1 //===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains small standalone helper functions and enum definitions for
10 // the X86 target useful for the compiler back-end and the MC libraries.
11 // As such, it deliberately does not include references to LLVM core
12 // code gen types, passes, etc..
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
17 #define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
18 
19 #include "X86MCTargetDesc.h"
20 #include "llvm/MC/MCInstrDesc.h"
21 #include "llvm/Support/DataTypes.h"
22 #include "llvm/Support/ErrorHandling.h"
23 
24 namespace llvm {
25 
26 namespace X86 {
27   // Enums for memory operand decoding.  Each memory operand is represented with
28   // a 5 operand sequence in the form:
29   //   [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
30   // These enums help decode this.
31   enum {
32     AddrBaseReg = 0,
33     AddrScaleAmt = 1,
34     AddrIndexReg = 2,
35     AddrDisp = 3,
36 
37     /// AddrSegmentReg - The operand # of the segment in the memory operand.
38     AddrSegmentReg = 4,
39 
40     /// AddrNumOperands - Total number of operands in a memory reference.
41     AddrNumOperands = 5
42   };
43 
44   /// AVX512 static rounding constants.  These need to match the values in
45   /// avx512fintrin.h.
46   enum STATIC_ROUNDING {
47     TO_NEAREST_INT = 0,
48     TO_NEG_INF = 1,
49     TO_POS_INF = 2,
50     TO_ZERO = 3,
51     CUR_DIRECTION = 4,
52     NO_EXC = 8
53   };
54 
55   /// The constants to describe instr prefixes if there are
56   enum IPREFIXES {
57     IP_NO_PREFIX = 0,
58     IP_HAS_OP_SIZE =   1U << 0,
59     IP_HAS_AD_SIZE =   1U << 1,
60     IP_HAS_REPEAT_NE = 1U << 2,
61     IP_HAS_REPEAT =    1U << 3,
62     IP_HAS_LOCK =      1U << 4,
63     IP_HAS_NOTRACK =   1U << 5,
64     IP_USE_VEX =       1U << 6,
65     IP_USE_VEX2 =      1U << 7,
66     IP_USE_VEX3 =      1U << 8,
67     IP_USE_EVEX =      1U << 9,
68     IP_USE_DISP8 =     1U << 10,
69     IP_USE_DISP32 =    1U << 11,
70   };
71 
72   enum OperandType : unsigned {
73     /// AVX512 embedded rounding control. This should only have values 0-3.
74     OPERAND_ROUNDING_CONTROL = MCOI::OPERAND_FIRST_TARGET,
75     OPERAND_COND_CODE,
76   };
77 
78   // X86 specific condition code. These correspond to X86_*_COND in
79   // X86InstrInfo.td. They must be kept in synch.
80   enum CondCode {
81     COND_O = 0,
82     COND_NO = 1,
83     COND_B = 2,
84     COND_AE = 3,
85     COND_E = 4,
86     COND_NE = 5,
87     COND_BE = 6,
88     COND_A = 7,
89     COND_S = 8,
90     COND_NS = 9,
91     COND_P = 10,
92     COND_NP = 11,
93     COND_L = 12,
94     COND_GE = 13,
95     COND_LE = 14,
96     COND_G = 15,
97     LAST_VALID_COND = COND_G,
98 
99     // Artificial condition codes. These are used by analyzeBranch
100     // to indicate a block terminated with two conditional branches that together
101     // form a compound condition. They occur in code using FCMP_OEQ or FCMP_UNE,
102     // which can't be represented on x86 with a single condition. These
103     // are never used in MachineInstrs and are inverses of one another.
104     COND_NE_OR_P,
105     COND_E_AND_NP,
106 
107     COND_INVALID
108   };
109 
110   // The classification for the first instruction in macro fusion.
111   enum class FirstMacroFusionInstKind {
112     // TEST
113     Test,
114     // CMP
115     Cmp,
116     // AND
117     And,
118     // FIXME: Zen 3 support branch fusion for OR/XOR.
119     // ADD, SUB
120     AddSub,
121     // INC, DEC
122     IncDec,
123     // Not valid as a first macro fusion instruction
124     Invalid
125   };
126 
127   enum class SecondMacroFusionInstKind {
128     // JA, JB and variants.
129     AB,
130     // JE, JL, JG and variants.
131     ELG,
132     // JS, JP, JO and variants
133     SPO,
134     // Not a fusible jump.
135     Invalid,
136   };
137 
138   /// \returns the type of the first instruction in macro-fusion.
139   inline FirstMacroFusionInstKind
classifyFirstOpcodeInMacroFusion(unsigned Opcode)140   classifyFirstOpcodeInMacroFusion(unsigned Opcode) {
141     switch (Opcode) {
142     default:
143       return FirstMacroFusionInstKind::Invalid;
144     // TEST
145     case X86::TEST16i16:
146     case X86::TEST16mr:
147     case X86::TEST16ri:
148     case X86::TEST16rr:
149     case X86::TEST32i32:
150     case X86::TEST32mr:
151     case X86::TEST32ri:
152     case X86::TEST32rr:
153     case X86::TEST64i32:
154     case X86::TEST64mr:
155     case X86::TEST64ri32:
156     case X86::TEST64rr:
157     case X86::TEST8i8:
158     case X86::TEST8mr:
159     case X86::TEST8ri:
160     case X86::TEST8rr:
161       return FirstMacroFusionInstKind::Test;
162     case X86::AND16i16:
163     case X86::AND16ri:
164     case X86::AND16ri8:
165     case X86::AND16rm:
166     case X86::AND16rr:
167     case X86::AND16rr_REV:
168     case X86::AND32i32:
169     case X86::AND32ri:
170     case X86::AND32ri8:
171     case X86::AND32rm:
172     case X86::AND32rr:
173     case X86::AND32rr_REV:
174     case X86::AND64i32:
175     case X86::AND64ri32:
176     case X86::AND64ri8:
177     case X86::AND64rm:
178     case X86::AND64rr:
179     case X86::AND64rr_REV:
180     case X86::AND8i8:
181     case X86::AND8ri:
182     case X86::AND8ri8:
183     case X86::AND8rm:
184     case X86::AND8rr:
185     case X86::AND8rr_REV:
186       return FirstMacroFusionInstKind::And;
187     // FIXME: Zen 3 support branch fusion for OR/XOR.
