1 //=== AMDGPUPrintfRuntimeBinding.cpp - OpenCL printf implementation -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 // \file
9 //
10 // The pass bind printfs to a kernel arg pointer that will be bound to a buffer
11 // later by the runtime.
12 //
13 // This pass traverses the functions in the module and converts
14 // each call to printf to a sequence of operations that
15 // store the following into the printf buffer:
16 // - format string (passed as a module's metadata unique ID)
17 // - bitwise copies of printf arguments
18 // The backend passes will need to store metadata in the kernel
19 //===----------------------------------------------------------------------===//
20 
21 #include "AMDGPU.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/InitializePasses.h"
28 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
29 
30 using namespace llvm;
31 
32 #define DEBUG_TYPE "printfToRuntime"
33 #define DWORD_ALIGN 4
34 
35 namespace {
36 class AMDGPUPrintfRuntimeBinding final : public ModulePass {
37 
38 public:
39   static char ID;
40 
41   explicit AMDGPUPrintfRuntimeBinding();
42 
43 private:
44   bool runOnModule(Module &M) override;
45 
getAnalysisUsage(AnalysisUsage & AU) const46   void getAnalysisUsage(AnalysisUsage &AU) const override {
47     AU.addRequired<TargetLibraryInfoWrapperPass>();
48     AU.addRequired<DominatorTreeWrapperPass>();
49   }
50 };
51 
52 class AMDGPUPrintfRuntimeBindingImpl {
53 public:
AMDGPUPrintfRuntimeBindingImpl(function_ref<const DominatorTree & (Function &)> GetDT,function_ref<const TargetLibraryInfo & (Function &)> GetTLI)54   AMDGPUPrintfRuntimeBindingImpl(
55       function_ref<const DominatorTree &(Function &)> GetDT,
56       function_ref<const TargetLibraryInfo &(Function &)> GetTLI)
57       : GetDT(GetDT), GetTLI(GetTLI) {}
58   bool run(Module &M);
59 
60 private:
61   void getConversionSpecifiers(SmallVectorImpl<char> &OpConvSpecifiers,
62                                StringRef fmt, size_t num_ops) const;
63 
64   bool shouldPrintAsStr(char Specifier, Type *OpType) const;
65   bool lowerPrintfForGpu(Module &M);
66 
simplify(Instruction * I,const TargetLibraryInfo * TLI,const DominatorTree * DT)67   Value *simplify(Instruction *I, const TargetLibraryInfo *TLI,
68                   const DominatorTree *DT) {
69     return SimplifyInstruction(I, {*TD, TLI, DT});
70   }
71 
72   const DataLayout *TD;
73   function_ref<const DominatorTree &(Function &)> GetDT;
74   function_ref<const TargetLibraryInfo &(Function &)> GetTLI;
75   SmallVector<CallInst *, 32> Printfs;
76 };
77 } // namespace
78 
79 char AMDGPUPrintfRuntimeBinding::ID = 0;
80 
81 INITIALIZE_PASS_BEGIN(AMDGPUPrintfRuntimeBinding,
82                       "amdgpu-printf-runtime-binding", "AMDGPU Printf lowering",
83                       false, false)
84 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
85 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
86 INITIALIZE_PASS_END(AMDGPUPrintfRuntimeBinding, "amdgpu-printf-runtime-binding",
87                     "AMDGPU Printf lowering", false, false)
88 
89 char &llvm::AMDGPUPrintfRuntimeBindingID = AMDGPUPrintfRuntimeBinding::ID;
90 
91 namespace llvm {
createAMDGPUPrintfRuntimeBinding()92 ModulePass *createAMDGPUPrintfRuntimeBinding() {
93   return new AMDGPUPrintfRuntimeBinding();
94 }
95 } // namespace llvm
96 
AMDGPUPrintfRuntimeBinding()97 AMDGPUPrintfRuntimeBinding::AMDGPUPrintfRuntimeBinding() : ModulePass(ID) {
98   initializeAMDGPUPrintfRuntimeBindingPass(*PassRegistry::getPassRegistry());
99 }
100 
getConversionSpecifiers(SmallVectorImpl<char> & OpConvSpecifiers,StringRef Fmt,size_t NumOps) const101 void AMDGPUPrintfRuntimeBindingImpl::getConversionSpecifiers(
102     SmallVectorImpl<char> &OpConvSpecifiers, StringRef Fmt,
103     size_t NumOps) const {
104   // not all format characters are collected.
