1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// The AMDGPU target machine contains all of the hardware specific
11 /// information  needed to emit code for R600 and SI GPUs.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPUTargetMachine.h"
16 #include "AMDGPU.h"
17 #include "AMDGPUAliasAnalysis.h"
18 #include "AMDGPUExportClustering.h"
19 #include "AMDGPUMacroFusion.h"
20 #include "AMDGPUTargetObjectFile.h"
21 #include "AMDGPUTargetTransformInfo.h"
22 #include "GCNIterativeScheduler.h"
23 #include "GCNSchedStrategy.h"
24 #include "R600MachineScheduler.h"
25 #include "SIMachineFunctionInfo.h"
26 #include "SIMachineScheduler.h"
27 #include "TargetInfo/AMDGPUTargetInfo.h"
28 #include "llvm/Analysis/CGSCCPassManager.h"
29 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
30 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
31 #include "llvm/CodeGen/GlobalISel/Legalizer.h"
32 #include "llvm/CodeGen/GlobalISel/Localizer.h"
33 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
34 #include "llvm/CodeGen/MIRParser/MIParser.h"
35 #include "llvm/CodeGen/TargetPassConfig.h"
36 #include "llvm/IR/LegacyPassManager.h"
37 #include "llvm/IR/PassManager.h"
38 #include "llvm/InitializePasses.h"
39 #include "llvm/Passes/PassBuilder.h"
40 #include "llvm/Support/TargetRegistry.h"
41 #include "llvm/Transforms/IPO.h"
42 #include "llvm/Transforms/IPO/AlwaysInliner.h"
43 #include "llvm/Transforms/IPO/GlobalDCE.h"
44 #include "llvm/Transforms/IPO/Internalize.h"
45 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
46 #include "llvm/Transforms/Scalar.h"
47 #include "llvm/Transforms/Scalar/GVN.h"
48 #include "llvm/Transforms/Scalar/InferAddressSpaces.h"
49 #include "llvm/Transforms/Utils.h"
50 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
51 #include "llvm/Transforms/Vectorize.h"
52 
53 using namespace llvm;
54 
55 static cl::opt<bool> EnableR600StructurizeCFG(
56   "r600-ir-structurize",
57   cl::desc("Use StructurizeCFG IR pass"),
58   cl::init(true));
59 
60 static cl::opt<bool> EnableSROA(
61   "amdgpu-sroa",
62   cl::desc("Run SROA after promote alloca pass"),
63   cl::ReallyHidden,
64   cl::init(true));
65 
66 static cl::opt<bool>
67 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden,
68                         cl::desc("Run early if-conversion"),
69                         cl::init(false));
70 
71 static cl::opt<bool>
72 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden,
73             cl::desc("Run pre-RA exec mask optimizations"),
74             cl::init(true));
75 
76 static cl::opt<bool> EnableR600IfConvert(
77   "r600-if-convert",
78   cl::desc("Use if conversion pass"),
79   cl::ReallyHidden,
80   cl::init(true));
81 
82 // Option to disable vectorizer for tests.
83 static cl::opt<bool> EnableLoadStoreVectorizer(
84   "amdgpu-load-store-vectorizer",
85   cl::desc("Enable load store vectorizer"),
86   cl::init(true),
87   cl::Hidden);
88 
89 // Option to control global loads scalarization
90 static cl::opt<bool> ScalarizeGlobal(
91   "amdgpu-scalarize-global-loads",
92   cl::desc("Enable global load scalarization"),
93   cl::init(true),
94   cl::Hidden);
95 
96 // Option to run internalize pass.
97 static cl::opt<bool> InternalizeSymbols(
98   "amdgpu-internalize-symbols",
99   cl::desc("Enable elimination of non-kernel functions and unused globals"),
100   cl::init(false),
101   cl::Hidden);
102 
103 // Option to inline all early.
104 static cl::opt<bool> EarlyInlineAll(
105   "amdgpu-early-inline-all",
106   cl::desc("Inline all functions early"),
107   cl::init(false),
108   cl::Hidden);
109 
110 static cl::opt<bool> EnableSDWAPeephole(
111   "amdgpu-sdwa-peephole",
112   cl::desc("Enable SDWA peepholer"),
113   cl::init(true));
114 
115 static cl::opt<bool> EnableDPPCombine(
116   "amdgpu-dpp-combine",
117   cl::desc("Enable DPP combiner"),
118   cl::init(true));
119 
120 // Enable address space based alias analysis
121 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden,
122   cl::desc("Enable AMDGPU Alias Analysis"),
123   cl::init(true));
124 
125 // Option to run late CFG structurizer
126 static cl::opt<bool, true> LateCFGStructurize(
127   "amdgpu-late-structurize",
128   cl::desc("Enable late CFG structurization"),
129   cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG),
130   cl::Hidden);
131 
132 static cl::opt<bool, true> EnableAMDGPUFunctionCallsOpt(
133   "amdgpu-function-calls",
134   cl::desc("Enable AMDGPU function call support"),
135   cl::location(AMDGPUTargetMachine::EnableFunctionCalls),
136   cl::init(true),
137   cl::Hidden);
138 
139 static cl::opt<bool, true> EnableAMDGPUFixedFunctionABIOpt(
140   "amdgpu-fixed-function-abi",
141   cl::desc("Enable all implicit function arguments"),
142   cl::location(AMDGPUTargetMachine::EnableFixedFunctionABI),
143   cl::init(false),
144   cl::Hidden);
145 
146 // Enable lib calls simplifications
147 static cl::opt<bool> EnableLibCallSimplify(
148   "amdgpu-simplify-libcall",
149   cl::desc("Enable amdgpu library simplifications"),
150   cl::init(true),
151   cl::Hidden);
152 
153 static cl::opt<bool> EnableLowerKernelArguments(
154   "amdgpu-ir-lower-kernel-arguments",
155   cl::desc("Lower kernel argument loads in IR pass"),
156   cl::init(true),
157   cl::Hidden);
158 
159 static cl::opt<bool> EnableRegReassign(
160   "amdgpu-reassign-regs",
161   cl::desc("Enable register reassign optimizations on gfx10+"),
162   cl::init(true),
163   cl::Hidden);
164 
165 // Enable atomic optimization
166 static cl::opt<bool> EnableAtomicOptimizations(
167   "amdgpu-atomic-optimizations",
168   cl::desc("Enable atomic optimizations"),
169   cl::init(false),
170   cl::Hidden);
171 
172 // Enable Mode register optimization
173 static cl::opt<bool> EnableSIModeRegisterPass(
174   "amdgpu-mode-register",
175   cl::desc("Enable mode register pass"),
176   cl::init(true),
177   cl::Hidden);
178 
179 // Option is used in lit tests to prevent deadcoding of patterns inspected.
