xref: /netbsd/external/bsd/ntp/dist/ntpd/refclock_wwv.c (revision 9034ec65)
1 /*	$NetBSD: refclock_wwv.c,v 1.8 2020/05/25 20:47:26 christos Exp $	*/
2 
3 /*
4  * refclock_wwv - clock driver for NIST WWV/H time/frequency station
5  */
6 #ifdef HAVE_CONFIG_H
7 #include <config.h>
8 #endif
9 
10 #if defined(REFCLOCK) && defined(CLOCK_WWV)
11 
12 #include "ntpd.h"
13 #include "ntp_io.h"
14 #include "ntp_refclock.h"
15 #include "ntp_calendar.h"
16 #include "ntp_stdlib.h"
17 #include "audio.h"
18 
19 #include <stdio.h>
20 #include <ctype.h>
21 #include <math.h>
22 #ifdef HAVE_SYS_IOCTL_H
23 # include <sys/ioctl.h>
24 #endif /* HAVE_SYS_IOCTL_H */
25 
26 #define ICOM 1
27 
28 #ifdef ICOM
29 #include "icom.h"
30 #endif /* ICOM */
31 
32 /*
33  * Audio WWV/H demodulator/decoder
34  *
35  * This driver synchronizes the computer time using data encoded in
36  * radio transmissions from NIST time/frequency stations WWV in Boulder,
37  * CO, and WWVH in Kauai, HI. Transmissions are made continuously on
38  * 2.5, 5, 10 and 15 MHz from WWV and WWVH, and 20 MHz from WWV. An
39  * ordinary AM shortwave receiver can be tuned manually to one of these
40  * frequencies or, in the case of ICOM receivers, the receiver can be
41  * tuned automatically using this program as propagation conditions
42  * change throughout the weasons, both day and night.
43  *
44  * The driver requires an audio codec or sound card with sampling rate 8
45  * kHz and mu-law companding. This is the same standard as used by the
46  * telephone industry and is supported by most hardware and operating
47  * systems, including Solaris, SunOS, FreeBSD, NetBSD and Linux. In this
48  * implementation, only one audio driver and codec can be supported on a
49  * single machine.
50  *
51  * The demodulation and decoding algorithms used in this driver are
52  * based on those developed for the TAPR DSP93 development board and the
53  * TI 320C25 digital signal processor described in: Mills, D.L. A
54  * precision radio clock for WWV transmissions. Electrical Engineering
55  * Report 97-8-1, University of Delaware, August 1997, 25 pp., available
56  * from www.eecis.udel.edu/~mills/reports.html. The algorithms described
57  * in this report have been modified somewhat to improve performance
58  * under weak signal conditions and to provide an automatic station
59  * identification feature.
60  *
61  * The ICOM code is normally compiled in the driver. It isn't used,
62  * unless the mode keyword on the server configuration command specifies
63  * a nonzero ICOM ID select code. The C-IV trace is turned on if the
64  * debug level is greater than one.
65  *
66  * Fudge factors
67  *
68  * Fudge flag4 causes the debugging output described above to be
69  * recorded in the clockstats file. Fudge flag2 selects the audio input
70  * port, where 0 is the mike port (default) and 1 is the line-in port.
71  * It does not seem useful to select the compact disc player port. Fudge
72  * flag3 enables audio monitoring of the input signal. For this purpose,
73  * the monitor gain is set to a default value.
74  *
75  * CEVNT_BADTIME	invalid date or time
76  * CEVNT_PROP		propagation failure - no stations heard
77  * CEVNT_TIMEOUT	timeout (see newgame() below)
78  */
79 /*
80  * General definitions. These ordinarily do not need to be changed.
81  */
82 #define	DEVICE_AUDIO	"/dev/audio" /* audio device name */
83 #define	AUDIO_BUFSIZ	320	/* audio buffer size (50 ms) */
84 #define	PRECISION	(-10)	/* precision assumed (about 1 ms) */
85 #define	DESCRIPTION	"WWV/H Audio Demodulator/Decoder" /* WRU */
86 #define WWV_SEC		8000	/* second epoch (sample rate) (Hz) */
87 #define WWV_MIN		(WWV_SEC * 60) /* minute epoch */
88 #define OFFSET		128	/* companded sample offset */
89 #define SIZE		256	/* decompanding table size */
90 #define	MAXAMP		6000.	/* max signal level reference */
91 #define	MAXCLP		100	/* max clips above reference per s */
92 #define MAXSNR		40.	/* max SNR reference */
93 #define MAXFREQ		1.5	/* max frequency tolerance (187 PPM) */
94 #define DATCYC		170	/* data filter cycles */
95 #define DATSIZ		(DATCYC * MS) /* data filter size */
96 #define SYNCYC		800	/* minute filter cycles */
97 #define SYNSIZ		(SYNCYC * MS) /* minute filter size */
98 #define TCKCYC		5	/* tick filter cycles */
99 #define TCKSIZ		(TCKCYC * MS) /* tick filter size */
100 #define NCHAN		5	/* number of radio channels */
101 #define	AUDIO_PHI	5e-6	/* dispersion growth factor */
102 #define	TBUF		128	/* max monitor line length */
103 
104 /*
105  * Tunable parameters. The DGAIN parameter can be changed to fit the
106  * audio response of the radio at 100 Hz. The WWV/WWVH data subcarrier
107  * is transmitted at about 20 percent percent modulation; the matched
108  * filter boosts it by a factor of 17 and the receiver response does
109  * what it does. The compromise value works for ICOM radios. If the
110  * radio is not tunable, the DCHAN parameter can be changed to fit the
111  * expected best propagation frequency: higher if further from the
112  * transmitter, lower if nearer. The compromise value works for the US
113  * right coast.
114  */
115 #define DCHAN		3	/* default radio channel (15 Mhz) */
116 #define DGAIN		5.	/* subcarrier gain */
117 
118 /*
119  * General purpose status bits (status)
120  *
121  * SELV and/or SELH are set when WWV or WWVH have been heard and cleared
122  * on signal loss. SSYNC is set when the second sync pulse has been
123  * acquired and cleared by signal loss. MSYNC is set when the minute
124  * sync pulse has been acquired. DSYNC is set when the units digit has
125  * has reached the threshold and INSYNC is set when all nine digits have
126  * reached the threshold. The MSYNC, DSYNC and INSYNC bits are cleared
127  * only by timeout, upon which the driver starts over from scratch.
128  *
129  * DGATE is lit if the data bit amplitude or SNR is below thresholds and
130  * BGATE is lit if the pulse width amplitude or SNR is below thresolds.
131  * LEPSEC is set during the last minute of the leap day. At the end of
132  * this minute the driver inserts second 60 in the seconds state machine
133  * and the minute sync slips a second.
134  */
135 #define MSYNC		0x0001	/* minute epoch sync */
136 #define SSYNC		0x0002	/* second epoch sync */
137 #define DSYNC		0x0004	/* minute units sync */
138 #define INSYNC		0x0008	/* clock synchronized */
139 #define FGATE		0x0010	/* frequency gate */
140 #define DGATE		0x0020	/* data pulse amplitude error */
141 #define BGATE		0x0040	/* data pulse width error */
142 #define	METRIC		0x0080	/* one or more stations heard */
143 #define LEPSEC		0x1000	/* leap minute */
144 
145 /*
146  * Station scoreboard bits
147  *
148  * These are used to establish the signal quality for each of the five
149  * frequencies and two stations.
150  */
151 #define SELV		0x0100	/* WWV station select */
152 #define SELH		0x0200	/* WWVH station select */
153 
154 /*
155  * Alarm status bits (alarm)
156  *
157  * These bits indicate various alarm conditions, which are decoded to
158  * form the quality character included in the timecode.
159  */
160 #define CMPERR		0x1	/* digit or misc bit compare error */
161 #define LOWERR		0x2	/* low bit or digit amplitude or SNR */
162 #define NINERR		0x4	/* less than nine digits in minute */
163 #define SYNERR		0x8	/* not tracking second sync */
164 
165 /*
166  * Watchcat timeouts (watch)
167  *
168  * If these timeouts expire, the status bits are mashed to zero and the
169  * driver starts from scratch. Suitably more refined procedures may be
170  * developed in future. All these are in minutes.
171  */
172 #define ACQSN		6	/* station acquisition timeout */
173 #define DATA		15	/* unit minutes timeout */
174 #define SYNCH		40	/* station sync timeout */
175 #define PANIC		(2 * 1440) /* panic timeout */
176 
177 /*
178  * Thresholds. These establish the minimum signal level, minimum SNR and
179  * maximum jitter thresholds which establish the error and false alarm
180  * rates of the driver. The values defined here may be on the
181  * adventurous side in the interest of the highest sensitivity.
182  */
183 #define MTHR		13.	/* minute sync gate (percent) */
184 #define TTHR		50.	/* minute sync threshold (percent) */
185 #define AWND		20	/* minute sync jitter threshold (ms) */
186 #define ATHR		2500.	/* QRZ minute sync threshold */
187 #define ASNR		20.	/* QRZ minute sync SNR threshold (dB) */
188 #define QTHR		2500.	/* QSY minute sync threshold */
189 #define QSNR		20.	/* QSY minute sync SNR threshold (dB) */
190 #define STHR		2500.	/* second sync threshold */
191 #define	SSNR		15.	/* second sync SNR threshold (dB) */
192 #define SCMP		10 	/* second sync compare threshold */
193 #define DTHR		1000.	/* bit threshold */
194 #define DSNR		10.	/* bit SNR threshold (dB) */
195 #define AMIN		3	/* min bit count */
196 #define AMAX		6	/* max bit count */
197 #define BTHR		1000.	/* digit threshold */
198 #define BSNR		3.	/* digit likelihood threshold (dB) */
199 #define BCMP		3	/* digit compare threshold */
200 #define	MAXERR		40	/* maximum error alarm */
201 
202 /*
203  * Tone frequency definitions. The increments are for 4.5-deg sine
204  * table.
205  */
206 #define MS		(WWV_SEC / 1000) /* samples per millisecond */
207 #define IN100		((100 * 80) / WWV_SEC) /* 100 Hz increment */
208 #define IN1000		((1000 * 80) / WWV_SEC) /* 1000 Hz increment */
209 #define IN1200		((1200 * 80) / WWV_SEC) /* 1200 Hz increment */
210 
211 /*
212  * Acquisition and tracking time constants
213  */
214 #define MINAVG		8	/* min averaging time */
215 #define MAXAVG		1024	/* max averaging time */
216 #define FCONST		3	/* frequency time constant */
217 #define TCONST		16	/* data bit/digit time constant */
218 
219 /*
220  * Miscellaneous status bits (misc)
221  *
222  * These bits correspond to designated bits in the WWV/H timecode. The
223  * bit probabilities are exponentially averaged over several minutes and
224  * processed by a integrator and threshold.
225  */
226 #define DUT1		0x01	/* 56 DUT .1 */
227 #define DUT2		0x02	/* 57 DUT .2 */
228 #define DUT4		0x04	/* 58 DUT .4 */
229 #define DUTS		0x08	/* 50 DUT sign */
230 #define DST1		0x10	/* 55 DST1 leap warning */
231 #define DST2		0x20	/* 2 DST2 DST1 delayed one day */
232 #define SECWAR		0x40	/* 3 leap second warning */
233 
234 /*
235  * The on-time synchronization point is the positive-going zero crossing
236  * of the first cycle of the 5-ms second pulse. The IIR baseband filter
237  * phase delay is 0.91 ms, while the receiver delay is approximately 4.7
238  * ms at 1000 Hz. The fudge value -0.45 ms due to the codec and other
239  * causes was determined by calibrating to a PPS signal from a GPS
240  * receiver. The additional propagation delay specific to each receiver
241  * location can be  programmed in the fudge time1 and time2 values for
242  * WWV and WWVH, respectively.
243  *
244  * The resulting offsets with a 2.4-GHz P4 running FreeBSD 6.1 are
245  * generally within .02 ms short-term with .02 ms jitter. The long-term
246  * offsets vary up to 0.3 ms due to ionosperhic layer height variations.
247  * The processor load due to the driver is 5.8 percent.
248  */
249 #define PDELAY	((.91 + 4.7 - 0.45) / 1000) /* system delay (s) */
250 
251 /*
252  * Table of sine values at 4.5-degree increments. This is used by the
253  * synchronous matched filter demodulators.
254  */
255 double sintab[] = {
256  0.000000e+00,  7.845910e-02,  1.564345e-01,  2.334454e-01, /* 0-3 */
257  3.090170e-01,  3.826834e-01,  4.539905e-01,  5.224986e-01, /* 4-7 */
258  5.877853e-01,  6.494480e-01,  7.071068e-01,  7.604060e-01, /* 8-11 */
259  8.090170e-01,  8.526402e-01,  8.910065e-01,  9.238795e-01, /* 12-15 */
260  9.510565e-01,  9.723699e-01,  9.876883e-01,  9.969173e-01, /* 16-19 */
261  1.000000e+00,  9.969173e-01,  9.876883e-01,  9.723699e-01, /* 20-23 */
262  9.510565e-01,  9.238795e-01,  8.910065e-01,  8.526402e-01, /* 24-27 */
263  8.090170e-01,  7.604060e-01,  7.071068e-01,  6.494480e-01, /* 28-31 */
264  5.877853e-01,  5.224986e-01,  4.539905e-01,  3.826834e-01, /* 32-35 */
265  3.090170e-01,  2.334454e-01,  1.564345e-01,  7.845910e-02, /* 36-39 */
266 -0.000000e+00, -7.845910e-02, -1.564345e-01, -2.334454e-01, /* 40-43 */
267 -3.090170e-01, -3.826834e-01, -4.539905e-01, -5.224986e-01, /* 44-47 */
268 -5.877853e-01, -6.494480e-01, -7.071068e-01, -7.604060e-01, /* 48-51 */
269 -8.090170e-01, -8.526402e-01, -8.910065e-01, -9.238795e-01, /* 52-55 */
270 -9.510565e-01, -9.723699e-01, -9.876883e-01, -9.969173e-01, /* 56-59 */
271 -1.000000e+00, -9.969173e-01, -9.876883e-01, -9.723699e-01, /* 60-63 */
272 -9.510565e-01, -9.238795e-01, -8.910065e-01, -8.526402e-01, /* 64-67 */
273 -8.090170e-01, -7.604060e-01, -7.071068e-01, -6.494480e-01, /* 68-71 */
274 -5.877853e-01, -5.224986e-01, -4.539905e-01, -3.826834e-01, /* 72-75 */
275 -3.090170e-01, -2.334454e-01, -1.564345e-01, -7.845910e-02, /* 76-79 */
276  0.000000e+00};						    /* 80 */
277 
278 /*
279  * Decoder operations at the end of each second are driven by a state
280  * machine. The transition matrix consists of a dispatch table indexed
281  * by second number. Each entry in the table contains a case switch
282  * number and argument.
