
704                                    NumIntermediates, RegisterVT);
705   }
706 
707   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
708   NumParts = NumRegs; // Silence a compiler warning.
709   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
710 
711   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
712          "Mixing scalable and fixed vectors when copying in parts");
713 
714   Optional<ElementCount> DestEltCnt;
715 
716   if (IntermediateVT.isVector())
717     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
718   else
719     DestEltCnt = ElementCount::getFixed(NumIntermediates);
720 
721   EVT BuiltVectorTy = EVT::getVectorVT(
722       *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt.getValue());
723 
724   if (ValueVT == BuiltVectorTy) {
725     // Nothing to do.
726   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
727     // Bitconvert vector->vector case.
728     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
729   } else if (SDValue Widened =
730                  widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
731     Val = Widened;
732   } else if (BuiltVectorTy.getVectorElementType().bitsGE(
733                  ValueVT.getVectorElementType()) &&
734              BuiltVectorTy.getVectorElementCount() ==
735                  ValueVT.getVectorElementCount()) {
736     // Promoted vector extract
737     Val = DAG.getAnyExtOrTrunc(Val, DL, BuiltVectorTy);
738   }
739 
740   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
741 
742   // Split the vector into intermediate operands.
743   SmallVector<SDValue, 8> Ops(NumIntermediates);
744   for (unsigned i = 0; i != NumIntermediates; ++i) {
745     if (IntermediateVT.isVector()) {
746       // This does something sensible for scalable vectors - see the
747       // definition of EXTRACT_SUBVECTOR for further details.
748       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
749       Ops[i] =
750           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
751                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
752     } else {
753       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
754                            DAG.getVectorIdxConstant(i, DL));
755     }
756   }
757 
758   // Split the intermediate operands into legal parts.
759   if (NumParts == NumIntermediates) {
760     // If the register was not expanded, promote or copy the value,
761     // as appropriate.
762     for (unsigned i = 0; i != NumParts; ++i)
763       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
764   } else if (NumParts > 0) {
765     // If the intermediate type was expanded, split each the value into
766     // legal parts.
767     assert(NumIntermediates != 0 && "division by zero");
768     assert(NumParts % NumIntermediates == 0 &&
769            "Must expand into a divisible number of parts!");
770     unsigned Factor = NumParts / NumIntermediates;
771     for (unsigned i = 0; i != NumIntermediates; ++i)
772       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
773                      CallConv);
774   }
775 }
776 
RegsForValue(const SmallVector<unsigned,4> & regs,MVT regvt,EVT valuevt,Optional<CallingConv::ID> CC)777 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
778                            EVT valuevt, Optional<CallingConv::ID> CC)
779     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
780       RegCount(1, regs.size()), CallConv(CC) {}
781 
RegsForValue(LLVMContext & Context,const TargetLowering & TLI,const DataLayout & DL,unsigned Reg,Type * Ty,Optional<CallingConv::ID> CC)782 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
783                            const DataLayout &DL, unsigned Reg, Type *Ty,
784                            Optional<CallingConv::ID> CC) {
785   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
786 
787   CallConv = CC;
788 
789   for (EVT ValueVT : ValueVTs) {
790     unsigned NumRegs =
791         isABIMangled()
792             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
793             : TLI.getNumRegisters(Context, ValueVT);
794     MVT RegisterVT =
795         isABIMangled()
796             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
797             : TLI.getRegisterType(Context, ValueVT);
798     for (unsigned i = 0; i != NumRegs; ++i)
799       Regs.push_back(Reg + i);
800     RegVTs.push_back(RegisterVT);
801     RegCount.push_back(NumRegs);
802     Reg += NumRegs;
803   }
804 }
805 
getCopyFromRegs(SelectionDAG & DAG,FunctionLoweringInfo & FuncInfo,const SDLoc & dl,SDValue & Chain,SDValue * Flag,const Value * V) const806 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
807                                       FunctionLoweringInfo &FuncInfo,
808                                       const SDLoc &dl, SDValue &Chain,
809                                       SDValue *Flag, const Value *V) const {
810   // A Value with type {} or [0 x %t] needs no registers.
811   if (ValueVTs.empty())
812     return SDValue();
813 
814   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
815 
816   // Assemble the legal parts into the final values.
817   SmallVector<SDValue, 4> Values(ValueVTs.size());
818   SmallVector<SDValue, 8> Parts;
819   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
820     // Copy the legal parts from the registers.
821     EVT ValueVT = ValueVTs[Value];
822     unsigned NumRegs = RegCount[Value];
823     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
824                                           *DAG.getContext(),
825                                           CallConv.getValue(), RegVTs[Value])
826                                     : RegVTs[Value];
827 
828     Parts.resize(NumRegs);
829     for (unsigned i = 0; i != NumRegs; ++i) {
830       SDValue P;
831       if (!Flag) {
832         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
833       } else {
834         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
835         *Flag = P.getValue(2);
836       }
837 
838       Chain = P.getValue(1);
839       Parts[i] = P;
840 
841       // If the source register was virtual and if we know something about it,
842       // add an assert node.
843       if (!Register::isVirtualRegister(Regs[Part + i]) ||
844           !RegisterVT.isInteger())
845         continue;
846 
847       const FunctionLoweringInfo::LiveOutInfo *LOI =
848         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
849       if (!LOI)
850         continue;
851 
852       unsigned RegSize = RegisterVT.getScalarSizeInBits();
853       unsigned NumSignBits = LOI->NumSignBits;
854       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
855 
856       if (NumZeroBits == RegSize) {
857         // The current value is a zero.
858         // Explicitly express that as it would be easier for
859         // optimizations to kick in.
860         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
861         continue;
862       }
863 
864       // FIXME: We capture more information than the dag can represent.  For
865       // now, just use the tightest assertzext/assertsext possible.
866       bool isSExt;
867       EVT FromVT(MVT::Other);
868       if (NumZeroBits) {
869         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
870         isSExt = false;
871       } else if (NumSignBits > 1) {
872         FromVT =
873             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
874         isSExt = true;
875       } else {
876         continue;
877       }
878       // Add an assertion node.
879       assert(FromVT != MVT::Other);
880       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
881                              RegisterVT, P, DAG.getValueType(FromVT));
882     }
883 
884     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
885                                      RegisterVT, ValueVT, V, CallConv);
886     Part += NumRegs;
887     Parts.clear();
888   }
889 
890   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
891 }
892 
getCopyToRegs(SDValue Val,SelectionDAG & DAG,const SDLoc & dl,SDValue & Chain,SDValue * Flag,const Value * V,ISD::NodeType PreferredExtendType) const893 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
894                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
895                                  const Value *V,
896                                  ISD::NodeType PreferredExtendType) const {
897   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
898   ISD::NodeType ExtendKind = PreferredExtendType;
899 
900   // Get the list of the values's legal parts.
901   unsigned NumRegs = Regs.size();
902   SmallVector<SDValue, 8> Parts(NumRegs);
903   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
904     unsigned NumParts = RegCount[Value];
905 
906     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
907                                           *DAG.getContext(),
908                                           CallConv.getValue(), RegVTs[Value])
909                                     : RegVTs[Value];
910 
911     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
912       ExtendKind = ISD::ZERO_EXTEND;
913 
914     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
915                    NumParts, RegisterVT, V, CallConv, ExtendKind);
916     Part += NumParts;
917   }
918 
919   // Copy the parts into the registers.
920   SmallVector<SDValue, 8> Chains(NumRegs);
921   for (unsigned i = 0; i != NumRegs; ++i) {
922     SDValue Part;
923     if (!Flag) {
924       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
925     } else {
926       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
927       *Flag = Part.getValue(1);
928     }
929 
930     Chains[i] = Part.getValue(0);
931   }
932 
933   if (NumRegs == 1 || Flag)
934     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
935     // flagged to it. That is the CopyToReg nodes and the user are considered
936     // a single scheduling unit. If we create a TokenFactor and return it as
937     // chain, then the TokenFactor is both a predecessor (operand) of the
938     // user as well as a successor (the TF operands are flagged to the user).
939     // c1, f1 = CopyToReg
940     // c2, f2 = CopyToReg
941     // c3     = TokenFactor c1, c2
942     // ...
943     //        = op c3, ..., f2
944     Chain = Chains[NumRegs-1];
945   else
946     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
947 }
948 
AddInlineAsmOperands(unsigned Code,bool HasMatching,unsigned MatchingIdx,const SDLoc & dl,SelectionDAG & DAG,std::vector<SDValue> & Ops) const949 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
950                                         unsigned MatchingIdx, const SDLoc &dl,
951                                         SelectionDAG &DAG,
952                                         std::vector<SDValue> &Ops) const {
953   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
954 
955   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
956   if (HasMatching)
957     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
958   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
959     // Put the register class of the virtual registers in the flag word.  That
960     // way, later passes can recompute register class constraints for inline
961     // assembly as well as normal instructions.
962     // Don't do this for tied operands that can use the regclass information
963     // from the def.
964     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
965     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
966     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
967   }
968 
969   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
970   Ops.push_back(Res);
971 
972   if (Code == InlineAsm::Kind_Clobber) {
973     // Clobbers should always have a 1:1 mapping with registers, and may
974     // reference registers that have illegal (e.g. vector) types. Hence, we
975     // shouldn't try to apply any sort of splitting logic to them.
976     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
977            "No 1:1 mapping from clobbers to regs?");
978     Register SP = TLI.getStackPointerRegisterToSaveRestore();
979     (void)SP;
980     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
981       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
982       assert(
983           (Regs[I] != SP ||
984            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
985           "If we clobbered the stack pointer, MFI should know about it.");
986     }
987     return;
988   }
989 
990   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
991     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
992     MVT RegisterVT = RegVTs[Value];
993     for (unsigned i = 0; i != NumRegs; ++i) {
994       assert(Reg < Regs.size() && "Mismatch in # registers expected");
995       unsigned TheReg = Regs[Reg++];
996       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
997     }
998   }
999 }
1000 
1001 SmallVector<std::pair<unsigned, TypeSize>, 4>
getRegsAndSizes() const1002 RegsForValue::getRegsAndSizes() const {
1003   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1004   unsigned I = 0;
1005   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1006     unsigned RegCount = std::get<0>(CountAndVT);
1007     MVT RegisterVT = std::get<1>(CountAndVT);
1008     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1009     for (unsigned E = I + RegCount; I != E; ++I)
1010       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1011   }
1012   return OutVec;
1013 }
1014 
init(GCFunctionInfo * gfi,AliasAnalysis * aa,const TargetLibraryInfo * li)1015 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1016                                const TargetLibraryInfo *li) {
1017   AA = aa;
1018   GFI = gfi;
1019   LibInfo = li;
1020   DL = &DAG.getDataLayout();
1021   Context = DAG.getContext();
1022   LPadToCallSiteMap.clear();
1023   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1024 }
1025 
clear()1026 void SelectionDAGBuilder::clear() {
1027   NodeMap.clear();
1028   UnusedArgNodeMap.clear();
1029   PendingLoads.clear();
1030   PendingExports.clear();
1031   PendingConstrainedFP.clear();
1032   PendingConstrainedFPStrict.clear();
1033   CurInst = nullptr;
1034   HasTailCall = false;
1035   SDNodeOrder = LowestSDNodeOrder;
1036   StatepointLowering.clear();
1037 }
1038 
clearDanglingDebugInfo()1039 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1040   DanglingDebugInfoMap.clear();
1041 }
1042 
1043 // Update DAG root to include dependencies on Pending chains.
updateRoot(SmallVectorImpl<SDValue> & Pending)1044 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1045   SDValue Root = DAG.getRoot();
1046 
1047   if (Pending.empty())
1048     return Root;
1049 
1050   // Add current root to PendingChains, unless we already indirectly
1051   // depend on it.
1052   if (Root.getOpcode() != ISD::EntryToken) {
1053     unsigned i = 0, e = Pending.size();
1054     for (; i != e; ++i) {
1055       assert(Pending[i].getNode()->getNumOperands() > 1);
1056       if (Pending[i].getNode()->getOperand(0) == Root)
1057         break;  // Don't add the root if we already indirectly depend on it.
1058     }
1059 
1060     if (i == e)
1061       Pending.push_back(Root);
1062   }
1063 
1064   if (Pending.size() == 1)
1065     Root = Pending[0];
1066   else
1067     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1068 
1069   DAG.setRoot(Root);
1070   Pending.clear();
1071   return Root;
1072 }
1073 
getMemoryRoot()1074 SDValue SelectionDAGBuilder::getMemoryRoot() {
1075   return updateRoot(PendingLoads);
1076 }
1077 
getRoot()1078 SDValue SelectionDAGBuilder::getRoot() {
1079   // Chain up all pending constrained intrinsics together with all
1080   // pending loads, by simply appending them to PendingLoads and
1081   // then calling getMemoryRoot().
1082   PendingLoads.reserve(PendingLoads.size() +
1083                        PendingConstrainedFP.size() +
1084                        PendingConstrainedFPStrict.size());
1085   PendingLoads.append(PendingConstrainedFP.begin(),
1086                       PendingConstrainedFP.end());
1087   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1088                       PendingConstrainedFPStrict.end());
1089   PendingConstrainedFP.clear();
1090   PendingConstrainedFPStrict.clear();
1091   return getMemoryRoot();
1092 }
1093 
getControlRoot()1094 SDValue SelectionDAGBuilder::getControlRoot() {
1095   // We need to emit pending fpexcept.strict constrained intrinsics,
1096   // so append them to the PendingExports list.
1097   PendingExports.append(PendingConstrainedFPStrict.begin(),
1098                         PendingConstrainedFPStrict.end());
1099   PendingConstrainedFPStrict.clear();
1100   return updateRoot(PendingExports);
1101 }
1102 
visit(const Instruction & I)1103 void SelectionDAGBuilder::visit(const Instruction &I) {
1104   // Set up outgoing PHI node register values before emitting the terminator.
1105   if (I.isTerminator()) {
1106     HandlePHINodesInSuccessorBlocks(I.getParent());
1107   }
1108 
1109   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1110   if (!isa<DbgInfoIntrinsic>(I))
1111     ++SDNodeOrder;
1112 
1113   CurInst = &I;
1114 
1115   visit(I.getOpcode(), I);
1116 
1117   if (!I.isTerminator() && !HasTailCall &&
1118       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1119     CopyToExportRegsIfNeeded(&I);
1120 
1121   CurInst = nullptr;
1122 }
1123 
visitPHI(const PHINode &)1124 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1125   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1126 }
1127 
visit(unsigned Opcode,const User & I)1128 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1129   // Note: this doesn't use InstVisitor, because it has to work with
1130   // ConstantExpr's in addition to instructions.
1131   switch (Opcode) {
1132   default: llvm_unreachable("Unknown instruction type encountered!");
1133     // Build the switch statement using the Instruction.def file.
1134 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1135     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1136 #include "llvm/IR/Instruction.def"
1137   }
1138 }
1139 
addDanglingDebugInfo(const DbgValueInst * DI,DebugLoc DL,unsigned Order)1140 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI,
1141                                                DebugLoc DL, unsigned Order) {
1142   // We treat variadic dbg_values differently at this stage.
1143   if (DI->hasArgList()) {
1144     // For variadic dbg_values we will now insert an undef.
1145     // FIXME: We can potentially recover these!
1146     SmallVector<SDDbgOperand, 2> Locs;
1147     for (const Value *V : DI->getValues()) {
1148       auto Undef = UndefValue::get(V->getType());
1149       Locs.push_back(SDDbgOperand::fromConst(Undef));
1150     }
1151     SDDbgValue *SDV = DAG.getDbgValueList(
1152         DI->getVariable(), DI->getExpression(), Locs, {},
1153         /*IsIndirect=*/false, DL, Order, /*IsVariadic=*/true);
1154     DAG.AddDbgValue(SDV, /*isParameter=*/false);
1155   } else {
1156     // TODO: Dangling debug info will eventually either be resolved or produce
1157     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1158     // between the original dbg.value location and its resolved DBG_VALUE,
1159     // which we should ideally fill with an extra Undef DBG_VALUE.
1160     assert(DI->getNumVariableLocationOps() == 1 &&
1161            "DbgValueInst without an ArgList should have a single location "
1162            "operand.");
1163     DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, DL, Order);
1164   }
1165 }
1166 
dropDanglingDebugInfo(const DILocalVariable * Variable,const DIExpression * Expr)1167 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1168                                                 const DIExpression *Expr) {
1169   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1170     const DbgValueInst *DI = DDI.getDI();
1171     DIVariable *DanglingVariable = DI->getVariable();
1172     DIExpression *DanglingExpr = DI->getExpression();
1173     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1174       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1175       return true;
1176     }
1177     return false;
1178   };
1179 
1180   for (auto &DDIMI : DanglingDebugInfoMap) {
1181     DanglingDebugInfoVector &DDIV = DDIMI.second;
1182 
1183     // If debug info is to be dropped, run it through final checks to see
1184     // whether it can be salvaged.
1185     for (auto &DDI : DDIV)
1186       if (isMatchingDbgValue(DDI))
1187         salvageUnresolvedDbgValue(DDI);
1188 
1189     erase_if(DDIV, isMatchingDbgValue);
1190   }
1191 }
1192 
1193 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1194 // generate the debug data structures now that we've seen its definition.
resolveDanglingDebugInfo(const Value * V,SDValue Val)1195 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1196                                                    SDValue Val) {
1197   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1198   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1199     return;
1200 
1201   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1202   for (auto &DDI : DDIV) {
1203     const DbgValueInst *DI = DDI.getDI();
1204     assert(!DI->hasArgList() && "Not implemented for variadic dbg_values");
1205     assert(DI && "Ill-formed DanglingDebugInfo");
1206     DebugLoc dl = DDI.getdl();
1207     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1208     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1209     DILocalVariable *Variable = DI->getVariable();
1210     DIExpression *Expr = DI->getExpression();
1211     assert(Variable->isValidLocationForIntrinsic(dl) &&
1212            "Expected inlined-at fields to agree");
1213     SDDbgValue *SDV;
1214     if (Val.getNode()) {
1215       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1216       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1217       // we couldn't resolve it directly when examining the DbgValue intrinsic
1218       // in the first place we should not be more successful here). Unless we
1219       // have some test case that prove this to be correct we should avoid
1220       // calling EmitFuncArgumentDbgValue here.
1221       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1222         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1223                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1224         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1225         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1226         // inserted after the definition of Val when emitting the instructions
1227         // after ISel. An alternative could be to teach
1228         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1229         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1230                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1231                    << ValSDNodeOrder << "\n");
1232         SDV = getDbgValue(Val, Variable, Expr, dl,
1233                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1234         DAG.AddDbgValue(SDV, false);
1235       } else
1236         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1237                           << "in EmitFuncArgumentDbgValue\n");
1238     } else {
1239       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1240       auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1241       auto SDV =
1242           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1243       DAG.AddDbgValue(SDV, false);
1244     }
1245   }
1246   DDIV.clear();
1247 }
1248 
salvageUnresolvedDbgValue(DanglingDebugInfo & DDI)1249 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1250   // TODO: For the variadic implementation, instead of only checking the fail
1251   // state of `handleDebugValue`, we need know specifically which values were
1252   // invalid, so that we attempt to salvage only those values when processing
1253   // a DIArgList.
1254   assert(!DDI.getDI()->hasArgList() &&
1255          "Not implemented for variadic dbg_values");
1256   Value *V = DDI.getDI()->getValue(0);
1257   DILocalVariable *Var = DDI.getDI()->getVariable();
1258   DIExpression *Expr = DDI.getDI()->getExpression();
1259   DebugLoc DL = DDI.getdl();
1260   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1261   unsigned SDOrder = DDI.getSDNodeOrder();
1262   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1263   // that DW_OP_stack_value is desired.
1264   assert(isa<DbgValueInst>(DDI.getDI()));
1265   bool StackValue = true;
1266 
1267   // Can this Value can be encoded without any further work?
1268   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, /*IsVariadic=*/false))
1269     return;
1270 
1271   // Attempt to salvage back through as many instructions as possible. Bail if
1272   // a non-instruction is seen, such as a constant expression or global
1273   // variable. FIXME: Further work could recover those too.
1274   while (isa<Instruction>(V)) {
1275     Instruction &VAsInst = *cast<Instruction>(V);
1276     // Temporary "0", awaiting real implementation.
1277     SmallVector<Value *, 4> AdditionalValues;
1278     DIExpression *SalvagedExpr =
1279         salvageDebugInfoImpl(VAsInst, Expr, StackValue, 0, AdditionalValues);
1280 
1281     // If we cannot salvage any further, and haven't yet found a suitable debug
1282     // expression, bail out.
1283     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1284     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1285     // here for variadic dbg_values, remove that condition.
1286     if (!SalvagedExpr || !AdditionalValues.empty())
1287       break;
1288 
1289     // New value and expr now represent this debuginfo.
1290     V = VAsInst.getOperand(0);
1291     Expr = SalvagedExpr;
1292 
1293     // Some kind of simplification occurred: check whether the operand of the
1294     // salvaged debug expression can be encoded in this DAG.
1295     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder,
1296                          /*IsVariadic=*/false)) {
1297       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1298                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1299       return;
1300     }
1301   }
1302 
1303   // This was the final opportunity to salvage this debug information, and it
1304   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1305   // any earlier variable location.
1306   auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1307   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1308   DAG.AddDbgValue(SDV, false);
1309 
1310   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1311                     << "\n");
1312   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1313                     << "\n");
1314 }
1315 
handleDebugValue(ArrayRef<const Value * > Values,DILocalVariable * Var,DIExpression * Expr,DebugLoc dl,DebugLoc InstDL,unsigned Order,bool IsVariadic)1316 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1317                                            DILocalVariable *Var,
1318                                            DIExpression *Expr, DebugLoc dl,
1319                                            DebugLoc InstDL, unsigned Order,
1320                                            bool IsVariadic) {
1321   if (Values.empty())
1322     return true;
1323   SmallVector<SDDbgOperand> LocationOps;
1324   SmallVector<SDNode *> Dependencies;
1325   for (const Value *V : Values) {
1326     // Constant value.
1327     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1328         isa<ConstantPointerNull>(V)) {
1329       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1330       continue;
1331     }
1332 
1333     // If the Value is a frame index, we can create a FrameIndex debug value
1334     // without relying on the DAG at all.
1335     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1336       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1337       if (SI != FuncInfo.StaticAllocaMap.end()) {
1338         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1339         continue;
1340       }
1341     }
1342 
1343     // Do not use getValue() in here; we don't want to generate code at
1344     // this point if it hasn't been done yet.
1345     SDValue N = NodeMap[V];
1346     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1347       N = UnusedArgNodeMap[V];
1348     if (N.getNode()) {
1349       // Only emit func arg dbg value for non-variadic dbg.values for now.
1350       if (!IsVariadic && EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1351         return true;
1352       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1353         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1354         // describe stack slot locations.
1355         //
1356         // Consider "int x = 0; int *px = &x;". There are two kinds of
1357         // interesting debug values here after optimization:
1358         //
1359         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1360         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1361         //
1362         // Both describe the direct values of their associated variables.
1363         Dependencies.push_back(N.getNode());
1364         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1365         continue;
1366       }
1367       LocationOps.emplace_back(
1368           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1369       continue;
1370     }
1371 
1372     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1373     // Special rules apply for the first dbg.values of parameter variables in a
1374     // function. Identify them by the fact they reference Argument Values, that
1375     // they're parameters, and they are parameters of the current function. We
1376     // need to let them dangle until they get an SDNode.
1377     bool IsParamOfFunc =
1378         isa<Argument>(V) && Var->isParameter() && !InstDL.getInlinedAt();
1379     if (IsParamOfFunc)
1380       return false;
1381 
1382     // The value is not used in this block yet (or it would have an SDNode).
1383     // We still want the value to appear for the user if possible -- if it has
1384     // an associated VReg, we can refer to that instead.
1385     auto VMI = FuncInfo.ValueMap.find(V);
1386     if (VMI != FuncInfo.ValueMap.end()) {
1387       unsigned Reg = VMI->second;
1388       // If this is a PHI node, it may be split up into several MI PHI nodes
1389       // (in FunctionLoweringInfo::set).
1390       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1391                        V->getType(), None);
1392       if (RFV.occupiesMultipleRegs()) {
1393         // FIXME: We could potentially support variadic dbg_values here.
1394         if (IsVariadic)
1395           return false;
1396         unsigned Offset = 0;
1397         unsigned BitsToDescribe = 0;
1398         if (auto VarSize = Var->getSizeInBits())
1399           BitsToDescribe = *VarSize;
1400         if (auto Fragment = Expr->getFragmentInfo())
1401           BitsToDescribe = Fragment->SizeInBits;
1402         for (auto RegAndSize : RFV.getRegsAndSizes()) {
1403           // Bail out if all bits are described already.
1404           if (Offset >= BitsToDescribe)
1405             break;
1406           // TODO: handle scalable vectors.
1407           unsigned RegisterSize = RegAndSize.second;
1408           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1409                                       ? BitsToDescribe - Offset
1410                                       : RegisterSize;
1411           auto FragmentExpr = DIExpression::createFragmentExpression(
1412               Expr, Offset, FragmentSize);
1413           if (!FragmentExpr)
1414             continue;
1415           SDDbgValue *SDV = DAG.getVRegDbgValue(
1416               Var, *FragmentExpr, RegAndSize.first, false, dl, SDNodeOrder);
1417           DAG.AddDbgValue(SDV, false);
1418           Offset += RegisterSize;
1419         }
1420         return true;
1421       }
1422       // We can use simple vreg locations for variadic dbg_values as well.
1423       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1424       continue;
1425     }
1426     // We failed to create a SDDbgOperand for V.
1427     return false;
1428   }
1429 
1430   // We have created a SDDbgOperand for each Value in Values.
1431   // Should use Order instead of SDNodeOrder?
1432   assert(!LocationOps.empty());
1433   SDDbgValue *SDV =
1434       DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1435                           /*IsIndirect=*/false, dl, SDNodeOrder, IsVariadic);
1436   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1437   return true;
1438 }
1439 
resolveOrClearDbgInfo()1440 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1441   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1442   for (auto &Pair : DanglingDebugInfoMap)
1443     for (auto &DDI : Pair.second)
1444       salvageUnresolvedDbgValue(DDI);
1445   clearDanglingDebugInfo();
1446 }
1447 
1448 /// getCopyFromRegs - If there was virtual register allocated for the value V
1449 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
getCopyFromRegs(const Value * V,Type * Ty)1450 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1451   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1452   SDValue Result;
1453 
1454   if (It != FuncInfo.ValueMap.end()) {
1455     Register InReg = It->second;
1456 
1457     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1458                      DAG.getDataLayout(), InReg, Ty,
1459                      None); // This is not an ABI copy.
1460     SDValue Chain = DAG.getEntryNode();
1461     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1462                                  V);
1463     resolveDanglingDebugInfo(V, Result);
1464   }
1465 
1466   return Result;
1467 }
1468 
1469 /// getValue - Return an SDValue for the given Value.
getValue(const Value * V)1470 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1471   // If we already have an SDValue for this value, use it. It's important
1472   // to do this first, so that we don't create a CopyFromReg if we already
1473   // have a regular SDValue.
1474   SDValue &N = NodeMap[V];
1475   if (N.getNode()) return N;
1476 
1477   // If there's a virtual register allocated and initialized for this
1478   // value, use it.
1479   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1480     return copyFromReg;
1481 
1482   // Otherwise create a new SDValue and remember it.
1483   SDValue Val = getValueImpl(V);
1484   NodeMap[V] = Val;
1485   resolveDanglingDebugInfo(V, Val);
1486   return Val;
1487 }
1488 
1489 /// getNonRegisterValue - Return an SDValue for the given Value, but
1490 /// don't look in FuncInfo.ValueMap for a virtual register.
getNonRegisterValue(const Value * V)1491 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1492   // If we already have an SDValue for this value, use it.
1493   SDValue &N = NodeMap[V];
1494   if (N.getNode()) {
1495     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1496       // Remove the debug location from the node as the node is about to be used
1497       // in a location which may differ from the original debug location.  This
1498       // is relevant to Constant and ConstantFP nodes because they can appear
1499       // as constant expressions inside PHI nodes.
1500       N->setDebugLoc(DebugLoc());
1501     }
1502     return N;
1503   }
1504 
1505   // Otherwise create a new SDValue and remember it.
1506   SDValue Val = getValueImpl(V);
1507   NodeMap[V] = Val;
1508   resolveDanglingDebugInfo(V, Val);
1509   return Val;
1510 }
1511 
1512 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1513 /// Create an SDValue for the given value.
getValueImpl(const Value * V)1514 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1515   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1516 
1517   if (const Constant *C = dyn_cast<Constant>(V)) {
1518     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1519 
1520     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1521       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1522 
1523     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1524       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1525 
1526     if (isa<ConstantPointerNull>(C)) {
1527       unsigned AS = V->getType()->getPointerAddressSpace();
1528       return DAG.getConstant(0, getCurSDLoc(),
1529                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1530     }
1531 
1532     if (match(C, m_VScale(DAG.getDataLayout())))
1533       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1534 
1535     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1536       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1537 
1538     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1539       return DAG.getUNDEF(VT);
1540 
1541     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1542       visit(CE->getOpcode(), *CE);
1543       SDValue N1 = NodeMap[V];
1544       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1545       return N1;
1546     }
1547 
1548     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1549       SmallVector<SDValue, 4> Constants;
1550       for (const Use &U : C->operands()) {
1551         SDNode *Val = getValue(U).getNode();
1552         // If the operand is an empty aggregate, there are no values.
1553         if (!Val) continue;
1554         // Add each leaf value from the operand to the Constants list
1555         // to form a flattened list of all the values.
1556         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1557           Constants.push_back(SDValue(Val, i));
1558       }
1559 
1560       return DAG.getMergeValues(Constants, getCurSDLoc());
1561     }
1562 
1563     if (const ConstantDataSequential *CDS =
1564           dyn_cast<ConstantDataSequential>(C)) {
1565       SmallVector<SDValue, 4> Ops;
1566       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1567         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1568         // Add each leaf value from the operand to the Constants list
1569         // to form a flattened list of all the values.
1570         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1571           Ops.push_back(SDValue(Val, i));
1572       }
1573 
1574       if (isa<ArrayType>(CDS->getType()))
1575         return DAG.getMergeValues(Ops, getCurSDLoc());
1576       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1577     }
1578 
1579     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1580       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1581              "Unknown struct or array constant!");
1582 
1583       SmallVector<EVT, 4> ValueVTs;
1584       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1585       unsigned NumElts = ValueVTs.size();
1586       if (NumElts == 0)
1587         return SDValue(); // empty struct
1588       SmallVector<SDValue, 4> Constants(NumElts);
1589       for (unsigned i = 0; i != NumElts; ++i) {
1590         EVT EltVT = ValueVTs[i];
1591         if (isa<UndefValue>(C))
1592           Constants[i] = DAG.getUNDEF(EltVT);
1593         else if (EltVT.isFloatingPoint())
1594           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1595         else
1596           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1597       }
1598 
1599       return DAG.getMergeValues(Constants, getCurSDLoc());
1600     }
1601 
1602     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1603       return DAG.getBlockAddress(BA, VT);
1604 
1605     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1606       return getValue(Equiv->getGlobalValue());
1607 
1608     VectorType *VecTy = cast<VectorType>(V->getType());
1609 
1610     // Now that we know the number and type of the elements, get that number of
1611     // elements into the Ops array based on what kind of constant it is.
1612     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1613       SmallVector<SDValue, 16> Ops;
1614       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1615       for (unsigned i = 0; i != NumElements; ++i)
1616         Ops.push_back(getValue(CV->getOperand(i)));
1617 
1618       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1619     } else if (isa<ConstantAggregateZero>(C)) {
1620       EVT EltVT =
1621           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1622 
1623       SDValue Op;
1624       if (EltVT.isFloatingPoint())
1625         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1626       else
1627         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1628 
1629       if (isa<ScalableVectorType>(VecTy))
1630         return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op);
1631       else {
1632         SmallVector<SDValue, 16> Ops;
1633         Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op);
1634         return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1635       }
1636     }
1637     llvm_unreachable("Unknown vector constant");
1638   }
1639 
1640   // If this is a static alloca, generate it as the frameindex instead of
1641   // computation.
1642   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1643     DenseMap<const AllocaInst*, int>::iterator SI =
1644       FuncInfo.StaticAllocaMap.find(AI);
1645     if (SI != FuncInfo.StaticAllocaMap.end())
1646       return DAG.getFrameIndex(SI->second,
1647                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1648   }
1649 
1650   // If this is an instruction which fast-isel has deferred, select it now.
1651   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1652     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1653 
1654     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1655                      Inst->getType(), None);
1656     SDValue Chain = DAG.getEntryNode();
1657     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1658   }
1659 
1660   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) {
1661     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1662   }
1663   llvm_unreachable("Can't get register for value!");
1664 }
1665 
visitCatchPad(const CatchPadInst & I)1666 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1667   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1668   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1669   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1670   bool IsSEH = isAsynchronousEHPersonality(Pers);
1671   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1672   if (!IsSEH)
1673     CatchPadMBB->setIsEHScopeEntry();
1674   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1675   if (IsMSVCCXX || IsCoreCLR)
1676     CatchPadMBB->setIsEHFuncletEntry();
1677 }
1678 
visitCatchRet(const CatchReturnInst & I)1679 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1680   // Update machine-CFG edge.
1681   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1682   FuncInfo.MBB->addSuccessor(TargetMBB);
1683   TargetMBB->setIsEHCatchretTarget(true);
1684   DAG.getMachineFunction().setHasEHCatchret(true);
1685 
1686   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1687   bool IsSEH = isAsynchronousEHPersonality(Pers);
1688   if (IsSEH) {
1689     // If this is not a fall-through branch or optimizations are switched off,
1690     // emit the branch.
1691     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1692         TM.getOptLevel() == CodeGenOpt::None)
1693       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1694                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1695     return;
1696   }
1697 
1698   // Figure out the funclet membership for the catchret's successor.
1699   // This will be used by the FuncletLayout pass to determine how to order the
1700   // BB's.
1701   // A 'catchret' returns to the outer scope's color.
1702   Value *ParentPad = I.getCatchSwitchParentPad();
1703   const BasicBlock *SuccessorColor;
1704   if (isa<ConstantTokenNone>(ParentPad))
1705     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1706   else
1707     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1708   assert(SuccessorColor && "No parent funclet for catchret!");
1709   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1710   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1711 
1712   // Create the terminator node.
1713   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1714                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1715                             DAG.getBasicBlock(SuccessorColorMBB));
1716   DAG.setRoot(Ret);
1717 }
1718 
visitCleanupPad(const CleanupPadInst & CPI)1719 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1720   // Don't emit any special code for the cleanuppad instruction. It just marks
1721   // the start of an EH scope/funclet.
1722   FuncInfo.MBB->setIsEHScopeEntry();
1723   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1724   if (Pers != EHPersonality::Wasm_CXX) {
1725     FuncInfo.MBB->setIsEHFuncletEntry();
1726     FuncInfo.MBB->setIsCleanupFuncletEntry();
1727   }
1728 }
1729 
1730 // In wasm EH, even though a catchpad may not catch an exception if a tag does
1731 // not match, it is OK to add only the first unwind destination catchpad to the
1732 // successors, because there will be at least one invoke instruction within the
1733 // catch scope that points to the next unwind destination, if one exists, so
1734 // CFGSort cannot mess up with BB sorting order.
1735 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1736 // call within them, and catchpads only consisting of 'catch (...)' have a
1737 // '__cxa_end_catch' call within them, both of which generate invokes in case
1738 // the next unwind destination exists, i.e., the next unwind destination is not
1739 // the caller.)
1740 //
1741 // Having at most one EH pad successor is also simpler and helps later
1742 // transformations.
1743 //
1744 // For example,
1745 // current:
1746 //   invoke void @foo to ... unwind label %catch.dispatch
1747 // catch.dispatch:
1748 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
1749 // catch.start:
1750 //   ...
1751 //   ... in this BB or some other child BB dominated by this BB there will be an
1752 //   invoke that points to 'next' BB as an unwind destination
1753 //
1754 // next: ; We don't need to add this to 'current' BB's successor
1755 //   ...
findWasmUnwindDestinations(FunctionLoweringInfo & FuncInfo,const BasicBlock * EHPadBB,BranchProbability Prob,SmallVectorImpl<std::pair<MachineBasicBlock *,BranchProbability>> & UnwindDests)1756 static void findWasmUnwindDestinations(
1757     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1758     BranchProbability Prob,
1759     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1760         &UnwindDests) {
1761   while (EHPadBB) {
1762     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1763     if (isa<CleanupPadInst>(Pad)) {
1764       // Stop on cleanup pads.
1765       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1766       UnwindDests.back().first->setIsEHScopeEntry();
1767       break;
1768     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1769       // Add the catchpad handlers to the possible destinations. We don't
1770       // continue to the unwind destination of the catchswitch for wasm.
1771       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1772         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1773         UnwindDests.back().first->setIsEHScopeEntry();
1774       }
1775       break;
1776     } else {
1777       continue;
1778     }
1779   }
1780 }
1781 
1782 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1783 /// many places it could ultimately go. In the IR, we have a single unwind
1784 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1785 /// This function skips over imaginary basic blocks that hold catchswitch
1786 /// instructions, and finds all the "real" machine
1787 /// basic block destinations. As those destinations may not be successors of
1788 /// EHPadBB, here we also calculate the edge probability to those destinations.
1789 /// The passed-in Prob is the edge probability to EHPadBB.
findUnwindDestinations(FunctionLoweringInfo & FuncInfo,const BasicBlock * EHPadBB,BranchProbability Prob,SmallVectorImpl<std::pair<MachineBasicBlock *,BranchProbability>> & UnwindDests)1790 static void findUnwindDestinations(
1791     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1792     BranchProbability Prob,
1793     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1794         &UnwindDests) {
1795   EHPersonality Personality =
1796     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1797   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1798   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1799   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1800   bool IsSEH = isAsynchronousEHPersonality(Personality);
1801 
1802   if (IsWasmCXX) {
1803     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1804     assert(UnwindDests.size() <= 1 &&
1805            "There should be at most one unwind destination for wasm");
1806     return;
1807   }
1808 
1809   while (EHPadBB) {
1810     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1811     BasicBlock *NewEHPadBB = nullptr;
1812     if (isa<LandingPadInst>(Pad)) {
1813       // Stop on landingpads. They are not funclets.
1814       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1815       break;
1816     } else if (isa<CleanupPadInst>(Pad)) {
1817       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1818       // personalities.
1819       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1820       UnwindDests.back().first->setIsEHScopeEntry();
1821       UnwindDests.back().first->setIsEHFuncletEntry();
1822       break;
1823     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1824       // Add the catchpad handlers to the possible destinations.
1825       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1826         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1827         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1828         if (IsMSVCCXX || IsCoreCLR)
1829           UnwindDests.back().first->setIsEHFuncletEntry();
1830         if (!IsSEH)
1831           UnwindDests.back().first->setIsEHScopeEntry();
1832       }
1833       NewEHPadBB = CatchSwitch->getUnwindDest();
1834     } else {
1835       continue;
1836     }
1837 
1838     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1839     if (BPI && NewEHPadBB)
1840       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1841     EHPadBB = NewEHPadBB;
1842   }
1843 }
1844 
visitCleanupRet(const CleanupReturnInst & I)1845 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1846   // Update successor info.
1847   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1848   auto UnwindDest = I.getUnwindDest();
1849   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1850   BranchProbability UnwindDestProb =
1851       (BPI && UnwindDest)
1852           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1853           : BranchProbability::getZero();
1854   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1855   for (auto &UnwindDest : UnwindDests) {
1856     UnwindDest.first->setIsEHPad();
1857     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1858   }
1859   FuncInfo.MBB->normalizeSuccProbs();
1860 
1861   // Create the terminator node.
1862   SDValue Ret =
1863       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1864   DAG.setRoot(Ret);
1865 }
1866 
visitCatchSwitch(const CatchSwitchInst & CSI)1867 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1868   report_fatal_error("visitCatchSwitch not yet implemented!");
1869 }
1870 
visitRet(const ReturnInst & I)1871 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1872   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1873   auto &DL = DAG.getDataLayout();
1874   SDValue Chain = getControlRoot();
1875   SmallVector<ISD::OutputArg, 8> Outs;
1876   SmallVector<SDValue, 8> OutVals;
1877 
1878   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1879   // lower
1880   //
1881   //   %val = call <ty> @llvm.experimental.deoptimize()
1882   //   ret <ty> %val
1883   //
1884   // differently.
1885   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1886     LowerDeoptimizingReturn();
1887     return;
1888   }
1889 
1890   if (!FuncInfo.CanLowerReturn) {
1891     unsigned DemoteReg = FuncInfo.DemoteRegister;
1892     const Function *F = I.getParent()->getParent();
1893 
1894     // Emit a store of the return value through the virtual register.
1895     // Leave Outs empty so that LowerReturn won't try to load return
1896     // registers the usual way.
1897     SmallVector<EVT, 1> PtrValueVTs;
1898     ComputeValueVTs(TLI, DL,
1899                     F->getReturnType()->getPointerTo(
1900                         DAG.getDataLayout().getAllocaAddrSpace()),
1901                     PtrValueVTs);
1902 
1903     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1904                                         DemoteReg, PtrValueVTs[0]);
1905     SDValue RetOp = getValue(I.getOperand(0));
1906 
1907     SmallVector<EVT, 4> ValueVTs, MemVTs;
1908     SmallVector<uint64_t, 4> Offsets;
1909     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1910                     &Offsets);
1911     unsigned NumValues = ValueVTs.size();
1912 
1913     SmallVector<SDValue, 4> Chains(NumValues);
1914     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
1915     for (unsigned i = 0; i != NumValues; ++i) {
1916       // An aggregate return value cannot wrap around the address space, so
1917       // offsets to its parts don't wrap either.
1918       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
1919                                            TypeSize::Fixed(Offsets[i]));
1920 
1921       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1922       if (MemVTs[i] != ValueVTs[i])
1923         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1924       Chains[i] = DAG.getStore(
1925           Chain, getCurSDLoc(), Val,
1926           // FIXME: better loc info would be nice.
1927           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
1928           commonAlignment(BaseAlign, Offsets[i]));
1929     }
1930 
1931     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1932                         MVT::Other, Chains);
1933   } else if (I.getNumOperands() != 0) {
1934     SmallVector<EVT, 4> ValueVTs;
1935     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1936     unsigned NumValues = ValueVTs.size();
1937     if (NumValues) {
1938       SDValue RetOp = getValue(I.getOperand(0));
1939 
1940       const Function *F = I.getParent()->getParent();
1941 
1942       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1943           I.getOperand(0)->getType(), F->getCallingConv(),
1944           /*IsVarArg*/ false);
1945 
1946       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1947       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1948                                           Attribute::SExt))
1949         ExtendKind = ISD::SIGN_EXTEND;
1950       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1951                                                Attribute::ZExt))
1952         ExtendKind = ISD::ZERO_EXTEND;
1953 
1954       LLVMContext &Context = F->getContext();
1955       bool RetInReg = F->getAttributes().hasAttribute(
1956           AttributeList::ReturnIndex, Attribute::InReg);
1957 
1958       for (unsigned j = 0; j != NumValues; ++j) {
1959         EVT VT = ValueVTs[j];
1960 
1961         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1962           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1963 
1964         CallingConv::ID CC = F->getCallingConv();
1965 
1966         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1967         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1968         SmallVector<SDValue, 4> Parts(NumParts);
1969         getCopyToParts(DAG, getCurSDLoc(),
1970                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1971                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1972 
1973         // 'inreg' on function refers to return value
1974         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1975         if (RetInReg)
1976           Flags.setInReg();
1977 
1978         if (I.getOperand(0)->getType()->isPointerTy()) {
1979           Flags.setPointer();
1980           Flags.setPointerAddrSpace(
1981               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
1982         }
1983 
1984         if (NeedsRegBlock) {
1985           Flags.setInConsecutiveRegs();
1986           if (j == NumValues - 1)
1987             Flags.setInConsecutiveRegsLast();
1988         }
1989 
1990         // Propagate extension type if any
1991         if (ExtendKind == ISD::SIGN_EXTEND)
1992           Flags.setSExt();
1993         else if (ExtendKind == ISD::ZERO_EXTEND)
1994           Flags.setZExt();
1995 
1996         for (unsigned i = 0; i < NumParts; ++i) {
1997           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1998                                         VT, /*isfixed=*/true, 0, 0));
1999           OutVals.push_back(Parts[i]);
2000         }
2001       }
2002     }
2003   }
2004 
2005   // Push in swifterror virtual register as the last element of Outs. This makes
2006   // sure swifterror virtual register will be returned in the swifterror
2007   // physical register.