180 static cl::opt<bool>
181 EnableDCEInRA("amdgpu-dce-in-ra",
182     cl::init(true), cl::Hidden,
183     cl::desc("Enable machine DCE inside regalloc"));
184 
185 static cl::opt<bool> EnableScalarIRPasses(
186   "amdgpu-scalar-ir-passes",
187   cl::desc("Enable scalar IR passes"),
188   cl::init(true),
189   cl::Hidden);
190 
191 static cl::opt<bool> EnableStructurizerWorkarounds(
192     "amdgpu-enable-structurizer-workarounds",
193     cl::desc("Enable workarounds for the StructurizeCFG pass"), cl::init(true),
194     cl::Hidden);
195 
196 static cl::opt<bool, true> EnableLowerModuleLDS(
197     "amdgpu-enable-lower-module-lds", cl::desc("Enable lower module lds pass"),
198     cl::location(AMDGPUTargetMachine::EnableLowerModuleLDS), cl::init(true),
199     cl::Hidden);
200 
LLVMInitializeAMDGPUTarget()201 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() {
202   // Register the target
203   RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget());
204   RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget());
205 
206   PassRegistry *PR = PassRegistry::getPassRegistry();
207   initializeR600ClauseMergePassPass(*PR);
208   initializeR600ControlFlowFinalizerPass(*PR);
209   initializeR600PacketizerPass(*PR);
210   initializeR600ExpandSpecialInstrsPassPass(*PR);
211   initializeR600VectorRegMergerPass(*PR);
212   initializeGlobalISel(*PR);
213   initializeAMDGPUDAGToDAGISelPass(*PR);
214   initializeGCNDPPCombinePass(*PR);
215   initializeSILowerI1CopiesPass(*PR);
216   initializeSILowerSGPRSpillsPass(*PR);
217   initializeSIFixSGPRCopiesPass(*PR);
218   initializeSIFixVGPRCopiesPass(*PR);
219   initializeSIFoldOperandsPass(*PR);
220   initializeSIPeepholeSDWAPass(*PR);
221   initializeSIShrinkInstructionsPass(*PR);
222   initializeSIOptimizeExecMaskingPreRAPass(*PR);
223   initializeSILoadStoreOptimizerPass(*PR);
224   initializeAMDGPUFixFunctionBitcastsPass(*PR);
225   initializeAMDGPUAlwaysInlinePass(*PR);
226   initializeAMDGPUAnnotateKernelFeaturesPass(*PR);
227   initializeAMDGPUAnnotateUniformValuesPass(*PR);
228   initializeAMDGPUArgumentUsageInfoPass(*PR);
229   initializeAMDGPUAtomicOptimizerPass(*PR);
230   initializeAMDGPULowerKernelArgumentsPass(*PR);
231   initializeAMDGPULowerKernelAttributesPass(*PR);
232   initializeAMDGPULowerIntrinsicsPass(*PR);
233   initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR);
234   initializeAMDGPUPostLegalizerCombinerPass(*PR);
235   initializeAMDGPUPreLegalizerCombinerPass(*PR);
236   initializeAMDGPURegBankCombinerPass(*PR);
237   initializeAMDGPUPromoteAllocaPass(*PR);
238   initializeAMDGPUPromoteAllocaToVectorPass(*PR);
239   initializeAMDGPUCodeGenPreparePass(*PR);
240   initializeAMDGPULateCodeGenPreparePass(*PR);
241   initializeAMDGPUPropagateAttributesEarlyPass(*PR);
242   initializeAMDGPUPropagateAttributesLatePass(*PR);
243   initializeAMDGPULowerModuleLDSPass(*PR);
244   initializeAMDGPURewriteOutArgumentsPass(*PR);
245   initializeAMDGPUUnifyMetadataPass(*PR);
246   initializeSIAnnotateControlFlowPass(*PR);
247   initializeSIInsertHardClausesPass(*PR);
248   initializeSIInsertWaitcntsPass(*PR);
249   initializeSIModeRegisterPass(*PR);
250   initializeSIWholeQuadModePass(*PR);
251   initializeSILowerControlFlowPass(*PR);
252   initializeSIPreEmitPeepholePass(*PR);
253   initializeSILateBranchLoweringPass(*PR);
254   initializeSIMemoryLegalizerPass(*PR);
255   initializeSIOptimizeExecMaskingPass(*PR);
256   initializeSIPreAllocateWWMRegsPass(*PR);
257   initializeSIFormMemoryClausesPass(*PR);
258   initializeSIPostRABundlerPass(*PR);
259   initializeAMDGPUUnifyDivergentExitNodesPass(*PR);
260   initializeAMDGPUAAWrapperPassPass(*PR);
261   initializeAMDGPUExternalAAWrapperPass(*PR);
262   initializeAMDGPUUseNativeCallsPass(*PR);
263   initializeAMDGPUSimplifyLibCallsPass(*PR);
264   initializeAMDGPUPrintfRuntimeBindingPass(*PR);
265   initializeGCNNSAReassignPass(*PR);
266 }
267 
createTLOF(const Triple & TT)268 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
269   return std::make_unique<AMDGPUTargetObjectFile>();
270 }
271 
createR600MachineScheduler(MachineSchedContext * C)272 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) {
273   return new ScheduleDAGMILive(C, std::make_unique<R600SchedStrategy>());
274 }
275 
createSIMachineScheduler(MachineSchedContext * C)276 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) {
277   return new SIScheduleDAGMI(C);
278 }
279 
280 static ScheduleDAGInstrs *
createGCNMaxOccupancyMachineScheduler(MachineSchedContext * C)281 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) {
282   ScheduleDAGMILive *DAG =
283     new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C));
284   DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
285   DAG->addMutation(createAMDGPUMacroFusionDAGMutation());
286   DAG->addMutation(createAMDGPUExportClusteringDAGMutation());
287   return DAG;
288 }
289 
290 static ScheduleDAGInstrs *
createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext * C)291 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) {
292   auto DAG = new GCNIterativeScheduler(C,
293     GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY);
294   DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
295   return DAG;
296 }
297 
createMinRegScheduler(MachineSchedContext * C)298 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) {
299   return new GCNIterativeScheduler(C,
300     GCNIterativeScheduler::SCHEDULE_MINREGFORCED);
301 }
302 
303 static ScheduleDAGInstrs *
createIterativeILPMachineScheduler(MachineSchedContext * C)304 createIterativeILPMachineScheduler(MachineSchedContext *C) {
305   auto DAG = new GCNIterativeScheduler(C,
306     GCNIterativeScheduler::SCHEDULE_ILP);
307   DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
308   DAG->addMutation(createAMDGPUMacroFusionDAGMutation());
309   return DAG;
310 }
311 
312 static MachineSchedRegistry
313 R600SchedRegistry("r600", "Run R600's custom scheduler",
314                    createR600MachineScheduler);
315 
316 static MachineSchedRegistry
317 SISchedRegistry("si", "Run SI's custom scheduler",
318                 createSIMachineScheduler);
319 
320 static MachineSchedRegistry
321 GCNMaxOccupancySchedRegistry("gcn-max-occupancy",
322                              "Run GCN scheduler to maximize occupancy",
323                              createGCNMaxOccupancyMachineScheduler);
324 
325 static MachineSchedRegistry
326 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental",
327   "Run GCN scheduler to maximize occupancy (experimental)",
328   createIterativeGCNMaxOccupancyMachineScheduler);
329 
330 static MachineSchedRegistry
331 GCNMinRegSchedRegistry("gcn-minreg",
332   "Run GCN iterative scheduler for minimal register usage (experimental)",
333   createMinRegScheduler);
334 
335 static MachineSchedRegistry
336 GCNILPSchedRegistry("gcn-ilp",
337   "Run GCN iterative scheduler for ILP scheduling (experimental)",
338   createIterativeILPMachineScheduler);
339 
computeDataLayout(const Triple & TT)340 static StringRef computeDataLayout(const Triple &TT) {
341   if (TT.getArch() == Triple::r600) {
342     // 32-bit pointers.