283  */
284 struct progx {
285 	int sw;			/* case switch number */
286 	int arg;		/* argument */
287 };
288 
289 /*
290  * Case switch numbers
291  */
292 #define IDLE		0	/* no operation */
293 #define COEF		1	/* BCD bit */
294 #define COEF1		2	/* BCD bit for minute unit */
295 #define COEF2		3	/* BCD bit not used */
296 #define DECIM9		4	/* BCD digit 0-9 */
297 #define DECIM6		5	/* BCD digit 0-6 */
298 #define DECIM3		6	/* BCD digit 0-3 */
299 #define DECIM2		7	/* BCD digit 0-2 */
300 #define MSCBIT		8	/* miscellaneous bit */
301 #define MSC20		9	/* miscellaneous bit */
302 #define MSC21		10	/* QSY probe channel */
303 #define MIN1		11	/* latch time */
304 #define MIN2		12	/* leap second */
305 #define SYNC2		13	/* latch minute sync pulse */
306 #define SYNC3		14	/* latch data pulse */
307 
308 /*
309  * Offsets in decoding matrix
310  */
311 #define MN		0	/* minute digits (2) */
312 #define HR		2	/* hour digits (2) */
313 #define DA		4	/* day digits (3) */
314 #define YR		7	/* year digits (2) */
315 
316 struct progx progx[] = {
317 	{SYNC2,	0},		/* 0 latch minute sync pulse */
318 	{SYNC3,	0},		/* 1 latch data pulse */
319 	{MSCBIT, DST2},		/* 2 dst2 */
320 	{MSCBIT, SECWAR},	/* 3 lw */
321 	{COEF,	0},		/* 4 1 year units */
322 	{COEF,	1},		/* 5 2 */
323 	{COEF,	2},		/* 6 4 */
324 	{COEF,	3},		/* 7 8 */
325 	{DECIM9, YR},		/* 8 */
326 	{IDLE,	0},		/* 9 p1 */
327 	{COEF1,	0},		/* 10 1 minute units */
328 	{COEF1,	1},		/* 11 2 */
329 	{COEF1,	2},		/* 12 4 */
330 	{COEF1,	3},		/* 13 8 */
331 	{DECIM9, MN},		/* 14 */
332 	{COEF,	0},		/* 15 10 minute tens */
333 	{COEF,	1},		/* 16 20 */
334 	{COEF,	2},		/* 17 40 */
335 	{COEF2,	3},		/* 18 80 (not used) */
336 	{DECIM6, MN + 1},	/* 19 p2 */
337 	{COEF,	0},		/* 20 1 hour units */
338 	{COEF,	1},		/* 21 2 */
339 	{COEF,	2},		/* 22 4 */
340 	{COEF,	3},		/* 23 8 */
341 	{DECIM9, HR},		/* 24 */
342 	{COEF,	0},		/* 25 10 hour tens */
343 	{COEF,	1},		/* 26 20 */
344 	{COEF2,	2},		/* 27 40 (not used) */
345 	{COEF2,	3},		/* 28 80 (not used) */
346 	{DECIM2, HR + 1},	/* 29 p3 */
347 	{COEF,	0},		/* 30 1 day units */
348 	{COEF,	1},		/* 31 2 */
349 	{COEF,	2},		/* 32 4 */
350 	{COEF,	3},		/* 33 8 */
351 	{DECIM9, DA},		/* 34 */
352 	{COEF,	0},		/* 35 10 day tens */
353 	{COEF,	1},		/* 36 20 */
354 	{COEF,	2},		/* 37 40 */
355 	{COEF,	3},		/* 38 80 */
356 	{DECIM9, DA + 1},	/* 39 p4 */
357 	{COEF,	0},		/* 40 100 day hundreds */
358 	{COEF,	1},		/* 41 200 */
359 	{COEF2,	2},		/* 42 400 (not used) */
360 	{COEF2,	3},		/* 43 800 (not used) */
361 	{DECIM3, DA + 2},	/* 44 */
362 	{IDLE,	0},		/* 45 */
363 	{IDLE,	0},		/* 46 */
364 	{IDLE,	0},		/* 47 */
365 	{IDLE,	0},		/* 48 */
366 	{IDLE,	0},		/* 49 p5 */
367 	{MSCBIT, DUTS},		/* 50 dut+- */
368 	{COEF,	0},		/* 51 10 year tens */
369 	{COEF,	1},		/* 52 20 */
370 	{COEF,	2},		/* 53 40 */
371 	{COEF,	3},		/* 54 80 */
372 	{MSC20, DST1},		/* 55 dst1 */
373 	{MSCBIT, DUT1},		/* 56 0.1 dut */
374 	{MSCBIT, DUT2},		/* 57 0.2 */
375 	{MSC21, DUT4},		/* 58 0.4 QSY probe channel */
376 	{MIN1,	0},		/* 59 p6 latch time */
377 	{MIN2,	0}		/* 60 leap second */
378 };
379 
380 /*
381  * BCD coefficients for maximum-likelihood digit decode
382  */
383 #define P15	1.		/* max positive number */
384 #define N15	-1.		/* max negative number */
385 
386 /*
387  * Digits 0-9
388  */
389 #define P9	(P15 / 4)	/* mark (+1) */
390 #define N9	(N15 / 4)	/* space (-1) */
391 
392 double bcd9[][4] = {
393 	{N9, N9, N9, N9}, 	/* 0 */
394 	{P9, N9, N9, N9}, 	/* 1 */
395 	{N9, P9, N9, N9}, 	/* 2 */
396 	{P9, P9, N9, N9}, 	/* 3 */
397 	{N9, N9, P9, N9}, 	/* 4 */
398 	{P9, N9, P9, N9}, 	/* 5 */
399 	{N9, P9, P9, N9}, 	/* 6 */
400 	{P9, P9, P9, N9}, 	/* 7 */
401 	{N9, N9, N9, P9}, 	/* 8 */
402 	{P9, N9, N9, P9}, 	/* 9 */
403 	{0, 0, 0, 0}		/* backstop */
404 };
405 
406 /*
407  * Digits 0-6 (minute tens)
408  */
409 #define P6	(P15 / 3)	/* mark (+1) */
410 #define N6	(N15 / 3)	/* space (-1) */
411 
412 double bcd6[][4] = {
413 	{N6, N6, N6, 0}, 	/* 0 */
414 	{P6, N6, N6, 0}, 	/* 1 */
415 	{N6, P6, N6, 0}, 	/* 2 */
416 	{P6, P6, N6, 0}, 	/* 3 */
417 	{N6, N6, P6, 0}, 	/* 4 */
418 	{P6, N6, P6, 0}, 	/* 5 */
419 	{N6, P6, P6, 0}, 	/* 6 */
420 	{0, 0, 0, 0}		/* backstop */
421 };
422 
423 /*
424  * Digits 0-3 (day hundreds)
425  */
426 #define P3	(P15 / 2)	/* mark (+1) */
427 #define N3	(N15 / 2)	/* space (-1) */
428 
429 double bcd3[][4] = {
430 	{N3, N3, 0, 0}, 	/* 0 */
431 	{P3, N3, 0, 0}, 	/* 1 */
432 	{N3, P3, 0, 0}, 	/* 2 */
433 	{P3, P3, 0, 0}, 	/* 3 */
434 	{0, 0, 0, 0}		/* backstop */
435 };
436 
437 /*
438  * Digits 0-2 (hour tens)
439  */
440 #define P2	(P15 / 2)	/* mark (+1) */
441 #define N2	(N15 / 2)	/* space (-1) */
442 
443 double bcd2[][4] = {
444 	{N2, N2, 0, 0}, 	/* 0 */
445 	{P2, N2, 0, 0}, 	/* 1 */
446 	{N2, P2, 0, 0}, 	/* 2 */
447 	{0, 0, 0, 0}		/* backstop */
448 };
449 
450 /*
451  * DST decode (DST2 DST1) for prettyprint
452  */
453 char dstcod[] = {
454 	'S',			/* 00 standard time */
455 	'I',			/* 01 set clock ahead at 0200 local */
456 	'O',			/* 10 set clock back at 0200 local */
457 	'D'			/* 11 daylight time */
458 };
459 
460 /*
461  * The decoding matrix consists of nine row vectors, one for each digit
462  * of the timecode. The digits are stored from least to most significant
463  * order. The maximum-likelihood timecode is formed from the digits
464  * corresponding to the maximum-likelihood values reading in the
465  * opposite order: yy ddd hh:mm.
466  */
467 struct decvec {
468 	int radix;		/* radix (3, 4, 6, 10) */
469 	int digit;		/* current clock digit */
470 	int count;		/* match count */
471 	double digprb;		/* max digit probability */
472 	double digsnr;		/* likelihood function (dB) */
473 	double like[10];	/* likelihood integrator 0-9 */
474 };
475 
476 /*
477  * The station structure (sp) is used to acquire the minute pulse from
478  * WWV and/or WWVH. These stations are distinguished by the frequency
479  * used for the second and minute sync pulses, 1000 Hz for WWV and 1200
480  * Hz for WWVH. Other than frequency, the format is the same.
481  */
482 struct sync {
483 	double	epoch;		/* accumulated epoch differences */
484 	double	maxeng;		/* sync max energy */
485 	double	noieng;		/* sync noise energy */
486 	long	pos;		/* max amplitude position */
487 	long	lastpos;	/* last max position */
488 	long	mepoch;		/* minute synch epoch */
489 
490 	double	amp;		/* sync signal */
491 	double	syneng;		/* sync signal max */
492 	double	synmax;		/* sync signal max latched at 0 s */
493 	double	synsnr;		/* sync signal SNR */
494 	double	metric;		/* signal quality metric */
495 	int	reach;		/* reachability register */
496 	int	count;		/* bit counter */
497 	int	select;		/* select bits */
498 	char	refid[5];	/* reference identifier */
499 };
500 
501 /*
502  * The channel structure (cp) is used to mitigate between channels.
503  */
504 struct chan {
505 	int	gain;		/* audio gain */
506 	struct sync wwv;	/* wwv station */
507 	struct sync wwvh;	/* wwvh station */
508 };
509 
510 /*
511  * WWV unit control structure (up)
512  */
513 struct wwvunit {
514 	l_fp	timestamp;	/* audio sample timestamp */
515 	l_fp	tick;		/* audio sample increment */
516 	double	phase, freq;	/* logical clock phase and frequency */
517 	double	monitor;	/* audio monitor point */
518 	double	pdelay;		/* propagation delay (s) */
519 #ifdef ICOM
520 	int	fd_icom;	/* ICOM file descriptor */
521 #endif /* ICOM */
522 	int	errflg;		/* error flags */
523 	int	watch;		/* watchcat */
524 
525 	/*
526 	 * Audio codec variables
527 	 */
528 	double	comp[SIZE];	/* decompanding table */
529  	int	port;		/* codec port */
530 	int	gain;		/* codec gain */
531 	int	mongain;	/* codec monitor gain */
532 	int	clipcnt;	/* sample clipped count */
533 
534 	/*
535 	 * Variables used to establish basic system timing
536 	 */
537 	int	avgint;		/* master time constant */
538 	int	yepoch;		/* sync epoch */
539 	int	repoch;		/* buffered sync epoch */
540 	double	epomax;		/* second sync amplitude */
541 	double	eposnr;		/* second sync SNR */
542 	double	irig;		/* data I channel amplitude */
543 	double	qrig;		/* data Q channel amplitude */
544 	int	datapt;		/* 100 Hz ramp */
545 	double	datpha;		/* 100 Hz VFO control */
546 	int	rphase;		/* second sample counter */
547 	long	mphase;		/* minute sample counter */
548 
549 	/*
550 	 * Variables used to mitigate which channel to use
551 	 */
552 	struct chan mitig[NCHAN]; /* channel data */
553 	struct sync *sptr;	/* station pointer */
554 	int	dchan;		/* data channel */
555 	int	schan;		/* probe channel */
556 	int	achan;		/* active channel */
557 
558 	/*
559 	 * Variables used by the clock state machine
560 	 */
561 	struct decvec decvec[9]; /* decoding matrix */
562 	int	rsec;		/* seconds counter */
563 	int	digcnt;		/* count of digits synchronized */
564 
565 	/*
566 	 * Variables used to estimate signal levels and bit/digit
567 	 * probabilities
568 	 */
569 	double	datsig;		/* data signal max */
570 	double	datsnr;		/* data signal SNR (dB) */
571 
572 	/*
573 	 * Variables used to establish status and alarm conditions
574 	 */
575 	int	status;		/* status bits */
576 	int	alarm;		/* alarm flashers */
577 	int	misc;		/* miscellaneous timecode bits */
578 	int	errcnt;		/* data bit error counter */
579 };
580 
581 /*
582  * Function prototypes
583  */
584 static	int	wwv_start	(int, struct peer *);
585 static	void	wwv_shutdown	(int, struct peer *);
586 static	void	wwv_receive	(struct recvbuf *);
587 static	void	wwv_poll	(int, struct peer *);
588 
589 /*
590  * More function prototypes
591  */
592 static	void	wwv_epoch	(struct peer *);
593 static	void	wwv_rf		(struct peer *, double);
594 static	void	wwv_endpoc	(struct peer *, int);
595 static	void	wwv_rsec	(struct peer *, double);
596 static	void	wwv_qrz		(struct peer *, struct sync *, int);
597 static	void	wwv_corr4	(struct peer *, struct decvec *,
598 				    double [], double [][4]);
599 static	void	wwv_gain	(struct peer *);
600 static	void	wwv_tsec	(struct peer *);
601 static	int	timecode	(struct wwvunit *, char *, size_t);
602 static	double	wwv_snr		(double, double);
603 static	int	carry		(struct decvec *);
604 static	int	wwv_newchan	(struct peer *);
605 static	void	wwv_newgame	(struct peer *);
606 static	double	wwv_metric	(struct sync *);
607 static	void	wwv_clock	(struct peer *);
608 #ifdef ICOM
609 static	int	wwv_qsy		(struct peer *, int);
610 #endif /* ICOM */
611 
612 static double qsy[NCHAN] = {2.5, 5, 10, 15, 20}; /* frequencies (MHz) */
613 
614 /*
615  * Transfer vector
616  */
617 struct	refclock refclock_wwv = {
618 	wwv_start,		/* start up driver */
619 	wwv_shutdown,		/* shut down driver */
620 	wwv_poll,		/* transmit poll message */
621 	noentry,		/* not used (old wwv_control) */
622 	noentry,		/* initialize driver (not used) */
623 	noentry,		/* not used (old wwv_buginfo) */
624 	NOFLAGS			/* not used */
625 };
626 
627 
628 /*
629  * wwv_start - open the devices and initialize data for processing
630  */
631 static int
wwv_start(int unit,struct peer * peer)632 wwv_start(
633 	int	unit,		/* instance number (used by PCM) */
634 	struct peer *peer	/* peer structure pointer */
635 	)
636 {
637 	struct refclockproc *pp;
638 	struct wwvunit *up;
639 #ifdef ICOM
640 	int	temp;
641 #endif /* ICOM */
642 
643 	/*
644 	 * Local variables
645 	 */
646 	int	fd;		/* file descriptor */
647 	int	i;		/* index */
648 	double	step;		/* codec adjustment */
649 
650 	/*
651 	 * Open audio device
652 	 */
653 	fd = audio_init(DEVICE_AUDIO, AUDIO_BUFSIZ, unit);
654 	if (fd < 0)
655 		return (0);
656 #ifdef DEBUG
657 	if (debug)
658 		audio_show();
659 #endif /* DEBUG */
660 
661 	/*
662 	 * Allocate and initialize unit structure
663 	 */
664 	up = emalloc_zero(sizeof(*up));
665 	pp = peer->procptr;
666 	pp->io.clock_recv = wwv_receive;
667 	pp->io.srcclock = peer;
668 	pp->io.datalen = 0;
669 	pp->io.fd = fd;
670 	if (!io_addclock(&pp->io)) {
671 		close(fd);
672 		free(up);
673 		return (0);
674 	}
675 	pp->unitptr = up;
676 
677 	/*
678 	 * Initialize miscellaneous variables
679 	 */
680 	peer->precision = PRECISION;
681 	pp->clockdesc = DESCRIPTION;
682 
683 	/*
684 	 * The companded samples are encoded sign-magnitude. The table
685 	 * contains all the 256 values in the interest of speed.