188     // CMP
189     case X86::CMP16i16:
190     case X86::CMP16mr:
191     case X86::CMP16ri:
192     case X86::CMP16ri8:
193     case X86::CMP16rm:
194     case X86::CMP16rr:
195     case X86::CMP16rr_REV:
196     case X86::CMP32i32:
197     case X86::CMP32mr:
198     case X86::CMP32ri:
199     case X86::CMP32ri8:
200     case X86::CMP32rm:
201     case X86::CMP32rr:
202     case X86::CMP32rr_REV:
203     case X86::CMP64i32:
204     case X86::CMP64mr:
205     case X86::CMP64ri32:
206     case X86::CMP64ri8:
207     case X86::CMP64rm:
208     case X86::CMP64rr:
209     case X86::CMP64rr_REV:
210     case X86::CMP8i8:
211     case X86::CMP8mr:
212     case X86::CMP8ri:
213     case X86::CMP8ri8:
214     case X86::CMP8rm:
215     case X86::CMP8rr:
216     case X86::CMP8rr_REV:
217       return FirstMacroFusionInstKind::Cmp;
218     // ADD
219     case X86::ADD16i16:
220     case X86::ADD16ri:
221     case X86::ADD16ri8:
222     case X86::ADD16rm:
223     case X86::ADD16rr:
224     case X86::ADD16rr_REV:
225     case X86::ADD32i32:
226     case X86::ADD32ri:
227     case X86::ADD32ri8:
228     case X86::ADD32rm:
229     case X86::ADD32rr:
230     case X86::ADD32rr_REV:
231     case X86::ADD64i32:
232     case X86::ADD64ri32:
233     case X86::ADD64ri8:
234     case X86::ADD64rm:
235     case X86::ADD64rr:
236     case X86::ADD64rr_REV:
237     case X86::ADD8i8:
238     case X86::ADD8ri:
239     case X86::ADD8ri8:
240     case X86::ADD8rm:
241     case X86::ADD8rr:
242     case X86::ADD8rr_REV:
243     // SUB
244     case X86::SUB16i16:
245     case X86::SUB16ri:
246     case X86::SUB16ri8:
247     case X86::SUB16rm:
248     case X86::SUB16rr:
249     case X86::SUB16rr_REV:
250     case X86::SUB32i32:
251     case X86::SUB32ri:
252     case X86::SUB32ri8:
253     case X86::SUB32rm:
254     case X86::SUB32rr:
255     case X86::SUB32rr_REV:
256     case X86::SUB64i32:
257     case X86::SUB64ri32:
258     case X86::SUB64ri8:
259     case X86::SUB64rm:
260     case X86::SUB64rr:
261     case X86::SUB64rr_REV:
262     case X86::SUB8i8:
263     case X86::SUB8ri:
264     case X86::SUB8ri8:
265     case X86::SUB8rm:
266     case X86::SUB8rr:
267     case X86::SUB8rr_REV:
268       return FirstMacroFusionInstKind::AddSub;
269     // INC
270     case X86::INC16r:
271     case X86::INC16r_alt:
272     case X86::INC32r:
273     case X86::INC32r_alt:
274     case X86::INC64r:
275     case X86::INC8r:
276     // DEC
277     case X86::DEC16r:
278     case X86::DEC16r_alt:
279     case X86::DEC32r:
280     case X86::DEC32r_alt:
281     case X86::DEC64r:
282     case X86::DEC8r:
283       return FirstMacroFusionInstKind::IncDec;
284     }
285   }
286 
287   /// \returns the type of the second instruction in macro-fusion.
288   inline SecondMacroFusionInstKind
classifySecondCondCodeInMacroFusion(X86::CondCode CC)289   classifySecondCondCodeInMacroFusion(X86::CondCode CC) {
290     if (CC == X86::COND_INVALID)
291       return SecondMacroFusionInstKind::Invalid;
292 
293     switch (CC) {
294     default:
295       return SecondMacroFusionInstKind::Invalid;
296     // JE,JZ
297     case X86::COND_E:
298     // JNE,JNZ
299     case X86::COND_NE:
300     // JL,JNGE
301     case X86::COND_L:
302     // JLE,JNG
303     case X86::COND_LE:
304     // JG,JNLE
305     case X86::COND_G:
306     // JGE,JNL
307     case X86::COND_GE:
308       return SecondMacroFusionInstKind::ELG;
309     // JB,JC
310     case X86::COND_B:
311     // JNA,JBE
312     case X86::COND_BE:
313     // JA,JNBE
314     case X86::COND_A:
315     // JAE,JNC,JNB
316     case X86::COND_AE:
317       return SecondMacroFusionInstKind::AB;
318     // JS
319     case X86::COND_S:
320     // JNS
321     case X86::COND_NS:
322     // JP,JPE
323     case X86::COND_P:
324     // JNP,JPO
325     case X86::COND_NP:
326     // JO
327     case X86::COND_O:
328     // JNO
329     case X86::COND_NO:
330       return SecondMacroFusionInstKind::SPO;
331     }
332   }
333 
334   /// \param FirstKind kind of the first instruction in macro fusion.
335   /// \param SecondKind kind of the second instruction in macro fusion.
336   ///
337   /// \returns true if the two instruction can be macro fused.
isMacroFused(FirstMacroFusionInstKind FirstKind,SecondMacroFusionInstKind SecondKind)338   inline bool isMacroFused(FirstMacroFusionInstKind FirstKind,
339                            SecondMacroFusionInstKind SecondKind) {
340     switch (FirstKind) {
341     case X86::FirstMacroFusionInstKind::Test:
342     case X86::FirstMacroFusionInstKind::And:
343       return true;
344     case X86::FirstMacroFusionInstKind::Cmp:
345     case X86::FirstMacroFusionInstKind::AddSub:
346       return SecondKind == X86::SecondMacroFusionInstKind::AB ||
347              SecondKind == X86::SecondMacroFusionInstKind::ELG;
348     case X86::FirstMacroFusionInstKind::IncDec:
349       return SecondKind == X86::SecondMacroFusionInstKind::ELG;
350     case X86::FirstMacroFusionInstKind::Invalid:
351       return false;
352     }
353     llvm_unreachable("unknown fusion type");
354   }
355 
356   /// Defines the possible values of the branch boundary alignment mask.