343     return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128"
344            "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1";
345   }
346 
347   // 32-bit private, local, and region pointers. 64-bit global, constant and
348   // flat, non-integral buffer fat pointers.
349   return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32"
350          "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128"
351          "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1"
352          "-ni:7";
353 }
354 
355 LLVM_READNONE
getGPUOrDefault(const Triple & TT,StringRef GPU)356 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) {
357   if (!GPU.empty())
358     return GPU;
359 
360   // Need to default to a target with flat support for HSA.
361   if (TT.getArch() == Triple::amdgcn)
362     return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic";
363 
364   return "r600";
365 }
366 
getEffectiveRelocModel(Optional<Reloc::Model> RM)367 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) {
368   // The AMDGPU toolchain only supports generating shared objects, so we
369   // must always use PIC.
370   return Reloc::PIC_;
371 }
372 
AMDGPUTargetMachine(const Target & T,const Triple & TT,StringRef CPU,StringRef FS,TargetOptions Options,Optional<Reloc::Model> RM,Optional<CodeModel::Model> CM,CodeGenOpt::Level OptLevel)373 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT,
374                                          StringRef CPU, StringRef FS,
375                                          TargetOptions Options,
376                                          Optional<Reloc::Model> RM,
377                                          Optional<CodeModel::Model> CM,
378                                          CodeGenOpt::Level OptLevel)
379     : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU),
380                         FS, Options, getEffectiveRelocModel(RM),
381                         getEffectiveCodeModel(CM, CodeModel::Small), OptLevel),
382       TLOF(createTLOF(getTargetTriple())) {
383   initAsmInfo();
384   if (TT.getArch() == Triple::amdgcn) {
385     if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize64"))
386       MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave64));
387     else if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize32"))
388       MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave32));
389   }
390 }
391 
392 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false;
393 bool AMDGPUTargetMachine::EnableFunctionCalls = false;
394 bool AMDGPUTargetMachine::EnableFixedFunctionABI = false;
395 bool AMDGPUTargetMachine::EnableLowerModuleLDS = true;
396 
397 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default;
398 
getGPUName(const Function & F) const399 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const {
400   Attribute GPUAttr = F.getFnAttribute("target-cpu");
401   return GPUAttr.isValid() ? GPUAttr.getValueAsString() : getTargetCPU();
402 }
403 
getFeatureString(const Function & F) const404 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const {
405   Attribute FSAttr = F.getFnAttribute("target-features");
406 
407   return FSAttr.isValid() ? FSAttr.getValueAsString()
408                           : getTargetFeatureString();
409 }
410 
411 /// Predicate for Internalize pass.
mustPreserveGV(const GlobalValue & GV)412 static bool mustPreserveGV(const GlobalValue &GV) {
413   if (const Function *F = dyn_cast<Function>(&GV))
414     return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv());
415 
416   return !GV.use_empty();
417 }
418 
adjustPassManager(PassManagerBuilder & Builder)419 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) {
420   Builder.DivergentTarget = true;
421 
422   bool EnableOpt = getOptLevel() > CodeGenOpt::None;
423   bool Internalize = InternalizeSymbols;
424   bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls;
425   bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt;
426   bool LibCallSimplify = EnableLibCallSimplify && EnableOpt;
427 
428   if (EnableFunctionCalls) {
429     delete Builder.Inliner;
430     Builder.Inliner = createFunctionInliningPass();
431   }
432 
433   Builder.addExtension(
434     PassManagerBuilder::EP_ModuleOptimizerEarly,
435     [Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &,
436                                                legacy::PassManagerBase &PM) {
437       if (AMDGPUAA) {
438         PM.add(createAMDGPUAAWrapperPass());
439         PM.add(createAMDGPUExternalAAWrapperPass());
440       }
441       PM.add(createAMDGPUUnifyMetadataPass());
442       PM.add(createAMDGPUPrintfRuntimeBinding());
443       if (Internalize)
444         PM.add(createInternalizePass(mustPreserveGV));
445       PM.add(createAMDGPUPropagateAttributesLatePass(this));
446       if (Internalize)
447         PM.add(createGlobalDCEPass());
448       if (EarlyInline)
449         PM.add(createAMDGPUAlwaysInlinePass(false));
450   });
451 
452   Builder.addExtension(
453     PassManagerBuilder::EP_EarlyAsPossible,
454     [AMDGPUAA, LibCallSimplify, this](const PassManagerBuilder &,
455                                       legacy::PassManagerBase &PM) {
456       if (AMDGPUAA) {
457         PM.add(createAMDGPUAAWrapperPass());
458         PM.add(createAMDGPUExternalAAWrapperPass());
459       }
460       PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this));
461       PM.add(llvm::createAMDGPUUseNativeCallsPass());
462       if (LibCallSimplify)
463         PM.add(llvm::createAMDGPUSimplifyLibCallsPass(this));
464   });
465 
466   Builder.addExtension(
467     PassManagerBuilder::EP_CGSCCOptimizerLate,
468     [EnableOpt](const PassManagerBuilder &, legacy::PassManagerBase &PM) {
469       // Add infer address spaces pass to the opt pipeline after inlining
470       // but before SROA to increase SROA opportunities.
471       PM.add(createInferAddressSpacesPass());
472 
473       // This should run after inlining to have any chance of doing anything,
474       // and before other cleanup optimizations.
475       PM.add(createAMDGPULowerKernelAttributesPass());
476 
477       // Promote alloca to vector before SROA and loop unroll. If we manage
478       // to eliminate allocas before unroll we may choose to unroll less.