686 	 */
687 	up->comp[0] = up->comp[OFFSET] = 0.;
688 	up->comp[1] = 1.; up->comp[OFFSET + 1] = -1.;
689 	up->comp[2] = 3.; up->comp[OFFSET + 2] = -3.;
690 	step = 2.;
691 	for (i = 3; i < OFFSET; i++) {
692 		up->comp[i] = up->comp[i - 1] + step;
693 		up->comp[OFFSET + i] = -up->comp[i];
694 		if (i % 16 == 0)
695 			step *= 2.;
696 	}
697 	DTOLFP(1. / WWV_SEC, &up->tick);
698 
699 	/*
700 	 * Initialize the decoding matrix with the radix for each digit
701 	 * position.
702 	 */
703 	up->decvec[MN].radix = 10;	/* minutes */
704 	up->decvec[MN + 1].radix = 6;
705 	up->decvec[HR].radix = 10;	/* hours */
706 	up->decvec[HR + 1].radix = 3;
707 	up->decvec[DA].radix = 10;	/* days */
708 	up->decvec[DA + 1].radix = 10;
709 	up->decvec[DA + 2].radix = 4;
710 	up->decvec[YR].radix = 10;	/* years */
711 	up->decvec[YR + 1].radix = 10;
712 
713 #ifdef ICOM
714 	/*
715 	 * Initialize autotune if available. Note that the ICOM select
716 	 * code must be less than 128, so the high order bit can be used
717 	 * to select the line speed 0 (9600 bps) or 1 (1200 bps). Note
718 	 * we don't complain if the ICOM device is not there; but, if it
719 	 * is, the radio better be working.
720 	 */
721 	temp = 0;
722 #ifdef DEBUG
723 	if (debug > 1)
724 		temp = P_TRACE;
725 #endif /* DEBUG */
726 	if (peer->ttl != 0) {
727 		if (peer->ttl & 0x80)
728 			up->fd_icom = icom_init("/dev/icom", B1200,
729 			    temp);
730 		else
731 			up->fd_icom = icom_init("/dev/icom", B9600,
732 			    temp);
733 	}
734 	if (up->fd_icom > 0) {
735 		if (wwv_qsy(peer, DCHAN) != 0) {
736 			msyslog(LOG_NOTICE, "icom: radio not found");
737 			close(up->fd_icom);
738 			up->fd_icom = 0;
739 		} else {
740 			msyslog(LOG_NOTICE, "icom: autotune enabled");
741 		}
742 	}
743 #endif /* ICOM */
744 
745 	/*
746 	 * Let the games begin.
747 	 */
748 	wwv_newgame(peer);
749 	return (1);
750 }
751 
752 
753 /*
754  * wwv_shutdown - shut down the clock
755  */
756 static void
wwv_shutdown(int unit,struct peer * peer)757 wwv_shutdown(
758 	int	unit,		/* instance number (not used) */
759 	struct peer *peer	/* peer structure pointer */
760 	)
761 {
762 	struct refclockproc *pp;
763 	struct wwvunit *up;
764 
765 	pp = peer->procptr;
766 	up = pp->unitptr;
767 	if (up == NULL)
768 		return;
769 
770 	io_closeclock(&pp->io);
771 #ifdef ICOM
772 	if (up->fd_icom > 0)
773 		close(up->fd_icom);
774 #endif /* ICOM */
775 	free(up);
776 }
777 
778 
779 /*
780  * wwv_receive - receive data from the audio device
781  *
782  * This routine reads input samples and adjusts the logical clock to
783  * track the A/D sample clock by dropping or duplicating codec samples.
784  * It also controls the A/D signal level with an AGC loop to mimimize
785  * quantization noise and avoid overload.
786  */
787 static void
wwv_receive(struct recvbuf * rbufp)788 wwv_receive(
789 	struct recvbuf *rbufp	/* receive buffer structure pointer */
790 	)
791 {
792 	struct peer *peer;
793 	struct refclockproc *pp;
794 	struct wwvunit *up;
795 
796 	/*
797 	 * Local variables
798 	 */
799 	double	sample;		/* codec sample */
800 	u_char	*dpt;		/* buffer pointer */
801 	int	bufcnt;		/* buffer counter */
802 	l_fp	ltemp;
803 
804 	peer = rbufp->recv_peer;
805 	pp = peer->procptr;
806 	up = pp->unitptr;
807 
808 	/*
809 	 * Main loop - read until there ain't no more. Note codec
810 	 * samples are bit-inverted.
811 	 */
812 	DTOLFP((double)rbufp->recv_length / WWV_SEC, &ltemp);
813 	L_SUB(&rbufp->recv_time, &ltemp);
814 	up->timestamp = rbufp->recv_time;
815 	dpt = rbufp->recv_buffer;
816 	for (bufcnt = 0; bufcnt < rbufp->recv_length; bufcnt++) {
817 		sample = up->comp[~*dpt++ & 0xff];
818 
819 		/*
820 		 * Clip noise spikes greater than MAXAMP (6000) and
821 		 * record the number of clips to be used later by the
822 		 * AGC.
823 		 */
824 		if (sample > MAXAMP) {
825 			sample = MAXAMP;
826 			up->clipcnt++;
827 		} else if (sample < -MAXAMP) {
828 			sample = -MAXAMP;
829 			up->clipcnt++;
830 		}
831 
832 		/*
833 		 * Variable frequency oscillator. The codec oscillator
834 		 * runs at the nominal rate of 8000 samples per second,
835 		 * or 125 us per sample. A frequency change of one unit
836 		 * results in either duplicating or deleting one sample
837 		 * per second, which results in a frequency change of
838 		 * 125 PPM.
839 		 */
840 		up->phase += (up->freq + clock_codec) / WWV_SEC;
841 		if (up->phase >= .5) {
842 			up->phase -= 1.;
843 		} else if (up->phase < -.5) {
844 			up->phase += 1.;
845 			wwv_rf(peer, sample);
846 			wwv_rf(peer, sample);
847 		} else {
848 			wwv_rf(peer, sample);
849 		}
850 		L_ADD(&up->timestamp, &up->tick);
851 	}
852 
853 	/*
854 	 * Set the input port and monitor gain for the next buffer.
855 	 */
856 	if (pp->sloppyclockflag & CLK_FLAG2)
857 		up->port = 2;
858 	else
859 		up->port = 1;
860 	if (pp->sloppyclockflag & CLK_FLAG3)
861 		up->mongain = MONGAIN;
862 	else
863 		up->mongain = 0;
864 }
865 
866 
867 /*
868  * wwv_poll - called by the transmit procedure
869  *
870  * This routine keeps track of status. If no offset samples have been
871  * processed during a poll interval, a timeout event is declared. If
872  * errors have have occurred during the interval, they are reported as
873  * well.
874  */
875 static void
wwv_poll(int unit,struct peer * peer)876 wwv_poll(
877 	int	unit,		/* instance number (not used) */
878 	struct peer *peer	/* peer structure pointer */
879 	)
880 {
881 	struct refclockproc *pp;
882 	struct wwvunit *up;
883 
884 	pp = peer->procptr;
885 	up = pp->unitptr;
886 	if (up->errflg)
887 		refclock_report(peer, up->errflg);
888 	up->errflg = 0;
889 	pp->polls++;
890 }
891 
892 
893 /*
894  * wwv_rf - process signals and demodulate to baseband
895  *
896  * This routine grooms and filters decompanded raw audio samples. The
897  * output signal is the 100-Hz filtered baseband data signal in
898  * quadrature phase. The routine also determines the minute synch epoch,
899  * as well as certain signal maxima, minima and related values.
900  *
901  * There are two 1-s ramps used by this program. Both count the 8000
902  * logical clock samples spanning exactly one second. The epoch ramp
903  * counts the samples starting at an arbitrary time. The rphase ramp
904  * counts the samples starting at the 5-ms second sync pulse found
905  * during the epoch ramp.
906  *
907  * There are two 1-m ramps used by this program. The mphase ramp counts
908  * the 480,000 logical clock samples spanning exactly one minute and
909  * starting at an arbitrary time. The rsec ramp counts the 60 seconds of
910  * the minute starting at the 800-ms minute sync pulse found during the
911  * mphase ramp. The rsec ramp drives the seconds state machine to
912  * determine the bits and digits of the timecode.
913  *
914  * Demodulation operations are based on three synthesized quadrature
915  * sinusoids: 100 Hz for the data signal, 1000 Hz for the WWV sync
916  * signal and 1200 Hz for the WWVH sync signal. These drive synchronous
917  * matched filters for the data signal (170 ms at 100 Hz), WWV minute
918  * sync signal (800 ms at 1000 Hz) and WWVH minute sync signal (800 ms
919  * at 1200 Hz). Two additional matched filters are switched in
920  * as required for the WWV second sync signal (5 cycles at 1000 Hz) and
921  * WWVH second sync signal (6 cycles at 1200 Hz).
922  */
923 static void
wwv_rf(struct peer * peer,double isig)924 wwv_rf(
925 	struct peer *peer,	/* peerstructure pointer */
926 	double isig		/* input signal */
927 	)
928 {
929 	struct refclockproc *pp;
930 	struct wwvunit *up;
931 	struct sync *sp, *rp;
932 
933 	static double lpf[5];	/* 150-Hz lpf delay line */
934 	double data;		/* lpf output */
935 	static double bpf[9];	/* 1000/1200-Hz bpf delay line */
936 	double syncx;		/* bpf output */
937 	static double mf[41];	/* 1000/1200-Hz mf delay line */
938 	double mfsync;		/* mf output */
939 
940 	static int iptr;	/* data channel pointer */
941 	static double ibuf[DATSIZ]; /* data I channel delay line */
942 	static double qbuf[DATSIZ]; /* data Q channel delay line */
943 
944 	static int jptr;	/* sync channel pointer */
945 	static int kptr;	/* tick channel pointer */
946 
947 	static int csinptr;	/* wwv channel phase */
948 	static double cibuf[SYNSIZ]; /* wwv I channel delay line */
949 	static double cqbuf[SYNSIZ]; /* wwv Q channel delay line */
950 	static double ciamp;	/* wwv I channel amplitude */
951 	static double cqamp;	/* wwv Q channel amplitude */
952 
953 	static double csibuf[TCKSIZ]; /* wwv I tick delay line */
954 	static double csqbuf[TCKSIZ]; /* wwv Q tick delay line */
955 	static double csiamp;	/* wwv I tick amplitude */
956 	static double csqamp;	/* wwv Q tick amplitude */
957 
958 	static int hsinptr;	/* wwvh channel phase */
959 	static double hibuf[SYNSIZ]; /* wwvh I channel delay line */
960 	static double hqbuf[SYNSIZ]; /* wwvh Q channel delay line */
961 	static double hiamp;	/* wwvh I channel amplitude */
962 	static double hqamp;	/* wwvh Q channel amplitude */
963 
964 	static double hsibuf[TCKSIZ]; /* wwvh I tick delay line */
965 	static double hsqbuf[TCKSIZ]; /* wwvh Q tick delay line */
966 	static double hsiamp;	/* wwvh I tick amplitude */
967 	static double hsqamp;	/* wwvh Q tick amplitude */
968 
969 	static double epobuf[WWV_SEC]; /* second sync comb filter */
970 	static double epomax, nxtmax; /* second sync amplitude buffer */
971 	static int epopos;	/* epoch second sync position buffer */
972 
973 	static int iniflg;	/* initialization flag */
974 	int	epoch;		/* comb filter index */
975 	double	dtemp;
976 	int	i;
977 
978 	pp = peer->procptr;
979 	up = pp->unitptr;
980 
981 	if (!iniflg) {
982 		iniflg = 1;
983 		memset((char *)lpf, 0, sizeof(lpf));
984 		memset((char *)bpf, 0, sizeof(bpf));
985 		memset((char *)mf, 0, sizeof(mf));
986 		memset((char *)ibuf, 0, sizeof(ibuf));
987 		memset((char *)qbuf, 0, sizeof(qbuf));
988 		memset((char *)cibuf, 0, sizeof(cibuf));
989 		memset((char *)cqbuf, 0, sizeof(cqbuf));
990 		memset((char *)csibuf, 0, sizeof(csibuf));
991 		memset((char *)csqbuf, 0, sizeof(csqbuf));
992 		memset((char *)hibuf, 0, sizeof(hibuf));
993 		memset((char *)hqbuf, 0, sizeof(hqbuf));
994 		memset((char *)hsibuf, 0, sizeof(hsibuf));
995 		memset((char *)hsqbuf, 0, sizeof(hsqbuf));
996 		memset((char *)epobuf, 0, sizeof(epobuf));
997 	}
998 
999 	/*
1000 	 * Baseband data demodulation. The 100-Hz subcarrier is
1001 	 * extracted using a 150-Hz IIR lowpass filter. This attenuates
1002 	 * the 1000/1200-Hz sync signals, as well as the 440-Hz and
1003 	 * 600-Hz tones and most of the noise and voice modulation
1004 	 * components.