357   enum AlignBranchBoundaryKind : uint8_t {
358     AlignBranchNone = 0,
359     AlignBranchFused = 1U << 0,
360     AlignBranchJcc = 1U << 1,
361     AlignBranchJmp = 1U << 2,
362     AlignBranchCall = 1U << 3,
363     AlignBranchRet = 1U << 4,
364     AlignBranchIndirect = 1U << 5
365   };
366 
367   /// Defines the encoding values for segment override prefix.
368   enum EncodingOfSegmentOverridePrefix : uint8_t {
369     CS_Encoding = 0x2E,
370     DS_Encoding = 0x3E,
371     ES_Encoding = 0x26,
372     FS_Encoding = 0x64,
373     GS_Encoding = 0x65,
374     SS_Encoding = 0x36
375   };
376 
377   /// Given a segment register, return the encoding of the segment override
378   /// prefix for it.
379   inline EncodingOfSegmentOverridePrefix
getSegmentOverridePrefixForReg(unsigned Reg)380   getSegmentOverridePrefixForReg(unsigned Reg) {
381     switch (Reg) {
382     default:
383       llvm_unreachable("Unknown segment register!");
384     case X86::CS:
385       return CS_Encoding;
386     case X86::DS:
387       return DS_Encoding;
388     case X86::ES:
389       return ES_Encoding;
390     case X86::FS:
391       return FS_Encoding;
392     case X86::GS:
393       return GS_Encoding;
394     case X86::SS:
395       return SS_Encoding;
396     }
397   }
398 
399 } // end namespace X86;
400 
401 /// X86II - This namespace holds all of the target specific flags that
402 /// instruction info tracks.
403 ///
404 namespace X86II {
405   /// Target Operand Flag enum.
406   enum TOF {
407     //===------------------------------------------------------------------===//
408     // X86 Specific MachineOperand flags.
409 
410     MO_NO_FLAG,
411 
412     /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
413     /// relocation of:
414     ///    SYMBOL_LABEL + [. - PICBASELABEL]
415     MO_GOT_ABSOLUTE_ADDRESS,
416 
417     /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
418     /// immediate should get the value of the symbol minus the PIC base label:
419     ///    SYMBOL_LABEL - PICBASELABEL
420     MO_PIC_BASE_OFFSET,
421 
422     /// MO_GOT - On a symbol operand this indicates that the immediate is the
423     /// offset to the GOT entry for the symbol name from the base of the GOT.
424     ///
425     /// See the X86-64 ELF ABI supplement for more details.
426     ///    SYMBOL_LABEL @GOT
427     MO_GOT,
428 
429     /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
430     /// the offset to the location of the symbol name from the base of the GOT.
431     ///
432     /// See the X86-64 ELF ABI supplement for more details.
433     ///    SYMBOL_LABEL @GOTOFF
434     MO_GOTOFF,
435 
436     /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
437     /// offset to the GOT entry for the symbol name from the current code
438     /// location.
439     ///
440     /// See the X86-64 ELF ABI supplement for more details.
441     ///    SYMBOL_LABEL @GOTPCREL
442     MO_GOTPCREL,
443 
444     /// MO_PLT - On a symbol operand this indicates that the immediate is
445     /// offset to the PLT entry of symbol name from the current code location.
446     ///
447     /// See the X86-64 ELF ABI supplement for more details.
448     ///    SYMBOL_LABEL @PLT
449     MO_PLT,
450 
451     /// MO_TLSGD - On a symbol operand this indicates that the immediate is
452     /// the offset of the GOT entry with the TLS index structure that contains
453     /// the module number and variable offset for the symbol. Used in the
454     /// general dynamic TLS access model.
455     ///
456     /// See 'ELF Handling for Thread-Local Storage' for more details.
457     ///    SYMBOL_LABEL @TLSGD
458     MO_TLSGD,
459 
460     /// MO_TLSLD - On a symbol operand this indicates that the immediate is
461     /// the offset of the GOT entry with the TLS index for the module that
462     /// contains the symbol. When this index is passed to a call to
463     /// __tls_get_addr, the function will return the base address of the TLS
464     /// block for the symbol. Used in the x86-64 local dynamic TLS access model.
465     ///
466     /// See 'ELF Handling for Thread-Local Storage' for more details.
467     ///    SYMBOL_LABEL @TLSLD
468     MO_TLSLD,
469 
470     /// MO_TLSLDM - On a symbol operand this indicates that the immediate is
471     /// the offset of the GOT entry with the TLS index for the module that
472     /// contains the symbol. When this index is passed to a call to
473     /// ___tls_get_addr, the function will return the base address of the TLS
474     /// block for the symbol. Used in the IA32 local dynamic TLS access model.
475     ///
476     /// See 'ELF Handling for Thread-Local Storage' for more details.
477     ///    SYMBOL_LABEL @TLSLDM
478     MO_TLSLDM,
479 
480     /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
481     /// the offset of the GOT entry with the thread-pointer offset for the
482     /// symbol. Used in the x86-64 initial exec TLS access model.
483     ///
484     /// See 'ELF Handling for Thread-Local Storage' for more details.
485     ///    SYMBOL_LABEL @GOTTPOFF
486     MO_GOTTPOFF,
487 
488     /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
489     /// the absolute address of the GOT entry with the negative thread-pointer
490     /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
491     /// model.
492     ///
493     /// See 'ELF Handling for Thread-Local Storage' for more details.
494     ///    SYMBOL_LABEL @INDNTPOFF
495     MO_INDNTPOFF,
496 
497     /// MO_TPOFF - On a symbol operand this indicates that the immediate is
498     /// the thread-pointer offset for the symbol. Used in the x86-64 local
499     /// exec TLS access model.
500     ///
501     /// See 'ELF Handling for Thread-Local Storage' for more details.
502     ///    SYMBOL_LABEL @TPOFF
503     MO_TPOFF,
504 
505     /// MO_DTPOFF - On a symbol operand this indicates that the immediate is
506     /// the offset of the GOT entry with the TLS offset of the symbol. Used
507     /// in the local dynamic TLS access model.