479       if (EnableOpt)
480         PM.add(createAMDGPUPromoteAllocaToVector());
481   });
482 }
483 
registerDefaultAliasAnalyses(AAManager & AAM)484 void AMDGPUTargetMachine::registerDefaultAliasAnalyses(AAManager &AAM) {
485   AAM.registerFunctionAnalysis<AMDGPUAA>();
486 }
487 
registerPassBuilderCallbacks(PassBuilder & PB)488 void AMDGPUTargetMachine::registerPassBuilderCallbacks(PassBuilder &PB) {
489   PB.registerPipelineParsingCallback(
490       [this](StringRef PassName, ModulePassManager &PM,
491              ArrayRef<PassBuilder::PipelineElement>) {
492         if (PassName == "amdgpu-propagate-attributes-late") {
493           PM.addPass(AMDGPUPropagateAttributesLatePass(*this));
494           return true;
495         }
496         if (PassName == "amdgpu-unify-metadata") {
497           PM.addPass(AMDGPUUnifyMetadataPass());
498           return true;
499         }
500         if (PassName == "amdgpu-printf-runtime-binding") {
501           PM.addPass(AMDGPUPrintfRuntimeBindingPass());
502           return true;
503         }
504         if (PassName == "amdgpu-always-inline") {
505           PM.addPass(AMDGPUAlwaysInlinePass());
506           return true;
507         }
508         if (PassName == "amdgpu-lower-module-lds") {
509           PM.addPass(AMDGPULowerModuleLDSPass());
510           return true;
511         }
512         return false;
513       });
514   PB.registerPipelineParsingCallback(
515       [this](StringRef PassName, FunctionPassManager &PM,
516              ArrayRef<PassBuilder::PipelineElement>) {
517         if (PassName == "amdgpu-simplifylib") {
518           PM.addPass(AMDGPUSimplifyLibCallsPass(*this));
519           return true;
520         }
521         if (PassName == "amdgpu-usenative") {
522           PM.addPass(AMDGPUUseNativeCallsPass());
523           return true;
524         }
525         if (PassName == "amdgpu-promote-alloca") {
526           PM.addPass(AMDGPUPromoteAllocaPass(*this));
527           return true;
528         }
529         if (PassName == "amdgpu-promote-alloca-to-vector") {
530           PM.addPass(AMDGPUPromoteAllocaToVectorPass(*this));
531           return true;
532         }
533         if (PassName == "amdgpu-lower-kernel-attributes") {
534           PM.addPass(AMDGPULowerKernelAttributesPass());
535           return true;
536         }
537         if (PassName == "amdgpu-propagate-attributes-early") {
538           PM.addPass(AMDGPUPropagateAttributesEarlyPass(*this));
539           return true;
540         }
541         return false;
542       });
543 
544   PB.registerAnalysisRegistrationCallback([](FunctionAnalysisManager &FAM) {
545     FAM.registerPass([&] { return AMDGPUAA(); });
546   });
547 
548   PB.registerParseAACallback([](StringRef AAName, AAManager &AAM) {
549     if (AAName == "amdgpu-aa") {
550       AAM.registerFunctionAnalysis<AMDGPUAA>();
551       return true;
552     }
553     return false;
554   });
555 
556   PB.registerPipelineStartEPCallback(
557       [this](ModulePassManager &PM, PassBuilder::OptimizationLevel Level) {
558         FunctionPassManager FPM;
559         FPM.addPass(AMDGPUPropagateAttributesEarlyPass(*this));
560         FPM.addPass(AMDGPUUseNativeCallsPass());
561         if (EnableLibCallSimplify &&
562             Level != PassBuilder::OptimizationLevel::O0)
563           FPM.addPass(AMDGPUSimplifyLibCallsPass(*this));
564         PM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
565       });
566 
567   PB.registerPipelineEarlySimplificationEPCallback(
568       [this](ModulePassManager &PM, PassBuilder::OptimizationLevel Level) {
569         if (Level == PassBuilder::OptimizationLevel::O0)
570           return;
571 
572         PM.addPass(AMDGPUUnifyMetadataPass());
573         PM.addPass(AMDGPUPrintfRuntimeBindingPass());
574 
575         if (InternalizeSymbols) {
576           // Global variables may have dead uses which need to be removed.
577           // Otherwise these useless global variables will not get internalized.
578           PM.addPass(GlobalDCEPass());
579           PM.addPass(InternalizePass(mustPreserveGV));
580         }
581         PM.addPass(AMDGPUPropagateAttributesLatePass(*this));
582         if (InternalizeSymbols) {
583           PM.addPass(GlobalDCEPass());
584         }
585         if (EarlyInlineAll && !EnableFunctionCalls)
586           PM.addPass(AMDGPUAlwaysInlinePass());
587       });
588 
589   PB.registerCGSCCOptimizerLateEPCallback(
590       [this](CGSCCPassManager &PM, PassBuilder::OptimizationLevel Level) {
591         if (Level == PassBuilder::OptimizationLevel::O0)
592           return;
593 
594         FunctionPassManager FPM;
595 
596         // Add infer address spaces pass to the opt pipeline after inlining
597         // but before SROA to increase SROA opportunities.
598         FPM.addPass(InferAddressSpacesPass());
599 
600         // This should run after inlining to have any chance of doing
601         // anything, and before other cleanup optimizations.
602         FPM.addPass(AMDGPULowerKernelAttributesPass());
603 
604         if (Level != PassBuilder::OptimizationLevel::O0) {
605           // Promote alloca to vector before SROA and loop unroll. If we
606           // manage to eliminate allocas before unroll we may choose to unroll
607           // less.
608           FPM.addPass(AMDGPUPromoteAllocaToVectorPass(*this));
609         }
610 
611         PM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM)));
612       });
613 }
614 
615 //===----------------------------------------------------------------------===//
616 // R600 Target Machine (R600 -> Cayman)
617 //===----------------------------------------------------------------------===//
618 
R600TargetMachine(const Target & T,const Triple & TT,StringRef CPU,StringRef FS,TargetOptions Options,Optional<Reloc::Model> RM,Optional<CodeModel::Model> CM,CodeGenOpt::Level OL,bool JIT)619 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT,
620                                      StringRef CPU, StringRef FS,
621                                      TargetOptions Options,
622                                      Optional<Reloc::Model> RM,
623                                      Optional<CodeModel::Model> CM,
624                                      CodeGenOpt::Level OL, bool JIT)
625     : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {
626   setRequiresStructuredCFG(true);
627 
628   // Override the default since calls aren't supported for r600.
629   if (EnableFunctionCalls &&
630       EnableAMDGPUFunctionCallsOpt.getNumOccurrences() == 0)
631     EnableFunctionCalls = false;
632 }
633 
getSubtargetImpl(const Function & F) const634 const R600Subtarget *R600TargetMachine::getSubtargetImpl(
635   const Function &F) const {
636   StringRef GPU = getGPUName(F);
637   StringRef FS = getFeatureString(F);
638 
639   SmallString<128> SubtargetKey(GPU);
640   SubtargetKey.append(FS);
641 
642   auto &I = SubtargetMap[SubtargetKey];
643   if (!I) {
644     // This needs to be done before we create a new subtarget since any
645     // creation will depend on the TM and the code generation flags on the
646     // function that reside in TargetOptions.
647     resetTargetOptions(F);
648     I = std::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this);
649   }
650 
651   return I.get();
652 }
653 
getNullPointerValue(unsigned AddrSpace)654 int64_t AMDGPUTargetMachine::getNullPointerValue(unsigned AddrSpace) {
655   return (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
656           AddrSpace == AMDGPUAS::PRIVATE_ADDRESS ||
657           AddrSpace == AMDGPUAS::REGION_ADDRESS)
658              ? -1
659              : 0;
660 }
661 
isNoopAddrSpaceCast(unsigned SrcAS,unsigned DestAS) const662 bool AMDGPUTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS,
663                                               unsigned DestAS) const {
664   return AMDGPU::isFlatGlobalAddrSpace(SrcAS) &&
665          AMDGPU::isFlatGlobalAddrSpace(DestAS);
666 }
667 
getAssumedAddrSpace(const Value * V) const668 unsigned AMDGPUTargetMachine::getAssumedAddrSpace(const Value *V) const {
669   const auto *LD = dyn_cast<LoadInst>(V);
670   if (!LD)
671     return AMDGPUAS::UNKNOWN_ADDRESS_SPACE;
672 
673   // It must be a generic pointer loaded.
674   assert(V->getType()->isPointerTy() &&
675          V->getType()->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS);
676 
677   const auto *Ptr = LD->getPointerOperand();
678   if (Ptr->getType()->getPointerAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
679     return AMDGPUAS::UNKNOWN_ADDRESS_SPACE;
680   // For a generic pointer loaded from the constant memory, it could be assumed
681   // as a global pointer since the constant memory is only populated on the
682   // host side. As implied by the offload programming model, only global
683   // pointers could be referenced on the host side.
