1 // aarch64.cc -- aarch64 target support for gold.
2 
3 // Copyright (C) 2014-2020 Free Software Foundation, Inc.
4 // Written by Jing Yu <jingyu@google.com> and Han Shen <shenhan@google.com>.
5 
6 // This file is part of gold.
7 
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12 
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17 
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22 
23 #include "gold.h"
24 
25 #include <cstring>
26 #include <map>
27 #include <set>
28 
29 #include "elfcpp.h"
30 #include "dwarf.h"
31 #include "parameters.h"
32 #include "reloc.h"
33 #include "aarch64.h"
34 #include "object.h"
35 #include "symtab.h"
36 #include "layout.h"
37 #include "output.h"
38 #include "copy-relocs.h"
39 #include "target.h"
40 #include "target-reloc.h"
41 #include "target-select.h"
42 #include "tls.h"
43 #include "freebsd.h"
44 #include "nacl.h"
45 #include "gc.h"
46 #include "icf.h"
47 #include "aarch64-reloc-property.h"
48 
49 // The first three .got.plt entries are reserved.
50 const int32_t AARCH64_GOTPLT_RESERVE_COUNT = 3;
51 
52 
53 namespace
54 {
55 
56 using namespace gold;
57 
58 template<int size, bool big_endian>
59 class Output_data_plt_aarch64;
60 
61 template<int size, bool big_endian>
62 class Output_data_plt_aarch64_standard;
63 
64 template<int size, bool big_endian>
65 class Target_aarch64;
66 
67 template<int size, bool big_endian>
68 class AArch64_relocate_functions;
69 
70 // Utility class dealing with insns. This is ported from macros in
71 // bfd/elfnn-aarch64.cc, but wrapped inside a class as static members. This
72 // class is used in erratum sequence scanning.
73 
74 template<bool big_endian>
75 class AArch64_insn_utilities
76 {
77 public:
78   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
79 
80   static const int BYTES_PER_INSN;
81 
82   // Zero register encoding - 31.
83   static const unsigned int AARCH64_ZR;
84 
85   static unsigned int
aarch64_bit(Insntype insn,int pos)86   aarch64_bit(Insntype insn, int pos)
87   { return ((1 << pos)  & insn) >> pos; }
88 
89   static unsigned int
aarch64_bits(Insntype insn,int pos,int l)90   aarch64_bits(Insntype insn, int pos, int l)
91   { return (insn >> pos) & ((1 << l) - 1); }
92 
93   // Get the encoding field "op31" of 3-source data processing insns. "op31" is
94   // the name defined in armv8 insn manual C3.5.9.
95   static unsigned int
aarch64_op31(Insntype insn)96   aarch64_op31(Insntype insn)
97   { return aarch64_bits(insn, 21, 3); }
98 
99   // Get the encoding field "ra" of 3-source data processing insns. "ra" is the
100   // third source register. See armv8 insn manual C3.5.9.
101   static unsigned int
aarch64_ra(Insntype insn)102   aarch64_ra(Insntype insn)
103   { return aarch64_bits(insn, 10, 5); }
104 
105   static bool
is_adr(const Insntype insn)106   is_adr(const Insntype insn)
107   { return (insn & 0x9F000000) == 0x10000000; }
108 
109   static bool
is_adrp(const Insntype insn)110   is_adrp(const Insntype insn)
111   { return (insn & 0x9F000000) == 0x90000000; }
112 
113   static bool
is_mrs_tpidr_el0(const Insntype insn)114   is_mrs_tpidr_el0(const Insntype insn)
115   { return (insn & 0xFFFFFFE0) == 0xd53bd040; }
116 
117   static unsigned int
aarch64_rm(const Insntype insn)118   aarch64_rm(const Insntype insn)
119   { return aarch64_bits(insn, 16, 5); }
120 
121   static unsigned int
aarch64_rn(const Insntype insn)122   aarch64_rn(const Insntype insn)
123   { return aarch64_bits(insn, 5, 5); }
124 
125   static unsigned int
aarch64_rd(const Insntype insn)126   aarch64_rd(const Insntype insn)
127   { return aarch64_bits(insn, 0, 5); }
128 
129   static unsigned int
aarch64_rt(const Insntype insn)130   aarch64_rt(const Insntype insn)
131   { return aarch64_bits(insn, 0, 5); }
132 
133   static unsigned int
aarch64_rt2(const Insntype insn)134   aarch64_rt2(const Insntype insn)
135   { return aarch64_bits(insn, 10, 5); }
136 
137   // Encode imm21 into adr. Signed imm21 is in the range of [-1M, 1M).
138   static Insntype
aarch64_adr_encode_imm(Insntype adr,int imm21)139   aarch64_adr_encode_imm(Insntype adr, int imm21)
140   {
141     gold_assert(is_adr(adr));
142     gold_assert(-(1 << 20) <= imm21 && imm21 < (1 << 20));
143     const int mask19 = (1 << 19) - 1;
144     const int mask2 = 3;
145     adr &= ~((mask19 << 5) | (mask2 << 29));
146     adr |= ((imm21 & mask2) << 29) | (((imm21 >> 2) & mask19) << 5);
147     return adr;
148   }
149 
150   // Retrieve encoded adrp 33-bit signed imm value. This value is obtained by
151   // 21-bit signed imm encoded in the insn multiplied by 4k (page size) and
152   // 64-bit sign-extended, resulting in [-4G, 4G) with 12-lsb being 0.
153   static int64_t
aarch64_adrp_decode_imm(const Insntype adrp)154   aarch64_adrp_decode_imm(const Insntype adrp)
155   {
156     const int mask19 = (1 << 19) - 1;
157     const int mask2 = 3;
158     gold_assert(is_adrp(adrp));
159     // 21-bit imm encoded in adrp.
160     uint64_t imm = ((adrp >> 29) & mask2) | (((adrp >> 5) & mask19) << 2);
161     // Retrieve msb of 21-bit-signed imm for sign extension.
162     uint64_t msbt = (imm >> 20) & 1;
163     // Real value is imm multiplied by 4k. Value now has 33-bit information.
164     int64_t value = imm << 12;
165     // Sign extend to 64-bit by repeating msbt 31 (64-33) times and merge it
166     // with value.
167     return ((((uint64_t)(1) << 32) - msbt) << 33) | value;
168   }
169 
170   static bool
aarch64_b(const Insntype insn)171   aarch64_b(const Insntype insn)
172   { return (insn & 0xFC000000) == 0x14000000; }
173 
174   static bool
aarch64_bl(const Insntype insn)175   aarch64_bl(const Insntype insn)
176   { return (insn & 0xFC000000) == 0x94000000; }
177 
178   static bool
aarch64_blr(const Insntype insn)179   aarch64_blr(const Insntype insn)
180   { return (insn & 0xFFFFFC1F) == 0xD63F0000; }
181 
182   static bool
aarch64_br(const Insntype insn)183   aarch64_br(const Insntype insn)
184   { return (insn & 0xFFFFFC1F) == 0xD61F0000; }
185 
186   // All ld/st ops.  See C4-182 of the ARM ARM.  The encoding space for
187   // LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops.
188   static bool
aarch64_ld(Insntype insn)189   aarch64_ld(Insntype insn) { return aarch64_bit(insn, 22) == 1; }
190 
191   static bool
aarch64_ldst(Insntype insn)192   aarch64_ldst(Insntype insn)
193   { return (insn & 0x0a000000) == 0x08000000; }
194 
195   static bool
aarch64_ldst_ex(Insntype insn)196   aarch64_ldst_ex(Insntype insn)
197   { return (insn & 0x3f000000) == 0x08000000; }
198 
199   static bool
aarch64_ldst_pcrel(Insntype insn)200   aarch64_ldst_pcrel(Insntype insn)
201   { return (insn & 0x3b000000) == 0x18000000; }
202 
203   static bool
aarch64_ldst_nap(Insntype insn)204   aarch64_ldst_nap(Insntype insn)
205   { return (insn & 0x3b800000) == 0x28000000; }
206 
207   static bool
aarch64_ldstp_pi(Insntype insn)208   aarch64_ldstp_pi(Insntype insn)
209   { return (insn & 0x3b800000) == 0x28800000; }
210 
211   static bool
aarch64_ldstp_o(Insntype insn)212   aarch64_ldstp_o(Insntype insn)
213   { return (insn & 0x3b800000) == 0x29000000; }
214 
215   static bool
aarch64_ldstp_pre(Insntype insn)216   aarch64_ldstp_pre(Insntype insn)
217   { return (insn & 0x3b800000) == 0x29800000; }
218 
219   static bool
aarch64_ldst_ui(Insntype insn)220   aarch64_ldst_ui(Insntype insn)
221   { return (insn & 0x3b200c00) == 0x38000000; }
222 
223   static bool
aarch64_ldst_piimm(Insntype insn)224   aarch64_ldst_piimm(Insntype insn)
225   { return (insn & 0x3b200c00) == 0x38000400; }
226 
227   static bool
aarch64_ldst_u(Insntype insn)228   aarch64_ldst_u(Insntype insn)
229   { return (insn & 0x3b200c00) == 0x38000800; }
230 
231   static bool
aarch64_ldst_preimm(Insntype insn)232   aarch64_ldst_preimm(Insntype insn)
233   { return (insn & 0x3b200c00) == 0x38000c00; }
234 
235   static bool
aarch64_ldst_ro(Insntype insn)236   aarch64_ldst_ro(Insntype insn)
237   { return (insn & 0x3b200c00) == 0x38200800; }
238 
239   static bool
aarch64_ldst_uimm(Insntype insn)240   aarch64_ldst_uimm(Insntype insn)
241   { return (insn & 0x3b000000) == 0x39000000; }
242 
243   static bool
aarch64_ldst_simd_m(Insntype insn)244   aarch64_ldst_simd_m(Insntype insn)
245   { return (insn & 0xbfbf0000) == 0x0c000000; }
246 
247   static bool
aarch64_ldst_simd_m_pi(Insntype insn)248   aarch64_ldst_simd_m_pi(Insntype insn)
249   { return (insn & 0xbfa00000) == 0x0c800000; }
250 
251   static bool
aarch64_ldst_simd_s(Insntype insn)252   aarch64_ldst_simd_s(Insntype insn)
253   { return (insn & 0xbf9f0000) == 0x0d000000; }
254 
255   static bool
aarch64_ldst_simd_s_pi(Insntype insn)256   aarch64_ldst_simd_s_pi(Insntype insn)
257   { return (insn & 0xbf800000) == 0x0d800000; }
258 
259   // Classify an INSN if it is indeed a load/store. Return true if INSN is a
260   // LD/ST instruction otherwise return false. For scalar LD/ST instructions
261   // PAIR is FALSE, RT is returned and RT2 is set equal to RT. For LD/ST pair
262   // instructions PAIR is TRUE, RT and RT2 are returned.
263   static bool
aarch64_mem_op_p(Insntype insn,unsigned int * rt,unsigned int * rt2,bool * pair,bool * load)264   aarch64_mem_op_p(Insntype insn, unsigned int *rt, unsigned int *rt2,
265 		   bool *pair, bool *load)
266   {
267     uint32_t opcode;
268     unsigned int r;
269     uint32_t opc = 0;
270     uint32_t v = 0;
271     uint32_t opc_v = 0;
272 
273     /* Bail out quickly if INSN doesn't fall into the load-store
274        encoding space.  */
275     if (!aarch64_ldst (insn))
276       return false;
277 
278     *pair = false;
279     *load = false;
280     if (aarch64_ldst_ex (insn))
281       {
282 	*rt = aarch64_rt (insn);
283 	*rt2 = *rt;
284 	if (aarch64_bit (insn, 21) == 1)
285 	  {
286 	    *pair = true;
287 	    *rt2 = aarch64_rt2 (insn);
288 	  }
289 	*load = aarch64_ld (insn);
290 	return true;
291       }
292     else if (aarch64_ldst_nap (insn)
293 	     || aarch64_ldstp_pi (insn)
294 	     || aarch64_ldstp_o (insn)
295 	     || aarch64_ldstp_pre (insn))
296       {
297 	*pair = true;
298 	*rt = aarch64_rt (insn);
299 	*rt2 = aarch64_rt2 (insn);
300 	*load = aarch64_ld (insn);
301 	return true;
302       }
303     else if (aarch64_ldst_pcrel (insn)
304 	     || aarch64_ldst_ui (insn)
305 	     || aarch64_ldst_piimm (insn)
306 	     || aarch64_ldst_u (insn)
307 	     || aarch64_ldst_preimm (insn)
308 	     || aarch64_ldst_ro (insn)
309 	     || aarch64_ldst_uimm (insn))
310       {
311 	*rt = aarch64_rt (insn);
312 	*rt2 = *rt;
313 	if (aarch64_ldst_pcrel (insn))
314 	  *load = true;
315 	opc = aarch64_bits (insn, 22, 2);
316 	v = aarch64_bit (insn, 26);
317 	opc_v = opc | (v << 2);
318 	*load =  (opc_v == 1 || opc_v == 2 || opc_v == 3
319 		  || opc_v == 5 || opc_v == 7);
320 	return true;
321       }
322     else if (aarch64_ldst_simd_m (insn)
323 	     || aarch64_ldst_simd_m_pi (insn))
324       {
325 	*rt = aarch64_rt (insn);
326 	*load = aarch64_bit (insn, 22);
327 	opcode = (insn >> 12) & 0xf;
328 	switch (opcode)
329 	  {
330 	  case 0:
331 	  case 2:
332 	    *rt2 = *rt + 3;
333 	    break;
334 
335 	  case 4:
336 	  case 6:
337 	    *rt2 = *rt + 2;
338 	    break;
339 
340 	  case 7:
341 	    *rt2 = *rt;
342 	    break;
343 
344 	  case 8:
345 	  case 10:
346 	    *rt2 = *rt + 1;
347 	    break;
348 
349 	  default:
350 	    return false;
351 	  }
352 	return true;
353       }
354     else if (aarch64_ldst_simd_s (insn)
355 	     || aarch64_ldst_simd_s_pi (insn))
356       {
357 	*rt = aarch64_rt (insn);
358 	r = (insn >> 21) & 1;
359 	*load = aarch64_bit (insn, 22);
360 	opcode = (insn >> 13) & 0x7;
361 	switch (opcode)
362 	  {
363 	  case 0:
364 	  case 2:
365 	  case 4:
366 	    *rt2 = *rt + r;
367 	    break;
368 
369 	  case 1:
370 	  case 3:
371 	  case 5:
372 	    *rt2 = *rt + (r == 0 ? 2 : 3);
373 	    break;
374 
375 	  case 6:
376 	    *rt2 = *rt + r;
377 	    break;
378 
379 	  case 7:
380 	    *rt2 = *rt + (r == 0 ? 2 : 3);
381 	    break;
382 
383 	  default:
384 	    return false;
385 	  }
386 	return true;
387       }
388     return false;
389   }  // End of "aarch64_mem_op_p".
390 
391   // Return true if INSN is mac insn.
392   static bool
aarch64_mac(Insntype insn)393   aarch64_mac(Insntype insn)
394   { return (insn & 0xff000000) == 0x9b000000; }
395 
396   // Return true if INSN is multiply-accumulate.
397   // (This is similar to implementaton in elfnn-aarch64.c.)
398   static bool
aarch64_mlxl(Insntype insn)399   aarch64_mlxl(Insntype insn)
400   {
401     uint32_t op31 = aarch64_op31(insn);
402     if (aarch64_mac(insn)
403 	&& (op31 == 0 || op31 == 1 || op31 == 5)
404 	/* Exclude MUL instructions which are encoded as a multiple-accumulate
405 	   with RA = XZR.  */
406 	&& aarch64_ra(insn) != AARCH64_ZR)
407       {
408 	return true;
409       }
410     return false;
411   }
412 };  // End of "AArch64_insn_utilities".
413 
414 
415 // Insn length in byte.
416 
417 template<bool big_endian>
418 const int AArch64_insn_utilities<big_endian>::BYTES_PER_INSN = 4;
419 
420 
421 // Zero register encoding - 31.
422 
423 template<bool big_endian>
424 const unsigned int AArch64_insn_utilities<big_endian>::AARCH64_ZR = 0x1f;
425 
426 
427 // Output_data_got_aarch64 class.
428 
429 template<int size, bool big_endian>
430 class Output_data_got_aarch64 : public Output_data_got<size, big_endian>
431 {
432  public:
433   typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
Output_data_got_aarch64(Symbol_table * symtab,Layout * layout)434   Output_data_got_aarch64(Symbol_table* symtab, Layout* layout)
435     : Output_data_got<size, big_endian>(),
436       symbol_table_(symtab), layout_(layout)
437   { }
438 
439   // Add a static entry for the GOT entry at OFFSET.  GSYM is a global
440   // symbol and R_TYPE is the code of a dynamic relocation that needs to be
441   // applied in a static link.
442   void
add_static_reloc(unsigned int got_offset,unsigned int r_type,Symbol * gsym)443   add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
444   { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
445 
446 
447   // Add a static reloc for the GOT entry at OFFSET.  RELOBJ is an object
448   // defining a local symbol with INDEX.  R_TYPE is the code of a dynamic
449   // relocation that needs to be applied in a static link.
450   void
add_static_reloc(unsigned int got_offset,unsigned int r_type,Sized_relobj_file<size,big_endian> * relobj,unsigned int index)451   add_static_reloc(unsigned int got_offset, unsigned int r_type,
452 		   Sized_relobj_file<size, big_endian>* relobj,
453 		   unsigned int index)
454   {
455     this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
456 						index));
457   }
458 
459 
460  protected:
461   // Write out the GOT table.
462   void
do_write(Output_file * of)463   do_write(Output_file* of) {
464     // The first entry in the GOT is the address of the .dynamic section.
465     gold_assert(this->data_size() >= size / 8);
466     Output_section* dynamic = this->layout_->dynamic_section();
467     Valtype dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
468     this->replace_constant(0, dynamic_addr);
469     Output_data_got<size, big_endian>::do_write(of);
470 
471     // Handling static relocs
472     if (this->static_relocs_.empty())
473       return;
474 
475     typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
476 
477     gold_assert(parameters->doing_static_link());
478     const off_t offset = this->offset();
479     const section_size_type oview_size =
480       convert_to_section_size_type(this->data_size());
481     unsigned char* const oview = of->get_output_view(offset, oview_size);
482 
483     Output_segment* tls_segment = this->layout_->tls_segment();
484     gold_assert(tls_segment != NULL);
485 
486     AArch64_address aligned_tcb_address =
487       align_address(Target_aarch64<size, big_endian>::TCB_SIZE,
488 		    tls_segment->maximum_alignment());
489 
490     for (size_t i = 0; i < this->static_relocs_.size(); ++i)
491       {
492 	Static_reloc& reloc(this->static_relocs_[i]);
493 	AArch64_address value;
494 
495 	if (!reloc.symbol_is_global())
496 	  {
497 	    Sized_relobj_file<size, big_endian>* object = reloc.relobj();
498 	    const Symbol_value<size>* psymval =
499 	      reloc.relobj()->local_symbol(reloc.index());
500 
501 	    // We are doing static linking.  Issue an error and skip this
502 	    // relocation if the symbol is undefined or in a discarded_section.
503 	    bool is_ordinary;
504 	    unsigned int shndx = psymval->input_shndx(&is_ordinary);
505 	    if ((shndx == elfcpp::SHN_UNDEF)
506 		|| (is_ordinary
507 		    && shndx != elfcpp::SHN_UNDEF
508 		    && !object->is_section_included(shndx)
509 		    && !this->symbol_table_->is_section_folded(object, shndx)))
510 	      {
511 		gold_error(_("undefined or discarded local symbol %u from "
512 			     " object %s in GOT"),
513 			   reloc.index(), reloc.relobj()->name().c_str());
514 		continue;
515 	      }
516 	    value = psymval->value(object, 0);
517 	  }
518 	else
519 	  {
520 	    const Symbol* gsym = reloc.symbol();
521 	    gold_assert(gsym != NULL);
522 	    if (gsym->is_forwarder())
523 	      gsym = this->symbol_table_->resolve_forwards(gsym);
524 
525 	    // We are doing static linking.  Issue an error and skip this
526 	    // relocation if the symbol is undefined or in a discarded_section
527 	    // unless it is a weakly_undefined symbol.
528 	    if ((gsym->is_defined_in_discarded_section()
529 		 || gsym->is_undefined())
530 		&& !gsym->is_weak_undefined())
531 	      {
532 		gold_error(_("undefined or discarded symbol %s in GOT"),
533 			   gsym->name());
534 		continue;
535 	      }
536 
537 	    if (!gsym->is_weak_undefined())
538 	      {
539 		const Sized_symbol<size>* sym =
540 		  static_cast<const Sized_symbol<size>*>(gsym);
541 		value = sym->value();
542 	      }
543 	    else
544 	      value = 0;
545 	  }
546 
547 	unsigned got_offset = reloc.got_offset();
548 	gold_assert(got_offset < oview_size);
549 
550 	typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
551 	Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
552 	Valtype x;
553 	switch (reloc.r_type())
554 	  {
555 	  case elfcpp::R_AARCH64_TLS_DTPREL64:
556 	    x = value;
557 	    break;
558 	  case elfcpp::R_AARCH64_TLS_TPREL64:
559 	    x = value + aligned_tcb_address;
560 	    break;
561 	  default:
562 	    gold_unreachable();
563 	  }
564 	elfcpp::Swap<size, big_endian>::writeval(wv, x);
565       }
566 
567     of->write_output_view(offset, oview_size, oview);
568   }
569 
570  private:
571   // Symbol table of the output object.
572   Symbol_table* symbol_table_;
573   // A pointer to the Layout class, so that we can find the .dynamic
574   // section when we write out the GOT section.
575   Layout* layout_;
576 
577   // This class represent dynamic relocations that need to be applied by
578   // gold because we are using TLS relocations in a static link.
579   class Static_reloc
580   {
581    public:
Static_reloc(unsigned int got_offset,unsigned int r_type,Symbol * gsym)582     Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
583       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
584     { this->u_.global.symbol = gsym; }
585 
Static_reloc(unsigned int got_offset,unsigned int r_type,Sized_relobj_file<size,big_endian> * relobj,unsigned int index)586     Static_reloc(unsigned int got_offset, unsigned int r_type,
587 	  Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
588       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
589     {
590       this->u_.local.relobj = relobj;
591       this->u_.local.index = index;
592     }
593 
594     // Return the GOT offset.
595     unsigned int
got_offset() const596     got_offset() const
597     { return this->got_offset_; }
598 
599     // Relocation type.
600     unsigned int
r_type() const601     r_type() const
602     { return this->r_type_; }
603 
604     // Whether the symbol is global or not.
605     bool
symbol_is_global() const606     symbol_is_global() const
607     { return this->symbol_is_global_; }
608 
609     // For a relocation against a global symbol, the global symbol.
610     Symbol*
symbol() const611     symbol() const
612     {
613       gold_assert(this->symbol_is_global_);
614       return this->u_.global.symbol;
615     }
616 
617     // For a relocation against a local symbol, the defining object.
618     Sized_relobj_file<size, big_endian>*
relobj() const619     relobj() const
620     {
621       gold_assert(!this->symbol_is_global_);
622       return this->u_.local.relobj;
623     }
624 
625     // For a relocation against a local symbol, the local symbol index.
626     unsigned int
index() const627     index() const
628     {
629       gold_assert(!this->symbol_is_global_);
630       return this->u_.local.index;
631     }
632 
633    private:
634     // GOT offset of the entry to which this relocation is applied.
635     unsigned int got_offset_;
636     // Type of relocation.
637     unsigned int r_type_;
638     // Whether this relocation is against a global symbol.
639     bool symbol_is_global_;
640     // A global or local symbol.
641     union
642     {
643       struct
644       {
645 	// For a global symbol, the symbol itself.
646 	Symbol* symbol;
647       } global;
648       struct
649       {
650 	// For a local symbol, the object defining the symbol.
651 	Sized_relobj_file<size, big_endian>* relobj;
652 	// For a local symbol, the symbol index.
653 	unsigned int index;
654       } local;
655     } u_;
656   };  // End of inner class Static_reloc
657 
658   std::vector<Static_reloc> static_relocs_;
659 };  // End of Output_data_got_aarch64
660 
661 
662 template<int size, bool big_endian>
663 class AArch64_input_section;
664 
665 
666 template<int size, bool big_endian>
667 class AArch64_output_section;
668 
669 
670 template<int size, bool big_endian>
671 class AArch64_relobj;
672 
673 
674 // Stub type enum constants.
675 
676 enum
677 {
678   ST_NONE = 0,
679 
680   // Using adrp/add pair, 4 insns (including alignment) without mem access,
681   // the fastest stub. This has a limited jump distance, which is tested by
682   // aarch64_valid_for_adrp_p.
683   ST_ADRP_BRANCH = 1,
684 
685   // Using ldr-absolute-address/br-register, 4 insns with 1 mem access,
686   // unlimited in jump distance.
687   ST_LONG_BRANCH_ABS = 2,
688 
689   // Using ldr/calculate-pcrel/jump, 8 insns (including alignment) with 1
690   // mem access, slowest one. Only used in position independent executables.
691   ST_LONG_BRANCH_PCREL = 3,
692 
693   // Stub for erratum 843419 handling.
694   ST_E_843419 = 4,
695 
696   // Stub for erratum 835769 handling.
697   ST_E_835769 = 5,
698 
699   // Number of total stub types.
700   ST_NUMBER = 6
701 };
702 
703 
704 // Struct that wraps insns for a particular stub. All stub templates are
705 // created/initialized as constants by Stub_template_repertoire.
706 
707 template<bool big_endian>
708 struct Stub_template
709 {
710   const typename AArch64_insn_utilities<big_endian>::Insntype* insns;
711   const int insn_num;
712 };
713 
714 
715 // Simple singleton class that creates/initializes/stores all types of stub
716 // templates.
717 
718 template<bool big_endian>
719 class Stub_template_repertoire
720 {
721 public:
722   typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
723 
724   // Single static method to get stub template for a given stub type.
725   static const Stub_template<big_endian>*
get_stub_template(int type)726   get_stub_template(int type)
727   {
728     static Stub_template_repertoire<big_endian> singleton;
729     return singleton.stub_templates_[type];
730   }
731 
732 private:
733   // Constructor - creates/initializes all stub templates.
734   Stub_template_repertoire();
~Stub_template_repertoire()735   ~Stub_template_repertoire()
736   { }
737 
738   // Disallowing copy ctor and copy assignment operator.
739   Stub_template_repertoire(Stub_template_repertoire&);
740   Stub_template_repertoire& operator=(Stub_template_repertoire&);
741 
742   // Data that stores all insn templates.
743   const Stub_template<big_endian>* stub_templates_[ST_NUMBER];
744 };  // End of "class Stub_template_repertoire".
745 
746 
747 // Constructor - creates/initilizes all stub templates.
748 
749 template<bool big_endian>
Stub_template_repertoire()750 Stub_template_repertoire<big_endian>::Stub_template_repertoire()
751 {
752   // Insn array definitions.
753   const static Insntype ST_NONE_INSNS[] = {};
754 
755   const static Insntype ST_ADRP_BRANCH_INSNS[] =
756     {
757       0x90000010,	/*	adrp	ip0, X		   */
758 			/*	  ADR_PREL_PG_HI21(X)	   */
759       0x91000210,	/*	add	ip0, ip0, :lo12:X  */
760 			/*	  ADD_ABS_LO12_NC(X)	   */
761       0xd61f0200,	/*	br	ip0		   */
762       0x00000000,	/*	alignment padding	   */
763     };
764 
765   const static Insntype ST_LONG_BRANCH_ABS_INSNS[] =
766     {
767       0x58000050,	/*	ldr   ip0, 0x8		   */
768       0xd61f0200,	/*	br    ip0		   */
769       0x00000000,	/*	address field		   */
770       0x00000000,	/*	address fields		   */
771     };
772 
773   const static Insntype ST_LONG_BRANCH_PCREL_INSNS[] =
774     {
775       0x58000090,	/*	ldr   ip0, 0x10            */
776       0x10000011,	/*	adr   ip1, #0		   */
777       0x8b110210,	/*	add   ip0, ip0, ip1	   */
778       0xd61f0200,	/*	br    ip0		   */
779       0x00000000,	/*	address field		   */
780       0x00000000,	/*	address field		   */
781       0x00000000,	/*	alignment padding	   */
782       0x00000000,	/*	alignment padding	   */
783     };
784 
785   const static Insntype ST_E_843419_INSNS[] =
786     {
787       0x00000000,    /* Placeholder for erratum insn. */
788       0x14000000,    /* b <label> */
789     };
790 
791   // ST_E_835769 has the same stub template as ST_E_843419
792   // but we reproduce the array here so that the sizeof
793   // expressions in install_insn_template will work.
794   const static Insntype ST_E_835769_INSNS[] =
795     {
796       0x00000000,    /* Placeholder for erratum insn. */
797       0x14000000,    /* b <label> */
798     };
799 
800 #define install_insn_template(T) \
801   const static Stub_template<big_endian> template_##T = {  \
802     T##_INSNS, sizeof(T##_INSNS) / sizeof(T##_INSNS[0]) }; \
803   this->stub_templates_[T] = &template_##T
804 
805   install_insn_template(ST_NONE);
806   install_insn_template(ST_ADRP_BRANCH);
807   install_insn_template(ST_LONG_BRANCH_ABS);
808   install_insn_template(ST_LONG_BRANCH_PCREL);
809   install_insn_template(ST_E_843419);
810   install_insn_template(ST_E_835769);
811 
812 #undef install_insn_template
813 }
814 
815 
816 // Base class for stubs.
817 
818 template<int size, bool big_endian>
819 class Stub_base
820 {
821 public:
822   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
823   typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
824 
825   static const AArch64_address invalid_address =
826     static_cast<AArch64_address>(-1);
827 
828   static const section_offset_type invalid_offset =
829     static_cast<section_offset_type>(-1);
830 
Stub_base(int type)831   Stub_base(int type)
832     : destination_address_(invalid_address),
833       offset_(invalid_offset),
834       type_(type)
835   {}
836 
~Stub_base()837   ~Stub_base()
838   {}
839 
840   // Get stub type.
841   int
type() const842   type() const
843   { return this->type_; }
844 
845   // Get stub template that provides stub insn information.
846   const Stub_template<big_endian>*
stub_template() const847   stub_template() const
848   {
849     return Stub_template_repertoire<big_endian>::
850       get_stub_template(this->type());
851   }
852 
853   // Get destination address.
854   AArch64_address
destination_address() const855   destination_address() const
856   {
857     gold_assert(this->destination_address_ != this->invalid_address);
858     return this->destination_address_;
859   }
860 
861   // Set destination address.
862   void
set_destination_address(AArch64_address address)863   set_destination_address(AArch64_address address)
864   {
865     gold_assert(address != this->invalid_address);
866     this->destination_address_ = address;
867   }
868 
869   // Reset the destination address.
870   void
reset_destination_address()871   reset_destination_address()
872   { this->destination_address_ = this->invalid_address; }
873 
874   // Get offset of code stub. For Reloc_stub, it is the offset from the
875   // beginning of its containing stub table; for Erratum_stub, it is the offset
876   // from the end of reloc_stubs.