2008   const Function *F = I.getParent()->getParent();
2009   if (TLI.supportSwiftError() &&
2010       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2011     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2012     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2013     Flags.setSwiftError();
2014     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
2015                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
2016                                   true /*isfixed*/, 1 /*origidx*/,
2017                                   0 /*partOffs*/));
2018     // Create SDNode for the swifterror virtual register.
2019     OutVals.push_back(
2020         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2021                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2022                         EVT(TLI.getPointerTy(DL))));
2023   }
2024 
2025   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2026   CallingConv::ID CallConv =
2027     DAG.getMachineFunction().getFunction().getCallingConv();
2028   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2029       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2030 
2031   // Verify that the target's LowerReturn behaved as expected.
2032   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2033          "LowerReturn didn't return a valid chain!");
2034 
2035   // Update the DAG with the new chain value resulting from return lowering.
2036   DAG.setRoot(Chain);
2037 }
2038 
2039 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2040 /// created for it, emit nodes to copy the value into the virtual
2041 /// registers.
CopyToExportRegsIfNeeded(const Value * V)2042 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2043   // Skip empty types
2044   if (V->getType()->isEmptyTy())
2045     return;
2046 
2047   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2048   if (VMI != FuncInfo.ValueMap.end()) {
2049     assert(!V->use_empty() && "Unused value assigned virtual registers!");
2050     CopyValueToVirtualRegister(V, VMI->second);
2051   }
2052 }
2053 
2054 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2055 /// the current basic block, add it to ValueMap now so that we'll get a
2056 /// CopyTo/FromReg.
ExportFromCurrentBlock(const Value * V)2057 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2058   // No need to export constants.
2059   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2060 
2061   // Already exported?
2062   if (FuncInfo.isExportedInst(V)) return;
2063 
2064   unsigned Reg = FuncInfo.InitializeRegForValue(V);
2065   CopyValueToVirtualRegister(V, Reg);
2066 }
2067 
isExportableFromCurrentBlock(const Value * V,const BasicBlock * FromBB)2068 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2069                                                      const BasicBlock *FromBB) {
2070   // The operands of the setcc have to be in this block.  We don't know
2071   // how to export them from some other block.
2072   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2073     // Can export from current BB.
2074     if (VI->getParent() == FromBB)
2075       return true;
2076 
2077     // Is already exported, noop.
2078     return FuncInfo.isExportedInst(V);
2079   }
2080 
2081   // If this is an argument, we can export it if the BB is the entry block or
2082   // if it is already exported.
2083   if (isa<Argument>(V)) {
2084     if (FromBB->isEntryBlock())
2085       return true;
2086 
2087     // Otherwise, can only export this if it is already exported.
2088     return FuncInfo.isExportedInst(V);
2089   }
2090 
2091   // Otherwise, constants can always be exported.
2092   return true;
2093 }
2094 
2095 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2096 BranchProbability
getEdgeProbability(const MachineBasicBlock * Src,const MachineBasicBlock * Dst) const2097 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2098                                         const MachineBasicBlock *Dst) const {
2099   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2100   const BasicBlock *SrcBB = Src->getBasicBlock();
2101   const BasicBlock *DstBB = Dst->getBasicBlock();
2102   if (!BPI) {
2103     // If BPI is not available, set the default probability as 1 / N, where N is
2104     // the number of successors.
2105     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2106     return BranchProbability(1, SuccSize);
2107   }
2108   return BPI->getEdgeProbability(SrcBB, DstBB);
2109 }
2110 
addSuccessorWithProb(MachineBasicBlock * Src,MachineBasicBlock * Dst,BranchProbability Prob)2111 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2112                                                MachineBasicBlock *Dst,
2113                                                BranchProbability Prob) {
2114   if (!FuncInfo.BPI)
2115     Src->addSuccessorWithoutProb(Dst);
2116   else {
2117     if (Prob.isUnknown())
2118       Prob = getEdgeProbability(Src, Dst);
2119     Src->addSuccessor(Dst, Prob);
2120   }
2121 }
2122 
InBlock(const Value * V,const BasicBlock * BB)2123 static bool InBlock(const Value *V, const BasicBlock *BB) {
2124   if (const Instruction *I = dyn_cast<Instruction>(V))
2125     return I->getParent() == BB;
2126   return true;
2127 }
2128 
2129 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2130 /// This function emits a branch and is used at the leaves of an OR or an
2131 /// AND operator tree.
2132 void
EmitBranchForMergedCondition(const Value * Cond,MachineBasicBlock * TBB,MachineBasicBlock * FBB,MachineBasicBlock * CurBB,MachineBasicBlock * SwitchBB,BranchProbability TProb,BranchProbability FProb,bool InvertCond)2133 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2134                                                   MachineBasicBlock *TBB,
2135                                                   MachineBasicBlock *FBB,
2136                                                   MachineBasicBlock *CurBB,
2137                                                   MachineBasicBlock *SwitchBB,
2138                                                   BranchProbability TProb,
2139                                                   BranchProbability FProb,
2140                                                   bool InvertCond) {
2141   const BasicBlock *BB = CurBB->getBasicBlock();
2142 
2143   // If the leaf of the tree is a comparison, merge the condition into
2144   // the caseblock.
2145   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2146     // The operands of the cmp have to be in this block.  We don't know
2147     // how to export them from some other block.  If this is the first block
2148     // of the sequence, no exporting is needed.
2149     if (CurBB == SwitchBB ||
2150         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2151          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2152       ISD::CondCode Condition;
2153       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2154         ICmpInst::Predicate Pred =
2155             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2156         Condition = getICmpCondCode(Pred);
2157       } else {
2158         const FCmpInst *FC = cast<FCmpInst>(Cond);
2159         FCmpInst::Predicate Pred =
2160             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2161         Condition = getFCmpCondCode(Pred);
2162         if (TM.Options.NoNaNsFPMath)
2163           Condition = getFCmpCodeWithoutNaN(Condition);
2164       }
2165 
2166       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2167                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2168       SL->SwitchCases.push_back(CB);
2169       return;
2170     }
2171   }
2172 
2173   // Create a CaseBlock record representing this branch.
2174   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2175   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2176                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2177   SL->SwitchCases.push_back(CB);
2178 }
2179 
FindMergedConditions(const Value * Cond,MachineBasicBlock * TBB,MachineBasicBlock * FBB,MachineBasicBlock * CurBB,MachineBasicBlock * SwitchBB,Instruction::BinaryOps Opc,BranchProbability TProb,BranchProbability FProb,bool InvertCond)2180 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2181                                                MachineBasicBlock *TBB,
2182                                                MachineBasicBlock *FBB,
2183                                                MachineBasicBlock *CurBB,
2184                                                MachineBasicBlock *SwitchBB,
2185                                                Instruction::BinaryOps Opc,
2186                                                BranchProbability TProb,
2187                                                BranchProbability FProb,
2188                                                bool InvertCond) {
2189   // Skip over not part of the tree and remember to invert op and operands at
2190   // next level.
2191   Value *NotCond;
2192   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2193       InBlock(NotCond, CurBB->getBasicBlock())) {
2194     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2195                          !InvertCond);
2196     return;
2197   }
2198 
2199   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2200   const Value *BOpOp0, *BOpOp1;
2201   // Compute the effective opcode for Cond, taking into account whether it needs
2202   // to be inverted, e.g.
2203   //   and (not (or A, B)), C
2204   // gets lowered as
2205   //   and (and (not A, not B), C)
2206   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2207   if (BOp) {
2208     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2209                ? Instruction::And
2210                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2211                       ? Instruction::Or
2212                       : (Instruction::BinaryOps)0);
2213     if (InvertCond) {
2214       if (BOpc == Instruction::And)
2215         BOpc = Instruction::Or;
2216       else if (BOpc == Instruction::Or)
2217         BOpc = Instruction::And;
2218     }
2219   }
2220 
2221   // If this node is not part of the or/and tree, emit it as a branch.
2222   // Note that all nodes in the tree should have same opcode.
2223   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2224   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2225       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2226       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2227     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2228                                  TProb, FProb, InvertCond);
2229     return;
2230   }
2231 
2232   //  Create TmpBB after CurBB.
2233   MachineFunction::iterator BBI(CurBB);
2234   MachineFunction &MF = DAG.getMachineFunction();
2235   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2236   CurBB->getParent()->insert(++BBI, TmpBB);
2237 
2238   if (Opc == Instruction::Or) {
2239     // Codegen X | Y as:
2240     // BB1:
2241     //   jmp_if_X TBB
2242     //   jmp TmpBB
2243     // TmpBB:
2244     //   jmp_if_Y TBB
2245     //   jmp FBB
2246     //
2247 
2248     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2249     // The requirement is that
2250     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2251     //     = TrueProb for original BB.
2252     // Assuming the original probabilities are A and B, one choice is to set
2253     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2254     // A/(1+B) and 2B/(1+B). This choice assumes that
2255     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2256     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2257     // TmpBB, but the math is more complicated.
2258 
2259     auto NewTrueProb = TProb / 2;
2260     auto NewFalseProb = TProb / 2 + FProb;
2261     // Emit the LHS condition.
2262     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2263                          NewFalseProb, InvertCond);
2264 
2265     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2266     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2267     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2268     // Emit the RHS condition into TmpBB.
2269     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2270                          Probs[1], InvertCond);
2271   } else {
2272     assert(Opc == Instruction::And && "Unknown merge op!");
2273     // Codegen X & Y as:
2274     // BB1:
2275     //   jmp_if_X TmpBB
2276     //   jmp FBB
2277     // TmpBB:
2278     //   jmp_if_Y TBB
2279     //   jmp FBB
2280     //
2281     //  This requires creation of TmpBB after CurBB.
2282 
2283     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2284     // The requirement is that
2285     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2286     //     = FalseProb for original BB.
2287     // Assuming the original probabilities are A and B, one choice is to set
2288     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2289     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2290     // TrueProb for BB1 * FalseProb for TmpBB.
2291 
2292     auto NewTrueProb = TProb + FProb / 2;
2293     auto NewFalseProb = FProb / 2;
2294     // Emit the LHS condition.
2295     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2296                          NewFalseProb, InvertCond);
2297 
2298     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2299     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2300     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2301     // Emit the RHS condition into TmpBB.
2302     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2303                          Probs[1], InvertCond);
2304   }
2305 }
2306 
2307 /// If the set of cases should be emitted as a series of branches, return true.
2308 /// If we should emit this as a bunch of and/or'd together conditions, return
2309 /// false.
2310 bool
ShouldEmitAsBranches(const std::vector<CaseBlock> & Cases)2311 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2312   if (Cases.size() != 2) return true;
2313 
2314   // If this is two comparisons of the same values or'd or and'd together, they
2315   // will get folded into a single comparison, so don't emit two blocks.
2316   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2317        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2318       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2319        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2320     return false;
2321   }
2322 
2323   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2324   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2325   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2326       Cases[0].CC == Cases[1].CC &&
2327       isa<Constant>(Cases[0].CmpRHS) &&
2328       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2329     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2330       return false;
2331     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2332       return false;
2333   }
2334 
2335   return true;
2336 }
2337 
visitBr(const BranchInst & I)2338 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2339   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2340 
2341   // Update machine-CFG edges.
2342   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2343 
2344   if (I.isUnconditional()) {
2345     // Update machine-CFG edges.
2346     BrMBB->addSuccessor(Succ0MBB);
2347 
2348     // If this is not a fall-through branch or optimizations are switched off,
2349     // emit the branch.
2350     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2351       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2352                               MVT::Other, getControlRoot(),
2353                               DAG.getBasicBlock(Succ0MBB)));
2354 
2355     return;
2356   }
2357 
2358   // If this condition is one of the special cases we handle, do special stuff
2359   // now.
2360   const Value *CondVal = I.getCondition();
2361   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2362 
2363   // If this is a series of conditions that are or'd or and'd together, emit
2364   // this as a sequence of branches instead of setcc's with and/or operations.
2365   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2366   // unpredictable branches, and vector extracts because those jumps are likely
2367   // expensive for any target), this should improve performance.
2368   // For example, instead of something like:
2369   //     cmp A, B
2370   //     C = seteq
2371   //     cmp D, E
2372   //     F = setle
2373   //     or C, F
2374   //     jnz foo
2375   // Emit:
2376   //     cmp A, B
2377   //     je foo
2378   //     cmp D, E
2379   //     jle foo
2380   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2381   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2382       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2383     Value *Vec;
2384     const Value *BOp0, *BOp1;
2385     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2386     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2387       Opcode = Instruction::And;
2388     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2389       Opcode = Instruction::Or;
2390 
2391     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2392                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2393       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2394                            getEdgeProbability(BrMBB, Succ0MBB),
2395                            getEdgeProbability(BrMBB, Succ1MBB),
2396                            /*InvertCond=*/false);
2397       // If the compares in later blocks need to use values not currently
2398       // exported from this block, export them now.  This block should always
2399       // be the first entry.
2400       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2401 
2402       // Allow some cases to be rejected.
2403       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2404         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2405           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2406           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2407         }
2408 
2409         // Emit the branch for this block.
2410         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2411         SL->SwitchCases.erase(SL->SwitchCases.begin());
2412         return;
2413       }
2414 
2415       // Okay, we decided not to do this, remove any inserted MBB's and clear
2416       // SwitchCases.
2417       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2418         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2419 
2420       SL->SwitchCases.clear();
2421     }
2422   }
2423 
2424   // Create a CaseBlock record representing this branch.
2425   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2426                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2427 
2428   // Use visitSwitchCase to actually insert the fast branch sequence for this
2429   // cond branch.
2430   visitSwitchCase(CB, BrMBB);
2431 }
2432 
2433 /// visitSwitchCase - Emits the necessary code to represent a single node in
2434 /// the binary search tree resulting from lowering a switch instruction.
visitSwitchCase(CaseBlock & CB,MachineBasicBlock * SwitchBB)2435 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2436                                           MachineBasicBlock *SwitchBB) {
2437   SDValue Cond;
2438   SDValue CondLHS = getValue(CB.CmpLHS);
2439   SDLoc dl = CB.DL;
2440 
2441   if (CB.CC == ISD::SETTRUE) {
2442     // Branch or fall through to TrueBB.
2443     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2444     SwitchBB->normalizeSuccProbs();
2445     if (CB.TrueBB != NextBlock(SwitchBB)) {
2446       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2447                               DAG.getBasicBlock(CB.TrueBB)));
2448     }
2449     return;
2450   }
2451 
2452   auto &TLI = DAG.getTargetLoweringInfo();
2453   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2454 
2455   // Build the setcc now.
2456   if (!CB.CmpMHS) {
2457     // Fold "(X == true)" to X and "(X == false)" to !X to
2458     // handle common cases produced by branch lowering.
2459     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2460         CB.CC == ISD::SETEQ)
2461       Cond = CondLHS;
2462     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2463              CB.CC == ISD::SETEQ) {
2464       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2465       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2466     } else {
2467       SDValue CondRHS = getValue(CB.CmpRHS);
2468 
2469       // If a pointer's DAG type is larger than its memory type then the DAG
2470       // values are zero-extended. This breaks signed comparisons so truncate
2471       // back to the underlying type before doing the compare.
2472       if (CondLHS.getValueType() != MemVT) {
2473         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2474         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2475       }
2476       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2477     }
2478   } else {
2479     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2480 
2481     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2482     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2483 
2484     SDValue CmpOp = getValue(CB.CmpMHS);
2485     EVT VT = CmpOp.getValueType();
2486 
2487     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2488       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2489                           ISD::SETLE);
2490     } else {
2491       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2492                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2493       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2494                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2495     }
2496   }
2497 
2498   // Update successor info
2499   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2500   // TrueBB and FalseBB are always different unless the incoming IR is
2501   // degenerate. This only happens when running llc on weird IR.
2502   if (CB.TrueBB != CB.FalseBB)
2503     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2504   SwitchBB->normalizeSuccProbs();
2505 
2506   // If the lhs block is the next block, invert the condition so that we can
2507   // fall through to the lhs instead of the rhs block.
2508   if (CB.TrueBB == NextBlock(SwitchBB)) {
2509     std::swap(CB.TrueBB, CB.FalseBB);
2510     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2511     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2512   }
2513 
2514   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2515                                MVT::Other, getControlRoot(), Cond,
2516                                DAG.getBasicBlock(CB.TrueBB));
2517 
2518   // Insert the false branch. Do this even if it's a fall through branch,
2519   // this makes it easier to do DAG optimizations which require inverting
2520   // the branch condition.
2521   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2522                        DAG.getBasicBlock(CB.FalseBB));
2523 
2524   DAG.setRoot(BrCond);
2525 }
2526 
2527 /// visitJumpTable - Emit JumpTable node in the current MBB
visitJumpTable(SwitchCG::JumpTable & JT)2528 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2529   // Emit the code for the jump table
2530   assert(JT.Reg != -1U && "Should lower JT Header first!");
2531   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2532   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2533                                      JT.Reg, PTy);
2534   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2535   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2536                                     MVT::Other, Index.getValue(1),
2537                                     Table, Index);
2538   DAG.setRoot(BrJumpTable);
2539 }
2540 
2541 /// visitJumpTableHeader - This function emits necessary code to produce index
2542 /// in the JumpTable from switch case.
visitJumpTableHeader(SwitchCG::JumpTable & JT,JumpTableHeader & JTH,MachineBasicBlock * SwitchBB)2543 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2544                                                JumpTableHeader &JTH,
2545                                                MachineBasicBlock *SwitchBB) {
2546   SDLoc dl = getCurSDLoc();
2547 
2548   // Subtract the lowest switch case value from the value being switched on.
2549   SDValue SwitchOp = getValue(JTH.SValue);
2550   EVT VT = SwitchOp.getValueType();
2551   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2552                             DAG.getConstant(JTH.First, dl, VT));
2553 
2554   // The SDNode we just created, which holds the value being switched on minus
2555   // the smallest case value, needs to be copied to a virtual register so it
2556   // can be used as an index into the jump table in a subsequent basic block.
2557   // This value may be smaller or larger than the target's pointer type, and
2558   // therefore require extension or truncating.
2559   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2560   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2561 
2562   unsigned JumpTableReg =
2563       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2564   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2565                                     JumpTableReg, SwitchOp);
2566   JT.Reg = JumpTableReg;
2567 
2568   if (!JTH.OmitRangeCheck) {
2569     // Emit the range check for the jump table, and branch to the default block
2570     // for the switch statement if the value being switched on exceeds the
2571     // largest case in the switch.
2572     SDValue CMP = DAG.getSetCC(
2573         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2574                                    Sub.getValueType()),
2575         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2576 
2577     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2578                                  MVT::Other, CopyTo, CMP,
2579                                  DAG.getBasicBlock(JT.Default));
2580 
2581     // Avoid emitting unnecessary branches to the next block.
2582     if (JT.MBB != NextBlock(SwitchBB))
2583       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2584                            DAG.getBasicBlock(JT.MBB));
2585 
2586     DAG.setRoot(BrCond);
2587   } else {
2588     // Avoid emitting unnecessary branches to the next block.
2589     if (JT.MBB != NextBlock(SwitchBB))
2590       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2591                               DAG.getBasicBlock(JT.MBB)));
2592     else
2593       DAG.setRoot(CopyTo);
2594   }
2595 }
2596 
2597 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2598 /// variable if there exists one.
getLoadStackGuard(SelectionDAG & DAG,const SDLoc & DL,SDValue & Chain)2599 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2600                                  SDValue &Chain) {
2601   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2602   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2603   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2604   MachineFunction &MF = DAG.getMachineFunction();
2605   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2606   MachineSDNode *Node =
2607       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2608   if (Global) {
2609     MachinePointerInfo MPInfo(Global);
2610     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2611                  MachineMemOperand::MODereferenceable;
2612     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2613         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2614     DAG.setNodeMemRefs(Node, {MemRef});
2615   }
2616   if (PtrTy != PtrMemTy)
2617     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2618   return SDValue(Node, 0);
2619 }
2620 
2621 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2622 /// tail spliced into a stack protector check success bb.
2623 ///
2624 /// For a high level explanation of how this fits into the stack protector
2625 /// generation see the comment on the declaration of class
2626 /// StackProtectorDescriptor.
visitSPDescriptorParent(StackProtectorDescriptor & SPD,MachineBasicBlock * ParentBB)2627 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2628                                                   MachineBasicBlock *ParentBB) {
2629 
2630   // First create the loads to the guard/stack slot for the comparison.
2631   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2632   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2633   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2634 
2635   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2636   int FI = MFI.getStackProtectorIndex();
2637 
2638   SDValue Guard;
2639   SDLoc dl = getCurSDLoc();
2640   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2641   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2642   Align Align = DL->getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
2643 
2644   // Generate code to load the content of the guard slot.
2645   SDValue GuardVal = DAG.getLoad(
2646       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2647       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2648       MachineMemOperand::MOVolatile);
2649 
2650   if (TLI.useStackGuardXorFP())
2651     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2652 
2653   // Retrieve guard check function, nullptr if instrumentation is inlined.
2654   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2655     // The target provides a guard check function to validate the guard value.
2656     // Generate a call to that function with the content of the guard slot as
2657     // argument.
2658     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2659     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2660 
2661     TargetLowering::ArgListTy Args;
2662     TargetLowering::ArgListEntry Entry;
2663     Entry.Node = GuardVal;
2664     Entry.Ty = FnTy->getParamType(0);
2665     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2666       Entry.IsInReg = true;
2667     Args.push_back(Entry);
2668 
2669     TargetLowering::CallLoweringInfo CLI(DAG);
2670     CLI.setDebugLoc(getCurSDLoc())
2671         .setChain(DAG.getEntryNode())
2672         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2673                    getValue(GuardCheckFn), std::move(Args));
2674 
2675     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2676     DAG.setRoot(Result.second);
2677     return;
2678   }
2679 
2680   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2681   // Otherwise, emit a volatile load to retrieve the stack guard value.
2682   SDValue Chain = DAG.getEntryNode();
2683   if (TLI.useLoadStackGuardNode()) {
2684     Guard = getLoadStackGuard(DAG, dl, Chain);
2685   } else {
2686     const Value *IRGuard = TLI.getSDagStackGuard(M);
2687     SDValue GuardPtr = getValue(IRGuard);
2688 
2689     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2690                         MachinePointerInfo(IRGuard, 0), Align,
2691                         MachineMemOperand::MOVolatile);
2692   }
2693 
2694   // Perform the comparison via a getsetcc.
2695   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2696                                                         *DAG.getContext(),
2697                                                         Guard.getValueType()),
2698                              Guard, GuardVal, ISD::SETNE);
2699 
2700   // If the guard/stackslot do not equal, branch to failure MBB.
2701   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2702                                MVT::Other, GuardVal.getOperand(0),
2703                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2704   // Otherwise branch to success MBB.
2705   SDValue Br = DAG.getNode(ISD::BR, dl,
2706                            MVT::Other, BrCond,
2707                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2708 
2709   DAG.setRoot(Br);
2710 }
2711 
2712 /// Codegen the failure basic block for a stack protector check.
2713 ///
2714 /// A failure stack protector machine basic block consists simply of a call to
2715 /// __stack_chk_fail().
2716 ///
2717 /// For a high level explanation of how this fits into the stack protector
2718 /// generation see the comment on the declaration of class
2719 /// StackProtectorDescriptor.
2720 void
visitSPDescriptorFailure(StackProtectorDescriptor & SPD)2721 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2722   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2723   TargetLowering::MakeLibCallOptions CallOptions;
2724   CallOptions.setDiscardResult(true);
2725   SDValue Chain =
2726       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2727                       None, CallOptions, getCurSDLoc()).second;
2728   // On PS4, the "return address" must still be within the calling function,
2729   // even if it's at the very end, so emit an explicit TRAP here.
2730   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2731   if (TM.getTargetTriple().isPS4CPU())
2732     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2733   // WebAssembly needs an unreachable instruction after a non-returning call,
2734   // because the function return type can be different from __stack_chk_fail's
2735   // return type (void).
2736   if (TM.getTargetTriple().isWasm())
2737     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2738 
2739   DAG.setRoot(Chain);
2740 }
2741 
2742 /// visitBitTestHeader - This function emits necessary code to produce value
2743 /// suitable for "bit tests"
visitBitTestHeader(BitTestBlock & B,MachineBasicBlock * SwitchBB)2744 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2745                                              MachineBasicBlock *SwitchBB) {
2746   SDLoc dl = getCurSDLoc();
2747 
2748   // Subtract the minimum value.
2749   SDValue SwitchOp = getValue(B.SValue);
2750   EVT VT = SwitchOp.getValueType();
2751   SDValue RangeSub =
2752       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2753 
2754   // Determine the type of the test operands.
2755   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2756   bool UsePtrType = false;
2757   if (!TLI.isTypeLegal(VT)) {
2758     UsePtrType = true;
2759   } else {
2760     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2761       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2762         // Switch table case range are encoded into series of masks.
2763         // Just use pointer type, it's guaranteed to fit.
2764         UsePtrType = true;
2765         break;
2766       }
2767   }
2768   SDValue Sub = RangeSub;
2769   if (UsePtrType) {
2770     VT = TLI.getPointerTy(DAG.getDataLayout());
2771     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2772   }
2773 
2774   B.RegVT = VT.getSimpleVT();
2775   B.Reg = FuncInfo.CreateReg(B.RegVT);
2776   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2777 
2778   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2779 
2780   if (!B.OmitRangeCheck)
2781     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2782   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2783   SwitchBB->normalizeSuccProbs();
2784 
2785   SDValue Root = CopyTo;
2786   if (!B.OmitRangeCheck) {
2787     // Conditional branch to the default block.
2788     SDValue RangeCmp = DAG.getSetCC(dl,
2789         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2790                                RangeSub.getValueType()),
2791         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2792         ISD::SETUGT);
2793 
2794     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2795                        DAG.getBasicBlock(B.Default));
2796   }
2797 
2798   // Avoid emitting unnecessary branches to the next block.
2799   if (MBB != NextBlock(SwitchBB))
2800     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2801 
2802   DAG.setRoot(Root);
2803 }
2804 
2805 /// visitBitTestCase - this function produces one "bit test"
visitBitTestCase(BitTestBlock & BB,MachineBasicBlock * NextMBB,BranchProbability BranchProbToNext,unsigned Reg,BitTestCase & B,MachineBasicBlock * SwitchBB)2806 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2807                                            MachineBasicBlock* NextMBB,
2808                                            BranchProbability BranchProbToNext,
2809                                            unsigned Reg,
2810                                            BitTestCase &B,
2811                                            MachineBasicBlock *SwitchBB) {
2812   SDLoc dl = getCurSDLoc();
2813   MVT VT = BB.RegVT;
2814   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2815   SDValue Cmp;
2816   unsigned PopCount = countPopulation(B.Mask);
2817   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2818   if (PopCount == 1) {
2819     // Testing for a single bit; just compare the shift count with what it
2820     // would need to be to shift a 1 bit in that position.
2821     Cmp = DAG.getSetCC(
2822         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2823         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2824         ISD::SETEQ);
2825   } else if (PopCount == BB.Range) {
2826     // There is only one zero bit in the range, test for it directly.
2827     Cmp = DAG.getSetCC(
2828         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2829         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2830         ISD::SETNE);
2831   } else {
2832     // Make desired shift
2833     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2834                                     DAG.getConstant(1, dl, VT), ShiftOp);
2835 
2836     // Emit bit tests and jumps
2837     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2838                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2839     Cmp = DAG.getSetCC(
2840         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2841         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2842   }
2843 
2844   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2845   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2846   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2847   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2848   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2849   // one as they are relative probabilities (and thus work more like weights),
2850   // and hence we need to normalize them to let the sum of them become one.
2851   SwitchBB->normalizeSuccProbs();
2852 
2853   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2854                               MVT::Other, getControlRoot(),
2855                               Cmp, DAG.getBasicBlock(B.TargetBB));
2856 
2857   // Avoid emitting unnecessary branches to the next block.
2858   if (NextMBB != NextBlock(SwitchBB))
2859     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2860                         DAG.getBasicBlock(NextMBB));
2861 
2862   DAG.setRoot(BrAnd);
2863 }
2864 
visitInvoke(const InvokeInst & I)2865 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2866   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2867 
2868   // Retrieve successors. Look through artificial IR level blocks like
2869   // catchswitch for successors.
2870   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2871   const BasicBlock *EHPadBB = I.getSuccessor(1);
2872 
2873   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2874   // have to do anything here to lower funclet bundles.
2875   assert(!I.hasOperandBundlesOtherThan(
2876              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
2877               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
2878               LLVMContext::OB_cfguardtarget,
2879               LLVMContext::OB_clang_arc_attachedcall}) &&
2880          "Cannot lower invokes with arbitrary operand bundles yet!");
2881 
2882   const Value *Callee(I.getCalledOperand());
2883   const Function *Fn = dyn_cast<Function>(Callee);
2884   if (isa<InlineAsm>(Callee))
2885     visitInlineAsm(I, EHPadBB);
2886   else if (Fn && Fn->isIntrinsic()) {
2887     switch (Fn->getIntrinsicID()) {
2888     default:
2889       llvm_unreachable("Cannot invoke this intrinsic");
2890     case Intrinsic::donothing:
2891       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2892     case Intrinsic::seh_try_begin:
2893     case Intrinsic::seh_scope_begin:
2894     case Intrinsic::seh_try_end:
2895     case Intrinsic::seh_scope_end:
2896       break;
2897     case Intrinsic::experimental_patchpoint_void:
2898     case Intrinsic::experimental_patchpoint_i64:
2899       visitPatchpoint(I, EHPadBB);
2900       break;
2901     case Intrinsic::experimental_gc_statepoint:
2902       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
2903       break;
2904     case Intrinsic::wasm_rethrow: {
2905       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2906       // special because it can be invoked, so we manually lower it to a DAG
2907       // node here.
2908       SmallVector<SDValue, 8> Ops;
2909       Ops.push_back(getRoot()); // inchain
2910       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2911       Ops.push_back(
2912           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
2913                                 TLI.getPointerTy(DAG.getDataLayout())));
2914       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2915       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2916       break;
2917     }
2918     }
2919   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2920     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2921     // Eventually we will support lowering the @llvm.experimental.deoptimize
2922     // intrinsic, and right now there are no plans to support other intrinsics
2923     // with deopt state.
2924     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2925   } else {
2926     LowerCallTo(I, getValue(Callee), false, EHPadBB);
2927   }
2928 
2929   // If the value of the invoke is used outside of its defining block, make it
2930   // available as a virtual register.
2931   // We already took care of the exported value for the statepoint instruction
2932   // during call to the LowerStatepoint.
2933   if (!isa<GCStatepointInst>(I)) {
2934     CopyToExportRegsIfNeeded(&I);
2935   }
2936 
2937   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2938   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2939   BranchProbability EHPadBBProb =
2940       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2941           : BranchProbability::getZero();
2942   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2943 
2944   // Update successor info.
2945   addSuccessorWithProb(InvokeMBB, Return);
2946   for (auto &UnwindDest : UnwindDests) {
2947     UnwindDest.first->setIsEHPad();
2948     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2949   }
2950   InvokeMBB->normalizeSuccProbs();
2951 
2952   // Drop into normal successor.
2953   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2954                           DAG.getBasicBlock(Return)));
2955 }
2956 
visitCallBr(const CallBrInst & I)2957 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2958   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2959 
2960   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2961   // have to do anything here to lower funclet bundles.
2962   assert(!I.hasOperandBundlesOtherThan(
2963              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2964          "Cannot lower callbrs with arbitrary operand bundles yet!");
2965 
2966   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
2967   visitInlineAsm(I);
2968   CopyToExportRegsIfNeeded(&I);
2969 
2970   // Retrieve successors.
2971   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2972 
2973   // Update successor info.
2974   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
2975   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2976     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2977     addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
2978     Target->setIsInlineAsmBrIndirectTarget();
2979   }
2980   CallBrMBB->normalizeSuccProbs();
2981 
2982   // Drop into default successor.
2983   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2984                           MVT::Other, getControlRoot(),
2985                           DAG.getBasicBlock(Return)));
2986 }
2987 
visitResume(const ResumeInst & RI)2988 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2989   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2990 }
2991 
visitLandingPad(const LandingPadInst & LP)2992 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2993   assert(FuncInfo.MBB->isEHPad() &&
2994          "Call to landingpad not in landing pad!");
2995 
2996   // If there aren't registers to copy the values into (e.g., during SjLj
2997   // exceptions), then don't bother to create these DAG nodes.
2998   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2999   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3000   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3001       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3002     return;
3003 
3004   // If landingpad's return type is token type, we don't create DAG nodes
3005   // for its exception pointer and selector value. The extraction of exception
3006   // pointer or selector value from token type landingpads is not currently
3007   // supported.
3008   if (LP.getType()->isTokenTy())
3009     return;
3010 
3011   SmallVector<EVT, 2> ValueVTs;
3012   SDLoc dl = getCurSDLoc();
3013   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3014   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3015 
3016   // Get the two live-in registers as SDValues. The physregs have already been
3017   // copied into virtual registers.
3018   SDValue Ops[2];
3019   if (FuncInfo.ExceptionPointerVirtReg) {
3020     Ops[0] = DAG.getZExtOrTrunc(
3021         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3022                            FuncInfo.ExceptionPointerVirtReg,
3023                            TLI.getPointerTy(DAG.getDataLayout())),
3024         dl, ValueVTs[0]);
3025   } else {
3026     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3027   }
3028   Ops[1] = DAG.getZExtOrTrunc(
3029       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3030                          FuncInfo.ExceptionSelectorVirtReg,
3031                          TLI.getPointerTy(DAG.getDataLayout())),
3032       dl, ValueVTs[1]);
3033 
3034   // Merge into one.
3035   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3036                             DAG.getVTList(ValueVTs), Ops);
3037   setValue(&LP, Res);
3038 }
3039 
UpdateSplitBlock(MachineBasicBlock * First,MachineBasicBlock * Last)3040 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3041                                            MachineBasicBlock *Last) {
3042   // Update JTCases.
3043   for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i)
3044     if (SL->JTCases[i].first.HeaderBB == First)
3045       SL->JTCases[i].first.HeaderBB = Last;
3046 
3047   // Update BitTestCases.
3048   for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i)
3049     if (SL->BitTestCases[i].Parent == First)
3050       SL->BitTestCases[i].Parent = Last;
3051 }
3052 
visitIndirectBr(const IndirectBrInst & I)3053 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3054   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3055 
3056   // Update machine-CFG edges with unique successors.
3057   SmallSet<BasicBlock*, 32> Done;
3058   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3059     BasicBlock *BB = I.getSuccessor(i);
3060     bool Inserted = Done.insert(BB).second;
3061     if (!Inserted)
3062         continue;
3063 
3064     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3065     addSuccessorWithProb(IndirectBrMBB, Succ);
3066   }
3067   IndirectBrMBB->normalizeSuccProbs();
3068 
3069   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3070                           MVT::Other, getControlRoot(),
3071                           getValue(I.getAddress())));
3072 }
3073 
visitUnreachable(const UnreachableInst & I)3074 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3075   if (!DAG.getTarget().Options.TrapUnreachable)
3076     return;
3077 
3078   // We may be able to ignore unreachable behind a noreturn call.
3079   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3080     const BasicBlock &BB = *I.getParent();
3081     if (&I != &BB.front()) {
3082       BasicBlock::const_iterator PredI =
3083         std::prev(BasicBlock::const_iterator(&I));
3084       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
3085         if (Call->doesNotReturn())
3086           return;
3087       }
3088     }
3089   }
3090 
3091   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3092 }
3093 
visitUnary(const User & I,unsigned Opcode)3094 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3095   SDNodeFlags Flags;
3096 
3097   SDValue Op = getValue(I.getOperand(0));
3098   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3099                                     Op, Flags);
3100   setValue(&I, UnNodeValue);
3101 }
3102 
visitBinary(const User & I,unsigned Opcode)3103 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3104   SDNodeFlags Flags;
3105   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3106     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3107     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3108   }
3109   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3110     Flags.setExact(ExactOp->isExact());
3111   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3112     Flags.copyFMF(*FPOp);
3113 
3114   SDValue Op1 = getValue(I.getOperand(0));
3115   SDValue Op2 = getValue(I.getOperand(1));
3116   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3117                                      Op1, Op2, Flags);
3118   setValue(&I, BinNodeValue);
3119 }
3120 
visitShift(const User & I,unsigned Opcode)3121 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3122   SDValue Op1 = getValue(I.getOperand(0));
3123   SDValue Op2 = getValue(I.getOperand(1));
3124 
3125   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3126       Op1.getValueType(), DAG.getDataLayout());
3127 
3128   // Coerce the shift amount to the right type if we can.
3129   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3130     unsigned ShiftSize = ShiftTy.getSizeInBits();
3131     unsigned Op2Size = Op2.getValueSizeInBits();
3132     SDLoc DL = getCurSDLoc();
3133 
3134     // If the operand is smaller than the shift count type, promote it.
3135     if (ShiftSize > Op2Size)
3136       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3137 
3138     // If the operand is larger than the shift count type but the shift
3139     // count type has enough bits to represent any shift value, truncate
3140     // it now. This is a common case and it exposes the truncate to
3141     // optimization early.
3142     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3143       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3144     // Otherwise we'll need to temporarily settle for some other convenient
3145     // type.  Type legalization will make adjustments once the shiftee is split.
3146     else
3147       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3148   }
3149 
3150   bool nuw = false;
3151   bool nsw = false;
3152   bool exact = false;
3153 
3154   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3155 
3156     if (const OverflowingBinaryOperator *OFBinOp =
3157             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3158       nuw = OFBinOp->hasNoUnsignedWrap();
3159       nsw = OFBinOp->hasNoSignedWrap();
3160     }
3161     if (const PossiblyExactOperator *ExactOp =
3162             dyn_cast<const PossiblyExactOperator>(&I))
3163       exact = ExactOp->isExact();
3164   }
3165   SDNodeFlags Flags;
3166   Flags.setExact(exact);
3167   Flags.setNoSignedWrap(nsw);
3168   Flags.setNoUnsignedWrap(nuw);
3169   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3170                             Flags);
3171   setValue(&I, Res);
3172 }
3173 
visitSDiv(const User & I)3174 void SelectionDAGBuilder::visitSDiv(const User &I) {
3175   SDValue Op1 = getValue(I.getOperand(0));
3176   SDValue Op2 = getValue(I.getOperand(1));
3177 
3178   SDNodeFlags Flags;
3179   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3180                  cast<PossiblyExactOperator>(&I)->isExact());
3181   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3182                            Op2, Flags));
3183 }
3184 
visitICmp(const User & I)3185 void SelectionDAGBuilder::visitICmp(const User &I) {
3186   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3187   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3188     predicate = IC->getPredicate();
3189   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3190     predicate = ICmpInst::Predicate(IC->getPredicate());
3191   SDValue Op1 = getValue(I.getOperand(0));
3192   SDValue Op2 = getValue(I.getOperand(1));
3193   ISD::CondCode Opcode = getICmpCondCode(predicate);
3194 
3195   auto &TLI = DAG.getTargetLoweringInfo();
3196   EVT MemVT =
3197       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3198 
3199   // If a pointer's DAG type is larger than its memory type then the DAG values
3200   // are zero-extended. This breaks signed comparisons so truncate back to the
3201   // underlying type before doing the compare.
3202   if (Op1.getValueType() != MemVT) {
3203     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3204     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3205   }
3206 
3207   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3208                                                         I.getType());
3209   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3210 }
3211 
visitFCmp(const User & I)3212 void SelectionDAGBuilder::visitFCmp(const User &I) {
3213   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3214   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3215     predicate = FC->getPredicate();
3216   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3217     predicate = FCmpInst::Predicate(FC->getPredicate());
3218   SDValue Op1 = getValue(I.getOperand(0));
3219   SDValue Op2 = getValue(I.getOperand(1));
3220 
3221   ISD::CondCode Condition = getFCmpCondCode(predicate);
3222   auto *FPMO = cast<FPMathOperator>(&I);
3223   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3224     Condition = getFCmpCodeWithoutNaN(Condition);
3225 
3226   SDNodeFlags Flags;
3227   Flags.copyFMF(*FPMO);
3228   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3229 
3230   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3231                                                         I.getType());
3232   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3233 }
3234 
3235 // Check if the condition of the select has one use or two users that are both
3236 // selects with the same condition.
hasOnlySelectUsers(const Value * Cond)3237 static bool hasOnlySelectUsers(const Value *Cond) {
3238   return llvm::all_of(Cond->users(), [](const Value *V) {
3239     return isa<SelectInst>(V);
3240   });
3241 }
3242 
visitSelect(const User & I)3243 void SelectionDAGBuilder::visitSelect(const User &I) {
3244   SmallVector<EVT, 4> ValueVTs;
3245   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3246                   ValueVTs);
3247   unsigned NumValues = ValueVTs.size();
3248   if (NumValues == 0) return;
3249 
3250   SmallVector<SDValue, 4> Values(NumValues);
3251   SDValue Cond     = getValue(I.getOperand(0));
3252   SDValue LHSVal   = getValue(I.getOperand(1));
3253   SDValue RHSVal   = getValue(I.getOperand(2));
3254   SmallVector<SDValue, 1> BaseOps(1, Cond);
3255   ISD::NodeType OpCode =
3256       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3257 
3258   bool IsUnaryAbs = false;
3259   bool Negate = false;
3260 
3261   SDNodeFlags Flags;
3262   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3263     Flags.copyFMF(*FPOp);
3264 
3265   // Min/max matching is only viable if all output VTs are the same.
3266   if (is_splat(ValueVTs)) {
3267     EVT VT = ValueVTs[0];
3268     LLVMContext &Ctx = *DAG.getContext();
3269     auto &TLI = DAG.getTargetLoweringInfo();
3270 
3271     // We care about the legality of the operation after it has been type
3272     // legalized.
3273     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3274       VT = TLI.getTypeToTransformTo(Ctx, VT);
3275 
3276     // If the vselect is legal, assume we want to leave this as a vector setcc +
3277     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3278     // min/max is legal on the scalar type.