684   return AMDGPUAS::GLOBAL_ADDRESS;
685 }
686 
687 TargetTransformInfo
getTargetTransformInfo(const Function & F)688 R600TargetMachine::getTargetTransformInfo(const Function &F) {
689   return TargetTransformInfo(R600TTIImpl(this, F));
690 }
691 
692 //===----------------------------------------------------------------------===//
693 // GCN Target Machine (SI+)
694 //===----------------------------------------------------------------------===//
695 
GCNTargetMachine(const Target & T,const Triple & TT,StringRef CPU,StringRef FS,TargetOptions Options,Optional<Reloc::Model> RM,Optional<CodeModel::Model> CM,CodeGenOpt::Level OL,bool JIT)696 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT,
697                                    StringRef CPU, StringRef FS,
698                                    TargetOptions Options,
699                                    Optional<Reloc::Model> RM,
700                                    Optional<CodeModel::Model> CM,
701                                    CodeGenOpt::Level OL, bool JIT)
702     : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {}
703 
getSubtargetImpl(const Function & F) const704 const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const {
705   StringRef GPU = getGPUName(F);
706   StringRef FS = getFeatureString(F);
707 
708   SmallString<128> SubtargetKey(GPU);
709   SubtargetKey.append(FS);
710 
711   auto &I = SubtargetMap[SubtargetKey];
712   if (!I) {
713     // This needs to be done before we create a new subtarget since any
714     // creation will depend on the TM and the code generation flags on the
715     // function that reside in TargetOptions.
716     resetTargetOptions(F);
717     I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this);
718   }
719 
720   I->setScalarizeGlobalBehavior(ScalarizeGlobal);
721 
722   return I.get();
723 }
724 
725 TargetTransformInfo
getTargetTransformInfo(const Function & F)726 GCNTargetMachine::getTargetTransformInfo(const Function &F) {
727   return TargetTransformInfo(GCNTTIImpl(this, F));
728 }
729 
730 //===----------------------------------------------------------------------===//
731 // AMDGPU Pass Setup
732 //===----------------------------------------------------------------------===//
733 
734 namespace {
735 
736 class AMDGPUPassConfig : public TargetPassConfig {
737 public:
AMDGPUPassConfig(LLVMTargetMachine & TM,PassManagerBase & PM)738   AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
739     : TargetPassConfig(TM, PM) {
740     // Exceptions and StackMaps are not supported, so these passes will never do
741     // anything.
742     disablePass(&StackMapLivenessID);
743     disablePass(&FuncletLayoutID);
744   }
745 
getAMDGPUTargetMachine() const746   AMDGPUTargetMachine &getAMDGPUTargetMachine() const {
747     return getTM<AMDGPUTargetMachine>();
748   }
749 
750   ScheduleDAGInstrs *
createMachineScheduler(MachineSchedContext * C) const751   createMachineScheduler(MachineSchedContext *C) const override {
752     ScheduleDAGMILive *DAG = createGenericSchedLive(C);
753     DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
754     return DAG;
755   }
756 
757   void addEarlyCSEOrGVNPass();
758   void addStraightLineScalarOptimizationPasses();
759   void addIRPasses() override;
760   void addCodeGenPrepare() override;
761   bool addPreISel() override;
762   bool addInstSelector() override;
763   bool addGCPasses() override;
764 
765   std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
766 };
767 
getCSEConfig() const768 std::unique_ptr<CSEConfigBase> AMDGPUPassConfig::getCSEConfig() const {
769   return getStandardCSEConfigForOpt(TM->getOptLevel());
770 }
771 
772 class R600PassConfig final : public AMDGPUPassConfig {
773 public:
R600PassConfig(LLVMTargetMachine & TM,PassManagerBase & PM)774   R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
775     : AMDGPUPassConfig(TM, PM) {}
776 
createMachineScheduler(MachineSchedContext * C) const777   ScheduleDAGInstrs *createMachineScheduler(
778     MachineSchedContext *C) const override {
779     return createR600MachineScheduler(C);
780   }
781 
782   bool addPreISel() override;
783   bool addInstSelector() override;
784   void addPreRegAlloc() override;
785   void addPreSched2() override;
786   void addPreEmitPass() override;
787 };
788 
789 class GCNPassConfig final : public AMDGPUPassConfig {
790 public:
GCNPassConfig(LLVMTargetMachine & TM,PassManagerBase & PM)791   GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
792     : AMDGPUPassConfig(TM, PM) {
793     // It is necessary to know the register usage of the entire call graph.  We
794     // allow calls without EnableAMDGPUFunctionCalls if they are marked
795     // noinline, so this is always required.
796     setRequiresCodeGenSCCOrder(true);
797   }
798 
getGCNTargetMachine() const799   GCNTargetMachine &getGCNTargetMachine() const {
800     return getTM<GCNTargetMachine>();
801   }
802 
803   ScheduleDAGInstrs *
804   createMachineScheduler(MachineSchedContext *C) const override;
805 
806   bool addPreISel() override;
807   void addMachineSSAOptimization() override;
808   bool addILPOpts() override;
809   bool addInstSelector() override;
810   bool addIRTranslator() override;
811   void addPreLegalizeMachineIR() override;
812   bool addLegalizeMachineIR() override;
813   void addPreRegBankSelect() override;
814   bool addRegBankSelect() override;
815   void addPreGlobalInstructionSelect() override;
816   bool addGlobalInstructionSelect() override;
817   void addFastRegAlloc() override;
818   void addOptimizedRegAlloc() override;
819   void addPreRegAlloc() override;
820   bool addPreRewrite() override;
821   void addPostRegAlloc() override;
822   void addPreSched2() override;
823   void addPreEmitPass() override;
824 };
825 
826 } // end anonymous namespace
827 
addEarlyCSEOrGVNPass()828 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() {
829   if (getOptLevel() == CodeGenOpt::Aggressive)
830     addPass(createGVNPass());
831   else
832     addPass(createEarlyCSEPass());
833 }
834 
addStraightLineScalarOptimizationPasses()835 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() {
836   addPass(createLICMPass());
837   addPass(createSeparateConstOffsetFromGEPPass());
838   addPass(createSpeculativeExecutionPass());
839   // ReassociateGEPs exposes more opportunites for SLSR. See
840   // the example in reassociate-geps-and-slsr.ll.
841   addPass(createStraightLineStrengthReducePass());
842   // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or
843   // EarlyCSE can reuse.
844   addEarlyCSEOrGVNPass();
845   // Run NaryReassociate after EarlyCSE/GVN to be more effective.
846   addPass(createNaryReassociatePass());
847   // NaryReassociate on GEPs creates redundant common expressions, so run
848   // EarlyCSE after it.
849   addPass(createEarlyCSEPass());
850 }
851 
addIRPasses()852 void AMDGPUPassConfig::addIRPasses() {
853   const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine();
854 
855   // There is no reason to run these.
856   disablePass(&StackMapLivenessID);
857   disablePass(&FuncletLayoutID);
858   disablePass(&PatchableFunctionID);
859 
860   addPass(createAMDGPUPrintfRuntimeBinding());
861 
862   // This must occur before inlining, as the inliner will not look through
863   // bitcast calls.
864   addPass(createAMDGPUFixFunctionBitcastsPass());
865 
866   // A call to propagate attributes pass in the backend in case opt was not run.