877   section_offset_type
offset() const878   offset() const
879   {
880     gold_assert(this->offset_ != this->invalid_offset);
881     return this->offset_;
882   }
883 
884   // Set stub offset.
885   void
set_offset(section_offset_type offset)886   set_offset(section_offset_type offset)
887   { this->offset_ = offset; }
888 
889   // Return the stub insn.
890   const Insntype*
insns() const891   insns() const
892   { return this->stub_template()->insns; }
893 
894   // Return num of stub insns.
895   unsigned int
insn_num() const896   insn_num() const
897   { return this->stub_template()->insn_num; }
898 
899   // Get size of the stub.
900   int
stub_size() const901   stub_size() const
902   {
903     return this->insn_num() *
904       AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
905   }
906 
907   // Write stub to output file.
908   void
write(unsigned char * view,section_size_type view_size)909   write(unsigned char* view, section_size_type view_size)
910   { this->do_write(view, view_size); }
911 
912 protected:
913   // Abstract method to be implemented by sub-classes.
914   virtual void
915   do_write(unsigned char*, section_size_type) = 0;
916 
917 private:
918   // The last insn of a stub is a jump to destination insn. This field records
919   // the destination address.
920   AArch64_address destination_address_;
921   // The stub offset. Note this has difference interpretations between an
922   // Reloc_stub and an Erratum_stub. For Reloc_stub this is the offset from the
923   // beginning of the containing stub_table, whereas for Erratum_stub, this is
924   // the offset from the end of reloc_stubs.
925   section_offset_type offset_;
926   // Stub type.
927   const int type_;
928 };  // End of "Stub_base".
929 
930 
931 // Erratum stub class. An erratum stub differs from a reloc stub in that for
932 // each erratum occurrence, we generate an erratum stub. We never share erratum
933 // stubs, whereas for reloc stubs, different branch insns share a single reloc
934 // stub as long as the branch targets are the same. (More to the point, reloc
935 // stubs can be shared because they're used to reach a specific target, whereas
936 // erratum stubs branch back to the original control flow.)
937 
938 template<int size, bool big_endian>
939 class Erratum_stub : public Stub_base<size, big_endian>
940 {
941 public:
942   typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
943   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
944   typedef AArch64_insn_utilities<big_endian> Insn_utilities;
945   typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
946 
947   static const int STUB_ADDR_ALIGN;
948 
949   static const Insntype invalid_insn = static_cast<Insntype>(-1);
950 
Erratum_stub(The_aarch64_relobj * relobj,int type,unsigned shndx,unsigned int sh_offset)951   Erratum_stub(The_aarch64_relobj* relobj, int type,
952 	       unsigned shndx, unsigned int sh_offset)
953     : Stub_base<size, big_endian>(type), relobj_(relobj),
954       shndx_(shndx), sh_offset_(sh_offset),
955       erratum_insn_(invalid_insn),
956       erratum_address_(this->invalid_address)
957   {}
958 
~Erratum_stub()959   ~Erratum_stub() {}
960 
961   // Return the object that contains the erratum.
962   The_aarch64_relobj*
relobj()963   relobj()
964   { return this->relobj_; }
965 
966   // Get section index of the erratum.
967   unsigned int
shndx() const968   shndx() const
969   { return this->shndx_; }
970 
971   // Get section offset of the erratum.
972   unsigned int
sh_offset() const973   sh_offset() const
974   { return this->sh_offset_; }
975 
976   // Get the erratum insn. This is the insn located at erratum_insn_address.
977   Insntype
erratum_insn() const978   erratum_insn() const
979   {
980     gold_assert(this->erratum_insn_ != this->invalid_insn);
981     return this->erratum_insn_;
982   }
983 
984   // Set the insn that the erratum happens to.
985   void
set_erratum_insn(Insntype insn)986   set_erratum_insn(Insntype insn)
987   { this->erratum_insn_ = insn; }
988 
989   // For 843419, the erratum insn is ld/st xt, [xn, #uimm], which may be a
990   // relocation spot, in this case, the erratum_insn_ recorded at scanning phase
991   // is no longer the one we want to write out to the stub, update erratum_insn_
992   // with relocated version. Also note that in this case xn must not be "PC", so
993   // it is safe to move the erratum insn from the origin place to the stub. For
994   // 835769, the erratum insn is multiply-accumulate insn, which could not be a
995   // relocation spot (assertion added though).
996   void
update_erratum_insn(Insntype insn)997   update_erratum_insn(Insntype insn)
998   {
999     gold_assert(this->erratum_insn_ != this->invalid_insn);
1000     switch (this->type())
1001       {
1002       case ST_E_843419:
1003 	gold_assert(Insn_utilities::aarch64_ldst_uimm(insn));
1004 	gold_assert(Insn_utilities::aarch64_ldst_uimm(this->erratum_insn()));
1005 	gold_assert(Insn_utilities::aarch64_rd(insn) ==
1006 		    Insn_utilities::aarch64_rd(this->erratum_insn()));
1007 	gold_assert(Insn_utilities::aarch64_rn(insn) ==
1008 		    Insn_utilities::aarch64_rn(this->erratum_insn()));
1009 	// Update plain ld/st insn with relocated insn.
1010 	this->erratum_insn_ = insn;
1011 	break;
1012       case ST_E_835769:
1013 	gold_assert(insn == this->erratum_insn());
1014 	break;
1015       default:
1016 	gold_unreachable();
1017       }
1018   }
1019 
1020 
1021   // Return the address where an erratum must be done.
1022   AArch64_address
erratum_address() const1023   erratum_address() const
1024   {
1025     gold_assert(this->erratum_address_ != this->invalid_address);
1026     return this->erratum_address_;
1027   }
1028 
1029   // Set the address where an erratum must be done.
1030   void
set_erratum_address(AArch64_address addr)1031   set_erratum_address(AArch64_address addr)
1032   { this->erratum_address_ = addr; }
1033 
1034   // Later relaxation passes of may alter the recorded erratum and destination
1035   // address. Given an up to date output section address of shidx_ in
1036   // relobj_ we can derive the erratum_address and destination address.
1037   void
update_erratum_address(AArch64_address output_section_addr)1038   update_erratum_address(AArch64_address output_section_addr)
1039   {
1040     const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
1041     AArch64_address updated_addr = output_section_addr + this->sh_offset_;
1042     this->set_erratum_address(updated_addr);
1043     this->set_destination_address(updated_addr + BPI);
1044   }
1045 
1046   // Comparator used to group Erratum_stubs in a set by (obj, shndx,
1047   // sh_offset). We do not include 'type' in the calculation, because there is
1048   // at most one stub type at (obj, shndx, sh_offset).
1049   bool
operator <(const Erratum_stub<size,big_endian> & k) const1050   operator<(const Erratum_stub<size, big_endian>& k) const
1051   {
1052     if (this == &k)
1053       return false;
1054     // We group stubs by relobj.
1055     if (this->relobj_ != k.relobj_)
1056       return this->relobj_ < k.relobj_;
1057     // Then by section index.
1058     if (this->shndx_ != k.shndx_)
1059       return this->shndx_ < k.shndx_;
1060     // Lastly by section offset.
1061     return this->sh_offset_ < k.sh_offset_;
1062   }
1063 
1064   void
invalidate_erratum_stub()1065   invalidate_erratum_stub()
1066   {
1067      gold_assert(this->erratum_insn_ != invalid_insn);
1068      this->erratum_insn_ = invalid_insn;
1069   }
1070 
1071   bool
is_invalidated_erratum_stub()1072   is_invalidated_erratum_stub()
1073   { return this->erratum_insn_ == invalid_insn; }
1074 
1075 protected:
1076   virtual void
1077   do_write(unsigned char*, section_size_type);
1078 
1079 private:
1080   // The object that needs to be fixed.
1081   The_aarch64_relobj* relobj_;
1082   // The shndx in the object that needs to be fixed.
1083   const unsigned int shndx_;
1084   // The section offset in the obejct that needs to be fixed.
1085   const unsigned int sh_offset_;
1086   // The insn to be fixed.
1087   Insntype erratum_insn_;
1088   // The address of the above insn.
1089   AArch64_address erratum_address_;
1090 };  // End of "Erratum_stub".
1091 
1092 
1093 // Erratum sub class to wrap additional info needed by 843419.  In fixing this
1094 // erratum, we may choose to replace 'adrp' with 'adr', in this case, we need
1095 // adrp's code position (two or three insns before erratum insn itself).
1096 
1097 template<int size, bool big_endian>
1098 class E843419_stub : public Erratum_stub<size, big_endian>
1099 {
1100 public:
1101   typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
1102 
E843419_stub(AArch64_relobj<size,big_endian> * relobj,unsigned int shndx,unsigned int sh_offset,unsigned int adrp_sh_offset)1103   E843419_stub(AArch64_relobj<size, big_endian>* relobj,
1104 		      unsigned int shndx, unsigned int sh_offset,
1105 		      unsigned int adrp_sh_offset)
1106     : Erratum_stub<size, big_endian>(relobj, ST_E_843419, shndx, sh_offset),
1107       adrp_sh_offset_(adrp_sh_offset)
1108   {}
1109 
1110   unsigned int
adrp_sh_offset() const1111   adrp_sh_offset() const
1112   { return this->adrp_sh_offset_; }
1113 
1114 private:
1115   // Section offset of "adrp". (We do not need a "adrp_shndx_" field, because we
1116   // can obtain it from its parent.)
1117   const unsigned int adrp_sh_offset_;
1118 };
1119 
1120 
1121 template<int size, bool big_endian>
1122 const int Erratum_stub<size, big_endian>::STUB_ADDR_ALIGN = 4;
1123 
1124 // Comparator used in set definition.
1125 template<int size, bool big_endian>
1126 struct Erratum_stub_less
1127 {
1128   bool
operator ()__anond8ca3b600111::Erratum_stub_less1129   operator()(const Erratum_stub<size, big_endian>* s1,
1130 	     const Erratum_stub<size, big_endian>* s2) const
1131   { return *s1 < *s2; }
1132 };
1133 
1134 // Erratum_stub implementation for writing stub to output file.
1135 
1136 template<int size, bool big_endian>
1137 void
do_write(unsigned char * view,section_size_type)1138 Erratum_stub<size, big_endian>::do_write(unsigned char* view, section_size_type)
1139 {
1140   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
1141   const Insntype* insns = this->insns();
1142   uint32_t num_insns = this->insn_num();
1143   Insntype* ip = reinterpret_cast<Insntype*>(view);
1144   // For current implemented erratum 843419 and 835769, the first insn in the
1145   // stub is always a copy of the problematic insn (in 843419, the mem access
1146   // insn, in 835769, the mac insn), followed by a jump-back.
1147   elfcpp::Swap<32, big_endian>::writeval(ip, this->erratum_insn());
1148   for (uint32_t i = 1; i < num_insns; ++i)
1149     elfcpp::Swap<32, big_endian>::writeval(ip + i, insns[i]);
1150 }
1151 
1152 
1153 // Reloc stub class.
1154 
1155 template<int size, bool big_endian>
1156 class Reloc_stub : public Stub_base<size, big_endian>
1157 {
1158  public:
1159   typedef Reloc_stub<size, big_endian> This;
1160   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
1161 
1162   // Branch range. This is used to calculate the section group size, as well as
1163   // determine whether a stub is needed.
1164   static const int MAX_BRANCH_OFFSET = ((1 << 25) - 1) << 2;
1165   static const int MIN_BRANCH_OFFSET = -((1 << 25) << 2);
1166 
1167   // Constant used to determine if an offset fits in the adrp instruction
1168   // encoding.
1169   static const int MAX_ADRP_IMM = (1 << 20) - 1;
1170   static const int MIN_ADRP_IMM = -(1 << 20);
1171 
1172   static const int BYTES_PER_INSN = 4;
1173   static const int STUB_ADDR_ALIGN;
1174 
1175   // Determine whether the offset fits in the jump/branch instruction.
1176   static bool
aarch64_valid_branch_offset_p(int64_t offset)1177   aarch64_valid_branch_offset_p(int64_t offset)
1178   { return offset >= MIN_BRANCH_OFFSET && offset <= MAX_BRANCH_OFFSET; }
1179 
1180   // Determine whether the offset fits in the adrp immediate field.
1181   static bool
aarch64_valid_for_adrp_p(AArch64_address location,AArch64_address dest)1182   aarch64_valid_for_adrp_p(AArch64_address location, AArch64_address dest)
1183   {
1184     typedef AArch64_relocate_functions<size, big_endian> Reloc;
1185     int64_t adrp_imm = (Reloc::Page(dest) - Reloc::Page(location)) >> 12;
1186     return adrp_imm >= MIN_ADRP_IMM && adrp_imm <= MAX_ADRP_IMM;
1187   }
1188 
1189   // Determine the stub type for a certain relocation or ST_NONE, if no stub is
1190   // needed.
1191   static int
1192   stub_type_for_reloc(unsigned int r_type, AArch64_address address,
1193 		      AArch64_address target);
1194 
Reloc_stub(int type)1195   Reloc_stub(int type)
1196     : Stub_base<size, big_endian>(type)
1197   { }
1198 
~Reloc_stub()1199   ~Reloc_stub()
1200   { }
1201 
1202   // The key class used to index the stub instance in the stub table's stub map.
1203   class Key
1204   {
1205    public:
Key(int type,const Symbol * symbol,const Relobj * relobj,unsigned int r_sym,int32_t addend)1206     Key(int type, const Symbol* symbol, const Relobj* relobj,
1207 	unsigned int r_sym, int32_t addend)
1208       : type_(type), addend_(addend)
1209     {
1210       if (symbol != NULL)
1211 	{
1212 	  this->r_sym_ = Reloc_stub::invalid_index;
1213 	  this->u_.symbol = symbol;
1214 	}
1215       else
1216 	{
1217 	  gold_assert(relobj != NULL && r_sym != invalid_index);
1218 	  this->r_sym_ = r_sym;
1219 	  this->u_.relobj = relobj;
1220 	}
1221     }
1222 
~Key()1223     ~Key()
1224     { }
1225 
1226     // Return stub type.
1227     int
type() const1228     type() const
1229     { return this->type_; }
1230 
1231     // Return the local symbol index or invalid_index.
1232     unsigned int
r_sym() const1233     r_sym() const
1234     { return this->r_sym_; }
1235 
1236     // Return the symbol if there is one.
1237     const Symbol*
symbol() const1238     symbol() const
1239     { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
1240 
1241     // Return the relobj if there is one.
1242     const Relobj*
relobj() const1243     relobj() const
1244     { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
1245 
1246     // Whether this equals to another key k.
1247     bool
eq(const Key & k) const1248     eq(const Key& k) const
1249     {
1250       return ((this->type_ == k.type_)
1251 	      && (this->r_sym_ == k.r_sym_)
1252 	      && ((this->r_sym_ != Reloc_stub::invalid_index)
1253 		  ? (this->u_.relobj == k.u_.relobj)
1254 		  : (this->u_.symbol == k.u_.symbol))
1255 	      && (this->addend_ == k.addend_));
1256     }
1257 
1258     // Return a hash value.
1259     size_t
hash_value() const1260     hash_value() const
1261     {
1262       size_t name_hash_value = gold::string_hash<char>(
1263 	  (this->r_sym_ != Reloc_stub::invalid_index)
1264 	  ? this->u_.relobj->name().c_str()
1265 	  : this->u_.symbol->name());
1266       // We only have 4 stub types.
1267       size_t stub_type_hash_value = 0x03 & this->type_;
1268       return (name_hash_value
1269 	      ^ stub_type_hash_value
1270 	      ^ ((this->r_sym_ & 0x3fff) << 2)
1271 	      ^ ((this->addend_ & 0xffff) << 16));
1272     }
1273 
1274     // Functors for STL associative containers.
1275     struct hash
1276     {
1277       size_t
operator ()__anond8ca3b600111::Reloc_stub::Key::hash1278       operator()(const Key& k) const
1279       { return k.hash_value(); }
1280     };
1281 
1282     struct equal_to
1283     {
1284       bool
operator ()__anond8ca3b600111::Reloc_stub::Key::equal_to1285       operator()(const Key& k1, const Key& k2) const
1286       { return k1.eq(k2); }
1287     };
1288 
1289    private:
1290     // Stub type.
1291     const int type_;
1292     // If this is a local symbol, this is the index in the defining object.
1293     // Otherwise, it is invalid_index for a global symbol.
1294     unsigned int r_sym_;
1295     // If r_sym_ is an invalid index, this points to a global symbol.
1296     // Otherwise, it points to a relobj.  We used the unsized and target
1297     // independent Symbol and Relobj classes instead of Sized_symbol<32> and
1298     // Arm_relobj, in order to avoid making the stub class a template
1299     // as most of the stub machinery is endianness-neutral.  However, it
1300     // may require a bit of casting done by users of this class.
1301     union
1302     {
1303       const Symbol* symbol;
1304       const Relobj* relobj;
1305     } u_;
1306     // Addend associated with a reloc.
1307     int32_t addend_;
1308   };  // End of inner class Reloc_stub::Key
1309 
1310  protected:
1311   // This may be overridden in the child class.
1312   virtual void
1313   do_write(unsigned char*, section_size_type);
1314 
1315  private:
1316   static const unsigned int invalid_index = static_cast<unsigned int>(-1);
1317 };  // End of Reloc_stub
1318 
1319 template<int size, bool big_endian>
1320 const int Reloc_stub<size, big_endian>::STUB_ADDR_ALIGN = 4;
1321 
1322 // Write data to output file.
1323 
1324 template<int size, bool big_endian>
1325 void
1326 Reloc_stub<size, big_endian>::
do_write(unsigned char * view,section_size_type)1327 do_write(unsigned char* view, section_size_type)
1328 {
1329   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
1330   const uint32_t* insns = this->insns();
1331   uint32_t num_insns = this->insn_num();
1332   Insntype* ip = reinterpret_cast<Insntype*>(view);
1333   for (uint32_t i = 0; i < num_insns; ++i)
1334     elfcpp::Swap<32, big_endian>::writeval(ip + i, insns[i]);
1335 }
1336 
1337 
1338 // Determine the stub type for a certain relocation or ST_NONE, if no stub is
1339 // needed.
1340 
1341 template<int size, bool big_endian>
1342 inline int
stub_type_for_reloc(unsigned int r_type,AArch64_address location,AArch64_address dest)1343 Reloc_stub<size, big_endian>::stub_type_for_reloc(
1344     unsigned int r_type, AArch64_address location, AArch64_address dest)
1345 {
1346   int64_t branch_offset = 0;
1347   switch(r_type)
1348     {
1349     case elfcpp::R_AARCH64_CALL26:
1350     case elfcpp::R_AARCH64_JUMP26:
1351       branch_offset = dest - location;
1352       break;
1353     default:
1354       gold_unreachable();
1355     }
1356 
1357   if (aarch64_valid_branch_offset_p(branch_offset))
1358     return ST_NONE;
1359 
1360   if (aarch64_valid_for_adrp_p(location, dest))
1361     return ST_ADRP_BRANCH;
1362 
1363   // Always use PC-relative addressing in case of -shared or -pie.
1364   if (parameters->options().output_is_position_independent())
1365     return ST_LONG_BRANCH_PCREL;
1366 
1367   // This saves 2 insns per stub, compared to ST_LONG_BRANCH_PCREL.
1368   // But is only applicable to non-shared or non-pie.
1369   return ST_LONG_BRANCH_ABS;
1370 }
1371 
1372 // A class to hold stubs for the ARM target. This contains 2 different types of
1373 // stubs - reloc stubs and erratum stubs.
1374 
1375 template<int size, bool big_endian>
1376 class Stub_table : public Output_data
1377 {
1378  public:
1379   typedef Target_aarch64<size, big_endian> The_target_aarch64;
1380   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
1381   typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
1382   typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
1383   typedef Reloc_stub<size, big_endian> The_reloc_stub;
1384   typedef typename The_reloc_stub::Key The_reloc_stub_key;
1385   typedef Erratum_stub<size, big_endian> The_erratum_stub;
1386   typedef Erratum_stub_less<size, big_endian> The_erratum_stub_less;
1387   typedef typename The_reloc_stub_key::hash The_reloc_stub_key_hash;
1388   typedef typename The_reloc_stub_key::equal_to The_reloc_stub_key_equal_to;
1389   typedef Stub_table<size, big_endian> The_stub_table;
1390   typedef Unordered_map<The_reloc_stub_key, The_reloc_stub*,
1391 			The_reloc_stub_key_hash, The_reloc_stub_key_equal_to>
1392 			Reloc_stub_map;
1393   typedef typename Reloc_stub_map::const_iterator Reloc_stub_map_const_iter;
1394   typedef Relocate_info<size, big_endian> The_relocate_info;
1395 
1396   typedef std::set<The_erratum_stub*, The_erratum_stub_less> Erratum_stub_set;
1397   typedef typename Erratum_stub_set::iterator Erratum_stub_set_iter;
1398 
Stub_table(The_aarch64_input_section * owner)1399   Stub_table(The_aarch64_input_section* owner)
1400     : Output_data(), owner_(owner), reloc_stubs_size_(0),
1401       erratum_stubs_size_(0), prev_data_size_(0)
1402   { }
1403 
~Stub_table()1404   ~Stub_table()
1405   { }
1406 
1407   The_aarch64_input_section*
owner() const1408   owner() const
1409   { return owner_; }
1410 
1411   // Whether this stub table is empty.
1412   bool
empty() const1413   empty() const
1414   { return reloc_stubs_.empty() && erratum_stubs_.empty(); }
1415 
1416   // Return the current data size.
1417   off_t
current_data_size() const1418   current_data_size() const
1419   { return this->current_data_size_for_child(); }
1420 
1421   // Add a STUB using KEY.  The caller is responsible for avoiding addition
1422   // if a STUB with the same key has already been added.
1423   void
1424   add_reloc_stub(The_reloc_stub* stub, const The_reloc_stub_key& key);
1425 
1426   // Add an erratum stub into the erratum stub set. The set is ordered by
1427   // (relobj, shndx, sh_offset).
1428   void
1429   add_erratum_stub(The_erratum_stub* stub);
1430 
1431   // Find if such erratum exists for any given (obj, shndx, sh_offset).
1432   The_erratum_stub*
1433   find_erratum_stub(The_aarch64_relobj* a64relobj,
1434 		    unsigned int shndx, unsigned int sh_offset);
1435 
1436   // Find all the erratums for a given input section. The return value is a pair
1437   // of iterators [begin, end).
1438   std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter>
1439   find_erratum_stubs_for_input_section(The_aarch64_relobj* a64relobj,
1440 				       unsigned int shndx);
1441 
1442   // Compute the erratum stub address.
1443   AArch64_address
erratum_stub_address(The_erratum_stub * stub) const1444   erratum_stub_address(The_erratum_stub* stub) const
1445   {
1446     AArch64_address r = align_address(this->address() + this->reloc_stubs_size_,
1447 				      The_erratum_stub::STUB_ADDR_ALIGN);
1448     r += stub->offset();
1449     return r;
1450   }
1451 
1452   // Finalize stubs. No-op here, just for completeness.
1453   void
finalize_stubs()1454   finalize_stubs()
1455   { }
1456 
1457   // Look up a relocation stub using KEY. Return NULL if there is none.
1458   The_reloc_stub*
find_reloc_stub(The_reloc_stub_key & key)1459   find_reloc_stub(The_reloc_stub_key& key)
1460   {
1461     Reloc_stub_map_const_iter p = this->reloc_stubs_.find(key);
1462     return (p != this->reloc_stubs_.end()) ? p->second : NULL;
1463   }
1464 
1465   // Relocate reloc stubs in this stub table. This does not relocate erratum stubs.
1466   void
1467   relocate_reloc_stubs(const The_relocate_info*,
1468                        The_target_aarch64*,
1469                        Output_section*,
1470                        unsigned char*,
1471                        AArch64_address,
1472                        section_size_type);
1473 
1474   // Relocate an erratum stub.
1475   void
1476   relocate_erratum_stub(The_erratum_stub*, unsigned char*);
1477 
1478   // Update data size at the end of a relaxation pass.  Return true if data size
1479   // is different from that of the previous relaxation pass.
1480   bool
update_data_size_changed_p()1481   update_data_size_changed_p()
1482   {
1483     // No addralign changed here.
1484     off_t s = align_address(this->reloc_stubs_size_,
1485 			    The_erratum_stub::STUB_ADDR_ALIGN)
1486 	      + this->erratum_stubs_size_;
1487     bool changed = (s != this->prev_data_size_);
1488     this->prev_data_size_ = s;
1489     return changed;
1490   }
1491 
1492  protected:
1493   // Write out section contents.
1494   void
1495   do_write(Output_file*);
1496 
1497   // Return the required alignment.
1498   uint64_t
do_addralign() const1499   do_addralign() const
1500   {
1501     return std::max(The_reloc_stub::STUB_ADDR_ALIGN,
1502 		    The_erratum_stub::STUB_ADDR_ALIGN);
1503   }
1504 
1505   // Reset address and file offset.
1506   void
do_reset_address_and_file_offset()1507   do_reset_address_and_file_offset()
1508   { this->set_current_data_size_for_child(this->prev_data_size_); }
1509 
1510   // Set final data size.
1511   void
set_final_data_size()1512   set_final_data_size()
1513   { this->set_data_size(this->current_data_size()); }
1514 
1515  private:
1516   // Relocate one reloc stub.
1517   void
1518   relocate_reloc_stub(The_reloc_stub*,
1519                       const The_relocate_info*,
1520                       The_target_aarch64*,
1521                       Output_section*,
1522                       unsigned char*,
1523                       AArch64_address,
1524                       section_size_type);
1525 
1526  private:
1527   // Owner of this stub table.
1528   The_aarch64_input_section* owner_;
1529   // The relocation stubs.
1530   Reloc_stub_map reloc_stubs_;
1531   // The erratum stubs.
1532   Erratum_stub_set erratum_stubs_;
1533   // Size of reloc stubs.
1534   off_t reloc_stubs_size_;
1535   // Size of erratum stubs.
1536   off_t erratum_stubs_size_;
1537   // data size of this in the previous pass.
1538   off_t prev_data_size_;
1539 };  // End of Stub_table
1540 
1541 
1542 // Add an erratum stub into the erratum stub set. The set is ordered by
1543 // (relobj, shndx, sh_offset).
1544 
1545 template<int size, bool big_endian>
1546 void
add_erratum_stub(The_erratum_stub * stub)1547 Stub_table<size, big_endian>::add_erratum_stub(The_erratum_stub* stub)
1548 {
1549   std::pair<Erratum_stub_set_iter, bool> ret =
1550     this->erratum_stubs_.insert(stub);
1551   gold_assert(ret.second);
1552   this->erratum_stubs_size_ = align_address(
1553 	this->erratum_stubs_size_, The_erratum_stub::STUB_ADDR_ALIGN);
1554   stub->set_offset(this->erratum_stubs_size_);
1555   this->erratum_stubs_size_ += stub->stub_size();
1556 }
1557 
1558 
1559 // Find if such erratum exists for given (obj, shndx, sh_offset).
1560 
1561 template<int size, bool big_endian>
1562 Erratum_stub<size, big_endian>*
find_erratum_stub(The_aarch64_relobj * a64relobj,unsigned int shndx,unsigned int sh_offset)1563 Stub_table<size, big_endian>::find_erratum_stub(
1564     The_aarch64_relobj* a64relobj, unsigned int shndx, unsigned int sh_offset)
1565 {
1566   // A dummy object used as key to search in the set.
1567   The_erratum_stub key(a64relobj, ST_NONE,
1568 			 shndx, sh_offset);
1569   Erratum_stub_set_iter i = this->erratum_stubs_.find(&key);
1570   if (i != this->erratum_stubs_.end())
1571     {
1572 	The_erratum_stub* stub(*i);
1573 	gold_assert(stub->erratum_insn() != 0);
1574 	return stub;
1575     }
1576   return NULL;
1577 }
1578 
1579 
1580 // Find all the errata for a given input section. The return value is a pair of
1581 // iterators [begin, end).
1582 
1583 template<int size, bool big_endian>
1584 std::pair<typename Stub_table<size, big_endian>::Erratum_stub_set_iter,
1585 	  typename Stub_table<size, big_endian>::Erratum_stub_set_iter>
find_erratum_stubs_for_input_section(The_aarch64_relobj * a64relobj,unsigned int shndx)1586 Stub_table<size, big_endian>::find_erratum_stubs_for_input_section(
1587     The_aarch64_relobj* a64relobj, unsigned int shndx)
1588 {
1589   typedef std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter> Result_pair;
1590   Erratum_stub_set_iter start, end;
1591   The_erratum_stub low_key(a64relobj, ST_NONE, shndx, 0);
1592   start = this->erratum_stubs_.lower_bound(&low_key);
1593   if (start == this->erratum_stubs_.end())
1594     return Result_pair(this->erratum_stubs_.end(),
1595 		       this->erratum_stubs_.end());
1596   end = start;
1597   while (end != this->erratum_stubs_.end() &&
1598 	 (*end)->relobj() == a64relobj && (*end)->shndx() == shndx)
1599     ++end;
1600   return Result_pair(start, end);
1601 }
1602 
1603 
1604 // Add a STUB using KEY.  The caller is responsible for avoiding addition
1605 // if a STUB with the same key has already been added.
1606 
1607 template<int size, bool big_endian>
1608 void
add_reloc_stub(The_reloc_stub * stub,const The_reloc_stub_key & key)1609 Stub_table<size, big_endian>::add_reloc_stub(
1610     The_reloc_stub* stub, const The_reloc_stub_key& key)
1611 {
1612   gold_assert(stub->type() == key.type());
1613   this->reloc_stubs_[key] = stub;
1614 
1615   // Assign stub offset early.  We can do this because we never remove
1616   // reloc stubs and they are in the beginning of the stub table.
1617   this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_,
1618 					  The_reloc_stub::STUB_ADDR_ALIGN);
1619   stub->set_offset(this->reloc_stubs_size_);
1620   this->reloc_stubs_size_ += stub->stub_size();
1621 }
1622 
1623 
1624 // Relocate an erratum stub.
1625 
1626 template<int size, bool big_endian>
1627 void
1628 Stub_table<size, big_endian>::
relocate_erratum_stub(The_erratum_stub * estub,unsigned char * view)1629 relocate_erratum_stub(The_erratum_stub* estub,
1630                       unsigned char* view)
1631 {
1632   // Just for convenience.
1633   const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
1634 
1635   gold_assert(!estub->is_invalidated_erratum_stub());
1636   AArch64_address stub_address = this->erratum_stub_address(estub);
1637   // The address of "b" in the stub that is to be "relocated".
1638   AArch64_address stub_b_insn_address;
1639   // Branch offset that is to be filled in "b" insn.
1640   int b_offset = 0;
1641   switch (estub->type())
1642     {
1643     case ST_E_843419:
1644     case ST_E_835769:
1645       // The 1st insn of the erratum could be a relocation spot,
1646       // in this case we need to fix it with
1647       // "(*i)->erratum_insn()".
1648       elfcpp::Swap<32, big_endian>::writeval(
1649           view + (stub_address - this->address()),
1650           estub->erratum_insn());
1651       // For the erratum, the 2nd insn is a b-insn to be patched
1652       // (relocated).