3279     bool UseScalarMinMax = VT.isVector() &&
3280       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3281 
3282     Value *LHS, *RHS;
3283     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3284     ISD::NodeType Opc = ISD::DELETED_NODE;
3285     switch (SPR.Flavor) {
3286     case SPF_UMAX:    Opc = ISD::UMAX; break;
3287     case SPF_UMIN:    Opc = ISD::UMIN; break;
3288     case SPF_SMAX:    Opc = ISD::SMAX; break;
3289     case SPF_SMIN:    Opc = ISD::SMIN; break;
3290     case SPF_FMINNUM:
3291       switch (SPR.NaNBehavior) {
3292       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3293       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3294       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3295       case SPNB_RETURNS_ANY: {
3296         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3297           Opc = ISD::FMINNUM;
3298         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3299           Opc = ISD::FMINIMUM;
3300         else if (UseScalarMinMax)
3301           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3302             ISD::FMINNUM : ISD::FMINIMUM;
3303         break;
3304       }
3305       }
3306       break;
3307     case SPF_FMAXNUM:
3308       switch (SPR.NaNBehavior) {
3309       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3310       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3311       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3312       case SPNB_RETURNS_ANY:
3313 
3314         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3315           Opc = ISD::FMAXNUM;
3316         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3317           Opc = ISD::FMAXIMUM;
3318         else if (UseScalarMinMax)
3319           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3320             ISD::FMAXNUM : ISD::FMAXIMUM;
3321         break;
3322       }
3323       break;
3324     case SPF_NABS:
3325       Negate = true;
3326       LLVM_FALLTHROUGH;
3327     case SPF_ABS:
3328       IsUnaryAbs = true;
3329       Opc = ISD::ABS;
3330       break;
3331     default: break;
3332     }
3333 
3334     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3335         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3336          (UseScalarMinMax &&
3337           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3338         // If the underlying comparison instruction is used by any other
3339         // instruction, the consumed instructions won't be destroyed, so it is
3340         // not profitable to convert to a min/max.
3341         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3342       OpCode = Opc;
3343       LHSVal = getValue(LHS);
3344       RHSVal = getValue(RHS);
3345       BaseOps.clear();
3346     }
3347 
3348     if (IsUnaryAbs) {
3349       OpCode = Opc;
3350       LHSVal = getValue(LHS);
3351       BaseOps.clear();
3352     }
3353   }
3354 
3355   if (IsUnaryAbs) {
3356     for (unsigned i = 0; i != NumValues; ++i) {
3357       SDLoc dl = getCurSDLoc();
3358       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3359       Values[i] =
3360           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3361       if (Negate)
3362         Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT),
3363                                 Values[i]);
3364     }
3365   } else {
3366     for (unsigned i = 0; i != NumValues; ++i) {
3367       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3368       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3369       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3370       Values[i] = DAG.getNode(
3371           OpCode, getCurSDLoc(),
3372           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3373     }
3374   }
3375 
3376   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3377                            DAG.getVTList(ValueVTs), Values));
3378 }
3379 
visitTrunc(const User & I)3380 void SelectionDAGBuilder::visitTrunc(const User &I) {
3381   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3382   SDValue N = getValue(I.getOperand(0));
3383   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3384                                                         I.getType());
3385   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3386 }
3387 
visitZExt(const User & I)3388 void SelectionDAGBuilder::visitZExt(const User &I) {
3389   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3390   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3391   SDValue N = getValue(I.getOperand(0));
3392   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3393                                                         I.getType());
3394   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3395 }
3396 
visitSExt(const User & I)3397 void SelectionDAGBuilder::visitSExt(const User &I) {
3398   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3399   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3400   SDValue N = getValue(I.getOperand(0));
3401   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3402                                                         I.getType());
3403   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3404 }
3405 
visitFPTrunc(const User & I)3406 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3407   // FPTrunc is never a no-op cast, no need to check
3408   SDValue N = getValue(I.getOperand(0));
3409   SDLoc dl = getCurSDLoc();
3410   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3411   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3412   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3413                            DAG.getTargetConstant(
3414                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3415 }
3416 
visitFPExt(const User & I)3417 void SelectionDAGBuilder::visitFPExt(const User &I) {
3418   // FPExt is never a no-op cast, no need to check
3419   SDValue N = getValue(I.getOperand(0));
3420   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3421                                                         I.getType());
3422   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3423 }
3424 
visitFPToUI(const User & I)3425 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3426   // FPToUI is never a no-op cast, no need to check
3427   SDValue N = getValue(I.getOperand(0));
3428   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3429                                                         I.getType());
3430   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3431 }
3432 
visitFPToSI(const User & I)3433 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3434   // FPToSI is never a no-op cast, no need to check
3435   SDValue N = getValue(I.getOperand(0));
3436   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3437                                                         I.getType());
3438   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3439 }
3440 
visitUIToFP(const User & I)3441 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3442   // UIToFP is never a no-op cast, no need to check
3443   SDValue N = getValue(I.getOperand(0));
3444   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3445                                                         I.getType());
3446   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3447 }
3448 
visitSIToFP(const User & I)3449 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3450   // SIToFP is never a no-op cast, no need to check
3451   SDValue N = getValue(I.getOperand(0));
3452   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3453                                                         I.getType());
3454   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3455 }
3456 
visitPtrToInt(const User & I)3457 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3458   // What to do depends on the size of the integer and the size of the pointer.
3459   // We can either truncate, zero extend, or no-op, accordingly.
3460   SDValue N = getValue(I.getOperand(0));
3461   auto &TLI = DAG.getTargetLoweringInfo();
3462   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3463                                                         I.getType());
3464   EVT PtrMemVT =
3465       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3466   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3467   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3468   setValue(&I, N);
3469 }
3470 
visitIntToPtr(const User & I)3471 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3472   // What to do depends on the size of the integer and the size of the pointer.
3473   // We can either truncate, zero extend, or no-op, accordingly.
3474   SDValue N = getValue(I.getOperand(0));
3475   auto &TLI = DAG.getTargetLoweringInfo();
3476   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3477   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3478   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3479   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3480   setValue(&I, N);
3481 }
3482 
visitBitCast(const User & I)3483 void SelectionDAGBuilder::visitBitCast(const User &I) {
3484   SDValue N = getValue(I.getOperand(0));
3485   SDLoc dl = getCurSDLoc();
3486   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3487                                                         I.getType());
3488 
3489   // BitCast assures us that source and destination are the same size so this is
3490   // either a BITCAST or a no-op.
3491   if (DestVT != N.getValueType())
3492     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3493                              DestVT, N)); // convert types.
3494   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3495   // might fold any kind of constant expression to an integer constant and that
3496   // is not what we are looking for. Only recognize a bitcast of a genuine
3497   // constant integer as an opaque constant.
3498   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3499     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3500                                  /*isOpaque*/true));
3501   else
3502     setValue(&I, N);            // noop cast.
3503 }
3504 
visitAddrSpaceCast(const User & I)3505 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3506   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3507   const Value *SV = I.getOperand(0);
3508   SDValue N = getValue(SV);
3509   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3510 
3511   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3512   unsigned DestAS = I.getType()->getPointerAddressSpace();
3513 
3514   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3515     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3516 
3517   setValue(&I, N);
3518 }
3519 
visitInsertElement(const User & I)3520 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3521   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3522   SDValue InVec = getValue(I.getOperand(0));
3523   SDValue InVal = getValue(I.getOperand(1));
3524   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3525                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3526   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3527                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3528                            InVec, InVal, InIdx));
3529 }
3530 
visitExtractElement(const User & I)3531 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3532   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3533   SDValue InVec = getValue(I.getOperand(0));
3534   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3535                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3536   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3537                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3538                            InVec, InIdx));
3539 }
3540 
visitShuffleVector(const User & I)3541 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3542   SDValue Src1 = getValue(I.getOperand(0));
3543   SDValue Src2 = getValue(I.getOperand(1));
3544   ArrayRef<int> Mask;
3545   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3546     Mask = SVI->getShuffleMask();
3547   else
3548     Mask = cast<ConstantExpr>(I).getShuffleMask();
3549   SDLoc DL = getCurSDLoc();
3550   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3551   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3552   EVT SrcVT = Src1.getValueType();
3553 
3554   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3555       VT.isScalableVector()) {
3556     // Canonical splat form of first element of first input vector.
3557     SDValue FirstElt =
3558         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3559                     DAG.getVectorIdxConstant(0, DL));
3560     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3561     return;
3562   }
3563 
3564   // For now, we only handle splats for scalable vectors.
3565   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3566   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3567   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3568 
3569   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3570   unsigned MaskNumElts = Mask.size();
3571 
3572   if (SrcNumElts == MaskNumElts) {
3573     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3574     return;
3575   }
3576 
3577   // Normalize the shuffle vector since mask and vector length don't match.
3578   if (SrcNumElts < MaskNumElts) {
3579     // Mask is longer than the source vectors. We can use concatenate vector to
3580     // make the mask and vectors lengths match.
3581 
3582     if (MaskNumElts % SrcNumElts == 0) {
3583       // Mask length is a multiple of the source vector length.
3584       // Check if the shuffle is some kind of concatenation of the input
3585       // vectors.
3586       unsigned NumConcat = MaskNumElts / SrcNumElts;
3587       bool IsConcat = true;
3588       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3589       for (unsigned i = 0; i != MaskNumElts; ++i) {
3590         int Idx = Mask[i];
3591         if (Idx < 0)
3592           continue;
3593         // Ensure the indices in each SrcVT sized piece are sequential and that
3594         // the same source is used for the whole piece.
3595         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3596             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3597              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3598           IsConcat = false;
3599           break;
3600         }
3601         // Remember which source this index came from.
3602         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3603       }
3604 
3605       // The shuffle is concatenating multiple vectors together. Just emit
3606       // a CONCAT_VECTORS operation.
3607       if (IsConcat) {
3608         SmallVector<SDValue, 8> ConcatOps;
3609         for (auto Src : ConcatSrcs) {
3610           if (Src < 0)
3611             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3612           else if (Src == 0)
3613             ConcatOps.push_back(Src1);
3614           else
3615             ConcatOps.push_back(Src2);
3616         }
3617         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3618         return;
3619       }
3620     }
3621 
3622     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3623     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3624     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3625                                     PaddedMaskNumElts);
3626 
3627     // Pad both vectors with undefs to make them the same length as the mask.
3628     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3629 
3630     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3631     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3632     MOps1[0] = Src1;
3633     MOps2[0] = Src2;
3634 
3635     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3636     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3637 
3638     // Readjust mask for new input vector length.
3639     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3640     for (unsigned i = 0; i != MaskNumElts; ++i) {
3641       int Idx = Mask[i];
3642       if (Idx >= (int)SrcNumElts)
3643         Idx -= SrcNumElts - PaddedMaskNumElts;
3644       MappedOps[i] = Idx;
3645     }
3646 
3647     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3648 
3649     // If the concatenated vector was padded, extract a subvector with the
3650     // correct number of elements.
3651     if (MaskNumElts != PaddedMaskNumElts)
3652       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3653                            DAG.getVectorIdxConstant(0, DL));
3654 
3655     setValue(&I, Result);
3656     return;
3657   }
3658 
3659   if (SrcNumElts > MaskNumElts) {
3660     // Analyze the access pattern of the vector to see if we can extract
3661     // two subvectors and do the shuffle.
3662     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3663     bool CanExtract = true;
3664     for (int Idx : Mask) {
3665       unsigned Input = 0;
3666       if (Idx < 0)
3667         continue;
3668 
3669       if (Idx >= (int)SrcNumElts) {
3670         Input = 1;
3671         Idx -= SrcNumElts;
3672       }
3673 
3674       // If all the indices come from the same MaskNumElts sized portion of
3675       // the sources we can use extract. Also make sure the extract wouldn't
3676       // extract past the end of the source.
3677       int NewStartIdx = alignDown(Idx, MaskNumElts);
3678       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3679           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3680         CanExtract = false;
3681       // Make sure we always update StartIdx as we use it to track if all
3682       // elements are undef.
3683       StartIdx[Input] = NewStartIdx;
3684     }
3685 
3686     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3687       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3688       return;
3689     }
3690     if (CanExtract) {
3691       // Extract appropriate subvector and generate a vector shuffle
3692       for (unsigned Input = 0; Input < 2; ++Input) {
3693         SDValue &Src = Input == 0 ? Src1 : Src2;
3694         if (StartIdx[Input] < 0)
3695           Src = DAG.getUNDEF(VT);
3696         else {
3697           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3698                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3699         }
3700       }
3701 
3702       // Calculate new mask.
3703       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3704       for (int &Idx : MappedOps) {
3705         if (Idx >= (int)SrcNumElts)
3706           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3707         else if (Idx >= 0)
3708           Idx -= StartIdx[0];
3709       }
3710 
3711       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3712       return;
3713     }
3714   }
3715 
3716   // We can't use either concat vectors or extract subvectors so fall back to
3717   // replacing the shuffle with extract and build vector.
3718   // to insert and build vector.
3719   EVT EltVT = VT.getVectorElementType();
3720   SmallVector<SDValue,8> Ops;
3721   for (int Idx : Mask) {
3722     SDValue Res;
3723 
3724     if (Idx < 0) {
3725       Res = DAG.getUNDEF(EltVT);
3726     } else {
3727       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3728       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3729 
3730       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3731                         DAG.getVectorIdxConstant(Idx, DL));
3732     }
3733 
3734     Ops.push_back(Res);
3735   }
3736 
3737   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3738 }
3739 
visitInsertValue(const User & I)3740 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3741   ArrayRef<unsigned> Indices;
3742   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3743     Indices = IV->getIndices();
3744   else
3745     Indices = cast<ConstantExpr>(&I)->getIndices();
3746 
3747   const Value *Op0 = I.getOperand(0);
3748   const Value *Op1 = I.getOperand(1);
3749   Type *AggTy = I.getType();
3750   Type *ValTy = Op1->getType();
3751   bool IntoUndef = isa<UndefValue>(Op0);
3752   bool FromUndef = isa<UndefValue>(Op1);
3753 
3754   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3755 
3756   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3757   SmallVector<EVT, 4> AggValueVTs;
3758   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3759   SmallVector<EVT, 4> ValValueVTs;
3760   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3761 
3762   unsigned NumAggValues = AggValueVTs.size();
3763   unsigned NumValValues = ValValueVTs.size();
3764   SmallVector<SDValue, 4> Values(NumAggValues);
3765 
3766   // Ignore an insertvalue that produces an empty object
3767   if (!NumAggValues) {
3768     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3769     return;
3770   }
3771 
3772   SDValue Agg = getValue(Op0);
3773   unsigned i = 0;
3774   // Copy the beginning value(s) from the original aggregate.
3775   for (; i != LinearIndex; ++i)
3776     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3777                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3778   // Copy values from the inserted value(s).
3779   if (NumValValues) {
3780     SDValue Val = getValue(Op1);
3781     for (; i != LinearIndex + NumValValues; ++i)
3782       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3783                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3784   }
3785   // Copy remaining value(s) from the original aggregate.
3786   for (; i != NumAggValues; ++i)
3787     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3788                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3789 
3790   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3791                            DAG.getVTList(AggValueVTs), Values));
3792 }
3793 
visitExtractValue(const User & I)3794 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3795   ArrayRef<unsigned> Indices;
3796   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3797     Indices = EV->getIndices();
3798   else
3799     Indices = cast<ConstantExpr>(&I)->getIndices();
3800 
3801   const Value *Op0 = I.getOperand(0);
3802   Type *AggTy = Op0->getType();
3803   Type *ValTy = I.getType();
3804   bool OutOfUndef = isa<UndefValue>(Op0);
3805 
3806   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3807 
3808   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3809   SmallVector<EVT, 4> ValValueVTs;
3810   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3811 
3812   unsigned NumValValues = ValValueVTs.size();
3813 
3814   // Ignore a extractvalue that produces an empty object
3815   if (!NumValValues) {
3816     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3817     return;
3818   }
3819 
3820   SmallVector<SDValue, 4> Values(NumValValues);
3821 
3822   SDValue Agg = getValue(Op0);
3823   // Copy out the selected value(s).
3824   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3825     Values[i - LinearIndex] =
3826       OutOfUndef ?
3827         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3828         SDValue(Agg.getNode(), Agg.getResNo() + i);
3829 
3830   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3831                            DAG.getVTList(ValValueVTs), Values));
3832 }
3833 
visitGetElementPtr(const User & I)3834 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3835   Value *Op0 = I.getOperand(0);
3836   // Note that the pointer operand may be a vector of pointers. Take the scalar
3837   // element which holds a pointer.
3838   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3839   SDValue N = getValue(Op0);
3840   SDLoc dl = getCurSDLoc();
3841   auto &TLI = DAG.getTargetLoweringInfo();
3842 
3843   // Normalize Vector GEP - all scalar operands should be converted to the
3844   // splat vector.
3845   bool IsVectorGEP = I.getType()->isVectorTy();
3846   ElementCount VectorElementCount =
3847       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3848                   : ElementCount::getFixed(0);
3849 
3850   if (IsVectorGEP && !N.getValueType().isVector()) {
3851     LLVMContext &Context = *DAG.getContext();
3852     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3853     if (VectorElementCount.isScalable())
3854       N = DAG.getSplatVector(VT, dl, N);
3855     else
3856       N = DAG.getSplatBuildVector(VT, dl, N);
3857   }
3858 
3859   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3860        GTI != E; ++GTI) {
3861     const Value *Idx = GTI.getOperand();
3862     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3863       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3864       if (Field) {
3865         // N = N + Offset
3866         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3867 
3868         // In an inbounds GEP with an offset that is nonnegative even when
3869         // interpreted as signed, assume there is no unsigned overflow.
3870         SDNodeFlags Flags;
3871         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3872           Flags.setNoUnsignedWrap(true);
3873 
3874         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3875                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3876       }
3877     } else {
3878       // IdxSize is the width of the arithmetic according to IR semantics.
3879       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3880       // (and fix up the result later).
3881       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3882       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3883       TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
3884       // We intentionally mask away the high bits here; ElementSize may not
3885       // fit in IdxTy.
3886       APInt ElementMul(IdxSize, ElementSize.getKnownMinSize());
3887       bool ElementScalable = ElementSize.isScalable();
3888 
3889       // If this is a scalar constant or a splat vector of constants,
3890       // handle it quickly.
3891       const auto *C = dyn_cast<Constant>(Idx);
3892       if (C && isa<VectorType>(C->getType()))
3893         C = C->getSplatValue();
3894 
3895       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3896       if (CI && CI->isZero())
3897         continue;
3898       if (CI && !ElementScalable) {
3899         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3900         LLVMContext &Context = *DAG.getContext();
3901         SDValue OffsVal;
3902         if (IsVectorGEP)
3903           OffsVal = DAG.getConstant(
3904               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3905         else
3906           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3907 
3908         // In an inbounds GEP with an offset that is nonnegative even when
3909         // interpreted as signed, assume there is no unsigned overflow.
3910         SDNodeFlags Flags;
3911         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3912           Flags.setNoUnsignedWrap(true);
3913 
3914         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3915 
3916         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3917         continue;
3918       }
3919 
3920       // N = N + Idx * ElementMul;
3921       SDValue IdxN = getValue(Idx);
3922 
3923       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3924         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3925                                   VectorElementCount);
3926         if (VectorElementCount.isScalable())
3927           IdxN = DAG.getSplatVector(VT, dl, IdxN);
3928         else
3929           IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3930       }
3931 
3932       // If the index is smaller or larger than intptr_t, truncate or extend
3933       // it.
3934       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3935 
3936       if (ElementScalable) {
3937         EVT VScaleTy = N.getValueType().getScalarType();
3938         SDValue VScale = DAG.getNode(
3939             ISD::VSCALE, dl, VScaleTy,
3940             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
3941         if (IsVectorGEP)
3942           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
3943         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
3944       } else {
3945         // If this is a multiply by a power of two, turn it into a shl
3946         // immediately.  This is a very common case.
3947         if (ElementMul != 1) {
3948           if (ElementMul.isPowerOf2()) {
3949             unsigned Amt = ElementMul.logBase2();
3950             IdxN = DAG.getNode(ISD::SHL, dl,
3951                                N.getValueType(), IdxN,
3952                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
3953           } else {
3954             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
3955                                             IdxN.getValueType());
3956             IdxN = DAG.getNode(ISD::MUL, dl,
3957                                N.getValueType(), IdxN, Scale);
3958           }
3959         }
3960       }
3961 
3962       N = DAG.getNode(ISD::ADD, dl,
3963                       N.getValueType(), N, IdxN);
3964     }
3965   }
3966 
3967   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3968   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3969   if (IsVectorGEP) {
3970     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
3971     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
3972   }
3973 
3974   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3975     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3976 
3977   setValue(&I, N);
3978 }
3979 
visitAlloca(const AllocaInst & I)3980 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3981   // If this is a fixed sized alloca in the entry block of the function,
3982   // allocate it statically on the stack.
3983   if (FuncInfo.StaticAllocaMap.count(&I))
3984     return;   // getValue will auto-populate this.
3985 
3986   SDLoc dl = getCurSDLoc();
3987   Type *Ty = I.getAllocatedType();
3988   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3989   auto &DL = DAG.getDataLayout();
3990   uint64_t TySize = DL.getTypeAllocSize(Ty);
3991   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
3992 
3993   SDValue AllocSize = getValue(I.getArraySize());
3994 
3995   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3996   if (AllocSize.getValueType() != IntPtr)
3997     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3998 
3999   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
4000                           AllocSize,
4001                           DAG.getConstant(TySize, dl, IntPtr));
4002 
4003   // Handle alignment.  If the requested alignment is less than or equal to
4004   // the stack alignment, ignore it.  If the size is greater than or equal to
4005   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4006   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4007   if (*Alignment <= StackAlign)
4008     Alignment = None;
4009 
4010   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4011   // Round the size of the allocation up to the stack alignment size
4012   // by add SA-1 to the size. This doesn't overflow because we're computing
4013   // an address inside an alloca.
4014   SDNodeFlags Flags;
4015   Flags.setNoUnsignedWrap(true);
4016   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4017                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4018 
4019   // Mask out the low bits for alignment purposes.
4020   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4021                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4022 
4023   SDValue Ops[] = {
4024       getRoot(), AllocSize,
4025       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4026   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4027   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4028   setValue(&I, DSA);
4029   DAG.setRoot(DSA.getValue(1));
4030 
4031   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4032 }
4033 
visitLoad(const LoadInst & I)4034 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4035   if (I.isAtomic())
4036     return visitAtomicLoad(I);
4037 
4038   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4039   const Value *SV = I.getOperand(0);
4040   if (TLI.supportSwiftError()) {
4041     // Swifterror values can come from either a function parameter with
4042     // swifterror attribute or an alloca with swifterror attribute.
4043     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4044       if (Arg->hasSwiftErrorAttr())
4045         return visitLoadFromSwiftError(I);
4046     }
4047 
4048     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4049       if (Alloca->isSwiftError())
4050         return visitLoadFromSwiftError(I);
4051     }
4052   }
4053 
4054   SDValue Ptr = getValue(SV);
4055 
4056   Type *Ty = I.getType();
4057   Align Alignment = I.getAlign();
4058 
4059   AAMDNodes AAInfo;
4060   I.getAAMetadata(AAInfo);
4061   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4062 
4063   SmallVector<EVT, 4> ValueVTs, MemVTs;
4064   SmallVector<uint64_t, 4> Offsets;
4065   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4066   unsigned NumValues = ValueVTs.size();
4067   if (NumValues == 0)
4068     return;
4069 
4070   bool isVolatile = I.isVolatile();
4071 
4072   SDValue Root;
4073   bool ConstantMemory = false;
4074   if (isVolatile)
4075     // Serialize volatile loads with other side effects.
4076     Root = getRoot();
4077   else if (NumValues > MaxParallelChains)
4078     Root = getMemoryRoot();
4079   else if (AA &&
4080            AA->pointsToConstantMemory(MemoryLocation(
4081                SV,
4082                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4083                AAInfo))) {
4084     // Do not serialize (non-volatile) loads of constant memory with anything.
4085     Root = DAG.getEntryNode();
4086     ConstantMemory = true;
4087   } else {
4088     // Do not serialize non-volatile loads against each other.
4089     Root = DAG.getRoot();
4090   }
4091 
4092   SDLoc dl = getCurSDLoc();
4093 
4094   if (isVolatile)
4095     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4096 
4097   // An aggregate load cannot wrap around the address space, so offsets to its
4098   // parts don't wrap either.
4099   SDNodeFlags Flags;
4100   Flags.setNoUnsignedWrap(true);
4101 
4102   SmallVector<SDValue, 4> Values(NumValues);
4103   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4104   EVT PtrVT = Ptr.getValueType();
4105 
4106   MachineMemOperand::Flags MMOFlags
4107     = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4108 
4109   unsigned ChainI = 0;
4110   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4111     // Serializing loads here may result in excessive register pressure, and
4112     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4113     // could recover a bit by hoisting nodes upward in the chain by recognizing
4114     // they are side-effect free or do not alias. The optimizer should really
4115     // avoid this case by converting large object/array copies to llvm.memcpy
4116     // (MaxParallelChains should always remain as failsafe).
4117     if (ChainI == MaxParallelChains) {
4118       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4119       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4120                                   makeArrayRef(Chains.data(), ChainI));
4121       Root = Chain;
4122       ChainI = 0;
4123     }
4124     SDValue A = DAG.getNode(ISD::ADD, dl,
4125                             PtrVT, Ptr,
4126                             DAG.getConstant(Offsets[i], dl, PtrVT),
4127                             Flags);
4128 
4129     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4130                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4131                             MMOFlags, AAInfo, Ranges);
4132     Chains[ChainI] = L.getValue(1);
4133 
4134     if (MemVTs[i] != ValueVTs[i])
4135       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4136 
4137     Values[i] = L;
4138   }
4139 
4140   if (!ConstantMemory) {
4141     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4142                                 makeArrayRef(Chains.data(), ChainI));
4143     if (isVolatile)
4144       DAG.setRoot(Chain);
4145     else
4146       PendingLoads.push_back(Chain);
4147   }
4148 
4149   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4150                            DAG.getVTList(ValueVTs), Values));
4151 }
4152 
visitStoreToSwiftError(const StoreInst & I)4153 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4154   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4155          "call visitStoreToSwiftError when backend supports swifterror");
4156 
4157   SmallVector<EVT, 4> ValueVTs;
4158   SmallVector<uint64_t, 4> Offsets;
4159   const Value *SrcV = I.getOperand(0);
4160   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4161                   SrcV->getType(), ValueVTs, &Offsets);
4162   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4163          "expect a single EVT for swifterror");
4164 
4165   SDValue Src = getValue(SrcV);
4166   // Create a virtual register, then update the virtual register.
4167   Register VReg =
4168       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4169   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4170   // Chain can be getRoot or getControlRoot.
4171   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4172                                       SDValue(Src.getNode(), Src.getResNo()));
4173   DAG.setRoot(CopyNode);
4174 }
4175 
visitLoadFromSwiftError(const LoadInst & I)4176 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4177   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4178          "call visitLoadFromSwiftError when backend supports swifterror");
4179 
4180   assert(!I.isVolatile() &&
4181          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4182          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4183          "Support volatile, non temporal, invariant for load_from_swift_error");
4184 
4185   const Value *SV = I.getOperand(0);
4186   Type *Ty = I.getType();
4187   AAMDNodes AAInfo;
4188   I.getAAMetadata(AAInfo);
4189   assert(
4190       (!AA ||
4191        !AA->pointsToConstantMemory(MemoryLocation(
4192            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4193            AAInfo))) &&
4194       "load_from_swift_error should not be constant memory");
4195 
4196   SmallVector<EVT, 4> ValueVTs;
4197   SmallVector<uint64_t, 4> Offsets;
4198   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4199                   ValueVTs, &Offsets);
4200   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4201          "expect a single EVT for swifterror");
4202 
4203   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4204   SDValue L = DAG.getCopyFromReg(
4205       getRoot(), getCurSDLoc(),
4206       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4207 
4208   setValue(&I, L);
4209 }
4210 
visitStore(const StoreInst & I)4211 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4212   if (I.isAtomic())
4213     return visitAtomicStore(I);
4214 
4215   const Value *SrcV = I.getOperand(0);
4216   const Value *PtrV = I.getOperand(1);
4217 
4218   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4219   if (TLI.supportSwiftError()) {
4220     // Swifterror values can come from either a function parameter with
4221     // swifterror attribute or an alloca with swifterror attribute.
4222     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4223       if (Arg->hasSwiftErrorAttr())
4224         return visitStoreToSwiftError(I);
4225     }
4226 
4227     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4228       if (Alloca->isSwiftError())
4229         return visitStoreToSwiftError(I);
4230     }
4231   }
4232 
4233   SmallVector<EVT, 4> ValueVTs, MemVTs;
4234   SmallVector<uint64_t, 4> Offsets;
4235   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4236                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4237   unsigned NumValues = ValueVTs.size();
4238   if (NumValues == 0)
4239     return;
4240 
4241   // Get the lowered operands. Note that we do this after
4242   // checking if NumResults is zero, because with zero results
4243   // the operands won't have values in the map.
4244   SDValue Src = getValue(SrcV);
4245   SDValue Ptr = getValue(PtrV);
4246 
4247   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4248   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4249   SDLoc dl = getCurSDLoc();
4250   Align Alignment = I.getAlign();
4251   AAMDNodes AAInfo;
4252   I.getAAMetadata(AAInfo);
4253 
4254   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4255 
4256   // An aggregate load cannot wrap around the address space, so offsets to its
4257   // parts don't wrap either.
4258   SDNodeFlags Flags;
4259   Flags.setNoUnsignedWrap(true);
4260 
4261   unsigned ChainI = 0;
4262   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4263     // See visitLoad comments.
4264     if (ChainI == MaxParallelChains) {
4265       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4266                                   makeArrayRef(Chains.data(), ChainI));
4267       Root = Chain;
4268       ChainI = 0;
4269     }
4270     SDValue Add =
4271         DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags);
4272     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4273     if (MemVTs[i] != ValueVTs[i])
4274       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4275     SDValue St =
4276         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4277                      Alignment, MMOFlags, AAInfo);
4278     Chains[ChainI] = St;
4279   }
4280 
4281   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4282                                   makeArrayRef(Chains.data(), ChainI));
4283   DAG.setRoot(StoreNode);
4284 }
4285 
visitMaskedStore(const CallInst & I,bool IsCompressing)4286 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4287                                            bool IsCompressing) {
4288   SDLoc sdl = getCurSDLoc();
4289 
4290   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4291                                MaybeAlign &Alignment) {
4292     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4293     Src0 = I.getArgOperand(0);
4294     Ptr = I.getArgOperand(1);
4295     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4296     Mask = I.getArgOperand(3);
4297   };
4298   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4299                                     MaybeAlign &Alignment) {
4300     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4301     Src0 = I.getArgOperand(0);
4302     Ptr = I.getArgOperand(1);
4303     Mask = I.getArgOperand(2);
4304     Alignment = None;
4305   };
4306 
4307   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4308   MaybeAlign Alignment;
4309   if (IsCompressing)
4310     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4311   else
4312     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4313 
4314   SDValue Ptr = getValue(PtrOperand);
4315   SDValue Src0 = getValue(Src0Operand);
4316   SDValue Mask = getValue(MaskOperand);
4317   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4318 
4319   EVT VT = Src0.getValueType();
4320   if (!Alignment)
4321     Alignment = DAG.getEVTAlign(VT);
4322 
4323   AAMDNodes AAInfo;
4324   I.getAAMetadata(AAInfo);
4325 
4326   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4327       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4328       // TODO: Make MachineMemOperands aware of scalable
4329       // vectors.
4330       VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo);
4331   SDValue StoreNode =
4332       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4333                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4334   DAG.setRoot(StoreNode);
4335   setValue(&I, StoreNode);
4336 }
4337 
4338 // Get a uniform base for the Gather/Scatter intrinsic.
4339 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4340 // We try to represent it as a base pointer + vector of indices.
4341 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4342 // The first operand of the GEP may be a single pointer or a vector of pointers
4343 // Example:
4344 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4345 //  or
4346 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4347 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4348 //
4349 // When the first GEP operand is a single pointer - it is the uniform base we
4350 // are looking for. If first operand of the GEP is a splat vector - we
4351 // extract the splat value and use it as a uniform base.
4352 // In all other cases the function returns 'false'.
getUniformBase(const Value * Ptr,SDValue & Base,SDValue & Index,ISD::MemIndexType & IndexType,SDValue & Scale,SelectionDAGBuilder * SDB,const BasicBlock * CurBB)4353 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4354                            ISD::MemIndexType &IndexType, SDValue &Scale,
4355                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB) {
4356   SelectionDAG& DAG = SDB->DAG;
4357   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4358   const DataLayout &DL = DAG.getDataLayout();
4359 
4360   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4361 
4362   // Handle splat constant pointer.
4363   if (auto *C = dyn_cast<Constant>(Ptr)) {
4364     C = C->getSplatValue();
4365     if (!C)
4366       return false;
4367 
4368     Base = SDB->getValue(C);
4369 
4370     unsigned NumElts = cast<FixedVectorType>(Ptr->getType())->getNumElements();
4371     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4372     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4373     IndexType = ISD::SIGNED_SCALED;
4374     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4375     return true;
4376   }
4377 
4378   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4379   if (!GEP || GEP->getParent() != CurBB)
4380     return false;
4381 
4382   if (GEP->getNumOperands() != 2)
4383     return false;
4384 
4385   const Value *BasePtr = GEP->getPointerOperand();
4386   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4387 
4388   // Make sure the base is scalar and the index is a vector.
4389   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4390     return false;
4391 
4392   Base = SDB->getValue(BasePtr);
4393   Index = SDB->getValue(IndexVal);
4394   IndexType = ISD::SIGNED_SCALED;
4395   Scale = DAG.getTargetConstant(
4396               DL.getTypeAllocSize(GEP->getResultElementType()),
4397               SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4398   return true;
4399 }
4400 
visitMaskedScatter(const CallInst & I)4401 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4402   SDLoc sdl = getCurSDLoc();
4403 
4404   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4405   const Value *Ptr = I.getArgOperand(1);
4406   SDValue Src0 = getValue(I.getArgOperand(0));
4407   SDValue Mask = getValue(I.getArgOperand(3));
4408   EVT VT = Src0.getValueType();
4409   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4410                         ->getMaybeAlignValue()
4411                         .getValueOr(DAG.getEVTAlign(VT));
4412   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4413 
4414   AAMDNodes AAInfo;
4415   I.getAAMetadata(AAInfo);
4416 
4417   SDValue Base;
4418   SDValue Index;
4419   ISD::MemIndexType IndexType;
4420   SDValue Scale;
4421   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4422                                     I.getParent());
4423 
4424   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4425   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4426       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4427       // TODO: Make MachineMemOperands aware of scalable
4428       // vectors.
4429       MemoryLocation::UnknownSize, Alignment, AAInfo);
4430   if (!UniformBase) {
4431     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4432     Index = getValue(Ptr);
4433     IndexType = ISD::SIGNED_UNSCALED;
4434     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4435   }
4436 
4437   EVT IdxVT = Index.getValueType();
4438   EVT EltTy = IdxVT.getVectorElementType();
4439   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4440     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4441     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4442   }
4443 
4444   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4445   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4446                                          Ops, MMO, IndexType, false);
4447   DAG.setRoot(Scatter);
4448   setValue(&I, Scatter);
4449 }
4450 
visitMaskedLoad(const CallInst & I,bool IsExpanding)4451 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4452   SDLoc sdl = getCurSDLoc();
4453 
4454   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4455                               MaybeAlign &Alignment) {
4456     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4457     Ptr = I.getArgOperand(0);
4458     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4459     Mask = I.getArgOperand(2);
4460     Src0 = I.getArgOperand(3);
4461   };
4462   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4463                                  MaybeAlign &Alignment) {
4464     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4465     Ptr = I.getArgOperand(0);
4466     Alignment = None;
4467     Mask = I.getArgOperand(1);
4468     Src0 = I.getArgOperand(2);
4469   };
4470 
4471   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4472   MaybeAlign Alignment;
4473   if (IsExpanding)
4474     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4475   else
4476     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4477 
4478   SDValue Ptr = getValue(PtrOperand);
4479   SDValue Src0 = getValue(Src0Operand);
4480   SDValue Mask = getValue(MaskOperand);
4481   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4482 
4483   EVT VT = Src0.getValueType();
4484   if (!Alignment)
4485     Alignment = DAG.getEVTAlign(VT);
4486 
4487   AAMDNodes AAInfo;
4488   I.getAAMetadata(AAInfo);
4489   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4490 
4491   // Do not serialize masked loads of constant memory with anything.
4492   MemoryLocation ML;
4493   if (VT.isScalableVector())
4494     ML = MemoryLocation::getAfter(PtrOperand);
4495   else
4496     ML = MemoryLocation(PtrOperand, LocationSize::precise(
4497                            DAG.getDataLayout().getTypeStoreSize(I.getType())),
4498                            AAInfo);
4499   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4500 
4501   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4502 
4503   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4504       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4505       // TODO: Make MachineMemOperands aware of scalable
4506       // vectors.
4507       VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges);
4508 
4509   SDValue Load =
4510       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4511                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4512   if (AddToChain)
4513     PendingLoads.push_back(Load.getValue(1));
4514   setValue(&I, Load);
4515 }
4516 
visitMaskedGather(const CallInst & I)4517 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4518   SDLoc sdl = getCurSDLoc();
4519 
4520   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4521   const Value *Ptr = I.getArgOperand(0);
4522   SDValue Src0 = getValue(I.getArgOperand(3));
4523   SDValue Mask = getValue(I.getArgOperand(2));
4524 
4525   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4526   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4527   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4528                         ->getMaybeAlignValue()
4529                         .getValueOr(DAG.getEVTAlign(VT));
4530 
4531   AAMDNodes AAInfo;
4532   I.getAAMetadata(AAInfo);
4533   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4534 
4535   SDValue Root = DAG.getRoot();
4536   SDValue Base;
4537   SDValue Index;
4538   ISD::MemIndexType IndexType;
4539   SDValue Scale;
4540   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4541                                     I.getParent());
4542   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4543   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4544       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4545       // TODO: Make MachineMemOperands aware of scalable
4546       // vectors.
4547       MemoryLocation::UnknownSize, Alignment, AAInfo, Ranges);
4548 
4549   if (!UniformBase) {
4550     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4551     Index = getValue(Ptr);
4552     IndexType = ISD::SIGNED_UNSCALED;
4553     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4554   }
4555 
4556   EVT IdxVT = Index.getValueType();
4557   EVT EltTy = IdxVT.getVectorElementType();
4558   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4559     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4560     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4561   }
4562 
4563   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4564   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4565                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4566 
4567   PendingLoads.push_back(Gather.getValue(1));
4568   setValue(&I, Gather);
4569 }
4570 
visitAtomicCmpXchg(const AtomicCmpXchgInst & I)4571 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4572   SDLoc dl = getCurSDLoc();
4573   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4574   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4575   SyncScope::ID SSID = I.getSyncScopeID();
4576 
4577   SDValue InChain = getRoot();
4578 
4579   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4580   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4581 
4582   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4583   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4584 
4585   MachineFunction &MF = DAG.getMachineFunction();
4586   MachineMemOperand *MMO = MF.getMachineMemOperand(
4587       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4588       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4589       FailureOrdering);
4590 
4591   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4592                                    dl, MemVT, VTs, InChain,
4593                                    getValue(I.getPointerOperand()),
4594                                    getValue(I.getCompareOperand()),
4595                                    getValue(I.getNewValOperand()), MMO);
4596 
4597   SDValue OutChain = L.getValue(2);
4598 
4599   setValue(&I, L);
4600   DAG.setRoot(OutChain);
4601 }
4602 
visitAtomicRMW(const AtomicRMWInst & I)4603 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4604   SDLoc dl = getCurSDLoc();
4605   ISD::NodeType NT;
4606   switch (I.getOperation()) {
4607   default: llvm_unreachable("Unknown atomicrmw operation");
4608   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4609   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4610   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4611   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4612   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4613   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4614   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4615   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4616   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4617   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4618   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4619   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4620   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4621   }
4622   AtomicOrdering Ordering = I.getOrdering();
4623   SyncScope::ID SSID = I.getSyncScopeID();
4624 
4625   SDValue InChain = getRoot();
4626 
4627   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4628   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4629   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4630 
4631   MachineFunction &MF = DAG.getMachineFunction();
4632   MachineMemOperand *MMO = MF.getMachineMemOperand(
4633       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4634       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4635 
4636   SDValue L =
4637     DAG.getAtomic(NT, dl, MemVT, InChain,
4638                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4639                   MMO);
4640 
4641   SDValue OutChain = L.getValue(1);
4642 
4643   setValue(&I, L);
4644   DAG.setRoot(OutChain);
4645 }
4646 
visitFence(const FenceInst & I)4647 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4648   SDLoc dl = getCurSDLoc();
4649   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4650   SDValue Ops[3];
4651   Ops[0] = getRoot();
4652   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4653                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4654   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4655                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4656   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4657 }
4658 
visitAtomicLoad(const LoadInst & I)4659 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4660   SDLoc dl = getCurSDLoc();
4661   AtomicOrdering Order = I.getOrdering();
4662   SyncScope::ID SSID = I.getSyncScopeID();
4663 
4664   SDValue InChain = getRoot();
4665 
4666   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4667   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4668   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4669 
4670   if (!TLI.supportsUnalignedAtomics() &&
4671       I.getAlignment() < MemVT.getSizeInBits() / 8)
4672     report_fatal_error("Cannot generate unaligned atomic load");
4673 
4674   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4675 
4676   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4677       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4678       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4679 
4680   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4681 
4682   SDValue Ptr = getValue(I.getPointerOperand());
4683 
4684   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4685     // TODO: Once this is better exercised by tests, it should be merged with
4686     // the normal path for loads to prevent future divergence.
4687     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4688     if (MemVT != VT)
4689       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4690 
4691     setValue(&I, L);
4692     SDValue OutChain = L.getValue(1);
4693     if (!I.isUnordered())
4694       DAG.setRoot(OutChain);
4695     else
4696       PendingLoads.push_back(OutChain);
4697     return;
4698   }
4699 
4700   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4701                             Ptr, MMO);
4702 
4703   SDValue OutChain = L.getValue(1);
4704   if (MemVT != VT)
4705     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4706 
4707   setValue(&I, L);
4708   DAG.setRoot(OutChain);
4709 }
4710 
visitAtomicStore(const StoreInst & I)4711 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4712   SDLoc dl = getCurSDLoc();
4713 
4714   AtomicOrdering Ordering = I.getOrdering();
4715   SyncScope::ID SSID = I.getSyncScopeID();
4716 
4717   SDValue InChain = getRoot();
4718 
4719   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4720   EVT MemVT =
4721       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4722 
4723   if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4724     report_fatal_error("Cannot generate unaligned atomic store");
4725 
4726   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4727 
4728   MachineFunction &MF = DAG.getMachineFunction();
4729   MachineMemOperand *MMO = MF.getMachineMemOperand(
4730       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4731       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4732 
4733   SDValue Val = getValue(I.getValueOperand());
4734   if (Val.getValueType() != MemVT)
4735     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4736   SDValue Ptr = getValue(I.getPointerOperand());
4737 
4738   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4739     // TODO: Once this is better exercised by tests, it should be merged with
4740     // the normal path for stores to prevent future divergence.
4741     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4742     DAG.setRoot(S);
4743     return;
4744   }
4745   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4746                                    Ptr, Val, MMO);
4747 
4748 
4749   DAG.setRoot(OutChain);
4750 }
4751 
4752 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4753 /// node.
visitTargetIntrinsic(const CallInst & I,unsigned Intrinsic)4754 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4755                                                unsigned Intrinsic) {
4756   // Ignore the callsite's attributes. A specific call site may be marked with
4757   // readnone, but the lowering code will expect the chain based on the
4758   // definition.
4759   const Function *F = I.getCalledFunction();
4760   bool HasChain = !F->doesNotAccessMemory();
4761   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4762 
4763   // Build the operand list.
4764   SmallVector<SDValue, 8> Ops;
4765   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4766     if (OnlyLoad) {
4767       // We don't need to serialize loads against other loads.