1005 	 *
1006 	 * The subcarrier is transmitted 10 dB down from the carrier.
1007 	 * The DGAIN parameter can be adjusted for this and to
1008 	 * compensate for the radio audio response at 100 Hz.
1009 	 *
1010 	 * Matlab IIR 4th-order IIR elliptic, 150 Hz lowpass, 0.2 dB
1011 	 * passband ripple, -50 dB stopband ripple, phase delay 0.97 ms.
1012 	 */
1013 	data = (lpf[4] = lpf[3]) * 8.360961e-01;
1014 	data += (lpf[3] = lpf[2]) * -3.481740e+00;
1015 	data += (lpf[2] = lpf[1]) * 5.452988e+00;
1016 	data += (lpf[1] = lpf[0]) * -3.807229e+00;
1017 	lpf[0] = isig * DGAIN - data;
1018 	data = lpf[0] * 3.281435e-03
1019 	    + lpf[1] * -1.149947e-02
1020 	    + lpf[2] * 1.654858e-02
1021 	    + lpf[3] * -1.149947e-02
1022 	    + lpf[4] * 3.281435e-03;
1023 
1024 	/*
1025 	 * The 100-Hz data signal is demodulated using a pair of
1026 	 * quadrature multipliers, matched filters and a phase lock
1027 	 * loop. The I and Q quadrature data signals are produced by
1028 	 * multiplying the filtered signal by 100-Hz sine and cosine
1029 	 * signals, respectively. The signals are processed by 170-ms
1030 	 * synchronous matched filters to produce the amplitude and
1031 	 * phase signals used by the demodulator. The signals are scaled
1032 	 * to produce unit energy at the maximum value.
1033 	 */
1034 	i = up->datapt;
1035 	up->datapt = (up->datapt + IN100) % 80;
1036 	dtemp = sintab[i] * data / (MS / 2. * DATCYC);
1037 	up->irig -= ibuf[iptr];
1038 	ibuf[iptr] = dtemp;
1039 	up->irig += dtemp;
1040 
1041 	i = (i + 20) % 80;
1042 	dtemp = sintab[i] * data / (MS / 2. * DATCYC);
1043 	up->qrig -= qbuf[iptr];
1044 	qbuf[iptr] = dtemp;
1045 	up->qrig += dtemp;
1046 	iptr = (iptr + 1) % DATSIZ;
1047 
1048 	/*
1049 	 * Baseband sync demodulation. The 1000/1200 sync signals are
1050 	 * extracted using a 600-Hz IIR bandpass filter. This removes
1051 	 * the 100-Hz data subcarrier, as well as the 440-Hz and 600-Hz
1052 	 * tones and most of the noise and voice modulation components.
1053 	 *
1054 	 * Matlab 4th-order IIR elliptic, 800-1400 Hz bandpass, 0.2 dB
1055 	 * passband ripple, -50 dB stopband ripple, phase delay 0.91 ms.
1056 	 */
1057 	syncx = (bpf[8] = bpf[7]) * 4.897278e-01;
1058 	syncx += (bpf[7] = bpf[6]) * -2.765914e+00;
1059 	syncx += (bpf[6] = bpf[5]) * 8.110921e+00;
1060 	syncx += (bpf[5] = bpf[4]) * -1.517732e+01;
1061 	syncx += (bpf[4] = bpf[3]) * 1.975197e+01;
1062 	syncx += (bpf[3] = bpf[2]) * -1.814365e+01;
1063 	syncx += (bpf[2] = bpf[1]) * 1.159783e+01;
1064 	syncx += (bpf[1] = bpf[0]) * -4.735040e+00;
1065 	bpf[0] = isig - syncx;
1066 	syncx = bpf[0] * 8.203628e-03
1067 	    + bpf[1] * -2.375732e-02
1068 	    + bpf[2] * 3.353214e-02
1069 	    + bpf[3] * -4.080258e-02
1070 	    + bpf[4] * 4.605479e-02
1071 	    + bpf[5] * -4.080258e-02
1072 	    + bpf[6] * 3.353214e-02
1073 	    + bpf[7] * -2.375732e-02
1074 	    + bpf[8] * 8.203628e-03;
1075 
1076 	/*
1077 	 * The 1000/1200 sync signals are demodulated using a pair of
1078 	 * quadrature multipliers and matched filters. However,
1079 	 * synchronous demodulation at these frequencies is impractical,
1080 	 * so only the signal amplitude is used. The I and Q quadrature
1081 	 * sync signals are produced by multiplying the filtered signal
1082 	 * by 1000-Hz (WWV) and 1200-Hz (WWVH) sine and cosine signals,
1083 	 * respectively. The WWV and WWVH signals are processed by 800-
1084 	 * ms synchronous matched filters and combined to produce the
1085 	 * minute sync signal and detect which one (or both) the WWV or
1086 	 * WWVH signal is present. The WWV and WWVH signals are also
1087 	 * processed by 5-ms synchronous matched filters and combined to
1088 	 * produce the second sync signal. The signals are scaled to
1089 	 * produce unit energy at the maximum value.
1090 	 *
1091 	 * Note the master timing ramps, which run continuously. The
1092 	 * minute counter (mphase) counts the samples in the minute,
1093 	 * while the second counter (epoch) counts the samples in the
1094 	 * second.
1095 	 */
1096 	up->mphase = (up->mphase + 1) % WWV_MIN;
1097 	epoch = up->mphase % WWV_SEC;
1098 
1099 	/*
1100 	 * WWV
1101 	 */
1102 	i = csinptr;
1103 	csinptr = (csinptr + IN1000) % 80;
1104 
1105 	dtemp = sintab[i] * syncx / (MS / 2.);
1106 	ciamp -= cibuf[jptr];
1107 	cibuf[jptr] = dtemp;
1108 	ciamp += dtemp;
1109 	csiamp -= csibuf[kptr];
1110 	csibuf[kptr] = dtemp;
1111 	csiamp += dtemp;
1112 
1113 	i = (i + 20) % 80;
1114 	dtemp = sintab[i] * syncx / (MS / 2.);
1115 	cqamp -= cqbuf[jptr];
1116 	cqbuf[jptr] = dtemp;
1117 	cqamp += dtemp;
1118 	csqamp -= csqbuf[kptr];
1119 	csqbuf[kptr] = dtemp;
1120 	csqamp += dtemp;
1121 
1122 	sp = &up->mitig[up->achan].wwv;
1123 	sp->amp = sqrt(ciamp * ciamp + cqamp * cqamp) / SYNCYC;
1124 	if (!(up->status & MSYNC))
1125 		wwv_qrz(peer, sp, (int)(pp->fudgetime1 * WWV_SEC));
1126 
1127 	/*
1128 	 * WWVH
1129 	 */
1130 	i = hsinptr;
1131 	hsinptr = (hsinptr + IN1200) % 80;
1132 
1133 	dtemp = sintab[i] * syncx / (MS / 2.);
1134 	hiamp -= hibuf[jptr];
1135 	hibuf[jptr] = dtemp;
1136 	hiamp += dtemp;
1137 	hsiamp -= hsibuf[kptr];
1138 	hsibuf[kptr] = dtemp;
1139 	hsiamp += dtemp;
1140 
1141 	i = (i + 20) % 80;
1142 	dtemp = sintab[i] * syncx / (MS / 2.);
1143 	hqamp -= hqbuf[jptr];
1144 	hqbuf[jptr] = dtemp;
1145 	hqamp += dtemp;
1146 	hsqamp -= hsqbuf[kptr];
1147 	hsqbuf[kptr] = dtemp;
1148 	hsqamp += dtemp;
1149 
1150 	rp = &up->mitig[up->achan].wwvh;
1151 	rp->amp = sqrt(hiamp * hiamp + hqamp * hqamp) / SYNCYC;
1152 	if (!(up->status & MSYNC))
1153 		wwv_qrz(peer, rp, (int)(pp->fudgetime2 * WWV_SEC));
1154 	jptr = (jptr + 1) % SYNSIZ;
1155 	kptr = (kptr + 1) % TCKSIZ;
1156 
1157 	/*
1158 	 * The following section is called once per minute. It does
1159 	 * housekeeping and timeout functions and empties the dustbins.
1160 	 */
1161 	if (up->mphase == 0) {
1162 		up->watch++;
1163 		if (!(up->status & MSYNC)) {
1164 
1165 			/*
1166 			 * If minute sync has not been acquired before
1167 			 * ACQSN timeout (6 min), or if no signal is
1168 			 * heard, the program cycles to the next
1169 			 * frequency and tries again.
1170 			 */
1171 			if (!wwv_newchan(peer))
1172 				up->watch = 0;
1173 		} else {
1174 
1175 			/*
1176 			 * If the leap bit is set, set the minute epoch
1177 			 * back one second so the station processes
1178 			 * don't miss a beat.
1179 			 */
1180 			if (up->status & LEPSEC) {
1181 				up->mphase -= WWV_SEC;
1182 				if (up->mphase < 0)
1183 					up->mphase += WWV_MIN;
1184 			}
1185 		}
1186 	}
1187 
1188 	/*
1189 	 * When the channel metric reaches threshold and the second
1190 	 * counter matches the minute epoch within the second, the
1191 	 * driver has synchronized to the station. The second number is
1192 	 * the remaining seconds until the next minute epoch, while the
1193 	 * sync epoch is zero. Watch out for the first second; if
1194 	 * already synchronized to the second, the buffered sync epoch
1195 	 * must be set.
1196 	 *
1197 	 * Note the guard interval is 200 ms; if for some reason the
1198 	 * clock drifts more than that, it might wind up in the wrong
1199 	 * second. If the maximum frequency error is not more than about
1200 	 * 1 PPM, the clock can go as much as two days while still in
1201 	 * the same second.
1202 	 */
1203 	if (up->status & MSYNC) {
1204 		wwv_epoch(peer);
1205 	} else if (up->sptr != NULL) {
1206 		sp = up->sptr;
1207 		if (sp->metric >= TTHR && epoch == sp->mepoch % WWV_SEC)
1208  		    {
1209 			up->rsec = (60 - sp->mepoch / WWV_SEC) % 60;
1210 			up->rphase = 0;
1211 			up->status |= MSYNC;
1212 			up->watch = 0;
1213 			if (!(up->status & SSYNC))
1214 				up->repoch = up->yepoch = epoch;
1215 			else
1216 				up->repoch = up->yepoch;
1217 
1218 		}
1219 	}
1220 
1221 	/*
1222 	 * The second sync pulse is extracted using 5-ms (40 sample) FIR
1223 	 * matched filters at 1000 Hz for WWV or 1200 Hz for WWVH. This
1224 	 * pulse is used for the most precise synchronization, since if
1225 	 * provides a resolution of one sample (125 us). The filters run
1226 	 * only if the station has been reliably determined.
1227 	 */
1228 	if (up->status & SELV)
1229 		mfsync = sqrt(csiamp * csiamp + csqamp * csqamp) /
1230 		    TCKCYC;
1231 	else if (up->status & SELH)
1232 		mfsync = sqrt(hsiamp * hsiamp + hsqamp * hsqamp) /
1233 		    TCKCYC;
1234 	else
1235 		mfsync = 0;
1236 
1237 	/*
1238 	 * Enhance the seconds sync pulse using a 1-s (8000-sample) comb
1239 	 * filter. Correct for the FIR matched filter delay, which is 5
1240 	 * ms for both the WWV and WWVH filters, and also for the
1241 	 * propagation delay. Once each second look for second sync. If
1242 	 * not in minute sync, fiddle the codec gain. Note the SNR is
1243 	 * computed from the maximum sample and the envelope of the
1244 	 * sample 6 ms before it, so if we slip more than a cycle the
1245 	 * SNR should plummet. The signal is scaled to produce unit
1246 	 * energy at the maximum value.
1247 	 */
1248 	dtemp = (epobuf[epoch] += (mfsync - epobuf[epoch]) /
1249 	    up->avgint);
1250 	if (dtemp > epomax) {
1251 		int	j;
1252 
1253 		epomax = dtemp;
1254 		epopos = epoch;
1255 		j = epoch - 6 * MS;
1256 		if (j < 0)
1257 			j += WWV_SEC;
1258 		nxtmax = fabs(epobuf[j]);
1259 	}
1260 	if (epoch == 0) {
1261 		up->epomax = epomax;
1262 		up->eposnr = wwv_snr(epomax, nxtmax);
1263 		epopos -= TCKCYC * MS;
1264 		if (epopos < 0)
1265 			epopos += WWV_SEC;
1266 		wwv_endpoc(peer, epopos);
1267 		if (!(up->status & SSYNC))
1268 			up->alarm |= SYNERR;
1269 		epomax = 0;
1270 		if (!(up->status & MSYNC))
1271 			wwv_gain(peer);
1272 	}
1273 }
1274 
1275 
1276 /*
1277  * wwv_qrz - identify and acquire WWV/WWVH minute sync pulse
1278  *
1279  * This routine implements a virtual station process used to acquire
1280  * minute sync and to mitigate among the ten frequency and station
1281  * combinations. During minute sync acquisition the process probes each
1282  * frequency and station in turn for the minute pulse, which
1283  * involves searching through the entire 480,000-sample minute. The
1284  * process finds the maximum signal and RMS noise plus signal. Then, the
1285  * actual noise is determined by subtracting the energy of the matched
1286  * filter.
1287  *
1288  * Students of radar receiver technology will discover this algorithm
1289  * amounts to a range-gate discriminator. A valid pulse must have peak
1290  * amplitude at least QTHR (2500) and SNR at least QSNR (20) dB and the
1291  * difference between the current and previous epoch must be less than
1292  * AWND (20 ms). Note that the discriminator peak occurs about 800 ms
1293  * into the second, so the timing is retarded to the previous second
1294  * epoch.