508     ///
509     /// See 'ELF Handling for Thread-Local Storage' for more details.
510     ///    SYMBOL_LABEL @DTPOFF
511     MO_DTPOFF,
512 
513     /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
514     /// the negative thread-pointer offset for the symbol. Used in the IA32
515     /// local exec TLS access model.
516     ///
517     /// See 'ELF Handling for Thread-Local Storage' for more details.
518     ///    SYMBOL_LABEL @NTPOFF
519     MO_NTPOFF,
520 
521     /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
522     /// the offset of the GOT entry with the negative thread-pointer offset for
523     /// the symbol. Used in the PIC IA32 initial exec TLS access model.
524     ///
525     /// See 'ELF Handling for Thread-Local Storage' for more details.
526     ///    SYMBOL_LABEL @GOTNTPOFF
527     MO_GOTNTPOFF,
528 
529     /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
530     /// reference is actually to the "__imp_FOO" symbol.  This is used for
531     /// dllimport linkage on windows.
532     MO_DLLIMPORT,
533 
534     /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
535     /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
536     /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
537     MO_DARWIN_NONLAZY,
538 
539     /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
540     /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
541     /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
542     MO_DARWIN_NONLAZY_PIC_BASE,
543 
544     /// MO_TLVP - On a symbol operand this indicates that the immediate is
545     /// some TLS offset.
546     ///
547     /// This is the TLS offset for the Darwin TLS mechanism.
548     MO_TLVP,
549 
550     /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
551     /// is some TLS offset from the picbase.
552     ///
553     /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
554     MO_TLVP_PIC_BASE,
555 
556     /// MO_SECREL - On a symbol operand this indicates that the immediate is
557     /// the offset from beginning of section.
558     ///
559     /// This is the TLS offset for the COFF/Windows TLS mechanism.
560     MO_SECREL,
561 
562     /// MO_ABS8 - On a symbol operand this indicates that the symbol is known
563     /// to be an absolute symbol in range [0,128), so we can use the @ABS8
564     /// symbol modifier.
565     MO_ABS8,
566 
567     /// MO_COFFSTUB - On a symbol operand "FOO", this indicates that the
568     /// reference is actually to the ".refptr.FOO" symbol.  This is used for
569     /// stub symbols on windows.
570     MO_COFFSTUB,
571   };
572 
573   enum : uint64_t {
574     //===------------------------------------------------------------------===//
575     // Instruction encodings.  These are the standard/most common forms for X86
576     // instructions.
577     //
578 
579     // PseudoFrm - This represents an instruction that is a pseudo instruction
580     // or one that has not been implemented yet.  It is illegal to code generate
581     // it, but tolerated for intermediate implementation stages.
582     Pseudo         = 0,
583 
584     /// Raw - This form is for instructions that don't have any operands, so
585     /// they are just a fixed opcode value, like 'leave'.
586     RawFrm         = 1,
587 
588     /// AddRegFrm - This form is used for instructions like 'push r32' that have
589     /// their one register operand added to their opcode.
590     AddRegFrm      = 2,
591 
592     /// RawFrmMemOffs - This form is for instructions that store an absolute
593     /// memory offset as an immediate with a possible segment override.
594     RawFrmMemOffs  = 3,
595 
596     /// RawFrmSrc - This form is for instructions that use the source index
597     /// register SI/ESI/RSI with a possible segment override.
598     RawFrmSrc      = 4,
599 
600     /// RawFrmDst - This form is for instructions that use the destination index
601     /// register DI/EDI/RDI.
602     RawFrmDst      = 5,
603 
604     /// RawFrmDstSrc - This form is for instructions that use the source index
605     /// register SI/ESI/RSI with a possible segment override, and also the
606     /// destination index register DI/EDI/RDI.
607     RawFrmDstSrc   = 6,
608 
609     /// RawFrmImm8 - This is used for the ENTER instruction, which has two
610     /// immediates, the first of which is a 16-bit immediate (specified by
611     /// the imm encoding) and the second is a 8-bit fixed value.
612     RawFrmImm8 = 7,
613 
614     /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
615     /// immediates, the first of which is a 16 or 32-bit immediate (specified by
616     /// the imm encoding) and the second is a 16-bit fixed value.  In the AMD
617     /// manual, this operand is described as pntr16:32 and pntr16:16
618     RawFrmImm16 = 8,
619 
620     /// AddCCFrm - This form is used for Jcc that encode the condition code
621     /// in the lower 4 bits of the opcode.
622     AddCCFrm = 9,
623 
624     /// PrefixByte - This form is used for instructions that represent a prefix
625     /// byte like data16 or rep.
626     PrefixByte = 10,
627 
628     /// MRM[0-7][rm] - These forms are used to represent instructions that use
629     /// a Mod/RM byte, and use the middle field to hold extended opcode
630     /// information.  In the intel manual these are represented as /0, /1, ...
631     ///
632 
633     // Instructions operate on a register Reg/Opcode operand not the r/m field.
634     MRMr0 = 21,
635 
636     /// MRMSrcMem - But force to use the SIB field.
637     MRMSrcMemFSIB  = 22,
638 
639     /// MRMDestMem - But force to use the SIB field.
640     MRMDestMemFSIB = 23,
641 
642     /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
643     /// to specify a destination, which in this case is memory.
644     ///
645     MRMDestMem     = 24,
646 
647     /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
648     /// to specify a source, which in this case is memory.
649     ///
650     MRMSrcMem      = 25,
651 
652     /// MRMSrcMem4VOp3 - This form is used for instructions that encode
653     /// operand 3 with VEX.VVVV and load from memory.
654     ///
655     MRMSrcMem4VOp3 = 26,
656 
657     /// MRMSrcMemOp4 - This form is used for instructions that use the Mod/RM
658     /// byte to specify the fourth source, which in this case is memory.
659     ///
660     MRMSrcMemOp4   = 27,
661 
662     /// MRMSrcMemCC - This form is used for instructions that use the Mod/RM
663     /// byte to specify the operands and also encodes a condition code.
664     ///
665     MRMSrcMemCC    = 28,
666 
667     /// MRMXm - This form is used for instructions that use the Mod/RM byte
668     /// to specify a memory source, but doesn't use the middle field. And has
669     /// a condition code.