4768       Ops.push_back(DAG.getRoot());
4769     } else {
4770       Ops.push_back(getRoot());
4771     }
4772   }
4773 
4774   // Info is set by getTgtMemInstrinsic
4775   TargetLowering::IntrinsicInfo Info;
4776   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4777   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4778                                                DAG.getMachineFunction(),
4779                                                Intrinsic);
4780 
4781   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4782   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4783       Info.opc == ISD::INTRINSIC_W_CHAIN)
4784     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4785                                         TLI.getPointerTy(DAG.getDataLayout())));
4786 
4787   // Add all operands of the call to the operand list.
4788   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4789     const Value *Arg = I.getArgOperand(i);
4790     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4791       Ops.push_back(getValue(Arg));
4792       continue;
4793     }
4794 
4795     // Use TargetConstant instead of a regular constant for immarg.
4796     EVT VT = TLI.getValueType(*DL, Arg->getType(), true);
4797     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4798       assert(CI->getBitWidth() <= 64 &&
4799              "large intrinsic immediates not handled");
4800       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4801     } else {
4802       Ops.push_back(
4803           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4804     }
4805   }
4806 
4807   SmallVector<EVT, 4> ValueVTs;
4808   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4809 
4810   if (HasChain)
4811     ValueVTs.push_back(MVT::Other);
4812 
4813   SDVTList VTs = DAG.getVTList(ValueVTs);
4814 
4815   // Propagate fast-math-flags from IR to node(s).
4816   SDNodeFlags Flags;
4817   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
4818     Flags.copyFMF(*FPMO);
4819   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
4820 
4821   // Create the node.
4822   SDValue Result;
4823   if (IsTgtIntrinsic) {
4824     // This is target intrinsic that touches memory
4825     AAMDNodes AAInfo;
4826     I.getAAMetadata(AAInfo);
4827     Result =
4828         DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4829                                 MachinePointerInfo(Info.ptrVal, Info.offset),
4830                                 Info.align, Info.flags, Info.size, AAInfo);
4831   } else if (!HasChain) {
4832     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4833   } else if (!I.getType()->isVoidTy()) {
4834     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4835   } else {
4836     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4837   }
4838 
4839   if (HasChain) {
4840     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4841     if (OnlyLoad)
4842       PendingLoads.push_back(Chain);
4843     else
4844       DAG.setRoot(Chain);
4845   }
4846 
4847   if (!I.getType()->isVoidTy()) {
4848     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4849       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4850       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4851     } else
4852       Result = lowerRangeToAssertZExt(DAG, I, Result);
4853 
4854     MaybeAlign Alignment = I.getRetAlign();
4855     if (!Alignment)
4856       Alignment = F->getAttributes().getRetAlignment();
4857     // Insert `assertalign` node if there's an alignment.
4858     if (InsertAssertAlign && Alignment) {
4859       Result =
4860           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4861     }
4862 
4863     setValue(&I, Result);
4864   }
4865 }
4866 
4867 /// GetSignificand - Get the significand and build it into a floating-point
4868 /// number with exponent of 1:
4869 ///
4870 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4871 ///
4872 /// where Op is the hexadecimal representation of floating point value.
GetSignificand(SelectionDAG & DAG,SDValue Op,const SDLoc & dl)4873 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4874   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4875                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4876   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4877                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4878   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4879 }
4880 
4881 /// GetExponent - Get the exponent:
4882 ///
4883 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4884 ///
4885 /// where Op is the hexadecimal representation of floating point value.
GetExponent(SelectionDAG & DAG,SDValue Op,const TargetLowering & TLI,const SDLoc & dl)4886 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4887                            const TargetLowering &TLI, const SDLoc &dl) {
4888   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4889                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4890   SDValue t1 = DAG.getNode(
4891       ISD::SRL, dl, MVT::i32, t0,
4892       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4893   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4894                            DAG.getConstant(127, dl, MVT::i32));
4895   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4896 }
4897 
4898 /// getF32Constant - Get 32-bit floating point constant.
getF32Constant(SelectionDAG & DAG,unsigned Flt,const SDLoc & dl)4899 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4900                               const SDLoc &dl) {
4901   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4902                            MVT::f32);
4903 }
4904 
getLimitedPrecisionExp2(SDValue t0,const SDLoc & dl,SelectionDAG & DAG)4905 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4906                                        SelectionDAG &DAG) {
4907   // TODO: What fast-math-flags should be set on the floating-point nodes?
4908 
4909   //   IntegerPartOfX = ((int32_t)(t0);
4910   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4911 
4912   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4913   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4914   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4915 
4916   //   IntegerPartOfX <<= 23;
4917   IntegerPartOfX = DAG.getNode(
4918       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4919       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4920                                   DAG.getDataLayout())));
4921 
4922   SDValue TwoToFractionalPartOfX;
4923   if (LimitFloatPrecision <= 6) {
4924     // For floating-point precision of 6:
4925     //
4926     //   TwoToFractionalPartOfX =
4927     //     0.997535578f +
4928     //       (0.735607626f + 0.252464424f * x) * x;
4929     //
4930     // error 0.0144103317, which is 6 bits
4931     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4932                              getF32Constant(DAG, 0x3e814304, dl));
4933     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4934                              getF32Constant(DAG, 0x3f3c50c8, dl));
4935     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4936     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4937                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4938   } else if (LimitFloatPrecision <= 12) {
4939     // For floating-point precision of 12:
4940     //
4941     //   TwoToFractionalPartOfX =
4942     //     0.999892986f +
4943     //       (0.696457318f +
4944     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4945     //
4946     // error 0.000107046256, which is 13 to 14 bits
4947     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4948                              getF32Constant(DAG, 0x3da235e3, dl));
4949     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4950                              getF32Constant(DAG, 0x3e65b8f3, dl));
4951     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4952     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4953                              getF32Constant(DAG, 0x3f324b07, dl));
4954     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4955     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4956                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4957   } else { // LimitFloatPrecision <= 18
4958     // For floating-point precision of 18:
4959     //
4960     //   TwoToFractionalPartOfX =
4961     //     0.999999982f +
4962     //       (0.693148872f +
4963     //         (0.240227044f +
4964     //           (0.554906021e-1f +
4965     //             (0.961591928e-2f +
4966     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4967     // error 2.47208000*10^(-7), which is better than 18 bits
4968     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4969                              getF32Constant(DAG, 0x3924b03e, dl));
4970     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4971                              getF32Constant(DAG, 0x3ab24b87, dl));
4972     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4973     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4974                              getF32Constant(DAG, 0x3c1d8c17, dl));
4975     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4976     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4977                              getF32Constant(DAG, 0x3d634a1d, dl));
4978     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4979     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4980                              getF32Constant(DAG, 0x3e75fe14, dl));
4981     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4982     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4983                               getF32Constant(DAG, 0x3f317234, dl));
4984     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4985     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4986                                          getF32Constant(DAG, 0x3f800000, dl));
4987   }
4988 
4989   // Add the exponent into the result in integer domain.
4990   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4991   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4992                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4993 }
4994 
4995 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4996 /// limited-precision mode.
expandExp(const SDLoc & dl,SDValue Op,SelectionDAG & DAG,const TargetLowering & TLI,SDNodeFlags Flags)4997 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4998                          const TargetLowering &TLI, SDNodeFlags Flags) {
4999   if (Op.getValueType() == MVT::f32 &&
5000       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5001 
5002     // Put the exponent in the right bit position for later addition to the
5003     // final result:
5004     //
5005     // t0 = Op * log2(e)
5006 
5007     // TODO: What fast-math-flags should be set here?
5008     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5009                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5010     return getLimitedPrecisionExp2(t0, dl, DAG);
5011   }
5012 
5013   // No special expansion.
5014   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5015 }
5016 
5017 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5018 /// limited-precision mode.
expandLog(const SDLoc & dl,SDValue Op,SelectionDAG & DAG,const TargetLowering & TLI,SDNodeFlags Flags)5019 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5020                          const TargetLowering &TLI, SDNodeFlags Flags) {
5021   // TODO: What fast-math-flags should be set on the floating-point nodes?
5022 
5023   if (Op.getValueType() == MVT::f32 &&
5024       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5025     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5026 
5027     // Scale the exponent by log(2).
5028     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5029     SDValue LogOfExponent =
5030         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5031                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5032 
5033     // Get the significand and build it into a floating-point number with
5034     // exponent of 1.
5035     SDValue X = GetSignificand(DAG, Op1, dl);
5036 
5037     SDValue LogOfMantissa;
5038     if (LimitFloatPrecision <= 6) {
5039       // For floating-point precision of 6:
5040       //
5041       //   LogofMantissa =
5042       //     -1.1609546f +
5043       //       (1.4034025f - 0.23903021f * x) * x;
5044       //
5045       // error 0.0034276066, which is better than 8 bits
5046       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5047                                getF32Constant(DAG, 0xbe74c456, dl));
5048       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5049                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5050       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5051       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5052                                   getF32Constant(DAG, 0x3f949a29, dl));
5053     } else if (LimitFloatPrecision <= 12) {
5054       // For floating-point precision of 12:
5055       //
5056       //   LogOfMantissa =
5057       //     -1.7417939f +
5058       //       (2.8212026f +
5059       //         (-1.4699568f +
5060       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5061       //
5062       // error 0.000061011436, which is 14 bits
5063       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5064                                getF32Constant(DAG, 0xbd67b6d6, dl));
5065       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5066                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5067       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5068       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5069                                getF32Constant(DAG, 0x3fbc278b, dl));
5070       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5071       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5072                                getF32Constant(DAG, 0x40348e95, dl));
5073       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5074       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5075                                   getF32Constant(DAG, 0x3fdef31a, dl));
5076     } else { // LimitFloatPrecision <= 18
5077       // For floating-point precision of 18:
5078       //
5079       //   LogOfMantissa =
5080       //     -2.1072184f +
5081       //       (4.2372794f +
5082       //         (-3.7029485f +
5083       //           (2.2781945f +
5084       //             (-0.87823314f +
5085       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5086       //
5087       // error 0.0000023660568, which is better than 18 bits
5088       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5089                                getF32Constant(DAG, 0xbc91e5ac, dl));
5090       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5091                                getF32Constant(DAG, 0x3e4350aa, dl));
5092       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5093       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5094                                getF32Constant(DAG, 0x3f60d3e3, dl));
5095       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5096       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5097                                getF32Constant(DAG, 0x4011cdf0, dl));
5098       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5099       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5100                                getF32Constant(DAG, 0x406cfd1c, dl));
5101       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5102       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5103                                getF32Constant(DAG, 0x408797cb, dl));
5104       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5105       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5106                                   getF32Constant(DAG, 0x4006dcab, dl));
5107     }
5108 
5109     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5110   }
5111 
5112   // No special expansion.
5113   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5114 }
5115 
5116 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5117 /// limited-precision mode.
expandLog2(const SDLoc & dl,SDValue Op,SelectionDAG & DAG,const TargetLowering & TLI,SDNodeFlags Flags)5118 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5119                           const TargetLowering &TLI, SDNodeFlags Flags) {
5120   // TODO: What fast-math-flags should be set on the floating-point nodes?
5121 
5122   if (Op.getValueType() == MVT::f32 &&
5123       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5124     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5125 
5126     // Get the exponent.
5127     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5128 
5129     // Get the significand and build it into a floating-point number with
5130     // exponent of 1.
5131     SDValue X = GetSignificand(DAG, Op1, dl);
5132 
5133     // Different possible minimax approximations of significand in
5134     // floating-point for various degrees of accuracy over [1,2].
5135     SDValue Log2ofMantissa;
5136     if (LimitFloatPrecision <= 6) {
5137       // For floating-point precision of 6:
5138       //
5139       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5140       //
5141       // error 0.0049451742, which is more than 7 bits
5142       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5143                                getF32Constant(DAG, 0xbeb08fe0, dl));
5144       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5145                                getF32Constant(DAG, 0x40019463, dl));
5146       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5147       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5148                                    getF32Constant(DAG, 0x3fd6633d, dl));
5149     } else if (LimitFloatPrecision <= 12) {
5150       // For floating-point precision of 12:
5151       //
5152       //   Log2ofMantissa =
5153       //     -2.51285454f +
5154       //       (4.07009056f +
5155       //         (-2.12067489f +
5156       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5157       //
5158       // error 0.0000876136000, which is better than 13 bits
5159       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5160                                getF32Constant(DAG, 0xbda7262e, dl));
5161       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5162                                getF32Constant(DAG, 0x3f25280b, dl));
5163       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5164       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5165                                getF32Constant(DAG, 0x4007b923, dl));
5166       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5167       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5168                                getF32Constant(DAG, 0x40823e2f, dl));
5169       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5170       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5171                                    getF32Constant(DAG, 0x4020d29c, dl));
5172     } else { // LimitFloatPrecision <= 18
5173       // For floating-point precision of 18:
5174       //
5175       //   Log2ofMantissa =
5176       //     -3.0400495f +
5177       //       (6.1129976f +
5178       //         (-5.3420409f +
5179       //           (3.2865683f +
5180       //             (-1.2669343f +
5181       //               (0.27515199f -
5182       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5183       //
5184       // error 0.0000018516, which is better than 18 bits
5185       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5186                                getF32Constant(DAG, 0xbcd2769e, dl));
5187       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5188                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5189       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5190       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5191                                getF32Constant(DAG, 0x3fa22ae7, dl));
5192       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5193       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5194                                getF32Constant(DAG, 0x40525723, dl));
5195       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5196       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5197                                getF32Constant(DAG, 0x40aaf200, dl));
5198       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5199       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5200                                getF32Constant(DAG, 0x40c39dad, dl));
5201       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5202       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5203                                    getF32Constant(DAG, 0x4042902c, dl));
5204     }
5205 
5206     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5207   }
5208 
5209   // No special expansion.
5210   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5211 }
5212 
5213 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5214 /// limited-precision mode.
expandLog10(const SDLoc & dl,SDValue Op,SelectionDAG & DAG,const TargetLowering & TLI,SDNodeFlags Flags)5215 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5216                            const TargetLowering &TLI, SDNodeFlags Flags) {
5217   // TODO: What fast-math-flags should be set on the floating-point nodes?
5218 
5219   if (Op.getValueType() == MVT::f32 &&
5220       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5221     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5222 
5223     // Scale the exponent by log10(2) [0.30102999f].
5224     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5225     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5226                                         getF32Constant(DAG, 0x3e9a209a, dl));
5227 
5228     // Get the significand and build it into a floating-point number with
5229     // exponent of 1.
5230     SDValue X = GetSignificand(DAG, Op1, dl);
5231 
5232     SDValue Log10ofMantissa;
5233     if (LimitFloatPrecision <= 6) {
5234       // For floating-point precision of 6:
5235       //
5236       //   Log10ofMantissa =
5237       //     -0.50419619f +
5238       //       (0.60948995f - 0.10380950f * x) * x;
5239       //
5240       // error 0.0014886165, which is 6 bits
5241       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5242                                getF32Constant(DAG, 0xbdd49a13, dl));
5243       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5244                                getF32Constant(DAG, 0x3f1c0789, dl));
5245       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5246       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5247                                     getF32Constant(DAG, 0x3f011300, dl));
5248     } else if (LimitFloatPrecision <= 12) {
5249       // For floating-point precision of 12:
5250       //
5251       //   Log10ofMantissa =
5252       //     -0.64831180f +
5253       //       (0.91751397f +
5254       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5255       //
5256       // error 0.00019228036, which is better than 12 bits
5257       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5258                                getF32Constant(DAG, 0x3d431f31, dl));
5259       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5260                                getF32Constant(DAG, 0x3ea21fb2, dl));
5261       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5262       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5263                                getF32Constant(DAG, 0x3f6ae232, dl));
5264       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5265       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5266                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5267     } else { // LimitFloatPrecision <= 18
5268       // For floating-point precision of 18:
5269       //
5270       //   Log10ofMantissa =
5271       //     -0.84299375f +
5272       //       (1.5327582f +
5273       //         (-1.0688956f +
5274       //           (0.49102474f +
5275       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5276       //
5277       // error 0.0000037995730, which is better than 18 bits
5278       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5279                                getF32Constant(DAG, 0x3c5d51ce, dl));
5280       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5281                                getF32Constant(DAG, 0x3e00685a, dl));
5282       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5283       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5284                                getF32Constant(DAG, 0x3efb6798, dl));
5285       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5286       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5287                                getF32Constant(DAG, 0x3f88d192, dl));
5288       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5289       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5290                                getF32Constant(DAG, 0x3fc4316c, dl));
5291       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5292       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5293                                     getF32Constant(DAG, 0x3f57ce70, dl));
5294     }
5295 
5296     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5297   }
5298 
5299   // No special expansion.
5300   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5301 }
5302 
5303 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5304 /// limited-precision mode.
expandExp2(const SDLoc & dl,SDValue Op,SelectionDAG & DAG,const TargetLowering & TLI,SDNodeFlags Flags)5305 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5306                           const TargetLowering &TLI, SDNodeFlags Flags) {
5307   if (Op.getValueType() == MVT::f32 &&
5308       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5309     return getLimitedPrecisionExp2(Op, dl, DAG);
5310 
5311   // No special expansion.
5312   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5313 }
5314 
5315 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5316 /// limited-precision mode with x == 10.0f.
expandPow(const SDLoc & dl,SDValue LHS,SDValue RHS,SelectionDAG & DAG,const TargetLowering & TLI,SDNodeFlags Flags)5317 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5318                          SelectionDAG &DAG, const TargetLowering &TLI,
5319                          SDNodeFlags Flags) {
5320   bool IsExp10 = false;
5321   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5322       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5323     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5324       APFloat Ten(10.0f);
5325       IsExp10 = LHSC->isExactlyValue(Ten);
5326     }
5327   }
5328 
5329   // TODO: What fast-math-flags should be set on the FMUL node?
5330   if (IsExp10) {
5331     // Put the exponent in the right bit position for later addition to the
5332     // final result:
5333     //
5334     //   #define LOG2OF10 3.3219281f
5335     //   t0 = Op * LOG2OF10;
5336     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5337                              getF32Constant(DAG, 0x40549a78, dl));
5338     return getLimitedPrecisionExp2(t0, dl, DAG);
5339   }
5340 
5341   // No special expansion.
5342   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5343 }
5344 
5345 /// ExpandPowI - Expand a llvm.powi intrinsic.
ExpandPowI(const SDLoc & DL,SDValue LHS,SDValue RHS,SelectionDAG & DAG)5346 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5347                           SelectionDAG &DAG) {
5348   // If RHS is a constant, we can expand this out to a multiplication tree,
5349   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5350   // optimizing for size, we only want to do this if the expansion would produce
5351   // a small number of multiplies, otherwise we do the full expansion.
5352   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5353     // Get the exponent as a positive value.
5354     unsigned Val = RHSC->getSExtValue();
5355     if ((int)Val < 0) Val = -Val;
5356 
5357     // powi(x, 0) -> 1.0
5358     if (Val == 0)
5359       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5360 
5361     bool OptForSize = DAG.shouldOptForSize();
5362     if (!OptForSize ||
5363         // If optimizing for size, don't insert too many multiplies.
5364         // This inserts up to 5 multiplies.
5365         countPopulation(Val) + Log2_32(Val) < 7) {
5366       // We use the simple binary decomposition method to generate the multiply
5367       // sequence.  There are more optimal ways to do this (for example,
5368       // powi(x,15) generates one more multiply than it should), but this has
5369       // the benefit of being both really simple and much better than a libcall.
5370       SDValue Res;  // Logically starts equal to 1.0
5371       SDValue CurSquare = LHS;
5372       // TODO: Intrinsics should have fast-math-flags that propagate to these
5373       // nodes.
5374       while (Val) {
5375         if (Val & 1) {
5376           if (Res.getNode())
5377             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5378           else
5379             Res = CurSquare;  // 1.0*CurSquare.
5380         }
5381 
5382         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5383                                 CurSquare, CurSquare);
5384         Val >>= 1;
5385       }
5386 
5387       // If the original was negative, invert the result, producing 1/(x*x*x).
5388       if (RHSC->getSExtValue() < 0)
5389         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5390                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5391       return Res;
5392     }
5393   }
5394 
5395   // Otherwise, expand to a libcall.
5396   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5397 }
5398 
expandDivFix(unsigned Opcode,const SDLoc & DL,SDValue LHS,SDValue RHS,SDValue Scale,SelectionDAG & DAG,const TargetLowering & TLI)5399 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5400                             SDValue LHS, SDValue RHS, SDValue Scale,
5401                             SelectionDAG &DAG, const TargetLowering &TLI) {
5402   EVT VT = LHS.getValueType();
5403   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5404   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5405   LLVMContext &Ctx = *DAG.getContext();
5406 
5407   // If the type is legal but the operation isn't, this node might survive all
5408   // the way to operation legalization. If we end up there and we do not have
5409   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5410   // node.
5411 
5412   // Coax the legalizer into expanding the node during type legalization instead
5413   // by bumping the size by one bit. This will force it to Promote, enabling the
5414   // early expansion and avoiding the need to expand later.
5415 
5416   // We don't have to do this if Scale is 0; that can always be expanded, unless
5417   // it's a saturating signed operation. Those can experience true integer
5418   // division overflow, a case which we must avoid.
5419 
5420   // FIXME: We wouldn't have to do this (or any of the early
5421   // expansion/promotion) if it was possible to expand a libcall of an
5422   // illegal type during operation legalization. But it's not, so things
5423   // get a bit hacky.
5424   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5425   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5426       (TLI.isTypeLegal(VT) ||
5427        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5428     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5429         Opcode, VT, ScaleInt);
5430     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5431       EVT PromVT;
5432       if (VT.isScalarInteger())
5433         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5434       else if (VT.isVector()) {
5435         PromVT = VT.getVectorElementType();
5436         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5437         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5438       } else
5439         llvm_unreachable("Wrong VT for DIVFIX?");
5440       if (Signed) {
5441         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5442         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5443       } else {
5444         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5445         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5446       }
5447       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5448       // For saturating operations, we need to shift up the LHS to get the
5449       // proper saturation width, and then shift down again afterwards.
5450       if (Saturating)
5451         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5452                           DAG.getConstant(1, DL, ShiftTy));
5453       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5454       if (Saturating)
5455         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5456                           DAG.getConstant(1, DL, ShiftTy));
5457       return DAG.getZExtOrTrunc(Res, DL, VT);
5458     }
5459   }
5460 
5461   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5462 }
5463 
5464 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5465 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5466 static void
getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned,TypeSize>> & Regs,const SDValue & N)5467 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5468                      const SDValue &N) {
5469   switch (N.getOpcode()) {
5470   case ISD::CopyFromReg: {
5471     SDValue Op = N.getOperand(1);
5472     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5473                       Op.getValueType().getSizeInBits());
5474     return;
5475   }
5476   case ISD::BITCAST:
5477   case ISD::AssertZext:
5478   case ISD::AssertSext:
5479   case ISD::TRUNCATE:
5480     getUnderlyingArgRegs(Regs, N.getOperand(0));
5481     return;
5482   case ISD::BUILD_PAIR:
5483   case ISD::BUILD_VECTOR:
5484   case ISD::CONCAT_VECTORS:
5485     for (SDValue Op : N->op_values())
5486       getUnderlyingArgRegs(Regs, Op);
5487     return;
5488   default:
5489     return;
5490   }
5491 }
5492 
5493 /// If the DbgValueInst is a dbg_value of a function argument, create the
5494 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5495 /// instruction selection, they will be inserted to the entry BB.
5496 /// We don't currently support this for variadic dbg_values, as they shouldn't
5497 /// appear for function arguments or in the prologue.
EmitFuncArgumentDbgValue(const Value * V,DILocalVariable * Variable,DIExpression * Expr,DILocation * DL,bool IsDbgDeclare,const SDValue & N)5498 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5499     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5500     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5501   const Argument *Arg = dyn_cast<Argument>(V);
5502   if (!Arg)
5503     return false;
5504 
5505   if (!IsDbgDeclare) {
5506     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5507     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5508     // the entry block.
5509     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5510     if (!IsInEntryBlock)
5511       return false;
5512 
5513     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5514     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5515     // variable that also is a param.
5516     //
5517     // Although, if we are at the top of the entry block already, we can still
5518     // emit using ArgDbgValue. This might catch some situations when the
5519     // dbg.value refers to an argument that isn't used in the entry block, so
5520     // any CopyToReg node would be optimized out and the only way to express
5521     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5522     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5523     // we should only emit as ArgDbgValue if the Variable is an argument to the
5524     // current function, and the dbg.value intrinsic is found in the entry
5525     // block.
5526     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5527         !DL->getInlinedAt();
5528     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5529     if (!IsInPrologue && !VariableIsFunctionInputArg)
5530       return false;
5531 
5532     // Here we assume that a function argument on IR level only can be used to
5533     // describe one input parameter on source level. If we for example have
5534     // source code like this
5535     //
5536     //    struct A { long x, y; };
5537     //    void foo(struct A a, long b) {
5538     //      ...
5539     //      b = a.x;
5540     //      ...
5541     //    }
5542     //
5543     // and IR like this
5544     //
5545     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5546     //  entry:
5547     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5548     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5549     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5550     //    ...
5551     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5552     //    ...
5553     //
5554     // then the last dbg.value is describing a parameter "b" using a value that
5555     // is an argument. But since we already has used %a1 to describe a parameter
5556     // we should not handle that last dbg.value here (that would result in an
5557     // incorrect hoisting of the DBG_VALUE to the function entry).
5558     // Notice that we allow one dbg.value per IR level argument, to accommodate
5559     // for the situation with fragments above.
5560     if (VariableIsFunctionInputArg) {
5561       unsigned ArgNo = Arg->getArgNo();
5562       if (ArgNo >= FuncInfo.DescribedArgs.size())
5563         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5564       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5565         return false;
5566       FuncInfo.DescribedArgs.set(ArgNo);
5567     }
5568   }
5569 
5570   MachineFunction &MF = DAG.getMachineFunction();
5571   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5572 
5573   bool IsIndirect = false;
5574   Optional<MachineOperand> Op;
5575   // Some arguments' frame index is recorded during argument lowering.
5576   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5577   if (FI != std::numeric_limits<int>::max())
5578     Op = MachineOperand::CreateFI(FI);
5579 
5580   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5581   if (!Op && N.getNode()) {
5582     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5583     Register Reg;
5584     if (ArgRegsAndSizes.size() == 1)
5585       Reg = ArgRegsAndSizes.front().first;
5586 
5587     if (Reg && Reg.isVirtual()) {
5588       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5589       Register PR = RegInfo.getLiveInPhysReg(Reg);
5590       if (PR)
5591         Reg = PR;
5592     }
5593     if (Reg) {
5594       Op = MachineOperand::CreateReg(Reg, false);
5595       IsIndirect = IsDbgDeclare;
5596     }
5597   }
5598 
5599   if (!Op && N.getNode()) {
5600     // Check if frame index is available.
5601     SDValue LCandidate = peekThroughBitcasts(N);
5602     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5603       if (FrameIndexSDNode *FINode =
5604           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5605         Op = MachineOperand::CreateFI(FINode->getIndex());
5606   }
5607 
5608   if (!Op) {
5609     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5610     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5611                                          SplitRegs) {
5612       unsigned Offset = 0;
5613       for (auto RegAndSize : SplitRegs) {
5614         // If the expression is already a fragment, the current register
5615         // offset+size might extend beyond the fragment. In this case, only
5616         // the register bits that are inside the fragment are relevant.
5617         int RegFragmentSizeInBits = RegAndSize.second;
5618         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5619           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5620           // The register is entirely outside the expression fragment,
5621           // so is irrelevant for debug info.
5622           if (Offset >= ExprFragmentSizeInBits)
5623             break;
5624           // The register is partially outside the expression fragment, only
5625           // the low bits within the fragment are relevant for debug info.
5626           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5627             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5628           }
5629         }
5630 
5631         auto FragmentExpr = DIExpression::createFragmentExpression(
5632             Expr, Offset, RegFragmentSizeInBits);
5633         Offset += RegAndSize.second;
5634         // If a valid fragment expression cannot be created, the variable's
5635         // correct value cannot be determined and so it is set as Undef.
5636         if (!FragmentExpr) {
5637           SDDbgValue *SDV = DAG.getConstantDbgValue(
5638               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5639           DAG.AddDbgValue(SDV, false);
5640           continue;
5641         }
5642         FuncInfo.ArgDbgValues.push_back(
5643           BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
5644                   RegAndSize.first, Variable, *FragmentExpr));
5645       }
5646     };
5647 
5648     // Check if ValueMap has reg number.
5649     DenseMap<const Value *, Register>::const_iterator
5650       VMI = FuncInfo.ValueMap.find(V);
5651     if (VMI != FuncInfo.ValueMap.end()) {
5652       const auto &TLI = DAG.getTargetLoweringInfo();
5653       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5654                        V->getType(), None);
5655       if (RFV.occupiesMultipleRegs()) {
5656         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5657         return true;
5658       }
5659 
5660       Op = MachineOperand::CreateReg(VMI->second, false);
5661       IsIndirect = IsDbgDeclare;
5662     } else if (ArgRegsAndSizes.size() > 1) {
5663       // This was split due to the calling convention, and no virtual register
5664       // mapping exists for the value.
5665       splitMultiRegDbgValue(ArgRegsAndSizes);
5666       return true;
5667     }
5668   }
5669 
5670   if (!Op)
5671     return false;
5672 
5673   assert(Variable->isValidLocationForIntrinsic(DL) &&
5674          "Expected inlined-at fields to agree");
5675   IsIndirect = (Op->isReg()) ? IsIndirect : true;
5676   FuncInfo.ArgDbgValues.push_back(
5677       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5678               *Op, Variable, Expr));
5679 
5680   return true;
5681 }
5682 
5683 /// Return the appropriate SDDbgValue based on N.
getDbgValue(SDValue N,DILocalVariable * Variable,DIExpression * Expr,const DebugLoc & dl,unsigned DbgSDNodeOrder)5684 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5685                                              DILocalVariable *Variable,
5686                                              DIExpression *Expr,
5687                                              const DebugLoc &dl,
5688                                              unsigned DbgSDNodeOrder) {
5689   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5690     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5691     // stack slot locations.
5692     //
5693     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5694     // debug values here after optimization:
5695     //
5696     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5697     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5698     //
5699     // Both describe the direct values of their associated variables.
5700     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5701                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5702   }
5703   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5704                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5705 }
5706 
FixedPointIntrinsicToOpcode(unsigned Intrinsic)5707 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5708   switch (Intrinsic) {
5709   case Intrinsic::smul_fix:
5710     return ISD::SMULFIX;
5711   case Intrinsic::umul_fix:
5712     return ISD::UMULFIX;
5713   case Intrinsic::smul_fix_sat:
5714     return ISD::SMULFIXSAT;
5715   case Intrinsic::umul_fix_sat:
5716     return ISD::UMULFIXSAT;
5717   case Intrinsic::sdiv_fix:
5718     return ISD::SDIVFIX;
5719   case Intrinsic::udiv_fix:
5720     return ISD::UDIVFIX;
5721   case Intrinsic::sdiv_fix_sat:
5722     return ISD::SDIVFIXSAT;
5723   case Intrinsic::udiv_fix_sat:
5724     return ISD::UDIVFIXSAT;
5725   default:
5726     llvm_unreachable("Unhandled fixed point intrinsic");
5727   }
5728 }
5729 
lowerCallToExternalSymbol(const CallInst & I,const char * FunctionName)5730 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5731                                            const char *FunctionName) {
5732   assert(FunctionName && "FunctionName must not be nullptr");
5733   SDValue Callee = DAG.getExternalSymbol(
5734       FunctionName,
5735       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5736   LowerCallTo(I, Callee, I.isTailCall());
5737 }
5738 
5739 /// Given a @llvm.call.preallocated.setup, return the corresponding
5740 /// preallocated call.
FindPreallocatedCall(const Value * PreallocatedSetup)5741 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5742   assert(cast<CallBase>(PreallocatedSetup)
5743                  ->getCalledFunction()
5744                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5745          "expected call_preallocated_setup Value");
5746   for (auto *U : PreallocatedSetup->users()) {
5747     auto *UseCall = cast<CallBase>(U);
5748     const Function *Fn = UseCall->getCalledFunction();
5749     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5750       return UseCall;
5751     }
5752   }
5753   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5754 }
5755 
5756 /// Lower the call to the specified intrinsic function.
visitIntrinsicCall(const CallInst & I,unsigned Intrinsic)5757 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5758                                              unsigned Intrinsic) {
5759   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5760   SDLoc sdl = getCurSDLoc();
5761   DebugLoc dl = getCurDebugLoc();
5762   SDValue Res;
5763 
5764   SDNodeFlags Flags;
5765   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5766     Flags.copyFMF(*FPOp);
5767 
5768   switch (Intrinsic) {
5769   default:
5770     // By default, turn this into a target intrinsic node.
5771     visitTargetIntrinsic(I, Intrinsic);
5772     return;
5773   case Intrinsic::vscale: {
5774     match(&I, m_VScale(DAG.getDataLayout()));
5775     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5776     setValue(&I,
5777              DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)));
5778     return;
5779   }
5780   case Intrinsic::vastart:  visitVAStart(I); return;
5781   case Intrinsic::vaend:    visitVAEnd(I); return;
5782   case Intrinsic::vacopy:   visitVACopy(I); return;
5783   case Intrinsic::returnaddress:
5784     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5785                              TLI.getPointerTy(DAG.getDataLayout()),
5786                              getValue(I.getArgOperand(0))));
5787     return;
5788   case Intrinsic::addressofreturnaddress:
5789     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5790                              TLI.getPointerTy(DAG.getDataLayout())));
5791     return;
5792   case Intrinsic::sponentry:
5793     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5794                              TLI.getFrameIndexTy(DAG.getDataLayout())));
5795     return;
5796   case Intrinsic::frameaddress:
5797     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5798                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5799                              getValue(I.getArgOperand(0))));
5800     return;
5801   case Intrinsic::read_volatile_register:
5802   case Intrinsic::read_register: {
5803     Value *Reg = I.getArgOperand(0);
5804     SDValue Chain = getRoot();
5805     SDValue RegName =
5806         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5807     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5808     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5809       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5810     setValue(&I, Res);
5811     DAG.setRoot(Res.getValue(1));
5812     return;
5813   }
5814   case Intrinsic::write_register: {
5815     Value *Reg = I.getArgOperand(0);
5816     Value *RegValue = I.getArgOperand(1);
5817     SDValue Chain = getRoot();
5818     SDValue RegName =
5819         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5820     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5821                             RegName, getValue(RegValue)));
5822     return;
5823   }
5824   case Intrinsic::memcpy: {
5825     const auto &MCI = cast<MemCpyInst>(I);
5826     SDValue Op1 = getValue(I.getArgOperand(0));
5827     SDValue Op2 = getValue(I.getArgOperand(1));
5828     SDValue Op3 = getValue(I.getArgOperand(2));
5829     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5830     Align DstAlign = MCI.getDestAlign().valueOrOne();
5831     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5832     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5833     bool isVol = MCI.isVolatile();
5834     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5835     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5836     // node.
5837     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5838     SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5839                                /* AlwaysInline */ false, isTC,
5840                                MachinePointerInfo(I.getArgOperand(0)),
5841                                MachinePointerInfo(I.getArgOperand(1)));
5842     updateDAGForMaybeTailCall(MC);
5843     return;
5844   }
5845   case Intrinsic::memcpy_inline: {
5846     const auto &MCI = cast<MemCpyInlineInst>(I);
5847     SDValue Dst = getValue(I.getArgOperand(0));
5848     SDValue Src = getValue(I.getArgOperand(1));
5849     SDValue Size = getValue(I.getArgOperand(2));
5850     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5851     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5852     Align DstAlign = MCI.getDestAlign().valueOrOne();
5853     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5854     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5855     bool isVol = MCI.isVolatile();
5856     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5857     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5858     // node.
5859     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5860                                /* AlwaysInline */ true, isTC,
5861                                MachinePointerInfo(I.getArgOperand(0)),
5862                                MachinePointerInfo(I.getArgOperand(1)));
5863     updateDAGForMaybeTailCall(MC);
5864     return;
5865   }
5866   case Intrinsic::memset: {
5867     const auto &MSI = cast<MemSetInst>(I);
5868     SDValue Op1 = getValue(I.getArgOperand(0));
5869     SDValue Op2 = getValue(I.getArgOperand(1));
5870     SDValue Op3 = getValue(I.getArgOperand(2));
5871     // @llvm.memset defines 0 and 1 to both mean no alignment.
5872     Align Alignment = MSI.getDestAlign().valueOrOne();
5873     bool isVol = MSI.isVolatile();
5874     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5875     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5876     SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC,
5877                                MachinePointerInfo(I.getArgOperand(0)));
5878     updateDAGForMaybeTailCall(MS);
5879     return;
5880   }
5881   case Intrinsic::memmove: {
5882     const auto &MMI = cast<MemMoveInst>(I);
5883     SDValue Op1 = getValue(I.getArgOperand(0));
5884     SDValue Op2 = getValue(I.getArgOperand(1));
5885     SDValue Op3 = getValue(I.getArgOperand(2));
5886     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5887     Align DstAlign = MMI.getDestAlign().valueOrOne();
5888     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
5889     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5890     bool isVol = MMI.isVolatile();
5891     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5892     // FIXME: Support passing different dest/src alignments to the memmove DAG
5893     // node.
5894     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5895     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5896                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5897                                 MachinePointerInfo(I.getArgOperand(1)));
5898     updateDAGForMaybeTailCall(MM);
5899     return;
5900   }
5901   case Intrinsic::memcpy_element_unordered_atomic: {
5902     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5903     SDValue Dst = getValue(MI.getRawDest());
5904     SDValue Src = getValue(MI.getRawSource());
5905     SDValue Length = getValue(MI.getLength());
5906 
5907     unsigned DstAlign = MI.getDestAlignment();
5908     unsigned SrcAlign = MI.getSourceAlignment();
5909     Type *LengthTy = MI.getLength()->getType();
5910     unsigned ElemSz = MI.getElementSizeInBytes();
5911     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5912     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5913                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5914                                      MachinePointerInfo(MI.getRawDest()),
5915                                      MachinePointerInfo(MI.getRawSource()));
5916     updateDAGForMaybeTailCall(MC);
5917     return;
5918   }
5919   case Intrinsic::memmove_element_unordered_atomic: {
5920     auto &MI = cast<AtomicMemMoveInst>(I);
5921     SDValue Dst = getValue(MI.getRawDest());
5922     SDValue Src = getValue(MI.getRawSource());
5923     SDValue Length = getValue(MI.getLength());
5924 
5925     unsigned DstAlign = MI.getDestAlignment();
5926     unsigned SrcAlign = MI.getSourceAlignment();
5927     Type *LengthTy = MI.getLength()->getType();
5928     unsigned ElemSz = MI.getElementSizeInBytes();
5929     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5930     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5931                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5932                                       MachinePointerInfo(MI.getRawDest()),
5933                                       MachinePointerInfo(MI.getRawSource()));
5934     updateDAGForMaybeTailCall(MC);
5935     return;
5936   }
5937   case Intrinsic::memset_element_unordered_atomic: {
5938     auto &MI = cast<AtomicMemSetInst>(I);
5939     SDValue Dst = getValue(MI.getRawDest());
5940     SDValue Val = getValue(MI.getValue());
5941     SDValue Length = getValue(MI.getLength());
5942 
5943     unsigned DstAlign = MI.getDestAlignment();
5944     Type *LengthTy = MI.getLength()->getType();
5945     unsigned ElemSz = MI.getElementSizeInBytes();
5946     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5947     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5948                                      LengthTy, ElemSz, isTC,
5949                                      MachinePointerInfo(MI.getRawDest()));
5950     updateDAGForMaybeTailCall(MC);
5951     return;
5952   }
5953   case Intrinsic::call_preallocated_setup: {
5954     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
5955     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5956     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
5957                               getRoot(), SrcValue);
5958     setValue(&I, Res);
5959     DAG.setRoot(Res);
5960     return;
5961   }
5962   case Intrinsic::call_preallocated_arg: {
5963     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
5964     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5965     SDValue Ops[3];
5966     Ops[0] = getRoot();
5967     Ops[1] = SrcValue;
5968     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
5969                                    MVT::i32); // arg index
5970     SDValue Res = DAG.getNode(
5971         ISD::PREALLOCATED_ARG, sdl,
5972         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
5973     setValue(&I, Res);
5974     DAG.setRoot(Res.getValue(1));
5975     return;
5976   }
5977   case Intrinsic::dbg_addr:
5978   case Intrinsic::dbg_declare: {
5979     // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e.
5980     // they are non-variadic.
5981     const auto &DI = cast<DbgVariableIntrinsic>(I);
5982     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
5983     DILocalVariable *Variable = DI.getVariable();
5984     DIExpression *Expression = DI.getExpression();
5985     dropDanglingDebugInfo(Variable, Expression);
5986     assert(Variable && "Missing variable");
5987     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
5988                       << "\n");
5989     // Check if address has undef value.
5990     const Value *Address = DI.getVariableLocationOp(0);
5991     if (!Address || isa<UndefValue>(Address) ||
5992         (Address->use_empty() && !isa<Argument>(Address))) {
5993       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
5994                         << " (bad/undef/unused-arg address)\n");
5995       return;
5996     }
5997 
5998     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5999 
6000     // Check if this variable can be described by a frame index, typically
6001     // either as a static alloca or a byval parameter.
6002     int FI = std::numeric_limits<int>::max();
6003     if (const auto *AI =
6004             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
6005       if (AI->isStaticAlloca()) {
6006         auto I = FuncInfo.StaticAllocaMap.find(AI);
6007         if (I != FuncInfo.StaticAllocaMap.end())
6008           FI = I->second;
6009       }
6010     } else if (const auto *Arg = dyn_cast<Argument>(
6011                    Address->stripInBoundsConstantOffsets())) {
6012       FI = FuncInfo.getArgumentFrameIndex(Arg);
6013     }
6014 
6015     // llvm.dbg.addr is control dependent and always generates indirect
6016     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
6017     // the MachineFunction variable table.
6018     if (FI != std::numeric_limits<int>::max()) {
6019       if (Intrinsic == Intrinsic::dbg_addr) {
6020         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
6021             Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true,
6022             dl, SDNodeOrder);
6023         DAG.AddDbgValue(SDV, isParameter);
6024       } else {
6025         LLVM_DEBUG(dbgs() << "Skipping " << DI
6026                           << " (variable info stashed in MF side table)\n");
6027       }
6028       return;
6029     }
6030 
6031     SDValue &N = NodeMap[Address];
6032     if (!N.getNode() && isa<Argument>(Address))
6033       // Check unused arguments map.
6034       N = UnusedArgNodeMap[Address];
6035     SDDbgValue *SDV;
6036     if (N.getNode()) {
6037       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
6038         Address = BCI->getOperand(0);
6039       // Parameters are handled specially.
6040       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
6041       if (isParameter && FINode) {
6042         // Byval parameter. We have a frame index at this point.
6043         SDV =
6044             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
6045                                       /*IsIndirect*/ true, dl, SDNodeOrder);
6046       } else if (isa<Argument>(Address)) {
6047         // Address is an argument, so try to emit its dbg value using
6048         // virtual register info from the FuncInfo.ValueMap.
6049         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
6050         return;
6051       } else {
6052         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
6053                               true, dl, SDNodeOrder);
6054       }
6055       DAG.AddDbgValue(SDV, isParameter);
6056     } else {
6057       // If Address is an argument then try to emit its dbg value using
6058       // virtual register info from the FuncInfo.ValueMap.