867   addPass(createAMDGPUPropagateAttributesEarlyPass(&TM));
868 
869   addPass(createAtomicExpandPass());
870 
871 
872   addPass(createAMDGPULowerIntrinsicsPass());
873 
874   // Function calls are not supported, so make sure we inline everything.
875   addPass(createAMDGPUAlwaysInlinePass());
876   addPass(createAlwaysInlinerLegacyPass());
877   // We need to add the barrier noop pass, otherwise adding the function
878   // inlining pass will cause all of the PassConfigs passes to be run
879   // one function at a time, which means if we have a nodule with two
880   // functions, then we will generate code for the first function
881   // without ever running any passes on the second.
882   addPass(createBarrierNoopPass());
883 
884   // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments.
885   if (TM.getTargetTriple().getArch() == Triple::r600)
886     addPass(createR600OpenCLImageTypeLoweringPass());
887 
888   // Replace OpenCL enqueued block function pointers with global variables.
889   addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass());
890 
891   // Can increase LDS used by kernel so runs before PromoteAlloca
892   if (EnableLowerModuleLDS)
893     addPass(createAMDGPULowerModuleLDSPass());
894 
895   if (TM.getOptLevel() > CodeGenOpt::None) {
896     addPass(createInferAddressSpacesPass());
897     addPass(createAMDGPUPromoteAlloca());
898 
899     if (EnableSROA)
900       addPass(createSROAPass());
901     if (EnableScalarIRPasses.getNumOccurrences()
902             ? EnableScalarIRPasses
903             : TM.getOptLevel() > CodeGenOpt::Less)
904       addStraightLineScalarOptimizationPasses();
905 
906     if (EnableAMDGPUAliasAnalysis) {
907       addPass(createAMDGPUAAWrapperPass());
908       addPass(createExternalAAWrapperPass([](Pass &P, Function &,
909                                              AAResults &AAR) {
910         if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>())
911           AAR.addAAResult(WrapperPass->getResult());
912         }));
913     }
914   }
915 
916   if (TM.getTargetTriple().getArch() == Triple::amdgcn) {
917     // TODO: May want to move later or split into an early and late one.
918     addPass(createAMDGPUCodeGenPreparePass());
919   }
920 
921   TargetPassConfig::addIRPasses();
922 
923   // EarlyCSE is not always strong enough to clean up what LSR produces. For
924   // example, GVN can combine
925   //
926   //   %0 = add %a, %b
927   //   %1 = add %b, %a
928   //
929   // and
930   //
931   //   %0 = shl nsw %a, 2
932   //   %1 = shl %a, 2
933   //
934   // but EarlyCSE can do neither of them.
935   if (EnableScalarIRPasses.getNumOccurrences()
936           ? EnableScalarIRPasses
937           : TM.getOptLevel() > CodeGenOpt::Less)
938     addEarlyCSEOrGVNPass();
939 }
940 
addCodeGenPrepare()941 void AMDGPUPassConfig::addCodeGenPrepare() {
942   if (TM->getTargetTriple().getArch() == Triple::amdgcn)
943     addPass(createAMDGPUAnnotateKernelFeaturesPass());
944 
945   if (TM->getTargetTriple().getArch() == Triple::amdgcn &&
946       EnableLowerKernelArguments)
947     addPass(createAMDGPULowerKernelArgumentsPass());
948 
949   addPass(&AMDGPUPerfHintAnalysisID);
950 
951   TargetPassConfig::addCodeGenPrepare();
952 
953   if (EnableLoadStoreVectorizer.getNumOccurrences()
954           ? EnableLoadStoreVectorizer
955           : TM->getOptLevel() > CodeGenOpt::Less)
956     addPass(createLoadStoreVectorizerPass());
957 
958   // LowerSwitch pass may introduce unreachable blocks that can
959   // cause unexpected behavior for subsequent passes. Placing it
960   // here seems better that these blocks would get cleaned up by
961   // UnreachableBlockElim inserted next in the pass flow.
962   addPass(createLowerSwitchPass());
963 }
964 
addPreISel()965 bool AMDGPUPassConfig::addPreISel() {
966   addPass(createFlattenCFGPass());
967   return false;
968 }
969 
addInstSelector()970 bool AMDGPUPassConfig::addInstSelector() {
971   // Defer the verifier until FinalizeISel.
972   addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel()), false);
973   return false;
974 }
975 
addGCPasses()976 bool AMDGPUPassConfig::addGCPasses() {
977   // Do nothing. GC is not supported.
978   return false;
979 }
980 
981 //===----------------------------------------------------------------------===//
982 // R600 Pass Setup
983 //===----------------------------------------------------------------------===//
984 
addPreISel()985 bool R600PassConfig::addPreISel() {
986   AMDGPUPassConfig::addPreISel();
987 
988   if (EnableR600StructurizeCFG)
989     addPass(createStructurizeCFGPass());
990   return false;
991 }
992 
addInstSelector()993 bool R600PassConfig::addInstSelector() {
994   addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel()));
995   return false;
996 }
997 
addPreRegAlloc()998 void R600PassConfig::addPreRegAlloc() {
999   addPass(createR600VectorRegMerger());
1000 }
1001 
addPreSched2()1002 void R600PassConfig::addPreSched2() {
1003   addPass(createR600EmitClauseMarkers(), false);
1004   if (EnableR600IfConvert)
1005     addPass(&IfConverterID, false);
1006   addPass(createR600ClauseMergePass(), false);
1007 }
1008 
addPreEmitPass()1009 void R600PassConfig::addPreEmitPass() {
1010   addPass(createAMDGPUCFGStructurizerPass(), false);
1011   addPass(createR600ExpandSpecialInstrsPass(), false);
1012   addPass(&FinalizeMachineBundlesID, false);
1013   addPass(createR600Packetizer(), false);
1014   addPass(createR600ControlFlowFinalizer(), false);
1015 }
1016 
createPassConfig(PassManagerBase & PM)1017 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) {
1018   return new R600PassConfig(*this, PM);
1019 }
1020 
1021 //===----------------------------------------------------------------------===//
1022 // GCN Pass Setup
1023 //===----------------------------------------------------------------------===//
1024 
createMachineScheduler(MachineSchedContext * C) const1025 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler(
1026   MachineSchedContext *C) const {
1027   const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>();
1028   if (ST.enableSIScheduler())
1029     return createSIMachineScheduler(C);
1030   return createGCNMaxOccupancyMachineScheduler(C);
1031 }
1032 
addPreISel()1033 bool GCNPassConfig::addPreISel() {
1034   AMDGPUPassConfig::addPreISel();
1035 
1036   addPass(createAMDGPULateCodeGenPreparePass());
1037   if (EnableAtomicOptimizations) {
1038     addPass(createAMDGPUAtomicOptimizerPass());
1039   }
1040 
1041   // FIXME: We need to run a pass to propagate the attributes when calls are
1042   // supported.
1043 
1044   addPass(createSinkingPass());
1045   // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit
1046   // regions formed by them.