1295  */
1296 static void
wwv_qrz(struct peer * peer,struct sync * sp,int pdelay)1297 wwv_qrz(
1298 	struct peer *peer,	/* peer structure pointer */
1299 	struct sync *sp,	/* sync channel structure */
1300 	int	pdelay		/* propagation delay (samples) */
1301 	)
1302 {
1303 	struct refclockproc *pp;
1304 	struct wwvunit *up;
1305 	char	tbuf[TBUF];	/* monitor buffer */
1306 	long	epoch;
1307 
1308 	pp = peer->procptr;
1309 	up = pp->unitptr;
1310 
1311 	/*
1312 	 * Find the sample with peak amplitude, which defines the minute
1313 	 * epoch. Accumulate all samples to determine the total noise
1314 	 * energy.
1315 	 */
1316 	epoch = up->mphase - pdelay - SYNSIZ;
1317 	if (epoch < 0)
1318 		epoch += WWV_MIN;
1319 	if (sp->amp > sp->maxeng) {
1320 		sp->maxeng = sp->amp;
1321 		sp->pos = epoch;
1322 	}
1323 	sp->noieng += sp->amp;
1324 
1325 	/*
1326 	 * At the end of the minute, determine the epoch of the minute
1327 	 * sync pulse, as well as the difference between the current and
1328 	 * previous epoches due to the intrinsic frequency error plus
1329 	 * jitter. When calculating the SNR, subtract the pulse energy
1330 	 * from the total noise energy and then normalize.
1331 	 */
1332 	if (up->mphase == 0) {
1333 		sp->synmax = sp->maxeng;
1334 		sp->synsnr = wwv_snr(sp->synmax, (sp->noieng -
1335 		    sp->synmax) / WWV_MIN);
1336 		if (sp->count == 0)
1337 			sp->lastpos = sp->pos;
1338 		epoch = (sp->pos - sp->lastpos) % WWV_MIN;
1339 		sp->reach <<= 1;
1340 		if (sp->reach & (1 << AMAX))
1341 			sp->count--;
1342 		if (sp->synmax > ATHR && sp->synsnr > ASNR) {
1343 			if (labs(epoch) < AWND * MS) {
1344 				sp->reach |= 1;
1345 				sp->count++;
1346 				sp->mepoch = sp->lastpos = sp->pos;
1347 			} else if (sp->count == 1) {
1348 				sp->lastpos = sp->pos;
1349 			}
1350 		}
1351 		if (up->watch > ACQSN)
1352 			sp->metric = 0;
1353 		else
1354 			sp->metric = wwv_metric(sp);
1355 		if (pp->sloppyclockflag & CLK_FLAG4) {
1356 			snprintf(tbuf, sizeof(tbuf),
1357 			    "wwv8 %04x %3d %s %04x %.0f %.0f/%.1f %ld %ld",
1358 			    up->status, up->gain, sp->refid,
1359 			    sp->reach & 0xffff, sp->metric, sp->synmax,
1360 			    sp->synsnr, sp->pos % WWV_SEC, epoch);
1361 			record_clock_stats(&peer->srcadr, tbuf);
1362 #ifdef DEBUG
1363 			if (debug)
1364 				printf("%s\n", tbuf);
1365 #endif /* DEBUG */
1366 		}
1367 		sp->maxeng = sp->noieng = 0;
1368 	}
1369 }
1370 
1371 
1372 /*
1373  * wwv_endpoc - identify and acquire second sync pulse
1374  *
1375  * This routine is called at the end of the second sync interval. It
1376  * determines the second sync epoch position within the second and
1377  * disciplines the sample clock using a frequency-lock loop (FLL).
1378  *
1379  * Second sync is determined in the RF input routine as the maximum
1380  * over all 8000 samples in the second comb filter. To assure accurate
1381  * and reliable time and frequency discipline, this routine performs a
1382  * great deal of heavy-handed heuristic data filtering and grooming.
1383  */
1384 static void
wwv_endpoc(struct peer * peer,int epopos)1385 wwv_endpoc(
1386 	struct peer *peer,	/* peer structure pointer */
1387 	int epopos		/* epoch max position */
1388 	)
1389 {
1390 	struct refclockproc *pp;
1391 	struct wwvunit *up;
1392 	static int epoch_mf[3]; /* epoch median filter */
1393 	static int tepoch;	/* current second epoch */
1394  	static int xepoch;	/* last second epoch */
1395  	static int zepoch;	/* last run epoch */
1396 	static int zcount;	/* last run end time */
1397 	static int scount;	/* seconds counter */
1398 	static int syncnt;	/* run length counter */
1399 	static int maxrun;	/* longest run length */
1400 	static int mepoch;	/* longest run end epoch */
1401 	static int mcount;	/* longest run end time */
1402 	static int avgcnt;	/* averaging interval counter */
1403 	static int avginc;	/* averaging ratchet */
1404 	static int iniflg;	/* initialization flag */
1405 	char tbuf[TBUF];		/* monitor buffer */
1406 	double dtemp;
1407 	int tmp2;
1408 
1409 	pp = peer->procptr;
1410 	up = pp->unitptr;
1411 	if (!iniflg) {
1412 		iniflg = 1;
1413 		ZERO(epoch_mf);
1414 	}
1415 
1416 	/*
1417 	 * If the signal amplitude or SNR fall below thresholds, dim the
1418 	 * second sync lamp and wait for hotter ions. If no stations are
1419 	 * heard, we are either in a probe cycle or the ions are really
1420 	 * cold.
1421 	 */
1422 	scount++;
1423 	if (up->epomax < STHR || up->eposnr < SSNR) {
1424 		up->status &= ~(SSYNC | FGATE);
1425 		avgcnt = syncnt = maxrun = 0;
1426 		return;
1427 	}
1428 	if (!(up->status & (SELV | SELH)))
1429 		return;
1430 
1431 	/*
1432 	 * A three-stage median filter is used to help denoise the
1433 	 * second sync pulse. The median sample becomes the candidate
1434 	 * epoch.
1435 	 */
1436 	epoch_mf[2] = epoch_mf[1];
1437 	epoch_mf[1] = epoch_mf[0];
1438 	epoch_mf[0] = epopos;
1439 	if (epoch_mf[0] > epoch_mf[1]) {
1440 		if (epoch_mf[1] > epoch_mf[2])
1441 			tepoch = epoch_mf[1];	/* 0 1 2 */
1442 		else if (epoch_mf[2] > epoch_mf[0])
1443 			tepoch = epoch_mf[0];	/* 2 0 1 */
1444 		else
1445 			tepoch = epoch_mf[2];	/* 0 2 1 */
1446 	} else {
1447 		if (epoch_mf[1] < epoch_mf[2])
1448 			tepoch = epoch_mf[1];	/* 2 1 0 */
1449 		else if (epoch_mf[2] < epoch_mf[0])
1450 			tepoch = epoch_mf[0];	/* 1 0 2 */
1451 		else
1452 			tepoch = epoch_mf[2];	/* 1 2 0 */
1453 	}
1454 
1455 
1456 	/*
1457 	 * If the epoch candidate is the same as the last one, increment
1458 	 * the run counter. If not, save the length, epoch and end
1459 	 * time of the current run for use later and reset the counter.
1460 	 * The epoch is considered valid if the run is at least SCMP
1461 	 * (10) s, the minute is synchronized and the interval since the
1462 	 * last epoch  is not greater than the averaging interval. Thus,
1463 	 * after a long absence, the program will wait a full averaging
1464 	 * interval while the comb filter charges up and noise
1465 	 * dissapates..
1466 	 */
1467 	tmp2 = (tepoch - xepoch) % WWV_SEC;
1468 	if (tmp2 == 0) {
1469 		syncnt++;
1470 		if (syncnt > SCMP && up->status & MSYNC && (up->status &
1471 		    FGATE || scount - zcount <= up->avgint)) {
1472 			up->status |= SSYNC;
1473 			up->yepoch = tepoch;
1474 		}
1475 	} else if (syncnt >= maxrun) {
1476 		maxrun = syncnt;
1477 		mcount = scount;
1478 		mepoch = xepoch;
1479 		syncnt = 0;
1480 	}
1481 	if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status &
1482 	    MSYNC)) {
1483 		snprintf(tbuf, sizeof(tbuf),
1484 		    "wwv1 %04x %3d %4d %5.0f %5.1f %5d %4d %4d %4d",
1485 		    up->status, up->gain, tepoch, up->epomax,
1486 		    up->eposnr, tmp2, avgcnt, syncnt,
1487 		    maxrun);
1488 		record_clock_stats(&peer->srcadr, tbuf);
1489 #ifdef DEBUG
1490 		if (debug)
1491 			printf("%s\n", tbuf);
1492 #endif /* DEBUG */
1493 	}
1494 	avgcnt++;
1495 	if (avgcnt < up->avgint) {
1496 		xepoch = tepoch;
1497 		return;
1498 	}
1499 
1500 	/*
1501 	 * The sample clock frequency is disciplined using a first-order
1502 	 * feedback loop with time constant consistent with the Allan
1503 	 * intercept of typical computer clocks. During each averaging
1504 	 * interval the candidate epoch at the end of the longest run is
1505 	 * determined. If the longest run is zero, all epoches in the
1506 	 * interval are different, so the candidate epoch is the current
1507 	 * epoch. The frequency update is computed from the candidate
1508 	 * epoch difference (125-us units) and time difference (seconds)
1509 	 * between updates.
1510 	 */
1511 	if (syncnt >= maxrun) {
1512 		maxrun = syncnt;
1513 		mcount = scount;
1514 		mepoch = xepoch;
1515 	}
1516 	xepoch = tepoch;
1517 	if (maxrun == 0) {
1518 		mepoch = tepoch;
1519 		mcount = scount;
1520 	}
1521 
1522 	/*
1523 	 * The master clock runs at the codec sample frequency of 8000
1524 	 * Hz, so the intrinsic time resolution is 125 us. The frequency
1525 	 * resolution ranges from 18 PPM at the minimum averaging
1526 	 * interval of 8 s to 0.12 PPM at the maximum interval of 1024
1527 	 * s. An offset update is determined at the end of the longest
1528 	 * run in each averaging interval. The frequency adjustment is
1529 	 * computed from the difference between offset updates and the
1530 	 * interval between them.
1531 	 *
1532 	 * The maximum frequency adjustment ranges from 187 PPM at the
1533 	 * minimum interval to 1.5 PPM at the maximum. If the adjustment
1534 	 * exceeds the maximum, the update is discarded and the
1535 	 * hysteresis counter is decremented. Otherwise, the frequency
1536 	 * is incremented by the adjustment, but clamped to the maximum
1537 	 * 187.5 PPM. If the update is less than half the maximum, the
1538 	 * hysteresis counter is incremented. If the counter increments
1539 	 * to +3, the averaging interval is doubled and the counter set
1540 	 * to zero; if it decrements to -3, the interval is halved and
1541 	 * the counter set to zero.
1542 	 */
1543 	dtemp = (mepoch - zepoch) % WWV_SEC;
1544 	if (up->status & FGATE) {
1545 		if (fabs(dtemp) < MAXFREQ * MINAVG) {
1546 			up->freq += (dtemp / 2.) / ((mcount - zcount) *
1547 			    FCONST);
1548 			if (up->freq > MAXFREQ)
1549 				up->freq = MAXFREQ;
1550 			else if (up->freq < -MAXFREQ)
1551 				up->freq = -MAXFREQ;
1552 			if (fabs(dtemp) < MAXFREQ * MINAVG / 2.) {
1553 				if (avginc < 3) {
1554 					avginc++;
1555 				} else {
1556 					if (up->avgint < MAXAVG) {
1557 						up->avgint <<= 1;
1558 						avginc = 0;
1559 					}
1560 				}
1561 			}
1562 		} else {
1563 			if (avginc > -3) {
1564 				avginc--;
1565 			} else {
1566 				if (up->avgint > MINAVG) {
1567 					up->avgint >>= 1;
1568 					avginc = 0;
1569 				}
1570 			}
1571 		}
1572 	}
1573 	if (pp->sloppyclockflag & CLK_FLAG4) {
1574 		snprintf(tbuf, sizeof(tbuf),
1575 		    "wwv2 %04x %5.0f %5.1f %5d %4d %4d %4d %4.0f %7.2f",
1576 		    up->status, up->epomax, up->eposnr, mepoch,
1577 		    up->avgint, maxrun, mcount - zcount, dtemp,
1578 		    up->freq * 1e6 / WWV_SEC);
1579 		record_clock_stats(&peer->srcadr, tbuf);
1580 #ifdef DEBUG
1581 		if (debug)
1582 			printf("%s\n", tbuf);
1583 #endif /* DEBUG */
1584 	}
1585 
1586 	/*
1587 	 * This is a valid update; set up for the next interval.
1588 	 */
1589 	up->status |= FGATE;
1590 	zepoch = mepoch;
1591 	zcount = mcount;
1592 	avgcnt = syncnt = maxrun = 0;
1593 }
1594 
1595 
1596 /*
1597  * wwv_epoch - epoch scanner
1598  *
1599  * This routine extracts data signals from the 100-Hz subcarrier. It
1600  * scans the receiver second epoch to determine the signal amplitudes
1601  * and pulse timings. Receiver synchronization is determined by the
1602  * minute sync pulse detected in the wwv_rf() routine and the second
1603  * sync pulse detected in the wwv_epoch() routine. The transmitted
1604  * signals are delayed by the propagation delay, receiver delay and
1605  * filter delay of this program. Delay corrections are introduced
1606  * separately for WWV and WWVH.
1607  *
1608  * Most communications radios use a highpass filter in the audio stages,
1609  * which can do nasty things to the subcarrier phase relative to the
1610  * sync pulses. Therefore, the data subcarrier reference phase is
1611  * disciplined using the hardlimited quadrature-phase signal sampled at
1612  * the same time as the in-phase signal. The phase tracking loop uses
1613  * phase adjustments of plus-minus one sample (125 us).
1614  */
1615 static void
wwv_epoch(struct peer * peer)1616 wwv_epoch(
1617 	struct peer *peer	/* peer structure pointer */
1618 	)
1619 {
1620 	struct refclockproc *pp;
1621 	struct wwvunit *up;
1622 	struct chan *cp;
1623 	static double sigmin, sigzer, sigone, engmax, engmin;
1624 
1625 	pp = peer->procptr;
1626 	up = pp->unitptr;
1627 
1628 	/*
1629 	 * Find the maximum minute sync pulse energy for both the
1630 	 * WWV and WWVH stations. This will be used later for channel
1631 	 * and station mitigation. Also set the seconds epoch at 800 ms
1632 	 * well before the end of the second to make sure we never set
1633 	 * the epoch backwards.