1653       stub_b_insn_address = stub_address + 1 * BPI;
1654       b_offset = estub->destination_address() - stub_b_insn_address;
1655       AArch64_relocate_functions<size, big_endian>::construct_b(
1656           view + (stub_b_insn_address - this->address()),
1657           ((unsigned int)(b_offset)) & 0xfffffff);
1658       break;
1659     default:
1660       gold_unreachable();
1661       break;
1662     }
1663   estub->invalidate_erratum_stub();
1664 }
1665 
1666 
1667 // Relocate only reloc stubs in this stub table. This does not relocate erratum
1668 // stubs.
1669 
1670 template<int size, bool big_endian>
1671 void
1672 Stub_table<size, big_endian>::
relocate_reloc_stubs(const The_relocate_info * relinfo,The_target_aarch64 * target_aarch64,Output_section * output_section,unsigned char * view,AArch64_address address,section_size_type view_size)1673 relocate_reloc_stubs(const The_relocate_info* relinfo,
1674                      The_target_aarch64* target_aarch64,
1675                      Output_section* output_section,
1676                      unsigned char* view,
1677                      AArch64_address address,
1678                      section_size_type view_size)
1679 {
1680   // "view_size" is the total size of the stub_table.
1681   gold_assert(address == this->address() &&
1682 	      view_size == static_cast<section_size_type>(this->data_size()));
1683   for(Reloc_stub_map_const_iter p = this->reloc_stubs_.begin();
1684       p != this->reloc_stubs_.end(); ++p)
1685     relocate_reloc_stub(p->second, relinfo, target_aarch64, output_section,
1686                         view, address, view_size);
1687 }
1688 
1689 
1690 // Relocate one reloc stub. This is a helper for
1691 // Stub_table::relocate_reloc_stubs().
1692 
1693 template<int size, bool big_endian>
1694 void
1695 Stub_table<size, big_endian>::
relocate_reloc_stub(The_reloc_stub * stub,const The_relocate_info * relinfo,The_target_aarch64 * target_aarch64,Output_section * output_section,unsigned char * view,AArch64_address address,section_size_type view_size)1696 relocate_reloc_stub(The_reloc_stub* stub,
1697                     const The_relocate_info* relinfo,
1698                     The_target_aarch64* target_aarch64,
1699                     Output_section* output_section,
1700                     unsigned char* view,
1701                     AArch64_address address,
1702                     section_size_type view_size)
1703 {
1704   // "offset" is the offset from the beginning of the stub_table.
1705   section_size_type offset = stub->offset();
1706   section_size_type stub_size = stub->stub_size();
1707   // "view_size" is the total size of the stub_table.
1708   gold_assert(offset + stub_size <= view_size);
1709 
1710   target_aarch64->relocate_reloc_stub(stub, relinfo, output_section,
1711                                       view + offset, address + offset, view_size);
1712 }
1713 
1714 
1715 // Write out the stubs to file.
1716 
1717 template<int size, bool big_endian>
1718 void
do_write(Output_file * of)1719 Stub_table<size, big_endian>::do_write(Output_file* of)
1720 {
1721   off_t offset = this->offset();
1722   const section_size_type oview_size =
1723     convert_to_section_size_type(this->data_size());
1724   unsigned char* const oview = of->get_output_view(offset, oview_size);
1725 
1726   // Write relocation stubs.
1727   for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
1728       p != this->reloc_stubs_.end(); ++p)
1729     {
1730       The_reloc_stub* stub = p->second;
1731       AArch64_address address = this->address() + stub->offset();
1732       gold_assert(address ==
1733 		  align_address(address, The_reloc_stub::STUB_ADDR_ALIGN));
1734       stub->write(oview + stub->offset(), stub->stub_size());
1735     }
1736 
1737   // Write erratum stubs.
1738   unsigned int erratum_stub_start_offset =
1739     align_address(this->reloc_stubs_size_, The_erratum_stub::STUB_ADDR_ALIGN);
1740   for (typename Erratum_stub_set::iterator p = this->erratum_stubs_.begin();
1741        p != this->erratum_stubs_.end(); ++p)
1742     {
1743       The_erratum_stub* stub(*p);
1744       stub->write(oview + erratum_stub_start_offset + stub->offset(),
1745 		  stub->stub_size());
1746     }
1747 
1748   of->write_output_view(this->offset(), oview_size, oview);
1749 }
1750 
1751 
1752 // AArch64_relobj class.
1753 
1754 template<int size, bool big_endian>
1755 class AArch64_relobj : public Sized_relobj_file<size, big_endian>
1756 {
1757  public:
1758   typedef AArch64_relobj<size, big_endian> This;
1759   typedef Target_aarch64<size, big_endian> The_target_aarch64;
1760   typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
1761   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
1762   typedef Stub_table<size, big_endian> The_stub_table;
1763   typedef Erratum_stub<size, big_endian> The_erratum_stub;
1764   typedef typename The_stub_table::Erratum_stub_set_iter Erratum_stub_set_iter;
1765   typedef std::vector<The_stub_table*> Stub_table_list;
1766   static const AArch64_address invalid_address =
1767       static_cast<AArch64_address>(-1);
1768 
AArch64_relobj(const std::string & name,Input_file * input_file,off_t offset,const typename elfcpp::Ehdr<size,big_endian> & ehdr)1769   AArch64_relobj(const std::string& name, Input_file* input_file, off_t offset,
1770 		 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
1771     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
1772       stub_tables_()
1773   { }
1774 
~AArch64_relobj()1775   ~AArch64_relobj()
1776   { }
1777 
1778   // Return the stub table of the SHNDX-th section if there is one.
1779   The_stub_table*
stub_table(unsigned int shndx) const1780   stub_table(unsigned int shndx) const
1781   {
1782     gold_assert(shndx < this->stub_tables_.size());
1783     return this->stub_tables_[shndx];
1784   }
1785 
1786   // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1787   void
set_stub_table(unsigned int shndx,The_stub_table * stub_table)1788   set_stub_table(unsigned int shndx, The_stub_table* stub_table)
1789   {
1790     gold_assert(shndx < this->stub_tables_.size());
1791     this->stub_tables_[shndx] = stub_table;
1792   }
1793 
1794   // Entrance to errata scanning.
1795   void
1796   scan_errata(unsigned int shndx,
1797 	      const elfcpp::Shdr<size, big_endian>&,
1798 	      Output_section*, const Symbol_table*,
1799 	      The_target_aarch64*);
1800 
1801   // Scan all relocation sections for stub generation.
1802   void
1803   scan_sections_for_stubs(The_target_aarch64*, const Symbol_table*,
1804 			  const Layout*);
1805 
1806   // Whether a section is a scannable text section.
1807   bool
1808   text_section_is_scannable(const elfcpp::Shdr<size, big_endian>&, unsigned int,
1809 			    const Output_section*, const Symbol_table*);
1810 
1811   // Convert regular input section with index SHNDX to a relaxed section.
1812   void
convert_input_section_to_relaxed_section(unsigned shndx)1813   convert_input_section_to_relaxed_section(unsigned shndx)
1814   {
1815     // The stubs have relocations and we need to process them after writing
1816     // out the stubs.  So relocation now must follow section write.
1817     this->set_section_offset(shndx, -1ULL);
1818     this->set_relocs_must_follow_section_writes();
1819   }
1820 
1821   // Structure for mapping symbol position.
1822   struct Mapping_symbol_position
1823   {
Mapping_symbol_position__anond8ca3b600111::AArch64_relobj::Mapping_symbol_position1824     Mapping_symbol_position(unsigned int shndx, AArch64_address offset):
1825       shndx_(shndx), offset_(offset)
1826     {}
1827 
1828     // "<" comparator used in ordered_map container.
1829     bool
operator <__anond8ca3b600111::AArch64_relobj::Mapping_symbol_position1830     operator<(const Mapping_symbol_position& p) const
1831     {
1832       return (this->shndx_ < p.shndx_
1833 	      || (this->shndx_ == p.shndx_ && this->offset_ < p.offset_));
1834     }
1835 
1836     // Section index.
1837     unsigned int shndx_;
1838 
1839     // Section offset.
1840     AArch64_address offset_;
1841   };
1842 
1843   typedef std::map<Mapping_symbol_position, char> Mapping_symbol_info;
1844 
1845  protected:
1846   // Post constructor setup.
1847   void
do_setup()1848   do_setup()
1849   {
1850     // Call parent's setup method.
1851     Sized_relobj_file<size, big_endian>::do_setup();
1852 
1853     // Initialize look-up tables.
1854     this->stub_tables_.resize(this->shnum());
1855   }
1856 
1857   virtual void
1858   do_relocate_sections(
1859       const Symbol_table* symtab, const Layout* layout,
1860       const unsigned char* pshdrs, Output_file* of,
1861       typename Sized_relobj_file<size, big_endian>::Views* pviews);
1862 
1863   // Count local symbols and (optionally) record mapping info.
1864   virtual void
1865   do_count_local_symbols(Stringpool_template<char>*,
1866 			 Stringpool_template<char>*);
1867 
1868  private:
1869   // Fix all errata in the object, and for each erratum, relocate corresponding
1870   // erratum stub.
1871   void
1872   fix_errata_and_relocate_erratum_stubs(
1873       typename Sized_relobj_file<size, big_endian>::Views* pviews);
1874 
1875   // Try to fix erratum 843419 in an optimized way. Return true if patch is
1876   // applied.
1877   bool
1878   try_fix_erratum_843419_optimized(
1879       The_erratum_stub*, AArch64_address,
1880       typename Sized_relobj_file<size, big_endian>::View_size&);
1881 
1882   // Whether a section needs to be scanned for relocation stubs.
1883   bool
1884   section_needs_reloc_stub_scanning(const elfcpp::Shdr<size, big_endian>&,
1885 				    const Relobj::Output_sections&,
1886 				    const Symbol_table*, const unsigned char*);
1887 
1888   // List of stub tables.
1889   Stub_table_list stub_tables_;
1890 
1891   // Mapping symbol information sorted by (section index, section_offset).
1892   Mapping_symbol_info mapping_symbol_info_;
1893 };  // End of AArch64_relobj
1894 
1895 
1896 // Override to record mapping symbol information.
1897 template<int size, bool big_endian>
1898 void
do_count_local_symbols(Stringpool_template<char> * pool,Stringpool_template<char> * dynpool)1899 AArch64_relobj<size, big_endian>::do_count_local_symbols(
1900     Stringpool_template<char>* pool, Stringpool_template<char>* dynpool)
1901 {
1902   Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool);
1903 
1904   // Only erratum-fixing work needs mapping symbols, so skip this time consuming
1905   // processing if not fixing erratum.
1906   if (!parameters->options().fix_cortex_a53_843419()
1907       && !parameters->options().fix_cortex_a53_835769())
1908     return;
1909 
1910   const unsigned int loccount = this->local_symbol_count();
1911   if (loccount == 0)
1912     return;
1913 
1914   // Read the symbol table section header.
1915   const unsigned int symtab_shndx = this->symtab_shndx();
1916   elfcpp::Shdr<size, big_endian>
1917       symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
1918   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1919 
1920   // Read the local symbols.
1921   const int sym_size =elfcpp::Elf_sizes<size>::sym_size;
1922   gold_assert(loccount == symtabshdr.get_sh_info());
1923   off_t locsize = loccount * sym_size;
1924   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1925 					      locsize, true, true);
1926 
1927   // For mapping symbol processing, we need to read the symbol names.
1928   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
1929   if (strtab_shndx >= this->shnum())
1930     {
1931       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
1932       return;
1933     }
1934 
1935   elfcpp::Shdr<size, big_endian>
1936     strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
1937   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
1938     {
1939       this->error(_("symbol table name section has wrong type: %u"),
1940 		  static_cast<unsigned int>(strtabshdr.get_sh_type()));
1941       return;
1942     }
1943 
1944   const char* pnames =
1945     reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
1946 						 strtabshdr.get_sh_size(),
1947 						 false, false));
1948 
1949   // Skip the first dummy symbol.
1950   psyms += sym_size;
1951   typename Sized_relobj_file<size, big_endian>::Local_values*
1952     plocal_values = this->local_values();
1953   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1954     {
1955       elfcpp::Sym<size, big_endian> sym(psyms);
1956       Symbol_value<size>& lv((*plocal_values)[i]);
1957       AArch64_address input_value = lv.input_value();
1958 
1959       // Check to see if this is a mapping symbol. AArch64 mapping symbols are
1960       // defined in "ELF for the ARM 64-bit Architecture", Table 4-4, Mapping
1961       // symbols.
1962       // Mapping symbols could be one of the following 4 forms -
1963       //   a) $x
1964       //   b) $x.<any...>
1965       //   c) $d
1966       //   d) $d.<any...>
1967       const char* sym_name = pnames + sym.get_st_name();
1968       if (sym_name[0] == '$' && (sym_name[1] == 'x' || sym_name[1] == 'd')
1969 	  && (sym_name[2] == '\0' || sym_name[2] == '.'))
1970 	{
1971 	  bool is_ordinary;
1972 	  unsigned int input_shndx =
1973 	    this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
1974 	  gold_assert(is_ordinary);
1975 
1976 	  Mapping_symbol_position msp(input_shndx, input_value);
1977 	  // Insert mapping_symbol_info into map whose ordering is defined by
1978 	  // (shndx, offset_within_section).
1979 	  this->mapping_symbol_info_[msp] = sym_name[1];
1980 	}
1981    }
1982 }
1983 
1984 
1985 // Fix all errata in the object and for each erratum, we relocate the
1986 // corresponding erratum stub (by calling Stub_table::relocate_erratum_stub).
1987 
1988 template<int size, bool big_endian>
1989 void
fix_errata_and_relocate_erratum_stubs(typename Sized_relobj_file<size,big_endian>::Views * pviews)1990 AArch64_relobj<size, big_endian>::fix_errata_and_relocate_erratum_stubs(
1991     typename Sized_relobj_file<size, big_endian>::Views* pviews)
1992 {
1993   typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
1994   unsigned int shnum = this->shnum();
1995   const Relobj::Output_sections& out_sections(this->output_sections());
1996   for (unsigned int i = 1; i < shnum; ++i)
1997     {
1998       The_stub_table* stub_table = this->stub_table(i);
1999       if (!stub_table)
2000 	continue;
2001       std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter>
2002 	ipair(stub_table->find_erratum_stubs_for_input_section(this, i));
2003       Erratum_stub_set_iter p = ipair.first, end = ipair.second;
2004       typename Sized_relobj_file<size, big_endian>::View_size&
2005 	pview((*pviews)[i]);
2006       AArch64_address view_offset = 0;
2007       if (pview.is_input_output_view)
2008 	{
2009 	  // In this case, write_sections has not added the output offset to
2010 	  // the view's address, so we must do so. Currently this only happens
2011 	  // for a relaxed section.
2012 	  unsigned int index = this->adjust_shndx(i);
2013 	  const Output_relaxed_input_section* poris =
2014 	      out_sections[index]->find_relaxed_input_section(this, index);
2015 	  gold_assert(poris != NULL);
2016 	  view_offset = poris->address() - pview.address;
2017 	}
2018 
2019       while (p != end)
2020 	{
2021 	  The_erratum_stub* stub = *p;
2022 
2023 	  // Double check data before fix.
2024 	  gold_assert(pview.address + view_offset + stub->sh_offset()
2025 		      == stub->erratum_address());
2026 
2027 	  // Update previously recorded erratum insn with relocated
2028 	  // version.
2029 	  Insntype* ip =
2030 	    reinterpret_cast<Insntype*>(
2031 	      pview.view + view_offset + stub->sh_offset());
2032 	  Insntype insn_to_fix = ip[0];
2033 	  stub->update_erratum_insn(insn_to_fix);
2034 
2035 	  // First try to see if erratum is 843419 and if it can be fixed
2036 	  // without using branch-to-stub.
2037 	  if (!try_fix_erratum_843419_optimized(stub, view_offset, pview))
2038 	    {
2039 	      // Replace the erratum insn with a branch-to-stub.
2040 	      AArch64_address stub_address =
2041 		stub_table->erratum_stub_address(stub);
2042 	      unsigned int b_offset = stub_address - stub->erratum_address();
2043 	      AArch64_relocate_functions<size, big_endian>::construct_b(
2044 		pview.view + view_offset + stub->sh_offset(),
2045 		b_offset & 0xfffffff);
2046 	    }
2047 
2048           // Erratum fix is done (or skipped), continue to relocate erratum
2049           // stub. Note, when erratum fix is skipped (either because we
2050           // proactively change the code sequence or the code sequence is
2051           // changed by relaxation, etc), we can still safely relocate the
2052           // erratum stub, ignoring the fact the erratum could never be
2053           // executed.
2054           stub_table->relocate_erratum_stub(
2055 	    stub,
2056 	    pview.view + (stub_table->address() - pview.address));
2057 
2058           // Next erratum stub.
2059 	  ++p;
2060 	}
2061     }
2062 }
2063 
2064 
2065 // This is an optimization for 843419. This erratum requires the sequence begin
2066 // with 'adrp', when final value calculated by adrp fits in adr, we can just
2067 // replace 'adrp' with 'adr', so we save 2 jumps per occurrence. (Note, however,
2068 // in this case, we do not delete the erratum stub (too late to do so), it is
2069 // merely generated without ever being called.)
2070 
2071 template<int size, bool big_endian>
2072 bool
try_fix_erratum_843419_optimized(The_erratum_stub * stub,AArch64_address view_offset,typename Sized_relobj_file<size,big_endian>::View_size & pview)2073 AArch64_relobj<size, big_endian>::try_fix_erratum_843419_optimized(
2074     The_erratum_stub* stub, AArch64_address view_offset,
2075     typename Sized_relobj_file<size, big_endian>::View_size& pview)
2076 {
2077   if (stub->type() != ST_E_843419)
2078     return false;
2079 
2080   typedef AArch64_insn_utilities<big_endian> Insn_utilities;
2081   typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
2082   E843419_stub<size, big_endian>* e843419_stub =
2083     reinterpret_cast<E843419_stub<size, big_endian>*>(stub);
2084   AArch64_address pc =
2085     pview.address + view_offset + e843419_stub->adrp_sh_offset();
2086   unsigned int adrp_offset = e843419_stub->adrp_sh_offset ();
2087   Insntype* adrp_view =
2088     reinterpret_cast<Insntype*>(pview.view + view_offset + adrp_offset);
2089   Insntype adrp_insn = adrp_view[0];
2090 
2091   // If the instruction at adrp_sh_offset is "mrs R, tpidr_el0", it may come
2092   // from IE -> LE relaxation etc.  This is a side-effect of TLS relaxation that
2093   // ADRP has been turned into MRS, there is no erratum risk anymore.
2094   // Therefore, we return true to avoid doing unnecessary branch-to-stub.
2095   if (Insn_utilities::is_mrs_tpidr_el0(adrp_insn))
2096     return true;
2097 
2098   // If the instruction at adrp_sh_offset is not ADRP and the instruction before
2099   // it is "mrs R, tpidr_el0", it may come from LD -> LE relaxation etc.
2100   // Like the above case, there is no erratum risk any more, we can safely
2101   // return true.
2102   if (!Insn_utilities::is_adrp(adrp_insn) && adrp_offset)
2103     {
2104       Insntype* prev_view =
2105 	reinterpret_cast<Insntype*>(
2106 	  pview.view + view_offset + adrp_offset - 4);
2107       Insntype prev_insn = prev_view[0];
2108 
2109       if (Insn_utilities::is_mrs_tpidr_el0(prev_insn))
2110 	return true;
2111     }
2112 
2113   /* If we reach here, the first instruction must be ADRP.  */
2114   gold_assert(Insn_utilities::is_adrp(adrp_insn));
2115   // Get adrp 33-bit signed imm value.
2116   int64_t adrp_imm = Insn_utilities::
2117     aarch64_adrp_decode_imm(adrp_insn);
2118   // adrp - final value transferred to target register is calculated as:
2119   //     PC[11:0] = Zeros(12)
2120   //     adrp_dest_value = PC + adrp_imm;
2121   int64_t adrp_dest_value = (pc & ~((1 << 12) - 1)) + adrp_imm;
2122   // adr -final value transferred to target register is calucalted as:
2123   //     PC + adr_imm
2124   // So we have:
2125   //     PC + adr_imm = adrp_dest_value
2126   //   ==>
2127   //     adr_imm = adrp_dest_value - PC
2128   int64_t adr_imm = adrp_dest_value - pc;
2129   // Check if imm fits in adr (21-bit signed).
2130   if (-(1 << 20) <= adr_imm && adr_imm < (1 << 20))
2131     {
2132       // Convert 'adrp' into 'adr'.
2133       Insntype adr_insn = adrp_insn & ((1u << 31) - 1);
2134       adr_insn = Insn_utilities::
2135 	aarch64_adr_encode_imm(adr_insn, adr_imm);
2136       elfcpp::Swap<32, big_endian>::writeval(adrp_view, adr_insn);
2137       return true;
2138     }
2139   return false;
2140 }
2141 
2142 
2143 // Relocate sections.
2144 
2145 template<int size, bool big_endian>
2146 void
do_relocate_sections(const Symbol_table * symtab,const Layout * layout,const unsigned char * pshdrs,Output_file * of,typename Sized_relobj_file<size,big_endian>::Views * pviews)2147 AArch64_relobj<size, big_endian>::do_relocate_sections(
2148     const Symbol_table* symtab, const Layout* layout,
2149     const unsigned char* pshdrs, Output_file* of,
2150     typename Sized_relobj_file<size, big_endian>::Views* pviews)
2151 {
2152   // Relocate the section data.
2153   this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
2154 			       1, this->shnum() - 1);
2155 
2156   // We do not generate stubs if doing a relocatable link.
2157   if (parameters->options().relocatable())
2158     return;
2159 
2160   // This part only relocates erratum stubs that belong to input sections of this
2161   // object file.
2162   if (parameters->options().fix_cortex_a53_843419()
2163       || parameters->options().fix_cortex_a53_835769())
2164     this->fix_errata_and_relocate_erratum_stubs(pviews);
2165 
2166   Relocate_info<size, big_endian> relinfo;
2167   relinfo.symtab = symtab;
2168   relinfo.layout = layout;
2169   relinfo.object = this;
2170 
2171   // This part relocates all reloc stubs that are contained in stub_tables of
2172   // this object file.
2173   unsigned int shnum = this->shnum();
2174   The_target_aarch64* target = The_target_aarch64::current_target();
2175 
2176   for (unsigned int i = 1; i < shnum; ++i)
2177     {
2178       The_aarch64_input_section* aarch64_input_section =
2179 	  target->find_aarch64_input_section(this, i);
2180       if (aarch64_input_section != NULL
2181 	  && aarch64_input_section->is_stub_table_owner()
2182 	  && !aarch64_input_section->stub_table()->empty())
2183 	{
2184 	  Output_section* os = this->output_section(i);
2185 	  gold_assert(os != NULL);
2186 
2187 	  relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
2188 	  relinfo.reloc_shdr = NULL;
2189 	  relinfo.data_shndx = i;
2190 	  relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<size>::shdr_size;
2191 
2192 	  typename Sized_relobj_file<size, big_endian>::View_size&
2193 	      view_struct = (*pviews)[i];
2194 	  gold_assert(view_struct.view != NULL);
2195 
2196 	  The_stub_table* stub_table = aarch64_input_section->stub_table();
2197 	  off_t offset = stub_table->address() - view_struct.address;
2198 	  unsigned char* view = view_struct.view + offset;
2199 	  AArch64_address address = stub_table->address();
2200 	  section_size_type view_size = stub_table->data_size();
2201 	  stub_table->relocate_reloc_stubs(&relinfo, target, os, view, address,
2202 					   view_size);
2203 	}
2204     }
2205 }
2206 
2207 
2208 // Determine if an input section is scannable for stub processing.  SHDR is
2209 // the header of the section and SHNDX is the section index.  OS is the output
2210 // section for the input section and SYMTAB is the global symbol table used to
2211 // look up ICF information.
2212 
2213 template<int size, bool big_endian>
2214 bool
text_section_is_scannable(const elfcpp::Shdr<size,big_endian> & text_shdr,unsigned int text_shndx,const Output_section * os,const Symbol_table * symtab)2215 AArch64_relobj<size, big_endian>::text_section_is_scannable(
2216     const elfcpp::Shdr<size, big_endian>& text_shdr,
2217     unsigned int text_shndx,
2218     const Output_section* os,
2219     const Symbol_table* symtab)
2220 {
2221   // Skip any empty sections, unallocated sections or sections whose
2222   // type are not SHT_PROGBITS.
2223   if (text_shdr.get_sh_size() == 0
2224       || (text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
2225       || text_shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
2226     return false;
2227 
2228   // Skip any discarded or ICF'ed sections.
2229   if (os == NULL || symtab->is_section_folded(this, text_shndx))
2230     return false;
2231 
2232   // Skip exception frame.
2233   if (strcmp(os->name(), ".eh_frame") == 0)
2234     return false ;
2235 
2236   gold_assert(!this->is_output_section_offset_invalid(text_shndx) ||
2237 	      os->find_relaxed_input_section(this, text_shndx) != NULL);
2238 
2239   return true;
2240 }
2241 
2242 
2243 // Determine if we want to scan the SHNDX-th section for relocation stubs.
2244 // This is a helper for AArch64_relobj::scan_sections_for_stubs().
2245 
2246 template<int size, bool big_endian>
2247 bool
section_needs_reloc_stub_scanning(const elfcpp::Shdr<size,big_endian> & shdr,const Relobj::Output_sections & out_sections,const Symbol_table * symtab,const unsigned char * pshdrs)2248 AArch64_relobj<size, big_endian>::section_needs_reloc_stub_scanning(
2249     const elfcpp::Shdr<size, big_endian>& shdr,
2250     const Relobj::Output_sections& out_sections,
2251     const Symbol_table* symtab,
2252     const unsigned char* pshdrs)
2253 {
2254   unsigned int sh_type = shdr.get_sh_type();
2255   if (sh_type != elfcpp::SHT_RELA)
2256     return false;
2257 
2258   // Ignore empty section.
2259   off_t sh_size = shdr.get_sh_size();
2260   if (sh_size == 0)
2261     return false;
2262 
2263   // Ignore reloc section with unexpected symbol table.  The
2264   // error will be reported in the final link.
2265   if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
2266     return false;
2267 
2268   gold_assert(sh_type == elfcpp::SHT_RELA);
2269   unsigned int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
2270 
2271   // Ignore reloc section with unexpected entsize or uneven size.
2272   // The error will be reported in the final link.
2273   if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
2274     return false;
2275 
2276   // Ignore reloc section with bad info.  This error will be
2277   // reported in the final link.
2278   unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_info());
2279   if (text_shndx >= this->shnum())
2280     return false;
2281 
2282   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2283   const elfcpp::Shdr<size, big_endian> text_shdr(pshdrs +
2284 						 text_shndx * shdr_size);
2285   return this->text_section_is_scannable(text_shdr, text_shndx,
2286 					 out_sections[text_shndx], symtab);
2287 }
2288 
2289 
2290 // Scan section SHNDX for erratum 843419 and 835769.
2291 
2292 template<int size, bool big_endian>
2293 void
scan_errata(unsigned int shndx,const elfcpp::Shdr<size,big_endian> & shdr,Output_section * os,const Symbol_table * symtab,The_target_aarch64 * target)2294 AArch64_relobj<size, big_endian>::scan_errata(
2295     unsigned int shndx, const elfcpp::Shdr<size, big_endian>& shdr,
2296     Output_section* os, const Symbol_table* symtab,
2297     The_target_aarch64* target)
2298 {
2299   if (shdr.get_sh_size() == 0
2300       || (shdr.get_sh_flags() &
2301 	  (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR)) == 0
2302       || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
2303     return;
2304 
2305   if (!os || symtab->is_section_folded(this, shndx)) return;
2306 
2307   AArch64_address output_offset = this->get_output_section_offset(shndx);
2308   AArch64_address output_address;
2309   if (output_offset != invalid_address)
2310     output_address = os->address() + output_offset;
2311   else
2312     {
2313       const Output_relaxed_input_section* poris =
2314 	os->find_relaxed_input_section(this, shndx);
2315       if (!poris) return;
2316       output_address = poris->address();
2317     }
2318 
2319   // Update the addresses in previously generated erratum stubs. Unlike when
2320   // we scan relocations for stubs, if section addresses have changed due to
2321   // other relaxations we are unlikely to scan the same erratum instances
2322   // again.
2323   The_stub_table* stub_table = this->stub_table(shndx);
2324   if (stub_table)
2325     {
2326       std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter>
2327 	  ipair(stub_table->find_erratum_stubs_for_input_section(this, shndx));
2328       for (Erratum_stub_set_iter p = ipair.first;  p != ipair.second; ++p)
2329           (*p)->update_erratum_address(output_address);
2330     }
2331 
2332   section_size_type input_view_size = 0;
2333   const unsigned char* input_view =
2334     this->section_contents(shndx, &input_view_size, false);
2335 
2336   Mapping_symbol_position section_start(shndx, 0);
2337   // Find the first mapping symbol record within section shndx.
2338   typename Mapping_symbol_info::const_iterator p =
2339     this->mapping_symbol_info_.lower_bound(section_start);
2340   while (p != this->mapping_symbol_info_.end() &&
2341 	 p->first.shndx_ == shndx)
2342     {
2343       typename Mapping_symbol_info::const_iterator prev = p;
2344       ++p;
2345       if (prev->second == 'x')
2346 	{
2347 	  section_size_type span_start =
2348 	    convert_to_section_size_type(prev->first.offset_);
2349 	  section_size_type span_end;
2350 	  if (p != this->mapping_symbol_info_.end()
2351 	      && p->first.shndx_ == shndx)
2352 	    span_end = convert_to_section_size_type(p->first.offset_);
2353 	  else
2354 	    span_end = convert_to_section_size_type(shdr.get_sh_size());
2355 
2356 	  // Here we do not share the scanning code of both errata. For 843419,
2357 	  // only the last few insns of each page are examined, which is fast,
2358 	  // whereas, for 835769, every insn pair needs to be checked.
2359 
2360 	  if (parameters->options().fix_cortex_a53_843419())
2361 	    target->scan_erratum_843419_span(
2362 	      this, shndx, span_start, span_end,
2363 	      const_cast<unsigned char*>(input_view), output_address);
2364 
2365 	  if (parameters->options().fix_cortex_a53_835769())
2366 	    target->scan_erratum_835769_span(
2367 	      this, shndx, span_start, span_end,
2368 	      const_cast<unsigned char*>(input_view), output_address);
2369 	}
2370     }
2371 }
2372 
2373 
2374 // Scan relocations for stub generation.
2375 
2376 template<int size, bool big_endian>
2377 void
scan_sections_for_stubs(The_target_aarch64 * target,const Symbol_table * symtab,const Layout * layout)2378 AArch64_relobj<size, big_endian>::scan_sections_for_stubs(
2379     The_target_aarch64* target,
2380     const Symbol_table* symtab,
2381     const Layout* layout)
2382 {
2383   unsigned int shnum = this->shnum();
2384   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2385 
2386   // Read the section headers.