105   // At this time the format characters of interest
106   // are %p and %s, which use to know if we
107   // are either storing a literal string or a
108   // pointer to the printf buffer.
109   static const char ConvSpecifiers[] = "cdieEfgGaosuxXp";
110   size_t CurFmtSpecifierIdx = 0;
111   size_t PrevFmtSpecifierIdx = 0;
112 
113   while ((CurFmtSpecifierIdx = Fmt.find_first_of(
114               ConvSpecifiers, CurFmtSpecifierIdx)) != StringRef::npos) {
115     bool ArgDump = false;
116     StringRef CurFmt = Fmt.substr(PrevFmtSpecifierIdx,
117                                   CurFmtSpecifierIdx - PrevFmtSpecifierIdx);
118     size_t pTag = CurFmt.find_last_of("%");
119     if (pTag != StringRef::npos) {
120       ArgDump = true;
121       while (pTag && CurFmt[--pTag] == '%') {
122         ArgDump = !ArgDump;
123       }
124     }
125 
126     if (ArgDump)
127       OpConvSpecifiers.push_back(Fmt[CurFmtSpecifierIdx]);
128 
129     PrevFmtSpecifierIdx = ++CurFmtSpecifierIdx;
130   }
131 }
132 
shouldPrintAsStr(char Specifier,Type * OpType) const133 bool AMDGPUPrintfRuntimeBindingImpl::shouldPrintAsStr(char Specifier,
134                                                       Type *OpType) const {
135   if (Specifier != 's')
136     return false;
137   const PointerType *PT = dyn_cast<PointerType>(OpType);
138   if (!PT || PT->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
139     return false;
140   Type *ElemType = PT->getContainedType(0);
141   if (ElemType->getTypeID() != Type::IntegerTyID)
142     return false;
143   IntegerType *ElemIType = cast<IntegerType>(ElemType);
144   return ElemIType->getBitWidth() == 8;
145 }
146 
lowerPrintfForGpu(Module & M)147 bool AMDGPUPrintfRuntimeBindingImpl::lowerPrintfForGpu(Module &M) {
148   LLVMContext &Ctx = M.getContext();
149   IRBuilder<> Builder(Ctx);
150   Type *I32Ty = Type::getInt32Ty(Ctx);
151   unsigned UniqID = 0;
152   // NB: This is important for this string size to be divizable by 4
153   const char NonLiteralStr[4] = "???";
154 
155   for (auto CI : Printfs) {
156     unsigned NumOps = CI->getNumArgOperands();
157 
158     SmallString<16> OpConvSpecifiers;
159     Value *Op = CI->getArgOperand(0);
160 
161     if (auto LI = dyn_cast<LoadInst>(Op)) {
162       Op = LI->getPointerOperand();
163       for (auto Use : Op->users()) {
164         if (auto SI = dyn_cast<StoreInst>(Use)) {
165           Op = SI->getValueOperand();
166           break;
167         }
168       }
169     }
170 
171     if (auto I = dyn_cast<Instruction>(Op)) {
172       Value *Op_simplified =
173           simplify(I, &GetTLI(*I->getFunction()), &GetDT(*I->getFunction()));
174       if (Op_simplified)
175         Op = Op_simplified;
176     }
177 
178     ConstantExpr *ConstExpr = dyn_cast<ConstantExpr>(Op);
179 
180     if (ConstExpr) {
181       GlobalVariable *GVar = dyn_cast<GlobalVariable>(ConstExpr->getOperand(0));
182 
183       StringRef Str("unknown");
184       if (GVar && GVar->hasInitializer()) {
185         auto *Init = GVar->getInitializer();
186         if (auto *CA = dyn_cast<ConstantDataArray>(Init)) {
187           if (CA->isString())
188             Str = CA->getAsCString();
189         } else if (isa<ConstantAggregateZero>(Init)) {
190           Str = "";
191         }
192         //
193         // we need this call to ascertain
194         // that we are printing a string
195         // or a pointer. It takes out the