670     ///
671     MRMXmCC = 30,
672 
673     /// MRMXm - This form is used for instructions that use the Mod/RM byte
674     /// to specify a memory source, but doesn't use the middle field.
675     ///
676     MRMXm = 31,
677 
678     // Next, instructions that operate on a memory r/m operand...
679     MRM0m = 32,  MRM1m = 33,  MRM2m = 34,  MRM3m = 35, // Format /0 /1 /2 /3
680     MRM4m = 36,  MRM5m = 37,  MRM6m = 38,  MRM7m = 39, // Format /4 /5 /6 /7
681 
682     /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
683     /// to specify a destination, which in this case is a register.
684     ///
685     MRMDestReg     = 40,
686 
687     /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
688     /// to specify a source, which in this case is a register.
689     ///
690     MRMSrcReg      = 41,
691 
692     /// MRMSrcReg4VOp3 - This form is used for instructions that encode
693     /// operand 3 with VEX.VVVV and do not load from memory.
694     ///
695     MRMSrcReg4VOp3 = 42,
696 
697     /// MRMSrcRegOp4 - This form is used for instructions that use the Mod/RM
698     /// byte to specify the fourth source, which in this case is a register.
699     ///
700     MRMSrcRegOp4   = 43,
701 
702     /// MRMSrcRegCC - This form is used for instructions that use the Mod/RM
703     /// byte to specify the operands and also encodes a condition code
704     ///
705     MRMSrcRegCC    = 44,
706 
707     /// MRMXCCr - This form is used for instructions that use the Mod/RM byte
708     /// to specify a register source, but doesn't use the middle field. And has
709     /// a condition code.
710     ///
711     MRMXrCC = 46,
712 
713     /// MRMXr - This form is used for instructions that use the Mod/RM byte
714     /// to specify a register source, but doesn't use the middle field.
715     ///
716     MRMXr = 47,
717 
718     // Instructions that operate on a register r/m operand...
719     MRM0r = 48,  MRM1r = 49,  MRM2r = 50,  MRM3r = 51, // Format /0 /1 /2 /3
720     MRM4r = 52,  MRM5r = 53,  MRM6r = 54,  MRM7r = 55, // Format /4 /5 /6 /7
721 
722     // Instructions that operate that have mod=11 and an opcode but ignore r/m.
723     MRM0X = 56,  MRM1X = 57,  MRM2X = 58,  MRM3X = 59, // Format /0 /1 /2 /3
724     MRM4X = 60,  MRM5X = 61,  MRM6X = 62,  MRM7X = 63, // Format /4 /5 /6 /7
725 
726     /// MRM_XX - A mod/rm byte of exactly 0xXX.
727     MRM_C0 = 64,  MRM_C1 = 65,  MRM_C2 = 66,  MRM_C3 = 67,
728     MRM_C4 = 68,  MRM_C5 = 69,  MRM_C6 = 70,  MRM_C7 = 71,
729     MRM_C8 = 72,  MRM_C9 = 73,  MRM_CA = 74,  MRM_CB = 75,
730     MRM_CC = 76,  MRM_CD = 77,  MRM_CE = 78,  MRM_CF = 79,
731     MRM_D0 = 80,  MRM_D1 = 81,  MRM_D2 = 82,  MRM_D3 = 83,
732     MRM_D4 = 84,  MRM_D5 = 85,  MRM_D6 = 86,  MRM_D7 = 87,
733     MRM_D8 = 88,  MRM_D9 = 89,  MRM_DA = 90,  MRM_DB = 91,
734     MRM_DC = 92,  MRM_DD = 93,  MRM_DE = 94,  MRM_DF = 95,
735     MRM_E0 = 96,  MRM_E1 = 97,  MRM_E2 = 98,  MRM_E3 = 99,
736     MRM_E4 = 100, MRM_E5 = 101, MRM_E6 = 102, MRM_E7 = 103,
737     MRM_E8 = 104, MRM_E9 = 105, MRM_EA = 106, MRM_EB = 107,
738     MRM_EC = 108, MRM_ED = 109, MRM_EE = 110, MRM_EF = 111,
739     MRM_F0 = 112, MRM_F1 = 113, MRM_F2 = 114, MRM_F3 = 115,
740     MRM_F4 = 116, MRM_F5 = 117, MRM_F6 = 118, MRM_F7 = 119,
741     MRM_F8 = 120, MRM_F9 = 121, MRM_FA = 122, MRM_FB = 123,
742     MRM_FC = 124, MRM_FD = 125, MRM_FE = 126, MRM_FF = 127,
743 
744     FormMask       = 127,
745 
746     //===------------------------------------------------------------------===//
747     // Actual flags...
748 
749     // OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
750     // OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
751     // 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
752     // prefix in 16-bit mode.
753     OpSizeShift = 7,
754     OpSizeMask = 0x3 << OpSizeShift,
755 
756     OpSizeFixed  = 0 << OpSizeShift,
757     OpSize16     = 1 << OpSizeShift,
758     OpSize32     = 2 << OpSizeShift,
759 
760     // AsSize - AdSizeX implies this instruction determines its need of 0x67
761     // prefix from a normal ModRM memory operand. The other types indicate that
762     // an operand is encoded with a specific width and a prefix is needed if
763     // it differs from the current mode.
764     AdSizeShift = OpSizeShift + 2,
765     AdSizeMask  = 0x3 << AdSizeShift,
766 
767     AdSizeX  = 0 << AdSizeShift,
768     AdSize16 = 1 << AdSizeShift,
769     AdSize32 = 2 << AdSizeShift,
770     AdSize64 = 3 << AdSizeShift,
771 
772     //===------------------------------------------------------------------===//
773     // OpPrefix - There are several prefix bytes that are used as opcode
774     // extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
775     // no prefix.
776     //
777     OpPrefixShift = AdSizeShift + 2,
778     OpPrefixMask  = 0x3 << OpPrefixShift,
779 
780     // PD - Prefix code for packed double precision vector floating point
781     // operations performed in the SSE registers.
782     PD = 1 << OpPrefixShift,
783 
784     // XS, XD - These prefix codes are for single and double precision scalar
785     // floating point operations performed in the SSE registers.