2387   const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
2388 					       shnum * shdr_size,
2389 					       true, true);
2390 
2391   // To speed up processing, we set up hash tables for fast lookup of
2392   // input offsets to output addresses.
2393   this->initialize_input_to_output_maps();
2394 
2395   const Relobj::Output_sections& out_sections(this->output_sections());
2396 
2397   Relocate_info<size, big_endian> relinfo;
2398   relinfo.symtab = symtab;
2399   relinfo.layout = layout;
2400   relinfo.object = this;
2401 
2402   // Do relocation stubs scanning.
2403   const unsigned char* p = pshdrs + shdr_size;
2404   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
2405     {
2406       const elfcpp::Shdr<size, big_endian> shdr(p);
2407       if (parameters->options().fix_cortex_a53_843419()
2408 	  || parameters->options().fix_cortex_a53_835769())
2409 	scan_errata(i, shdr, out_sections[i], symtab, target);
2410       if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
2411 						  pshdrs))
2412 	{
2413 	  unsigned int index = this->adjust_shndx(shdr.get_sh_info());
2414 	  AArch64_address output_offset =
2415 	      this->get_output_section_offset(index);
2416 	  AArch64_address output_address;
2417 	  if (output_offset != invalid_address)
2418 	    {
2419 	      output_address = out_sections[index]->address() + output_offset;
2420 	    }
2421 	  else
2422 	    {
2423 	      // Currently this only happens for a relaxed section.
2424 	      const Output_relaxed_input_section* poris =
2425 		  out_sections[index]->find_relaxed_input_section(this, index);
2426 	      gold_assert(poris != NULL);
2427 	      output_address = poris->address();
2428 	    }
2429 
2430 	  // Get the relocations.
2431 	  const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
2432 							shdr.get_sh_size(),
2433 							true, false);
2434 
2435 	  // Get the section contents.
2436 	  section_size_type input_view_size = 0;
2437 	  const unsigned char* input_view =
2438 	      this->section_contents(index, &input_view_size, false);
2439 
2440 	  relinfo.reloc_shndx = i;
2441 	  relinfo.data_shndx = index;
2442 	  unsigned int sh_type = shdr.get_sh_type();
2443 	  unsigned int reloc_size;
2444 	  gold_assert (sh_type == elfcpp::SHT_RELA);
2445 	  reloc_size = elfcpp::Elf_sizes<size>::rela_size;
2446 
2447 	  Output_section* os = out_sections[index];
2448 	  target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
2449 					 shdr.get_sh_size() / reloc_size,
2450 					 os,
2451 					 output_offset == invalid_address,
2452 					 input_view, output_address,
2453 					 input_view_size);
2454 	}
2455     }
2456 }
2457 
2458 
2459 // A class to wrap an ordinary input section containing executable code.
2460 
2461 template<int size, bool big_endian>
2462 class AArch64_input_section : public Output_relaxed_input_section
2463 {
2464  public:
2465   typedef Stub_table<size, big_endian> The_stub_table;
2466 
AArch64_input_section(Relobj * relobj,unsigned int shndx)2467   AArch64_input_section(Relobj* relobj, unsigned int shndx)
2468     : Output_relaxed_input_section(relobj, shndx, 1),
2469       stub_table_(NULL),
2470       original_contents_(NULL), original_size_(0),
2471       original_addralign_(1)
2472   { }
2473 
~AArch64_input_section()2474   ~AArch64_input_section()
2475   { delete[] this->original_contents_; }
2476 
2477   // Initialize.
2478   void
2479   init();
2480 
2481   // Set the stub_table.
2482   void
set_stub_table(The_stub_table * st)2483   set_stub_table(The_stub_table* st)
2484   { this->stub_table_ = st; }
2485 
2486   // Whether this is a stub table owner.
2487   bool
is_stub_table_owner() const2488   is_stub_table_owner() const
2489   { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
2490 
2491   // Return the original size of the section.
2492   uint32_t
original_size() const2493   original_size() const
2494   { return this->original_size_; }
2495 
2496   // Return the stub table.
2497   The_stub_table*
stub_table()2498   stub_table()
2499   { return stub_table_; }
2500 
2501  protected:
2502   // Write out this input section.
2503   void
2504   do_write(Output_file*);
2505 
2506   // Return required alignment of this.
2507   uint64_t
do_addralign() const2508   do_addralign() const
2509   {
2510     if (this->is_stub_table_owner())
2511       return std::max(this->stub_table_->addralign(),
2512 		      static_cast<uint64_t>(this->original_addralign_));
2513     else
2514       return this->original_addralign_;
2515   }
2516 
2517   // Finalize data size.
2518   void
2519   set_final_data_size();
2520 
2521   // Reset address and file offset.
2522   void
2523   do_reset_address_and_file_offset();
2524 
2525   // Output offset.
2526   bool
do_output_offset(const Relobj * object,unsigned int shndx,section_offset_type offset,section_offset_type * poutput) const2527   do_output_offset(const Relobj* object, unsigned int shndx,
2528 		   section_offset_type offset,
2529 		   section_offset_type* poutput) const
2530   {
2531     if ((object == this->relobj())
2532 	&& (shndx == this->shndx())
2533 	&& (offset >= 0)
2534 	&& (offset <=
2535 	    convert_types<section_offset_type, uint32_t>(this->original_size_)))
2536       {
2537 	*poutput = offset;
2538 	return true;
2539       }
2540     else
2541       return false;
2542   }
2543 
2544  private:
2545   // Copying is not allowed.
2546   AArch64_input_section(const AArch64_input_section&);
2547   AArch64_input_section& operator=(const AArch64_input_section&);
2548 
2549   // The relocation stubs.
2550   The_stub_table* stub_table_;
2551   // Original section contents.  We have to make a copy here since the file
2552   // containing the original section may not be locked when we need to access
2553   // the contents.
2554   unsigned char* original_contents_;
2555   // Section size of the original input section.
2556   uint32_t original_size_;
2557   // Address alignment of the original input section.
2558   uint32_t original_addralign_;
2559 };  // End of AArch64_input_section
2560 
2561 
2562 // Finalize data size.
2563 
2564 template<int size, bool big_endian>
2565 void
set_final_data_size()2566 AArch64_input_section<size, big_endian>::set_final_data_size()
2567 {
2568   off_t off = convert_types<off_t, uint64_t>(this->original_size_);
2569 
2570   if (this->is_stub_table_owner())
2571     {
2572       this->stub_table_->finalize_data_size();
2573       off = align_address(off, this->stub_table_->addralign());
2574       off += this->stub_table_->data_size();
2575     }
2576   this->set_data_size(off);
2577 }
2578 
2579 
2580 // Reset address and file offset.
2581 
2582 template<int size, bool big_endian>
2583 void
do_reset_address_and_file_offset()2584 AArch64_input_section<size, big_endian>::do_reset_address_and_file_offset()
2585 {
2586   // Size of the original input section contents.
2587   off_t off = convert_types<off_t, uint64_t>(this->original_size_);
2588 
2589   // If this is a stub table owner, account for the stub table size.
2590   if (this->is_stub_table_owner())
2591     {
2592       The_stub_table* stub_table = this->stub_table_;
2593 
2594       // Reset the stub table's address and file offset.  The
2595       // current data size for child will be updated after that.
2596       stub_table_->reset_address_and_file_offset();
2597       off = align_address(off, stub_table_->addralign());
2598       off += stub_table->current_data_size();
2599     }
2600 
2601   this->set_current_data_size(off);
2602 }
2603 
2604 
2605 // Initialize an Arm_input_section.
2606 
2607 template<int size, bool big_endian>
2608 void
init()2609 AArch64_input_section<size, big_endian>::init()
2610 {
2611   Relobj* relobj = this->relobj();
2612   unsigned int shndx = this->shndx();
2613 
2614   // We have to cache original size, alignment and contents to avoid locking
2615   // the original file.
2616   this->original_addralign_ =
2617       convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
2618 
2619   // This is not efficient but we expect only a small number of relaxed
2620   // input sections for stubs.
2621   section_size_type section_size;
2622   const unsigned char* section_contents =
2623       relobj->section_contents(shndx, &section_size, false);
2624   this->original_size_ =
2625       convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
2626 
2627   gold_assert(this->original_contents_ == NULL);
2628   this->original_contents_ = new unsigned char[section_size];
2629   memcpy(this->original_contents_, section_contents, section_size);
2630 
2631   // We want to make this look like the original input section after
2632   // output sections are finalized.
2633   Output_section* os = relobj->output_section(shndx);
2634   off_t offset = relobj->output_section_offset(shndx);
2635   gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
2636   this->set_address(os->address() + offset);
2637   this->set_file_offset(os->offset() + offset);
2638   this->set_current_data_size(this->original_size_);
2639   this->finalize_data_size();
2640 }
2641 
2642 
2643 // Write data to output file.
2644 
2645 template<int size, bool big_endian>
2646 void
do_write(Output_file * of)2647 AArch64_input_section<size, big_endian>::do_write(Output_file* of)
2648 {
2649   // We have to write out the original section content.
2650   gold_assert(this->original_contents_ != NULL);
2651   of->write(this->offset(), this->original_contents_,
2652 	    this->original_size_);
2653 
2654   // If this owns a stub table and it is not empty, write it.
2655   if (this->is_stub_table_owner() && !this->stub_table_->empty())
2656     this->stub_table_->write(of);
2657 }
2658 
2659 
2660 // Arm output section class.  This is defined mainly to add a number of stub
2661 // generation methods.
2662 
2663 template<int size, bool big_endian>
2664 class AArch64_output_section : public Output_section
2665 {
2666  public:
2667   typedef Target_aarch64<size, big_endian> The_target_aarch64;
2668   typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
2669   typedef Stub_table<size, big_endian> The_stub_table;
2670   typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
2671 
2672  public:
AArch64_output_section(const char * name,elfcpp::Elf_Word type,elfcpp::Elf_Xword flags)2673   AArch64_output_section(const char* name, elfcpp::Elf_Word type,
2674 			 elfcpp::Elf_Xword flags)
2675     : Output_section(name, type, flags)
2676   { }
2677 
~AArch64_output_section()2678   ~AArch64_output_section() {}
2679 
2680   // Group input sections for stub generation.
2681   void
2682   group_sections(section_size_type, bool, Target_aarch64<size, big_endian>*,
2683 		 const Task*);
2684 
2685  private:
2686   typedef Output_section::Input_section Input_section;
2687   typedef Output_section::Input_section_list Input_section_list;
2688 
2689   // Create a stub group.
2690   void
2691   create_stub_group(Input_section_list::const_iterator,
2692 		    Input_section_list::const_iterator,
2693 		    Input_section_list::const_iterator,
2694 		    The_target_aarch64*,
2695 		    std::vector<Output_relaxed_input_section*>&,
2696 		    const Task*);
2697 };  // End of AArch64_output_section
2698 
2699 
2700 // Create a stub group for input sections from FIRST to LAST. OWNER points to
2701 // the input section that will be the owner of the stub table.
2702 
2703 template<int size, bool big_endian> void
create_stub_group(Input_section_list::const_iterator first,Input_section_list::const_iterator last,Input_section_list::const_iterator owner,The_target_aarch64 * target,std::vector<Output_relaxed_input_section * > & new_relaxed_sections,const Task * task)2704 AArch64_output_section<size, big_endian>::create_stub_group(
2705     Input_section_list::const_iterator first,
2706     Input_section_list::const_iterator last,
2707     Input_section_list::const_iterator owner,
2708     The_target_aarch64* target,
2709     std::vector<Output_relaxed_input_section*>& new_relaxed_sections,
2710     const Task* task)
2711 {
2712   // Currently we convert ordinary input sections into relaxed sections only
2713   // at this point.
2714   The_aarch64_input_section* input_section;
2715   if (owner->is_relaxed_input_section())
2716     gold_unreachable();
2717   else
2718     {
2719       gold_assert(owner->is_input_section());
2720       // Create a new relaxed input section.  We need to lock the original
2721       // file.
2722       Task_lock_obj<Object> tl(task, owner->relobj());
2723       input_section =
2724 	  target->new_aarch64_input_section(owner->relobj(), owner->shndx());
2725       new_relaxed_sections.push_back(input_section);
2726     }
2727 
2728   // Create a stub table.
2729   The_stub_table* stub_table =
2730       target->new_stub_table(input_section);
2731 
2732   input_section->set_stub_table(stub_table);
2733 
2734   Input_section_list::const_iterator p = first;
2735   // Look for input sections or relaxed input sections in [first ... last].
2736   do
2737     {
2738       if (p->is_input_section() || p->is_relaxed_input_section())
2739 	{
2740 	  // The stub table information for input sections live
2741 	  // in their objects.
2742 	  The_aarch64_relobj* aarch64_relobj =
2743 	      static_cast<The_aarch64_relobj*>(p->relobj());
2744 	  aarch64_relobj->set_stub_table(p->shndx(), stub_table);
2745 	}
2746     }
2747   while (p++ != last);
2748 }
2749 
2750 
2751 // Group input sections for stub generation. GROUP_SIZE is roughly the limit of
2752 // stub groups. We grow a stub group by adding input section until the size is
2753 // just below GROUP_SIZE. The last input section will be converted into a stub
2754 // table owner. If STUB_ALWAYS_AFTER_BRANCH is false, we also add input sectiond
2755 // after the stub table, effectively doubling the group size.
2756 //
2757 // This is similar to the group_sections() function in elf32-arm.c but is
2758 // implemented differently.
2759 
2760 template<int size, bool big_endian>
group_sections(section_size_type group_size,bool stubs_always_after_branch,Target_aarch64<size,big_endian> * target,const Task * task)2761 void AArch64_output_section<size, big_endian>::group_sections(
2762     section_size_type group_size,
2763     bool stubs_always_after_branch,
2764     Target_aarch64<size, big_endian>* target,
2765     const Task* task)
2766 {
2767   typedef enum
2768   {
2769     NO_GROUP,
2770     FINDING_STUB_SECTION,
2771     HAS_STUB_SECTION
2772   } State;
2773 
2774   std::vector<Output_relaxed_input_section*> new_relaxed_sections;
2775 
2776   State state = NO_GROUP;
2777   section_size_type off = 0;
2778   section_size_type group_begin_offset = 0;
2779   section_size_type group_end_offset = 0;
2780   section_size_type stub_table_end_offset = 0;
2781   Input_section_list::const_iterator group_begin =
2782       this->input_sections().end();
2783   Input_section_list::const_iterator stub_table =
2784       this->input_sections().end();
2785   Input_section_list::const_iterator group_end = this->input_sections().end();
2786   for (Input_section_list::const_iterator p = this->input_sections().begin();
2787        p != this->input_sections().end();
2788        ++p)
2789     {
2790       section_size_type section_begin_offset =
2791 	align_address(off, p->addralign());
2792       section_size_type section_end_offset =
2793 	section_begin_offset + p->data_size();
2794 
2795       // Check to see if we should group the previously seen sections.
2796       switch (state)
2797 	{
2798 	case NO_GROUP:
2799 	  break;
2800 
2801 	case FINDING_STUB_SECTION:
2802 	  // Adding this section makes the group larger than GROUP_SIZE.
2803 	  if (section_end_offset - group_begin_offset >= group_size)
2804 	    {
2805 	      if (stubs_always_after_branch)
2806 		{
2807 		  gold_assert(group_end != this->input_sections().end());
2808 		  this->create_stub_group(group_begin, group_end, group_end,
2809 					  target, new_relaxed_sections,
2810 					  task);
2811 		  state = NO_GROUP;
2812 		}
2813 	      else
2814 		{
2815 		  // Input sections up to stub_group_size bytes after the stub
2816 		  // table can be handled by it too.
2817 		  state = HAS_STUB_SECTION;
2818 		  stub_table = group_end;
2819 		  stub_table_end_offset = group_end_offset;
2820 		}
2821 	    }
2822 	    break;
2823 
2824 	case HAS_STUB_SECTION:
2825 	  // Adding this section makes the post stub-section group larger
2826 	  // than GROUP_SIZE.
2827 	  gold_unreachable();
2828 	  // NOT SUPPORTED YET. For completeness only.
2829 	  if (section_end_offset - stub_table_end_offset >= group_size)
2830 	   {
2831 	     gold_assert(group_end != this->input_sections().end());
2832 	     this->create_stub_group(group_begin, group_end, stub_table,
2833 				     target, new_relaxed_sections, task);
2834 	     state = NO_GROUP;
2835 	   }
2836 	   break;
2837 
2838 	  default:
2839 	    gold_unreachable();
2840 	}
2841 
2842       // If we see an input section and currently there is no group, start
2843       // a new one.  Skip any empty sections.  We look at the data size
2844       // instead of calling p->relobj()->section_size() to avoid locking.
2845       if ((p->is_input_section() || p->is_relaxed_input_section())
2846 	  && (p->data_size() != 0))
2847 	{
2848 	  if (state == NO_GROUP)
2849 	    {
2850 	      state = FINDING_STUB_SECTION;
2851 	      group_begin = p;
2852 	      group_begin_offset = section_begin_offset;
2853 	    }
2854 
2855 	  // Keep track of the last input section seen.
2856 	  group_end = p;
2857 	  group_end_offset = section_end_offset;
2858 	}
2859 
2860       off = section_end_offset;
2861     }
2862 
2863   // Create a stub group for any ungrouped sections.
2864   if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
2865     {
2866       gold_assert(group_end != this->input_sections().end());
2867       this->create_stub_group(group_begin, group_end,
2868 			      (state == FINDING_STUB_SECTION
2869 			       ? group_end
2870 			       : stub_table),
2871 			      target, new_relaxed_sections, task);
2872     }
2873 
2874   if (!new_relaxed_sections.empty())
2875     this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
2876 
2877   // Update the section offsets
2878   for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
2879     {
2880       The_aarch64_relobj* relobj = static_cast<The_aarch64_relobj*>(
2881 	  new_relaxed_sections[i]->relobj());
2882       unsigned int shndx = new_relaxed_sections[i]->shndx();
2883       // Tell AArch64_relobj that this input section is converted.
2884       relobj->convert_input_section_to_relaxed_section(shndx);
2885     }
2886 }  // End of AArch64_output_section::group_sections
2887 
2888 
2889 AArch64_reloc_property_table* aarch64_reloc_property_table = NULL;
2890 
2891 
2892 // The aarch64 target class.
2893 // See the ABI at
2894 // http://infocenter.arm.com/help/topic/com.arm.doc.ihi0056b/IHI0056B_aaelf64.pdf
2895 template<int size, bool big_endian>
2896 class Target_aarch64 : public Sized_target<size, big_endian>
2897 {
2898  public:
2899   typedef Target_aarch64<size, big_endian> This;
2900   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
2901       Reloc_section;
2902   typedef Relocate_info<size, big_endian> The_relocate_info;
2903   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
2904   typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
2905   typedef Reloc_stub<size, big_endian> The_reloc_stub;
2906   typedef Erratum_stub<size, big_endian> The_erratum_stub;
2907   typedef typename Reloc_stub<size, big_endian>::Key The_reloc_stub_key;
2908   typedef Stub_table<size, big_endian> The_stub_table;
2909   typedef std::vector<The_stub_table*> Stub_table_list;
2910   typedef typename Stub_table_list::iterator Stub_table_iterator;
2911   typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
2912   typedef AArch64_output_section<size, big_endian> The_aarch64_output_section;
2913   typedef Unordered_map<Section_id,
2914 			AArch64_input_section<size, big_endian>*,
2915 			Section_id_hash> AArch64_input_section_map;
2916   typedef AArch64_insn_utilities<big_endian> Insn_utilities;
2917   const static int TCB_SIZE = size / 8 * 2;
2918 
Target_aarch64(const Target::Target_info * info=& aarch64_info)2919   Target_aarch64(const Target::Target_info* info = &aarch64_info)
2920     : Sized_target<size, big_endian>(info),
2921       got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
2922       got_tlsdesc_(NULL), global_offset_table_(NULL), rela_dyn_(NULL),
2923       rela_irelative_(NULL), copy_relocs_(elfcpp::R_AARCH64_COPY),
2924       got_mod_index_offset_(-1U),
2925       tlsdesc_reloc_info_(), tls_base_symbol_defined_(false),
2926       stub_tables_(), stub_group_size_(0), aarch64_input_section_map_()
2927   { }
2928 
2929   // Scan the relocations to determine unreferenced sections for
2930   // garbage collection.
2931   void
2932   gc_process_relocs(Symbol_table* symtab,
2933 		    Layout* layout,
2934 		    Sized_relobj_file<size, big_endian>* object,
2935 		    unsigned int data_shndx,
2936 		    unsigned int sh_type,
2937 		    const unsigned char* prelocs,
2938 		    size_t reloc_count,
2939 		    Output_section* output_section,
2940 		    bool needs_special_offset_handling,
2941 		    size_t local_symbol_count,
2942 		    const unsigned char* plocal_symbols);
2943 
2944   // Scan the relocations to look for symbol adjustments.
2945   void
2946   scan_relocs(Symbol_table* symtab,
2947 	      Layout* layout,
2948 	      Sized_relobj_file<size, big_endian>* object,
2949 	      unsigned int data_shndx,
2950 	      unsigned int sh_type,
2951 	      const unsigned char* prelocs,
2952 	      size_t reloc_count,
2953 	      Output_section* output_section,
2954 	      bool needs_special_offset_handling,
2955 	      size_t local_symbol_count,
2956 	      const unsigned char* plocal_symbols);
2957 
2958   // Finalize the sections.
2959   void
2960   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2961 
2962   // Return the value to use for a dynamic which requires special
2963   // treatment.
2964   uint64_t
2965   do_dynsym_value(const Symbol*) const;
2966 
2967   // Relocate a section.
2968   void
2969   relocate_section(const Relocate_info<size, big_endian>*,
2970 		   unsigned int sh_type,
2971 		   const unsigned char* prelocs,
2972 		   size_t reloc_count,
2973 		   Output_section* output_section,
2974 		   bool needs_special_offset_handling,
2975 		   unsigned char* view,
2976 		   typename elfcpp::Elf_types<size>::Elf_Addr view_address,
2977 		   section_size_type view_size,
2978 		   const Reloc_symbol_changes*);
2979 
2980   // Scan the relocs during a relocatable link.
2981   void
2982   scan_relocatable_relocs(Symbol_table* symtab,
2983 			  Layout* layout,
2984 			  Sized_relobj_file<size, big_endian>* object,
2985 			  unsigned int data_shndx,
2986 			  unsigned int sh_type,
2987 			  const unsigned char* prelocs,
2988 			  size_t reloc_count,
2989 			  Output_section* output_section,
2990 			  bool needs_special_offset_handling,
2991 			  size_t local_symbol_count,
2992 			  const unsigned char* plocal_symbols,
2993 			  Relocatable_relocs*);
2994 
2995   // Scan the relocs for --emit-relocs.
2996   void
2997   emit_relocs_scan(Symbol_table* symtab,
2998 		   Layout* layout,
2999 		   Sized_relobj_file<size, big_endian>* object,
3000 		   unsigned int data_shndx,
3001 		   unsigned int sh_type,
3002 		   const unsigned char* prelocs,
3003 		   size_t reloc_count,
3004 		   Output_section* output_section,
3005 		   bool needs_special_offset_handling,
3006 		   size_t local_symbol_count,
3007 		   const unsigned char* plocal_syms,
3008 		   Relocatable_relocs* rr);
3009 
3010   // Relocate a section during a relocatable link.
3011   void
3012   relocate_relocs(
3013       const Relocate_info<size, big_endian>*,
3014       unsigned int sh_type,
3015       const unsigned char* prelocs,
3016       size_t reloc_count,
3017       Output_section* output_section,
3018       typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
3019       unsigned char* view,
3020       typename elfcpp::Elf_types<size>::Elf_Addr view_address,
3021       section_size_type view_size,
3022       unsigned char* reloc_view,
3023       section_size_type reloc_view_size);
3024 
3025   // Return the symbol index to use for a target specific relocation.
3026   // The only target specific relocation is R_AARCH64_TLSDESC for a
3027   // local symbol, which is an absolute reloc.
3028   unsigned int
do_reloc_symbol_index(void *,unsigned int r_type) const3029   do_reloc_symbol_index(void*, unsigned int r_type) const
3030   {
3031     gold_assert(r_type == elfcpp::R_AARCH64_TLSDESC);
3032     return 0;
3033   }
3034 
3035   // Return the addend to use for a target specific relocation.
3036   uint64_t
3037   do_reloc_addend(void* arg, unsigned int r_type, uint64_t addend) const;
3038 
3039   // Return the PLT section.
3040   uint64_t
do_plt_address_for_global(const Symbol * gsym) const3041   do_plt_address_for_global(const Symbol* gsym) const
3042   { return this->plt_section()->address_for_global(gsym); }
3043 
3044   uint64_t
do_plt_address_for_local(const Relobj * relobj,unsigned int symndx) const3045   do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
3046   { return this->plt_section()->address_for_local(relobj, symndx); }
3047 
3048   // This function should be defined in targets that can use relocation
3049   // types to determine (implemented in local_reloc_may_be_function_pointer
3050   // and global_reloc_may_be_function_pointer)
3051   // if a function's pointer is taken.  ICF uses this in safe mode to only
3052   // fold those functions whose pointer is defintely not taken.
3053   bool
do_can_check_for_function_pointers() const3054   do_can_check_for_function_pointers() const
3055   { return true; }
3056 
3057   // Return the number of entries in the PLT.
3058   unsigned int
3059   plt_entry_count() const;
3060 
3061   //Return the offset of the first non-reserved PLT entry.
3062   unsigned int
3063   first_plt_entry_offset() const;
3064 
3065   // Return the size of each PLT entry.
3066   unsigned int
3067   plt_entry_size() const;
3068 
3069   // Create a stub table.
3070   The_stub_table*
3071   new_stub_table(The_aarch64_input_section*);
3072 
3073   // Create an aarch64 input section.
3074   The_aarch64_input_section*
3075   new_aarch64_input_section(Relobj*, unsigned int);
3076 
3077   // Find an aarch64 input section instance for a given OBJ and SHNDX.
3078   The_aarch64_input_section*
3079   find_aarch64_input_section(Relobj*, unsigned int) const;
3080 
3081   // Return the thread control block size.
3082   unsigned int
tcb_size() const3083   tcb_size() const { return This::TCB_SIZE; }
3084 
3085   // Scan a section for stub generation.
3086   void
3087   scan_section_for_stubs(const Relocate_info<size, big_endian>*, unsigned int,
3088 			 const unsigned char*, size_t, Output_section*,
3089 			 bool, const unsigned char*,
3090 			 Address,
3091 			 section_size_type);
3092 
3093   // Scan a relocation section for stub.
3094   template<int sh_type>
3095   void
3096   scan_reloc_section_for_stubs(
3097       const The_relocate_info* relinfo,
3098       const unsigned char* prelocs,
3099       size_t reloc_count,
3100       Output_section* output_section,
3101       bool needs_special_offset_handling,
3102       const unsigned char* view,
3103       Address view_address,
3104       section_size_type);
3105 
3106   // Relocate a single reloc stub.
3107   void
3108   relocate_reloc_stub(The_reloc_stub*, const Relocate_info<size, big_endian>*,
3109                       Output_section*, unsigned char*, Address,
3110                       section_size_type);
3111 
3112   // Get the default AArch64 target.
3113   static This*
current_target()3114   current_target()
3115   {
3116     gold_assert(parameters->target().machine_code() == elfcpp::EM_AARCH64
3117 		&& parameters->target().get_size() == size
3118 		&& parameters->target().is_big_endian() == big_endian);
3119     return static_cast<This*>(parameters->sized_target<size, big_endian>());
3120   }
3121 
3122 
3123   // Scan erratum 843419 for a part of a section.
3124   void
3125   scan_erratum_843419_span(
3126     AArch64_relobj<size, big_endian>*,
3127     unsigned int,
3128     const section_size_type,
3129     const section_size_type,
3130     unsigned char*,
3131     Address);
3132 
3133   // Scan erratum 835769 for a part of a section.
3134   void
3135   scan_erratum_835769_span(
3136     AArch64_relobj<size, big_endian>*,
3137     unsigned int,
3138     const section_size_type,
3139     const section_size_type,
3140     unsigned char*,
3141     Address);
3142 
3143  protected:
3144   void
do_select_as_default_target()3145   do_select_as_default_target()
3146   {
3147     gold_assert(aarch64_reloc_property_table == NULL);
3148     aarch64_reloc_property_table = new AArch64_reloc_property_table();
3149   }
3150 
3151   // Add a new reloc argument, returning the index in the vector.
3152   size_t
add_tlsdesc_info(Sized_relobj_file<size,big_endian> * object,unsigned int r_sym)3153   add_tlsdesc_info(Sized_relobj_file<size, big_endian>* object,
3154 		   unsigned int r_sym)
3155   {
3156     this->tlsdesc_reloc_info_.push_back(Tlsdesc_info(object, r_sym));
3157     return this->tlsdesc_reloc_info_.size() - 1;
3158   }
3159 
3160   virtual Output_data_plt_aarch64<size, big_endian>*
do_make_data_plt(Layout * layout,Output_data_got_aarch64<size,big_endian> * got,Output_data_space * got_plt,Output_data_space * got_irelative)3161   do_make_data_plt(Layout* layout,
3162 		   Output_data_got_aarch64<size, big_endian>* got,
3163 		   Output_data_space* got_plt,
3164 		   Output_data_space* got_irelative)
3165   {
3166     return new Output_data_plt_aarch64_standard<size, big_endian>(
3167       layout, got, got_plt, got_irelative);
3168   }
3169 
3170 
3171   // do_make_elf_object to override the same function in the base class.
3172   Object*
3173   do_make_elf_object(const std::string&, Input_file*, off_t,
3174 		     const elfcpp::Ehdr<size, big_endian>&);
3175 
3176   Output_data_plt_aarch64<size, big_endian>*
make_data_plt(Layout * layout,Output_data_got_aarch64<size,big_endian> * got,Output_data_space * got_plt,Output_data_space * got_irelative)3177   make_data_plt(Layout* layout,
3178 		Output_data_got_aarch64<size, big_endian>* got,
3179 		Output_data_space* got_plt,
3180 		Output_data_space* got_irelative)
3181   {
3182     return this->do_make_data_plt(layout, got, got_plt, got_irelative);
3183   }
3184 
3185   // We only need to generate stubs, and hence perform relaxation if we are
3186   // not doing relocatable linking.
3187   virtual bool
do_may_relax() const3188   do_may_relax() const
3189   { return !parameters->options().relocatable(); }
3190 
3191   // Relaxation hook.  This is where we do stub generation.
3192   virtual bool
3193   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
3194 
3195   void
3196   group_sections(Layout* layout,
3197 		 section_size_type group_size,
3198 		 bool stubs_always_after_branch,
3199 		 const Task* task);
3200 
3201   void
3202   scan_reloc_for_stub(const The_relocate_info*, unsigned int,
3203 		      const Sized_symbol<size>*, unsigned int,
3204 		      const Symbol_value<size>*,
3205 		      typename elfcpp::Elf_types<size>::Elf_Swxword,
3206 		      Address Elf_Addr);
3207 
3208   // Make an output section.