196         // specifiers and fills up the first
197         // arg
198         getConversionSpecifiers(OpConvSpecifiers, Str, NumOps - 1);
199       }
200       // Add metadata for the string
201       std::string AStreamHolder;
202       raw_string_ostream Sizes(AStreamHolder);
203       int Sum = DWORD_ALIGN;
204       Sizes << CI->getNumArgOperands() - 1;
205       Sizes << ':';
206       for (unsigned ArgCount = 1; ArgCount < CI->getNumArgOperands() &&
207                                   ArgCount <= OpConvSpecifiers.size();
208            ArgCount++) {
209         Value *Arg = CI->getArgOperand(ArgCount);
210         Type *ArgType = Arg->getType();
211         unsigned ArgSize = TD->getTypeAllocSizeInBits(ArgType);
212         ArgSize = ArgSize / 8;
213         //
214         // ArgSize by design should be a multiple of DWORD_ALIGN,
215         // expand the arguments that do not follow this rule.
216         //
217         if (ArgSize % DWORD_ALIGN != 0) {
218           llvm::Type *ResType = llvm::Type::getInt32Ty(Ctx);
219           auto *LLVMVecType = llvm::dyn_cast<llvm::FixedVectorType>(ArgType);
220           int NumElem = LLVMVecType ? LLVMVecType->getNumElements() : 1;
221           if (LLVMVecType && NumElem > 1)
222             ResType = llvm::FixedVectorType::get(ResType, NumElem);
223           Builder.SetInsertPoint(CI);
224           Builder.SetCurrentDebugLocation(CI->getDebugLoc());
225           if (OpConvSpecifiers[ArgCount - 1] == 'x' ||
226               OpConvSpecifiers[ArgCount - 1] == 'X' ||
227               OpConvSpecifiers[ArgCount - 1] == 'u' ||
228               OpConvSpecifiers[ArgCount - 1] == 'o')
229             Arg = Builder.CreateZExt(Arg, ResType);
230           else
231             Arg = Builder.CreateSExt(Arg, ResType);
232           ArgType = Arg->getType();
233           ArgSize = TD->getTypeAllocSizeInBits(ArgType);
234           ArgSize = ArgSize / 8;
235           CI->setOperand(ArgCount, Arg);
236         }
237         if (OpConvSpecifiers[ArgCount - 1] == 'f') {
238           ConstantFP *FpCons = dyn_cast<ConstantFP>(Arg);
239           if (FpCons)
240             ArgSize = 4;
241           else {
242             FPExtInst *FpExt = dyn_cast<FPExtInst>(Arg);
243             if (FpExt && FpExt->getType()->isDoubleTy() &&
244                 FpExt->getOperand(0)->getType()->isFloatTy())
245               ArgSize = 4;
246           }
247         }
248         if (shouldPrintAsStr(OpConvSpecifiers[ArgCount - 1], ArgType)) {
249           if (auto *ConstExpr = dyn_cast<ConstantExpr>(Arg)) {
250             auto *GV = dyn_cast<GlobalVariable>(ConstExpr->getOperand(0));
251             if (GV && GV->hasInitializer()) {
252               Constant *Init = GV->getInitializer();
253               bool IsZeroValue = Init->isZeroValue();
254               auto *CA = dyn_cast<ConstantDataArray>(Init);
255               if (IsZeroValue || (CA && CA->isString())) {
256                 size_t SizeStr =
257                     IsZeroValue ? 1 : (strlen(CA->getAsCString().data()) + 1);
258                 size_t Rem = SizeStr % DWORD_ALIGN;
259                 size_t NSizeStr = 0;
260                 LLVM_DEBUG(dbgs() << "Printf string original size = " << SizeStr
261                                   << '\n');
262                 if (Rem) {
263                   NSizeStr = SizeStr + (DWORD_ALIGN - Rem);
264                 } else {