1634 	 */
1635 	cp = &up->mitig[up->achan];
1636 	if (cp->wwv.amp > cp->wwv.syneng)
1637 		cp->wwv.syneng = cp->wwv.amp;
1638 	if (cp->wwvh.amp > cp->wwvh.syneng)
1639 		cp->wwvh.syneng = cp->wwvh.amp;
1640 	if (up->rphase == 800 * MS)
1641 		up->repoch = up->yepoch;
1642 
1643 	/*
1644 	 * Use the signal amplitude at epoch 15 ms as the noise floor.
1645 	 * This gives a guard time of +-15 ms from the beginning of the
1646 	 * second until the second pulse rises at 30 ms. There is a
1647 	 * compromise here; we want to delay the sample as long as
1648 	 * possible to give the radio time to change frequency and the
1649 	 * AGC to stabilize, but as early as possible if the second
1650 	 * epoch is not exact.
1651 	 */
1652 	if (up->rphase == 15 * MS)
1653 		sigmin = sigzer = sigone = up->irig;
1654 
1655 	/*
1656 	 * Latch the data signal at 200 ms. Keep this around until the
1657 	 * end of the second. Use the signal energy as the peak to
1658 	 * compute the SNR. Use the Q sample to adjust the 100-Hz
1659 	 * reference oscillator phase.
1660 	 */
1661 	if (up->rphase == 200 * MS) {
1662 		sigzer = up->irig;
1663 		engmax = sqrt(up->irig * up->irig + up->qrig *
1664 		    up->qrig);
1665 		up->datpha = up->qrig / up->avgint;
1666 		if (up->datpha >= 0) {
1667 			up->datapt++;
1668 			if (up->datapt >= 80)
1669 				up->datapt -= 80;
1670 		} else {
1671 			up->datapt--;
1672 			if (up->datapt < 0)
1673 				up->datapt += 80;
1674 		}
1675 	}
1676 
1677 
1678 	/*
1679 	 * Latch the data signal at 500 ms. Keep this around until the
1680 	 * end of the second.
1681 	 */
1682 	else if (up->rphase == 500 * MS)
1683 		sigone = up->irig;
1684 
1685 	/*
1686 	 * At the end of the second crank the clock state machine and
1687 	 * adjust the codec gain. Note the epoch is buffered from the
1688 	 * center of the second in order to avoid jitter while the
1689 	 * seconds synch is diddling the epoch. Then, determine the true
1690 	 * offset and update the median filter in the driver interface.
1691 	 *
1692 	 * Use the energy at the end of the second as the noise to
1693 	 * compute the SNR for the data pulse. This gives a better
1694 	 * measurement than the beginning of the second, especially when
1695 	 * returning from the probe channel. This gives a guard time of
1696 	 * 30 ms from the decay of the longest pulse to the rise of the
1697 	 * next pulse.
1698 	 */
1699 	up->rphase++;
1700 	if (up->mphase % WWV_SEC == up->repoch) {
1701 		up->status &= ~(DGATE | BGATE);
1702 		engmin = sqrt(up->irig * up->irig + up->qrig *
1703 		    up->qrig);
1704 		up->datsig = engmax;
1705 		up->datsnr = wwv_snr(engmax, engmin);
1706 
1707 		/*
1708 		 * If the amplitude or SNR is below threshold, average a
1709 		 * 0 in the the integrators; otherwise, average the
1710 		 * bipolar signal. This is done to avoid noise polution.
1711 		 */
1712 		if (engmax < DTHR || up->datsnr < DSNR) {
1713 			up->status |= DGATE;
1714 			wwv_rsec(peer, 0);
1715 		} else {
1716 			sigzer -= sigone;
1717 			sigone -= sigmin;
1718 			wwv_rsec(peer, sigone - sigzer);
1719 		}
1720 		if (up->status & (DGATE | BGATE))
1721 			up->errcnt++;
1722 		if (up->errcnt > MAXERR)
1723 			up->alarm |= LOWERR;
1724 		wwv_gain(peer);
1725 		cp = &up->mitig[up->achan];
1726 		cp->wwv.syneng = 0;
1727 		cp->wwvh.syneng = 0;
1728 		up->rphase = 0;
1729 	}
1730 }
1731 
1732 
1733 /*
1734  * wwv_rsec - process receiver second
1735  *
1736  * This routine is called at the end of each receiver second to
1737  * implement the per-second state machine. The machine assembles BCD
1738  * digit bits, decodes miscellaneous bits and dances the leap seconds.
1739  *
1740  * Normally, the minute has 60 seconds numbered 0-59. If the leap
1741  * warning bit is set, the last minute (1439) of 30 June (day 181 or 182
1742  * for leap years) or 31 December (day 365 or 366 for leap years) is
1743  * augmented by one second numbered 60. This is accomplished by
1744  * extending the minute interval by one second and teaching the state
1745  * machine to ignore it.
1746  */
1747 static void
wwv_rsec(struct peer * peer,double bit)1748 wwv_rsec(
1749 	struct peer *peer,	/* peer structure pointer */
1750 	double bit
1751 	)
1752 {
1753 	static int iniflg;	/* initialization flag */
1754 	static double bcddld[4]; /* BCD data bits */
1755 	static double bitvec[61]; /* bit integrator for misc bits */
1756 	struct refclockproc *pp;
1757 	struct wwvunit *up;
1758 	struct chan *cp;
1759 	struct sync *sp, *rp;
1760 	char	tbuf[TBUF];	/* monitor buffer */
1761 	int	sw, arg, nsec;
1762 
1763 	pp = peer->procptr;
1764 	up = pp->unitptr;
1765 	if (!iniflg) {
1766 		iniflg = 1;
1767 		ZERO(bitvec);
1768 	}
1769 
1770 	/*
1771 	 * The bit represents the probability of a hit on zero (negative
1772 	 * values), a hit on one (positive values) or a miss (zero
1773 	 * value). The likelihood vector is the exponential average of
1774 	 * these probabilities. Only the bits of this vector
1775 	 * corresponding to the miscellaneous bits of the timecode are
1776 	 * used, but it's easier to do them all. After that, crank the
1777 	 * seconds state machine.
1778 	 */
1779 	nsec = up->rsec;
1780 	up->rsec++;
1781 	bitvec[nsec] += (bit - bitvec[nsec]) / TCONST;
1782 	sw = progx[nsec].sw;
1783 	arg = progx[nsec].arg;
1784 
1785 	/*
1786 	 * The minute state machine. Fly off to a particular section as
1787 	 * directed by the transition matrix and second number.
1788 	 */
1789 	switch (sw) {
1790 
1791 	/*
1792 	 * Ignore this second.
1793 	 */
1794 	case IDLE:			/* 9, 45-49 */
1795 		break;
1796 
1797 	/*
1798 	 * Probe channel stuff
1799 	 *
1800 	 * The WWV/H format contains data pulses in second 59 (position
1801 	 * identifier) and second 1, but not in second 0. The minute
1802 	 * sync pulse is contained in second 0. At the end of second 58
1803 	 * QSY to the probe channel, which rotates in turn over all
1804 	 * WWV/H frequencies. At the end of second 0 measure the minute
1805 	 * sync pulse. At the end of second 1 measure the data pulse and
1806 	 * QSY back to the data channel. Note that the actions commented
1807 	 * here happen at the end of the second numbered as shown.
1808 	 *
1809 	 * At the end of second 0 save the minute sync amplitude latched
1810 	 * at 800 ms as the signal later used to calculate the SNR.
1811 	 */
1812 	case SYNC2:			/* 0 */
1813 		cp = &up->mitig[up->achan];
1814 		cp->wwv.synmax = cp->wwv.syneng;
1815 		cp->wwvh.synmax = cp->wwvh.syneng;
1816 		break;
1817 
1818 	/*
1819 	 * At the end of second 1 use the minute sync amplitude latched
1820 	 * at 800 ms as the noise to calculate the SNR. If the minute
1821 	 * sync pulse and SNR are above thresholds and the data pulse
1822 	 * amplitude and SNR are above thresolds, shift a 1 into the
1823 	 * station reachability register; otherwise, shift a 0. The
1824 	 * number of 1 bits in the last six intervals is a component of
1825 	 * the channel metric computed by the wwv_metric() routine.
1826 	 * Finally, QSY back to the data channel.
1827 	 */
1828 	case SYNC3:			/* 1 */
1829 		cp = &up->mitig[up->achan];
1830 
1831 		/*
1832 		 * WWV station
1833 		 */
1834 		sp = &cp->wwv;
1835 		sp->synsnr = wwv_snr(sp->synmax, sp->amp);
1836 		sp->reach <<= 1;
1837 		if (sp->reach & (1 << AMAX))
1838 			sp->count--;
1839 		if (sp->synmax >= QTHR && sp->synsnr >= QSNR &&
1840 		    !(up->status & (DGATE | BGATE))) {
1841 			sp->reach |= 1;
1842 			sp->count++;
1843 		}
1844 		sp->metric = wwv_metric(sp);
1845 
1846 		/*
1847 		 * WWVH station
1848 		 */
1849 		rp = &cp->wwvh;
1850 		rp->synsnr = wwv_snr(rp->synmax, rp->amp);
1851 		rp->reach <<= 1;
1852 		if (rp->reach & (1 << AMAX))
1853 			rp->count--;
1854 		if (rp->synmax >= QTHR && rp->synsnr >= QSNR &&
1855 		    !(up->status & (DGATE | BGATE))) {
1856 			rp->reach |= 1;
1857 			rp->count++;
1858 		}
1859 		rp->metric = wwv_metric(rp);
1860 		if (pp->sloppyclockflag & CLK_FLAG4) {
1861 			snprintf(tbuf, sizeof(tbuf),
1862 			    "wwv5 %04x %3d %4d %.0f/%.1f %.0f/%.1f %s %04x %.0f %.0f/%.1f %s %04x %.0f %.0f/%.1f",
1863 			    up->status, up->gain, up->yepoch,
1864 			    up->epomax, up->eposnr, up->datsig,
1865 			    up->datsnr,
1866 			    sp->refid, sp->reach & 0xffff,
1867 			    sp->metric, sp->synmax, sp->synsnr,
1868 			    rp->refid, rp->reach & 0xffff,
1869 			    rp->metric, rp->synmax, rp->synsnr);
1870 			record_clock_stats(&peer->srcadr, tbuf);
1871 #ifdef DEBUG
1872 			if (debug)
1873 				printf("%s\n", tbuf);
1874 #endif /* DEBUG */
1875 		}
1876 		up->errcnt = up->digcnt = up->alarm = 0;
1877 
1878 		/*
1879 		 * If synchronized to a station, restart if no stations
1880 		 * have been heard within the PANIC timeout (2 days). If
1881 		 * not and the minute digit has been found, restart if
1882 		 * not synchronized withing the SYNCH timeout (40 m). If
1883 		 * not, restart if the unit digit has not been found
1884 		 * within the DATA timeout (15 m).
1885 		 */
1886 		if (up->status & INSYNC) {
1887 			if (up->watch > PANIC) {
1888 				wwv_newgame(peer);
1889 				return;
1890 			}
1891 		} else if (up->status & DSYNC) {
1892 			if (up->watch > SYNCH) {
1893 				wwv_newgame(peer);
1894 				return;
1895 			}
1896 		} else if (up->watch > DATA) {
1897 			wwv_newgame(peer);
1898 			return;
1899 		}
1900 		wwv_newchan(peer);
1901 		break;
1902 
1903 	/*
1904 	 * Save the bit probability in the BCD data vector at the index
1905 	 * given by the argument. Bits not used in the digit are forced
1906 	 * to zero.
1907 	 */
1908 	case COEF1:			/* 4-7 */
1909 		bcddld[arg] = bit;
1910 		break;
1911 
1912 	case COEF:			/* 10-13, 15-17, 20-23, 25-26,
1913 					   30-33, 35-38, 40-41, 51-54 */
1914 		if (up->status & DSYNC)
1915 			bcddld[arg] = bit;
1916 		else
1917 			bcddld[arg] = 0;
1918 		break;
1919 
1920 	case COEF2:			/* 18, 27-28, 42-43 */
1921 		bcddld[arg] = 0;
1922 		break;
1923 
1924 	/*
1925 	 * Correlate coefficient vector with each valid digit vector and
1926 	 * save in decoding matrix. We step through the decoding matrix
1927 	 * digits correlating each with the coefficients and saving the
1928 	 * greatest and the next lower for later SNR calculation.
1929 	 */
1930 	case DECIM2:			/* 29 */
1931 		wwv_corr4(peer, &up->decvec[arg], bcddld, bcd2);
1932 		break;
1933 
1934 	case DECIM3:			/* 44 */
1935 		wwv_corr4(peer, &up->decvec[arg], bcddld, bcd3);
1936 		break;
1937 
1938 	case DECIM6:			/* 19 */
1939 		wwv_corr4(peer, &up->decvec[arg], bcddld, bcd6);
1940 		break;
1941 
1942 	case DECIM9:			/* 8, 14, 24, 34, 39 */
1943 		wwv_corr4(peer, &up->decvec[arg], bcddld, bcd9);
1944 		break;
1945 
1946 	/*
1947 	 * Miscellaneous bits. If above the positive threshold, declare
1948 	 * 1; if below the negative threshold, declare 0; otherwise
1949 	 * raise the BGATE bit. The design is intended to avoid
1950 	 * integrating noise under low SNR conditions.
1951 	 */
1952 	case MSC20:			/* 55 */
1953 		wwv_corr4(peer, &up->decvec[YR + 1], bcddld, bcd9);
1954 		/* fall through */
1955 
1956 	case MSCBIT:			/* 2-3, 50, 56-57 */
1957 		if (bitvec[nsec] > BTHR) {
1958 			if (!(up->misc & arg))
1959 				up->alarm |= CMPERR;
1960 			up->misc |= arg;
1961 		} else if (bitvec[nsec] < -BTHR) {
1962 			if (up->misc & arg)
1963 				up->alarm |= CMPERR;
1964 			up->misc &= ~arg;
1965 		} else {
1966 			up->status |= BGATE;
1967 		}
1968 		break;
1969 
1970 	/*
1971 	 * Save the data channel gain, then QSY to the probe channel and
1972 	 * dim the seconds comb filters. The www_newchan() routine will
1973 	 * light them back up.