786     XS = 2 << OpPrefixShift,  XD = 3 << OpPrefixShift,
787 
788     //===------------------------------------------------------------------===//
789     // OpMap - This field determines which opcode map this instruction
790     // belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
791     //
792     OpMapShift = OpPrefixShift + 2,
793     OpMapMask  = 0x7 << OpMapShift,
794 
795     // OB - OneByte - Set if this instruction has a one byte opcode.
796     OB = 0 << OpMapShift,
797 
798     // TB - TwoByte - Set if this instruction has a two byte opcode, which
799     // starts with a 0x0F byte before the real opcode.
800     TB = 1 << OpMapShift,
801 
802     // T8, TA - Prefix after the 0x0F prefix.
803     T8 = 2 << OpMapShift,  TA = 3 << OpMapShift,
804 
805     // XOP8 - Prefix to include use of imm byte.
806     XOP8 = 4 << OpMapShift,
807 
808     // XOP9 - Prefix to exclude use of imm byte.
809     XOP9 = 5 << OpMapShift,
810 
811     // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
812     XOPA = 6 << OpMapShift,
813 
814     /// ThreeDNow - This indicates that the instruction uses the
815     /// wacky 0x0F 0x0F prefix for 3DNow! instructions.  The manual documents
816     /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
817     /// storing a classifier in the imm8 field.  To simplify our implementation,
818     /// we handle this by storeing the classifier in the opcode field and using
819     /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
820     ThreeDNow = 7 << OpMapShift,
821 
822     //===------------------------------------------------------------------===//
823     // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
824     // They are used to specify GPRs and SSE registers, 64-bit operand size,
825     // etc. We only cares about REX.W and REX.R bits and only the former is
826     // statically determined.
827     //
828     REXShift    = OpMapShift + 3,
829     REX_W       = 1 << REXShift,
830 
831     //===------------------------------------------------------------------===//
832     // This three-bit field describes the size of an immediate operand.  Zero is
833     // unused so that we can tell if we forgot to set a value.
834     ImmShift = REXShift + 1,
835     ImmMask    = 15 << ImmShift,
836     Imm8       = 1 << ImmShift,
837     Imm8PCRel  = 2 << ImmShift,
838     Imm8Reg    = 3 << ImmShift,
839     Imm16      = 4 << ImmShift,
840     Imm16PCRel = 5 << ImmShift,
841     Imm32      = 6 << ImmShift,
842     Imm32PCRel = 7 << ImmShift,
843     Imm32S     = 8 << ImmShift,
844     Imm64      = 9 << ImmShift,
845 
846     //===------------------------------------------------------------------===//
847     // FP Instruction Classification...  Zero is non-fp instruction.
848 
849     // FPTypeMask - Mask for all of the FP types...
850     FPTypeShift = ImmShift + 4,
851     FPTypeMask  = 7 << FPTypeShift,
852 
853     // NotFP - The default, set for instructions that do not use FP registers.
854     NotFP      = 0 << FPTypeShift,
855 
856     // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
857     ZeroArgFP  = 1 << FPTypeShift,
858 
859     // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
860     OneArgFP   = 2 << FPTypeShift,
861 
862     // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
863     // result back to ST(0).  For example, fcos, fsqrt, etc.
864     //
865     OneArgFPRW = 3 << FPTypeShift,
866 
867     // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
868     // explicit argument, storing the result to either ST(0) or the implicit
869     // argument.  For example: fadd, fsub, fmul, etc...
870     TwoArgFP   = 4 << FPTypeShift,
871 
872     // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
873     // explicit argument, but have no destination.  Example: fucom, fucomi, ...
874     CompareFP  = 5 << FPTypeShift,
875 
876     // CondMovFP - "2 operand" floating point conditional move instructions.
877     CondMovFP  = 6 << FPTypeShift,
878 
879     // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
880     SpecialFP  = 7 << FPTypeShift,
881 
882     // Lock prefix
883     LOCKShift = FPTypeShift + 3,
884     LOCK = 1 << LOCKShift,
885 
886     // REP prefix
887     REPShift = LOCKShift + 1,
888     REP = 1 << REPShift,
889 
890     // Execution domain for SSE instructions.
891     // 0 means normal, non-SSE instruction.
892     SSEDomainShift = REPShift + 1,
893 
894     // Encoding
895     EncodingShift = SSEDomainShift + 2,
896     EncodingMask = 0x3 << EncodingShift,
897 
898     // VEX - encoding using 0xC4/0xC5
899     VEX = 1 << EncodingShift,
900 
901     /// XOP - Opcode prefix used by XOP instructions.
902     XOP = 2 << EncodingShift,
903 
904     // VEX_EVEX - Specifies that this instruction use EVEX form which provides
905     // syntax support up to 32 512-bit register operands and up to 7 16-bit
906     // mask operands as well as source operand data swizzling/memory operand
907     // conversion, eviction hint, and rounding mode.
908     EVEX = 3 << EncodingShift,
909 
910     // Opcode
911     OpcodeShift   = EncodingShift + 2,
912 
913     /// VEX_W - Has a opcode specific functionality, but is used in the same
914     /// way as REX_W is for regular SSE instructions.
915     VEX_WShift  = OpcodeShift + 8,
916     VEX_W       = 1ULL << VEX_WShift,
917 
918     /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
919     /// address instructions in SSE are represented as 3 address ones in AVX
920     /// and the additional register is encoded in VEX_VVVV prefix.
921     VEX_4VShift = VEX_WShift + 1,
922     VEX_4V      = 1ULL << VEX_4VShift,
923 
924     /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
925     /// instruction uses 256-bit wide registers. This is usually auto detected
926     /// if a VR256 register is used, but some AVX instructions also have this
927     /// field marked when using a f256 memory references.
928     VEX_LShift = VEX_4VShift + 1,
929     VEX_L       = 1ULL << VEX_LShift,
930 
931     // EVEX_K - Set if this instruction requires masking
932     EVEX_KShift = VEX_LShift + 1,
933     EVEX_K      = 1ULL << EVEX_KShift,
934 
935     // EVEX_Z - Set if this instruction has EVEX.Z field set.
936     EVEX_ZShift = EVEX_KShift + 1,
937     EVEX_Z      = 1ULL << EVEX_ZShift,
938 
939     // EVEX_L2 - Set if this instruction has EVEX.L' field set.