265                   NSizeStr = SizeStr;
266                 }
267                 ArgSize = NSizeStr;
268               }
269             } else {
270               ArgSize = sizeof(NonLiteralStr);
271             }
272           } else {
273             ArgSize = sizeof(NonLiteralStr);
274           }
275         }
276         LLVM_DEBUG(dbgs() << "Printf ArgSize (in buffer) = " << ArgSize
277                           << " for type: " << *ArgType << '\n');
278         Sizes << ArgSize << ':';
279         Sum += ArgSize;
280       }
281       LLVM_DEBUG(dbgs() << "Printf format string in source = " << Str.str()
282                         << '\n');
283       for (size_t I = 0; I < Str.size(); ++I) {
284         // Rest of the C escape sequences (e.g. \') are handled correctly
285         // by the MDParser
286         switch (Str[I]) {
287         case '\a':
288           Sizes << "\\a";
289           break;
290         case '\b':
291           Sizes << "\\b";
292           break;
293         case '\f':
294           Sizes << "\\f";
295           break;
296         case '\n':
297           Sizes << "\\n";
298           break;
299         case '\r':
300           Sizes << "\\r";
301           break;
302         case '\v':
303           Sizes << "\\v";
304           break;
305         case ':':
306           // ':' cannot be scanned by Flex, as it is defined as a delimiter
307           // Replace it with it's octal representation \72
308           Sizes << "\\72";
309           break;
310         default:
311           Sizes << Str[I];
312           break;
313         }
314       }
315 
316       // Insert the printf_alloc call
317       Builder.SetInsertPoint(CI);
318       Builder.SetCurrentDebugLocation(CI->getDebugLoc());
319 
320       AttributeList Attr = AttributeList::get(Ctx, AttributeList::FunctionIndex,
321                                               Attribute::NoUnwind);
322 
323       Type *SizetTy = Type::getInt32Ty(Ctx);
324 
325       Type *Tys_alloc[1] = {SizetTy};
326       Type *I8Ptr = PointerType::get(Type::getInt8Ty(Ctx), 1);
327       FunctionType *FTy_alloc = FunctionType::get(I8Ptr, Tys_alloc, false);
328       FunctionCallee PrintfAllocFn =
329           M.getOrInsertFunction(StringRef("__printf_alloc"), FTy_alloc, Attr);
330 
331       LLVM_DEBUG(dbgs() << "Printf metadata = " << Sizes.str() << '\n');
332       std::string fmtstr = itostr(++UniqID) + ":" + Sizes.str().c_str();
333       MDString *fmtStrArray = MDString::get(Ctx, fmtstr);
334 
335       // Instead of creating global variables, the
336       // printf format strings are extracted
337       // and passed as metadata. This avoids
338       // polluting llvm's symbol tables in this module.
339       // Metadata is going to be extracted
340       // by the backend passes and inserted
341       // into the OpenCL binary as appropriate.
342       StringRef amd("llvm.printf.fmts");
343       NamedMDNode *metaD = M.getOrInsertNamedMetadata(amd);
344       MDNode *myMD = MDNode::get(Ctx, fmtStrArray);
345       metaD->addOperand(myMD);
346       Value *sumC = ConstantInt::get(SizetTy, Sum, false);
347       SmallVector<Value *, 1> alloc_args;
348       alloc_args.push_back(sumC);
349       CallInst *pcall =
350           CallInst::Create(PrintfAllocFn, alloc_args, "printf_alloc_fn", CI);
351 
352       //
353       // Insert code to split basicblock with a
354       // piece of hammock code.