1047   addPass(&AMDGPUUnifyDivergentExitNodesID);
1048   if (!LateCFGStructurize) {
1049     if (EnableStructurizerWorkarounds) {
1050       addPass(createFixIrreduciblePass());
1051       addPass(createUnifyLoopExitsPass());
1052     }
1053     addPass(createStructurizeCFGPass(false)); // true -> SkipUniformRegions
1054   }
1055   addPass(createAMDGPUAnnotateUniformValues());
1056   if (!LateCFGStructurize) {
1057     addPass(createSIAnnotateControlFlowPass());
1058   }
1059   addPass(createLCSSAPass());
1060 
1061   return false;
1062 }
1063 
addMachineSSAOptimization()1064 void GCNPassConfig::addMachineSSAOptimization() {
1065   TargetPassConfig::addMachineSSAOptimization();
1066 
1067   // We want to fold operands after PeepholeOptimizer has run (or as part of
1068   // it), because it will eliminate extra copies making it easier to fold the
1069   // real source operand. We want to eliminate dead instructions after, so that
1070   // we see fewer uses of the copies. We then need to clean up the dead
1071   // instructions leftover after the operands are folded as well.
1072   //
1073   // XXX - Can we get away without running DeadMachineInstructionElim again?
1074   addPass(&SIFoldOperandsID);
1075   if (EnableDPPCombine)
1076     addPass(&GCNDPPCombineID);
1077   addPass(&SILoadStoreOptimizerID);
1078   if (EnableSDWAPeephole.getNumOccurrences()
1079           ? EnableSDWAPeephole
1080           : TM->getOptLevel() > CodeGenOpt::Less) {
1081     addPass(&SIPeepholeSDWAID);
1082     addPass(&EarlyMachineLICMID);
1083     addPass(&MachineCSEID);
1084     addPass(&SIFoldOperandsID);
1085   }
1086   addPass(&DeadMachineInstructionElimID);
1087   addPass(createSIShrinkInstructionsPass());
1088 }
1089 
addILPOpts()1090 bool GCNPassConfig::addILPOpts() {
1091   if (EnableEarlyIfConversion)
1092     addPass(&EarlyIfConverterID);
1093 
1094   TargetPassConfig::addILPOpts();
1095   return false;
1096 }
1097 
addInstSelector()1098 bool GCNPassConfig::addInstSelector() {
1099   AMDGPUPassConfig::addInstSelector();
1100   addPass(&SIFixSGPRCopiesID);
1101   addPass(createSILowerI1CopiesPass());
1102   return false;
1103 }
1104 
addIRTranslator()1105 bool GCNPassConfig::addIRTranslator() {
1106   addPass(new IRTranslator(getOptLevel()));
1107   return false;
1108 }
1109 
addPreLegalizeMachineIR()1110 void GCNPassConfig::addPreLegalizeMachineIR() {
1111   bool IsOptNone = getOptLevel() == CodeGenOpt::None;
1112   addPass(createAMDGPUPreLegalizeCombiner(IsOptNone));
1113   addPass(new Localizer());
1114 }
1115 
addLegalizeMachineIR()1116 bool GCNPassConfig::addLegalizeMachineIR() {
1117   addPass(new Legalizer());
1118   return false;
1119 }
1120 
addPreRegBankSelect()1121 void GCNPassConfig::addPreRegBankSelect() {
1122   bool IsOptNone = getOptLevel() == CodeGenOpt::None;
1123   addPass(createAMDGPUPostLegalizeCombiner(IsOptNone));
1124 }
1125 
addRegBankSelect()1126 bool GCNPassConfig::addRegBankSelect() {
1127   addPass(new RegBankSelect());
1128   return false;
1129 }
1130 
addPreGlobalInstructionSelect()1131 void GCNPassConfig::addPreGlobalInstructionSelect() {
1132   bool IsOptNone = getOptLevel() == CodeGenOpt::None;
1133   addPass(createAMDGPURegBankCombiner(IsOptNone));
1134 }
1135 
addGlobalInstructionSelect()1136 bool GCNPassConfig::addGlobalInstructionSelect() {
1137   addPass(new InstructionSelect(getOptLevel()));
1138   return false;
1139 }
1140 
addPreRegAlloc()1141 void GCNPassConfig::addPreRegAlloc() {
1142   if (LateCFGStructurize) {
1143     addPass(createAMDGPUMachineCFGStructurizerPass());
1144   }
1145 }
1146 
addFastRegAlloc()1147 void GCNPassConfig::addFastRegAlloc() {
1148   // FIXME: We have to disable the verifier here because of PHIElimination +
1149   // TwoAddressInstructions disabling it.
1150 
1151   // This must be run immediately after phi elimination and before
1152   // TwoAddressInstructions, otherwise the processing of the tied operand of
1153   // SI_ELSE will introduce a copy of the tied operand source after the else.
1154   insertPass(&PHIEliminationID, &SILowerControlFlowID, false);
1155 
1156   insertPass(&TwoAddressInstructionPassID, &SIWholeQuadModeID);
1157   insertPass(&TwoAddressInstructionPassID, &SIPreAllocateWWMRegsID);
1158 
1159   TargetPassConfig::addFastRegAlloc();
1160 }
1161 
addOptimizedRegAlloc()1162 void GCNPassConfig::addOptimizedRegAlloc() {
1163   // Allow the scheduler to run before SIWholeQuadMode inserts exec manipulation
1164   // instructions that cause scheduling barriers.
1165   insertPass(&MachineSchedulerID, &SIWholeQuadModeID);
1166   insertPass(&MachineSchedulerID, &SIPreAllocateWWMRegsID);
1167 
1168   if (OptExecMaskPreRA)
1169     insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID);
1170 
1171   // This is not an essential optimization and it has a noticeable impact on
1172   // compilation time, so we only enable it from O2.
1173   if (TM->getOptLevel() > CodeGenOpt::Less)
1174     insertPass(&MachineSchedulerID, &SIFormMemoryClausesID);
1175 
1176   // This must be run immediately after phi elimination and before
1177   // TwoAddressInstructions, otherwise the processing of the tied operand of
1178   // SI_ELSE will introduce a copy of the tied operand source after the else.
1179   insertPass(&PHIEliminationID, &SILowerControlFlowID, false);
1180 
1181   if (EnableDCEInRA)
1182     insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID);
1183 
1184   TargetPassConfig::addOptimizedRegAlloc();
1185 }
1186 
addPreRewrite()1187 bool GCNPassConfig::addPreRewrite() {
1188   if (EnableRegReassign)
1189     addPass(&GCNNSAReassignID);
1190   return true;
1191 }
1192 
addPostRegAlloc()1193 void GCNPassConfig::addPostRegAlloc() {
1194   addPass(&SIFixVGPRCopiesID);
1195   if (getOptLevel() > CodeGenOpt::None)
1196     addPass(&SIOptimizeExecMaskingID);
1197   TargetPassConfig::addPostRegAlloc();
1198 
1199   // Equivalent of PEI for SGPRs.
1200   addPass(&SILowerSGPRSpillsID);
1201 }
1202 
addPreSched2()1203 void GCNPassConfig::addPreSched2() {
1204   addPass(&SIPostRABundlerID);
1205 }
1206 
addPreEmitPass()1207 void GCNPassConfig::addPreEmitPass() {
1208   addPass(createSIMemoryLegalizerPass());
1209   addPass(createSIInsertWaitcntsPass());
1210   addPass(createSIShrinkInstructionsPass());
1211   addPass(createSIModeRegisterPass());
1212 
1213   if (getOptLevel() > CodeGenOpt::None)
1214     addPass(&SIInsertHardClausesID);
1215 
1216   addPass(&SILateBranchLoweringPassID);
1217   if (getOptLevel() > CodeGenOpt::None)
1218     addPass(&SIPreEmitPeepholeID);
1219   // The hazard recognizer that runs as part of the post-ra scheduler does not
1220   // guarantee to be able handle all hazards correctly. This is because if there
1221   // are multiple scheduling regions in a basic block, the regions are scheduled
1222   // bottom up, so when we begin to schedule a region we don't know what
1223   // instructions were emitted directly before it.