6059       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
6060                                     N)) {
6061         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6062                           << " (could not emit func-arg dbg_value)\n");
6063       }
6064     }
6065     return;
6066   }
6067   case Intrinsic::dbg_label: {
6068     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6069     DILabel *Label = DI.getLabel();
6070     assert(Label && "Missing label");
6071 
6072     SDDbgLabel *SDV;
6073     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6074     DAG.AddDbgLabel(SDV);
6075     return;
6076   }
6077   case Intrinsic::dbg_value: {
6078     const DbgValueInst &DI = cast<DbgValueInst>(I);
6079     assert(DI.getVariable() && "Missing variable");
6080 
6081     DILocalVariable *Variable = DI.getVariable();
6082     DIExpression *Expression = DI.getExpression();
6083     dropDanglingDebugInfo(Variable, Expression);
6084     SmallVector<Value *, 4> Values(DI.getValues());
6085     if (Values.empty())
6086       return;
6087 
6088     if (std::count(Values.begin(), Values.end(), nullptr))
6089       return;
6090 
6091     bool IsVariadic = DI.hasArgList();
6092     if (!handleDebugValue(Values, Variable, Expression, dl, DI.getDebugLoc(),
6093                           SDNodeOrder, IsVariadic))
6094       addDanglingDebugInfo(&DI, dl, SDNodeOrder);
6095     return;
6096   }
6097 
6098   case Intrinsic::eh_typeid_for: {
6099     // Find the type id for the given typeinfo.
6100     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6101     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6102     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6103     setValue(&I, Res);
6104     return;
6105   }
6106 
6107   case Intrinsic::eh_return_i32:
6108   case Intrinsic::eh_return_i64:
6109     DAG.getMachineFunction().setCallsEHReturn(true);
6110     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6111                             MVT::Other,
6112                             getControlRoot(),
6113                             getValue(I.getArgOperand(0)),
6114                             getValue(I.getArgOperand(1))));
6115     return;
6116   case Intrinsic::eh_unwind_init:
6117     DAG.getMachineFunction().setCallsUnwindInit(true);
6118     return;
6119   case Intrinsic::eh_dwarf_cfa:
6120     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6121                              TLI.getPointerTy(DAG.getDataLayout()),
6122                              getValue(I.getArgOperand(0))));
6123     return;
6124   case Intrinsic::eh_sjlj_callsite: {
6125     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6126     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
6127     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
6128     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6129 
6130     MMI.setCurrentCallSite(CI->getZExtValue());
6131     return;
6132   }
6133   case Intrinsic::eh_sjlj_functioncontext: {
6134     // Get and store the index of the function context.
6135     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6136     AllocaInst *FnCtx =
6137       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6138     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6139     MFI.setFunctionContextIndex(FI);
6140     return;
6141   }
6142   case Intrinsic::eh_sjlj_setjmp: {
6143     SDValue Ops[2];
6144     Ops[0] = getRoot();
6145     Ops[1] = getValue(I.getArgOperand(0));
6146     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6147                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6148     setValue(&I, Op.getValue(0));
6149     DAG.setRoot(Op.getValue(1));
6150     return;
6151   }
6152   case Intrinsic::eh_sjlj_longjmp:
6153     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6154                             getRoot(), getValue(I.getArgOperand(0))));
6155     return;
6156   case Intrinsic::eh_sjlj_setup_dispatch:
6157     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6158                             getRoot()));
6159     return;
6160   case Intrinsic::masked_gather:
6161     visitMaskedGather(I);
6162     return;
6163   case Intrinsic::masked_load:
6164     visitMaskedLoad(I);
6165     return;
6166   case Intrinsic::masked_scatter:
6167     visitMaskedScatter(I);
6168     return;
6169   case Intrinsic::masked_store:
6170     visitMaskedStore(I);
6171     return;
6172   case Intrinsic::masked_expandload:
6173     visitMaskedLoad(I, true /* IsExpanding */);
6174     return;
6175   case Intrinsic::masked_compressstore:
6176     visitMaskedStore(I, true /* IsCompressing */);
6177     return;
6178   case Intrinsic::powi:
6179     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6180                             getValue(I.getArgOperand(1)), DAG));
6181     return;
6182   case Intrinsic::log:
6183     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6184     return;
6185   case Intrinsic::log2:
6186     setValue(&I,
6187              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6188     return;
6189   case Intrinsic::log10:
6190     setValue(&I,
6191              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6192     return;
6193   case Intrinsic::exp:
6194     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6195     return;
6196   case Intrinsic::exp2:
6197     setValue(&I,
6198              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6199     return;
6200   case Intrinsic::pow:
6201     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6202                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6203     return;
6204   case Intrinsic::sqrt:
6205   case Intrinsic::fabs:
6206   case Intrinsic::sin:
6207   case Intrinsic::cos:
6208   case Intrinsic::floor:
6209   case Intrinsic::ceil:
6210   case Intrinsic::trunc:
6211   case Intrinsic::rint:
6212   case Intrinsic::nearbyint:
6213   case Intrinsic::round:
6214   case Intrinsic::roundeven:
6215   case Intrinsic::canonicalize: {
6216     unsigned Opcode;
6217     switch (Intrinsic) {
6218     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6219     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6220     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6221     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6222     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6223     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6224     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6225     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6226     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6227     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6228     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6229     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6230     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6231     }
6232 
6233     setValue(&I, DAG.getNode(Opcode, sdl,
6234                              getValue(I.getArgOperand(0)).getValueType(),
6235                              getValue(I.getArgOperand(0)), Flags));
6236     return;
6237   }
6238   case Intrinsic::lround:
6239   case Intrinsic::llround:
6240   case Intrinsic::lrint:
6241   case Intrinsic::llrint: {
6242     unsigned Opcode;
6243     switch (Intrinsic) {
6244     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6245     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6246     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6247     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6248     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6249     }
6250 
6251     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6252     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6253                              getValue(I.getArgOperand(0))));
6254     return;
6255   }
6256   case Intrinsic::minnum:
6257     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6258                              getValue(I.getArgOperand(0)).getValueType(),
6259                              getValue(I.getArgOperand(0)),
6260                              getValue(I.getArgOperand(1)), Flags));
6261     return;
6262   case Intrinsic::maxnum:
6263     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6264                              getValue(I.getArgOperand(0)).getValueType(),
6265                              getValue(I.getArgOperand(0)),
6266                              getValue(I.getArgOperand(1)), Flags));
6267     return;
6268   case Intrinsic::minimum:
6269     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6270                              getValue(I.getArgOperand(0)).getValueType(),
6271                              getValue(I.getArgOperand(0)),
6272                              getValue(I.getArgOperand(1)), Flags));
6273     return;
6274   case Intrinsic::maximum:
6275     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6276                              getValue(I.getArgOperand(0)).getValueType(),
6277                              getValue(I.getArgOperand(0)),
6278                              getValue(I.getArgOperand(1)), Flags));
6279     return;
6280   case Intrinsic::copysign:
6281     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6282                              getValue(I.getArgOperand(0)).getValueType(),
6283                              getValue(I.getArgOperand(0)),
6284                              getValue(I.getArgOperand(1)), Flags));
6285     return;
6286   case Intrinsic::fma:
6287     setValue(&I, DAG.getNode(
6288                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6289                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6290                      getValue(I.getArgOperand(2)), Flags));
6291     return;
6292 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6293   case Intrinsic::INTRINSIC:
6294 #include "llvm/IR/ConstrainedOps.def"
6295     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6296     return;
6297 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6298 #include "llvm/IR/VPIntrinsics.def"
6299     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6300     return;
6301   case Intrinsic::fmuladd: {
6302     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6303     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6304         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6305       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6306                                getValue(I.getArgOperand(0)).getValueType(),
6307                                getValue(I.getArgOperand(0)),
6308                                getValue(I.getArgOperand(1)),
6309                                getValue(I.getArgOperand(2)), Flags));
6310     } else {
6311       // TODO: Intrinsic calls should have fast-math-flags.
6312       SDValue Mul = DAG.getNode(
6313           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6314           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6315       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6316                                 getValue(I.getArgOperand(0)).getValueType(),
6317                                 Mul, getValue(I.getArgOperand(2)), Flags);
6318       setValue(&I, Add);
6319     }
6320     return;
6321   }
6322   case Intrinsic::convert_to_fp16:
6323     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6324                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6325                                          getValue(I.getArgOperand(0)),
6326                                          DAG.getTargetConstant(0, sdl,
6327                                                                MVT::i32))));
6328     return;
6329   case Intrinsic::convert_from_fp16:
6330     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6331                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6332                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6333                                          getValue(I.getArgOperand(0)))));
6334     return;
6335   case Intrinsic::fptosi_sat: {
6336     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6337     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6338                              getValue(I.getArgOperand(0)),
6339                              DAG.getValueType(VT.getScalarType())));
6340     return;
6341   }
6342   case Intrinsic::fptoui_sat: {
6343     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6344     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6345                              getValue(I.getArgOperand(0)),
6346                              DAG.getValueType(VT.getScalarType())));
6347     return;
6348   }
6349   case Intrinsic::set_rounding:
6350     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6351                       {getRoot(), getValue(I.getArgOperand(0))});
6352     setValue(&I, Res);
6353     DAG.setRoot(Res.getValue(0));
6354     return;
6355   case Intrinsic::pcmarker: {
6356     SDValue Tmp = getValue(I.getArgOperand(0));
6357     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6358     return;
6359   }
6360   case Intrinsic::readcyclecounter: {
6361     SDValue Op = getRoot();
6362     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6363                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6364     setValue(&I, Res);
6365     DAG.setRoot(Res.getValue(1));
6366     return;
6367   }
6368   case Intrinsic::bitreverse:
6369     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6370                              getValue(I.getArgOperand(0)).getValueType(),
6371                              getValue(I.getArgOperand(0))));
6372     return;
6373   case Intrinsic::bswap:
6374     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6375                              getValue(I.getArgOperand(0)).getValueType(),
6376                              getValue(I.getArgOperand(0))));
6377     return;
6378   case Intrinsic::cttz: {
6379     SDValue Arg = getValue(I.getArgOperand(0));
6380     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6381     EVT Ty = Arg.getValueType();
6382     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6383                              sdl, Ty, Arg));
6384     return;
6385   }
6386   case Intrinsic::ctlz: {
6387     SDValue Arg = getValue(I.getArgOperand(0));
6388     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6389     EVT Ty = Arg.getValueType();
6390     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6391                              sdl, Ty, Arg));
6392     return;
6393   }
6394   case Intrinsic::ctpop: {
6395     SDValue Arg = getValue(I.getArgOperand(0));
6396     EVT Ty = Arg.getValueType();
6397     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6398     return;
6399   }
6400   case Intrinsic::fshl:
6401   case Intrinsic::fshr: {
6402     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6403     SDValue X = getValue(I.getArgOperand(0));
6404     SDValue Y = getValue(I.getArgOperand(1));
6405     SDValue Z = getValue(I.getArgOperand(2));
6406     EVT VT = X.getValueType();
6407 
6408     if (X == Y) {
6409       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6410       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6411     } else {
6412       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6413       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6414     }
6415     return;
6416   }
6417   case Intrinsic::sadd_sat: {
6418     SDValue Op1 = getValue(I.getArgOperand(0));
6419     SDValue Op2 = getValue(I.getArgOperand(1));
6420     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6421     return;
6422   }
6423   case Intrinsic::uadd_sat: {
6424     SDValue Op1 = getValue(I.getArgOperand(0));
6425     SDValue Op2 = getValue(I.getArgOperand(1));
6426     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6427     return;
6428   }
6429   case Intrinsic::ssub_sat: {
6430     SDValue Op1 = getValue(I.getArgOperand(0));
6431     SDValue Op2 = getValue(I.getArgOperand(1));
6432     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6433     return;
6434   }
6435   case Intrinsic::usub_sat: {
6436     SDValue Op1 = getValue(I.getArgOperand(0));
6437     SDValue Op2 = getValue(I.getArgOperand(1));
6438     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6439     return;
6440   }
6441   case Intrinsic::sshl_sat: {
6442     SDValue Op1 = getValue(I.getArgOperand(0));
6443     SDValue Op2 = getValue(I.getArgOperand(1));
6444     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6445     return;
6446   }
6447   case Intrinsic::ushl_sat: {
6448     SDValue Op1 = getValue(I.getArgOperand(0));
6449     SDValue Op2 = getValue(I.getArgOperand(1));
6450     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6451     return;
6452   }
6453   case Intrinsic::smul_fix:
6454   case Intrinsic::umul_fix:
6455   case Intrinsic::smul_fix_sat:
6456   case Intrinsic::umul_fix_sat: {
6457     SDValue Op1 = getValue(I.getArgOperand(0));
6458     SDValue Op2 = getValue(I.getArgOperand(1));
6459     SDValue Op3 = getValue(I.getArgOperand(2));
6460     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6461                              Op1.getValueType(), Op1, Op2, Op3));
6462     return;
6463   }
6464   case Intrinsic::sdiv_fix:
6465   case Intrinsic::udiv_fix:
6466   case Intrinsic::sdiv_fix_sat:
6467   case Intrinsic::udiv_fix_sat: {
6468     SDValue Op1 = getValue(I.getArgOperand(0));
6469     SDValue Op2 = getValue(I.getArgOperand(1));
6470     SDValue Op3 = getValue(I.getArgOperand(2));
6471     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6472                               Op1, Op2, Op3, DAG, TLI));
6473     return;
6474   }
6475   case Intrinsic::smax: {
6476     SDValue Op1 = getValue(I.getArgOperand(0));
6477     SDValue Op2 = getValue(I.getArgOperand(1));
6478     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6479     return;
6480   }
6481   case Intrinsic::smin: {
6482     SDValue Op1 = getValue(I.getArgOperand(0));
6483     SDValue Op2 = getValue(I.getArgOperand(1));
6484     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6485     return;
6486   }
6487   case Intrinsic::umax: {
6488     SDValue Op1 = getValue(I.getArgOperand(0));
6489     SDValue Op2 = getValue(I.getArgOperand(1));
6490     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6491     return;
6492   }
6493   case Intrinsic::umin: {
6494     SDValue Op1 = getValue(I.getArgOperand(0));
6495     SDValue Op2 = getValue(I.getArgOperand(1));
6496     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6497     return;
6498   }
6499   case Intrinsic::abs: {
6500     // TODO: Preserve "int min is poison" arg in SDAG?
6501     SDValue Op1 = getValue(I.getArgOperand(0));
6502     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6503     return;
6504   }
6505   case Intrinsic::stacksave: {
6506     SDValue Op = getRoot();
6507     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6508     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6509     setValue(&I, Res);
6510     DAG.setRoot(Res.getValue(1));
6511     return;
6512   }
6513   case Intrinsic::stackrestore:
6514     Res = getValue(I.getArgOperand(0));
6515     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6516     return;
6517   case Intrinsic::get_dynamic_area_offset: {
6518     SDValue Op = getRoot();
6519     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6520     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6521     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6522     // target.
6523     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6524       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6525                          " intrinsic!");
6526     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6527                       Op);
6528     DAG.setRoot(Op);
6529     setValue(&I, Res);
6530     return;
6531   }
6532   case Intrinsic::stackguard: {
6533     MachineFunction &MF = DAG.getMachineFunction();
6534     const Module &M = *MF.getFunction().getParent();
6535     SDValue Chain = getRoot();
6536     if (TLI.useLoadStackGuardNode()) {
6537       Res = getLoadStackGuard(DAG, sdl, Chain);
6538     } else {
6539       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6540       const Value *Global = TLI.getSDagStackGuard(M);
6541       Align Align = DL->getPrefTypeAlign(Global->getType());
6542       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6543                         MachinePointerInfo(Global, 0), Align,
6544                         MachineMemOperand::MOVolatile);
6545     }
6546     if (TLI.useStackGuardXorFP())
6547       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6548     DAG.setRoot(Chain);
6549     setValue(&I, Res);
6550     return;
6551   }
6552   case Intrinsic::stackprotector: {
6553     // Emit code into the DAG to store the stack guard onto the stack.
6554     MachineFunction &MF = DAG.getMachineFunction();
6555     MachineFrameInfo &MFI = MF.getFrameInfo();
6556     SDValue Src, Chain = getRoot();
6557 
6558     if (TLI.useLoadStackGuardNode())
6559       Src = getLoadStackGuard(DAG, sdl, Chain);
6560     else
6561       Src = getValue(I.getArgOperand(0));   // The guard's value.
6562 
6563     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6564 
6565     int FI = FuncInfo.StaticAllocaMap[Slot];
6566     MFI.setStackProtectorIndex(FI);
6567     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6568 
6569     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6570 
6571     // Store the stack protector onto the stack.
6572     Res = DAG.getStore(
6573         Chain, sdl, Src, FIN,
6574         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6575         MaybeAlign(), MachineMemOperand::MOVolatile);
6576     setValue(&I, Res);
6577     DAG.setRoot(Res);
6578     return;
6579   }
6580   case Intrinsic::objectsize:
6581     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6582 
6583   case Intrinsic::is_constant:
6584     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6585 
6586   case Intrinsic::annotation:
6587   case Intrinsic::ptr_annotation:
6588   case Intrinsic::launder_invariant_group:
6589   case Intrinsic::strip_invariant_group:
6590     // Drop the intrinsic, but forward the value
6591     setValue(&I, getValue(I.getOperand(0)));
6592     return;
6593 
6594   case Intrinsic::assume:
6595   case Intrinsic::experimental_noalias_scope_decl:
6596   case Intrinsic::var_annotation:
6597   case Intrinsic::sideeffect:
6598     // Discard annotate attributes, noalias scope declarations, assumptions, and
6599     // artificial side-effects.
6600     return;
6601 
6602   case Intrinsic::codeview_annotation: {
6603     // Emit a label associated with this metadata.
6604     MachineFunction &MF = DAG.getMachineFunction();
6605     MCSymbol *Label =
6606         MF.getMMI().getContext().createTempSymbol("annotation", true);
6607     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6608     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6609     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6610     DAG.setRoot(Res);
6611     return;
6612   }
6613 
6614   case Intrinsic::init_trampoline: {
6615     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6616 
6617     SDValue Ops[6];
6618     Ops[0] = getRoot();
6619     Ops[1] = getValue(I.getArgOperand(0));
6620     Ops[2] = getValue(I.getArgOperand(1));
6621     Ops[3] = getValue(I.getArgOperand(2));
6622     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6623     Ops[5] = DAG.getSrcValue(F);
6624 
6625     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6626 
6627     DAG.setRoot(Res);
6628     return;
6629   }
6630   case Intrinsic::adjust_trampoline:
6631     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6632                              TLI.getPointerTy(DAG.getDataLayout()),
6633                              getValue(I.getArgOperand(0))));
6634     return;
6635   case Intrinsic::gcroot: {
6636     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6637            "only valid in functions with gc specified, enforced by Verifier");
6638     assert(GFI && "implied by previous");
6639     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6640     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6641 
6642     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6643     GFI->addStackRoot(FI->getIndex(), TypeMap);
6644     return;
6645   }
6646   case Intrinsic::gcread:
6647   case Intrinsic::gcwrite:
6648     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6649   case Intrinsic::flt_rounds:
6650     Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot());
6651     setValue(&I, Res);
6652     DAG.setRoot(Res.getValue(1));
6653     return;
6654 
6655   case Intrinsic::expect:
6656     // Just replace __builtin_expect(exp, c) with EXP.
6657     setValue(&I, getValue(I.getArgOperand(0)));
6658     return;
6659 
6660   case Intrinsic::ubsantrap:
6661   case Intrinsic::debugtrap:
6662   case Intrinsic::trap: {
6663     StringRef TrapFuncName =
6664         I.getAttributes()
6665             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6666             .getValueAsString();
6667     if (TrapFuncName.empty()) {
6668       switch (Intrinsic) {
6669       case Intrinsic::trap:
6670         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
6671         break;
6672       case Intrinsic::debugtrap:
6673         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
6674         break;
6675       case Intrinsic::ubsantrap:
6676         DAG.setRoot(DAG.getNode(
6677             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
6678             DAG.getTargetConstant(
6679                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
6680                 MVT::i32)));
6681         break;
6682       default: llvm_unreachable("unknown trap intrinsic");
6683       }
6684       return;
6685     }
6686     TargetLowering::ArgListTy Args;
6687     if (Intrinsic == Intrinsic::ubsantrap) {
6688       Args.push_back(TargetLoweringBase::ArgListEntry());
6689       Args[0].Val = I.getArgOperand(0);
6690       Args[0].Node = getValue(Args[0].Val);
6691       Args[0].Ty = Args[0].Val->getType();
6692     }
6693 
6694     TargetLowering::CallLoweringInfo CLI(DAG);
6695     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6696         CallingConv::C, I.getType(),
6697         DAG.getExternalSymbol(TrapFuncName.data(),
6698                               TLI.getPointerTy(DAG.getDataLayout())),
6699         std::move(Args));
6700 
6701     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6702     DAG.setRoot(Result.second);
6703     return;
6704   }
6705 
6706   case Intrinsic::uadd_with_overflow:
6707   case Intrinsic::sadd_with_overflow:
6708   case Intrinsic::usub_with_overflow:
6709   case Intrinsic::ssub_with_overflow:
6710   case Intrinsic::umul_with_overflow:
6711   case Intrinsic::smul_with_overflow: {
6712     ISD::NodeType Op;
6713     switch (Intrinsic) {
6714     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6715     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6716     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6717     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6718     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6719     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6720     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6721     }
6722     SDValue Op1 = getValue(I.getArgOperand(0));
6723     SDValue Op2 = getValue(I.getArgOperand(1));
6724 
6725     EVT ResultVT = Op1.getValueType();
6726     EVT OverflowVT = MVT::i1;
6727     if (ResultVT.isVector())
6728       OverflowVT = EVT::getVectorVT(
6729           *Context, OverflowVT, ResultVT.getVectorElementCount());
6730 
6731     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6732     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6733     return;
6734   }
6735   case Intrinsic::prefetch: {
6736     SDValue Ops[5];
6737     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6738     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6739     Ops[0] = DAG.getRoot();
6740     Ops[1] = getValue(I.getArgOperand(0));
6741     Ops[2] = getValue(I.getArgOperand(1));
6742     Ops[3] = getValue(I.getArgOperand(2));
6743     Ops[4] = getValue(I.getArgOperand(3));
6744     SDValue Result = DAG.getMemIntrinsicNode(
6745         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6746         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6747         /* align */ None, Flags);
6748 
6749     // Chain the prefetch in parallell with any pending loads, to stay out of
6750     // the way of later optimizations.
6751     PendingLoads.push_back(Result);
6752     Result = getRoot();
6753     DAG.setRoot(Result);
6754     return;
6755   }
6756   case Intrinsic::lifetime_start:
6757   case Intrinsic::lifetime_end: {
6758     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6759     // Stack coloring is not enabled in O0, discard region information.
6760     if (TM.getOptLevel() == CodeGenOpt::None)
6761       return;
6762 
6763     const int64_t ObjectSize =
6764         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6765     Value *const ObjectPtr = I.getArgOperand(1);
6766     SmallVector<const Value *, 4> Allocas;
6767     getUnderlyingObjects(ObjectPtr, Allocas);
6768 
6769     for (const Value *Alloca : Allocas) {
6770       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
6771 
6772       // Could not find an Alloca.
6773       if (!LifetimeObject)
6774         continue;
6775 
6776       // First check that the Alloca is static, otherwise it won't have a
6777       // valid frame index.
6778       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6779       if (SI == FuncInfo.StaticAllocaMap.end())
6780         return;
6781 
6782       const int FrameIndex = SI->second;
6783       int64_t Offset;
6784       if (GetPointerBaseWithConstantOffset(
6785               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6786         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6787       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6788                                 Offset);
6789       DAG.setRoot(Res);
6790     }
6791     return;
6792   }
6793   case Intrinsic::pseudoprobe: {
6794     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
6795     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6796     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
6797     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
6798     DAG.setRoot(Res);
6799     return;
6800   }
6801   case Intrinsic::invariant_start:
6802     // Discard region information.
6803     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6804     return;
6805   case Intrinsic::invariant_end:
6806     // Discard region information.
6807     return;
6808   case Intrinsic::clear_cache:
6809     /// FunctionName may be null.
6810     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6811       lowerCallToExternalSymbol(I, FunctionName);
6812     return;
6813   case Intrinsic::donothing:
6814   case Intrinsic::seh_try_begin:
6815   case Intrinsic::seh_scope_begin:
6816   case Intrinsic::seh_try_end:
6817   case Intrinsic::seh_scope_end:
6818     // ignore
6819     return;
6820   case Intrinsic::experimental_stackmap:
6821     visitStackmap(I);
6822     return;
6823   case Intrinsic::experimental_patchpoint_void:
6824   case Intrinsic::experimental_patchpoint_i64:
6825     visitPatchpoint(I);
6826     return;
6827   case Intrinsic::experimental_gc_statepoint:
6828     LowerStatepoint(cast<GCStatepointInst>(I));
6829     return;
6830   case Intrinsic::experimental_gc_result:
6831     visitGCResult(cast<GCResultInst>(I));
6832     return;
6833   case Intrinsic::experimental_gc_relocate:
6834     visitGCRelocate(cast<GCRelocateInst>(I));
6835     return;
6836   case Intrinsic::instrprof_increment:
6837     llvm_unreachable("instrprof failed to lower an increment");
6838   case Intrinsic::instrprof_value_profile:
6839     llvm_unreachable("instrprof failed to lower a value profiling call");
6840   case Intrinsic::localescape: {
6841     MachineFunction &MF = DAG.getMachineFunction();
6842     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6843 
6844     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6845     // is the same on all targets.
6846     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6847       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6848       if (isa<ConstantPointerNull>(Arg))
6849         continue; // Skip null pointers. They represent a hole in index space.
6850       AllocaInst *Slot = cast<AllocaInst>(Arg);
6851       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6852              "can only escape static allocas");
6853       int FI = FuncInfo.StaticAllocaMap[Slot];
6854       MCSymbol *FrameAllocSym =
6855           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6856               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6857       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6858               TII->get(TargetOpcode::LOCAL_ESCAPE))
6859           .addSym(FrameAllocSym)
6860           .addFrameIndex(FI);
6861     }
6862 
6863     return;
6864   }
6865 
6866   case Intrinsic::localrecover: {
6867     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6868     MachineFunction &MF = DAG.getMachineFunction();
6869 
6870     // Get the symbol that defines the frame offset.
6871     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6872     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6873     unsigned IdxVal =
6874         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6875     MCSymbol *FrameAllocSym =
6876         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6877             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6878 
6879     Value *FP = I.getArgOperand(1);
6880     SDValue FPVal = getValue(FP);
6881     EVT PtrVT = FPVal.getValueType();
6882 
6883     // Create a MCSymbol for the label to avoid any target lowering
6884     // that would make this PC relative.
6885     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6886     SDValue OffsetVal =
6887         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6888 
6889     // Add the offset to the FP.
6890     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
6891     setValue(&I, Add);
6892 
6893     return;
6894   }
6895 
6896   case Intrinsic::eh_exceptionpointer:
6897   case Intrinsic::eh_exceptioncode: {
6898     // Get the exception pointer vreg, copy from it, and resize it to fit.
6899     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6900     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6901     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6902     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6903     SDValue N =
6904         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6905     if (Intrinsic == Intrinsic::eh_exceptioncode)
6906       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6907     setValue(&I, N);
6908     return;
6909   }
6910   case Intrinsic::xray_customevent: {
6911     // Here we want to make sure that the intrinsic behaves as if it has a
6912     // specific calling convention, and only for x86_64.
6913     // FIXME: Support other platforms later.
6914     const auto &Triple = DAG.getTarget().getTargetTriple();
6915     if (Triple.getArch() != Triple::x86_64)
6916       return;
6917 
6918     SDLoc DL = getCurSDLoc();
6919     SmallVector<SDValue, 8> Ops;
6920 
6921     // We want to say that we always want the arguments in registers.
6922     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6923     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6924     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6925     SDValue Chain = getRoot();
6926     Ops.push_back(LogEntryVal);
6927     Ops.push_back(StrSizeVal);
6928     Ops.push_back(Chain);
6929 
6930     // We need to enforce the calling convention for the callsite, so that
6931     // argument ordering is enforced correctly, and that register allocation can
6932     // see that some registers may be assumed clobbered and have to preserve
6933     // them across calls to the intrinsic.
6934     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6935                                            DL, NodeTys, Ops);
6936     SDValue patchableNode = SDValue(MN, 0);
6937     DAG.setRoot(patchableNode);
6938     setValue(&I, patchableNode);
6939     return;
6940   }
6941   case Intrinsic::xray_typedevent: {
6942     // Here we want to make sure that the intrinsic behaves as if it has a
6943     // specific calling convention, and only for x86_64.
6944     // FIXME: Support other platforms later.
6945     const auto &Triple = DAG.getTarget().getTargetTriple();
6946     if (Triple.getArch() != Triple::x86_64)
6947       return;
6948 
6949     SDLoc DL = getCurSDLoc();
6950     SmallVector<SDValue, 8> Ops;
6951 
6952     // We want to say that we always want the arguments in registers.
6953     // It's unclear to me how manipulating the selection DAG here forces callers
6954     // to provide arguments in registers instead of on the stack.
6955     SDValue LogTypeId = getValue(I.getArgOperand(0));
6956     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6957     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6958     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6959     SDValue Chain = getRoot();
6960     Ops.push_back(LogTypeId);
6961     Ops.push_back(LogEntryVal);
6962     Ops.push_back(StrSizeVal);
6963     Ops.push_back(Chain);
6964 
6965     // We need to enforce the calling convention for the callsite, so that
6966     // argument ordering is enforced correctly, and that register allocation can
6967     // see that some registers may be assumed clobbered and have to preserve
6968     // them across calls to the intrinsic.
6969     MachineSDNode *MN = DAG.getMachineNode(
6970         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6971     SDValue patchableNode = SDValue(MN, 0);
6972     DAG.setRoot(patchableNode);
6973     setValue(&I, patchableNode);
6974     return;
6975   }
6976   case Intrinsic::experimental_deoptimize:
6977     LowerDeoptimizeCall(&I);
6978     return;
6979   case Intrinsic::experimental_stepvector:
6980     visitStepVector(I);
6981     return;
6982   case Intrinsic::vector_reduce_fadd:
6983   case Intrinsic::vector_reduce_fmul:
6984   case Intrinsic::vector_reduce_add:
6985   case Intrinsic::vector_reduce_mul:
6986   case Intrinsic::vector_reduce_and:
6987   case Intrinsic::vector_reduce_or:
6988   case Intrinsic::vector_reduce_xor:
6989   case Intrinsic::vector_reduce_smax:
6990   case Intrinsic::vector_reduce_smin:
6991   case Intrinsic::vector_reduce_umax:
6992   case Intrinsic::vector_reduce_umin:
6993   case Intrinsic::vector_reduce_fmax:
6994   case Intrinsic::vector_reduce_fmin:
6995     visitVectorReduce(I, Intrinsic);
6996     return;
6997 
6998   case Intrinsic::icall_branch_funnel: {
6999     SmallVector<SDValue, 16> Ops;
7000     Ops.push_back(getValue(I.getArgOperand(0)));
7001 
7002     int64_t Offset;
7003     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7004         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7005     if (!Base)
7006       report_fatal_error(
7007           "llvm.icall.branch.funnel operand must be a GlobalValue");
7008     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
7009 
7010     struct BranchFunnelTarget {
7011       int64_t Offset;
7012       SDValue Target;
7013     };
7014     SmallVector<BranchFunnelTarget, 8> Targets;
7015 
7016     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
7017       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7018           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7019       if (ElemBase != Base)
7020         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7021                            "to the same GlobalValue");
7022 
7023       SDValue Val = getValue(I.getArgOperand(Op + 1));
7024       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7025       if (!GA)
7026         report_fatal_error(
7027             "llvm.icall.branch.funnel operand must be a GlobalValue");
7028       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7029                                      GA->getGlobal(), getCurSDLoc(),
7030                                      Val.getValueType(), GA->getOffset())});
7031     }
7032     llvm::sort(Targets,
7033                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7034                  return T1.Offset < T2.Offset;
7035                });
7036 
7037     for (auto &T : Targets) {
7038       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
7039       Ops.push_back(T.Target);
7040     }
7041 
7042     Ops.push_back(DAG.getRoot()); // Chain
7043     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
7044                                  getCurSDLoc(), MVT::Other, Ops),
7045               0);
7046     DAG.setRoot(N);
7047     setValue(&I, N);
7048     HasTailCall = true;
7049     return;
7050   }
7051 
7052   case Intrinsic::wasm_landingpad_index:
7053     // Information this intrinsic contained has been transferred to
7054     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7055     // delete it now.
7056     return;
7057 
7058   case Intrinsic::aarch64_settag:
7059   case Intrinsic::aarch64_settag_zero: {
7060     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7061     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7062     SDValue Val = TSI.EmitTargetCodeForSetTag(
7063         DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)),
7064         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7065         ZeroMemory);
7066     DAG.setRoot(Val);
7067     setValue(&I, Val);
7068     return;
7069   }
7070   case Intrinsic::ptrmask: {
7071     SDValue Ptr = getValue(I.getOperand(0));
7072     SDValue Const = getValue(I.getOperand(1));
7073 
7074     EVT PtrVT = Ptr.getValueType();
7075     setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), PtrVT, Ptr,
7076                              DAG.getZExtOrTrunc(Const, getCurSDLoc(), PtrVT)));
7077     return;
7078   }
7079   case Intrinsic::get_active_lane_mask: {
7080     auto DL = getCurSDLoc();
7081     SDValue Index = getValue(I.getOperand(0));
7082     SDValue TripCount = getValue(I.getOperand(1));
7083     Type *ElementTy = I.getOperand(0)->getType();
7084     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7085     unsigned VecWidth = VT.getVectorNumElements();
7086 
7087     SmallVector<SDValue, 16> OpsTripCount;
7088     SmallVector<SDValue, 16> OpsIndex;
7089     SmallVector<SDValue, 16> OpsStepConstants;
7090     for (unsigned i = 0; i < VecWidth; i++) {
7091       OpsTripCount.push_back(TripCount);
7092       OpsIndex.push_back(Index);
7093       OpsStepConstants.push_back(
7094           DAG.getConstant(i, DL, EVT::getEVT(ElementTy)));
7095     }
7096 
7097     EVT CCVT = EVT::getVectorVT(I.getContext(), MVT::i1, VecWidth);
7098 
7099     auto VecTy = EVT::getEVT(FixedVectorType::get(ElementTy, VecWidth));
7100     SDValue VectorIndex = DAG.getBuildVector(VecTy, DL, OpsIndex);
7101     SDValue VectorStep = DAG.getBuildVector(VecTy, DL, OpsStepConstants);
7102     SDValue VectorInduction = DAG.getNode(
7103        ISD::UADDO, DL, DAG.getVTList(VecTy, CCVT), VectorIndex, VectorStep);
7104     SDValue VectorTripCount = DAG.getBuildVector(VecTy, DL, OpsTripCount);
7105     SDValue SetCC = DAG.getSetCC(DL, CCVT, VectorInduction.getValue(0),
7106                                  VectorTripCount, ISD::CondCode::SETULT);
7107     setValue(&I, DAG.getNode(ISD::AND, DL, CCVT,
7108                              DAG.getNOT(DL, VectorInduction.getValue(1), CCVT),
7109                              SetCC));
7110     return;
7111   }
7112   case Intrinsic::experimental_vector_insert: {
7113     auto DL = getCurSDLoc();
7114 
7115     SDValue Vec = getValue(I.getOperand(0));
7116     SDValue SubVec = getValue(I.getOperand(1));
7117     SDValue Index = getValue(I.getOperand(2));
7118 
7119     // The intrinsic's index type is i64, but the SDNode requires an index type
7120     // suitable for the target. Convert the index as required.
7121     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7122     if (Index.getValueType() != VectorIdxTy)
7123       Index = DAG.getVectorIdxConstant(
7124           cast<ConstantSDNode>(Index)->getZExtValue(), DL);
7125 
7126     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7127     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ResultVT, Vec, SubVec,
7128                              Index));
7129     return;
7130   }
7131   case Intrinsic::experimental_vector_extract: {
7132     auto DL = getCurSDLoc();
7133 
7134     SDValue Vec = getValue(I.getOperand(0));
7135     SDValue Index = getValue(I.getOperand(1));
7136     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7137 
7138     // The intrinsic's index type is i64, but the SDNode requires an index type
7139     // suitable for the target. Convert the index as required.
7140     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7141     if (Index.getValueType() != VectorIdxTy)
7142       Index = DAG.getVectorIdxConstant(
7143           cast<ConstantSDNode>(Index)->getZExtValue(), DL);
7144 
7145     setValue(&I, DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResultVT, Vec, Index));
7146     return;
7147   }
7148   case Intrinsic::experimental_vector_reverse:
7149     visitVectorReverse(I);
7150     return;
7151   case Intrinsic::experimental_vector_splice:
7152     visitVectorSplice(I);
7153     return;
7154   }
7155 }
7156 
visitConstrainedFPIntrinsic(const ConstrainedFPIntrinsic & FPI)7157 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7158     const ConstrainedFPIntrinsic &FPI) {
7159   SDLoc sdl = getCurSDLoc();
7160 
7161   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7162   SmallVector<EVT, 4> ValueVTs;
7163   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
7164   ValueVTs.push_back(MVT::Other); // Out chain
7165 
7166   // We do not need to serialize constrained FP intrinsics against
7167   // each other or against (nonvolatile) loads, so they can be
7168   // chained like loads.
7169   SDValue Chain = DAG.getRoot();
7170   SmallVector<SDValue, 4> Opers;
7171   Opers.push_back(Chain);
7172   if (FPI.isUnaryOp()) {
7173     Opers.push_back(getValue(FPI.getArgOperand(0)));
7174   } else if (FPI.isTernaryOp()) {
7175     Opers.push_back(getValue(FPI.getArgOperand(0)));
7176     Opers.push_back(getValue(FPI.getArgOperand(1)));
7177     Opers.push_back(getValue(FPI.getArgOperand(2)));
7178   } else {
7179     Opers.push_back(getValue(FPI.getArgOperand(0)));
7180     Opers.push_back(getValue(FPI.getArgOperand(1)));
7181   }
7182 
7183   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7184     assert(Result.getNode()->getNumValues() == 2);
7185 
7186     // Push node to the appropriate list so that future instructions can be
7187     // chained up correctly.
7188     SDValue OutChain = Result.getValue(1);
7189     switch (EB) {
7190     case fp::ExceptionBehavior::ebIgnore:
7191       // The only reason why ebIgnore nodes still need to be chained is that
7192       // they might depend on the current rounding mode, and therefore must
7193       // not be moved across instruction that may change that mode.
7194       LLVM_FALLTHROUGH;
7195     case fp::ExceptionBehavior::ebMayTrap:
7196       // These must not be moved across calls or instructions that may change
7197       // floating-point exception masks.
7198       PendingConstrainedFP.push_back(OutChain);
7199       break;
7200     case fp::ExceptionBehavior::ebStrict:
7201       // These must not be moved across calls or instructions that may change
7202       // floating-point exception masks or read floating-point exception flags.
7203       // In addition, they cannot be optimized out even if unused.
7204       PendingConstrainedFPStrict.push_back(OutChain);
7205       break;
7206     }
7207   };
7208 
7209   SDVTList VTs = DAG.getVTList(ValueVTs);
7210   fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();
7211 
7212   SDNodeFlags Flags;
7213   if (EB == fp::ExceptionBehavior::ebIgnore)
7214     Flags.setNoFPExcept(true);
7215 
7216   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7217     Flags.copyFMF(*FPOp);
7218 
7219   unsigned Opcode;
7220   switch (FPI.getIntrinsicID()) {
7221   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7222 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7223   case Intrinsic::INTRINSIC:                                                   \
7224     Opcode = ISD::STRICT_##DAGN;                                               \
7225     break;
7226 #include "llvm/IR/ConstrainedOps.def"
7227   case Intrinsic::experimental_constrained_fmuladd: {
7228     Opcode = ISD::STRICT_FMA;
7229     // Break fmuladd into fmul and fadd.
7230     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7231         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(),
7232                                         ValueVTs[0])) {
7233       Opers.pop_back();
7234       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7235       pushOutChain(Mul, EB);
7236       Opcode = ISD::STRICT_FADD;
7237       Opers.clear();
7238       Opers.push_back(Mul.getValue(1));
7239       Opers.push_back(Mul.getValue(0));
7240       Opers.push_back(getValue(FPI.getArgOperand(2)));
7241     }
7242     break;
7243   }
7244   }
7245 
7246   // A few strict DAG nodes carry additional operands that are not
7247   // set up by the default code above.
7248   switch (Opcode) {
7249   default: break;
7250   case ISD::STRICT_FP_ROUND:
7251     Opers.push_back(
7252         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7253     break;
7254   case ISD::STRICT_FSETCC:
7255   case ISD::STRICT_FSETCCS: {
7256     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7257     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
7258     if (TM.Options.NoNaNsFPMath)
7259       Condition = getFCmpCodeWithoutNaN(Condition);
7260     Opers.push_back(DAG.getCondCode(Condition));
7261     break;
7262   }
7263   }
7264 
7265   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7266   pushOutChain(Result, EB);
7267 
7268   SDValue FPResult = Result.getValue(0);
7269   setValue(&FPI, FPResult);
7270 }
7271 
getISDForVPIntrinsic(const VPIntrinsic & VPIntrin)7272 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7273   Optional<unsigned> ResOPC;
7274   switch (VPIntrin.getIntrinsicID()) {
7275 #define BEGIN_REGISTER_VP_INTRINSIC(INTRIN, ...) case Intrinsic::INTRIN:
7276 #define BEGIN_REGISTER_VP_SDNODE(VPSDID, ...) ResOPC = ISD::VPSDID;
7277 #define END_REGISTER_VP_INTRINSIC(...) break;
7278 #include "llvm/IR/VPIntrinsics.def"
7279   }
7280 
7281   if (!ResOPC.hasValue())
7282     llvm_unreachable(
7283         "Inconsistency: no SDNode available for this VPIntrinsic!");
7284 
7285   return ResOPC.getValue();
7286 }
7287 
visitVectorPredicationIntrinsic(const VPIntrinsic & VPIntrin)7288 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
7289     const VPIntrinsic &VPIntrin) {
7290   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
7291 
7292   SmallVector<EVT, 4> ValueVTs;
7293   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7294   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
7295   SDVTList VTs = DAG.getVTList(ValueVTs);
7296 
7297   // Request operands.
7298   SmallVector<SDValue, 7> OpValues;
7299   for (int i = 0; i < (int)VPIntrin.getNumArgOperands(); ++i)
7300     OpValues.push_back(getValue(VPIntrin.getArgOperand(i)));
7301 
7302   SDLoc DL = getCurSDLoc();
7303   SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues);
7304   setValue(&VPIntrin, Result);
7305 }
7306 
lowerStartEH(SDValue Chain,const BasicBlock * EHPadBB,MCSymbol * & BeginLabel)7307 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
7308                                           const BasicBlock *EHPadBB,
7309                                           MCSymbol *&BeginLabel) {
7310   MachineFunction &MF = DAG.getMachineFunction();
7311   MachineModuleInfo &MMI = MF.getMMI();
7312 
7313   // Insert a label before the invoke call to mark the try range.  This can be
7314   // used to detect deletion of the invoke via the MachineModuleInfo.
7315   BeginLabel = MMI.getContext().createTempSymbol();
7316 
7317   // For SjLj, keep track of which landing pads go with which invokes
7318   // so as to maintain the ordering of pads in the LSDA.
7319   unsigned CallSiteIndex = MMI.getCurrentCallSite();
7320   if (CallSiteIndex) {
7321     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7322     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7323 
7324     // Now that the call site is handled, stop tracking it.