355       // basicblock splits after buffer overflow check
356       //
357       ConstantPointerNull *zeroIntPtr =
358           ConstantPointerNull::get(PointerType::get(Type::getInt8Ty(Ctx), 1));
359       auto *cmp = cast<ICmpInst>(Builder.CreateICmpNE(pcall, zeroIntPtr, ""));
360       if (!CI->use_empty()) {
361         Value *result =
362             Builder.CreateSExt(Builder.CreateNot(cmp), I32Ty, "printf_res");
363         CI->replaceAllUsesWith(result);
364       }
365       SplitBlock(CI->getParent(), cmp);
366       Instruction *Brnch =
367           SplitBlockAndInsertIfThen(cmp, cmp->getNextNode(), false);
368 
369       Builder.SetInsertPoint(Brnch);
370 
371       // store unique printf id in the buffer
372       //
373       SmallVector<Value *, 1> ZeroIdxList;
374       ConstantInt *zeroInt =
375           ConstantInt::get(Ctx, APInt(32, StringRef("0"), 10));
376       ZeroIdxList.push_back(zeroInt);
377 
378       GetElementPtrInst *BufferIdx = GetElementPtrInst::Create(
379           nullptr, pcall, ZeroIdxList, "PrintBuffID", Brnch);
380 
381       Type *idPointer = PointerType::get(I32Ty, AMDGPUAS::GLOBAL_ADDRESS);
382       Value *id_gep_cast =
383           new BitCastInst(BufferIdx, idPointer, "PrintBuffIdCast", Brnch);
384 
385       new StoreInst(ConstantInt::get(I32Ty, UniqID), id_gep_cast, Brnch);
386 
387       SmallVector<Value *, 2> FourthIdxList;
388       ConstantInt *fourInt =
389           ConstantInt::get(Ctx, APInt(32, StringRef("4"), 10));
390 
391       FourthIdxList.push_back(fourInt); // 1st 4 bytes hold the printf_id
392       // the following GEP is the buffer pointer
393       BufferIdx = GetElementPtrInst::Create(nullptr, pcall, FourthIdxList,
394                                             "PrintBuffGep", Brnch);
395 
396       Type *Int32Ty = Type::getInt32Ty(Ctx);
397       Type *Int64Ty = Type::getInt64Ty(Ctx);
398       for (unsigned ArgCount = 1; ArgCount < CI->getNumArgOperands() &&
399                                   ArgCount <= OpConvSpecifiers.size();
400            ArgCount++) {
401         Value *Arg = CI->getArgOperand(ArgCount);
402         Type *ArgType = Arg->getType();
403         SmallVector<Value *, 32> WhatToStore;
404         if (ArgType->isFPOrFPVectorTy() && !isa<VectorType>(ArgType)) {
405           Type *IType = (ArgType->isFloatTy()) ? Int32Ty : Int64Ty;
406           if (OpConvSpecifiers[ArgCount - 1] == 'f') {
407             if (auto *FpCons = dyn_cast<ConstantFP>(Arg)) {
408               APFloat Val(FpCons->getValueAPF());
409               bool Lost = false;
410               Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
411                           &Lost);
412               Arg = ConstantFP::get(Ctx, Val);
413               IType = Int32Ty;
414             } else if (auto *FpExt = dyn_cast<FPExtInst>(Arg)) {
415               if (FpExt->getType()->isDoubleTy() &&
416                   FpExt->getOperand(0)->getType()->isFloatTy()) {
417                 Arg = FpExt->getOperand(0);
418                 IType = Int32Ty;
419               }
420             }
421           }
422           Arg = new BitCastInst(Arg, IType, "PrintArgFP", Brnch);
423           WhatToStore.push_back(Arg);
424         } else if (ArgType->getTypeID() == Type::PointerTyID) {
425           if (shouldPrintAsStr(OpConvSpecifiers[ArgCount - 1], ArgType)) {
426             const char *S = NonLiteralStr;
427             if (auto *ConstExpr = dyn_cast<ConstantExpr>(Arg)) {
428               auto *GV = dyn_cast<GlobalVariable>(ConstExpr->getOperand(0));
429               if (GV && GV->hasInitializer()) {