3209   Output_section*
do_make_output_section(const char * name,elfcpp::Elf_Word type,elfcpp::Elf_Xword flags)3210   do_make_output_section(const char* name, elfcpp::Elf_Word type,
3211 			 elfcpp::Elf_Xword flags)
3212   { return new The_aarch64_output_section(name, type, flags); }
3213 
3214  private:
3215   // The class which scans relocations.
3216   class Scan
3217   {
3218   public:
Scan()3219     Scan()
3220       : issued_non_pic_error_(false)
3221     { }
3222 
3223     inline void
3224     local(Symbol_table* symtab, Layout* layout, Target_aarch64* target,
3225 	  Sized_relobj_file<size, big_endian>* object,
3226 	  unsigned int data_shndx,
3227 	  Output_section* output_section,
3228 	  const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
3229 	  const elfcpp::Sym<size, big_endian>& lsym,
3230 	  bool is_discarded);
3231 
3232     inline void
3233     global(Symbol_table* symtab, Layout* layout, Target_aarch64* target,
3234 	   Sized_relobj_file<size, big_endian>* object,
3235 	   unsigned int data_shndx,
3236 	   Output_section* output_section,
3237 	   const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
3238 	   Symbol* gsym);
3239 
3240     inline bool
3241     local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
3242 					Target_aarch64<size, big_endian>* ,
3243 					Sized_relobj_file<size, big_endian>* ,
3244 					unsigned int ,
3245 					Output_section* ,
3246 					const elfcpp::Rela<size, big_endian>& ,
3247 					unsigned int r_type,
3248 					const elfcpp::Sym<size, big_endian>&);
3249 
3250     inline bool
3251     global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
3252 					 Target_aarch64<size, big_endian>* ,
3253 					 Sized_relobj_file<size, big_endian>* ,
3254 					 unsigned int ,
3255 					 Output_section* ,
3256 					 const elfcpp::Rela<size, big_endian>& ,
3257 					 unsigned int r_type,
3258 					 Symbol* gsym);
3259 
3260   private:
3261     static void
3262     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
3263 			    unsigned int r_type);
3264 
3265     static void
3266     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
3267 			     unsigned int r_type, Symbol*);
3268 
3269     inline bool
3270     possible_function_pointer_reloc(unsigned int r_type);
3271 
3272     void
3273     check_non_pic(Relobj*, unsigned int r_type);
3274 
3275     bool
3276     reloc_needs_plt_for_ifunc(Sized_relobj_file<size, big_endian>*,
3277 			      unsigned int r_type);
3278 
3279     // Whether we have issued an error about a non-PIC compilation.
3280     bool issued_non_pic_error_;
3281   };
3282 
3283   // The class which implements relocation.
3284   class Relocate
3285   {
3286    public:
Relocate()3287     Relocate()
3288       : skip_call_tls_get_addr_(false)
3289     { }
3290 
~Relocate()3291     ~Relocate()
3292     { }
3293 
3294     // Do a relocation.  Return false if the caller should not issue
3295     // any warnings about this relocation.
3296     inline bool
3297     relocate(const Relocate_info<size, big_endian>*, unsigned int,
3298 	     Target_aarch64*, Output_section*, size_t, const unsigned char*,
3299 	     const Sized_symbol<size>*, const Symbol_value<size>*,
3300 	     unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
3301 	     section_size_type);
3302 
3303   private:
3304     inline typename AArch64_relocate_functions<size, big_endian>::Status
3305     relocate_tls(const Relocate_info<size, big_endian>*,
3306 		 Target_aarch64<size, big_endian>*,
3307 		 size_t,
3308 		 const elfcpp::Rela<size, big_endian>&,
3309 		 unsigned int r_type, const Sized_symbol<size>*,
3310 		 const Symbol_value<size>*,
3311 		 unsigned char*,
3312 		 typename elfcpp::Elf_types<size>::Elf_Addr);
3313 
3314     inline typename AArch64_relocate_functions<size, big_endian>::Status
3315     tls_gd_to_le(
3316 		 const Relocate_info<size, big_endian>*,
3317 		 Target_aarch64<size, big_endian>*,
3318 		 const elfcpp::Rela<size, big_endian>&,
3319 		 unsigned int,
3320 		 unsigned char*,
3321 		 const Symbol_value<size>*);
3322 
3323     inline typename AArch64_relocate_functions<size, big_endian>::Status
3324     tls_ld_to_le(
3325 		 const Relocate_info<size, big_endian>*,
3326 		 Target_aarch64<size, big_endian>*,
3327 		 const elfcpp::Rela<size, big_endian>&,
3328 		 unsigned int,
3329 		 unsigned char*,
3330 		 const Symbol_value<size>*);
3331 
3332     inline typename AArch64_relocate_functions<size, big_endian>::Status
3333     tls_ie_to_le(
3334 		 const Relocate_info<size, big_endian>*,
3335 		 Target_aarch64<size, big_endian>*,
3336 		 const elfcpp::Rela<size, big_endian>&,
3337 		 unsigned int,
3338 		 unsigned char*,
3339 		 const Symbol_value<size>*);
3340 
3341     inline typename AArch64_relocate_functions<size, big_endian>::Status
3342     tls_desc_gd_to_le(
3343 		 const Relocate_info<size, big_endian>*,
3344 		 Target_aarch64<size, big_endian>*,
3345 		 const elfcpp::Rela<size, big_endian>&,
3346 		 unsigned int,
3347 		 unsigned char*,
3348 		 const Symbol_value<size>*);
3349 
3350     inline typename AArch64_relocate_functions<size, big_endian>::Status
3351     tls_desc_gd_to_ie(
3352 		 const Relocate_info<size, big_endian>*,
3353 		 Target_aarch64<size, big_endian>*,
3354 		 const elfcpp::Rela<size, big_endian>&,
3355 		 unsigned int,
3356 		 unsigned char*,
3357 		 const Symbol_value<size>*,
3358 		 typename elfcpp::Elf_types<size>::Elf_Addr,
3359 		 typename elfcpp::Elf_types<size>::Elf_Addr);
3360 
3361     bool skip_call_tls_get_addr_;
3362 
3363   };  // End of class Relocate
3364 
3365   // Adjust TLS relocation type based on the options and whether this
3366   // is a local symbol.
3367   static tls::Tls_optimization
3368   optimize_tls_reloc(bool is_final, int r_type);
3369 
3370   // Get the GOT section, creating it if necessary.
3371   Output_data_got_aarch64<size, big_endian>*
3372   got_section(Symbol_table*, Layout*);
3373 
3374   // Get the GOT PLT section.
3375   Output_data_space*
got_plt_section() const3376   got_plt_section() const
3377   {
3378     gold_assert(this->got_plt_ != NULL);
3379     return this->got_plt_;
3380   }
3381 
3382   // Get the GOT section for TLSDESC entries.
3383   Output_data_got<size, big_endian>*
got_tlsdesc_section() const3384   got_tlsdesc_section() const
3385   {
3386     gold_assert(this->got_tlsdesc_ != NULL);
3387     return this->got_tlsdesc_;
3388   }
3389 
3390   // Create the PLT section.
3391   void
3392   make_plt_section(Symbol_table* symtab, Layout* layout);
3393 
3394   // Create a PLT entry for a global symbol.
3395   void
3396   make_plt_entry(Symbol_table*, Layout*, Symbol*);
3397 
3398   // Create a PLT entry for a local STT_GNU_IFUNC symbol.
3399   void
3400   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
3401 			     Sized_relobj_file<size, big_endian>* relobj,
3402 			     unsigned int local_sym_index);
3403 
3404   // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
3405   void
3406   define_tls_base_symbol(Symbol_table*, Layout*);
3407 
3408   // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
3409   void
3410   reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
3411 
3412   // Create a GOT entry for the TLS module index.
3413   unsigned int
3414   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
3415 		      Sized_relobj_file<size, big_endian>* object);
3416 
3417   // Get the PLT section.
3418   Output_data_plt_aarch64<size, big_endian>*
plt_section() const3419   plt_section() const
3420   {
3421     gold_assert(this->plt_ != NULL);
3422     return this->plt_;
3423   }
3424 
3425   // Helper method to create erratum stubs for ST_E_843419 and ST_E_835769. For
3426   // ST_E_843419, we need an additional field for adrp offset.
3427   void create_erratum_stub(
3428     AArch64_relobj<size, big_endian>* relobj,
3429     unsigned int shndx,
3430     section_size_type erratum_insn_offset,
3431     Address erratum_address,
3432     typename Insn_utilities::Insntype erratum_insn,
3433     int erratum_type,
3434     unsigned int e843419_adrp_offset=0);
3435 
3436   // Return whether this is a 3-insn erratum sequence.
3437   bool is_erratum_843419_sequence(
3438       typename elfcpp::Swap<32,big_endian>::Valtype insn1,
3439       typename elfcpp::Swap<32,big_endian>::Valtype insn2,
3440       typename elfcpp::Swap<32,big_endian>::Valtype insn3);
3441 
3442   // Return whether this is a 835769 sequence.
3443   // (Similarly implemented as in elfnn-aarch64.c.)
3444   bool is_erratum_835769_sequence(
3445       typename elfcpp::Swap<32,big_endian>::Valtype,
3446       typename elfcpp::Swap<32,big_endian>::Valtype);
3447 
3448   // Get the dynamic reloc section, creating it if necessary.
3449   Reloc_section*
3450   rela_dyn_section(Layout*);
3451 
3452   // Get the section to use for TLSDESC relocations.
3453   Reloc_section*
3454   rela_tlsdesc_section(Layout*) const;
3455 
3456   // Get the section to use for IRELATIVE relocations.
3457   Reloc_section*
3458   rela_irelative_section(Layout*);
3459 
3460   // Add a potential copy relocation.
3461   void
copy_reloc(Symbol_table * symtab,Layout * layout,Sized_relobj_file<size,big_endian> * object,unsigned int shndx,Output_section * output_section,Symbol * sym,const elfcpp::Rela<size,big_endian> & reloc)3462   copy_reloc(Symbol_table* symtab, Layout* layout,
3463 	     Sized_relobj_file<size, big_endian>* object,
3464 	     unsigned int shndx, Output_section* output_section,
3465 	     Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
3466   {
3467     unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
3468     this->copy_relocs_.copy_reloc(symtab, layout,
3469 				  symtab->get_sized_symbol<size>(sym),
3470 				  object, shndx, output_section,
3471 				  r_type, reloc.get_r_offset(),
3472 				  reloc.get_r_addend(),
3473 				  this->rela_dyn_section(layout));
3474   }
3475 
3476   // Information about this specific target which we pass to the
3477   // general Target structure.
3478   static const Target::Target_info aarch64_info;
3479 
3480   // The types of GOT entries needed for this platform.
3481   // These values are exposed to the ABI in an incremental link.
3482   // Do not renumber existing values without changing the version
3483   // number of the .gnu_incremental_inputs section.
3484   enum Got_type
3485   {
3486     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
3487     GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
3488     GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
3489     GOT_TYPE_TLS_DESC = 3       // GOT entry for TLS_DESC pair
3490   };
3491 
3492   // This type is used as the argument to the target specific
3493   // relocation routines.  The only target specific reloc is
3494   // R_AARCh64_TLSDESC against a local symbol.
3495   struct Tlsdesc_info
3496   {
Tlsdesc_info__anond8ca3b600111::Target_aarch64::Tlsdesc_info3497     Tlsdesc_info(Sized_relobj_file<size, big_endian>* a_object,
3498 		 unsigned int a_r_sym)
3499       : object(a_object), r_sym(a_r_sym)
3500     { }
3501 
3502     // The object in which the local symbol is defined.
3503     Sized_relobj_file<size, big_endian>* object;
3504     // The local symbol index in the object.
3505     unsigned int r_sym;
3506   };
3507 
3508   // The GOT section.
3509   Output_data_got_aarch64<size, big_endian>* got_;
3510   // The PLT section.
3511   Output_data_plt_aarch64<size, big_endian>* plt_;
3512   // The GOT PLT section.
3513   Output_data_space* got_plt_;
3514   // The GOT section for IRELATIVE relocations.
3515   Output_data_space* got_irelative_;
3516   // The GOT section for TLSDESC relocations.
3517   Output_data_got<size, big_endian>* got_tlsdesc_;
3518   // The _GLOBAL_OFFSET_TABLE_ symbol.
3519   Symbol* global_offset_table_;
3520   // The dynamic reloc section.
3521   Reloc_section* rela_dyn_;
3522   // The section to use for IRELATIVE relocs.
3523   Reloc_section* rela_irelative_;
3524   // Relocs saved to avoid a COPY reloc.
3525   Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
3526   // Offset of the GOT entry for the TLS module index.
3527   unsigned int got_mod_index_offset_;
3528   // We handle R_AARCH64_TLSDESC against a local symbol as a target
3529   // specific relocation. Here we store the object and local symbol
3530   // index for the relocation.
3531   std::vector<Tlsdesc_info> tlsdesc_reloc_info_;
3532   // True if the _TLS_MODULE_BASE_ symbol has been defined.
3533   bool tls_base_symbol_defined_;
3534   // List of stub_tables
3535   Stub_table_list stub_tables_;
3536   // Actual stub group size
3537   section_size_type stub_group_size_;
3538   AArch64_input_section_map aarch64_input_section_map_;
3539 };  // End of Target_aarch64
3540 
3541 
3542 template<>
3543 const Target::Target_info Target_aarch64<64, false>::aarch64_info =
3544 {
3545   64,			// size
3546   false,		// is_big_endian
3547   elfcpp::EM_AARCH64,	// machine_code
3548   false,		// has_make_symbol
3549   false,		// has_resolve
3550   false,		// has_code_fill
3551   false,		// is_default_stack_executable
3552   true,			// can_icf_inline_merge_sections
3553   '\0',			// wrap_char
3554   "/lib/ld.so.1",	// program interpreter
3555   0x400000,		// default_text_segment_address
3556   0x10000,		// abi_pagesize (overridable by -z max-page-size)
3557   0x1000,		// common_pagesize (overridable by -z common-page-size)
3558   false,                // isolate_execinstr
3559   0,                    // rosegment_gap
3560   elfcpp::SHN_UNDEF,	// small_common_shndx
3561   elfcpp::SHN_UNDEF,	// large_common_shndx
3562   0,			// small_common_section_flags
3563   0,			// large_common_section_flags
3564   NULL,			// attributes_section
3565   NULL,			// attributes_vendor
3566   "_start",		// entry_symbol_name
3567   32,			// hash_entry_size
3568   elfcpp::SHT_PROGBITS,	// unwind_section_type
3569 };
3570 
3571 template<>
3572 const Target::Target_info Target_aarch64<32, false>::aarch64_info =
3573 {
3574   32,			// size
3575   false,		// is_big_endian
3576   elfcpp::EM_AARCH64,	// machine_code
3577   false,		// has_make_symbol
3578   false,		// has_resolve
3579   false,		// has_code_fill
3580   false,		// is_default_stack_executable
3581   false,		// can_icf_inline_merge_sections
3582   '\0',			// wrap_char
3583   "/lib/ld.so.1",	// program interpreter
3584   0x400000,		// default_text_segment_address
3585   0x10000,		// abi_pagesize (overridable by -z max-page-size)
3586   0x1000,		// common_pagesize (overridable by -z common-page-size)
3587   false,                // isolate_execinstr
3588   0,                    // rosegment_gap
3589   elfcpp::SHN_UNDEF,	// small_common_shndx
3590   elfcpp::SHN_UNDEF,	// large_common_shndx
3591   0,			// small_common_section_flags
3592   0,			// large_common_section_flags
3593   NULL,			// attributes_section
3594   NULL,			// attributes_vendor
3595   "_start",		// entry_symbol_name
3596   32,			// hash_entry_size
3597   elfcpp::SHT_PROGBITS,	// unwind_section_type
3598 };
3599 
3600 template<>
3601 const Target::Target_info Target_aarch64<64, true>::aarch64_info =
3602 {
3603   64,			// size
3604   true,			// is_big_endian
3605   elfcpp::EM_AARCH64,	// machine_code
3606   false,		// has_make_symbol
3607   false,		// has_resolve
3608   false,		// has_code_fill
3609   false,		// is_default_stack_executable
3610   true,			// can_icf_inline_merge_sections
3611   '\0',			// wrap_char
3612   "/lib/ld.so.1",	// program interpreter
3613   0x400000,		// default_text_segment_address
3614   0x10000,		// abi_pagesize (overridable by -z max-page-size)
3615   0x1000,		// common_pagesize (overridable by -z common-page-size)
3616   false,                // isolate_execinstr
3617   0,                    // rosegment_gap
3618   elfcpp::SHN_UNDEF,	// small_common_shndx
3619   elfcpp::SHN_UNDEF,	// large_common_shndx
3620   0,			// small_common_section_flags
3621   0,			// large_common_section_flags
3622   NULL,			// attributes_section
3623   NULL,			// attributes_vendor
3624   "_start",		// entry_symbol_name
3625   32,			// hash_entry_size
3626   elfcpp::SHT_PROGBITS,	// unwind_section_type
3627 };
3628 
3629 template<>
3630 const Target::Target_info Target_aarch64<32, true>::aarch64_info =
3631 {
3632   32,			// size
3633   true,			// is_big_endian
3634   elfcpp::EM_AARCH64,	// machine_code
3635   false,		// has_make_symbol
3636   false,		// has_resolve
3637   false,		// has_code_fill
3638   false,		// is_default_stack_executable
3639   false,		// can_icf_inline_merge_sections
3640   '\0',			// wrap_char
3641   "/lib/ld.so.1",	// program interpreter
3642   0x400000,		// default_text_segment_address
3643   0x10000,		// abi_pagesize (overridable by -z max-page-size)
3644   0x1000,		// common_pagesize (overridable by -z common-page-size)
3645   false,                // isolate_execinstr
3646   0,                    // rosegment_gap
3647   elfcpp::SHN_UNDEF,	// small_common_shndx
3648   elfcpp::SHN_UNDEF,	// large_common_shndx
3649   0,			// small_common_section_flags
3650   0,			// large_common_section_flags
3651   NULL,			// attributes_section
3652   NULL,			// attributes_vendor
3653   "_start",		// entry_symbol_name
3654   32,			// hash_entry_size
3655   elfcpp::SHT_PROGBITS,	// unwind_section_type
3656 };
3657 
3658 // Get the GOT section, creating it if necessary.
3659 
3660 template<int size, bool big_endian>
3661 Output_data_got_aarch64<size, big_endian>*
got_section(Symbol_table * symtab,Layout * layout)3662 Target_aarch64<size, big_endian>::got_section(Symbol_table* symtab,
3663 					      Layout* layout)
3664 {
3665   if (this->got_ == NULL)
3666     {
3667       gold_assert(symtab != NULL && layout != NULL);
3668 
3669       // When using -z now, we can treat .got.plt as a relro section.
3670       // Without -z now, it is modified after program startup by lazy
3671       // PLT relocations.
3672       bool is_got_plt_relro = parameters->options().now();
3673       Output_section_order got_order = (is_got_plt_relro
3674 					? ORDER_RELRO
3675 					: ORDER_RELRO_LAST);
3676       Output_section_order got_plt_order = (is_got_plt_relro
3677 					    ? ORDER_RELRO
3678 					    : ORDER_NON_RELRO_FIRST);
3679 
3680       // Layout of .got and .got.plt sections.
3681       // .got[0] &_DYNAMIC                          <-_GLOBAL_OFFSET_TABLE_
3682       // ...
3683       // .gotplt[0] reserved for ld.so (&linkmap)   <--DT_PLTGOT
3684       // .gotplt[1] reserved for ld.so (resolver)
3685       // .gotplt[2] reserved
3686 
3687       // Generate .got section.
3688       this->got_ = new Output_data_got_aarch64<size, big_endian>(symtab,
3689 								 layout);
3690       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
3691 				      (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
3692 				      this->got_, got_order, true);
3693       // The first word of GOT is reserved for the address of .dynamic.
3694       // We put 0 here now. The value will be replaced later in
3695       // Output_data_got_aarch64::do_write.
3696       this->got_->add_constant(0);
3697 
3698       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
3699       // _GLOBAL_OFFSET_TABLE_ value points to the start of the .got section,
3700       // even if there is a .got.plt section.
3701       this->global_offset_table_ =
3702 	symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
3703 				      Symbol_table::PREDEFINED,
3704 				      this->got_,
3705 				      0, 0, elfcpp::STT_OBJECT,
3706 				      elfcpp::STB_LOCAL,
3707 				      elfcpp::STV_HIDDEN, 0,
3708 				      false, false);
3709 
3710       // Generate .got.plt section.
3711       this->got_plt_ = new Output_data_space(size / 8, "** GOT PLT");
3712       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3713 				      (elfcpp::SHF_ALLOC
3714 				       | elfcpp::SHF_WRITE),
3715 				      this->got_plt_, got_plt_order,
3716 				      is_got_plt_relro);
3717 
3718       // The first three entries are reserved.
3719       this->got_plt_->set_current_data_size(
3720 	AARCH64_GOTPLT_RESERVE_COUNT * (size / 8));
3721 
3722       // If there are any IRELATIVE relocations, they get GOT entries
3723       // in .got.plt after the jump slot entries.
3724       this->got_irelative_ = new Output_data_space(size / 8,
3725 						   "** GOT IRELATIVE PLT");
3726       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3727 				      (elfcpp::SHF_ALLOC
3728 				       | elfcpp::SHF_WRITE),
3729 				      this->got_irelative_,
3730 				      got_plt_order,
3731 				      is_got_plt_relro);
3732 
3733       // If there are any TLSDESC relocations, they get GOT entries in
3734       // .got.plt after the jump slot and IRELATIVE entries.
3735       this->got_tlsdesc_ = new Output_data_got<size, big_endian>();
3736       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3737 				      (elfcpp::SHF_ALLOC
3738 				       | elfcpp::SHF_WRITE),
3739 				      this->got_tlsdesc_,
3740 				      got_plt_order,
3741 				      is_got_plt_relro);
3742 
3743       if (!is_got_plt_relro)
3744 	{
3745 	  // Those bytes can go into the relro segment.
3746 	  layout->increase_relro(
3747 	    AARCH64_GOTPLT_RESERVE_COUNT * (size / 8));
3748 	}
3749 
3750     }
3751   return this->got_;
3752 }
3753 
3754 // Get the dynamic reloc section, creating it if necessary.
3755 
3756 template<int size, bool big_endian>
3757 typename Target_aarch64<size, big_endian>::Reloc_section*
rela_dyn_section(Layout * layout)3758 Target_aarch64<size, big_endian>::rela_dyn_section(Layout* layout)
3759 {
3760   if (this->rela_dyn_ == NULL)
3761     {
3762       gold_assert(layout != NULL);
3763       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
3764       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
3765 				      elfcpp::SHF_ALLOC, this->rela_dyn_,
3766 				      ORDER_DYNAMIC_RELOCS, false);
3767     }
3768   return this->rela_dyn_;
3769 }
3770 
3771 // Get the section to use for IRELATIVE relocs, creating it if
3772 // necessary.  These go in .rela.dyn, but only after all other dynamic
3773 // relocations.  They need to follow the other dynamic relocations so
3774 // that they can refer to global variables initialized by those
3775 // relocs.
3776 
3777 template<int size, bool big_endian>
3778 typename Target_aarch64<size, big_endian>::Reloc_section*
rela_irelative_section(Layout * layout)3779 Target_aarch64<size, big_endian>::rela_irelative_section(Layout* layout)
3780 {
3781   if (this->rela_irelative_ == NULL)
3782     {
3783       // Make sure we have already created the dynamic reloc section.
3784       this->rela_dyn_section(layout);
3785       this->rela_irelative_ = new Reloc_section(false);
3786       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
3787 				      elfcpp::SHF_ALLOC, this->rela_irelative_,
3788 				      ORDER_DYNAMIC_RELOCS, false);
3789       gold_assert(this->rela_dyn_->output_section()
3790 		  == this->rela_irelative_->output_section());
3791     }
3792   return this->rela_irelative_;
3793 }
3794 
3795 
3796 // do_make_elf_object to override the same function in the base class.  We need
3797 // to use a target-specific sub-class of Sized_relobj_file<size, big_endian> to
3798 // store backend specific information. Hence we need to have our own ELF object
3799 // creation.
3800 
3801 template<int size, bool big_endian>
3802 Object*
do_make_elf_object(const std::string & name,Input_file * input_file,off_t offset,const elfcpp::Ehdr<size,big_endian> & ehdr)3803 Target_aarch64<size, big_endian>::do_make_elf_object(
3804     const std::string& name,
3805     Input_file* input_file,
3806     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
3807 {
3808   int et = ehdr.get_e_type();
3809   // ET_EXEC files are valid input for --just-symbols/-R,
3810   // and we treat them as relocatable objects.
3811   if (et == elfcpp::ET_EXEC && input_file->just_symbols())
3812     return Sized_target<size, big_endian>::do_make_elf_object(
3813 	name, input_file, offset, ehdr);
3814   else if (et == elfcpp::ET_REL)
3815     {
3816       AArch64_relobj<size, big_endian>* obj =
3817 	new AArch64_relobj<size, big_endian>(name, input_file, offset, ehdr);
3818       obj->setup();
3819       return obj;
3820     }
3821   else if (et == elfcpp::ET_DYN)
3822     {
3823       // Keep base implementation.
3824       Sized_dynobj<size, big_endian>* obj =
3825 	  new Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr);
3826       obj->setup();
3827       return obj;
3828     }
3829   else
3830     {
3831       gold_error(_("%s: unsupported ELF file type %d"),
3832 		 name.c_str(), et);
3833       return NULL;
3834     }
3835 }
3836 
3837 
3838 // Scan a relocation for stub generation.
3839 
3840 template<int size, bool big_endian>
3841 void
scan_reloc_for_stub(const Relocate_info<size,big_endian> * relinfo,unsigned int r_type,const Sized_symbol<size> * gsym,unsigned int r_sym,const Symbol_value<size> * psymval,typename elfcpp::Elf_types<size>::Elf_Swxword addend,Address address)3842 Target_aarch64<size, big_endian>::scan_reloc_for_stub(
3843     const Relocate_info<size, big_endian>* relinfo,
3844     unsigned int r_type,
3845     const Sized_symbol<size>* gsym,
3846     unsigned int r_sym,
3847     const Symbol_value<size>* psymval,
3848     typename elfcpp::Elf_types<size>::Elf_Swxword addend,
3849     Address address)
3850 {
3851   const AArch64_relobj<size, big_endian>* aarch64_relobj =
3852       static_cast<AArch64_relobj<size, big_endian>*>(relinfo->object);
3853 
3854   Symbol_value<size> symval;
3855   if (gsym != NULL)
3856     {
3857       const AArch64_reloc_property* arp = aarch64_reloc_property_table->
3858 	get_reloc_property(r_type);
3859       if (gsym->use_plt_offset(arp->reference_flags()))
3860 	{
3861 	  // This uses a PLT, change the symbol value.
3862 	  symval.set_output_value(this->plt_address_for_global(gsym));
3863 	  psymval = &symval;
3864 	}
3865       else if (gsym->is_undefined())
3866 	{
3867           // There is no need to generate a stub symbol if the original symbol
3868           // is undefined.
3869           gold_debug(DEBUG_TARGET,
3870                      "stub: not creating a stub for undefined symbol %s in file %s",
3871                      gsym->name(), aarch64_relobj->name().c_str());
3872           return;
3873 	}
3874     }
3875 
3876   // Get the symbol value.
3877   typename Symbol_value<size>::Value value = psymval->value(aarch64_relobj, 0);
3878 
3879   // Owing to pipelining, the PC relative branches below actually skip
3880   // two instructions when the branch offset is 0.
3881   Address destination = static_cast<Address>(-1);
3882   switch (r_type)
3883     {
3884     case elfcpp::R_AARCH64_CALL26:
3885     case elfcpp::R_AARCH64_JUMP26:
3886       destination = value + addend;
3887       break;
3888     default:
3889       gold_unreachable();
3890     }
3891 
3892   int stub_type = The_reloc_stub::
3893       stub_type_for_reloc(r_type, address, destination);
3894   if (stub_type == ST_NONE)
3895     return;
3896 
3897   The_stub_table* stub_table = aarch64_relobj->stub_table(relinfo->data_shndx);
3898   gold_assert(stub_table != NULL);
3899 
3900   The_reloc_stub_key key(stub_type, gsym, aarch64_relobj, r_sym, addend);
3901   The_reloc_stub* stub = stub_table->find_reloc_stub(key);
3902   if (stub == NULL)
3903     {
3904       stub = new The_reloc_stub(stub_type);
3905       stub_table->add_reloc_stub(stub, key);
3906     }
3907   stub->set_destination_address(destination);
3908 }  // End of Target_aarch64::scan_reloc_for_stub
3909 
3910 
3911 // This function scans a relocation section for stub generation.
3912 // The template parameter Relocate must be a class type which provides
3913 // a single function, relocate(), which implements the machine
3914 // specific part of a relocation.
3915 
3916 // BIG_ENDIAN is the endianness of the data.  SH_TYPE is the section type:
3917 // SHT_REL or SHT_RELA.
3918 
3919 // PRELOCS points to the relocation data.  RELOC_COUNT is the number
3920 // of relocs.  OUTPUT_SECTION is the output section.
3921 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
3922 // mapped to output offsets.
3923 
3924 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
3925 // VIEW_SIZE is the size.  These refer to the input section, unless
3926 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
3927 // the output section.
3928 
3929 template<int size, bool big_endian>
3930 template<int sh_type>
3931 void inline
scan_reloc_section_for_stubs(const Relocate_info<size,big_endian> * relinfo,const unsigned char * prelocs,size_t reloc_count,Output_section *,bool,const unsigned char *,Address view_address,section_size_type)3932 Target_aarch64<size, big_endian>::scan_reloc_section_for_stubs(
3933     const Relocate_info<size, big_endian>* relinfo,
3934     const unsigned char* prelocs,
3935     size_t reloc_count,
3936     Output_section* /*output_section*/,
3937     bool /*needs_special_offset_handling*/,
3938     const unsigned char* /*view*/,
3939     Address view_address,
3940     section_size_type)
3941 {
3942   typedef typename Reloc_types<sh_type,size,big_endian>::Reloc Reltype;
3943 
3944   const int reloc_size =
3945       Reloc_types<sh_type,size,big_endian>::reloc_size;
3946   AArch64_relobj<size, big_endian>* object =
3947       static_cast<AArch64_relobj<size, big_endian>*>(relinfo->object);
3948   unsigned int local_count = object->local_symbol_count();
3949 
3950   gold::Default_comdat_behavior default_comdat_behavior;
3951   Comdat_behavior comdat_behavior = CB_UNDETERMINED;
3952 
3953   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
3954     {
3955       Reltype reloc(prelocs);
3956       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
3957       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
3958       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
3959       if (r_type != elfcpp::R_AARCH64_CALL26
3960 	  && r_type != elfcpp::R_AARCH64_JUMP26)
3961 	continue;
3962 
3963       section_offset_type offset =
3964 	  convert_to_section_size_type(reloc.get_r_offset());
3965 
3966       // Get the addend.