1974 	 */
1975 	case MSC21:			/* 58 */
1976 		if (bitvec[nsec] > BTHR) {
1977 			if (!(up->misc & arg))
1978 				up->alarm |= CMPERR;
1979 			up->misc |= arg;
1980 		} else if (bitvec[nsec] < -BTHR) {
1981 			if (up->misc & arg)
1982 				up->alarm |= CMPERR;
1983 			up->misc &= ~arg;
1984 		} else {
1985 			up->status |= BGATE;
1986 		}
1987 		up->status &= ~(SELV | SELH);
1988 #ifdef ICOM
1989 		if (up->fd_icom > 0) {
1990 			up->schan = (up->schan + 1) % NCHAN;
1991 			wwv_qsy(peer, up->schan);
1992 		} else {
1993 			up->mitig[up->achan].gain = up->gain;
1994 		}
1995 #else
1996 		up->mitig[up->achan].gain = up->gain;
1997 #endif /* ICOM */
1998 		break;
1999 
2000 	/*
2001 	 * The endgames
2002 	 *
2003 	 * During second 59 the receiver and codec AGC are settling
2004 	 * down, so the data pulse is unusable as quality metric. If
2005 	 * LEPSEC is set on the last minute of 30 June or 31 December,
2006 	 * the transmitter and receiver insert an extra second (60) in
2007 	 * the timescale and the minute sync repeats the second. Once
2008 	 * leaps occurred at intervals of about 18 months, but the last
2009 	 * leap before the most recent leap in 1995 was in  1998.
2010 	 */
2011 	case MIN1:			/* 59 */
2012 		if (up->status & LEPSEC)
2013 			break;
2014 
2015 		/* fall through */
2016 
2017 	case MIN2:			/* 60 */
2018 		up->status &= ~LEPSEC;
2019 		wwv_tsec(peer);
2020 		up->rsec = 0;
2021 		wwv_clock(peer);
2022 		break;
2023 	}
2024 	if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status &
2025 	    DSYNC)) {
2026 		snprintf(tbuf, sizeof(tbuf),
2027 		    "wwv3 %2d %04x %3d %4d %5.0f %5.1f %5.0f %5.1f %5.0f",
2028 		    nsec, up->status, up->gain, up->yepoch, up->epomax,
2029 		    up->eposnr, up->datsig, up->datsnr, bit);
2030 		record_clock_stats(&peer->srcadr, tbuf);
2031 #ifdef DEBUG
2032 		if (debug)
2033 			printf("%s\n", tbuf);
2034 #endif /* DEBUG */
2035 	}
2036 	pp->disp += AUDIO_PHI;
2037 }
2038 
2039 /*
2040  * The radio clock is set if the alarm bits are all zero. After that,
2041  * the time is considered valid if the second sync bit is lit. It should
2042  * not be a surprise, especially if the radio is not tunable, that
2043  * sometimes no stations are above the noise and the integrators
2044  * discharge below the thresholds. We assume that, after a day of signal
2045  * loss, the minute sync epoch will be in the same second. This requires
2046  * the codec frequency be accurate within 6 PPM. Practical experience
2047  * shows the frequency typically within 0.1 PPM, so after a day of
2048  * signal loss, the time should be within 8.6 ms..
2049  */
2050 static void
wwv_clock(struct peer * peer)2051 wwv_clock(
2052 	struct peer *peer	/* peer unit pointer */
2053 	)
2054 {
2055 	struct refclockproc *pp;
2056 	struct wwvunit *up;
2057 	l_fp	offset;		/* offset in NTP seconds */
2058 
2059 	pp = peer->procptr;
2060 	up = pp->unitptr;
2061 	if (!(up->status & SSYNC))
2062 		up->alarm |= SYNERR;
2063 	if (up->digcnt < 9)
2064 		up->alarm |= NINERR;
2065 	if (!(up->alarm))
2066 		up->status |= INSYNC;
2067 	if (up->status & INSYNC && up->status & SSYNC) {
2068 		if (up->misc & SECWAR)
2069 			pp->leap = LEAP_ADDSECOND;
2070 		else
2071 			pp->leap = LEAP_NOWARNING;
2072 		pp->second = up->rsec;
2073 		pp->minute = up->decvec[MN].digit + up->decvec[MN +
2074 		    1].digit * 10;
2075 		pp->hour = up->decvec[HR].digit + up->decvec[HR +
2076 		    1].digit * 10;
2077 		pp->day = up->decvec[DA].digit + up->decvec[DA +
2078 		    1].digit * 10 + up->decvec[DA + 2].digit * 100;
2079 		pp->year = up->decvec[YR].digit + up->decvec[YR +
2080 		    1].digit * 10;
2081 		pp->year += 2000;
2082 		L_CLR(&offset);
2083 		if (!clocktime(pp->day, pp->hour, pp->minute,
2084 		    pp->second, GMT, up->timestamp.l_ui,
2085 		    &pp->yearstart, &offset.l_ui)) {
2086 			up->errflg = CEVNT_BADTIME;
2087 		} else {
2088 			up->watch = 0;
2089 			pp->disp = 0;
2090 			pp->lastref = up->timestamp;
2091 			refclock_process_offset(pp, offset,
2092 			    up->timestamp, PDELAY + up->pdelay);
2093 			refclock_receive(peer);
2094 		}
2095 	}
2096 	pp->lencode = timecode(up, pp->a_lastcode,
2097 			       sizeof(pp->a_lastcode));
2098 	record_clock_stats(&peer->srcadr, pp->a_lastcode);
2099 #ifdef DEBUG
2100 	if (debug)
2101 		printf("wwv: timecode %d %s\n", pp->lencode,
2102 		    pp->a_lastcode);
2103 #endif /* DEBUG */
2104 }
2105 
2106 
2107 /*
2108  * wwv_corr4 - determine maximum-likelihood digit
2109  *
2110  * This routine correlates the received digit vector with the BCD
2111  * coefficient vectors corresponding to all valid digits at the given
2112  * position in the decoding matrix. The maximum value corresponds to the
2113  * maximum-likelihood digit, while the ratio of this value to the next
2114  * lower value determines the likelihood function. Note that, if the
2115  * digit is invalid, the likelihood vector is averaged toward a miss.
2116  */
2117 static void
wwv_corr4(struct peer * peer,struct decvec * vp,double data[],double tab[][4])2118 wwv_corr4(
2119 	struct peer *peer,	/* peer unit pointer */
2120 	struct decvec *vp,	/* decoding table pointer */
2121 	double	data[],		/* received data vector */
2122 	double	tab[][4]	/* correlation vector array */
2123 	)
2124 {
2125 	struct refclockproc *pp;
2126 	struct wwvunit *up;
2127 	double	topmax, nxtmax;	/* metrics */
2128 	double	acc;		/* accumulator */
2129 	char	tbuf[TBUF];	/* monitor buffer */
2130 	int	mldigit;	/* max likelihood digit */
2131 	int	i, j;
2132 
2133 	pp = peer->procptr;
2134 	up = pp->unitptr;
2135 
2136 	/*
2137 	 * Correlate digit vector with each BCD coefficient vector. If
2138 	 * any BCD digit bit is bad, consider all bits a miss. Until the
2139 	 * minute units digit has been resolved, don't to anything else.
2140 	 * Note the SNR is calculated as the ratio of the largest
2141 	 * likelihood value to the next largest likelihood value.
2142  	 */
2143 	mldigit = 0;
2144 	topmax = nxtmax = -MAXAMP;
2145 	for (i = 0; tab[i][0] != 0; i++) {
2146 		acc = 0;
2147 		for (j = 0; j < 4; j++)
2148 			acc += data[j] * tab[i][j];
2149 		acc = (vp->like[i] += (acc - vp->like[i]) / TCONST);
2150 		if (acc > topmax) {
2151 			nxtmax = topmax;
2152 			topmax = acc;
2153 			mldigit = i;
2154 		} else if (acc > nxtmax) {
2155 			nxtmax = acc;
2156 		}
2157 	}
2158 	vp->digprb = topmax;
2159 	vp->digsnr = wwv_snr(topmax, nxtmax);
2160 
2161 	/*
2162 	 * The current maximum-likelihood digit is compared to the last
2163 	 * maximum-likelihood digit. If different, the compare counter
2164 	 * and maximum-likelihood digit are reset.  When the compare
2165 	 * counter reaches the BCMP threshold (3), the digit is assumed
2166 	 * correct. When the compare counter of all nine digits have
2167 	 * reached threshold, the clock is assumed correct.
2168 	 *
2169 	 * Note that the clock display digit is set before the compare
2170 	 * counter has reached threshold; however, the clock display is
2171 	 * not considered correct until all nine clock digits have
2172 	 * reached threshold. This is intended as eye candy, but avoids
2173 	 * mistakes when the signal is low and the SNR is very marginal.
2174 	 */
2175 	if (vp->digprb < BTHR || vp->digsnr < BSNR) {
2176 		up->status |= BGATE;
2177 	} else {
2178 		if (vp->digit != mldigit) {
2179 			up->alarm |= CMPERR;
2180 			if (vp->count > 0)
2181 				vp->count--;
2182 			if (vp->count == 0)
2183 				vp->digit = mldigit;
2184 		} else {
2185 			if (vp->count < BCMP)
2186 				vp->count++;
2187 			if (vp->count == BCMP) {
2188 				up->status |= DSYNC;
2189 				up->digcnt++;
2190 			}
2191 		}
2192 	}
2193 	if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status &
2194 	    INSYNC)) {
2195 		snprintf(tbuf, sizeof(tbuf),
2196 		    "wwv4 %2d %04x %3d %4d %5.0f %2d %d %d %d %5.0f %5.1f",
2197 		    up->rsec - 1, up->status, up->gain, up->yepoch,
2198 		    up->epomax, vp->radix, vp->digit, mldigit,
2199 		    vp->count, vp->digprb, vp->digsnr);
2200 		record_clock_stats(&peer->srcadr, tbuf);
2201 #ifdef DEBUG
2202 		if (debug)
2203 			printf("%s\n", tbuf);
2204 #endif /* DEBUG */
2205 	}
2206 }
2207 
2208 
2209 /*
2210  * wwv_tsec - transmitter minute processing
2211  *
2212  * This routine is called at the end of the transmitter minute. It
2213  * implements a state machine that advances the logical clock subject to
2214  * the funny rules that govern the conventional clock and calendar.
2215  */
2216 static void
wwv_tsec(struct peer * peer)2217 wwv_tsec(
2218 	struct peer *peer	/* driver structure pointer */
2219 	)
2220 {
2221 	struct refclockproc *pp;
2222 	struct wwvunit *up;
2223 	int minute, day, isleap;
2224 	int temp;
2225 
2226 	pp = peer->procptr;
2227 	up = pp->unitptr;
2228 
2229 	/*
2230 	 * Advance minute unit of the day. Don't propagate carries until
2231 	 * the unit minute digit has been found.
2232 	 */
2233 	temp = carry(&up->decvec[MN]);	/* minute units */
2234 	if (!(up->status & DSYNC))
2235 		return;
2236 
2237 	/*
2238 	 * Propagate carries through the day.
2239 	 */
2240 	if (temp == 0)			/* carry minutes */
2241 		temp = carry(&up->decvec[MN + 1]);
2242 	if (temp == 0)			/* carry hours */
2243 		temp = carry(&up->decvec[HR]);
2244 	if (temp == 0)
2245 		temp = carry(&up->decvec[HR + 1]);
2246 	// XXX: Does temp have an expected value here?
2247 
2248 	/*
2249 	 * Decode the current minute and day. Set leap day if the
2250 	 * timecode leap bit is set on 30 June or 31 December. Set leap
2251 	 * minute if the last minute on leap day, but only if the clock
2252 	 * is syncrhronized. This code fails in 2400 AD.
2253 	 */
2254 	minute = up->decvec[MN].digit + up->decvec[MN + 1].digit *
2255 	    10 + up->decvec[HR].digit * 60 + up->decvec[HR +
2256 	    1].digit * 600;
2257 	day = up->decvec[DA].digit + up->decvec[DA + 1].digit * 10 +
2258 	    up->decvec[DA + 2].digit * 100;
2259 
2260 	/*
2261 	 * Set the leap bit on the last minute of the leap day.
2262 	 */
2263 	isleap = up->decvec[YR].digit & 0x3;
2264 	if (up->misc & SECWAR && up->status & INSYNC) {
2265 		if ((day == (isleap ? 182 : 183) || day == (isleap ?
2266 		    365 : 366)) && minute == 1439)
2267 			up->status |= LEPSEC;
2268 	}
2269 
2270 	/*
2271 	 * Roll the day if this the first minute and propagate carries
2272 	 * through the year.
2273 	 */
2274 	if (minute != 1440)
2275 		return;
2276 
2277 	// minute = 0;
2278 	while (carry(&up->decvec[HR]) != 0); /* advance to minute 0 */
2279 	while (carry(&up->decvec[HR + 1]) != 0);
2280 	day++;
2281 	temp = carry(&up->decvec[DA]);	/* carry days */
2282 	if (temp == 0)
2283 		temp = carry(&up->decvec[DA + 1]);
2284 	if (temp == 0)
2285 		temp = carry(&up->decvec[DA + 2]);
2286 	// XXX: Is there an expected value of temp here?
2287 
2288 	/*
2289 	 * Roll the year if this the first day and propagate carries
2290 	 * through the century.
2291 	 */
2292 	if (day != (isleap ? 365 : 366))
2293 		return;
2294 
2295 	// day = 1;
2296 	while (carry(&up->decvec[DA]) != 1); /* advance to day 1 */
2297 	while (carry(&up->decvec[DA + 1]) != 0);
2298 	while (carry(&up->decvec[DA + 2]) != 0);
2299 	temp = carry(&up->decvec[YR]);	/* carry years */
2300 	if (temp == 0)
2301 		carry(&up->decvec[YR + 1]);
2302 }
2303 
2304 
2305 /*
2306  * carry - process digit
2307  *
2308  * This routine rotates a likelihood vector one position and increments
2309  * the clock digit modulo the radix. It returns the new clock digit or
2310  * zero if a carry occurred. Once synchronized, the clock digit will
2311  * match the maximum-likelihood digit corresponding to that position.
2312  */
2313 static int
carry(struct decvec * dp)2314 carry(
2315 	struct decvec *dp	/* decoding table pointer */
2316 	)
2317 {
2318 	int temp;
2319 	int j;
2320 
2321 	dp->digit++;
2322 	if (dp->digit == dp->radix)
2323 		dp->digit = 0;
2324 	temp = dp->like[dp->radix - 1];
2325 	for (j = dp->radix - 1; j > 0; j--)
2326 		dp->like[j] = dp->like[j - 1];
2327 	dp->like[0] = temp;
2328 	return (dp->digit);
2329 }
2330 
2331 
2332 /*
2333  * wwv_snr - compute SNR or likelihood function
2334  */
2335 static double
wwv_snr(double signal,double noise)2336 wwv_snr(
2337 	double signal,		/* signal */
2338 	double noise		/* noise */
2339 	)
2340 {
2341 	double rval;
2342 
2343 	/*
2344 	 * This is a little tricky. Due to the way things are measured,
2345 	 * either or both the signal or noise amplitude can be negative
2346 	 * or zero. The intent is that, if the signal is negative or
2347 	 * zero, the SNR must always be zero. This can happen with the
2348 	 * subcarrier SNR before the phase has been aligned. On the
2349 	 * other hand, in the likelihood function the "noise" is the
2350 	 * next maximum down from the peak and this could be negative.