940     EVEX_L2Shift = EVEX_ZShift + 1,
941     EVEX_L2     = 1ULL << EVEX_L2Shift,
942 
943     // EVEX_B - Set if this instruction has EVEX.B field set.
944     EVEX_BShift = EVEX_L2Shift + 1,
945     EVEX_B      = 1ULL << EVEX_BShift,
946 
947     // The scaling factor for the AVX512's 8-bit compressed displacement.
948     CD8_Scale_Shift = EVEX_BShift + 1,
949     CD8_Scale_Mask = 127ULL << CD8_Scale_Shift,
950 
951     /// Explicitly specified rounding control
952     EVEX_RCShift = CD8_Scale_Shift + 7,
953     EVEX_RC = 1ULL << EVEX_RCShift,
954 
955     // NOTRACK prefix
956     NoTrackShift = EVEX_RCShift + 1,
957     NOTRACK = 1ULL << NoTrackShift,
958 
959     // Force VEX encoding
960     ExplicitVEXShift = NoTrackShift + 1,
961     ExplicitVEXPrefix = 1ULL << ExplicitVEXShift
962   };
963 
964   /// \returns true if the instruction with given opcode is a prefix.
isPrefix(uint64_t TSFlags)965   inline bool isPrefix(uint64_t TSFlags) {
966     return (TSFlags & X86II::FormMask) == PrefixByte;
967   }
968 
969   /// \returns true if the instruction with given opcode is a pseudo.
isPseudo(uint64_t TSFlags)970   inline bool isPseudo(uint64_t TSFlags) {
971     return (TSFlags & X86II::FormMask) == Pseudo;
972   }
973 
974   /// \returns the "base" X86 opcode for the specified machine
975   /// instruction.
getBaseOpcodeFor(uint64_t TSFlags)976   inline uint8_t getBaseOpcodeFor(uint64_t TSFlags) {
977     return TSFlags >> X86II::OpcodeShift;
978   }
979 
hasImm(uint64_t TSFlags)980   inline bool hasImm(uint64_t TSFlags) {
981     return (TSFlags & X86II::ImmMask) != 0;
982   }
983 
984   /// Decode the "size of immediate" field from the TSFlags field of the
985   /// specified instruction.
getSizeOfImm(uint64_t TSFlags)986   inline unsigned getSizeOfImm(uint64_t TSFlags) {
987     switch (TSFlags & X86II::ImmMask) {
988     default: llvm_unreachable("Unknown immediate size");
989     case X86II::Imm8:
990     case X86II::Imm8PCRel:
991     case X86II::Imm8Reg:    return 1;
992     case X86II::Imm16:
993     case X86II::Imm16PCRel: return 2;
994     case X86II::Imm32:
995     case X86II::Imm32S:
996     case X86II::Imm32PCRel: return 4;
997     case X86II::Imm64:      return 8;
998     }
999   }
1000 
1001   /// \returns true if the immediate of the specified instruction's TSFlags
1002   /// indicates that it is pc relative.
isImmPCRel(uint64_t TSFlags)1003   inline bool isImmPCRel(uint64_t TSFlags) {
1004     switch (TSFlags & X86II::ImmMask) {
1005     default: llvm_unreachable("Unknown immediate size");
1006     case X86II::Imm8PCRel:
1007     case X86II::Imm16PCRel:
1008     case X86II::Imm32PCRel:
1009       return true;
1010     case X86II::Imm8:
1011     case X86II::Imm8Reg:
1012     case X86II::Imm16:
1013     case X86II::Imm32:
1014     case X86II::Imm32S:
1015     case X86II::Imm64:
1016       return false;
1017     }
1018   }
1019 
1020   /// \returns true if the immediate of the specified instruction's
1021   /// TSFlags indicates that it is signed.
isImmSigned(uint64_t TSFlags)1022   inline bool isImmSigned(uint64_t TSFlags) {
1023     switch (TSFlags & X86II::ImmMask) {
1024     default: llvm_unreachable("Unknown immediate signedness");
1025     case X86II::Imm32S:
1026       return true;
1027     case X86II::Imm8:
1028     case X86II::Imm8PCRel:
1029     case X86II::Imm8Reg:
1030     case X86II::Imm16:
1031     case X86II::Imm16PCRel:
1032     case X86II::Imm32:
1033     case X86II::Imm32PCRel:
1034     case X86II::Imm64:
1035       return false;
1036     }
1037   }
1038 
1039   /// Compute whether all of the def operands are repeated in the uses and
1040   /// therefore should be skipped.
1041   /// This determines the start of the unique operand list. We need to determine
1042   /// if all of the defs have a corresponding tied operand in the uses.
1043   /// Unfortunately, the tied operand information is encoded in the uses not
1044   /// the defs so we have to use some heuristics to find which operands to
1045   /// query.
getOperandBias(const MCInstrDesc & Desc)1046   inline unsigned getOperandBias(const MCInstrDesc& Desc) {
1047     unsigned NumDefs = Desc.getNumDefs();
1048     unsigned NumOps = Desc.getNumOperands();
1049     switch (NumDefs) {
1050     default: llvm_unreachable("Unexpected number of defs");
1051     case 0:
1052       return 0;
1053     case 1:
1054       // Common two addr case.
1055       if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
1056         return 1;
1057       // Check for AVX-512 scatter which has a TIED_TO in the second to last
1058       // operand.
1059       if (NumOps == 8 &&
1060           Desc.getOperandConstraint(6, MCOI::TIED_TO) == 0)
1061         return 1;
1062       return 0;
1063     case 2:
1064       // XCHG/XADD have two destinations and two sources.
1065       if (NumOps >= 4 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
1066           Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
1067         return 2;
1068       // Check for gather. AVX-512 has the second tied operand early. AVX2
1069       // has it as the last op.
1070       if (NumOps == 9 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
1071           (Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1 ||
1072            Desc.getOperandConstraint(8, MCOI::TIED_TO) == 1))
1073         return 2;
1074       return 0;
1075     }
1076   }
1077 
1078   /// The function returns the MCInst operand # for the first field of the
1079   /// memory operand.  If the instruction doesn't have a
1080   /// memory operand, this returns -1.
1081   ///
1082   /// Note that this ignores tied operands.  If there is a tied register which
1083   /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
1084   /// counted as one operand.