3967       typename elfcpp::Elf_types<size>::Elf_Swxword addend =
3968 	  reloc.get_r_addend();
3969 
3970       const Sized_symbol<size>* sym;
3971       Symbol_value<size> symval;
3972       const Symbol_value<size> *psymval;
3973       bool is_defined_in_discarded_section;
3974       unsigned int shndx;
3975       const Symbol* gsym = NULL;
3976       if (r_sym < local_count)
3977 	{
3978 	  sym = NULL;
3979 	  psymval = object->local_symbol(r_sym);
3980 
3981 	  // If the local symbol belongs to a section we are discarding,
3982 	  // and that section is a debug section, try to find the
3983 	  // corresponding kept section and map this symbol to its
3984 	  // counterpart in the kept section.  The symbol must not
3985 	  // correspond to a section we are folding.
3986 	  bool is_ordinary;
3987 	  shndx = psymval->input_shndx(&is_ordinary);
3988 	  is_defined_in_discarded_section =
3989 	    (is_ordinary
3990 	     && shndx != elfcpp::SHN_UNDEF
3991 	     && !object->is_section_included(shndx)
3992 	     && !relinfo->symtab->is_section_folded(object, shndx));
3993 
3994 	  // We need to compute the would-be final value of this local
3995 	  // symbol.
3996 	  if (!is_defined_in_discarded_section)
3997 	    {
3998 	      typedef Sized_relobj_file<size, big_endian> ObjType;
3999 	      if (psymval->is_section_symbol())
4000 		symval.set_is_section_symbol();
4001 	      typename ObjType::Compute_final_local_value_status status =
4002 		object->compute_final_local_value(r_sym, psymval, &symval,
4003 						  relinfo->symtab);
4004 	      if (status == ObjType::CFLV_OK)
4005 		{
4006 		  // Currently we cannot handle a branch to a target in
4007 		  // a merged section.  If this is the case, issue an error
4008 		  // and also free the merge symbol value.
4009 		  if (!symval.has_output_value())
4010 		    {
4011 		      const std::string& section_name =
4012 			object->section_name(shndx);
4013 		      object->error(_("cannot handle branch to local %u "
4014 					  "in a merged section %s"),
4015 					r_sym, section_name.c_str());
4016 		    }
4017 		  psymval = &symval;
4018 		}
4019 	      else
4020 		{
4021 		  // We cannot determine the final value.
4022 		  continue;
4023 		}
4024 	    }
4025 	}
4026       else
4027 	{
4028 	  gsym = object->global_symbol(r_sym);
4029 	  gold_assert(gsym != NULL);
4030 	  if (gsym->is_forwarder())
4031 	    gsym = relinfo->symtab->resolve_forwards(gsym);
4032 
4033 	  sym = static_cast<const Sized_symbol<size>*>(gsym);
4034 	  if (sym->has_symtab_index() && sym->symtab_index() != -1U)
4035 	    symval.set_output_symtab_index(sym->symtab_index());
4036 	  else
4037 	    symval.set_no_output_symtab_entry();
4038 
4039 	  // We need to compute the would-be final value of this global
4040 	  // symbol.
4041 	  const Symbol_table* symtab = relinfo->symtab;
4042 	  const Sized_symbol<size>* sized_symbol =
4043 	      symtab->get_sized_symbol<size>(gsym);
4044 	  Symbol_table::Compute_final_value_status status;
4045 	  typename elfcpp::Elf_types<size>::Elf_Addr value =
4046 	      symtab->compute_final_value<size>(sized_symbol, &status);
4047 
4048 	  // Skip this if the symbol has not output section.
4049 	  if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
4050 	    continue;
4051 	  symval.set_output_value(value);
4052 
4053 	  if (gsym->type() == elfcpp::STT_TLS)
4054 	    symval.set_is_tls_symbol();
4055 	  else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
4056 	    symval.set_is_ifunc_symbol();
4057 	  psymval = &symval;
4058 
4059 	  is_defined_in_discarded_section =
4060 	      (gsym->is_defined_in_discarded_section()
4061 	       && gsym->is_undefined());
4062 	  shndx = 0;
4063 	}
4064 
4065       Symbol_value<size> symval2;
4066       if (is_defined_in_discarded_section)
4067 	{
4068 	  std::string name = object->section_name(relinfo->data_shndx);
4069 
4070 	  if (comdat_behavior == CB_UNDETERMINED)
4071 	      comdat_behavior = default_comdat_behavior.get(name.c_str());
4072 
4073 	  if (comdat_behavior == CB_PRETEND)
4074 	    {
4075 	      bool found;
4076 	      typename elfcpp::Elf_types<size>::Elf_Addr value =
4077 		object->map_to_kept_section(shndx, name, &found);
4078 	      if (found)
4079 		symval2.set_output_value(value + psymval->input_value());
4080 	      else
4081 		symval2.set_output_value(0);
4082 	    }
4083 	  else
4084 	    {
4085 	      if (comdat_behavior == CB_ERROR)
4086 	        issue_discarded_error(relinfo, i, offset, r_sym, gsym);
4087 	      symval2.set_output_value(0);
4088 	    }
4089 	  symval2.set_no_output_symtab_entry();
4090 	  psymval = &symval2;
4091 	}
4092 
4093       this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
4094 				addend, view_address + offset);
4095     }  // End of iterating relocs in a section
4096 }  // End of Target_aarch64::scan_reloc_section_for_stubs
4097 
4098 
4099 // Scan an input section for stub generation.
4100 
4101 template<int size, bool big_endian>
4102 void
scan_section_for_stubs(const Relocate_info<size,big_endian> * relinfo,unsigned int sh_type,const unsigned char * prelocs,size_t reloc_count,Output_section * output_section,bool needs_special_offset_handling,const unsigned char * view,Address view_address,section_size_type view_size)4103 Target_aarch64<size, big_endian>::scan_section_for_stubs(
4104     const Relocate_info<size, big_endian>* relinfo,
4105     unsigned int sh_type,
4106     const unsigned char* prelocs,
4107     size_t reloc_count,
4108     Output_section* output_section,
4109     bool needs_special_offset_handling,
4110     const unsigned char* view,
4111     Address view_address,
4112     section_size_type view_size)
4113 {
4114   gold_assert(sh_type == elfcpp::SHT_RELA);
4115   this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
4116       relinfo,
4117       prelocs,
4118       reloc_count,
4119       output_section,
4120       needs_special_offset_handling,
4121       view,
4122       view_address,
4123       view_size);
4124 }
4125 
4126 
4127 // Relocate a single reloc stub.
4128 
4129 template<int size, bool big_endian>
4130 void Target_aarch64<size, big_endian>::
relocate_reloc_stub(The_reloc_stub * stub,const The_relocate_info *,Output_section *,unsigned char * view,Address address,section_size_type)4131 relocate_reloc_stub(The_reloc_stub* stub,
4132                     const The_relocate_info*,
4133                     Output_section*,
4134                     unsigned char* view,
4135                     Address address,
4136                     section_size_type)
4137 {
4138   typedef AArch64_relocate_functions<size, big_endian> The_reloc_functions;
4139   typedef typename The_reloc_functions::Status The_reloc_functions_status;
4140   typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
4141 
4142   Insntype* ip = reinterpret_cast<Insntype*>(view);
4143   int insn_number = stub->insn_num();
4144   const uint32_t* insns = stub->insns();
4145   // Check the insns are really those stub insns.
4146   for (int i = 0; i < insn_number; ++i)
4147     {
4148       Insntype insn = elfcpp::Swap<32,big_endian>::readval(ip + i);
4149       gold_assert(((uint32_t)insn == insns[i]));
4150     }
4151 
4152   Address dest = stub->destination_address();
4153 
4154   switch(stub->type())
4155     {
4156     case ST_ADRP_BRANCH:
4157       {
4158 	// 1st reloc is ADR_PREL_PG_HI21
4159 	The_reloc_functions_status status =
4160 	    The_reloc_functions::adrp(view, dest, address);
4161 	// An error should never arise in the above step. If so, please
4162 	// check 'aarch64_valid_for_adrp_p'.
4163 	gold_assert(status == The_reloc_functions::STATUS_OKAY);
4164 
4165 	// 2nd reloc is ADD_ABS_LO12_NC
4166 	const AArch64_reloc_property* arp =
4167 	    aarch64_reloc_property_table->get_reloc_property(
4168 		elfcpp::R_AARCH64_ADD_ABS_LO12_NC);
4169 	gold_assert(arp != NULL);
4170 	status = The_reloc_functions::template
4171 	    rela_general<32>(view + 4, dest, 0, arp);
4172 	// An error should never arise, it is an "_NC" relocation.
4173 	gold_assert(status == The_reloc_functions::STATUS_OKAY);
4174       }
4175       break;
4176 
4177     case ST_LONG_BRANCH_ABS:
4178       // 1st reloc is R_AARCH64_PREL64, at offset 8
4179       elfcpp::Swap<64,big_endian>::writeval(view + 8, dest);
4180       break;
4181 
4182     case ST_LONG_BRANCH_PCREL:
4183       {
4184 	// "PC" calculation is the 2nd insn in the stub.
4185 	uint64_t offset = dest - (address + 4);
4186 	// Offset is placed at offset 4 and 5.
4187 	elfcpp::Swap<64,big_endian>::writeval(view + 16, offset);
4188       }
4189       break;
4190 
4191     default:
4192       gold_unreachable();
4193     }
4194 }
4195 
4196 
4197 // A class to handle the PLT data.
4198 // This is an abstract base class that handles most of the linker details
4199 // but does not know the actual contents of PLT entries.  The derived
4200 // classes below fill in those details.
4201 
4202 template<int size, bool big_endian>
4203 class Output_data_plt_aarch64 : public Output_section_data
4204 {
4205  public:
4206   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
4207       Reloc_section;
4208   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4209 
Output_data_plt_aarch64(Layout * layout,uint64_t addralign,Output_data_got_aarch64<size,big_endian> * got,Output_data_space * got_plt,Output_data_space * got_irelative)4210   Output_data_plt_aarch64(Layout* layout,
4211 			  uint64_t addralign,
4212 			  Output_data_got_aarch64<size, big_endian>* got,
4213 			  Output_data_space* got_plt,
4214 			  Output_data_space* got_irelative)
4215     : Output_section_data(addralign), tlsdesc_rel_(NULL), irelative_rel_(NULL),
4216       got_(got), got_plt_(got_plt), got_irelative_(got_irelative),
4217       count_(0), irelative_count_(0), tlsdesc_got_offset_(-1U)
4218   { this->init(layout); }
4219 
4220   // Initialize the PLT section.
4221   void
4222   init(Layout* layout);
4223 
4224   // Add an entry to the PLT.
4225   void
4226   add_entry(Symbol_table*, Layout*, Symbol* gsym);
4227 
4228   // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
4229   unsigned int
4230   add_local_ifunc_entry(Symbol_table* symtab, Layout*,
4231 			Sized_relobj_file<size, big_endian>* relobj,
4232 			unsigned int local_sym_index);
4233 
4234   // Add the relocation for a PLT entry.
4235   void
4236   add_relocation(Symbol_table*, Layout*, Symbol* gsym,
4237 		 unsigned int got_offset);
4238 
4239   // Add the reserved TLSDESC_PLT entry to the PLT.
4240   void
reserve_tlsdesc_entry(unsigned int got_offset)4241   reserve_tlsdesc_entry(unsigned int got_offset)
4242   { this->tlsdesc_got_offset_ = got_offset; }
4243 
4244   // Return true if a TLSDESC_PLT entry has been reserved.
4245   bool
has_tlsdesc_entry() const4246   has_tlsdesc_entry() const
4247   { return this->tlsdesc_got_offset_ != -1U; }
4248 
4249   // Return the GOT offset for the reserved TLSDESC_PLT entry.
4250   unsigned int
get_tlsdesc_got_offset() const4251   get_tlsdesc_got_offset() const
4252   { return this->tlsdesc_got_offset_; }
4253 
4254   // Return the PLT offset of the reserved TLSDESC_PLT entry.
4255   unsigned int
get_tlsdesc_plt_offset() const4256   get_tlsdesc_plt_offset() const
4257   {
4258     return (this->first_plt_entry_offset() +
4259 	    (this->count_ + this->irelative_count_)
4260 	    * this->get_plt_entry_size());
4261   }
4262 
4263   // Return the .rela.plt section data.
4264   Reloc_section*
rela_plt()4265   rela_plt()
4266   { return this->rel_; }
4267 
4268   // Return where the TLSDESC relocations should go.
4269   Reloc_section*
4270   rela_tlsdesc(Layout*);
4271 
4272   // Return where the IRELATIVE relocations should go in the PLT
4273   // relocations.
4274   Reloc_section*
4275   rela_irelative(Symbol_table*, Layout*);
4276 
4277   // Return whether we created a section for IRELATIVE relocations.
4278   bool
has_irelative_section() const4279   has_irelative_section() const
4280   { return this->irelative_rel_ != NULL; }
4281 
4282   // Return the number of PLT entries.
4283   unsigned int
entry_count() const4284   entry_count() const
4285   { return this->count_ + this->irelative_count_; }
4286 
4287   // Return the offset of the first non-reserved PLT entry.
4288   unsigned int
first_plt_entry_offset() const4289   first_plt_entry_offset() const
4290   { return this->do_first_plt_entry_offset(); }
4291 
4292   // Return the size of a PLT entry.
4293   unsigned int
get_plt_entry_size() const4294   get_plt_entry_size() const
4295   { return this->do_get_plt_entry_size(); }
4296 
4297   // Return the reserved tlsdesc entry size.
4298   unsigned int
get_plt_tlsdesc_entry_size() const4299   get_plt_tlsdesc_entry_size() const
4300   { return this->do_get_plt_tlsdesc_entry_size(); }
4301 
4302   // Return the PLT address to use for a global symbol.
4303   uint64_t
4304   address_for_global(const Symbol*);
4305 
4306   // Return the PLT address to use for a local symbol.
4307   uint64_t
4308   address_for_local(const Relobj*, unsigned int symndx);
4309 
4310  protected:
4311   // Fill in the first PLT entry.
4312   void
fill_first_plt_entry(unsigned char * pov,Address got_address,Address plt_address)4313   fill_first_plt_entry(unsigned char* pov,
4314 		       Address got_address,
4315 		       Address plt_address)
4316   { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
4317 
4318   // Fill in a normal PLT entry.
4319   void
fill_plt_entry(unsigned char * pov,Address got_address,Address plt_address,unsigned int got_offset,unsigned int plt_offset)4320   fill_plt_entry(unsigned char* pov,
4321 		 Address got_address,
4322 		 Address plt_address,
4323 		 unsigned int got_offset,
4324 		 unsigned int plt_offset)
4325   {
4326     this->do_fill_plt_entry(pov, got_address, plt_address,
4327 			    got_offset, plt_offset);
4328   }
4329 
4330   // Fill in the reserved TLSDESC PLT entry.
4331   void
fill_tlsdesc_entry(unsigned char * pov,Address gotplt_address,Address plt_address,Address got_base,unsigned int tlsdesc_got_offset,unsigned int plt_offset)4332   fill_tlsdesc_entry(unsigned char* pov,
4333 		     Address gotplt_address,
4334 		     Address plt_address,
4335 		     Address got_base,
4336 		     unsigned int tlsdesc_got_offset,
4337 		     unsigned int plt_offset)
4338   {
4339     this->do_fill_tlsdesc_entry(pov, gotplt_address, plt_address, got_base,
4340 				tlsdesc_got_offset, plt_offset);
4341   }
4342 
4343   virtual unsigned int
4344   do_first_plt_entry_offset() const = 0;
4345 
4346   virtual unsigned int
4347   do_get_plt_entry_size() const = 0;
4348 
4349   virtual unsigned int
4350   do_get_plt_tlsdesc_entry_size() const = 0;
4351 
4352   virtual void
4353   do_fill_first_plt_entry(unsigned char* pov,
4354 			  Address got_addr,
4355 			  Address plt_addr) = 0;
4356 
4357   virtual void
4358   do_fill_plt_entry(unsigned char* pov,
4359 		    Address got_address,
4360 		    Address plt_address,
4361 		    unsigned int got_offset,
4362 		    unsigned int plt_offset) = 0;
4363 
4364   virtual void
4365   do_fill_tlsdesc_entry(unsigned char* pov,
4366 			Address gotplt_address,
4367 			Address plt_address,
4368 			Address got_base,
4369 			unsigned int tlsdesc_got_offset,
4370 			unsigned int plt_offset) = 0;
4371 
4372   void
4373   do_adjust_output_section(Output_section* os);
4374 
4375   // Write to a map file.
4376   void
do_print_to_mapfile(Mapfile * mapfile) const4377   do_print_to_mapfile(Mapfile* mapfile) const
4378   { mapfile->print_output_data(this, _("** PLT")); }
4379 
4380  private:
4381   // Set the final size.
4382   void
4383   set_final_data_size();
4384 
4385   // Write out the PLT data.
4386   void
4387   do_write(Output_file*);
4388 
4389   // The reloc section.
4390   Reloc_section* rel_;
4391 
4392   // The TLSDESC relocs, if necessary.  These must follow the regular
4393   // PLT relocs.
4394   Reloc_section* tlsdesc_rel_;
4395 
4396   // The IRELATIVE relocs, if necessary.  These must follow the
4397   // regular PLT relocations.
4398   Reloc_section* irelative_rel_;
4399 
4400   // The .got section.
4401   Output_data_got_aarch64<size, big_endian>* got_;
4402 
4403   // The .got.plt section.
4404   Output_data_space* got_plt_;
4405 
4406   // The part of the .got.plt section used for IRELATIVE relocs.
4407   Output_data_space* got_irelative_;
4408 
4409   // The number of PLT entries.
4410   unsigned int count_;
4411 
4412   // Number of PLT entries with R_AARCH64_IRELATIVE relocs.  These
4413   // follow the regular PLT entries.
4414   unsigned int irelative_count_;
4415 
4416   // GOT offset of the reserved TLSDESC_GOT entry for the lazy trampoline.
4417   // Communicated to the loader via DT_TLSDESC_GOT. The magic value -1
4418   // indicates an offset is not allocated.
4419   unsigned int tlsdesc_got_offset_;
4420 };
4421 
4422 // Initialize the PLT section.
4423 
4424 template<int size, bool big_endian>
4425 void
init(Layout * layout)4426 Output_data_plt_aarch64<size, big_endian>::init(Layout* layout)
4427 {
4428   this->rel_ = new Reloc_section(false);
4429   layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4430 				  elfcpp::SHF_ALLOC, this->rel_,
4431 				  ORDER_DYNAMIC_PLT_RELOCS, false);
4432 }
4433 
4434 template<int size, bool big_endian>
4435 void
do_adjust_output_section(Output_section * os)4436 Output_data_plt_aarch64<size, big_endian>::do_adjust_output_section(
4437     Output_section* os)
4438 {
4439   os->set_entsize(this->get_plt_entry_size());
4440 }
4441 
4442 // Add an entry to the PLT.
4443 
4444 template<int size, bool big_endian>
4445 void
add_entry(Symbol_table * symtab,Layout * layout,Symbol * gsym)4446 Output_data_plt_aarch64<size, big_endian>::add_entry(Symbol_table* symtab,
4447     Layout* layout, Symbol* gsym)
4448 {
4449   gold_assert(!gsym->has_plt_offset());
4450 
4451   unsigned int* pcount;
4452   unsigned int plt_reserved;
4453   Output_section_data_build* got;
4454 
4455   if (gsym->type() == elfcpp::STT_GNU_IFUNC
4456       && gsym->can_use_relative_reloc(false))
4457     {
4458       pcount = &this->irelative_count_;
4459       plt_reserved = 0;
4460       got = this->got_irelative_;
4461     }
4462   else
4463     {
4464       pcount = &this->count_;
4465       plt_reserved = this->first_plt_entry_offset();
4466       got = this->got_plt_;
4467     }
4468 
4469   gsym->set_plt_offset((*pcount) * this->get_plt_entry_size()
4470 		       + plt_reserved);
4471 
4472   ++*pcount;
4473 
4474   section_offset_type got_offset = got->current_data_size();
4475 
4476   // Every PLT entry needs a GOT entry which points back to the PLT
4477   // entry (this will be changed by the dynamic linker, normally
4478   // lazily when the function is called).
4479   got->set_current_data_size(got_offset + size / 8);
4480 
4481   // Every PLT entry needs a reloc.
4482   this->add_relocation(symtab, layout, gsym, got_offset);
4483 
4484   // Note that we don't need to save the symbol. The contents of the
4485   // PLT are independent of which symbols are used. The symbols only
4486   // appear in the relocations.
4487 }
4488 
4489 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.  Return
4490 // the PLT offset.
4491 
4492 template<int size, bool big_endian>
4493 unsigned int
add_local_ifunc_entry(Symbol_table * symtab,Layout * layout,Sized_relobj_file<size,big_endian> * relobj,unsigned int local_sym_index)4494 Output_data_plt_aarch64<size, big_endian>::add_local_ifunc_entry(
4495     Symbol_table* symtab,
4496     Layout* layout,
4497     Sized_relobj_file<size, big_endian>* relobj,
4498     unsigned int local_sym_index)
4499 {
4500   unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
4501   ++this->irelative_count_;
4502 
4503   section_offset_type got_offset = this->got_irelative_->current_data_size();
4504 
4505   // Every PLT entry needs a GOT entry which points back to the PLT
4506   // entry.
4507   this->got_irelative_->set_current_data_size(got_offset + size / 8);
4508 
4509   // Every PLT entry needs a reloc.
4510   Reloc_section* rela = this->rela_irelative(symtab, layout);
4511   rela->add_symbolless_local_addend(relobj, local_sym_index,
4512 				    elfcpp::R_AARCH64_IRELATIVE,
4513 				    this->got_irelative_, got_offset, 0);
4514 
4515   return plt_offset;
4516 }
4517 
4518 // Add the relocation for a PLT entry.
4519 
4520 template<int size, bool big_endian>
4521 void
add_relocation(Symbol_table * symtab,Layout * layout,Symbol * gsym,unsigned int got_offset)4522 Output_data_plt_aarch64<size, big_endian>::add_relocation(
4523     Symbol_table* symtab, Layout* layout, Symbol* gsym, unsigned int got_offset)
4524 {
4525   if (gsym->type() == elfcpp::STT_GNU_IFUNC
4526       && gsym->can_use_relative_reloc(false))
4527     {
4528       Reloc_section* rela = this->rela_irelative(symtab, layout);
4529       rela->add_symbolless_global_addend(gsym, elfcpp::R_AARCH64_IRELATIVE,
4530 					 this->got_irelative_, got_offset, 0);
4531     }
4532   else
4533     {
4534       gsym->set_needs_dynsym_entry();
4535       this->rel_->add_global(gsym, elfcpp::R_AARCH64_JUMP_SLOT, this->got_plt_,
4536 			     got_offset, 0);
4537     }
4538 }
4539 
4540 // Return where the TLSDESC relocations should go, creating it if
4541 // necessary.  These follow the JUMP_SLOT relocations.
4542 
4543 template<int size, bool big_endian>
4544 typename Output_data_plt_aarch64<size, big_endian>::Reloc_section*
rela_tlsdesc(Layout * layout)4545 Output_data_plt_aarch64<size, big_endian>::rela_tlsdesc(Layout* layout)
4546 {
4547   if (this->tlsdesc_rel_ == NULL)
4548     {
4549       this->tlsdesc_rel_ = new Reloc_section(false);
4550       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4551 				      elfcpp::SHF_ALLOC, this->tlsdesc_rel_,
4552 				      ORDER_DYNAMIC_PLT_RELOCS, false);
4553       gold_assert(this->tlsdesc_rel_->output_section()
4554 		  == this->rel_->output_section());
4555     }
4556   return this->tlsdesc_rel_;
4557 }
4558 
4559 // Return where the IRELATIVE relocations should go in the PLT.  These
4560 // follow the JUMP_SLOT and the TLSDESC relocations.
4561 
4562 template<int size, bool big_endian>
4563 typename Output_data_plt_aarch64<size, big_endian>::Reloc_section*
rela_irelative(Symbol_table * symtab,Layout * layout)4564 Output_data_plt_aarch64<size, big_endian>::rela_irelative(Symbol_table* symtab,
4565 							  Layout* layout)
4566 {
4567   if (this->irelative_rel_ == NULL)
4568     {
4569       // Make sure we have a place for the TLSDESC relocations, in
4570       // case we see any later on.
4571       this->rela_tlsdesc(layout);
4572       this->irelative_rel_ = new Reloc_section(false);
4573       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4574 				      elfcpp::SHF_ALLOC, this->irelative_rel_,
4575 				      ORDER_DYNAMIC_PLT_RELOCS, false);
4576       gold_assert(this->irelative_rel_->output_section()
4577 		  == this->rel_->output_section());
4578 
4579       if (parameters->doing_static_link())
4580 	{
4581 	  // A statically linked executable will only have a .rela.plt
4582 	  // section to hold R_AARCH64_IRELATIVE relocs for
4583 	  // STT_GNU_IFUNC symbols.  The library will use these
4584 	  // symbols to locate the IRELATIVE relocs at program startup
4585 	  // time.
4586 	  symtab->define_in_output_data("__rela_iplt_start", NULL,
4587 					Symbol_table::PREDEFINED,
4588 					this->irelative_rel_, 0, 0,
4589 					elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
4590 					elfcpp::STV_HIDDEN, 0, false, true);
4591 	  symtab->define_in_output_data("__rela_iplt_end", NULL,
4592 					Symbol_table::PREDEFINED,
4593 					this->irelative_rel_, 0, 0,
4594 					elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
4595 					elfcpp::STV_HIDDEN, 0, true, true);
4596 	}
4597     }
4598   return this->irelative_rel_;
4599 }
4600 
4601 // Return the PLT address to use for a global symbol.
4602 
4603 template<int size, bool big_endian>
4604 uint64_t
address_for_global(const Symbol * gsym)4605 Output_data_plt_aarch64<size, big_endian>::address_for_global(
4606   const Symbol* gsym)
4607 {
4608   uint64_t offset = 0;
4609   if (gsym->type() == elfcpp::STT_GNU_IFUNC
4610       && gsym->can_use_relative_reloc(false))
4611     offset = (this->first_plt_entry_offset() +
4612 	      this->count_ * this->get_plt_entry_size());
4613   return this->address() + offset + gsym->plt_offset();
4614 }
4615 
4616 // Return the PLT address to use for a local symbol.  These are always
4617 // IRELATIVE relocs.
4618 
4619 template<int size, bool big_endian>
4620 uint64_t
address_for_local(const Relobj * object,unsigned int r_sym)4621 Output_data_plt_aarch64<size, big_endian>::address_for_local(
4622     const Relobj* object,
4623     unsigned int r_sym)
4624 {
4625   return (this->address()
4626 	  + this->first_plt_entry_offset()
4627 	  + this->count_ * this->get_plt_entry_size()
4628 	  + object->local_plt_offset(r_sym));
4629 }
4630 
4631 // Set the final size.
4632 
4633 template<int size, bool big_endian>
4634 void
set_final_data_size()4635 Output_data_plt_aarch64<size, big_endian>::set_final_data_size()
4636 {
4637   unsigned int count = this->count_ + this->irelative_count_;
4638   unsigned int extra_size = 0;
4639   if (this->has_tlsdesc_entry())
4640     extra_size += this->get_plt_tlsdesc_entry_size();
4641   this->set_data_size(this->first_plt_entry_offset()
4642 		      + count * this->get_plt_entry_size()
4643 		      + extra_size);
4644 }
4645 
4646 template<int size, bool big_endian>
4647 class Output_data_plt_aarch64_standard :
4648   public Output_data_plt_aarch64<size, big_endian>
4649 {
4650  public:
4651   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
Output_data_plt_aarch64_standard(Layout * layout,Output_data_got_aarch64<size,big_endian> * got,Output_data_space * got_plt,Output_data_space * got_irelative)4652   Output_data_plt_aarch64_standard(
4653       Layout* layout,
4654       Output_data_got_aarch64<size, big_endian>* got,
4655       Output_data_space* got_plt,
4656       Output_data_space* got_irelative)
4657     : Output_data_plt_aarch64<size, big_endian>(layout,
4658 						size == 32 ? 4 : 8,
4659 						got, got_plt,
4660 						got_irelative)
4661   { }
4662 
4663  protected:
4664   // Return the offset of the first non-reserved PLT entry.
4665   virtual unsigned int
do_first_plt_entry_offset() const4666   do_first_plt_entry_offset() const
4667   { return this->first_plt_entry_size; }
4668 
4669   // Return the size of a PLT entry
4670   virtual unsigned int
do_get_plt_entry_size() const4671   do_get_plt_entry_size() const
4672   { return this->plt_entry_size; }
4673 
4674   // Return the size of a tlsdesc entry
4675   virtual unsigned int
do_get_plt_tlsdesc_entry_size() const4676   do_get_plt_tlsdesc_entry_size() const
4677   { return this->plt_tlsdesc_entry_size; }
4678 
4679   virtual void
4680   do_fill_first_plt_entry(unsigned char* pov,
4681 			  Address got_address,
4682 			  Address plt_address);
4683 
4684   virtual void
4685   do_fill_plt_entry(unsigned char* pov,
4686 		    Address got_address,
4687 		    Address plt_address,
4688 		    unsigned int got_offset,
4689 		    unsigned int plt_offset);
4690 
4691   virtual void
4692   do_fill_tlsdesc_entry(unsigned char* pov,
4693 			Address gotplt_address,
4694 			Address plt_address,
4695 			Address got_base,
4696 			unsigned int tlsdesc_got_offset,
4697 			unsigned int plt_offset);
4698 
4699  private:
4700   // The size of the first plt entry size.
4701   static const int first_plt_entry_size = 32;
4702   // The size of the plt entry size.
4703   static const int plt_entry_size = 16;
4704   // The size of the plt tlsdesc entry size.
4705   static const int plt_tlsdesc_entry_size = 32;
4706   // Template for the first PLT entry.
4707   static const uint32_t first_plt_entry[first_plt_entry_size / 4];
4708   // Template for subsequent PLT entries.
4709   static const uint32_t plt_entry[plt_entry_size / 4];
4710   // The reserved TLSDESC entry in the PLT for an executable.
4711   static const uint32_t tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4];
4712 };
4713 
4714 // The first entry in the PLT for an executable.