1224   //
1225   // Here we add a stand-alone hazard recognizer pass which can handle all
1226   // cases.
1227   addPass(&PostRAHazardRecognizerID);
1228   addPass(&BranchRelaxationPassID);
1229 }
1230 
createPassConfig(PassManagerBase & PM)1231 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) {
1232   return new GCNPassConfig(*this, PM);
1233 }
1234 
createDefaultFuncInfoYAML() const1235 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const {
1236   return new yaml::SIMachineFunctionInfo();
1237 }
1238 
1239 yaml::MachineFunctionInfo *
convertFuncInfoToYAML(const MachineFunction & MF) const1240 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const {
1241   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1242   return new yaml::SIMachineFunctionInfo(
1243       *MFI, *MF.getSubtarget().getRegisterInfo(), MF);
1244 }
1245 
parseMachineFunctionInfo(const yaml::MachineFunctionInfo & MFI_,PerFunctionMIParsingState & PFS,SMDiagnostic & Error,SMRange & SourceRange) const1246 bool GCNTargetMachine::parseMachineFunctionInfo(
1247     const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS,
1248     SMDiagnostic &Error, SMRange &SourceRange) const {
1249   const yaml::SIMachineFunctionInfo &YamlMFI =
1250       reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_);
1251   MachineFunction &MF = PFS.MF;
1252   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1253 
1254   if (MFI->initializeBaseYamlFields(YamlMFI, MF, PFS, Error, SourceRange))
1255     return true;
1256 
1257   if (MFI->Occupancy == 0) {
1258     // Fixup the subtarget dependent default value.
1259     const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1260     MFI->Occupancy = ST.computeOccupancy(MF.getFunction(), MFI->getLDSSize());
1261   }
1262 
1263   auto parseRegister = [&](const yaml::StringValue &RegName, Register &RegVal) {
1264     Register TempReg;
1265     if (parseNamedRegisterReference(PFS, TempReg, RegName.Value, Error)) {
1266       SourceRange = RegName.SourceRange;
1267       return true;
1268     }
1269     RegVal = TempReg;
1270 
1271     return false;
1272   };
1273 
1274   auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) {
1275     // Create a diagnostic for a the register string literal.
1276     const MemoryBuffer &Buffer =
1277         *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID());
1278     Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
1279                          RegName.Value.size(), SourceMgr::DK_Error,
1280                          "incorrect register class for field", RegName.Value,
1281                          None, None);
1282     SourceRange = RegName.SourceRange;
1283     return true;
1284   };
1285 
1286   if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) ||
1287       parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) ||
1288       parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg))
1289     return true;
1290 
1291   if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG &&
1292       !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) {
1293     return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg);
1294   }
1295 
1296   if (MFI->FrameOffsetReg != AMDGPU::FP_REG &&
1297       !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) {
1298     return diagnoseRegisterClass(YamlMFI.FrameOffsetReg);
1299   }
1300 
1301   if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG &&
1302       !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) {
1303     return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg);
1304   }
1305 
1306   auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A,
1307                                    const TargetRegisterClass &RC,
1308                                    ArgDescriptor &Arg, unsigned UserSGPRs,
1309                                    unsigned SystemSGPRs) {
1310     // Skip parsing if it's not present.
1311     if (!A)
1312       return false;
1313 
1314     if (A->IsRegister) {
1315       Register Reg;
1316       if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) {
1317         SourceRange = A->RegisterName.SourceRange;
1318         return true;
1319       }
1320       if (!RC.contains(Reg))
1321         return diagnoseRegisterClass(A->RegisterName);
1322       Arg = ArgDescriptor::createRegister(Reg);
1323     } else
1324       Arg = ArgDescriptor::createStack(A->StackOffset);
1325     // Check and apply the optional mask.
1326     if (A->Mask)
1327       Arg = ArgDescriptor::createArg(Arg, A->Mask.getValue());
1328 
1329     MFI->NumUserSGPRs += UserSGPRs;
1330     MFI->NumSystemSGPRs += SystemSGPRs;
1331     return false;
1332   };
1333 
1334   if (YamlMFI.ArgInfo &&
1335       (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer,
1336                              AMDGPU::SGPR_128RegClass,
1337                              MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) ||
1338        parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr,
1339                              AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr,
1340                              2, 0) ||
1341        parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass,
1342                              MFI->ArgInfo.QueuePtr, 2, 0) ||
1343        parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr,
1344                              AMDGPU::SReg_64RegClass,
1345                              MFI->ArgInfo.KernargSegmentPtr, 2, 0) ||
1346        parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID,
1347                              AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID,
1348                              2, 0) ||
1349        parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit,
1350                              AMDGPU::SReg_64RegClass,
1351                              MFI->ArgInfo.FlatScratchInit, 2, 0) ||
1352        parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize,
1353                              AMDGPU::SGPR_32RegClass,
1354                              MFI->ArgInfo.PrivateSegmentSize, 0, 0) ||
1355        parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX,
1356                              AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX,
1357                              0, 1) ||
1358        parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY,
1359                              AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY,
1360                              0, 1) ||
1361        parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ,
1362                              AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ,
1363                              0, 1) ||
1364        parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo,
1365                              AMDGPU::SGPR_32RegClass,
1366                              MFI->ArgInfo.WorkGroupInfo, 0, 1) ||
1367        parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset,
1368                              AMDGPU::SGPR_32RegClass,
1369                              MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) ||
1370        parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr,
1371                              AMDGPU::SReg_64RegClass,
1372                              MFI->ArgInfo.ImplicitArgPtr, 0, 0) ||
1373        parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr,
1374                              AMDGPU::SReg_64RegClass,
1375                              MFI->ArgInfo.ImplicitBufferPtr, 2, 0) ||
1376        parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX,
1377                              AMDGPU::VGPR_32RegClass,
1378                              MFI->ArgInfo.WorkItemIDX, 0, 0) ||
1379        parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY,
1380                              AMDGPU::VGPR_32RegClass,
1381                              MFI->ArgInfo.WorkItemIDY, 0, 0) ||
1382        parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ,
1383                              AMDGPU::VGPR_32RegClass,
1384                              MFI->ArgInfo.WorkItemIDZ, 0, 0)))
1385     return true;
1386 
1387   MFI->Mode.IEEE = YamlMFI.Mode.IEEE;
1388   MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp;
1389   MFI->Mode.FP32InputDenormals = YamlMFI.Mode.FP32InputDenormals;
1390   MFI->Mode.FP32OutputDenormals = YamlMFI.Mode.FP32OutputDenormals;
1391   MFI->Mode.FP64FP16InputDenormals = YamlMFI.Mode.FP64FP16InputDenormals;
1392   MFI->Mode.FP64FP16OutputDenormals = YamlMFI.Mode.FP64FP16OutputDenormals;
1393 
1394   return false;
1395 }
1396