430                 Constant *Init = GV->getInitializer();
431                 bool IsZeroValue = Init->isZeroValue();
432                 auto *CA = dyn_cast<ConstantDataArray>(Init);
433                 if (IsZeroValue || (CA && CA->isString())) {
434                   S = IsZeroValue ? "" : CA->getAsCString().data();
435                 }
436               }
437             }
438             size_t SizeStr = strlen(S) + 1;
439             size_t Rem = SizeStr % DWORD_ALIGN;
440             size_t NSizeStr = 0;
441             if (Rem) {
442               NSizeStr = SizeStr + (DWORD_ALIGN - Rem);
443             } else {
444               NSizeStr = SizeStr;
445             }
446             if (S[0]) {
447               char *MyNewStr = new char[NSizeStr]();
448               strcpy(MyNewStr, S);
449               int NumInts = NSizeStr / 4;
450               int CharC = 0;
451               while (NumInts) {
452                 int ANum = *(int *)(MyNewStr + CharC);
453                 CharC += 4;
454                 NumInts--;
455                 Value *ANumV = ConstantInt::get(Int32Ty, ANum, false);
456                 WhatToStore.push_back(ANumV);
457               }
458               delete[] MyNewStr;
459             } else {
460               // Empty string, give a hint to RT it is no NULL
461               Value *ANumV = ConstantInt::get(Int32Ty, 0xFFFFFF00, false);
462               WhatToStore.push_back(ANumV);
463             }
464           } else {
465             uint64_t Size = TD->getTypeAllocSizeInBits(ArgType);
466             assert((Size == 32 || Size == 64) && "unsupported size");
467             Type *DstType = (Size == 32) ? Int32Ty : Int64Ty;
468             Arg = new PtrToIntInst(Arg, DstType, "PrintArgPtr", Brnch);
469             WhatToStore.push_back(Arg);
470           }
471         } else if (isa<FixedVectorType>(ArgType)) {
472           Type *IType = NULL;
473           uint32_t EleCount = cast<FixedVectorType>(ArgType)->getNumElements();
474           uint32_t EleSize = ArgType->getScalarSizeInBits();
475           uint32_t TotalSize = EleCount * EleSize;
476           if (EleCount == 3) {
477             ShuffleVectorInst *Shuffle =
478                 new ShuffleVectorInst(Arg, Arg, ArrayRef<int>{0, 1, 2, 2});
479             Shuffle->insertBefore(Brnch);
480             Arg = Shuffle;
481             ArgType = Arg->getType();
482             TotalSize += EleSize;
483           }
484           switch (EleSize) {
485           default:
486             EleCount = TotalSize / 64;
487             IType = Type::getInt64Ty(ArgType->getContext());
488             break;
489           case 8:
490             if (EleCount >= 8) {
491               EleCount = TotalSize / 64;
492               IType = Type::getInt64Ty(ArgType->getContext());
493             } else if (EleCount >= 3) {
494               EleCount = 1;
495               IType = Type::getInt32Ty(ArgType->getContext());
496             } else {
497               EleCount = 1;
498               IType = Type::getInt16Ty(ArgType->getContext());
499             }
500             break;
501           case 16:
502             if (EleCount >= 3) {
503               EleCount = TotalSize / 64;
504               IType = Type::getInt64Ty(ArgType->getContext());
505             } else {
506               EleCount = 1;
507               IType = Type::getInt32Ty(ArgType->getContext());
508             }
509             break;
510           }
511           if (EleCount > 1) {
512             IType = FixedVectorType::get(IType, EleCount);
513           }