4715 
4716 template<>
4717 const uint32_t
4718 Output_data_plt_aarch64_standard<32, false>::
4719     first_plt_entry[first_plt_entry_size / 4] =
4720 {
4721   0xa9bf7bf0,	/* stp x16, x30, [sp, #-16]!  */
4722   0x90000010,	/* adrp x16, PLT_GOT+0x8  */
4723   0xb9400A11,	/* ldr w17, [x16, #PLT_GOT+0x8]  */
4724   0x11002210,	/* add w16, w16,#PLT_GOT+0x8   */
4725   0xd61f0220,	/* br x17  */
4726   0xd503201f,	/* nop */
4727   0xd503201f,	/* nop */
4728   0xd503201f,	/* nop */
4729 };
4730 
4731 
4732 template<>
4733 const uint32_t
4734 Output_data_plt_aarch64_standard<32, true>::
4735     first_plt_entry[first_plt_entry_size / 4] =
4736 {
4737   0xa9bf7bf0,	/* stp x16, x30, [sp, #-16]!  */
4738   0x90000010,	/* adrp x16, PLT_GOT+0x8  */
4739   0xb9400A11,	/* ldr w17, [x16, #PLT_GOT+0x8]  */
4740   0x11002210,	/* add w16, w16,#PLT_GOT+0x8   */
4741   0xd61f0220,	/* br x17  */
4742   0xd503201f,	/* nop */
4743   0xd503201f,	/* nop */
4744   0xd503201f,	/* nop */
4745 };
4746 
4747 
4748 template<>
4749 const uint32_t
4750 Output_data_plt_aarch64_standard<64, false>::
4751     first_plt_entry[first_plt_entry_size / 4] =
4752 {
4753   0xa9bf7bf0,	/* stp x16, x30, [sp, #-16]!  */
4754   0x90000010,	/* adrp x16, PLT_GOT+16  */
4755   0xf9400A11,	/* ldr x17, [x16, #PLT_GOT+0x10]  */
4756   0x91004210,	/* add x16, x16,#PLT_GOT+0x10   */
4757   0xd61f0220,	/* br x17  */
4758   0xd503201f,	/* nop */
4759   0xd503201f,	/* nop */
4760   0xd503201f,	/* nop */
4761 };
4762 
4763 
4764 template<>
4765 const uint32_t
4766 Output_data_plt_aarch64_standard<64, true>::
4767     first_plt_entry[first_plt_entry_size / 4] =
4768 {
4769   0xa9bf7bf0,	/* stp x16, x30, [sp, #-16]!  */
4770   0x90000010,	/* adrp x16, PLT_GOT+16  */
4771   0xf9400A11,	/* ldr x17, [x16, #PLT_GOT+0x10]  */
4772   0x91004210,	/* add x16, x16,#PLT_GOT+0x10   */
4773   0xd61f0220,	/* br x17  */
4774   0xd503201f,	/* nop */
4775   0xd503201f,	/* nop */
4776   0xd503201f,	/* nop */
4777 };
4778 
4779 
4780 template<>
4781 const uint32_t
4782 Output_data_plt_aarch64_standard<32, false>::
4783     plt_entry[plt_entry_size / 4] =
4784 {
4785   0x90000010,	/* adrp x16, PLTGOT + n * 4  */
4786   0xb9400211,	/* ldr w17, [w16, PLTGOT + n * 4] */
4787   0x11000210,	/* add w16, w16, :lo12:PLTGOT + n * 4  */
4788   0xd61f0220,	/* br x17.  */
4789 };
4790 
4791 
4792 template<>
4793 const uint32_t
4794 Output_data_plt_aarch64_standard<32, true>::
4795     plt_entry[plt_entry_size / 4] =
4796 {
4797   0x90000010,	/* adrp x16, PLTGOT + n * 4  */
4798   0xb9400211,	/* ldr w17, [w16, PLTGOT + n * 4] */
4799   0x11000210,	/* add w16, w16, :lo12:PLTGOT + n * 4  */
4800   0xd61f0220,	/* br x17.  */
4801 };
4802 
4803 
4804 template<>
4805 const uint32_t
4806 Output_data_plt_aarch64_standard<64, false>::
4807     plt_entry[plt_entry_size / 4] =
4808 {
4809   0x90000010,	/* adrp x16, PLTGOT + n * 8  */
4810   0xf9400211,	/* ldr x17, [x16, PLTGOT + n * 8] */
4811   0x91000210,	/* add x16, x16, :lo12:PLTGOT + n * 8  */
4812   0xd61f0220,	/* br x17.  */
4813 };
4814 
4815 
4816 template<>
4817 const uint32_t
4818 Output_data_plt_aarch64_standard<64, true>::
4819     plt_entry[plt_entry_size / 4] =
4820 {
4821   0x90000010,	/* adrp x16, PLTGOT + n * 8  */
4822   0xf9400211,	/* ldr x17, [x16, PLTGOT + n * 8] */
4823   0x91000210,	/* add x16, x16, :lo12:PLTGOT + n * 8  */
4824   0xd61f0220,	/* br x17.  */
4825 };
4826 
4827 
4828 template<int size, bool big_endian>
4829 void
do_fill_first_plt_entry(unsigned char * pov,Address got_address,Address plt_address)4830 Output_data_plt_aarch64_standard<size, big_endian>::do_fill_first_plt_entry(
4831     unsigned char* pov,
4832     Address got_address,
4833     Address plt_address)
4834 {
4835   // PLT0 of the small PLT looks like this in ELF64 -
4836   // stp x16, x30, [sp, #-16]!	 	Save the reloc and lr on stack.
4837   // adrp x16, PLT_GOT + 16		Get the page base of the GOTPLT
4838   // ldr  x17, [x16, #:lo12:PLT_GOT+16]	Load the address of the
4839   // 					symbol resolver
4840   // add  x16, x16, #:lo12:PLT_GOT+16	Load the lo12 bits of the
4841   // 					GOTPLT entry for this.
4842   // br   x17
4843   // PLT0 will be slightly different in ELF32 due to different got entry
4844   // size.
4845   memcpy(pov, this->first_plt_entry, this->first_plt_entry_size);
4846   Address gotplt_2nd_ent = got_address + (size / 8) * 2;
4847 
4848   // Fill in the top 21 bits for this: ADRP x16, PLT_GOT + 8 * 2.
4849   // ADRP:  (PG(S+A)-PG(P)) >> 12) & 0x1fffff.
4850   // FIXME: This only works for 64bit
4851   AArch64_relocate_functions<size, big_endian>::adrp(pov + 4,
4852       gotplt_2nd_ent, plt_address + 4);
4853 
4854   // Fill in R_AARCH64_LDST8_LO12
4855   elfcpp::Swap<32, big_endian>::writeval(
4856       pov + 8,
4857       ((this->first_plt_entry[2] & 0xffc003ff)
4858        | ((gotplt_2nd_ent & 0xff8) << 7)));
4859 
4860   // Fill in R_AARCH64_ADD_ABS_LO12
4861   elfcpp::Swap<32, big_endian>::writeval(
4862       pov + 12,
4863       ((this->first_plt_entry[3] & 0xffc003ff)
4864        | ((gotplt_2nd_ent & 0xfff) << 10)));
4865 }
4866 
4867 
4868 // Subsequent entries in the PLT for an executable.
4869 // FIXME: This only works for 64bit
4870 
4871 template<int size, bool big_endian>
4872 void
do_fill_plt_entry(unsigned char * pov,Address got_address,Address plt_address,unsigned int got_offset,unsigned int plt_offset)4873 Output_data_plt_aarch64_standard<size, big_endian>::do_fill_plt_entry(
4874     unsigned char* pov,
4875     Address got_address,
4876     Address plt_address,
4877     unsigned int got_offset,
4878     unsigned int plt_offset)
4879 {
4880   memcpy(pov, this->plt_entry, this->plt_entry_size);
4881 
4882   Address gotplt_entry_address = got_address + got_offset;
4883   Address plt_entry_address = plt_address + plt_offset;
4884 
4885   // Fill in R_AARCH64_PCREL_ADR_HI21
4886   AArch64_relocate_functions<size, big_endian>::adrp(
4887       pov,
4888       gotplt_entry_address,
4889       plt_entry_address);
4890 
4891   // Fill in R_AARCH64_LDST64_ABS_LO12
4892   elfcpp::Swap<32, big_endian>::writeval(
4893       pov + 4,
4894       ((this->plt_entry[1] & 0xffc003ff)
4895        | ((gotplt_entry_address & 0xff8) << 7)));
4896 
4897   // Fill in R_AARCH64_ADD_ABS_LO12
4898   elfcpp::Swap<32, big_endian>::writeval(
4899       pov + 8,
4900       ((this->plt_entry[2] & 0xffc003ff)
4901        | ((gotplt_entry_address & 0xfff) <<10)));
4902 
4903 }
4904 
4905 
4906 template<>
4907 const uint32_t
4908 Output_data_plt_aarch64_standard<32, false>::
4909     tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4910 {
4911   0xa9bf0fe2,	/* stp x2, x3, [sp, #-16]!  */
4912   0x90000002,	/* adrp x2, 0 */
4913   0x90000003,	/* adrp x3, 0 */
4914   0xb9400042,	/* ldr w2, [w2, #0] */
4915   0x11000063,	/* add w3, w3, 0 */
4916   0xd61f0040,	/* br x2 */
4917   0xd503201f,	/* nop */
4918   0xd503201f,	/* nop */
4919 };
4920 
4921 template<>
4922 const uint32_t
4923 Output_data_plt_aarch64_standard<32, true>::
4924     tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4925 {
4926   0xa9bf0fe2,	/* stp x2, x3, [sp, #-16]!  */
4927   0x90000002,	/* adrp x2, 0 */
4928   0x90000003,	/* adrp x3, 0 */
4929   0xb9400042,	/* ldr w2, [w2, #0] */
4930   0x11000063,	/* add w3, w3, 0 */
4931   0xd61f0040,	/* br x2 */
4932   0xd503201f,	/* nop */
4933   0xd503201f,	/* nop */
4934 };
4935 
4936 template<>
4937 const uint32_t
4938 Output_data_plt_aarch64_standard<64, false>::
4939     tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4940 {
4941   0xa9bf0fe2,	/* stp x2, x3, [sp, #-16]!  */
4942   0x90000002,	/* adrp x2, 0 */
4943   0x90000003,	/* adrp x3, 0 */
4944   0xf9400042,	/* ldr x2, [x2, #0] */
4945   0x91000063,	/* add x3, x3, 0 */
4946   0xd61f0040,	/* br x2 */
4947   0xd503201f,	/* nop */
4948   0xd503201f,	/* nop */
4949 };
4950 
4951 template<>
4952 const uint32_t
4953 Output_data_plt_aarch64_standard<64, true>::
4954     tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4955 {
4956   0xa9bf0fe2,	/* stp x2, x3, [sp, #-16]!  */
4957   0x90000002,	/* adrp x2, 0 */
4958   0x90000003,	/* adrp x3, 0 */
4959   0xf9400042,	/* ldr x2, [x2, #0] */
4960   0x91000063,	/* add x3, x3, 0 */
4961   0xd61f0040,	/* br x2 */
4962   0xd503201f,	/* nop */
4963   0xd503201f,	/* nop */
4964 };
4965 
4966 template<int size, bool big_endian>
4967 void
do_fill_tlsdesc_entry(unsigned char * pov,Address gotplt_address,Address plt_address,Address got_base,unsigned int tlsdesc_got_offset,unsigned int plt_offset)4968 Output_data_plt_aarch64_standard<size, big_endian>::do_fill_tlsdesc_entry(
4969     unsigned char* pov,
4970     Address gotplt_address,
4971     Address plt_address,
4972     Address got_base,
4973     unsigned int tlsdesc_got_offset,
4974     unsigned int plt_offset)
4975 {
4976   memcpy(pov, tlsdesc_plt_entry, plt_tlsdesc_entry_size);
4977 
4978   // move DT_TLSDESC_GOT address into x2
4979   // move .got.plt address into x3
4980   Address tlsdesc_got_entry = got_base + tlsdesc_got_offset;
4981   Address plt_entry_address = plt_address + plt_offset;
4982 
4983   // R_AARCH64_ADR_PREL_PG_HI21
4984   AArch64_relocate_functions<size, big_endian>::adrp(
4985       pov + 4,
4986       tlsdesc_got_entry,
4987       plt_entry_address + 4);
4988 
4989   // R_AARCH64_ADR_PREL_PG_HI21
4990   AArch64_relocate_functions<size, big_endian>::adrp(
4991       pov + 8,
4992       gotplt_address,
4993       plt_entry_address + 8);
4994 
4995   // R_AARCH64_LDST64_ABS_LO12
4996   elfcpp::Swap<32, big_endian>::writeval(
4997       pov + 12,
4998       ((this->tlsdesc_plt_entry[3] & 0xffc003ff)
4999        | ((tlsdesc_got_entry & 0xff8) << 7)));
5000 
5001   // R_AARCH64_ADD_ABS_LO12
5002   elfcpp::Swap<32, big_endian>::writeval(
5003       pov + 16,
5004       ((this->tlsdesc_plt_entry[4] & 0xffc003ff)
5005        | ((gotplt_address & 0xfff) << 10)));
5006 }
5007 
5008 // Write out the PLT.  This uses the hand-coded instructions above,
5009 // and adjusts them as needed.  This is specified by the AMD64 ABI.
5010 
5011 template<int size, bool big_endian>
5012 void
do_write(Output_file * of)5013 Output_data_plt_aarch64<size, big_endian>::do_write(Output_file* of)
5014 {
5015   const off_t offset = this->offset();
5016   const section_size_type oview_size =
5017     convert_to_section_size_type(this->data_size());
5018   unsigned char* const oview = of->get_output_view(offset, oview_size);
5019 
5020   const off_t got_file_offset = this->got_plt_->offset();
5021   gold_assert(got_file_offset + this->got_plt_->data_size()
5022 	      == this->got_irelative_->offset());
5023 
5024   const section_size_type got_size =
5025       convert_to_section_size_type(this->got_plt_->data_size()
5026 				   + this->got_irelative_->data_size());
5027   unsigned char* const got_view = of->get_output_view(got_file_offset,
5028 						      got_size);
5029 
5030   unsigned char* pov = oview;
5031 
5032   // The base address of the .plt section.
5033   typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
5034   // The base address of the PLT portion of the .got section.
5035   typename elfcpp::Elf_types<size>::Elf_Addr gotplt_address
5036       = this->got_plt_->address();
5037 
5038   this->fill_first_plt_entry(pov, gotplt_address, plt_address);
5039   pov += this->first_plt_entry_offset();
5040 
5041   // The first three entries in .got.plt are reserved.
5042   unsigned char* got_pov = got_view;
5043   memset(got_pov, 0, size / 8 * AARCH64_GOTPLT_RESERVE_COUNT);
5044   got_pov += (size / 8) * AARCH64_GOTPLT_RESERVE_COUNT;
5045 
5046   unsigned int plt_offset = this->first_plt_entry_offset();
5047   unsigned int got_offset = (size / 8) * AARCH64_GOTPLT_RESERVE_COUNT;
5048   const unsigned int count = this->count_ + this->irelative_count_;
5049   for (unsigned int plt_index = 0;
5050        plt_index < count;
5051        ++plt_index,
5052 	 pov += this->get_plt_entry_size(),
5053 	 got_pov += size / 8,
5054 	 plt_offset += this->get_plt_entry_size(),
5055 	 got_offset += size / 8)
5056     {
5057       // Set and adjust the PLT entry itself.
5058       this->fill_plt_entry(pov, gotplt_address, plt_address,
5059 			   got_offset, plt_offset);
5060 
5061       // Set the entry in the GOT, which points to plt0.
5062       elfcpp::Swap<size, big_endian>::writeval(got_pov, plt_address);
5063     }
5064 
5065   if (this->has_tlsdesc_entry())
5066     {
5067       // Set and adjust the reserved TLSDESC PLT entry.
5068       unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
5069       // The base address of the .base section.
5070       typename elfcpp::Elf_types<size>::Elf_Addr got_base =
5071 	  this->got_->address();
5072       this->fill_tlsdesc_entry(pov, gotplt_address, plt_address, got_base,
5073 			       tlsdesc_got_offset, plt_offset);
5074       pov += this->get_plt_tlsdesc_entry_size();
5075     }
5076 
5077   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
5078   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
5079 
5080   of->write_output_view(offset, oview_size, oview);
5081   of->write_output_view(got_file_offset, got_size, got_view);
5082 }
5083 
5084 // Telling how to update the immediate field of an instruction.
5085 struct AArch64_howto
5086 {
5087   // The immediate field mask.
5088   elfcpp::Elf_Xword dst_mask;
5089 
5090   // The offset to apply relocation immediate
5091   int doffset;
5092 
5093   // The second part offset, if the immediate field has two parts.
5094   // -1 if the immediate field has only one part.
5095   int doffset2;
5096 };
5097 
5098 static const AArch64_howto aarch64_howto[AArch64_reloc_property::INST_NUM] =
5099 {
5100   {0, -1, -1},		// DATA
5101   {0x1fffe0, 5, -1},	// MOVW  [20:5]-imm16
5102   {0xffffe0, 5, -1},	// LD    [23:5]-imm19
5103   {0x60ffffe0, 29, 5},	// ADR   [30:29]-immlo  [23:5]-immhi
5104   {0x60ffffe0, 29, 5},	// ADRP  [30:29]-immlo  [23:5]-immhi
5105   {0x3ffc00, 10, -1},	// ADD   [21:10]-imm12
5106   {0x3ffc00, 10, -1},	// LDST  [21:10]-imm12
5107   {0x7ffe0, 5, -1},	// TBZNZ [18:5]-imm14
5108   {0xffffe0, 5, -1},	// CONDB [23:5]-imm19
5109   {0x3ffffff, 0, -1},	// B     [25:0]-imm26
5110   {0x3ffffff, 0, -1},	// CALL  [25:0]-imm26
5111 };
5112 
5113 // AArch64 relocate function class
5114 
5115 template<int size, bool big_endian>
5116 class AArch64_relocate_functions
5117 {
5118  public:
5119   typedef enum
5120   {
5121     STATUS_OKAY,	// No error during relocation.
5122     STATUS_OVERFLOW,	// Relocation overflow.
5123     STATUS_BAD_RELOC,	// Relocation cannot be applied.
5124   } Status;
5125 
5126   typedef AArch64_relocate_functions<size, big_endian> This;
5127   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
5128   typedef Relocate_info<size, big_endian> The_relocate_info;
5129   typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
5130   typedef Reloc_stub<size, big_endian> The_reloc_stub;
5131   typedef Stub_table<size, big_endian> The_stub_table;
5132   typedef elfcpp::Rela<size, big_endian> The_rela;
5133   typedef typename elfcpp::Swap<size, big_endian>::Valtype AArch64_valtype;
5134 
5135   // Return the page address of the address.
5136   // Page(address) = address & ~0xFFF
5137 
5138   static inline AArch64_valtype
Page(Address address)5139   Page(Address address)
5140   {
5141     return (address & (~static_cast<Address>(0xFFF)));
5142   }
5143 
5144  private:
5145   // Update instruction (pointed by view) with selected bits (immed).
5146   // val = (val & ~dst_mask) | (immed << doffset)
5147 
5148   template<int valsize>
5149   static inline void
update_view(unsigned char * view,AArch64_valtype immed,elfcpp::Elf_Xword doffset,elfcpp::Elf_Xword dst_mask)5150   update_view(unsigned char* view,
5151 	      AArch64_valtype immed,
5152 	      elfcpp::Elf_Xword doffset,
5153 	      elfcpp::Elf_Xword dst_mask)
5154   {
5155     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
5156     Valtype* wv = reinterpret_cast<Valtype*>(view);
5157     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
5158 
5159     // Clear immediate fields.
5160     val &= ~dst_mask;
5161     elfcpp::Swap<valsize, big_endian>::writeval(wv,
5162       static_cast<Valtype>(val | (immed << doffset)));
5163   }
5164 
5165   // Update two parts of an instruction (pointed by view) with selected
5166   // bits (immed1 and immed2).
5167   // val = (val & ~dst_mask) | (immed1 << doffset1) | (immed2 << doffset2)
5168 
5169   template<int valsize>
5170   static inline void
update_view_two_parts(unsigned char * view,AArch64_valtype immed1,AArch64_valtype immed2,elfcpp::Elf_Xword doffset1,elfcpp::Elf_Xword doffset2,elfcpp::Elf_Xword dst_mask)5171   update_view_two_parts(
5172     unsigned char* view,
5173     AArch64_valtype immed1,
5174     AArch64_valtype immed2,
5175     elfcpp::Elf_Xword doffset1,
5176     elfcpp::Elf_Xword doffset2,
5177     elfcpp::Elf_Xword dst_mask)
5178   {
5179     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
5180     Valtype* wv = reinterpret_cast<Valtype*>(view);
5181     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
5182     val &= ~dst_mask;
5183     elfcpp::Swap<valsize, big_endian>::writeval(wv,
5184       static_cast<Valtype>(val | (immed1 << doffset1) |
5185 			   (immed2 << doffset2)));
5186   }
5187 
5188   // Update adr or adrp instruction with immed.
5189   // In adr and adrp: [30:29] immlo   [23:5] immhi
5190 
5191   static inline void
update_adr(unsigned char * view,AArch64_valtype immed)5192   update_adr(unsigned char* view, AArch64_valtype immed)
5193   {
5194     elfcpp::Elf_Xword dst_mask = (0x3 << 29) | (0x7ffff << 5);
5195     This::template update_view_two_parts<32>(
5196       view,
5197       immed & 0x3,
5198       (immed & 0x1ffffc) >> 2,
5199       29,
5200       5,
5201       dst_mask);
5202   }
5203 
5204   // Update movz/movn instruction with bits immed.
5205   // Set instruction to movz if is_movz is true, otherwise set instruction
5206   // to movn.
5207 
5208   static inline void
update_movnz(unsigned char * view,AArch64_valtype immed,bool is_movz)5209   update_movnz(unsigned char* view,
5210 	       AArch64_valtype immed,
5211 	       bool is_movz)
5212   {
5213     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5214     Valtype* wv = reinterpret_cast<Valtype*>(view);
5215     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
5216 
5217     const elfcpp::Elf_Xword doffset =
5218 	aarch64_howto[AArch64_reloc_property::INST_MOVW].doffset;
5219     const elfcpp::Elf_Xword dst_mask =
5220 	aarch64_howto[AArch64_reloc_property::INST_MOVW].dst_mask;
5221 
5222     // Clear immediate fields and opc code.
5223     val &= ~(dst_mask | (0x3 << 29));
5224 
5225     // Set instruction to movz or movn.
5226     // movz: [30:29] is 10   movn: [30:29] is 00
5227     if (is_movz)
5228       val |= (0x2 << 29);
5229 
5230     elfcpp::Swap<32, big_endian>::writeval(wv,
5231       static_cast<Valtype>(val | (immed << doffset)));
5232   }
5233 
5234  public:
5235 
5236   // Update selected bits in text.
5237 
5238   template<int valsize>
5239   static inline typename This::Status
reloc_common(unsigned char * view,Address x,const AArch64_reloc_property * reloc_property)5240   reloc_common(unsigned char* view, Address x,
5241 		const AArch64_reloc_property* reloc_property)
5242   {
5243     // Select bits from X.
5244     Address immed = reloc_property->select_x_value(x);
5245 
5246     // Update view.
5247     const AArch64_reloc_property::Reloc_inst inst =
5248       reloc_property->reloc_inst();
5249     // If it is a data relocation or instruction has 2 parts of immediate
5250     // fields, you should not call pcrela_general.
5251     gold_assert(aarch64_howto[inst].doffset2 == -1 &&
5252 		aarch64_howto[inst].doffset != -1);
5253     This::template update_view<valsize>(view, immed,
5254 					aarch64_howto[inst].doffset,
5255 					aarch64_howto[inst].dst_mask);
5256 
5257     // Do check overflow or alignment if needed.
5258     return (reloc_property->checkup_x_value(x)
5259 	    ? This::STATUS_OKAY
5260 	    : This::STATUS_OVERFLOW);
5261   }
5262 
5263   // Construct a B insn. Note, although we group it here with other relocation
5264   // operation, there is actually no 'relocation' involved here.
5265   static inline void
construct_b(unsigned char * view,unsigned int branch_offset)5266   construct_b(unsigned char* view, unsigned int branch_offset)
5267   {
5268     update_view_two_parts<32>(view, 0x05, (branch_offset >> 2),
5269 			      26, 0, 0xffffffff);
5270   }
5271 
5272   // Do a simple rela relocation at unaligned addresses.
5273 
5274   template<int valsize>
5275   static inline typename This::Status
rela_ua(unsigned char * view,const Sized_relobj_file<size,big_endian> * object,const Symbol_value<size> * psymval,AArch64_valtype addend,const AArch64_reloc_property * reloc_property)5276   rela_ua(unsigned char* view,
5277 	  const Sized_relobj_file<size, big_endian>* object,
5278 	  const Symbol_value<size>* psymval,
5279 	  AArch64_valtype addend,
5280 	  const AArch64_reloc_property* reloc_property)
5281   {
5282     typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
5283       Valtype;
5284     typename elfcpp::Elf_types<size>::Elf_Addr x =
5285 	psymval->value(object, addend);
5286     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view,
5287       static_cast<Valtype>(x));
5288     return (reloc_property->checkup_x_value(x)
5289 	    ? This::STATUS_OKAY
5290 	    : This::STATUS_OVERFLOW);
5291   }
5292 
5293   // Do a simple pc-relative relocation at unaligned addresses.
5294 
5295   template<int valsize>
5296   static inline typename This::Status
pcrela_ua(unsigned char * view,const Sized_relobj_file<size,big_endian> * object,const Symbol_value<size> * psymval,AArch64_valtype addend,Address address,const AArch64_reloc_property * reloc_property)5297   pcrela_ua(unsigned char* view,
5298 	    const Sized_relobj_file<size, big_endian>* object,
5299 	    const Symbol_value<size>* psymval,
5300 	    AArch64_valtype addend,
5301 	    Address address,
5302 	    const AArch64_reloc_property* reloc_property)
5303   {
5304     typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
5305       Valtype;
5306     Address x = psymval->value(object, addend) - address;
5307     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view,
5308       static_cast<Valtype>(x));
5309     return (reloc_property->checkup_x_value(x)
5310 	    ? This::STATUS_OKAY
5311 	    : This::STATUS_OVERFLOW);
5312   }
5313 
5314   // Do a simple rela relocation at aligned addresses.
5315 
5316   template<int valsize>
5317   static inline typename This::Status
rela(unsigned char * view,const Sized_relobj_file<size,big_endian> * object,const Symbol_value<size> * psymval,AArch64_valtype addend,const AArch64_reloc_property * reloc_property)5318   rela(
5319     unsigned char* view,
5320     const Sized_relobj_file<size, big_endian>* object,
5321     const Symbol_value<size>* psymval,
5322     AArch64_valtype addend,
5323     const AArch64_reloc_property* reloc_property)
5324   {
5325     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
5326     Valtype* wv = reinterpret_cast<Valtype*>(view);
5327     Address x = psymval->value(object, addend);
5328     elfcpp::Swap<valsize, big_endian>::writeval(wv,static_cast<Valtype>(x));
5329     return (reloc_property->checkup_x_value(x)
5330 	    ? This::STATUS_OKAY
5331 	    : This::STATUS_OVERFLOW);
5332   }
5333 
5334   // Do relocate. Update selected bits in text.
5335   // new_val = (val & ~dst_mask) | (immed << doffset)
5336 
5337   template<int valsize>
5338   static inline typename This::Status
rela_general(unsigned char * view,const Sized_relobj_file<size,big_endian> * object,const Symbol_value<size> * psymval,AArch64_valtype addend,const AArch64_reloc_property * reloc_property)5339   rela_general(unsigned char* view,
5340 	       const Sized_relobj_file<size, big_endian>* object,
5341 	       const Symbol_value<size>* psymval,
5342 	       AArch64_valtype addend,
5343 	       const AArch64_reloc_property* reloc_property)
5344   {
5345     // Calculate relocation.
5346     Address x = psymval->value(object, addend);
5347     return This::template reloc_common<valsize>(view, x, reloc_property);
5348   }
5349 
5350   // Do relocate. Update selected bits in text.
5351   // new val = (val & ~dst_mask) | (immed << doffset)
5352 
5353   template<int valsize>
5354   static inline typename This::Status
rela_general(unsigned char * view,AArch64_valtype s,AArch64_valtype addend,const AArch64_reloc_property * reloc_property)5355   rela_general(
5356     unsigned char* view,
5357     AArch64_valtype s,
5358     AArch64_valtype addend,
5359     const AArch64_reloc_property* reloc_property)
5360   {
5361     // Calculate relocation.
5362     Address x = s + addend;
5363     return This::template reloc_common<valsize>(view, x, reloc_property);
5364   }
5365 
5366   // Do address relative relocate. Update selected bits in text.
5367   // new val = (val & ~dst_mask) | (immed << doffset)
5368 
5369   template<int valsize>
5370   static inline typename This::Status
pcrela_general(unsigned char * view,const Sized_relobj_file<size,big_endian> * object,const Symbol_value<size> * psymval,AArch64_valtype addend,Address address,const AArch64_reloc_property * reloc_property)5371   pcrela_general(
5372     unsigned char* view,
5373     const Sized_relobj_file<size, big_endian>* object,
5374     const Symbol_value<size>* psymval,
5375     AArch64_valtype addend,
5376     Address address,
5377     const AArch64_reloc_property* reloc_property)
5378   {
5379     // Calculate relocation.
5380     Address x = psymval->value(object, addend) - address;
5381     return This::template reloc_common<valsize>(view, x, reloc_property);
5382   }
5383 
5384 
5385   // Calculate (S + A) - address, update adr instruction.
5386 
5387   static inline typename This::Status
adr(unsigned char * view,const Sized_relobj_file<size,big_endian> * object,const Symbol_value<size> * psymval,Address addend,Address address,const AArch64_reloc_property *)5388   adr(unsigned char* view,
5389       const Sized_relobj_file<size, big_endian>* object,
5390       const Symbol_value<size>* psymval,
5391       Address addend,
5392       Address address,
5393       const AArch64_reloc_property* /* reloc_property */)
5394   {
5395     AArch64_valtype x = psymval->value(object, addend) - address;
5396     // Pick bits [20:0] of X.
5397     AArch64_valtype immed = x & 0x1fffff;
5398     update_adr(view, immed);
5399     // Check -2^20 <= X < 2^20
5400     return (size == 64 && Bits<21>::has_overflow((x))
5401 	    ? This::STATUS_OVERFLOW
5402 	    : This::STATUS_OKAY);
5403   }
5404 
5405   // Calculate PG(S+A) - PG(address), update adrp instruction.
5406   // R_AARCH64_ADR_PREL_PG_HI21
5407 
5408   static inline typename This::Status
adrp(unsigned char * view,Address sa,Address address)5409   adrp(
5410     unsigned char* view,
5411     Address sa,
5412     Address address)
5413   {
5414     AArch64_valtype x = This::Page(sa) - This::Page(address);
5415     // Pick [32:12] of X.
5416     AArch64_valtype immed = (x >> 12) & 0x1fffff;
5417     update_adr(view, immed);
5418     // Check -2^32 <= X < 2^32
5419     return (size == 64 && Bits<33>::has_overflow((x))
5420 	    ? This::STATUS_OVERFLOW
5421 	    : This::STATUS_OKAY);
5422   }
5423 
5424   // Calculate PG(S+A) - PG(address), update adrp instruction.
5425   // R_AARCH64_ADR_PREL_PG_HI21
5426 
5427   static inline typename This::Status
adrp(unsigned char * view,const Sized_relobj_file<size,big_endian> * object,const Symbol_value<size> * psymval,Address addend,Address address,const AArch64_reloc_property * reloc_property)5428   adrp(unsigned char* view,
5429        const Sized_relobj_file<size, big_endian>* object,
5430        const Symbol_value<size>* psymval,
5431        Address addend,
5432        Address address,
5433        const AArch64_reloc_property* reloc_property)
5434   {
5435     Address sa = psymval->value(object, addend);
5436     AArch64_valtype x = This::Page(sa) - This::Page(address);
5437     // Pick [32:12] of X.