1085   ///
getMemoryOperandNo(uint64_t TSFlags)1086   inline int getMemoryOperandNo(uint64_t TSFlags) {
1087     bool HasVEX_4V = TSFlags & X86II::VEX_4V;
1088     bool HasEVEX_K = TSFlags & X86II::EVEX_K;
1089 
1090     switch (TSFlags & X86II::FormMask) {
1091     default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
1092     case X86II::Pseudo:
1093     case X86II::RawFrm:
1094     case X86II::AddRegFrm:
1095     case X86II::RawFrmImm8:
1096     case X86II::RawFrmImm16:
1097     case X86II::RawFrmMemOffs:
1098     case X86II::RawFrmSrc:
1099     case X86II::RawFrmDst:
1100     case X86II::RawFrmDstSrc:
1101     case X86II::AddCCFrm:
1102     case X86II::PrefixByte:
1103       return -1;
1104     case X86II::MRMDestMem:
1105     case X86II::MRMDestMemFSIB:
1106       return 0;
1107     case X86II::MRMSrcMem:
1108     case X86II::MRMSrcMemFSIB:
1109       // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
1110       // mask register.
1111       return 1 + HasVEX_4V + HasEVEX_K;
1112     case X86II::MRMSrcMem4VOp3:
1113       // Skip registers encoded in reg.
1114       return 1 + HasEVEX_K;
1115     case X86II::MRMSrcMemOp4:
1116       // Skip registers encoded in reg, VEX_VVVV, and I8IMM.
1117       return 3;
1118     case X86II::MRMSrcMemCC:
1119       // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
1120       // mask register.
1121       return 1;
1122     case X86II::MRMDestReg:
1123     case X86II::MRMSrcReg:
1124     case X86II::MRMSrcReg4VOp3:
1125     case X86II::MRMSrcRegOp4:
1126     case X86II::MRMSrcRegCC:
1127     case X86II::MRMXrCC:
1128     case X86II::MRMr0:
1129     case X86II::MRMXr:
1130     case X86II::MRM0r: case X86II::MRM1r:
1131     case X86II::MRM2r: case X86II::MRM3r:
1132     case X86II::MRM4r: case X86II::MRM5r:
1133     case X86II::MRM6r: case X86II::MRM7r:
1134       return -1;
1135     case X86II::MRM0X: case X86II::MRM1X:
1136     case X86II::MRM2X: case X86II::MRM3X:
1137     case X86II::MRM4X: case X86II::MRM5X:
1138     case X86II::MRM6X: case X86II::MRM7X:
1139       return -1;
1140     case X86II::MRMXmCC:
1141     case X86II::MRMXm:
1142     case X86II::MRM0m: case X86II::MRM1m:
1143     case X86II::MRM2m: case X86II::MRM3m:
1144     case X86II::MRM4m: case X86II::MRM5m:
1145     case X86II::MRM6m: case X86II::MRM7m:
1146       // Start from 0, skip registers encoded in VEX_VVVV or a mask register.
1147       return 0 + HasVEX_4V + HasEVEX_K;
1148     case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
1149     case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5:
1150     case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8:
1151     case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
1152     case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE:
1153     case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
1154     case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4:
1155     case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7:
1156     case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA:
1157     case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD:
1158     case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0:
1159     case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3:
1160     case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6:
1161     case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9:
1162     case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
1163     case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF:
1164     case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2:
1165     case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5:
1166     case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8:
1167     case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB:
1168     case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE:
1169     case X86II::MRM_FF:
1170       return -1;
1171     }
1172   }
1173 
1174   /// \returns true if the MachineOperand is a x86-64 extended (r8 or
1175   /// higher) register,  e.g. r8, xmm8, xmm13, etc.
isX86_64ExtendedReg(unsigned RegNo)1176   inline bool isX86_64ExtendedReg(unsigned RegNo) {
1177     if ((RegNo >= X86::XMM8 && RegNo <= X86::XMM31) ||
1178         (RegNo >= X86::YMM8 && RegNo <= X86::YMM31) ||
1179         (RegNo >= X86::ZMM8 && RegNo <= X86::ZMM31))
1180       return true;
1181 
1182     switch (RegNo) {
1183     default: break;
1184     case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
1185     case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
1186     case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
1187     case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
1188     case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
1189     case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
1190     case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
1191     case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
1192     case X86::CR8:   case X86::CR9:   case X86::CR10:  case X86::CR11:
1193     case X86::CR12:  case X86::CR13:  case X86::CR14:  case X86::CR15:
1194     case X86::DR8:   case X86::DR9:   case X86::DR10:  case X86::DR11:
1195     case X86::DR12:  case X86::DR13:  case X86::DR14:  case X86::DR15:
1196       return true;
1197     }
1198     return false;
1199   }
1200 
1201   /// \returns true if the MemoryOperand is a 32 extended (zmm16 or higher)
1202   /// registers, e.g. zmm21, etc.
is32ExtendedReg(unsigned RegNo)1203   static inline bool is32ExtendedReg(unsigned RegNo) {
1204     return ((RegNo >= X86::XMM16 && RegNo <= X86::XMM31) ||
1205             (RegNo >= X86::YMM16 && RegNo <= X86::YMM31) ||
1206             (RegNo >= X86::ZMM16 && RegNo <= X86::ZMM31));
1207   }
1208 
1209 
isX86_64NonExtLowByteReg(unsigned reg)1210   inline bool isX86_64NonExtLowByteReg(unsigned reg) {
1211     return (reg == X86::SPL || reg == X86::BPL ||
1212             reg == X86::SIL || reg == X86::DIL);
1213   }
1214 
1215   /// \returns true if this is a masked instruction.
isKMasked(uint64_t TSFlags)1216   inline bool isKMasked(uint64_t TSFlags) {
1217     return (TSFlags & X86II::EVEX_K) != 0;
1218   }
1219 
1220   /// \returns true if this is a merge masked instruction.
isKMergeMasked(uint64_t TSFlags)1221   inline bool isKMergeMasked(uint64_t TSFlags) {
1222     return isKMasked(TSFlags) && (TSFlags & X86II::EVEX_Z) == 0;
1223   }
1224 }
1225 
1226 } // end namespace llvm;
1227 
1228 #endif
1229