7325     MMI.setCurrentCallSite(0);
7326   }
7327 
7328   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
7329 }
7330 
lowerEndEH(SDValue Chain,const InvokeInst * II,const BasicBlock * EHPadBB,MCSymbol * BeginLabel)7331 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
7332                                         const BasicBlock *EHPadBB,
7333                                         MCSymbol *BeginLabel) {
7334   assert(BeginLabel && "BeginLabel should've been set");
7335 
7336   MachineFunction &MF = DAG.getMachineFunction();
7337   MachineModuleInfo &MMI = MF.getMMI();
7338 
7339   // Insert a label at the end of the invoke call to mark the try range.  This
7340   // can be used to detect deletion of the invoke via the MachineModuleInfo.
7341   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7342   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
7343 
7344   // Inform MachineModuleInfo of range.
7345   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7346   // There is a platform (e.g. wasm) that uses funclet style IR but does not
7347   // actually use outlined funclets and their LSDA info style.
7348   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7349     assert(II && "II should've been set");
7350     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
7351     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
7352   } else if (!isScopedEHPersonality(Pers)) {
7353     assert(EHPadBB);
7354     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7355   }
7356 
7357   return Chain;
7358 }
7359 
7360 std::pair<SDValue, SDValue>
lowerInvokable(TargetLowering::CallLoweringInfo & CLI,const BasicBlock * EHPadBB)7361 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7362                                     const BasicBlock *EHPadBB) {
7363   MCSymbol *BeginLabel = nullptr;
7364 
7365   if (EHPadBB) {
7366     // Both PendingLoads and PendingExports must be flushed here;
7367     // this call might not return.
7368     (void)getRoot();
7369     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
7370     CLI.setChain(getRoot());
7371   }
7372 
7373   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7374   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7375 
7376   assert((CLI.IsTailCall || Result.second.getNode()) &&
7377          "Non-null chain expected with non-tail call!");
7378   assert((Result.second.getNode() || !Result.first.getNode()) &&
7379          "Null value expected with tail call!");
7380 
7381   if (!Result.second.getNode()) {
7382     // As a special case, a null chain means that a tail call has been emitted
7383     // and the DAG root is already updated.
7384     HasTailCall = true;
7385 
7386     // Since there's no actual continuation from this block, nothing can be
7387     // relying on us setting vregs for them.
7388     PendingExports.clear();
7389   } else {
7390     DAG.setRoot(Result.second);
7391   }
7392 
7393   if (EHPadBB) {
7394     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
7395                            BeginLabel));
7396   }
7397 
7398   return Result;
7399 }
7400 
LowerCallTo(const CallBase & CB,SDValue Callee,bool isTailCall,const BasicBlock * EHPadBB)7401 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7402                                       bool isTailCall,
7403                                       const BasicBlock *EHPadBB) {
7404   auto &DL = DAG.getDataLayout();
7405   FunctionType *FTy = CB.getFunctionType();
7406   Type *RetTy = CB.getType();
7407 
7408   TargetLowering::ArgListTy Args;
7409   Args.reserve(CB.arg_size());
7410 
7411   const Value *SwiftErrorVal = nullptr;
7412   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7413 
7414   if (isTailCall) {
7415     // Avoid emitting tail calls in functions with the disable-tail-calls
7416     // attribute.
7417     auto *Caller = CB.getParent()->getParent();
7418     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7419         "true")
7420       isTailCall = false;
7421 
7422     // We can't tail call inside a function with a swifterror argument. Lowering
7423     // does not support this yet. It would have to move into the swifterror
7424     // register before the call.
7425     if (TLI.supportSwiftError() &&
7426         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7427       isTailCall = false;
7428   }
7429 
7430   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7431     TargetLowering::ArgListEntry Entry;
7432     const Value *V = *I;
7433 
7434     // Skip empty types
7435     if (V->getType()->isEmptyTy())
7436       continue;
7437 
7438     SDValue ArgNode = getValue(V);
7439     Entry.Node = ArgNode; Entry.Ty = V->getType();
7440 
7441     Entry.setAttributes(&CB, I - CB.arg_begin());
7442 
7443     // Use swifterror virtual register as input to the call.
7444     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7445       SwiftErrorVal = V;
7446       // We find the virtual register for the actual swifterror argument.
7447       // Instead of using the Value, we use the virtual register instead.
7448       Entry.Node =
7449           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7450                           EVT(TLI.getPointerTy(DL)));
7451     }
7452 
7453     Args.push_back(Entry);
7454 
7455     // If we have an explicit sret argument that is an Instruction, (i.e., it
7456     // might point to function-local memory), we can't meaningfully tail-call.
7457     if (Entry.IsSRet && isa<Instruction>(V))
7458       isTailCall = false;
7459   }
7460 
7461   // If call site has a cfguardtarget operand bundle, create and add an
7462   // additional ArgListEntry.
7463   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7464     TargetLowering::ArgListEntry Entry;
7465     Value *V = Bundle->Inputs[0];
7466     SDValue ArgNode = getValue(V);
7467     Entry.Node = ArgNode;
7468     Entry.Ty = V->getType();
7469     Entry.IsCFGuardTarget = true;
7470     Args.push_back(Entry);
7471   }
7472 
7473   // Check if target-independent constraints permit a tail call here.
7474   // Target-dependent constraints are checked within TLI->LowerCallTo.
7475   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7476     isTailCall = false;
7477 
7478   // Disable tail calls if there is an swifterror argument. Targets have not
7479   // been updated to support tail calls.
7480   if (TLI.supportSwiftError() && SwiftErrorVal)
7481     isTailCall = false;
7482 
7483   TargetLowering::CallLoweringInfo CLI(DAG);
7484   CLI.setDebugLoc(getCurSDLoc())
7485       .setChain(getRoot())
7486       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
7487       .setTailCall(isTailCall)
7488       .setConvergent(CB.isConvergent())
7489       .setIsPreallocated(
7490           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
7491   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7492 
7493   if (Result.first.getNode()) {
7494     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
7495     setValue(&CB, Result.first);
7496   }
7497 
7498   // The last element of CLI.InVals has the SDValue for swifterror return.
7499   // Here we copy it to a virtual register and update SwiftErrorMap for
7500   // book-keeping.
7501   if (SwiftErrorVal && TLI.supportSwiftError()) {
7502     // Get the last element of InVals.
7503     SDValue Src = CLI.InVals.back();
7504     Register VReg =
7505         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
7506     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7507     DAG.setRoot(CopyNode);
7508   }
7509 }
7510 
getMemCmpLoad(const Value * PtrVal,MVT LoadVT,SelectionDAGBuilder & Builder)7511 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7512                              SelectionDAGBuilder &Builder) {
7513   // Check to see if this load can be trivially constant folded, e.g. if the
7514   // input is from a string literal.
7515   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7516     // Cast pointer to the type we really want to load.
7517     Type *LoadTy =
7518         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7519     if (LoadVT.isVector())
7520       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
7521 
7522     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7523                                          PointerType::getUnqual(LoadTy));
7524 
7525     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7526             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7527       return Builder.getValue(LoadCst);
7528   }
7529 
7530   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7531   // still constant memory, the input chain can be the entry node.
7532   SDValue Root;
7533   bool ConstantMemory = false;
7534 
7535   // Do not serialize (non-volatile) loads of constant memory with anything.
7536   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7537     Root = Builder.DAG.getEntryNode();
7538     ConstantMemory = true;
7539   } else {
7540     // Do not serialize non-volatile loads against each other.
7541     Root = Builder.DAG.getRoot();
7542   }
7543 
7544   SDValue Ptr = Builder.getValue(PtrVal);
7545   SDValue LoadVal =
7546       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
7547                           MachinePointerInfo(PtrVal), Align(1));
7548 
7549   if (!ConstantMemory)
7550     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7551   return LoadVal;
7552 }
7553 
7554 /// Record the value for an instruction that produces an integer result,
7555 /// converting the type where necessary.
processIntegerCallValue(const Instruction & I,SDValue Value,bool IsSigned)7556 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7557                                                   SDValue Value,
7558                                                   bool IsSigned) {
7559   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7560                                                     I.getType(), true);
7561   if (IsSigned)
7562     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7563   else
7564     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7565   setValue(&I, Value);
7566 }
7567 
7568 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
7569 /// true and lower it. Otherwise return false, and it will be lowered like a
7570 /// normal call.
7571 /// The caller already checked that \p I calls the appropriate LibFunc with a
7572 /// correct prototype.
visitMemCmpBCmpCall(const CallInst & I)7573 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
7574   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7575   const Value *Size = I.getArgOperand(2);
7576   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7577   if (CSize && CSize->getZExtValue() == 0) {
7578     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7579                                                           I.getType(), true);
7580     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7581     return true;
7582   }
7583 
7584   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7585   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7586       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7587       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7588   if (Res.first.getNode()) {
7589     processIntegerCallValue(I, Res.first, true);
7590     PendingLoads.push_back(Res.second);
7591     return true;
7592   }
7593 
7594   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7595   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7596   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7597     return false;
7598 
7599   // If the target has a fast compare for the given size, it will return a
7600   // preferred load type for that size. Require that the load VT is legal and
7601   // that the target supports unaligned loads of that type. Otherwise, return
7602   // INVALID.
7603   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7604     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7605     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7606     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7607       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7608       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7609       // TODO: Check alignment of src and dest ptrs.
7610       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7611       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7612       if (!TLI.isTypeLegal(LVT) ||
7613           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7614           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7615         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7616     }
7617 
7618     return LVT;
7619   };
7620 
7621   // This turns into unaligned loads. We only do this if the target natively
7622   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7623   // we'll only produce a small number of byte loads.
7624   MVT LoadVT;
7625   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7626   switch (NumBitsToCompare) {
7627   default:
7628     return false;
7629   case 16:
7630     LoadVT = MVT::i16;
7631     break;
7632   case 32:
7633     LoadVT = MVT::i32;
7634     break;
7635   case 64:
7636   case 128:
7637   case 256:
7638     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7639     break;
7640   }
7641 
7642   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7643     return false;
7644 
7645   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7646   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7647 
7648   // Bitcast to a wide integer type if the loads are vectors.
7649   if (LoadVT.isVector()) {
7650     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7651     LoadL = DAG.getBitcast(CmpVT, LoadL);
7652     LoadR = DAG.getBitcast(CmpVT, LoadR);
7653   }
7654 
7655   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7656   processIntegerCallValue(I, Cmp, false);
7657   return true;
7658 }
7659 
7660 /// See if we can lower a memchr call into an optimized form. If so, return
7661 /// true and lower it. Otherwise return false, and it will be lowered like a
7662 /// normal call.
7663 /// The caller already checked that \p I calls the appropriate LibFunc with a
7664 /// correct prototype.
visitMemChrCall(const CallInst & I)7665 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7666   const Value *Src = I.getArgOperand(0);
7667   const Value *Char = I.getArgOperand(1);
7668   const Value *Length = I.getArgOperand(2);
7669 
7670   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7671   std::pair<SDValue, SDValue> Res =
7672     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7673                                 getValue(Src), getValue(Char), getValue(Length),
7674                                 MachinePointerInfo(Src));
7675   if (Res.first.getNode()) {
7676     setValue(&I, Res.first);
7677     PendingLoads.push_back(Res.second);
7678     return true;
7679   }
7680 
7681   return false;
7682 }
7683 
7684 /// See if we can lower a mempcpy call into an optimized form. If so, return
7685 /// true and lower it. Otherwise return false, and it will be lowered like a
7686 /// normal call.
7687 /// The caller already checked that \p I calls the appropriate LibFunc with a
7688 /// correct prototype.
visitMemPCpyCall(const CallInst & I)7689 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7690   SDValue Dst = getValue(I.getArgOperand(0));
7691   SDValue Src = getValue(I.getArgOperand(1));
7692   SDValue Size = getValue(I.getArgOperand(2));
7693 
7694   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
7695   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
7696   // DAG::getMemcpy needs Alignment to be defined.
7697   Align Alignment = std::min(DstAlign, SrcAlign);
7698 
7699   bool isVol = false;
7700   SDLoc sdl = getCurSDLoc();
7701 
7702   // In the mempcpy context we need to pass in a false value for isTailCall
7703   // because the return pointer needs to be adjusted by the size of
7704   // the copied memory.
7705   SDValue Root = isVol ? getRoot() : getMemoryRoot();
7706   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
7707                              /*isTailCall=*/false,
7708                              MachinePointerInfo(I.getArgOperand(0)),
7709                              MachinePointerInfo(I.getArgOperand(1)));
7710   assert(MC.getNode() != nullptr &&
7711          "** memcpy should not be lowered as TailCall in mempcpy context **");
7712   DAG.setRoot(MC);
7713 
7714   // Check if Size needs to be truncated or extended.
7715   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7716 
7717   // Adjust return pointer to point just past the last dst byte.
7718   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7719                                     Dst, Size);
7720   setValue(&I, DstPlusSize);
7721   return true;
7722 }
7723 
7724 /// See if we can lower a strcpy call into an optimized form.  If so, return
7725 /// true and lower it, otherwise return false and it will be lowered like a
7726 /// normal call.
7727 /// The caller already checked that \p I calls the appropriate LibFunc with a
7728 /// correct prototype.
visitStrCpyCall(const CallInst & I,bool isStpcpy)7729 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7730   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7731 
7732   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7733   std::pair<SDValue, SDValue> Res =
7734     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7735                                 getValue(Arg0), getValue(Arg1),
7736                                 MachinePointerInfo(Arg0),
7737                                 MachinePointerInfo(Arg1), isStpcpy);
7738   if (Res.first.getNode()) {
7739     setValue(&I, Res.first);
7740     DAG.setRoot(Res.second);
7741     return true;
7742   }
7743 
7744   return false;
7745 }
7746 
7747 /// See if we can lower a strcmp call into an optimized form.  If so, return
7748 /// true and lower it, otherwise return false and it will be lowered like a
7749 /// normal call.
7750 /// The caller already checked that \p I calls the appropriate LibFunc with a
7751 /// correct prototype.
visitStrCmpCall(const CallInst & I)7752 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7753   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7754 
7755   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7756   std::pair<SDValue, SDValue> Res =
7757     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7758                                 getValue(Arg0), getValue(Arg1),
7759                                 MachinePointerInfo(Arg0),
7760                                 MachinePointerInfo(Arg1));
7761   if (Res.first.getNode()) {
7762     processIntegerCallValue(I, Res.first, true);
7763     PendingLoads.push_back(Res.second);
7764     return true;
7765   }
7766 
7767   return false;
7768 }
7769 
7770 /// See if we can lower a strlen call into an optimized form.  If so, return
7771 /// true and lower it, otherwise return false and it will be lowered like a
7772 /// normal call.
7773 /// The caller already checked that \p I calls the appropriate LibFunc with a
7774 /// correct prototype.
visitStrLenCall(const CallInst & I)7775 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7776   const Value *Arg0 = I.getArgOperand(0);
7777 
7778   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7779   std::pair<SDValue, SDValue> Res =
7780     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7781                                 getValue(Arg0), MachinePointerInfo(Arg0));
7782   if (Res.first.getNode()) {
7783     processIntegerCallValue(I, Res.first, false);
7784     PendingLoads.push_back(Res.second);
7785     return true;
7786   }
7787 
7788   return false;
7789 }
7790 
7791 /// See if we can lower a strnlen call into an optimized form.  If so, return
7792 /// true and lower it, otherwise return false and it will be lowered like a
7793 /// normal call.
7794 /// The caller already checked that \p I calls the appropriate LibFunc with a
7795 /// correct prototype.
visitStrNLenCall(const CallInst & I)7796 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7797   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7798 
7799   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7800   std::pair<SDValue, SDValue> Res =
7801     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7802                                  getValue(Arg0), getValue(Arg1),
7803                                  MachinePointerInfo(Arg0));
7804   if (Res.first.getNode()) {
7805     processIntegerCallValue(I, Res.first, false);
7806     PendingLoads.push_back(Res.second);
7807     return true;
7808   }
7809 
7810   return false;
7811 }
7812 
7813 /// See if we can lower a unary floating-point operation into an SDNode with
7814 /// the specified Opcode.  If so, return true and lower it, otherwise return
7815 /// false and it will be lowered like a normal call.
7816 /// The caller already checked that \p I calls the appropriate LibFunc with a
7817 /// correct prototype.
visitUnaryFloatCall(const CallInst & I,unsigned Opcode)7818 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7819                                               unsigned Opcode) {
7820   // We already checked this call's prototype; verify it doesn't modify errno.
7821   if (!I.onlyReadsMemory())
7822     return false;
7823 
7824   SDNodeFlags Flags;
7825   Flags.copyFMF(cast<FPMathOperator>(I));
7826 
7827   SDValue Tmp = getValue(I.getArgOperand(0));
7828   setValue(&I,
7829            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
7830   return true;
7831 }
7832 
7833 /// See if we can lower a binary floating-point operation into an SDNode with
7834 /// the specified Opcode. If so, return true and lower it. Otherwise return
7835 /// false, and it will be lowered like a normal call.
7836 /// The caller already checked that \p I calls the appropriate LibFunc with a
7837 /// correct prototype.
visitBinaryFloatCall(const CallInst & I,unsigned Opcode)7838 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7839                                                unsigned Opcode) {
7840   // We already checked this call's prototype; verify it doesn't modify errno.
7841   if (!I.onlyReadsMemory())
7842     return false;
7843 
7844   SDNodeFlags Flags;
7845   Flags.copyFMF(cast<FPMathOperator>(I));
7846 
7847   SDValue Tmp0 = getValue(I.getArgOperand(0));
7848   SDValue Tmp1 = getValue(I.getArgOperand(1));
7849   EVT VT = Tmp0.getValueType();
7850   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
7851   return true;
7852 }
7853 
visitCall(const CallInst & I)7854 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7855   // Handle inline assembly differently.
7856   if (I.isInlineAsm()) {
7857     visitInlineAsm(I);
7858     return;
7859   }
7860 
7861   if (Function *F = I.getCalledFunction()) {
7862     if (F->isDeclaration()) {
7863       // Is this an LLVM intrinsic or a target-specific intrinsic?
7864       unsigned IID = F->getIntrinsicID();
7865       if (!IID)
7866         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7867           IID = II->getIntrinsicID(F);
7868 
7869       if (IID) {
7870         visitIntrinsicCall(I, IID);
7871         return;
7872       }
7873     }
7874 
7875     // Check for well-known libc/libm calls.  If the function is internal, it
7876     // can't be a library call.  Don't do the check if marked as nobuiltin for
7877     // some reason or the call site requires strict floating point semantics.
7878     LibFunc Func;
7879     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7880         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7881         LibInfo->hasOptimizedCodeGen(Func)) {
7882       switch (Func) {
7883       default: break;
7884       case LibFunc_bcmp:
7885         if (visitMemCmpBCmpCall(I))
7886           return;
7887         break;
7888       case LibFunc_copysign:
7889       case LibFunc_copysignf:
7890       case LibFunc_copysignl:
7891         // We already checked this call's prototype; verify it doesn't modify
7892         // errno.
7893         if (I.onlyReadsMemory()) {
7894           SDValue LHS = getValue(I.getArgOperand(0));
7895           SDValue RHS = getValue(I.getArgOperand(1));
7896           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7897                                    LHS.getValueType(), LHS, RHS));
7898           return;
7899         }
7900         break;
7901       case LibFunc_fabs:
7902       case LibFunc_fabsf:
7903       case LibFunc_fabsl:
7904         if (visitUnaryFloatCall(I, ISD::FABS))
7905           return;
7906         break;
7907       case LibFunc_fmin:
7908       case LibFunc_fminf:
7909       case LibFunc_fminl:
7910         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7911           return;
7912         break;
7913       case LibFunc_fmax:
7914       case LibFunc_fmaxf:
7915       case LibFunc_fmaxl:
7916         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7917           return;
7918         break;
7919       case LibFunc_sin:
7920       case LibFunc_sinf:
7921       case LibFunc_sinl:
7922         if (visitUnaryFloatCall(I, ISD::FSIN))
7923           return;
7924         break;
7925       case LibFunc_cos:
7926       case LibFunc_cosf:
7927       case LibFunc_cosl:
7928         if (visitUnaryFloatCall(I, ISD::FCOS))
7929           return;
7930         break;
7931       case LibFunc_sqrt:
7932       case LibFunc_sqrtf:
7933       case LibFunc_sqrtl:
7934       case LibFunc_sqrt_finite:
7935       case LibFunc_sqrtf_finite:
7936       case LibFunc_sqrtl_finite:
7937         if (visitUnaryFloatCall(I, ISD::FSQRT))
7938           return;
7939         break;
7940       case LibFunc_floor:
7941       case LibFunc_floorf:
7942       case LibFunc_floorl:
7943         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7944           return;
7945         break;
7946       case LibFunc_nearbyint:
7947       case LibFunc_nearbyintf:
7948       case LibFunc_nearbyintl:
7949         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7950           return;
7951         break;
7952       case LibFunc_ceil:
7953       case LibFunc_ceilf:
7954       case LibFunc_ceill:
7955         if (visitUnaryFloatCall(I, ISD::FCEIL))
7956           return;
7957         break;
7958       case LibFunc_rint:
7959       case LibFunc_rintf:
7960       case LibFunc_rintl:
7961         if (visitUnaryFloatCall(I, ISD::FRINT))
7962           return;
7963         break;
7964       case LibFunc_round:
7965       case LibFunc_roundf:
7966       case LibFunc_roundl:
7967         if (visitUnaryFloatCall(I, ISD::FROUND))
7968           return;
7969         break;
7970       case LibFunc_trunc:
7971       case LibFunc_truncf:
7972       case LibFunc_truncl:
7973         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7974           return;
7975         break;
7976       case LibFunc_log2:
7977       case LibFunc_log2f:
7978       case LibFunc_log2l:
7979         if (visitUnaryFloatCall(I, ISD::FLOG2))
7980           return;
7981         break;
7982       case LibFunc_exp2:
7983       case LibFunc_exp2f:
7984       case LibFunc_exp2l:
7985         if (visitUnaryFloatCall(I, ISD::FEXP2))
7986           return;
7987         break;
7988       case LibFunc_memcmp:
7989         if (visitMemCmpBCmpCall(I))
7990           return;
7991         break;
7992       case LibFunc_mempcpy:
7993         if (visitMemPCpyCall(I))
7994           return;
7995         break;
7996       case LibFunc_memchr:
7997         if (visitMemChrCall(I))
7998           return;
7999         break;
8000       case LibFunc_strcpy:
8001         if (visitStrCpyCall(I, false))
8002           return;
8003         break;
8004       case LibFunc_stpcpy:
8005         if (visitStrCpyCall(I, true))
8006           return;
8007         break;
8008       case LibFunc_strcmp:
8009         if (visitStrCmpCall(I))
8010           return;
8011         break;
8012       case LibFunc_strlen:
8013         if (visitStrLenCall(I))
8014           return;
8015         break;
8016       case LibFunc_strnlen:
8017         if (visitStrNLenCall(I))
8018           return;
8019         break;
8020       }
8021     }
8022   }
8023 
8024   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
8025   // have to do anything here to lower funclet bundles.
8026   // CFGuardTarget bundles are lowered in LowerCallTo.
8027   assert(!I.hasOperandBundlesOtherThan(
8028              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
8029               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
8030               LLVMContext::OB_clang_arc_attachedcall}) &&
8031          "Cannot lower calls with arbitrary operand bundles!");
8032 
8033   SDValue Callee = getValue(I.getCalledOperand());
8034 
8035   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
8036     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
8037   else
8038     // Check if we can potentially perform a tail call. More detailed checking
8039     // is be done within LowerCallTo, after more information about the call is
8040     // known.
8041     LowerCallTo(I, Callee, I.isTailCall());
8042 }
8043 
8044 namespace {
8045 
8046 /// AsmOperandInfo - This contains information for each constraint that we are
8047 /// lowering.
8048 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
8049 public:
8050   /// CallOperand - If this is the result output operand or a clobber
8051   /// this is null, otherwise it is the incoming operand to the CallInst.
8052   /// This gets modified as the asm is processed.
8053   SDValue CallOperand;
8054 
8055   /// AssignedRegs - If this is a register or register class operand, this
8056   /// contains the set of register corresponding to the operand.
8057   RegsForValue AssignedRegs;
8058 
SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo & info)8059   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
8060     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
8061   }
8062 
8063   /// Whether or not this operand accesses memory
hasMemory(const TargetLowering & TLI) const8064   bool hasMemory(const TargetLowering &TLI) const {
8065     // Indirect operand accesses access memory.
8066     if (isIndirect)
8067       return true;
8068 
8069     for (const auto &Code : Codes)
8070       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
8071         return true;
8072 
8073     return false;
8074   }
8075 
8076   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
8077   /// corresponds to.  If there is no Value* for this operand, it returns
8078   /// MVT::Other.
getCallOperandValEVT(LLVMContext & Context,const TargetLowering & TLI,const DataLayout & DL) const8079   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
8080                            const DataLayout &DL) const {
8081     if (!CallOperandVal) return MVT::Other;
8082 
8083     if (isa<BasicBlock>(CallOperandVal))
8084       return TLI.getProgramPointerTy(DL);
8085 
8086     llvm::Type *OpTy = CallOperandVal->getType();
8087 
8088     // FIXME: code duplicated from TargetLowering::ParseConstraints().
8089     // If this is an indirect operand, the operand is a pointer to the
8090     // accessed type.
8091     if (isIndirect) {
8092       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
8093       if (!PtrTy)
8094         report_fatal_error("Indirect operand for inline asm not a pointer!");
8095       OpTy = PtrTy->getElementType();
8096     }
8097 
8098     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
8099     if (StructType *STy = dyn_cast<StructType>(OpTy))
8100       if (STy->getNumElements() == 1)
8101         OpTy = STy->getElementType(0);
8102 
8103     // If OpTy is not a single value, it may be a struct/union that we
8104     // can tile with integers.
8105     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
8106       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
8107       switch (BitSize) {
8108       default: break;
8109       case 1:
8110       case 8:
8111       case 16:
8112       case 32:
8113       case 64:
8114       case 128:
8115         OpTy = IntegerType::get(Context, BitSize);
8116         break;
8117       }
8118     }
8119 
8120     return TLI.getValueType(DL, OpTy, true);
8121   }
8122 };
8123 
8124 
8125 } // end anonymous namespace
8126 
8127 /// Make sure that the output operand \p OpInfo and its corresponding input
8128 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
8129 /// out).
patchMatchingInput(const SDISelAsmOperandInfo & OpInfo,SDISelAsmOperandInfo & MatchingOpInfo,SelectionDAG & DAG)8130 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
8131                                SDISelAsmOperandInfo &MatchingOpInfo,
8132                                SelectionDAG &DAG) {
8133   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
8134     return;
8135 
8136   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
8137   const auto &TLI = DAG.getTargetLoweringInfo();
8138 
8139   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
8140       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
8141                                        OpInfo.ConstraintVT);
8142   std::pair<unsigned, const TargetRegisterClass *> InputRC =
8143       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
8144                                        MatchingOpInfo.ConstraintVT);
8145   if ((OpInfo.ConstraintVT.isInteger() !=
8146        MatchingOpInfo.ConstraintVT.isInteger()) ||
8147       (MatchRC.second != InputRC.second)) {
8148     // FIXME: error out in a more elegant fashion
8149     report_fatal_error("Unsupported asm: input constraint"
8150                        " with a matching output constraint of"
8151                        " incompatible type!");
8152   }
8153   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
8154 }
8155 
8156 /// Get a direct memory input to behave well as an indirect operand.
8157 /// This may introduce stores, hence the need for a \p Chain.
8158 /// \return The (possibly updated) chain.
getAddressForMemoryInput(SDValue Chain,const SDLoc & Location,SDISelAsmOperandInfo & OpInfo,SelectionDAG & DAG)8159 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
8160                                         SDISelAsmOperandInfo &OpInfo,
8161                                         SelectionDAG &DAG) {
8162   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8163 
8164   // If we don't have an indirect input, put it in the constpool if we can,
8165   // otherwise spill it to a stack slot.
8166   // TODO: This isn't quite right. We need to handle these according to
8167   // the addressing mode that the constraint wants. Also, this may take
8168   // an additional register for the computation and we don't want that
8169   // either.
8170 
8171   // If the operand is a float, integer, or vector constant, spill to a
8172   // constant pool entry to get its address.
8173   const Value *OpVal = OpInfo.CallOperandVal;
8174   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
8175       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
8176     OpInfo.CallOperand = DAG.getConstantPool(
8177         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
8178     return Chain;
8179   }
8180 
8181   // Otherwise, create a stack slot and emit a store to it before the asm.
8182   Type *Ty = OpVal->getType();
8183   auto &DL = DAG.getDataLayout();
8184   uint64_t TySize = DL.getTypeAllocSize(Ty);
8185   MachineFunction &MF = DAG.getMachineFunction();
8186   int SSFI = MF.getFrameInfo().CreateStackObject(
8187       TySize, DL.getPrefTypeAlign(Ty), false);
8188   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
8189   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
8190                             MachinePointerInfo::getFixedStack(MF, SSFI),
8191                             TLI.getMemValueType(DL, Ty));
8192   OpInfo.CallOperand = StackSlot;
8193 
8194   return Chain;
8195 }
8196 
8197 /// GetRegistersForValue - Assign registers (virtual or physical) for the
8198 /// specified operand.  We prefer to assign virtual registers, to allow the
8199 /// register allocator to handle the assignment process.  However, if the asm
8200 /// uses features that we can't model on machineinstrs, we have SDISel do the
8201 /// allocation.  This produces generally horrible, but correct, code.
8202 ///
8203 ///   OpInfo describes the operand
8204 ///   RefOpInfo describes the matching operand if any, the operand otherwise
GetRegistersForValue(SelectionDAG & DAG,const SDLoc & DL,SDISelAsmOperandInfo & OpInfo,SDISelAsmOperandInfo & RefOpInfo)8205 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
8206                                  SDISelAsmOperandInfo &OpInfo,
8207                                  SDISelAsmOperandInfo &RefOpInfo) {
8208   LLVMContext &Context = *DAG.getContext();
8209   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8210 
8211   MachineFunction &MF = DAG.getMachineFunction();
8212   SmallVector<unsigned, 4> Regs;
8213   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8214 
8215   // No work to do for memory operations.
8216   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
8217     return;
8218 
8219   // If this is a constraint for a single physreg, or a constraint for a
8220   // register class, find it.
8221   unsigned AssignedReg;
8222   const TargetRegisterClass *RC;
8223   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
8224       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
8225   // RC is unset only on failure. Return immediately.
8226   if (!RC)
8227     return;
8228 
8229   // Get the actual register value type.  This is important, because the user
8230   // may have asked for (e.g.) the AX register in i32 type.  We need to
8231   // remember that AX is actually i16 to get the right extension.
8232   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
8233 
8234   if (OpInfo.ConstraintVT != MVT::Other) {
8235     // If this is an FP operand in an integer register (or visa versa), or more
8236     // generally if the operand value disagrees with the register class we plan
8237     // to stick it in, fix the operand type.
8238     //
8239     // If this is an input value, the bitcast to the new type is done now.
8240     // Bitcast for output value is done at the end of visitInlineAsm().
8241     if ((OpInfo.Type == InlineAsm::isOutput ||
8242          OpInfo.Type == InlineAsm::isInput) &&
8243         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
8244       // Try to convert to the first EVT that the reg class contains.  If the
8245       // types are identical size, use a bitcast to convert (e.g. two differing
8246       // vector types).  Note: output bitcast is done at the end of
8247       // visitInlineAsm().
8248       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
8249         // Exclude indirect inputs while they are unsupported because the code
8250         // to perform the load is missing and thus OpInfo.CallOperand still
8251         // refers to the input address rather than the pointed-to value.
8252         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
8253           OpInfo.CallOperand =
8254               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
8255         OpInfo.ConstraintVT = RegVT;
8256         // If the operand is an FP value and we want it in integer registers,
8257         // use the corresponding integer type. This turns an f64 value into
8258         // i64, which can be passed with two i32 values on a 32-bit machine.
8259       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
8260         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
8261         if (OpInfo.Type == InlineAsm::isInput)
8262           OpInfo.CallOperand =
8263               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8264         OpInfo.ConstraintVT = VT;
8265       }
8266     }
8267   }
8268 
8269   // No need to allocate a matching input constraint since the constraint it's
8270   // matching to has already been allocated.
8271   if (OpInfo.isMatchingInputConstraint())
8272     return;
8273 
8274   EVT ValueVT = OpInfo.ConstraintVT;
8275   if (OpInfo.ConstraintVT == MVT::Other)
8276     ValueVT = RegVT;
8277 
8278   // Initialize NumRegs.
8279   unsigned NumRegs = 1;
8280   if (OpInfo.ConstraintVT != MVT::Other)
8281     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
8282 
8283   // If this is a constraint for a specific physical register, like {r17},
8284   // assign it now.
8285 
8286   // If this associated to a specific register, initialize iterator to correct
8287   // place. If virtual, make sure we have enough registers
8288 
8289   // Initialize iterator if necessary
8290   TargetRegisterClass::iterator I = RC->begin();
8291   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8292 
8293   // Do not check for single registers.
8294   if (AssignedReg) {
8295       for (; *I != AssignedReg; ++I)
8296         assert(I != RC->end() && "AssignedReg should be member of RC");
8297   }
8298 
8299   for (; NumRegs; --NumRegs, ++I) {
8300     assert(I != RC->end() && "Ran out of registers to allocate!");
8301     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8302     Regs.push_back(R);
8303   }
8304 
8305   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8306 }
8307 
8308 static unsigned
findMatchingInlineAsmOperand(unsigned OperandNo,const std::vector<SDValue> & AsmNodeOperands)8309 findMatchingInlineAsmOperand(unsigned OperandNo,
8310                              const std::vector<SDValue> &AsmNodeOperands) {
8311   // Scan until we find the definition we already emitted of this operand.
8312   unsigned CurOp = InlineAsm::Op_FirstOperand;
8313   for (; OperandNo; --OperandNo) {
8314     // Advance to the next operand.
8315     unsigned OpFlag =
8316         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8317     assert((InlineAsm::isRegDefKind(OpFlag) ||
8318             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8319             InlineAsm::isMemKind(OpFlag)) &&
8320            "Skipped past definitions?");
8321     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8322   }
8323   return CurOp;
8324 }
8325 
8326 namespace {
8327 
8328 class ExtraFlags {
8329   unsigned Flags = 0;
8330 
8331 public:
ExtraFlags(const CallBase & Call)8332   explicit ExtraFlags(const CallBase &Call) {
8333     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8334     if (IA->hasSideEffects())
8335       Flags |= InlineAsm::Extra_HasSideEffects;
8336     if (IA->isAlignStack())
8337       Flags |= InlineAsm::Extra_IsAlignStack;
8338     if (Call.isConvergent())
8339       Flags |= InlineAsm::Extra_IsConvergent;
8340     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8341   }
8342 
update(const TargetLowering::AsmOperandInfo & OpInfo)8343   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8344     // Ideally, we would only check against memory constraints.  However, the
8345     // meaning of an Other constraint can be target-specific and we can't easily
8346     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8347     // for Other constraints as well.
8348     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8349         OpInfo.ConstraintType == TargetLowering::C_Other) {
8350       if (OpInfo.Type == InlineAsm::isInput)
8351         Flags |= InlineAsm::Extra_MayLoad;
8352       else if (OpInfo.Type == InlineAsm::isOutput)
8353         Flags |= InlineAsm::Extra_MayStore;
8354       else if (OpInfo.Type == InlineAsm::isClobber)
8355         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8356     }
8357   }
8358 
get() const8359   unsigned get() const { return Flags; }
8360 };
8361 
8362 } // end anonymous namespace
8363 
8364 /// visitInlineAsm - Handle a call to an InlineAsm object.
visitInlineAsm(const CallBase & Call,const BasicBlock * EHPadBB)8365 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
8366                                          const BasicBlock *EHPadBB) {
8367   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8368 
8369   /// ConstraintOperands - Information about all of the constraints.
8370   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
8371 
8372   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8373   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8374       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8375 
8376   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8377   // AsmDialect, MayLoad, MayStore).
8378   bool HasSideEffect = IA->hasSideEffects();
8379   ExtraFlags ExtraInfo(Call);
8380 
8381   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
8382   unsigned ResNo = 0;   // ResNo - The result number of the next output.
8383   unsigned NumMatchingOps = 0;
8384   for (auto &T : TargetConstraints) {
8385     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8386     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8387 
8388     // Compute the value type for each operand.
8389     if (OpInfo.Type == InlineAsm::isInput ||
8390         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
8391       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
8392 
8393       // Process the call argument. BasicBlocks are labels, currently appearing
8394       // only in asm's.
8395       if (isa<CallBrInst>(Call) &&
8396           ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() -
8397                         cast<CallBrInst>(&Call)->getNumIndirectDests() -
8398                         NumMatchingOps) &&
8399           (NumMatchingOps == 0 ||
8400            ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() -
8401                         NumMatchingOps))) {
8402         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
8403         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
8404         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
8405       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
8406         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
8407       } else {
8408         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8409       }
8410 
8411       EVT VT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI,
8412                                            DAG.getDataLayout());
8413       OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other;
8414     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8415       // The return value of the call is this value.  As such, there is no
8416       // corresponding argument.
8417       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8418       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
8419         OpInfo.ConstraintVT = TLI.getSimpleValueType(
8420             DAG.getDataLayout(), STy->getElementType(ResNo));
8421       } else {
8422         assert(ResNo == 0 && "Asm only has one result!");
8423         OpInfo.ConstraintVT =
8424             TLI.getSimpleValueType(DAG.getDataLayout(), Call.getType());
8425       }
8426       ++ResNo;
8427     } else {
8428       OpInfo.ConstraintVT = MVT::Other;
8429     }
8430 
8431     if (OpInfo.hasMatchingInput())
8432       ++NumMatchingOps;
8433 
8434     if (!HasSideEffect)
8435       HasSideEffect = OpInfo.hasMemory(TLI);
8436 
8437     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8438     // FIXME: Could we compute this on OpInfo rather than T?
8439 
8440     // Compute the constraint code and ConstraintType to use.
8441     TLI.ComputeConstraintToUse(T, SDValue());
8442 
8443     if (T.ConstraintType == TargetLowering::C_Immediate &&
8444         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8445       // We've delayed emitting a diagnostic like the "n" constraint because
8446       // inlining could cause an integer showing up.
8447       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8448                                           "' expects an integer constant "
8449                                           "expression");
8450 
8451     ExtraInfo.update(T);
8452   }
8453 
8454   // We won't need to flush pending loads if this asm doesn't touch
8455   // memory and is nonvolatile.
8456   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8457 
8458   bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow();
8459   if (EmitEHLabels) {
8460     assert(EHPadBB && "InvokeInst must have an EHPadBB");
8461   }
8462   bool IsCallBr = isa<CallBrInst>(Call);
8463 
8464   if (IsCallBr || EmitEHLabels) {
8465     // If this is a callbr or invoke we need to flush pending exports since
8466     // inlineasm_br and invoke are terminators.
8467     // We need to do this before nodes are glued to the inlineasm_br node.
8468     Chain = getControlRoot();
8469   }
8470 
8471   MCSymbol *BeginLabel = nullptr;
8472   if (EmitEHLabels) {
8473     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
8474   }
8475 
8476   // Second pass over the constraints: compute which constraint option to use.
8477   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8478     // If this is an output operand with a matching input operand, look up the
8479     // matching input. If their types mismatch, e.g. one is an integer, the
8480     // other is floating point, or their sizes are different, flag it as an
8481     // error.
8482     if (OpInfo.hasMatchingInput()) {
8483       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8484       patchMatchingInput(OpInfo, Input, DAG);
8485     }
8486 
8487     // Compute the constraint code and ConstraintType to use.
8488     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8489 
8490     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8491         OpInfo.Type == InlineAsm::isClobber)
8492       continue;
8493 
8494     // If this is a memory input, and if the operand is not indirect, do what we
8495     // need to provide an address for the memory input.
8496     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8497         !OpInfo.isIndirect) {
8498       assert((OpInfo.isMultipleAlternative ||
8499               (OpInfo.Type == InlineAsm::isInput)) &&
8500              "Can only indirectify direct input operands!");
8501 
8502       // Memory operands really want the address of the value.
8503       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8504 
8505       // There is no longer a Value* corresponding to this operand.
8506       OpInfo.CallOperandVal = nullptr;
8507 
8508       // It is now an indirect operand.
8509       OpInfo.isIndirect = true;
8510     }
8511 
8512   }
8513 
8514   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8515   std::vector<SDValue> AsmNodeOperands;
8516   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8517   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8518       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
8519 
8520   // If we have a !srcloc metadata node associated with it, we want to attach
8521   // this to the ultimately generated inline asm machineinstr.  To do this, we
8522   // pass in the third operand as this (potentially null) inline asm MDNode.
8523   const MDNode *SrcLoc = Call.getMetadata("srcloc");
8524   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8525 
8526   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8527   // bits as operand 3.
8528   AsmNodeOperands.push_back(DAG.getTargetConstant(
8529       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8530 
8531   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8532   // this, assign virtual and physical registers for inputs and otput.
8533   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8534     // Assign Registers.
8535     SDISelAsmOperandInfo &RefOpInfo =
8536         OpInfo.isMatchingInputConstraint()
8537             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8538             : OpInfo;
8539     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8540 
8541     auto DetectWriteToReservedRegister = [&]() {
8542       const MachineFunction &MF = DAG.getMachineFunction();
8543       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8544       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
8545         if (Register::isPhysicalRegister(Reg) &&
8546             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
8547           const char *RegName = TRI.getName(Reg);
8548           emitInlineAsmError(Call, "write to reserved register '" +
8549                                        Twine(RegName) + "'");
8550           return true;
8551         }
8552       }
8553       return false;
8554     };
8555 
8556     switch (OpInfo.Type) {
8557     case InlineAsm::isOutput:
8558       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8559         unsigned ConstraintID =
8560             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8561         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8562                "Failed to convert memory constraint code to constraint id.");
8563 
8564         // Add information to the INLINEASM node to know about this output.
8565         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8566         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8567         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8568                                                         MVT::i32));
8569         AsmNodeOperands.push_back(OpInfo.CallOperand);
8570       } else {
8571         // Otherwise, this outputs to a register (directly for C_Register /
8572         // C_RegisterClass, and a target-defined fashion for
8573         // C_Immediate/C_Other). Find a register that we can use.
8574         if (OpInfo.AssignedRegs.Regs.empty()) {
8575           emitInlineAsmError(
8576               Call, "couldn't allocate output register for constraint '" +
8577                         Twine(OpInfo.ConstraintCode) + "'");
8578           return;
8579         }
8580 
8581         if (DetectWriteToReservedRegister())
8582           return;
8583 
8584         // Add information to the INLINEASM node to know that this register is
8585         // set.
8586         OpInfo.AssignedRegs.AddInlineAsmOperands(
8587             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8588                                   : InlineAsm::Kind_RegDef,
8589             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8590       }
8591       break;
8592 
8593     case InlineAsm::isInput: {
8594       SDValue InOperandVal = OpInfo.CallOperand;
8595 
8596       if (OpInfo.isMatchingInputConstraint()) {
8597         // If this is required to match an output register we have already set,
8598         // just use its register.