2351 	 * However, in this case the SNR is truly stupendous, so we
2352 	 * simply cap at MAXSNR dB (40).
2353 	 */
2354 	if (signal <= 0) {
2355 		rval = 0;
2356 	} else if (noise <= 0) {
2357 		rval = MAXSNR;
2358 	} else {
2359 		rval = 20. * log10(signal / noise);
2360 		if (rval > MAXSNR)
2361 			rval = MAXSNR;
2362 	}
2363 	return (rval);
2364 }
2365 
2366 
2367 /*
2368  * wwv_newchan - change to new data channel
2369  *
2370  * The radio actually appears to have ten channels, one channel for each
2371  * of five frequencies and each of two stations (WWV and WWVH), although
2372  * if not tunable only the DCHAN channel appears live. While the radio
2373  * is tuned to the working data channel frequency and station for most
2374  * of the minute, during seconds 59, 0 and 1 the radio is tuned to a
2375  * probe frequency in order to search for minute sync pulse and data
2376  * subcarrier from other transmitters.
2377  *
2378  * The search for WWV and WWVH operates simultaneously, with WWV minute
2379  * sync pulse at 1000 Hz and WWVH at 1200 Hz. The probe frequency
2380  * rotates each minute over 2.5, 5, 10, 15 and 20 MHz in order and yes,
2381  * we all know WWVH is dark on 20 MHz, but few remember when WWV was lit
2382  * on 25 MHz.
2383  *
2384  * This routine selects the best channel using a metric computed from
2385  * the reachability register and minute pulse amplitude. Normally, the
2386  * award goes to the the channel with the highest metric; but, in case
2387  * of ties, the award goes to the channel with the highest minute sync
2388  * pulse amplitude and then to the highest frequency.
2389  *
2390  * The routine performs an important squelch function to keep dirty data
2391  * from polluting the integrators. In order to consider a station valid,
2392  * the metric must be at least MTHR (13); otherwise, the station select
2393  * bits are cleared so the second sync is disabled and the data bit
2394  * integrators averaged to a miss.
2395  */
2396 static int
wwv_newchan(struct peer * peer)2397 wwv_newchan(
2398 	struct peer *peer	/* peer structure pointer */
2399 	)
2400 {
2401 	struct refclockproc *pp;
2402 	struct wwvunit *up;
2403 	struct sync *sp, *rp;
2404 	double rank, dtemp;
2405 	int i, j, rval;
2406 
2407 	pp = peer->procptr;
2408 	up = pp->unitptr;
2409 
2410 	/*
2411 	 * Search all five station pairs looking for the channel with
2412 	 * maximum metric.
2413 	 */
2414 	sp = NULL;
2415 	j = 0;
2416 	rank = 0;
2417 	for (i = 0; i < NCHAN; i++) {
2418 		rp = &up->mitig[i].wwvh;
2419 		dtemp = rp->metric;
2420 		if (dtemp >= rank) {
2421 			rank = dtemp;
2422 			sp = rp;
2423 			j = i;
2424 		}
2425 		rp = &up->mitig[i].wwv;
2426 		dtemp = rp->metric;
2427 		if (dtemp >= rank) {
2428 			rank = dtemp;
2429 			sp = rp;
2430 			j = i;
2431 		}
2432 	}
2433 
2434 	/*
2435 	 * If the strongest signal is less than the MTHR threshold (13),
2436 	 * we are beneath the waves, so squelch the second sync and
2437 	 * advance to the next station. This makes sure all stations are
2438 	 * scanned when the ions grow dim. If the strongest signal is
2439 	 * greater than the threshold, tune to that frequency and
2440 	 * transmitter QTH.
2441 	 */
2442 	up->status &= ~(SELV | SELH);
2443 	if (rank < MTHR) {
2444 		up->dchan = (up->dchan + 1) % NCHAN;
2445 		if (up->status & METRIC) {
2446 			up->status &= ~METRIC;
2447 			refclock_report(peer, CEVNT_PROP);
2448 		}
2449 		rval = FALSE;
2450 	} else {
2451 		up->dchan = j;
2452 		up->sptr = sp;
2453 		memcpy(&pp->refid, sp->refid, 4);
2454 		peer->refid = pp->refid;
2455 		up->status |= METRIC;
2456 		if (sp->select & SELV) {
2457 			up->status |= SELV;
2458 			up->pdelay = pp->fudgetime1;
2459 		} else if (sp->select & SELH) {
2460 			up->status |= SELH;
2461 			up->pdelay = pp->fudgetime2;
2462 		} else {
2463 			up->pdelay = 0;
2464 		}
2465 		rval = TRUE;
2466 	}
2467 #ifdef ICOM
2468 	if (up->fd_icom > 0)
2469 		wwv_qsy(peer, up->dchan);
2470 #endif /* ICOM */
2471 	return (rval);
2472 }
2473 
2474 
2475 /*
2476  * wwv_newgame - reset and start over
2477  *
2478  * There are three conditions resulting in a new game:
2479  *
2480  * 1	After finding the minute pulse (MSYNC lit), going 15 minutes
2481  *	(DATA) without finding the unit seconds digit.
2482  *
2483  * 2	After finding good data (DSYNC lit), going more than 40 minutes
2484  *	(SYNCH) without finding station sync (INSYNC lit).
2485  *
2486  * 3	After finding station sync (INSYNC lit), going more than 2 days
2487  *	(PANIC) without finding any station.
2488  */
2489 static void
wwv_newgame(struct peer * peer)2490 wwv_newgame(
2491 	struct peer *peer	/* peer structure pointer */
2492 	)
2493 {
2494 	struct refclockproc *pp;
2495 	struct wwvunit *up;
2496 	struct chan *cp;
2497 	int i;
2498 
2499 	pp = peer->procptr;
2500 	up = pp->unitptr;
2501 
2502 	/*
2503 	 * Initialize strategic values. Note we set the leap bits
2504 	 * NOTINSYNC and the refid "NONE".
2505 	 */
2506 	if (up->status)
2507 		up->errflg = CEVNT_TIMEOUT;
2508 	peer->leap = LEAP_NOTINSYNC;
2509 	up->watch = up->status = up->alarm = 0;
2510 	up->avgint = MINAVG;
2511 	up->freq = 0;
2512 	up->gain = MAXGAIN / 2;
2513 
2514 	/*
2515 	 * Initialize the station processes for audio gain, select bit,
2516 	 * station/frequency identifier and reference identifier. Start
2517 	 * probing at the strongest channel or the default channel if
2518 	 * nothing heard.
2519 	 */
2520 	memset(up->mitig, 0, sizeof(up->mitig));
2521 	for (i = 0; i < NCHAN; i++) {
2522 		cp = &up->mitig[i];
2523 		cp->gain = up->gain;
2524 		cp->wwv.select = SELV;
2525 		snprintf(cp->wwv.refid, sizeof(cp->wwv.refid), "WV%.0f",
2526 		    floor(qsy[i]));
2527 		cp->wwvh.select = SELH;
2528 		snprintf(cp->wwvh.refid, sizeof(cp->wwvh.refid), "WH%.0f",
2529 		    floor(qsy[i]));
2530 	}
2531 	up->dchan = (DCHAN + NCHAN - 1) % NCHAN;
2532 	wwv_newchan(peer);
2533 	up->schan = up->dchan;
2534 }
2535 
2536 /*
2537  * wwv_metric - compute station metric
2538  *
2539  * The most significant bits represent the number of ones in the
2540  * station reachability register. The least significant bits represent
2541  * the minute sync pulse amplitude. The combined value is scaled 0-100.
2542  */
2543 double
wwv_metric(struct sync * sp)2544 wwv_metric(
2545 	struct sync *sp		/* station pointer */
2546 	)
2547 {
2548 	double	dtemp;
2549 
2550 	dtemp = sp->count * MAXAMP;
2551 	if (sp->synmax < MAXAMP)
2552 		dtemp += sp->synmax;
2553 	else
2554 		dtemp += MAXAMP - 1;
2555 	dtemp /= (AMAX + 1) * MAXAMP;
2556 	return (dtemp * 100.);
2557 }
2558 
2559 
2560 #ifdef ICOM
2561 /*
2562  * wwv_qsy - Tune ICOM receiver
2563  *
2564  * This routine saves the AGC for the current channel, switches to a new
2565  * channel and restores the AGC for that channel. If a tunable receiver
2566  * is not available, just fake it.
2567  */
2568 static int
wwv_qsy(struct peer * peer,int chan)2569 wwv_qsy(
2570 	struct peer *peer,	/* peer structure pointer */
2571 	int	chan		/* channel */
2572 	)
2573 {
2574 	int rval = 0;
2575 	struct refclockproc *pp;
2576 	struct wwvunit *up;
2577 
2578 	pp = peer->procptr;
2579 	up = pp->unitptr;
2580 	if (up->fd_icom > 0) {
2581 		up->mitig[up->achan].gain = up->gain;
2582 		rval = icom_freq(up->fd_icom, peer->ttl & 0x7f,
2583 		    qsy[chan]);
2584 		up->achan = chan;
2585 		up->gain = up->mitig[up->achan].gain;
2586 	}
2587 	return (rval);
2588 }
2589 #endif /* ICOM */
2590 
2591 
2592 /*
2593  * timecode - assemble timecode string and length
2594  *
2595  * Prettytime format - similar to Spectracom
2596  *
2597  * sq yy ddd hh:mm:ss ld dut lset agc iden sig errs freq avgt
2598  *
2599  * s	sync indicator ('?' or ' ')
2600  * q	error bits (hex 0-F)
2601  * yyyy	year of century
2602  * ddd	day of year
2603  * hh	hour of day
2604  * mm	minute of hour
2605  * ss	second of minute)
2606  * l	leap second warning (' ' or 'L')
2607  * d	DST state ('S', 'D', 'I', or 'O')
2608  * dut	DUT sign and magnitude (0.1 s)
2609  * lset	minutes since last clock update
2610  * agc	audio gain (0-255)
2611  * iden	reference identifier (station and frequency)
2612  * sig	signal quality (0-100)
2613  * errs	bit errors in last minute
2614  * freq	frequency offset (PPM)
2615  * avgt	averaging time (s)
2616  */
2617 static int
timecode(struct wwvunit * up,char * tc,size_t tcsiz)2618 timecode(
2619 	struct wwvunit *up,	/* driver structure pointer */
2620 	char *		tc,	/* target string */
2621 	size_t		tcsiz	/* target max chars */
2622 	)
2623 {
2624 	struct sync *sp;
2625 	int year, day, hour, minute, second, dut;
2626 	char synchar, leapchar, dst;
2627 	char cptr[50];
2628 
2629 
2630 	/*
2631 	 * Common fixed-format fields
2632 	 */
2633 	synchar = (up->status & INSYNC) ? ' ' : '?';
2634 	year = up->decvec[YR].digit + up->decvec[YR + 1].digit * 10 +
2635 	    2000;
2636 	day = up->decvec[DA].digit + up->decvec[DA + 1].digit * 10 +
2637 	    up->decvec[DA + 2].digit * 100;
2638 	hour = up->decvec[HR].digit + up->decvec[HR + 1].digit * 10;
2639 	minute = up->decvec[MN].digit + up->decvec[MN + 1].digit * 10;
2640 	second = 0;
2641 	leapchar = (up->misc & SECWAR) ? 'L' : ' ';
2642 	dst = dstcod[(up->misc >> 4) & 0x3];
2643 	dut = up->misc & 0x7;
2644 	if (!(up->misc & DUTS))
2645 		dut = -dut;
2646 	snprintf(tc, tcsiz, "%c%1X", synchar, up->alarm);
2647 	snprintf(cptr, sizeof(cptr),
2648 		 " %4d %03d %02d:%02d:%02d %c%c %+d",
2649 		 year, day, hour, minute, second, leapchar, dst, dut);
2650 	strlcat(tc, cptr, tcsiz);
2651 
2652 	/*
2653 	 * Specific variable-format fields
2654 	 */
2655 	sp = up->sptr;
2656 	snprintf(cptr, sizeof(cptr), " %d %d %s %.0f %d %.1f %d",
2657 		 up->watch, up->mitig[up->dchan].gain, sp->refid,
2658 		 sp->metric, up->errcnt, up->freq / WWV_SEC * 1e6,
2659 		 up->avgint);
2660 	strlcat(tc, cptr, tcsiz);
2661 
2662 	return strlen(tc);
2663 }
2664 
2665 
2666 /*
2667  * wwv_gain - adjust codec gain
2668  *
2669  * This routine is called at the end of each second. During the second
2670  * the number of signal clips above the MAXAMP threshold (6000). If
2671  * there are no clips, the gain is bumped up; if there are more than
2672  * MAXCLP clips (100), it is bumped down. The decoder is relatively
2673  * insensitive to amplitude, so this crudity works just peachy. The
2674  * routine also jiggles the input port and selectively mutes the
2675  * monitor.
2676  */
2677 static void
wwv_gain(struct peer * peer)2678 wwv_gain(
2679 	struct peer *peer	/* peer structure pointer */
2680 	)
2681 {
2682 	struct refclockproc *pp;
2683 	struct wwvunit *up;
2684 
2685 	pp = peer->procptr;
2686 	up = pp->unitptr;
2687 
2688 	/*
2689 	 * Apparently, the codec uses only the high order bits of the
2690 	 * gain control field. Thus, it may take awhile for changes to
2691 	 * wiggle the hardware bits.
2692 	 */
2693 	if (up->clipcnt == 0) {
2694 		up->gain += 4;
2695 		if (up->gain > MAXGAIN)
2696 			up->gain = MAXGAIN;
2697 	} else if (up->clipcnt > MAXCLP) {
2698 		up->gain -= 4;
2699 		if (up->gain < 0)
2700 			up->gain = 0;
2701 	}
2702 	audio_gain(up->gain, up->mongain, up->port);
2703 	up->clipcnt = 0;
2704 #if DEBUG
2705 	if (debug > 1)
2706 		audio_show();
2707 #endif
2708 }
2709 
2710 
2711 #else
2712 int refclock_wwv_bs;
2713 #endif /* REFCLOCK */
2714