514           Arg = new BitCastInst(Arg, IType, "PrintArgVect", Brnch);
515           WhatToStore.push_back(Arg);
516         } else {
517           WhatToStore.push_back(Arg);
518         }
519         for (unsigned I = 0, E = WhatToStore.size(); I != E; ++I) {
520           Value *TheBtCast = WhatToStore[I];
521           unsigned ArgSize =
522               TD->getTypeAllocSizeInBits(TheBtCast->getType()) / 8;
523           SmallVector<Value *, 1> BuffOffset;
524           BuffOffset.push_back(ConstantInt::get(I32Ty, ArgSize));
525 
526           Type *ArgPointer = PointerType::get(TheBtCast->getType(), 1);
527           Value *CastedGEP =
528               new BitCastInst(BufferIdx, ArgPointer, "PrintBuffPtrCast", Brnch);
529           StoreInst *StBuff = new StoreInst(TheBtCast, CastedGEP, Brnch);
530           LLVM_DEBUG(dbgs() << "inserting store to printf buffer:\n"
531                             << *StBuff << '\n');
532           (void)StBuff;
533           if (I + 1 == E && ArgCount + 1 == CI->getNumArgOperands())
534             break;
535           BufferIdx = GetElementPtrInst::Create(nullptr, BufferIdx, BuffOffset,
536                                                 "PrintBuffNextPtr", Brnch);
537           LLVM_DEBUG(dbgs() << "inserting gep to the printf buffer:\n"
538                             << *BufferIdx << '\n');
539         }
540       }
541     }
542   }
543 
544   // erase the printf calls
545   for (auto CI : Printfs)
546     CI->eraseFromParent();
547 
548   Printfs.clear();
549   return true;
550 }
551 
run(Module & M)552 bool AMDGPUPrintfRuntimeBindingImpl::run(Module &M) {
553   Triple TT(M.getTargetTriple());
554   if (TT.getArch() == Triple::r600)
555     return false;
556 
557   auto PrintfFunction = M.getFunction("printf");
558   if (!PrintfFunction)
559     return false;
560 
561   for (auto &U : PrintfFunction->uses()) {
562     if (auto *CI = dyn_cast<CallInst>(U.getUser())) {
563       if (CI->isCallee(&U))
564         Printfs.push_back(CI);
565     }
566   }
567 
568   if (Printfs.empty())
569     return false;
570 
571   if (auto HostcallFunction = M.getFunction("__ockl_hostcall_internal")) {
572     for (auto &U : HostcallFunction->uses()) {
573       if (auto *CI = dyn_cast<CallInst>(U.getUser())) {
574         M.getContext().emitError(
575             CI, "Cannot use both printf and hostcall in the same module");
576       }
577     }
578   }
579 
580   TD = &M.getDataLayout();
581 
582   return lowerPrintfForGpu(M);
583 }
584 
runOnModule(Module & M)585 bool AMDGPUPrintfRuntimeBinding::runOnModule(Module &M) {
586   auto GetDT = [this](Function &F) -> DominatorTree & {
587     return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
588   };
589   auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
590     return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
591   };
592 
593   return AMDGPUPrintfRuntimeBindingImpl(GetDT, GetTLI).run(M);
594 }
595 
596 PreservedAnalyses
run(Module & M,ModuleAnalysisManager & AM)597 AMDGPUPrintfRuntimeBindingPass::run(Module &M, ModuleAnalysisManager &AM) {
598   FunctionAnalysisManager &FAM =
599       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
600   auto GetDT = [&FAM](Function &F) -> DominatorTree & {
601     return FAM.getResult<DominatorTreeAnalysis>(F);
602   };
603   auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
604     return FAM.getResult<TargetLibraryAnalysis>(F);
605   };
606   bool Changed = AMDGPUPrintfRuntimeBindingImpl(GetDT, GetTLI).run(M);
607   return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
608 }
609