8599         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8600                                                   AsmNodeOperands);
8601         unsigned OpFlag =
8602           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8603         if (InlineAsm::isRegDefKind(OpFlag) ||
8604             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8605           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8606           if (OpInfo.isIndirect) {
8607             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8608             emitInlineAsmError(Call, "inline asm not supported yet: "
8609                                      "don't know how to handle tied "
8610                                      "indirect register inputs");
8611             return;
8612           }
8613 
8614           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
8615           SmallVector<unsigned, 4> Regs;
8616 
8617           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
8618             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8619             MachineRegisterInfo &RegInfo =
8620                 DAG.getMachineFunction().getRegInfo();
8621             for (unsigned i = 0; i != NumRegs; ++i)
8622               Regs.push_back(RegInfo.createVirtualRegister(RC));
8623           } else {
8624             emitInlineAsmError(Call,
8625                                "inline asm error: This value type register "
8626                                "class is not natively supported!");
8627             return;
8628           }
8629 
8630           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8631 
8632           SDLoc dl = getCurSDLoc();
8633           // Use the produced MatchedRegs object to
8634           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
8635           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8636                                            true, OpInfo.getMatchedOperand(), dl,
8637                                            DAG, AsmNodeOperands);
8638           break;
8639         }
8640 
8641         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8642         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8643                "Unexpected number of operands");
8644         // Add information to the INLINEASM node to know about this input.
8645         // See InlineAsm.h isUseOperandTiedToDef.
8646         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8647         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8648                                                     OpInfo.getMatchedOperand());
8649         AsmNodeOperands.push_back(DAG.getTargetConstant(
8650             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8651         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8652         break;
8653       }
8654 
8655       // Treat indirect 'X' constraint as memory.
8656       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8657           OpInfo.isIndirect)
8658         OpInfo.ConstraintType = TargetLowering::C_Memory;
8659 
8660       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8661           OpInfo.ConstraintType == TargetLowering::C_Other) {
8662         std::vector<SDValue> Ops;
8663         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8664                                           Ops, DAG);
8665         if (Ops.empty()) {
8666           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8667             if (isa<ConstantSDNode>(InOperandVal)) {
8668               emitInlineAsmError(Call, "value out of range for constraint '" +
8669                                            Twine(OpInfo.ConstraintCode) + "'");
8670               return;
8671             }
8672 
8673           emitInlineAsmError(Call,
8674                              "invalid operand for inline asm constraint '" +
8675                                  Twine(OpInfo.ConstraintCode) + "'");
8676           return;
8677         }
8678 
8679         // Add information to the INLINEASM node to know about this input.
8680         unsigned ResOpType =
8681           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8682         AsmNodeOperands.push_back(DAG.getTargetConstant(
8683             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8684         llvm::append_range(AsmNodeOperands, Ops);
8685         break;
8686       }
8687 
8688       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8689         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8690         assert(InOperandVal.getValueType() ==
8691                    TLI.getPointerTy(DAG.getDataLayout()) &&
8692                "Memory operands expect pointer values");
8693 
8694         unsigned ConstraintID =
8695             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8696         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8697                "Failed to convert memory constraint code to constraint id.");
8698 
8699         // Add information to the INLINEASM node to know about this input.
8700         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8701         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8702         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8703                                                         getCurSDLoc(),
8704                                                         MVT::i32));
8705         AsmNodeOperands.push_back(InOperandVal);
8706         break;
8707       }
8708 
8709       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8710               OpInfo.ConstraintType == TargetLowering::C_Register) &&
8711              "Unknown constraint type!");
8712 
8713       // TODO: Support this.
8714       if (OpInfo.isIndirect) {
8715         emitInlineAsmError(
8716             Call, "Don't know how to handle indirect register inputs yet "
8717                   "for constraint '" +
8718                       Twine(OpInfo.ConstraintCode) + "'");
8719         return;
8720       }
8721 
8722       // Copy the input into the appropriate registers.
8723       if (OpInfo.AssignedRegs.Regs.empty()) {
8724         emitInlineAsmError(Call,
8725                            "couldn't allocate input reg for constraint '" +
8726                                Twine(OpInfo.ConstraintCode) + "'");
8727         return;
8728       }
8729 
8730       if (DetectWriteToReservedRegister())
8731         return;
8732 
8733       SDLoc dl = getCurSDLoc();
8734 
8735       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8736                                         &Call);
8737 
8738       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8739                                                dl, DAG, AsmNodeOperands);
8740       break;
8741     }
8742     case InlineAsm::isClobber:
8743       // Add the clobbered value to the operand list, so that the register
8744       // allocator is aware that the physreg got clobbered.
8745       if (!OpInfo.AssignedRegs.Regs.empty())
8746         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8747                                                  false, 0, getCurSDLoc(), DAG,
8748                                                  AsmNodeOperands);
8749       break;
8750     }
8751   }
8752 
8753   // Finish up input operands.  Set the input chain and add the flag last.
8754   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8755   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8756 
8757   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
8758   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8759                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8760   Flag = Chain.getValue(1);
8761 
8762   // Do additional work to generate outputs.
8763 
8764   SmallVector<EVT, 1> ResultVTs;
8765   SmallVector<SDValue, 1> ResultValues;
8766   SmallVector<SDValue, 8> OutChains;
8767 
8768   llvm::Type *CallResultType = Call.getType();
8769   ArrayRef<Type *> ResultTypes;
8770   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
8771     ResultTypes = StructResult->elements();
8772   else if (!CallResultType->isVoidTy())
8773     ResultTypes = makeArrayRef(CallResultType);
8774 
8775   auto CurResultType = ResultTypes.begin();
8776   auto handleRegAssign = [&](SDValue V) {
8777     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8778     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8779     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8780     ++CurResultType;
8781     // If the type of the inline asm call site return value is different but has
8782     // same size as the type of the asm output bitcast it.  One example of this
8783     // is for vectors with different width / number of elements.  This can
8784     // happen for register classes that can contain multiple different value
8785     // types.  The preg or vreg allocated may not have the same VT as was
8786     // expected.
8787     //
8788     // This can also happen for a return value that disagrees with the register
8789     // class it is put in, eg. a double in a general-purpose register on a
8790     // 32-bit machine.
8791     if (ResultVT != V.getValueType() &&
8792         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8793       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8794     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8795              V.getValueType().isInteger()) {
8796       // If a result value was tied to an input value, the computed result
8797       // may have a wider width than the expected result.  Extract the
8798       // relevant portion.
8799       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8800     }
8801     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8802     ResultVTs.push_back(ResultVT);
8803     ResultValues.push_back(V);
8804   };
8805 
8806   // Deal with output operands.
8807   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8808     if (OpInfo.Type == InlineAsm::isOutput) {
8809       SDValue Val;
8810       // Skip trivial output operands.
8811       if (OpInfo.AssignedRegs.Regs.empty())
8812         continue;
8813 
8814       switch (OpInfo.ConstraintType) {
8815       case TargetLowering::C_Register:
8816       case TargetLowering::C_RegisterClass:
8817         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
8818                                                   Chain, &Flag, &Call);
8819         break;
8820       case TargetLowering::C_Immediate:
8821       case TargetLowering::C_Other:
8822         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8823                                               OpInfo, DAG);
8824         break;
8825       case TargetLowering::C_Memory:
8826         break; // Already handled.
8827       case TargetLowering::C_Unknown:
8828         assert(false && "Unexpected unknown constraint");
8829       }
8830 
8831       // Indirect output manifest as stores. Record output chains.
8832       if (OpInfo.isIndirect) {
8833         const Value *Ptr = OpInfo.CallOperandVal;
8834         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8835         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8836                                      MachinePointerInfo(Ptr));
8837         OutChains.push_back(Store);
8838       } else {
8839         // generate CopyFromRegs to associated registers.
8840         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8841         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8842           for (const SDValue &V : Val->op_values())
8843             handleRegAssign(V);
8844         } else
8845           handleRegAssign(Val);
8846       }
8847     }
8848   }
8849 
8850   // Set results.
8851   if (!ResultValues.empty()) {
8852     assert(CurResultType == ResultTypes.end() &&
8853            "Mismatch in number of ResultTypes");
8854     assert(ResultValues.size() == ResultTypes.size() &&
8855            "Mismatch in number of output operands in asm result");
8856 
8857     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8858                             DAG.getVTList(ResultVTs), ResultValues);
8859     setValue(&Call, V);
8860   }
8861 
8862   // Collect store chains.
8863   if (!OutChains.empty())
8864     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8865 
8866   if (EmitEHLabels) {
8867     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
8868   }
8869 
8870   // Only Update Root if inline assembly has a memory effect.
8871   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
8872       EmitEHLabels)
8873     DAG.setRoot(Chain);
8874 }
8875 
emitInlineAsmError(const CallBase & Call,const Twine & Message)8876 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
8877                                              const Twine &Message) {
8878   LLVMContext &Ctx = *DAG.getContext();
8879   Ctx.emitError(&Call, Message);
8880 
8881   // Make sure we leave the DAG in a valid state
8882   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8883   SmallVector<EVT, 1> ValueVTs;
8884   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
8885 
8886   if (ValueVTs.empty())
8887     return;
8888 
8889   SmallVector<SDValue, 1> Ops;
8890   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8891     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8892 
8893   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
8894 }
8895 
visitVAStart(const CallInst & I)8896 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8897   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8898                           MVT::Other, getRoot(),
8899                           getValue(I.getArgOperand(0)),
8900                           DAG.getSrcValue(I.getArgOperand(0))));
8901 }
8902 
visitVAArg(const VAArgInst & I)8903 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8904   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8905   const DataLayout &DL = DAG.getDataLayout();
8906   SDValue V = DAG.getVAArg(
8907       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
8908       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
8909       DL.getABITypeAlign(I.getType()).value());
8910   DAG.setRoot(V.getValue(1));
8911 
8912   if (I.getType()->isPointerTy())
8913     V = DAG.getPtrExtOrTrunc(
8914         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
8915   setValue(&I, V);
8916 }
8917 
visitVAEnd(const CallInst & I)8918 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8919   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8920                           MVT::Other, getRoot(),
8921                           getValue(I.getArgOperand(0)),
8922                           DAG.getSrcValue(I.getArgOperand(0))));
8923 }
8924 
visitVACopy(const CallInst & I)8925 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8926   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8927                           MVT::Other, getRoot(),
8928                           getValue(I.getArgOperand(0)),
8929                           getValue(I.getArgOperand(1)),
8930                           DAG.getSrcValue(I.getArgOperand(0)),
8931                           DAG.getSrcValue(I.getArgOperand(1))));
8932 }
8933 
lowerRangeToAssertZExt(SelectionDAG & DAG,const Instruction & I,SDValue Op)8934 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8935                                                     const Instruction &I,
8936                                                     SDValue Op) {
8937   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8938   if (!Range)
8939     return Op;
8940 
8941   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8942   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
8943     return Op;
8944 
8945   APInt Lo = CR.getUnsignedMin();
8946   if (!Lo.isMinValue())
8947     return Op;
8948 
8949   APInt Hi = CR.getUnsignedMax();
8950   unsigned Bits = std::max(Hi.getActiveBits(),
8951                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8952 
8953   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8954 
8955   SDLoc SL = getCurSDLoc();
8956 
8957   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8958                              DAG.getValueType(SmallVT));
8959   unsigned NumVals = Op.getNode()->getNumValues();
8960   if (NumVals == 1)
8961     return ZExt;
8962 
8963   SmallVector<SDValue, 4> Ops;
8964 
8965   Ops.push_back(ZExt);
8966   for (unsigned I = 1; I != NumVals; ++I)
8967     Ops.push_back(Op.getValue(I));
8968 
8969   return DAG.getMergeValues(Ops, SL);
8970 }
8971 
8972 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8973 /// the call being lowered.
8974 ///
8975 /// This is a helper for lowering intrinsics that follow a target calling
8976 /// convention or require stack pointer adjustment. Only a subset of the
8977 /// intrinsic's operands need to participate in the calling convention.
populateCallLoweringInfo(TargetLowering::CallLoweringInfo & CLI,const CallBase * Call,unsigned ArgIdx,unsigned NumArgs,SDValue Callee,Type * ReturnTy,bool IsPatchPoint)8978 void SelectionDAGBuilder::populateCallLoweringInfo(
8979     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8980     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8981     bool IsPatchPoint) {
8982   TargetLowering::ArgListTy Args;
8983   Args.reserve(NumArgs);
8984 
8985   // Populate the argument list.
8986   // Attributes for args start at offset 1, after the return attribute.
8987   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8988        ArgI != ArgE; ++ArgI) {
8989     const Value *V = Call->getOperand(ArgI);
8990 
8991     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8992 
8993     TargetLowering::ArgListEntry Entry;
8994     Entry.Node = getValue(V);
8995     Entry.Ty = V->getType();
8996     Entry.setAttributes(Call, ArgI);
8997     Args.push_back(Entry);
8998   }
8999 
9000   CLI.setDebugLoc(getCurSDLoc())
9001       .setChain(getRoot())
9002       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
9003       .setDiscardResult(Call->use_empty())
9004       .setIsPatchPoint(IsPatchPoint)
9005       .setIsPreallocated(
9006           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
9007 }
9008 
9009 /// Add a stack map intrinsic call's live variable operands to a stackmap
9010 /// or patchpoint target node's operand list.
9011 ///
9012 /// Constants are converted to TargetConstants purely as an optimization to
9013 /// avoid constant materialization and register allocation.
9014 ///
9015 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
9016 /// generate addess computation nodes, and so FinalizeISel can convert the
9017 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
9018 /// address materialization and register allocation, but may also be required
9019 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
9020 /// alloca in the entry block, then the runtime may assume that the alloca's
9021 /// StackMap location can be read immediately after compilation and that the
9022 /// location is valid at any point during execution (this is similar to the
9023 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
9024 /// only available in a register, then the runtime would need to trap when
9025 /// execution reaches the StackMap in order to read the alloca's location.
addStackMapLiveVars(const CallBase & Call,unsigned StartIdx,const SDLoc & DL,SmallVectorImpl<SDValue> & Ops,SelectionDAGBuilder & Builder)9026 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
9027                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
9028                                 SelectionDAGBuilder &Builder) {
9029   for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) {
9030     SDValue OpVal = Builder.getValue(Call.getArgOperand(i));
9031     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
9032       Ops.push_back(
9033         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
9034       Ops.push_back(
9035         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
9036     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
9037       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
9038       Ops.push_back(Builder.DAG.getTargetFrameIndex(
9039           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
9040     } else
9041       Ops.push_back(OpVal);
9042   }
9043 }
9044 
9045 /// Lower llvm.experimental.stackmap directly to its target opcode.
visitStackmap(const CallInst & CI)9046 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
9047   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
9048   //                                  [live variables...])
9049 
9050   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
9051 
9052   SDValue Chain, InFlag, Callee, NullPtr;
9053   SmallVector<SDValue, 32> Ops;
9054 
9055   SDLoc DL = getCurSDLoc();
9056   Callee = getValue(CI.getCalledOperand());
9057   NullPtr = DAG.getIntPtrConstant(0, DL, true);
9058 
9059   // The stackmap intrinsic only records the live variables (the arguments
9060   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
9061   // intrinsic, this won't be lowered to a function call. This means we don't
9062   // have to worry about calling conventions and target specific lowering code.
9063   // Instead we perform the call lowering right here.
9064   //
9065   // chain, flag = CALLSEQ_START(chain, 0, 0)
9066   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
9067   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
9068   //
9069   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
9070   InFlag = Chain.getValue(1);
9071 
9072   // Add the <id> and <numBytes> constants.
9073   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
9074   Ops.push_back(DAG.getTargetConstant(
9075                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
9076   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
9077   Ops.push_back(DAG.getTargetConstant(
9078                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
9079                   MVT::i32));
9080 
9081   // Push live variables for the stack map.
9082   addStackMapLiveVars(CI, 2, DL, Ops, *this);
9083 
9084   // We are not pushing any register mask info here on the operands list,
9085   // because the stackmap doesn't clobber anything.
9086 
9087   // Push the chain and the glue flag.
9088   Ops.push_back(Chain);
9089   Ops.push_back(InFlag);
9090 
9091   // Create the STACKMAP node.
9092   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9093   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
9094   Chain = SDValue(SM, 0);
9095   InFlag = Chain.getValue(1);
9096 
9097   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
9098 
9099   // Stackmaps don't generate values, so nothing goes into the NodeMap.
9100 
9101   // Set the root to the target-lowered call chain.
9102   DAG.setRoot(Chain);
9103 
9104   // Inform the Frame Information that we have a stackmap in this function.
9105   FuncInfo.MF->getFrameInfo().setHasStackMap();
9106 }
9107 
9108 /// Lower llvm.experimental.patchpoint directly to its target opcode.
visitPatchpoint(const CallBase & CB,const BasicBlock * EHPadBB)9109 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
9110                                           const BasicBlock *EHPadBB) {
9111   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
9112   //                                                 i32 <numBytes>,
9113   //                                                 i8* <target>,
9114   //                                                 i32 <numArgs>,
9115   //                                                 [Args...],
9116   //                                                 [live variables...])
9117 
9118   CallingConv::ID CC = CB.getCallingConv();
9119   bool IsAnyRegCC = CC == CallingConv::AnyReg;
9120   bool HasDef = !CB.getType()->isVoidTy();
9121   SDLoc dl = getCurSDLoc();
9122   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
9123 
9124   // Handle immediate and symbolic callees.
9125   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
9126     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
9127                                    /*isTarget=*/true);
9128   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
9129     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
9130                                          SDLoc(SymbolicCallee),
9131                                          SymbolicCallee->getValueType(0));
9132 
9133   // Get the real number of arguments participating in the call <numArgs>
9134   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
9135   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
9136 
9137   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
9138   // Intrinsics include all meta-operands up to but not including CC.
9139   unsigned NumMetaOpers = PatchPointOpers::CCPos;
9140   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
9141          "Not enough arguments provided to the patchpoint intrinsic");
9142 
9143   // For AnyRegCC the arguments are lowered later on manually.
9144   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
9145   Type *ReturnTy =
9146       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
9147 
9148   TargetLowering::CallLoweringInfo CLI(DAG);
9149   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
9150                            ReturnTy, true);
9151   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
9152 
9153   SDNode *CallEnd = Result.second.getNode();
9154   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
9155     CallEnd = CallEnd->getOperand(0).getNode();
9156 
9157   /// Get a call instruction from the call sequence chain.
9158   /// Tail calls are not allowed.
9159   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
9160          "Expected a callseq node.");
9161   SDNode *Call = CallEnd->getOperand(0).getNode();
9162   bool HasGlue = Call->getGluedNode();
9163 
9164   // Replace the target specific call node with the patchable intrinsic.
9165   SmallVector<SDValue, 8> Ops;
9166 
9167   // Add the <id> and <numBytes> constants.
9168   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
9169   Ops.push_back(DAG.getTargetConstant(
9170                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
9171   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
9172   Ops.push_back(DAG.getTargetConstant(
9173                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
9174                   MVT::i32));
9175 
9176   // Add the callee.
9177   Ops.push_back(Callee);
9178 
9179   // Adjust <numArgs> to account for any arguments that have been passed on the
9180   // stack instead.
9181   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
9182   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
9183   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
9184   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
9185 
9186   // Add the calling convention
9187   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
9188 
9189   // Add the arguments we omitted previously. The register allocator should
9190   // place these in any free register.
9191   if (IsAnyRegCC)
9192     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
9193       Ops.push_back(getValue(CB.getArgOperand(i)));
9194 
9195   // Push the arguments from the call instruction up to the register mask.
9196   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
9197   Ops.append(Call->op_begin() + 2, e);
9198 
9199   // Push live variables for the stack map.
9200   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
9201 
9202   // Push the register mask info.
9203   if (HasGlue)
9204     Ops.push_back(*(Call->op_end()-2));
9205   else
9206     Ops.push_back(*(Call->op_end()-1));
9207 
9208   // Push the chain (this is originally the first operand of the call, but
9209   // becomes now the last or second to last operand).
9210   Ops.push_back(*(Call->op_begin()));
9211 
9212   // Push the glue flag (last operand).
9213   if (HasGlue)
9214     Ops.push_back(*(Call->op_end()-1));
9215 
9216   SDVTList NodeTys;
9217   if (IsAnyRegCC && HasDef) {
9218     // Create the return types based on the intrinsic definition
9219     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9220     SmallVector<EVT, 3> ValueVTs;
9221     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
9222     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
9223 
9224     // There is always a chain and a glue type at the end
9225     ValueVTs.push_back(MVT::Other);
9226     ValueVTs.push_back(MVT::Glue);
9227     NodeTys = DAG.getVTList(ValueVTs);
9228   } else
9229     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9230 
9231   // Replace the target specific call node with a PATCHPOINT node.
9232   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
9233                                          dl, NodeTys, Ops);
9234 
9235   // Update the NodeMap.
9236   if (HasDef) {
9237     if (IsAnyRegCC)
9238       setValue(&CB, SDValue(MN, 0));
9239     else
9240       setValue(&CB, Result.first);
9241   }
9242 
9243   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
9244   // call sequence. Furthermore the location of the chain and glue can change
9245   // when the AnyReg calling convention is used and the intrinsic returns a
9246   // value.
9247   if (IsAnyRegCC && HasDef) {
9248     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
9249     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
9250     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9251   } else
9252     DAG.ReplaceAllUsesWith(Call, MN);
9253   DAG.DeleteNode(Call);
9254 
9255   // Inform the Frame Information that we have a patchpoint in this function.
9256   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
9257 }
9258 
visitVectorReduce(const CallInst & I,unsigned Intrinsic)9259 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
9260                                             unsigned Intrinsic) {
9261   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9262   SDValue Op1 = getValue(I.getArgOperand(0));
9263   SDValue Op2;
9264   if (I.getNumArgOperands() > 1)
9265     Op2 = getValue(I.getArgOperand(1));
9266   SDLoc dl = getCurSDLoc();
9267   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
9268   SDValue Res;
9269   SDNodeFlags SDFlags;
9270   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
9271     SDFlags.copyFMF(*FPMO);
9272 
9273   switch (Intrinsic) {
9274   case Intrinsic::vector_reduce_fadd:
9275     if (SDFlags.hasAllowReassociation())
9276       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
9277                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
9278                         SDFlags);
9279     else
9280       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
9281     break;
9282   case Intrinsic::vector_reduce_fmul:
9283     if (SDFlags.hasAllowReassociation())
9284       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
9285                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
9286                         SDFlags);
9287     else
9288       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
9289     break;
9290   case Intrinsic::vector_reduce_add:
9291     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9292     break;
9293   case Intrinsic::vector_reduce_mul:
9294     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9295     break;
9296   case Intrinsic::vector_reduce_and:
9297     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9298     break;
9299   case Intrinsic::vector_reduce_or:
9300     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
9301     break;
9302   case Intrinsic::vector_reduce_xor:
9303     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
9304     break;
9305   case Intrinsic::vector_reduce_smax:
9306     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
9307     break;
9308   case Intrinsic::vector_reduce_smin:
9309     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
9310     break;
9311   case Intrinsic::vector_reduce_umax:
9312     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9313     break;
9314   case Intrinsic::vector_reduce_umin:
9315     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
9316     break;
9317   case Intrinsic::vector_reduce_fmax:
9318     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
9319     break;
9320   case Intrinsic::vector_reduce_fmin:
9321     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
9322     break;
9323   default:
9324     llvm_unreachable("Unhandled vector reduce intrinsic");
9325   }
9326   setValue(&I, Res);
9327 }
9328 
9329 /// Returns an AttributeList representing the attributes applied to the return
9330 /// value of the given call.
getReturnAttrs(TargetLowering::CallLoweringInfo & CLI)9331 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9332   SmallVector<Attribute::AttrKind, 2> Attrs;
9333   if (CLI.RetSExt)
9334     Attrs.push_back(Attribute::SExt);
9335   if (CLI.RetZExt)
9336     Attrs.push_back(Attribute::ZExt);
9337   if (CLI.IsInReg)
9338     Attrs.push_back(Attribute::InReg);
9339 
9340   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9341                             Attrs);
9342 }
9343 
9344 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9345 /// implementation, which just calls LowerCall.
9346 /// FIXME: When all targets are
9347 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9348 std::pair<SDValue, SDValue>
LowerCallTo(TargetLowering::CallLoweringInfo & CLI) const9349 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9350   // Handle the incoming return values from the call.
9351   CLI.Ins.clear();
9352   Type *OrigRetTy = CLI.RetTy;
9353   SmallVector<EVT, 4> RetTys;
9354   SmallVector<uint64_t, 4> Offsets;
9355   auto &DL = CLI.DAG.getDataLayout();
9356   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9357 
9358   if (CLI.IsPostTypeLegalization) {
9359     // If we are lowering a libcall after legalization, split the return type.
9360     SmallVector<EVT, 4> OldRetTys;
9361     SmallVector<uint64_t, 4> OldOffsets;
9362     RetTys.swap(OldRetTys);
9363     Offsets.swap(OldOffsets);
9364 
9365     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9366       EVT RetVT = OldRetTys[i];
9367       uint64_t Offset = OldOffsets[i];
9368       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9369       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9370       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9371       RetTys.append(NumRegs, RegisterVT);
9372       for (unsigned j = 0; j != NumRegs; ++j)
9373         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9374     }
9375   }
9376 
9377   SmallVector<ISD::OutputArg, 4> Outs;
9378   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9379 
9380   bool CanLowerReturn =
9381       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9382                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9383 
9384   SDValue DemoteStackSlot;
9385   int DemoteStackIdx = -100;
9386   if (!CanLowerReturn) {
9387     // FIXME: equivalent assert?
9388     // assert(!CS.hasInAllocaArgument() &&
9389     //        "sret demotion is incompatible with inalloca");
9390     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9391     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9392     MachineFunction &MF = CLI.DAG.getMachineFunction();
9393     DemoteStackIdx =
9394         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9395     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9396                                               DL.getAllocaAddrSpace());
9397 
9398     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9399     ArgListEntry Entry;
9400     Entry.Node = DemoteStackSlot;
9401     Entry.Ty = StackSlotPtrType;
9402     Entry.IsSExt = false;
9403     Entry.IsZExt = false;
9404     Entry.IsInReg = false;
9405     Entry.IsSRet = true;
9406     Entry.IsNest = false;
9407     Entry.IsByVal = false;
9408     Entry.IsByRef = false;
9409     Entry.IsReturned = false;
9410     Entry.IsSwiftSelf = false;
9411     Entry.IsSwiftAsync = false;
9412     Entry.IsSwiftError = false;
9413     Entry.IsCFGuardTarget = false;
9414     Entry.Alignment = Alignment;
9415     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9416     CLI.NumFixedArgs += 1;
9417     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9418 
9419     // sret demotion isn't compatible with tail-calls, since the sret argument
9420     // points into the callers stack frame.
9421     CLI.IsTailCall = false;
9422   } else {
9423     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9424         CLI.RetTy, CLI.CallConv, CLI.IsVarArg);
9425     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9426       ISD::ArgFlagsTy Flags;
9427       if (NeedsRegBlock) {
9428         Flags.setInConsecutiveRegs();
9429         if (I == RetTys.size() - 1)
9430           Flags.setInConsecutiveRegsLast();
9431       }
9432       EVT VT = RetTys[I];
9433       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9434                                                      CLI.CallConv, VT);
9435       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9436                                                        CLI.CallConv, VT);
9437       for (unsigned i = 0; i != NumRegs; ++i) {
9438         ISD::InputArg MyFlags;
9439         MyFlags.Flags = Flags;
9440         MyFlags.VT = RegisterVT;
9441         MyFlags.ArgVT = VT;
9442         MyFlags.Used = CLI.IsReturnValueUsed;
9443         if (CLI.RetTy->isPointerTy()) {
9444           MyFlags.Flags.setPointer();
9445           MyFlags.Flags.setPointerAddrSpace(
9446               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9447         }
9448         if (CLI.RetSExt)
9449           MyFlags.Flags.setSExt();
9450         if (CLI.RetZExt)
9451           MyFlags.Flags.setZExt();
9452         if (CLI.IsInReg)
9453           MyFlags.Flags.setInReg();
9454         CLI.Ins.push_back(MyFlags);
9455       }
9456     }
9457   }
9458 
9459   // We push in swifterror return as the last element of CLI.Ins.
9460   ArgListTy &Args = CLI.getArgs();
9461   if (supportSwiftError()) {
9462     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9463       if (Args[i].IsSwiftError) {
9464         ISD::InputArg MyFlags;
9465         MyFlags.VT = getPointerTy(DL);
9466         MyFlags.ArgVT = EVT(getPointerTy(DL));
9467         MyFlags.Flags.setSwiftError();
9468         CLI.Ins.push_back(MyFlags);
9469       }
9470     }
9471   }
9472 
9473   // Handle all of the outgoing arguments.
9474   CLI.Outs.clear();
9475   CLI.OutVals.clear();
9476   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9477     SmallVector<EVT, 4> ValueVTs;
9478     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9479     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9480     Type *FinalType = Args[i].Ty;
9481     if (Args[i].IsByVal)
9482       FinalType = Args[i].IndirectType;
9483     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9484         FinalType, CLI.CallConv, CLI.IsVarArg);
9485     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9486          ++Value) {
9487       EVT VT = ValueVTs[Value];
9488       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9489       SDValue Op = SDValue(Args[i].Node.getNode(),
9490                            Args[i].Node.getResNo() + Value);
9491       ISD::ArgFlagsTy Flags;
9492 
9493       // Certain targets (such as MIPS), may have a different ABI alignment
9494       // for a type depending on the context. Give the target a chance to
9495       // specify the alignment it wants.
9496       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9497       Flags.setOrigAlign(OriginalAlignment);
9498 
9499       if (Args[i].Ty->isPointerTy()) {
9500         Flags.setPointer();
9501         Flags.setPointerAddrSpace(
9502             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9503       }
9504       if (Args[i].IsZExt)
9505         Flags.setZExt();
9506       if (Args[i].IsSExt)
9507         Flags.setSExt();
9508       if (Args[i].IsInReg) {
9509         // If we are using vectorcall calling convention, a structure that is
9510         // passed InReg - is surely an HVA
9511         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9512             isa<StructType>(FinalType)) {
9513           // The first value of a structure is marked
9514           if (0 == Value)
9515             Flags.setHvaStart();
9516           Flags.setHva();
9517         }
9518         // Set InReg Flag
9519         Flags.setInReg();
9520       }
9521       if (Args[i].IsSRet)
9522         Flags.setSRet();
9523       if (Args[i].IsSwiftSelf)
9524         Flags.setSwiftSelf();
9525       if (Args[i].IsSwiftAsync)
9526         Flags.setSwiftAsync();
9527       if (Args[i].IsSwiftError)
9528         Flags.setSwiftError();
9529       if (Args[i].IsCFGuardTarget)
9530         Flags.setCFGuardTarget();
9531       if (Args[i].IsByVal)
9532         Flags.setByVal();
9533       if (Args[i].IsByRef)
9534         Flags.setByRef();
9535       if (Args[i].IsPreallocated) {
9536         Flags.setPreallocated();
9537         // Set the byval flag for CCAssignFn callbacks that don't know about
9538         // preallocated.  This way we can know how many bytes we should've
9539         // allocated and how many bytes a callee cleanup function will pop.  If
9540         // we port preallocated to more targets, we'll have to add custom
9541         // preallocated handling in the various CC lowering callbacks.
9542         Flags.setByVal();
9543       }
9544       if (Args[i].IsInAlloca) {
9545         Flags.setInAlloca();
9546         // Set the byval flag for CCAssignFn callbacks that don't know about
9547         // inalloca.  This way we can know how many bytes we should've allocated
9548         // and how many bytes a callee cleanup function will pop.  If we port
9549         // inalloca to more targets, we'll have to add custom inalloca handling
9550         // in the various CC lowering callbacks.
9551         Flags.setByVal();
9552       }
9553       Align MemAlign;
9554       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
9555         Type *ElementTy = Args[i].IndirectType;
9556         assert(ElementTy && "Indirect type not set in ArgListEntry");
9557 
9558         unsigned FrameSize = DL.getTypeAllocSize(ElementTy);
9559         Flags.setByValSize(FrameSize);
9560 
9561         // info is not there but there are cases it cannot get right.
9562         if (auto MA = Args[i].Alignment)
9563           MemAlign = *MA;
9564         else
9565           MemAlign = Align(getByValTypeAlignment(ElementTy, DL));
9566       } else if (auto MA = Args[i].Alignment) {
9567         MemAlign = *MA;
9568       } else {
9569         MemAlign = OriginalAlignment;
9570       }
9571       Flags.setMemAlign(MemAlign);
9572       if (Args[i].IsNest)
9573         Flags.setNest();
9574       if (NeedsRegBlock)
9575         Flags.setInConsecutiveRegs();
9576 
9577       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9578                                                  CLI.CallConv, VT);
9579       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9580                                                         CLI.CallConv, VT);
9581       SmallVector<SDValue, 4> Parts(NumParts);
9582       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9583 
9584       if (Args[i].IsSExt)
9585         ExtendKind = ISD::SIGN_EXTEND;
9586       else if (Args[i].IsZExt)
9587         ExtendKind = ISD::ZERO_EXTEND;
9588 
9589       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9590       // for now.
9591       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9592           CanLowerReturn) {
9593         assert((CLI.RetTy == Args[i].Ty ||
9594                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9595                  CLI.RetTy->getPointerAddressSpace() ==
9596                      Args[i].Ty->getPointerAddressSpace())) &&
9597                RetTys.size() == NumValues && "unexpected use of 'returned'");
9598         // Before passing 'returned' to the target lowering code, ensure that
9599         // either the register MVT and the actual EVT are the same size or that
9600         // the return value and argument are extended in the same way; in these
9601         // cases it's safe to pass the argument register value unchanged as the
9602         // return register value (although it's at the target's option whether
9603         // to do so)
9604         // TODO: allow code generation to take advantage of partially preserved
9605         // registers rather than clobbering the entire register when the
9606         // parameter extension method is not compatible with the return
9607         // extension method
9608         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9609             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9610              CLI.RetZExt == Args[i].IsZExt))
9611           Flags.setReturned();
9612       }
9613 
9614       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
9615                      CLI.CallConv, ExtendKind);
9616 
9617       for (unsigned j = 0; j != NumParts; ++j) {
9618         // if it isn't first piece, alignment must be 1
9619         // For scalable vectors the scalable part is currently handled
9620         // by individual targets, so we just use the known minimum size here.
9621         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
9622                     i < CLI.NumFixedArgs, i,
9623                     j*Parts[j].getValueType().getStoreSize().getKnownMinSize());
9624         if (NumParts > 1 && j == 0)
9625           MyFlags.Flags.setSplit();
9626         else if (j != 0) {
9627           MyFlags.Flags.setOrigAlign(Align(1));
9628           if (j == NumParts - 1)
9629             MyFlags.Flags.setSplitEnd();
9630         }
9631 
9632         CLI.Outs.push_back(MyFlags);
9633         CLI.OutVals.push_back(Parts[j]);
9634       }
9635 
9636       if (NeedsRegBlock && Value == NumValues - 1)
9637         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9638     }
9639   }
9640 
9641   SmallVector<SDValue, 4> InVals;
9642   CLI.Chain = LowerCall(CLI, InVals);
9643 
9644   // Update CLI.InVals to use outside of this function.
9645   CLI.InVals = InVals;
9646 
9647   // Verify that the target's LowerCall behaved as expected.
9648   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9649          "LowerCall didn't return a valid chain!");
9650   assert((!CLI.IsTailCall || InVals.empty()) &&
9651          "LowerCall emitted a return value for a tail call!");
9652   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9653          "LowerCall didn't emit the correct number of values!");
9654 
9655   // For a tail call, the return value is merely live-out and there aren't
9656   // any nodes in the DAG representing it. Return a special value to
9657   // indicate that a tail call has been emitted and no more Instructions
9658   // should be processed in the current block.
9659   if (CLI.IsTailCall) {
9660     CLI.DAG.setRoot(CLI.Chain);
9661     return std::make_pair(SDValue(), SDValue());
9662   }
9663 
9664 #ifndef NDEBUG
9665   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9666     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9667     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9668            "LowerCall emitted a value with the wrong type!");
9669   }
9670 #endif
9671 
9672   SmallVector<SDValue, 4> ReturnValues;
9673   if (!CanLowerReturn) {
9674     // The instruction result is the result of loading from the
9675     // hidden sret parameter.
9676     SmallVector<EVT, 1> PVTs;
9677     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9678 
9679     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9680     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9681     EVT PtrVT = PVTs[0];
9682 
9683     unsigned NumValues = RetTys.size();
9684     ReturnValues.resize(NumValues);
9685     SmallVector<SDValue, 4> Chains(NumValues);
9686 
9687     // An aggregate return value cannot wrap around the address space, so
9688     // offsets to its parts don't wrap either.
9689     SDNodeFlags Flags;
9690     Flags.setNoUnsignedWrap(true);
9691 
9692     MachineFunction &MF = CLI.DAG.getMachineFunction();
9693     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
9694     for (unsigned i = 0; i < NumValues; ++i) {
9695       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9696                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9697                                                         PtrVT), Flags);
9698       SDValue L = CLI.DAG.getLoad(
9699           RetTys[i], CLI.DL, CLI.Chain, Add,
9700           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9701                                             DemoteStackIdx, Offsets[i]),
9702           HiddenSRetAlign);
9703       ReturnValues[i] = L;
9704       Chains[i] = L.getValue(1);
9705     }
9706 
9707     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9708   } else {
9709     // Collect the legal value parts into potentially illegal values
9710     // that correspond to the original function's return values.
9711     Optional<ISD::NodeType> AssertOp;
9712     if (CLI.RetSExt)
9713       AssertOp = ISD::AssertSext;
9714     else if (CLI.RetZExt)
9715       AssertOp = ISD::AssertZext;
9716     unsigned CurReg = 0;
9717     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9718       EVT VT = RetTys[I];
9719       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9720                                                      CLI.CallConv, VT);
9721       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9722                                                        CLI.CallConv, VT);
9723 
9724       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9725                                               NumRegs, RegisterVT, VT, nullptr,
9726                                               CLI.CallConv, AssertOp));
9727       CurReg += NumRegs;
9728     }
9729 
9730     // For a function returning void, there is no return value. We can't create
9731     // such a node, so we just return a null return value in that case. In
9732     // that case, nothing will actually look at the value.
9733     if (ReturnValues.empty())
9734       return std::make_pair(SDValue(), CLI.Chain);
9735   }
9736 
9737   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9738                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9739   return std::make_pair(Res, CLI.Chain);
9740 }
9741 
9742 /// Places new result values for the node in Results (their number
9743 /// and types must exactly match those of the original return values of
9744 /// the node), or leaves Results empty, which indicates that the node is not
9745 /// to be custom lowered after all.
LowerOperationWrapper(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const9746 void TargetLowering::LowerOperationWrapper(SDNode *N,
9747                                            SmallVectorImpl<SDValue> &Results,
9748                                            SelectionDAG &DAG) const {
9749   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
9750 
9751   if (!Res.getNode())
9752     return;
9753 
9754   // If the original node has one result, take the return value from
9755   // LowerOperation as is. It might not be result number 0.
9756   if (N->getNumValues() == 1) {
9757     Results.push_back(Res);
9758     return;
9759   }
9760 
9761   // If the original node has multiple results, then the return node should
9762   // have the same number of results.
9763   assert((N->getNumValues() == Res->getNumValues()) &&
9764       "Lowering returned the wrong number of results!");
9765 
9766   // Places new result values base on N result number.
9767   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
9768     Results.push_back(Res.getValue(I));
9769 }
9770 
LowerOperation(SDValue Op,SelectionDAG & DAG) const9771 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9772   llvm_unreachable("LowerOperation not implemented for this target!");
9773 }
9774 
9775 void
CopyValueToVirtualRegister(const Value * V,unsigned Reg)9776 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9777   SDValue Op = getNonRegisterValue(V);
9778   assert((Op.getOpcode() != ISD::CopyFromReg ||
9779           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9780          "Copy from a reg to the same reg!");
9781   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
9782 
9783   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9784   // If this is an InlineAsm we have to match the registers required, not the
9785   // notional registers required by the type.
9786 
9787   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9788                    None); // This is not an ABI copy.
9789   SDValue Chain = DAG.getEntryNode();
9790 
9791   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9792                               FuncInfo.PreferredExtendType.end())
9793                                  ? ISD::ANY_EXTEND
9794                                  : FuncInfo.PreferredExtendType[V];
9795   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9796   PendingExports.push_back(Chain);
9797 }
9798 
9799 #include "llvm/CodeGen/SelectionDAGISel.h"
9800 
9801 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9802 /// entry block, return true.  This includes arguments used by switches, since
9803 /// the switch may expand into multiple basic blocks.
isOnlyUsedInEntryBlock(const Argument * A,bool FastISel)9804 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9805   // With FastISel active, we may be splitting blocks, so force creation
9806   // of virtual registers for all non-dead arguments.
9807   if (FastISel)
9808     return A->use_empty();
9809 
9810   const BasicBlock &Entry = A->getParent()->front();
9811   for (const User *U : A->users())
9812     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9813       return false;  // Use not in entry block.
9814 
9815   return true;
9816 }
9817 
9818 using ArgCopyElisionMapTy =
9819     DenseMap<const Argument *,
9820              std::pair<const AllocaInst *, const StoreInst *>>;
9821 
9822 /// Scan the entry block of the function in FuncInfo for arguments that look
9823 /// like copies into a local alloca. Record any copied arguments in
9824 /// ArgCopyElisionCandidates.
9825 static void
findArgumentCopyElisionCandidates(const DataLayout & DL,FunctionLoweringInfo * FuncInfo,ArgCopyElisionMapTy & ArgCopyElisionCandidates)9826 findArgumentCopyElisionCandidates(const DataLayout &DL,
9827                                   FunctionLoweringInfo *FuncInfo,
9828                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9829   // Record the state of every static alloca used in the entry block. Argument
9830   // allocas are all used in the entry block, so we need approximately as many
9831   // entries as we have arguments.
9832   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9833   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9834   unsigned NumArgs = FuncInfo->Fn->arg_size();
9835   StaticAllocas.reserve(NumArgs * 2);
9836 
9837   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9838     if (!V)
9839       return nullptr;
9840     V = V->stripPointerCasts();
9841     const auto *AI = dyn_cast<AllocaInst>(V);
9842     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9843       return nullptr;
9844     auto Iter = StaticAllocas.insert({AI, Unknown});
9845     return &Iter.first->second;
9846   };
9847 
9848   // Look for stores of arguments to static allocas. Look through bitcasts and
9849   // GEPs to handle type coercions, as long as the alloca is fully initialized
9850   // by the store. Any non-store use of an alloca escapes it and any subsequent
9851   // unanalyzed store might write it.
9852   // FIXME: Handle structs initialized with multiple stores.
9853   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9854     // Look for stores, and handle non-store uses conservatively.
9855     const auto *SI = dyn_cast<StoreInst>(&I);
9856     if (!SI) {
9857       // We will look through cast uses, so ignore them completely.
9858       if (I.isCast())
9859         continue;
9860       // Ignore debug info and pseudo op intrinsics, they don't escape or store
9861       // to allocas.
9862       if (I.isDebugOrPseudoInst())
9863         continue;
9864       // This is an unknown instruction. Assume it escapes or writes to all
9865       // static alloca operands.
9866       for (const Use &U : I.operands()) {
9867         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9868           *Info = StaticAllocaInfo::Clobbered;
9869       }
9870       continue;
9871     }
9872 
9873     // If the stored value is a static alloca, mark it as escaped.
9874     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9875       *Info = StaticAllocaInfo::Clobbered;
9876 
9877     // Check if the destination is a static alloca.
9878     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9879     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9880     if (!Info)
9881       continue;
9882     const AllocaInst *AI = cast<AllocaInst>(Dst);
9883 
9884     // Skip allocas that have been initialized or clobbered.
9885     if (*Info != StaticAllocaInfo::Unknown)
9886       continue;
9887 
9888     // Check if the stored value is an argument, and that this store fully
9889     // initializes the alloca.
9890     // If the argument type has padding bits we can't directly forward a pointer
9891     // as the upper bits may contain garbage.
9892     // Don't elide copies from the same argument twice.
9893     const Value *Val = SI->getValueOperand()->stripPointerCasts();
9894     const auto *Arg = dyn_cast<Argument>(Val);
9895     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
9896         Arg->getType()->isEmptyTy() ||
9897         DL.getTypeStoreSize(Arg->getType()) !=
9898             DL.getTypeAllocSize(AI->getAllocatedType()) ||
9899         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
9900         ArgCopyElisionCandidates.count(Arg)) {
9901       *Info = StaticAllocaInfo::Clobbered;
9902       continue;
9903     }
9904 
9905     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9906                       << '\n');
9907 
9908     // Mark this alloca and store for argument copy elision.
9909     *Info = StaticAllocaInfo::Elidable;
9910     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9911 
9912     // Stop scanning if we've seen all arguments. This will happen early in -O0
9913     // builds, which is useful, because -O0 builds have large entry blocks and
9914     // many allocas.
9915     if (ArgCopyElisionCandidates.size() == NumArgs)
9916       break;
9917   }
9918 }
9919 
9920 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9921 /// ArgVal is a load from a suitable fixed stack object.
tryToElideArgumentCopy(FunctionLoweringInfo & FuncInfo,SmallVectorImpl<SDValue> & Chains,DenseMap<int,int> & ArgCopyElisionFrameIndexMap,SmallPtrSetImpl<const Instruction * > & ElidedArgCopyInstrs,ArgCopyElisionMapTy & ArgCopyElisionCandidates,const Argument & Arg,SDValue ArgVal,bool & ArgHasUses)9922 static void tryToElideArgumentCopy(
9923     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
9924     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9925     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9926     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9927     SDValue ArgVal, bool &ArgHasUses) {
9928   // Check if this is a load from a fixed stack object.
9929   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9930   if (!LNode)
9931     return;
9932   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9933   if (!FINode)
9934     return;
9935 
9936   // Check that the fixed stack object is the right size and alignment.
9937   // Look at the alignment that the user wrote on the alloca instead of looking
9938   // at the stack object.
9939   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9940   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9941   const AllocaInst *AI = ArgCopyIter->second.first;
9942   int FixedIndex = FINode->getIndex();
9943   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
9944   int OldIndex = AllocaIndex;
9945   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
9946   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9947     LLVM_DEBUG(
9948         dbgs() << "  argument copy elision failed due to bad fixed stack "
9949                   "object size\n");
9950     return;
9951   }
9952   Align RequiredAlignment = AI->getAlign();
9953   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
9954     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
9955                          "greater than stack argument alignment ("
9956                       << DebugStr(RequiredAlignment) << " vs "
9957                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
9958     return;
9959   }
9960 
9961   // Perform the elision. Delete the old stack object and replace its only use
9962   // in the variable info map. Mark the stack object as mutable.
9963   LLVM_DEBUG({
9964     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9965            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9966            << '\n';
9967   });
9968   MFI.RemoveStackObject(OldIndex);
9969   MFI.setIsImmutableObjectIndex(FixedIndex, false);
9970   AllocaIndex = FixedIndex;
9971   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9972   Chains.push_back(ArgVal.getValue(1));
9973 
9974   // Avoid emitting code for the store implementing the copy.
9975   const StoreInst *SI = ArgCopyIter->second.second;
9976   ElidedArgCopyInstrs.insert(SI);
9977 
9978   // Check for uses of the argument again so that we can avoid exporting ArgVal
9979   // if it is't used by anything other than the store.
9980   for (const Value *U : Arg.users()) {
9981     if (U != SI) {
9982       ArgHasUses = true;
9983       break;
9984     }
9985   }
9986 }
9987 
LowerArguments(const Function & F)9988 void SelectionDAGISel::LowerArguments(const Function &F) {
9989   SelectionDAG &DAG = SDB->DAG;
9990   SDLoc dl = SDB->getCurSDLoc();
9991   const DataLayout &DL = DAG.getDataLayout();
9992   SmallVector<ISD::InputArg, 16> Ins;
9993 
9994   // In Naked functions we aren't going to save any registers.
9995   if (F.hasFnAttribute(Attribute::Naked))
9996     return;
9997 
9998   if (!FuncInfo->CanLowerReturn) {
9999     // Put in an sret pointer parameter before all the other parameters.
10000     SmallVector<EVT, 1> ValueVTs;
10001     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10002                     F.getReturnType()->getPointerTo(
10003                         DAG.getDataLayout().getAllocaAddrSpace()),
10004                     ValueVTs);
10005 
10006     // NOTE: Assuming that a pointer will never break down to more than one VT
10007     // or one register.
10008     ISD::ArgFlagsTy Flags;
10009     Flags.setSRet();
10010     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
10011     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
10012                          ISD::InputArg::NoArgIndex, 0);
10013     Ins.push_back(RetArg);
10014   }
10015 
10016   // Look for stores of arguments to static allocas. Mark such arguments with a
10017   // flag to ask the target to give us the memory location of that argument if
10018   // available.
10019   ArgCopyElisionMapTy ArgCopyElisionCandidates;
10020   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
10021                                     ArgCopyElisionCandidates);
10022 
10023   // Set up the incoming argument description vector.
10024   for (const Argument &Arg : F.args()) {
10025     unsigned ArgNo = Arg.getArgNo();
10026     SmallVector<EVT, 4> ValueVTs;
10027     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10028     bool isArgValueUsed = !Arg.use_empty();
10029     unsigned PartBase = 0;
10030     Type *FinalType = Arg.getType();
10031     if (Arg.hasAttribute(Attribute::ByVal))
10032       FinalType = Arg.getParamByValType();
10033     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
10034         FinalType, F.getCallingConv(), F.isVarArg());
10035     for (unsigned Value = 0, NumValues = ValueVTs.size();
10036          Value != NumValues; ++Value) {
10037       EVT VT = ValueVTs[Value];
10038       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
10039       ISD::ArgFlagsTy Flags;
10040 
10041 
10042       if (Arg.getType()->isPointerTy()) {
10043         Flags.setPointer();
10044         Flags.setPointerAddrSpace(
10045             cast<PointerType>(Arg.getType())->getAddressSpace());
10046       }
10047       if (Arg.hasAttribute(Attribute::ZExt))
10048         Flags.setZExt();
10049       if (Arg.hasAttribute(Attribute::SExt))
10050         Flags.setSExt();
10051       if (Arg.hasAttribute(Attribute::InReg)) {
10052         // If we are using vectorcall calling convention, a structure that is
10053         // passed InReg - is surely an HVA
10054         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
10055             isa<StructType>(Arg.getType())) {
10056           // The first value of a structure is marked
10057           if (0 == Value)
10058             Flags.setHvaStart();
10059           Flags.setHva();
10060         }
10061         // Set InReg Flag
10062         Flags.setInReg();
10063       }
10064       if (Arg.hasAttribute(Attribute::StructRet))
10065         Flags.setSRet();
10066       if (Arg.hasAttribute(Attribute::SwiftSelf))
10067         Flags.setSwiftSelf();
10068       if (Arg.hasAttribute(Attribute::SwiftAsync))
10069         Flags.setSwiftAsync();
10070       if (Arg.hasAttribute(Attribute::SwiftError))
10071         Flags.setSwiftError();
10072       if (Arg.hasAttribute(Attribute::ByVal))
10073         Flags.setByVal();
10074       if (Arg.hasAttribute(Attribute::ByRef))
10075         Flags.setByRef();
10076       if (Arg.hasAttribute(Attribute::InAlloca)) {
10077         Flags.setInAlloca();
10078         // Set the byval flag for CCAssignFn callbacks that don't know about
10079         // inalloca.  This way we can know how many bytes we should've allocated
10080         // and how many bytes a callee cleanup function will pop.  If we port
10081         // inalloca to more targets, we'll have to add custom inalloca handling
10082         // in the various CC lowering callbacks.
10083         Flags.setByVal();
10084       }
10085       if (Arg.hasAttribute(Attribute::Preallocated)) {
10086         Flags.setPreallocated();
10087         // Set the byval flag for CCAssignFn callbacks that don't know about
10088         // preallocated.  This way we can know how many bytes we should've
10089         // allocated and how many bytes a callee cleanup function will pop.  If
10090         // we port preallocated to more targets, we'll have to add custom
10091         // preallocated handling in the various CC lowering callbacks.
10092         Flags.setByVal();
10093       }
10094 
10095       // Certain targets (such as MIPS), may have a different ABI alignment
10096       // for a type depending on the context. Give the target a chance to
10097       // specify the alignment it wants.
10098       const Align OriginalAlignment(
10099           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
10100       Flags.setOrigAlign(OriginalAlignment);
10101 
10102       Align MemAlign;
10103       Type *ArgMemTy = nullptr;
10104       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
10105           Flags.isByRef()) {
10106         if (!ArgMemTy)
10107           ArgMemTy = Arg.getPointeeInMemoryValueType();
10108 
10109         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
10110 
10111         // For in-memory arguments, size and alignment should be passed from FE.
10112         // BE will guess if this info is not there but there are cases it cannot
10113         // get right.
10114         if (auto ParamAlign = Arg.getParamStackAlign())
10115           MemAlign = *ParamAlign;
10116         else if ((ParamAlign = Arg.getParamAlign()))
10117           MemAlign = *ParamAlign;
10118         else
10119           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
10120         if (Flags.isByRef())
10121           Flags.setByRefSize(MemSize);
10122         else
10123           Flags.setByValSize(MemSize);
10124       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
10125         MemAlign = *ParamAlign;
10126       } else {
10127         MemAlign = OriginalAlignment;
10128       }
10129       Flags.setMemAlign(MemAlign);
10130 
10131       if (Arg.hasAttribute(Attribute::Nest))
10132         Flags.setNest();
10133       if (NeedsRegBlock)
10134         Flags.setInConsecutiveRegs();
10135       if (ArgCopyElisionCandidates.count(&Arg))
10136         Flags.setCopyElisionCandidate();
10137       if (Arg.hasAttribute(Attribute::Returned))
10138         Flags.setReturned();
10139 
10140       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
10141           *CurDAG->getContext(), F.getCallingConv(), VT);
10142       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
10143           *CurDAG->getContext(), F.getCallingConv(), VT);
10144       for (unsigned i = 0; i != NumRegs; ++i) {
10145         // For scalable vectors, use the minimum size; individual targets
10146         // are responsible for handling scalable vector arguments and
10147         // return values.
10148         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
10149                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
10150         if (NumRegs > 1 && i == 0)
10151           MyFlags.Flags.setSplit();
10152         // if it isn't first piece, alignment must be 1
10153         else if (i > 0) {
10154           MyFlags.Flags.setOrigAlign(Align(1));
10155           if (i == NumRegs - 1)
10156             MyFlags.Flags.setSplitEnd();
10157         }
10158         Ins.push_back(MyFlags);
10159       }
10160       if (NeedsRegBlock && Value == NumValues - 1)
10161         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
10162       PartBase += VT.getStoreSize().getKnownMinSize();
10163     }
10164   }
10165 
10166   // Call the target to set up the argument values.
10167   SmallVector<SDValue, 8> InVals;
10168   SDValue NewRoot = TLI->LowerFormalArguments(
10169       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
10170 
10171   // Verify that the target's LowerFormalArguments behaved as expected.
10172   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
10173          "LowerFormalArguments didn't return a valid chain!");
10174   assert(InVals.size() == Ins.size() &&
10175          "LowerFormalArguments didn't emit the correct number of values!");
10176   LLVM_DEBUG({
10177     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
10178       assert(InVals[i].getNode() &&
10179              "LowerFormalArguments emitted a null value!");
10180       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
10181              "LowerFormalArguments emitted a value with the wrong type!");
10182     }
10183   });
10184 
10185   // Update the DAG with the new chain value resulting from argument lowering.
10186   DAG.setRoot(NewRoot);
10187 
10188   // Set up the argument values.
10189   unsigned i = 0;
10190   if (!FuncInfo->CanLowerReturn) {
10191     // Create a virtual register for the sret pointer, and put in a copy
10192     // from the sret argument into it.
10193     SmallVector<EVT, 1> ValueVTs;
10194     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10195                     F.getReturnType()->getPointerTo(
10196                         DAG.getDataLayout().getAllocaAddrSpace()),
10197                     ValueVTs);
10198     MVT VT = ValueVTs[0].getSimpleVT();
10199     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
10200     Optional<ISD::NodeType> AssertOp = None;
10201     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
10202                                         nullptr, F.getCallingConv(), AssertOp);
10203 
10204     MachineFunction& MF = SDB->DAG.getMachineFunction();
10205     MachineRegisterInfo& RegInfo = MF.getRegInfo();
10206     Register SRetReg =
10207         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
10208     FuncInfo->DemoteRegister = SRetReg;
10209     NewRoot =
10210         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
10211     DAG.setRoot(NewRoot);
10212 
10213     // i indexes lowered arguments.  Bump it past the hidden sret argument.
10214     ++i;
10215   }
10216 
10217   SmallVector<SDValue, 4> Chains;
10218   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
10219   for (const Argument &Arg : F.args()) {
10220     SmallVector<SDValue, 4> ArgValues;
10221     SmallVector<EVT, 4> ValueVTs;
10222     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10223     unsigned NumValues = ValueVTs.size();
10224     if (NumValues == 0)
10225       continue;
10226 
10227     bool ArgHasUses = !Arg.use_empty();
10228 
10229     // Elide the copying store if the target loaded this argument from a
10230     // suitable fixed stack object.
10231     if (Ins[i].Flags.isCopyElisionCandidate()) {
10232       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
10233                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
10234                              InVals[i], ArgHasUses);
10235     }
10236 
10237     // If this argument is unused then remember its value. It is used to generate
10238     // debugging information.
10239     bool isSwiftErrorArg =
10240         TLI->supportSwiftError() &&
10241         Arg.hasAttribute(Attribute::SwiftError);
10242     if (!ArgHasUses && !isSwiftErrorArg) {
10243       SDB->setUnusedArgValue(&Arg, InVals[i]);
10244 
10245       // Also remember any frame index for use in FastISel.
10246       if (FrameIndexSDNode *FI =
10247           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
10248         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10249     }
10250 
10251     for (unsigned Val = 0; Val != NumValues; ++Val) {
10252       EVT VT = ValueVTs[Val];
10253       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
10254                                                       F.getCallingConv(), VT);
10255       unsigned NumParts = TLI->getNumRegistersForCallingConv(
10256           *CurDAG->getContext(), F.getCallingConv(), VT);
10257 
10258       // Even an apparent 'unused' swifterror argument needs to be returned. So
10259       // we do generate a copy for it that can be used on return from the
10260       // function.
10261       if (ArgHasUses || isSwiftErrorArg) {
10262         Optional<ISD::NodeType> AssertOp;
10263         if (Arg.hasAttribute(Attribute::SExt))
10264           AssertOp = ISD::AssertSext;
10265         else if (Arg.hasAttribute(Attribute::ZExt))
10266           AssertOp = ISD::AssertZext;
10267 
10268         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
10269                                              PartVT, VT, nullptr,
10270                                              F.getCallingConv(), AssertOp));
10271       }
10272 
10273       i += NumParts;
10274     }
10275 
10276     // We don't need to do anything else for unused arguments.
10277     if (ArgValues.empty())
10278       continue;
10279 
10280     // Note down frame index.
10281     if (FrameIndexSDNode *FI =
10282         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
10283       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10284 
10285     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
10286                                      SDB->getCurSDLoc());
10287 
10288     SDB->setValue(&Arg, Res);
10289     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
10290       // We want to associate the argument with the frame index, among
10291       // involved operands, that correspond to the lowest address. The
10292       // getCopyFromParts function, called earlier, is swapping the order of
10293       // the operands to BUILD_PAIR depending on endianness. The result of
10294       // that swapping is that the least significant bits of the argument will
10295       // be in the first operand of the BUILD_PAIR node, and the most
10296       // significant bits will be in the second operand.
10297       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
10298       if (LoadSDNode *LNode =
10299           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
10300         if (FrameIndexSDNode *FI =
10301             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
10302           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10303     }
10304 
10305     // Analyses past this point are naive and don't expect an assertion.
10306     if (Res.getOpcode() == ISD::AssertZext)
10307       Res = Res.getOperand(0);
10308 
10309     // Update the SwiftErrorVRegDefMap.
10310     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
10311       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10312       if (Register::isVirtualRegister(Reg))
10313         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
10314                                    Reg);
10315     }
10316 
10317     // If this argument is live outside of the entry block, insert a copy from
10318     // wherever we got it to the vreg that other BB's will reference it as.
10319     if (Res.getOpcode() == ISD::CopyFromReg) {
10320       // If we can, though, try to skip creating an unnecessary vreg.
10321       // FIXME: This isn't very clean... it would be nice to make this more
10322       // general.
10323       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10324       if (Register::isVirtualRegister(Reg)) {
10325         FuncInfo->ValueMap[&Arg] = Reg;
10326         continue;
10327       }
10328     }
10329     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
10330       FuncInfo->InitializeRegForValue(&Arg);
10331       SDB->CopyToExportRegsIfNeeded(&Arg);
10332     }
10333   }
10334 
10335   if (!Chains.empty()) {
10336     Chains.push_back(NewRoot);
10337     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
10338   }
10339 
10340   DAG.setRoot(NewRoot);
10341 
10342   assert(i == InVals.size() && "Argument register count mismatch!");
10343 
10344   // If any argument copy elisions occurred and we have debug info, update the
10345   // stale frame indices used in the dbg.declare variable info table.
10346   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
10347   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
10348     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
10349       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
10350       if (I != ArgCopyElisionFrameIndexMap.end())
10351         VI.Slot = I->second;
10352     }
10353   }
10354 
10355   // Finally, if the target has anything special to do, allow it to do so.
10356   emitFunctionEntryCode();
10357 }
10358 
10359 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
10360 /// ensure constants are generated when needed.  Remember the virtual registers
10361 /// that need to be added to the Machine PHI nodes as input.  We cannot just
10362 /// directly add them, because expansion might result in multiple MBB's for one
10363 /// BB.  As such, the start of the BB might correspond to a different MBB than
10364 /// the end.
10365 void
HandlePHINodesInSuccessorBlocks(const BasicBlock * LLVMBB)10366 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10367   const Instruction *TI = LLVMBB->getTerminator();
10368 
10369   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10370 
10371   // Check PHI nodes in successors that expect a value to be available from this
10372   // block.
10373   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
10374     const BasicBlock *SuccBB = TI->getSuccessor(succ);
10375     if (!isa<PHINode>(SuccBB->begin())) continue;
10376     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10377 
10378     // If this terminator has multiple identical successors (common for
10379     // switches), only handle each succ once.
10380     if (!SuccsHandled.insert(SuccMBB).second)
10381       continue;
10382 
10383     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10384 
10385     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10386     // nodes and Machine PHI nodes, but the incoming operands have not been
10387     // emitted yet.
10388     for (const PHINode &PN : SuccBB->phis()) {
10389       // Ignore dead phi's.
10390       if (PN.use_empty())
10391         continue;
10392 
10393       // Skip empty types
10394       if (PN.getType()->isEmptyTy())
10395         continue;
10396 
10397       unsigned Reg;
10398       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10399 
10400       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
10401         unsigned &RegOut = ConstantsOut[C];
10402         if (RegOut == 0) {
10403           RegOut = FuncInfo.CreateRegs(C);
10404           CopyValueToVirtualRegister(C, RegOut);
10405         }
10406         Reg = RegOut;
10407       } else {
10408         DenseMap<const Value *, Register>::iterator I =
10409           FuncInfo.ValueMap.find(PHIOp);
10410         if (I != FuncInfo.ValueMap.end())
10411           Reg = I->second;
10412         else {
10413           assert(isa<AllocaInst>(PHIOp) &&
10414                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10415                  "Didn't codegen value into a register!??");
10416           Reg = FuncInfo.CreateRegs(PHIOp);
10417           CopyValueToVirtualRegister(PHIOp, Reg);
10418         }
10419       }
10420 
10421       // Remember that this register needs to added to the machine PHI node as
10422       // the input for this MBB.
10423       SmallVector<EVT, 4> ValueVTs;
10424       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10425       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10426       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
10427         EVT VT = ValueVTs[vti];
10428         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10429         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
10430           FuncInfo.PHINodesToUpdate.push_back(
10431               std::make_pair(&*MBBI++, Reg + i));
10432         Reg += NumRegisters;
10433       }
10434     }
10435   }
10436 
10437   ConstantsOut.clear();
10438 }
10439 
10440 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
10441 /// is 0.
10442 MachineBasicBlock *
10443 SelectionDAGBuilder::StackProtectorDescriptor::
AddSuccessorMBB(const BasicBlock * BB,MachineBasicBlock * ParentMBB,bool IsLikely,MachineBasicBlock * SuccMBB)10444 AddSuccessorMBB(const BasicBlock *BB,
10445                 MachineBasicBlock *ParentMBB,
10446                 bool IsLikely,
10447                 MachineBasicBlock *SuccMBB) {
10448   // If SuccBB has not been created yet, create it.
10449   if (!SuccMBB) {
10450     MachineFunction *MF = ParentMBB->getParent();
10451     MachineFunction::iterator BBI(ParentMBB);
10452     SuccMBB = MF->CreateMachineBasicBlock(BB);
10453     MF->insert(++BBI, SuccMBB);
10454   }
10455   // Add it as a successor of ParentMBB.
10456   ParentMBB->addSuccessor(
10457       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
10458   return SuccMBB;
10459 }
10460 
NextBlock(MachineBasicBlock * MBB)10461 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10462   MachineFunction::iterator I(MBB);
10463   if (++I == FuncInfo.MF->end())
10464     return nullptr;
10465   return &*I;
10466 }
10467 
10468 /// During lowering new call nodes can be created (such as memset, etc.).
10469 /// Those will become new roots of the current DAG, but complications arise
10470 /// when they are tail calls. In such cases, the call lowering will update
10471 /// the root, but the builder still needs to know that a tail call has been
10472 /// lowered in order to avoid generating an additional return.
updateDAGForMaybeTailCall(SDValue MaybeTC)10473 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10474   // If the node is null, we do have a tail call.
10475   if (MaybeTC.getNode() != nullptr)
10476     DAG.setRoot(MaybeTC);
10477   else
10478     HasTailCall = true;
10479 }
10480 
lowerWorkItem(SwitchWorkListItem W,Value * Cond,MachineBasicBlock * SwitchMBB,MachineBasicBlock * DefaultMBB)10481 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10482                                         MachineBasicBlock *SwitchMBB,
10483                                         MachineBasicBlock *DefaultMBB) {
10484   MachineFunction *CurMF = FuncInfo.MF;
10485   MachineBasicBlock *NextMBB = nullptr;
10486   MachineFunction::iterator BBI(W.MBB);
10487   if (++BBI != FuncInfo.MF->end())
10488     NextMBB = &*BBI;
10489 
10490   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10491 
10492   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10493 
10494   if (Size == 2 && W.MBB == SwitchMBB) {
10495     // If any two of the cases has the same destination, and if one value
10496     // is the same as the other, but has one bit unset that the other has set,
10497     // use bit manipulation to do two compares at once.  For example:
10498     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10499     // TODO: This could be extended to merge any 2 cases in switches with 3
10500     // cases.
10501     // TODO: Handle cases where W.CaseBB != SwitchBB.
10502     CaseCluster &Small = *W.FirstCluster;
10503     CaseCluster &Big = *W.LastCluster;
10504 
10505     if (Small.Low == Small.High && Big.Low == Big.High &&
10506         Small.MBB == Big.MBB) {
10507       const APInt &SmallValue = Small.Low->getValue();
10508       const APInt &BigValue = Big.Low->getValue();
10509 
10510       // Check that there is only one bit different.
10511       APInt CommonBit = BigValue ^ SmallValue;
10512       if (CommonBit.isPowerOf2()) {
10513         SDValue CondLHS = getValue(Cond);
10514         EVT VT = CondLHS.getValueType();
10515         SDLoc DL = getCurSDLoc();
10516 
10517         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10518                                  DAG.getConstant(CommonBit, DL, VT));
10519         SDValue Cond = DAG.getSetCC(
10520             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10521             ISD::SETEQ);
10522 
10523         // Update successor info.
10524         // Both Small and Big will jump to Small.BB, so we sum up the
10525         // probabilities.
10526         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10527         if (BPI)
10528           addSuccessorWithProb(
10529               SwitchMBB, DefaultMBB,
10530               // The default destination is the first successor in IR.
10531               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10532         else
10533           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10534 
10535         // Insert the true branch.
10536         SDValue BrCond =
10537             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10538                         DAG.getBasicBlock(Small.MBB));
10539         // Insert the false branch.
10540         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10541                              DAG.getBasicBlock(DefaultMBB));
10542 
10543         DAG.setRoot(BrCond);
10544         return;
10545       }
10546     }
10547   }
10548 
10549   if (TM.getOptLevel() != CodeGenOpt::None) {
10550     // Here, we order cases by probability so the most likely case will be
10551     // checked first. However, two clusters can have the same probability in
10552     // which case their relative ordering is non-deterministic. So we use Low
10553     // as a tie-breaker as clusters are guaranteed to never overlap.
10554     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10555                [](const CaseCluster &a, const CaseCluster &b) {
10556       return a.Prob != b.Prob ?
10557              a.Prob > b.Prob :
10558              a.Low->getValue().slt(b.Low->getValue());
10559     });
10560 
10561     // Rearrange the case blocks so that the last one falls through if possible
10562     // without changing the order of probabilities.
10563     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10564       --I;
10565       if (I->Prob > W.LastCluster->Prob)
10566         break;
10567       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10568         std::swap(*I, *W.LastCluster);
10569         break;
10570       }
10571     }
10572   }
10573 
10574   // Compute total probability.
10575   BranchProbability DefaultProb = W.DefaultProb;
10576   BranchProbability UnhandledProbs = DefaultProb;
10577   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10578     UnhandledProbs += I->Prob;
10579 
10580   MachineBasicBlock *CurMBB = W.MBB;
10581   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10582     bool FallthroughUnreachable = false;
10583     MachineBasicBlock *Fallthrough;
10584     if (I == W.LastCluster) {
10585       // For the last cluster, fall through to the default destination.
10586       Fallthrough = DefaultMBB;
10587       FallthroughUnreachable = isa<UnreachableInst>(
10588           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10589     } else {
10590       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10591       CurMF->insert(BBI, Fallthrough);
10592       // Put Cond in a virtual register to make it available from the new blocks.
10593       ExportFromCurrentBlock(Cond);
10594     }
10595     UnhandledProbs -= I->Prob;
10596 
10597     switch (I->Kind) {
10598       case CC_JumpTable: {
10599         // FIXME: Optimize away range check based on pivot comparisons.
10600         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10601         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10602 
10603         // The jump block hasn't been inserted yet; insert it here.
10604         MachineBasicBlock *JumpMBB = JT->MBB;
10605         CurMF->insert(BBI, JumpMBB);
10606 
10607         auto JumpProb = I->Prob;
10608         auto FallthroughProb = UnhandledProbs;
10609 
10610         // If the default statement is a target of the jump table, we evenly
10611         // distribute the default probability to successors of CurMBB. Also
10612         // update the probability on the edge from JumpMBB to Fallthrough.
10613         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10614                                               SE = JumpMBB->succ_end();
10615              SI != SE; ++SI) {
10616           if (*SI == DefaultMBB) {
10617             JumpProb += DefaultProb / 2;
10618             FallthroughProb -= DefaultProb / 2;
10619             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10620             JumpMBB->normalizeSuccProbs();
10621             break;
10622           }
10623         }
10624 
10625         if (FallthroughUnreachable) {
10626           // Skip the range check if the fallthrough block is unreachable.
10627           JTH->OmitRangeCheck = true;
10628         }
10629 
10630         if (!JTH->OmitRangeCheck)
10631           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10632         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10633         CurMBB->normalizeSuccProbs();
10634 
10635         // The jump table header will be inserted in our current block, do the
10636         // range check, and fall through to our fallthrough block.
10637         JTH->HeaderBB = CurMBB;
10638         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10639 
10640         // If we're in the right place, emit the jump table header right now.
10641         if (CurMBB == SwitchMBB) {
10642           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10643           JTH->Emitted = true;
10644         }
10645         break;
10646       }
10647       case CC_BitTests: {
10648         // FIXME: Optimize away range check based on pivot comparisons.
10649         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10650 
10651         // The bit test blocks haven't been inserted yet; insert them here.
10652         for (BitTestCase &BTC : BTB->Cases)
10653           CurMF->insert(BBI, BTC.ThisBB);
10654 
10655         // Fill in fields of the BitTestBlock.
10656         BTB->Parent = CurMBB;
10657         BTB->Default = Fallthrough;
10658 
10659         BTB->DefaultProb = UnhandledProbs;
10660         // If the cases in bit test don't form a contiguous range, we evenly
10661         // distribute the probability on the edge to Fallthrough to two
10662         // successors of CurMBB.
10663         if (!BTB->ContiguousRange) {
10664           BTB->Prob += DefaultProb / 2;
10665           BTB->DefaultProb -= DefaultProb / 2;
10666         }
10667 
10668         if (FallthroughUnreachable) {
10669           // Skip the range check if the fallthrough block is unreachable.
10670           BTB->OmitRangeCheck = true;
10671         }
10672 
10673         // If we're in the right place, emit the bit test header right now.
10674         if (CurMBB == SwitchMBB) {
10675           visitBitTestHeader(*BTB, SwitchMBB);
10676           BTB->Emitted = true;
10677         }
10678         break;
10679       }
10680       case CC_Range: {
10681         const Value *RHS, *LHS, *MHS;
10682         ISD::CondCode CC;
10683         if (I->Low == I->High) {
10684           // Check Cond == I->Low.
10685           CC = ISD::SETEQ;
10686           LHS = Cond;
10687           RHS=I->Low;
10688           MHS = nullptr;
10689         } else {
10690           // Check I->Low <= Cond <= I->High.
10691           CC = ISD::SETLE;
10692           LHS = I->Low;
10693           MHS = Cond;
10694           RHS = I->High;
10695         }
10696 
10697         // If Fallthrough is unreachable, fold away the comparison.
10698         if (FallthroughUnreachable)
10699           CC = ISD::SETTRUE;
10700 
10701         // The false probability is the sum of all unhandled cases.
10702         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10703                      getCurSDLoc(), I->Prob, UnhandledProbs);
10704 
10705         if (CurMBB == SwitchMBB)
10706           visitSwitchCase(CB, SwitchMBB);
10707         else
10708           SL->SwitchCases.push_back(CB);
10709 
10710         break;
10711       }
10712     }
10713     CurMBB = Fallthrough;
10714   }
10715 }
10716 
caseClusterRank(const CaseCluster & CC,CaseClusterIt First,CaseClusterIt Last)10717 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10718                                               CaseClusterIt First,
10719                                               CaseClusterIt Last) {
10720   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10721     if (X.Prob != CC.Prob)
10722       return X.Prob > CC.Prob;
10723 
10724     // Ties are broken by comparing the case value.
10725     return X.Low->getValue().slt(CC.Low->getValue());
10726   });
10727 }
10728 
splitWorkItem(SwitchWorkList & WorkList,const SwitchWorkListItem & W,Value * Cond,MachineBasicBlock * SwitchMBB)10729 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10730                                         const SwitchWorkListItem &W,
10731                                         Value *Cond,
10732                                         MachineBasicBlock *SwitchMBB) {
10733   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10734          "Clusters not sorted?");
10735 
10736   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10737 
10738   // Balance the tree based on branch probabilities to create a near-optimal (in
10739   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10740   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10741   CaseClusterIt LastLeft = W.FirstCluster;
10742   CaseClusterIt FirstRight = W.LastCluster;
10743   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10744   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10745 
10746   // Move LastLeft and FirstRight towards each other from opposite directions to
10747   // find a partitioning of the clusters which balances the probability on both
10748   // sides. If LeftProb and RightProb are equal, alternate which side is
10749   // taken to ensure 0-probability nodes are distributed evenly.
10750   unsigned I = 0;
10751   while (LastLeft + 1 < FirstRight) {
10752     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10753       LeftProb += (++LastLeft)->Prob;
10754     else
10755       RightProb += (--FirstRight)->Prob;
10756     I++;
10757   }
10758 
10759   while (true) {
10760     // Our binary search tree differs from a typical BST in that ours can have up
10761     // to three values in each leaf. The pivot selection above doesn't take that
10762     // into account, which means the tree might require more nodes and be less
10763     // efficient. We compensate for this here.
10764 
10765     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10766     unsigned NumRight = W.LastCluster - FirstRight + 1;
10767 
10768     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10769       // If one side has less than 3 clusters, and the other has more than 3,
10770       // consider taking a cluster from the other side.
10771 
10772       if (NumLeft < NumRight) {
10773         // Consider moving the first cluster on the right to the left side.
10774         CaseCluster &CC = *FirstRight;
10775         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10776         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10777         if (LeftSideRank <= RightSideRank) {
10778           // Moving the cluster to the left does not demote it.
10779           ++LastLeft;
10780           ++FirstRight;
10781           continue;
10782         }
10783       } else {
10784         assert(NumRight < NumLeft);
10785         // Consider moving the last element on the left to the right side.
10786         CaseCluster &CC = *LastLeft;
10787         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10788         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10789         if (RightSideRank <= LeftSideRank) {
10790           // Moving the cluster to the right does not demot it.
10791           --LastLeft;
10792           --FirstRight;
10793           continue;
10794         }
10795       }
10796     }
10797     break;
10798   }
10799 
10800   assert(LastLeft + 1 == FirstRight);
10801   assert(LastLeft >= W.FirstCluster);
10802   assert(FirstRight <= W.LastCluster);
10803 
10804   // Use the first element on the right as pivot since we will make less-than
10805   // comparisons against it.
10806   CaseClusterIt PivotCluster = FirstRight;
10807   assert(PivotCluster > W.FirstCluster);
10808   assert(PivotCluster <= W.LastCluster);
10809 
10810   CaseClusterIt FirstLeft = W.FirstCluster;
10811   CaseClusterIt LastRight = W.LastCluster;
10812 
10813   const ConstantInt *Pivot = PivotCluster->Low;
10814 
10815   // New blocks will be inserted immediately after the current one.
10816   MachineFunction::iterator BBI(W.MBB);
10817   ++BBI;
10818 
10819   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10820   // we can branch to its destination directly if it's squeezed exactly in
10821   // between the known lower bound and Pivot - 1.
10822   MachineBasicBlock *LeftMBB;
10823   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10824       FirstLeft->Low == W.GE &&
10825       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10826     LeftMBB = FirstLeft->MBB;
10827   } else {
10828     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10829     FuncInfo.MF->insert(BBI, LeftMBB);
10830     WorkList.push_back(
10831         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10832     // Put Cond in a virtual register to make it available from the new blocks.
10833     ExportFromCurrentBlock(Cond);
10834   }
10835 
10836   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10837   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10838   // directly if RHS.High equals the current upper bound.
10839   MachineBasicBlock *RightMBB;
10840   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10841       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10842     RightMBB = FirstRight->MBB;
10843   } else {
10844     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10845     FuncInfo.MF->insert(BBI, RightMBB);
10846     WorkList.push_back(
10847         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10848     // Put Cond in a virtual register to make it available from the new blocks.
10849     ExportFromCurrentBlock(Cond);
10850   }
10851 
10852   // Create the CaseBlock record that will be used to lower the branch.
10853   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10854                getCurSDLoc(), LeftProb, RightProb);
10855 
10856   if (W.MBB == SwitchMBB)
10857     visitSwitchCase(CB, SwitchMBB);
10858   else
10859     SL->SwitchCases.push_back(CB);
10860 }
10861 
10862 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10863 // from the swith statement.
scaleCaseProbality(BranchProbability CaseProb,BranchProbability PeeledCaseProb)10864 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10865                                             BranchProbability PeeledCaseProb) {
10866   if (PeeledCaseProb == BranchProbability::getOne())
10867     return BranchProbability::getZero();
10868   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10869 
10870   uint32_t Numerator = CaseProb.getNumerator();
10871   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10872   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10873 }
10874 
10875 // Try to peel the top probability case if it exceeds the threshold.
10876 // Return current MachineBasicBlock for the switch statement if the peeling
10877 // does not occur.
10878 // If the peeling is performed, return the newly created MachineBasicBlock
10879 // for the peeled switch statement. Also update Clusters to remove the peeled
10880 // case. PeeledCaseProb is the BranchProbability for the peeled case.
peelDominantCaseCluster(const SwitchInst & SI,CaseClusterVector & Clusters,BranchProbability & PeeledCaseProb)10881 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10882     const SwitchInst &SI, CaseClusterVector &Clusters,
10883     BranchProbability &PeeledCaseProb) {
10884   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10885   // Don't perform if there is only one cluster or optimizing for size.
10886   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10887       TM.getOptLevel() == CodeGenOpt::None ||
10888       SwitchMBB->getParent()->getFunction().hasMinSize())
10889     return SwitchMBB;
10890 
10891   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10892   unsigned PeeledCaseIndex = 0;
10893   bool SwitchPeeled = false;
10894   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10895     CaseCluster &CC = Clusters[Index];
10896     if (CC.Prob < TopCaseProb)
10897       continue;
10898     TopCaseProb = CC.Prob;
10899     PeeledCaseIndex = Index;
10900     SwitchPeeled = true;
10901   }
10902   if (!SwitchPeeled)
10903     return SwitchMBB;
10904 
10905   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10906                     << TopCaseProb << "\n");
10907 
10908   // Record the MBB for the peeled switch statement.
10909   MachineFunction::iterator BBI(SwitchMBB);
10910   ++BBI;
10911   MachineBasicBlock *PeeledSwitchMBB =
10912       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10913   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10914 
10915   ExportFromCurrentBlock(SI.getCondition());
10916   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10917   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10918                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10919   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10920 
10921   Clusters.erase(PeeledCaseIt);
10922   for (CaseCluster &CC : Clusters) {
10923     LLVM_DEBUG(
10924         dbgs() << "Scale the probablity for one cluster, before scaling: "
10925                << CC.Prob << "\n");
10926     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10927     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10928   }
10929   PeeledCaseProb = TopCaseProb;
10930   return PeeledSwitchMBB;
10931 }
10932 
visitSwitch(const SwitchInst & SI)10933 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10934   // Extract cases from the switch.
10935   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10936   CaseClusterVector Clusters;
10937   Clusters.reserve(SI.getNumCases());
10938   for (auto I : SI.cases()) {
10939     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10940     const ConstantInt *CaseVal = I.getCaseValue();
10941     BranchProbability Prob =
10942         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10943             : BranchProbability(1, SI.getNumCases() + 1);
10944     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10945   }
10946 
10947   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10948 
10949   // Cluster adjacent cases with the same destination. We do this at all
10950   // optimization levels because it's cheap to do and will make codegen faster
10951   // if there are many clusters.
10952   sortAndRangeify(Clusters);
10953 
10954   // The branch probablity of the peeled case.
10955   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10956   MachineBasicBlock *PeeledSwitchMBB =
10957       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10958 
10959   // If there is only the default destination, jump there directly.
10960   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10961   if (Clusters.empty()) {
10962     assert(PeeledSwitchMBB == SwitchMBB);
10963     SwitchMBB->addSuccessor(DefaultMBB);
10964     if (DefaultMBB != NextBlock(SwitchMBB)) {
10965       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10966                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10967     }
10968     return;
10969   }
10970 
10971   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
10972   SL->findBitTestClusters(Clusters, &SI);
10973 
10974   LLVM_DEBUG({
10975     dbgs() << "Case clusters: ";
10976     for (const CaseCluster &C : Clusters) {
10977       if (C.Kind == CC_JumpTable)
10978         dbgs() << "JT:";
10979       if (C.Kind == CC_BitTests)
10980         dbgs() << "BT:";
10981 
10982       C.Low->getValue().print(dbgs(), true);
10983       if (C.Low != C.High) {
10984         dbgs() << '-';
10985         C.High->getValue().print(dbgs(), true);
10986       }
10987       dbgs() << ' ';
10988     }
10989     dbgs() << '\n';
10990   });
10991 
10992   assert(!Clusters.empty());
10993   SwitchWorkList WorkList;
10994   CaseClusterIt First = Clusters.begin();
10995   CaseClusterIt Last = Clusters.end() - 1;
10996   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10997   // Scale the branchprobability for DefaultMBB if the peel occurs and
10998   // DefaultMBB is not replaced.
10999   if (PeeledCaseProb != BranchProbability::getZero() &&
11000       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
11001     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
11002   WorkList.push_back(
11003       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
11004 
11005   while (!WorkList.empty()) {
11006     SwitchWorkListItem W = WorkList.pop_back_val();
11007     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
11008 
11009     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
11010         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
11011       // For optimized builds, lower large range as a balanced binary tree.
11012       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
11013       continue;
11014     }
11015 
11016     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
11017   }
11018 }
11019 
visitStepVector(const CallInst & I)11020 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
11021   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11022   auto DL = getCurSDLoc();
11023   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11024   EVT OpVT =
11025       TLI.getTypeToTransformTo(*DAG.getContext(), ResultVT.getScalarType());
11026   SDValue Step = DAG.getConstant(1, DL, OpVT);
11027   setValue(&I, DAG.getStepVector(DL, ResultVT, Step));
11028 }
11029 
visitVectorReverse(const CallInst & I)11030 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
11031   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11032   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11033 
11034   SDLoc DL = getCurSDLoc();
11035   SDValue V = getValue(I.getOperand(0));
11036   assert(VT == V.getValueType() && "Malformed vector.reverse!");
11037 
11038   if (VT.isScalableVector()) {
11039     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
11040     return;
11041   }
11042 
11043   // Use VECTOR_SHUFFLE for the fixed-length vector
11044   // to maintain existing behavior.
11045   SmallVector<int, 8> Mask;
11046   unsigned NumElts = VT.getVectorMinNumElements();
11047   for (unsigned i = 0; i != NumElts; ++i)
11048     Mask.push_back(NumElts - 1 - i);
11049 
11050   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
11051 }
11052 
visitFreeze(const FreezeInst & I)11053 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
11054   SmallVector<EVT, 4> ValueVTs;
11055   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
11056                   ValueVTs);
11057   unsigned NumValues = ValueVTs.size();
11058   if (NumValues == 0) return;
11059 
11060   SmallVector<SDValue, 4> Values(NumValues);
11061   SDValue Op = getValue(I.getOperand(0));
11062 
11063   for (unsigned i = 0; i != NumValues; ++i)
11064     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
11065                             SDValue(Op.getNode(), Op.getResNo() + i));
11066 
11067   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11068                            DAG.getVTList(ValueVTs), Values));
11069 }
11070 
visitVectorSplice(const CallInst & I)11071 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
11072   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11073   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11074 
11075   SDLoc DL = getCurSDLoc();
11076   SDValue V1 = getValue(I.getOperand(0));
11077   SDValue V2 = getValue(I.getOperand(1));
11078   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
11079 
11080   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
11081   if (VT.isScalableVector()) {
11082     MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
11083     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
11084                              DAG.getConstant(Imm, DL, IdxVT)));
11085     return;
11086   }
11087 
11088   unsigned NumElts = VT.getVectorNumElements();
11089 
11090   if ((-Imm > NumElts) || (Imm >= NumElts)) {
11091     // Result is undefined if immediate is out-of-bounds.
11092     setValue(&I, DAG.getUNDEF(VT));
11093     return;
11094   }
11095 
11096   uint64_t Idx = (NumElts + Imm) % NumElts;
11097 
11098   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
11099   SmallVector<int, 8> Mask;
11100   for (unsigned i = 0; i < NumElts; ++i)
11101     Mask.push_back(Idx + i);
11102   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
11103 }
11104