5438     AArch64_valtype immed = (x >> 12) & 0x1fffff;
5439     update_adr(view, immed);
5440     return (reloc_property->checkup_x_value(x)
5441 	    ? This::STATUS_OKAY
5442 	    : This::STATUS_OVERFLOW);
5443   }
5444 
5445   // Update mov[n/z] instruction. Check overflow if needed.
5446   // If X >=0, set the instruction to movz and its immediate value to the
5447   // selected bits S.
5448   // If X < 0, set the instruction to movn and its immediate value to
5449   // NOT (selected bits of).
5450 
5451   static inline typename This::Status
movnz(unsigned char * view,AArch64_valtype x,const AArch64_reloc_property * reloc_property)5452   movnz(unsigned char* view,
5453 	AArch64_valtype x,
5454 	const AArch64_reloc_property* reloc_property)
5455   {
5456     // Select bits from X.
5457     Address immed;
5458     bool is_movz;
5459     typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedW;
5460     if (static_cast<SignedW>(x) >= 0)
5461       {
5462 	immed = reloc_property->select_x_value(x);
5463         is_movz = true;
5464       }
5465     else
5466       {
5467 	immed = reloc_property->select_x_value(~x);;
5468 	is_movz = false;
5469       }
5470 
5471     // Update movnz instruction.
5472     update_movnz(view, immed, is_movz);
5473 
5474     // Do check overflow or alignment if needed.
5475     return (reloc_property->checkup_x_value(x)
5476 	    ? This::STATUS_OKAY
5477 	    : This::STATUS_OVERFLOW);
5478   }
5479 
5480   static inline bool
5481   maybe_apply_stub(unsigned int,
5482 		   const The_relocate_info*,
5483 		   const The_rela&,
5484 		   unsigned char*,
5485 		   Address,
5486 		   const Sized_symbol<size>*,
5487 		   const Symbol_value<size>*,
5488 		   const Sized_relobj_file<size, big_endian>*,
5489 		   section_size_type);
5490 
5491 };  // End of AArch64_relocate_functions
5492 
5493 
5494 // For a certain relocation type (usually jump/branch), test to see if the
5495 // destination needs a stub to fulfil. If so, re-route the destination of the
5496 // original instruction to the stub, note, at this time, the stub has already
5497 // been generated.
5498 
5499 template<int size, bool big_endian>
5500 bool
5501 AArch64_relocate_functions<size, big_endian>::
maybe_apply_stub(unsigned int r_type,const The_relocate_info * relinfo,const The_rela & rela,unsigned char * view,Address address,const Sized_symbol<size> * gsym,const Symbol_value<size> * psymval,const Sized_relobj_file<size,big_endian> * object,section_size_type current_group_size)5502 maybe_apply_stub(unsigned int r_type,
5503 		 const The_relocate_info* relinfo,
5504 		 const The_rela& rela,
5505 		 unsigned char* view,
5506 		 Address address,
5507 		 const Sized_symbol<size>* gsym,
5508 		 const Symbol_value<size>* psymval,
5509 		 const Sized_relobj_file<size, big_endian>* object,
5510 		 section_size_type current_group_size)
5511 {
5512   if (parameters->options().relocatable())
5513     return false;
5514 
5515   typename elfcpp::Elf_types<size>::Elf_Swxword addend = rela.get_r_addend();
5516   Address branch_target = psymval->value(object, 0) + addend;
5517   int stub_type =
5518     The_reloc_stub::stub_type_for_reloc(r_type, address, branch_target);
5519   if (stub_type == ST_NONE)
5520     return false;
5521 
5522   const The_aarch64_relobj* aarch64_relobj =
5523       static_cast<const The_aarch64_relobj*>(object);
5524   const AArch64_reloc_property* arp =
5525     aarch64_reloc_property_table->get_reloc_property(r_type);
5526   gold_assert(arp != NULL);
5527 
5528   // We don't create stubs for undefined symbols, but do for weak.
5529   if (gsym
5530       && !gsym->use_plt_offset(arp->reference_flags())
5531       && gsym->is_undefined())
5532     {
5533       gold_debug(DEBUG_TARGET,
5534 		 "stub: looking for a stub for undefined symbol %s in file %s",
5535 		 gsym->name(), aarch64_relobj->name().c_str());
5536       return false;
5537     }
5538 
5539   The_stub_table* stub_table = aarch64_relobj->stub_table(relinfo->data_shndx);
5540   gold_assert(stub_table != NULL);
5541 
5542   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5543   typename The_reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
5544   The_reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
5545   gold_assert(stub != NULL);
5546 
5547   Address new_branch_target = stub_table->address() + stub->offset();
5548   typename elfcpp::Swap<size, big_endian>::Valtype branch_offset =
5549       new_branch_target - address;
5550   typename This::Status status = This::template
5551       rela_general<32>(view, branch_offset, 0, arp);
5552   if (status != This::STATUS_OKAY)
5553     gold_error(_("Stub is too far away, try a smaller value "
5554 		 "for '--stub-group-size'. The current value is 0x%lx."),
5555 	       static_cast<unsigned long>(current_group_size));
5556   return true;
5557 }
5558 
5559 
5560 // Group input sections for stub generation.
5561 //
5562 // We group input sections in an output section so that the total size,
5563 // including any padding space due to alignment is smaller than GROUP_SIZE
5564 // unless the only input section in group is bigger than GROUP_SIZE already.
5565 // Then an ARM stub table is created to follow the last input section
5566 // in group.  For each group an ARM stub table is created an is placed
5567 // after the last group.  If STUB_ALWAYS_AFTER_BRANCH is false, we further
5568 // extend the group after the stub table.
5569 
5570 template<int size, bool big_endian>
5571 void
group_sections(Layout * layout,section_size_type group_size,bool stubs_always_after_branch,const Task * task)5572 Target_aarch64<size, big_endian>::group_sections(
5573     Layout* layout,
5574     section_size_type group_size,
5575     bool stubs_always_after_branch,
5576     const Task* task)
5577 {
5578   // Group input sections and insert stub table
5579   Layout::Section_list section_list;
5580   layout->get_executable_sections(&section_list);
5581   for (Layout::Section_list::const_iterator p = section_list.begin();
5582        p != section_list.end();
5583        ++p)
5584     {
5585       AArch64_output_section<size, big_endian>* output_section =
5586 	  static_cast<AArch64_output_section<size, big_endian>*>(*p);
5587       output_section->group_sections(group_size, stubs_always_after_branch,
5588 				     this, task);
5589     }
5590 }
5591 
5592 
5593 // Find the AArch64_input_section object corresponding to the SHNDX-th input
5594 // section of RELOBJ.
5595 
5596 template<int size, bool big_endian>
5597 AArch64_input_section<size, big_endian>*
find_aarch64_input_section(Relobj * relobj,unsigned int shndx) const5598 Target_aarch64<size, big_endian>::find_aarch64_input_section(
5599     Relobj* relobj, unsigned int shndx) const
5600 {
5601   Section_id sid(relobj, shndx);
5602   typename AArch64_input_section_map::const_iterator p =
5603     this->aarch64_input_section_map_.find(sid);
5604   return (p != this->aarch64_input_section_map_.end()) ? p->second : NULL;
5605 }
5606 
5607 
5608 // Make a new AArch64_input_section object.
5609 
5610 template<int size, bool big_endian>
5611 AArch64_input_section<size, big_endian>*
new_aarch64_input_section(Relobj * relobj,unsigned int shndx)5612 Target_aarch64<size, big_endian>::new_aarch64_input_section(
5613     Relobj* relobj, unsigned int shndx)
5614 {
5615   Section_id sid(relobj, shndx);
5616 
5617   AArch64_input_section<size, big_endian>* input_section =
5618       new AArch64_input_section<size, big_endian>(relobj, shndx);
5619   input_section->init();
5620 
5621   // Register new AArch64_input_section in map for look-up.
5622   std::pair<typename AArch64_input_section_map::iterator,bool> ins =
5623       this->aarch64_input_section_map_.insert(
5624 	  std::make_pair(sid, input_section));
5625 
5626   // Make sure that it we have not created another AArch64_input_section
5627   // for this input section already.
5628   gold_assert(ins.second);
5629 
5630   return input_section;
5631 }
5632 
5633 
5634 // Relaxation hook.  This is where we do stub generation.
5635 
5636 template<int size, bool big_endian>
5637 bool
do_relax(int pass,const Input_objects * input_objects,Symbol_table * symtab,Layout * layout,const Task * task)5638 Target_aarch64<size, big_endian>::do_relax(
5639     int pass,
5640     const Input_objects* input_objects,
5641     Symbol_table* symtab,
5642     Layout* layout ,
5643     const Task* task)
5644 {
5645   gold_assert(!parameters->options().relocatable());
5646   if (pass == 1)
5647     {
5648       // We don't handle negative stub_group_size right now.
5649       this->stub_group_size_ = abs(parameters->options().stub_group_size());
5650       if (this->stub_group_size_ == 1)
5651 	{
5652 	  // Leave room for 4096 4-byte stub entries. If we exceed that, then we
5653 	  // will fail to link.  The user will have to relink with an explicit
5654 	  // group size option.
5655 	  this->stub_group_size_ = The_reloc_stub::MAX_BRANCH_OFFSET -
5656 				   4096 * 4;
5657 	}
5658       group_sections(layout, this->stub_group_size_, true, task);
5659     }
5660   else
5661     {
5662       // If this is not the first pass, addresses and file offsets have
5663       // been reset at this point, set them here.
5664       for (Stub_table_iterator sp = this->stub_tables_.begin();
5665 	   sp != this->stub_tables_.end(); ++sp)
5666 	{
5667 	  The_stub_table* stt = *sp;
5668 	  The_aarch64_input_section* owner = stt->owner();
5669 	  off_t off = align_address(owner->original_size(),
5670 				    stt->addralign());
5671 	  stt->set_address_and_file_offset(owner->address() + off,
5672 					   owner->offset() + off);
5673 	}
5674     }
5675 
5676   // Scan relocs for relocation stubs
5677   for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
5678        op != input_objects->relobj_end();
5679        ++op)
5680     {
5681       The_aarch64_relobj* aarch64_relobj =
5682 	  static_cast<The_aarch64_relobj*>(*op);
5683       // Lock the object so we can read from it.  This is only called
5684       // single-threaded from Layout::finalize, so it is OK to lock.
5685       Task_lock_obj<Object> tl(task, aarch64_relobj);
5686       aarch64_relobj->scan_sections_for_stubs(this, symtab, layout);
5687     }
5688 
5689   bool any_stub_table_changed = false;
5690   for (Stub_table_iterator siter = this->stub_tables_.begin();
5691        siter != this->stub_tables_.end() && !any_stub_table_changed; ++siter)
5692     {
5693       The_stub_table* stub_table = *siter;
5694       if (stub_table->update_data_size_changed_p())
5695 	{
5696 	  The_aarch64_input_section* owner = stub_table->owner();
5697 	  uint64_t address = owner->address();
5698 	  off_t offset = owner->offset();
5699 	  owner->reset_address_and_file_offset();
5700 	  owner->set_address_and_file_offset(address, offset);
5701 
5702 	  any_stub_table_changed = true;
5703 	}
5704     }
5705 
5706   // Do not continue relaxation.
5707   bool continue_relaxation = any_stub_table_changed;
5708   if (!continue_relaxation)
5709     for (Stub_table_iterator sp = this->stub_tables_.begin();
5710 	 (sp != this->stub_tables_.end());
5711 	 ++sp)
5712       (*sp)->finalize_stubs();
5713 
5714   return continue_relaxation;
5715 }
5716 
5717 
5718 // Make a new Stub_table.
5719 
5720 template<int size, bool big_endian>
5721 Stub_table<size, big_endian>*
new_stub_table(AArch64_input_section<size,big_endian> * owner)5722 Target_aarch64<size, big_endian>::new_stub_table(
5723     AArch64_input_section<size, big_endian>* owner)
5724 {
5725   Stub_table<size, big_endian>* stub_table =
5726       new Stub_table<size, big_endian>(owner);
5727   stub_table->set_address(align_address(
5728       owner->address() + owner->data_size(), 8));
5729   stub_table->set_file_offset(owner->offset() + owner->data_size());
5730   stub_table->finalize_data_size();
5731 
5732   this->stub_tables_.push_back(stub_table);
5733 
5734   return stub_table;
5735 }
5736 
5737 
5738 template<int size, bool big_endian>
5739 uint64_t
do_reloc_addend(void * arg,unsigned int r_type,uint64_t) const5740 Target_aarch64<size, big_endian>::do_reloc_addend(
5741     void* arg, unsigned int r_type, uint64_t) const
5742 {
5743   gold_assert(r_type == elfcpp::R_AARCH64_TLSDESC);
5744   uintptr_t intarg = reinterpret_cast<uintptr_t>(arg);
5745   gold_assert(intarg < this->tlsdesc_reloc_info_.size());
5746   const Tlsdesc_info& ti(this->tlsdesc_reloc_info_[intarg]);
5747   const Symbol_value<size>* psymval = ti.object->local_symbol(ti.r_sym);
5748   gold_assert(psymval->is_tls_symbol());
5749   // The value of a TLS symbol is the offset in the TLS segment.
5750   return psymval->value(ti.object, 0);
5751 }
5752 
5753 // Return the number of entries in the PLT.
5754 
5755 template<int size, bool big_endian>
5756 unsigned int
plt_entry_count() const5757 Target_aarch64<size, big_endian>::plt_entry_count() const
5758 {
5759   if (this->plt_ == NULL)
5760     return 0;
5761   return this->plt_->entry_count();
5762 }
5763 
5764 // Return the offset of the first non-reserved PLT entry.
5765 
5766 template<int size, bool big_endian>
5767 unsigned int
first_plt_entry_offset() const5768 Target_aarch64<size, big_endian>::first_plt_entry_offset() const
5769 {
5770   return this->plt_->first_plt_entry_offset();
5771 }
5772 
5773 // Return the size of each PLT entry.
5774 
5775 template<int size, bool big_endian>
5776 unsigned int
plt_entry_size() const5777 Target_aarch64<size, big_endian>::plt_entry_size() const
5778 {
5779   return this->plt_->get_plt_entry_size();
5780 }
5781 
5782 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
5783 
5784 template<int size, bool big_endian>
5785 void
define_tls_base_symbol(Symbol_table * symtab,Layout * layout)5786 Target_aarch64<size, big_endian>::define_tls_base_symbol(
5787     Symbol_table* symtab, Layout* layout)
5788 {
5789   if (this->tls_base_symbol_defined_)
5790     return;
5791 
5792   Output_segment* tls_segment = layout->tls_segment();
5793   if (tls_segment != NULL)
5794     {
5795       // _TLS_MODULE_BASE_ always points to the beginning of tls segment.
5796       symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
5797 				       Symbol_table::PREDEFINED,
5798 				       tls_segment, 0, 0,
5799 				       elfcpp::STT_TLS,
5800 				       elfcpp::STB_LOCAL,
5801 				       elfcpp::STV_HIDDEN, 0,
5802 				       Symbol::SEGMENT_START,
5803 				       true);
5804     }
5805   this->tls_base_symbol_defined_ = true;
5806 }
5807 
5808 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
5809 
5810 template<int size, bool big_endian>
5811 void
reserve_tlsdesc_entries(Symbol_table * symtab,Layout * layout)5812 Target_aarch64<size, big_endian>::reserve_tlsdesc_entries(
5813     Symbol_table* symtab, Layout* layout)
5814 {
5815   if (this->plt_ == NULL)
5816     this->make_plt_section(symtab, layout);
5817 
5818   if (!this->plt_->has_tlsdesc_entry())
5819     {
5820       // Allocate the TLSDESC_GOT entry.
5821       Output_data_got_aarch64<size, big_endian>* got =
5822 	  this->got_section(symtab, layout);
5823       unsigned int got_offset = got->add_constant(0);
5824 
5825       // Allocate the TLSDESC_PLT entry.
5826       this->plt_->reserve_tlsdesc_entry(got_offset);
5827     }
5828 }
5829 
5830 // Create a GOT entry for the TLS module index.
5831 
5832 template<int size, bool big_endian>
5833 unsigned int
got_mod_index_entry(Symbol_table * symtab,Layout * layout,Sized_relobj_file<size,big_endian> * object)5834 Target_aarch64<size, big_endian>::got_mod_index_entry(
5835     Symbol_table* symtab, Layout* layout,
5836     Sized_relobj_file<size, big_endian>* object)
5837 {
5838   if (this->got_mod_index_offset_ == -1U)
5839     {
5840       gold_assert(symtab != NULL && layout != NULL && object != NULL);
5841       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5842       Output_data_got_aarch64<size, big_endian>* got =
5843 	  this->got_section(symtab, layout);
5844       unsigned int got_offset = got->add_constant(0);
5845       rela_dyn->add_local(object, 0, elfcpp::R_AARCH64_TLS_DTPMOD64, got,
5846 			  got_offset, 0);
5847       got->add_constant(0);
5848       this->got_mod_index_offset_ = got_offset;
5849     }
5850   return this->got_mod_index_offset_;
5851 }
5852 
5853 // Optimize the TLS relocation type based on what we know about the
5854 // symbol.  IS_FINAL is true if the final address of this symbol is
5855 // known at link time.
5856 
5857 template<int size, bool big_endian>
5858 tls::Tls_optimization
optimize_tls_reloc(bool is_final,int r_type)5859 Target_aarch64<size, big_endian>::optimize_tls_reloc(bool is_final,
5860 						     int r_type)
5861 {
5862   // If we are generating a shared library, then we can't do anything
5863   // in the linker
5864   if (parameters->options().shared())
5865     return tls::TLSOPT_NONE;
5866 
5867   switch (r_type)
5868     {
5869     case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
5870     case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
5871     case elfcpp::R_AARCH64_TLSDESC_LD_PREL19:
5872     case elfcpp::R_AARCH64_TLSDESC_ADR_PREL21:
5873     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
5874     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
5875     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
5876     case elfcpp::R_AARCH64_TLSDESC_OFF_G1:
5877     case elfcpp::R_AARCH64_TLSDESC_OFF_G0_NC:
5878     case elfcpp::R_AARCH64_TLSDESC_LDR:
5879     case elfcpp::R_AARCH64_TLSDESC_ADD:
5880     case elfcpp::R_AARCH64_TLSDESC_CALL:
5881       // These are General-Dynamic which permits fully general TLS
5882       // access.  Since we know that we are generating an executable,
5883       // we can convert this to Initial-Exec.  If we also know that
5884       // this is a local symbol, we can further switch to Local-Exec.
5885       if (is_final)
5886 	return tls::TLSOPT_TO_LE;
5887       return tls::TLSOPT_TO_IE;
5888 
5889     case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
5890     case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
5891     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
5892     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5893     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
5894     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
5895       // These are Local-Dynamic, which refer to local symbols in the
5896       // dynamic TLS block. Since we know that we generating an
5897       // executable, we can switch to Local-Exec.
5898       return tls::TLSOPT_TO_LE;
5899 
5900     case elfcpp::R_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5901     case elfcpp::R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5902     case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5903     case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5904     case elfcpp::R_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5905       // These are Initial-Exec relocs which get the thread offset
5906       // from the GOT. If we know that we are linking against the
5907       // local symbol, we can switch to Local-Exec, which links the
5908       // thread offset into the instruction.
5909       if (is_final)
5910 	return tls::TLSOPT_TO_LE;
5911       return tls::TLSOPT_NONE;
5912 
5913     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
5914     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
5915     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5916     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
5917     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5918     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
5919     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
5920     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
5921     case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12:
5922     case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
5923     case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12:
5924     case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
5925     case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12:
5926     case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
5927     case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12:
5928     case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
5929       // When we already have Local-Exec, there is nothing further we
5930       // can do.
5931       return tls::TLSOPT_NONE;
5932 
5933     default:
5934       gold_unreachable();
5935     }
5936 }
5937 
5938 // Returns true if this relocation type could be that of a function pointer.
5939 
5940 template<int size, bool big_endian>
5941 inline bool
possible_function_pointer_reloc(unsigned int r_type)5942 Target_aarch64<size, big_endian>::Scan::possible_function_pointer_reloc(
5943   unsigned int r_type)
5944 {
5945   switch (r_type)
5946     {
5947     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:
5948     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC:
5949     case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:
5950     case elfcpp::R_AARCH64_ADR_GOT_PAGE:
5951     case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
5952       {
5953 	return true;
5954       }
5955     }
5956   return false;
5957 }
5958 
5959 // For safe ICF, scan a relocation for a local symbol to check if it
5960 // corresponds to a function pointer being taken.  In that case mark
5961 // the function whose pointer was taken as not foldable.
5962 
5963 template<int size, bool big_endian>
5964 inline bool
local_reloc_may_be_function_pointer(Symbol_table *,Layout *,Target_aarch64<size,big_endian> *,Sized_relobj_file<size,big_endian> *,unsigned int,Output_section *,const elfcpp::Rela<size,big_endian> &,unsigned int r_type,const elfcpp::Sym<size,big_endian> &)5965 Target_aarch64<size, big_endian>::Scan::local_reloc_may_be_function_pointer(
5966   Symbol_table* ,
5967   Layout* ,
5968   Target_aarch64<size, big_endian>* ,
5969   Sized_relobj_file<size, big_endian>* ,
5970   unsigned int ,
5971   Output_section* ,
5972   const elfcpp::Rela<size, big_endian>& ,
5973   unsigned int r_type,
5974   const elfcpp::Sym<size, big_endian>&)
5975 {
5976   // When building a shared library, do not fold any local symbols.
5977   return (parameters->options().shared()
5978 	  || possible_function_pointer_reloc(r_type));
5979 }
5980 
5981 // For safe ICF, scan a relocation for a global symbol to check if it
5982 // corresponds to a function pointer being taken.  In that case mark
5983 // the function whose pointer was taken as not foldable.
5984 
5985 template<int size, bool big_endian>
5986 inline bool
global_reloc_may_be_function_pointer(Symbol_table *,Layout *,Target_aarch64<size,big_endian> *,Sized_relobj_file<size,big_endian> *,unsigned int,Output_section *,const elfcpp::Rela<size,big_endian> &,unsigned int r_type,Symbol * gsym)5987 Target_aarch64<size, big_endian>::Scan::global_reloc_may_be_function_pointer(
5988   Symbol_table* ,
5989   Layout* ,
5990   Target_aarch64<size, big_endian>* ,
5991   Sized_relobj_file<size, big_endian>* ,
5992   unsigned int ,
5993   Output_section* ,
5994   const elfcpp::Rela<size, big_endian>& ,
5995   unsigned int r_type,
5996   Symbol* gsym)
5997 {
5998   // When building a shared library, do not fold symbols whose visibility
5999   // is hidden, internal or protected.
6000   return ((parameters->options().shared()
6001 	   && (gsym->visibility() == elfcpp::STV_INTERNAL
6002 	       || gsym->visibility() == elfcpp::STV_PROTECTED
6003 	       || gsym->visibility() == elfcpp::STV_HIDDEN))
6004 	  || possible_function_pointer_reloc(r_type));
6005 }
6006 
6007 // Report an unsupported relocation against a local symbol.
6008 
6009 template<int size, bool big_endian>
6010 void
unsupported_reloc_local(Sized_relobj_file<size,big_endian> * object,unsigned int r_type)6011 Target_aarch64<size, big_endian>::Scan::unsupported_reloc_local(
6012      Sized_relobj_file<size, big_endian>* object,
6013      unsigned int r_type)
6014 {
6015   gold_error(_("%s: unsupported reloc %u against local symbol"),
6016 	     object->name().c_str(), r_type);
6017 }
6018 
6019 // We are about to emit a dynamic relocation of type R_TYPE.  If the
6020 // dynamic linker does not support it, issue an error.
6021 
6022 template<int size, bool big_endian>
6023 void
check_non_pic(Relobj * object,unsigned int r_type)6024 Target_aarch64<size, big_endian>::Scan::check_non_pic(Relobj* object,
6025 						      unsigned int r_type)
6026 {
6027   gold_assert(r_type != elfcpp::R_AARCH64_NONE);
6028 
6029   switch (r_type)
6030     {
6031     // These are the relocation types supported by glibc for AARCH64.
6032     case elfcpp::R_AARCH64_NONE:
6033     case elfcpp::R_AARCH64_COPY:
6034     case elfcpp::R_AARCH64_GLOB_DAT:
6035     case elfcpp::R_AARCH64_JUMP_SLOT:
6036     case elfcpp::R_AARCH64_RELATIVE:
6037     case elfcpp::R_AARCH64_TLS_DTPREL64:
6038     case elfcpp::R_AARCH64_TLS_DTPMOD64:
6039     case elfcpp::R_AARCH64_TLS_TPREL64:
6040     case elfcpp::R_AARCH64_TLSDESC:
6041     case elfcpp::R_AARCH64_IRELATIVE:
6042     case elfcpp::R_AARCH64_ABS32:
6043     case elfcpp::R_AARCH64_ABS64:
6044       return;
6045 
6046     default:
6047       break;
6048     }
6049 
6050   // This prevents us from issuing more than one error per reloc
6051   // section. But we can still wind up issuing more than one
6052   // error per object file.
6053   if (this->issued_non_pic_error_)
6054     return;
6055   gold_assert(parameters->options().output_is_position_independent());
6056   object->error(_("requires unsupported dynamic reloc; "
6057 		  "recompile with -fPIC"));
6058   this->issued_non_pic_error_ = true;
6059   return;
6060 }
6061 
6062 // Return whether we need to make a PLT entry for a relocation of the
6063 // given type against a STT_GNU_IFUNC symbol.
6064 
6065 template<int size, bool big_endian>
6066 bool
reloc_needs_plt_for_ifunc(Sized_relobj_file<size,big_endian> * object,unsigned int r_type)6067 Target_aarch64<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
6068     Sized_relobj_file<size, big_endian>* object,
6069     unsigned int r_type)
6070 {
6071   const AArch64_reloc_property* arp =
6072       aarch64_reloc_property_table->get_reloc_property(r_type);
6073   gold_assert(arp != NULL);
6074 
6075   int flags = arp->reference_flags();
6076   if (flags & Symbol::TLS_REF)
6077     {
6078       gold_error(_("%s: unsupported TLS reloc %s for IFUNC symbol"),
6079 		 object->name().c_str(), arp->name().c_str());
6080       return false;
6081     }
6082   return flags != 0;
6083 }
6084 
6085 // Scan a relocation for a local symbol.
6086 
6087 template<int size, bool big_endian>
6088 inline void
local(Symbol_table * symtab,Layout * layout,Target_aarch64<size,big_endian> * target,Sized_relobj_file<size,big_endian> * object,unsigned int data_shndx,Output_section * output_section,const elfcpp::Rela<size,big_endian> & rela,unsigned int r_type,const elfcpp::Sym<size,big_endian> & lsym,bool is_discarded)6089 Target_aarch64<size, big_endian>::Scan::local(
6090     Symbol_table* symtab,
6091     Layout* layout,
6092     Target_aarch64<size, big_endian>* target,
6093     Sized_relobj_file<size, big_endian>* object,
6094     unsigned int data_shndx,
6095     Output_section* output_section,
6096     const elfcpp::Rela<size, big_endian>& rela,
6097     unsigned int r_type,
6098     const elfcpp::Sym<size, big_endian>& lsym,
6099     bool is_discarded)
6100 {
6101   if (is_discarded)
6102     return;
6103 
6104   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
6105       Reloc_section;
6106   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6107 
6108   // A local STT_GNU_IFUNC symbol may require a PLT entry.
6109   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
6110   if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
6111     target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
6112 
6113   switch (r_type)
6114     {
6115     case elfcpp::R_AARCH64_NONE:
6116       break;
6117 
6118     case elfcpp::R_AARCH64_ABS32:
6119     case elfcpp::R_AARCH64_ABS16:
6120       if (parameters->options().output_is_position_independent())
6121 	{
6122 	  gold_error(_("%s: unsupported reloc %u in pos independent link."),
6123 		     object->name().c_str(), r_type);
6124 	}
6125       break;
6126 
6127     case elfcpp::R_AARCH64_ABS64:
6128       // If building a shared library or pie, we need to mark this as a dynmic
6129       // reloction, so that the dynamic loader can relocate it.
6130       if (parameters->options().output_is_position_independent())
6131 	{
6132 	  Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6133 	  rela_dyn->add_local_relative(object, r_sym,
6134 				       elfcpp::R_AARCH64_RELATIVE,
6135 				       output_section,
6136 				       data_shndx,
6137 				       rela.get_r_offset(),
6138 				       rela.get_r_addend(),
6139 				       is_ifunc);
6140 	}
6141       break;
6142 
6143     case elfcpp::R_AARCH64_PREL64:
6144     case elfcpp::R_AARCH64_PREL32:
6145     case elfcpp::R_AARCH64_PREL16:
6146       break;
6147 
6148     case elfcpp::R_AARCH64_ADR_GOT_PAGE:
6149     case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
6150     case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
6151       // The above relocations are used to access GOT entries.
6152       {
6153 	Output_data_got_aarch64<size, big_endian>* got =
6154 	    target->got_section(symtab, layout);
6155 	bool is_new = false;
6156 	// This symbol requires a GOT entry.
6157 	if (is_ifunc)
6158 	  is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
6159 	else
6160 	  is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
6161 	if (is_new && parameters->options().output_is_position_independent())
6162 	  target->rela_dyn_section(layout)->
6163 	    add_local_relative(object,
6164 			       r_sym,
6165 			       elfcpp::R_AARCH64_RELATIVE,
6166 			       got,
6167 			       object->local_got_offset(r_sym,
6168 							GOT_TYPE_STANDARD),
6169 			       0,
6170 			       false);
6171       }
6172       break;
6173 
6174     case elfcpp::R_AARCH64_MOVW_UABS_G0:        // 263
6175     case elfcpp::R_AARCH64_MOVW_UABS_G0_NC:     // 264
6176     case elfcpp::R_AARCH64_MOVW_UABS_G1:        // 265
6177     case elfcpp::R_AARCH64_MOVW_UABS_G1_NC:     // 266
6178     case elfcpp::R_AARCH64_MOVW_UABS_G2:        // 267
6179     case elfcpp::R_AARCH64_MOVW_UABS_G2_NC:     // 268
6180     case elfcpp::R_AARCH64_MOVW_UABS_G3:        // 269
6181     case elfcpp::R_AARCH64_MOVW_SABS_G0:        // 270
6182     case elfcpp::R_AARCH64_MOVW_SABS_G1:        // 271
6183     case elfcpp::R_AARCH64_MOVW_SABS_G2:        // 272
6184       if (parameters->options().output_is_position_independent())
6185 	{
6186 	  gold_error(_("%s: unsupported reloc %u in pos independent link."),
6187 		     object->name().c_str(), r_type);
6188 	}
6189       break;
6190 
6191     case elfcpp::R_AARCH64_LD_PREL_LO19:        // 273
6192     case elfcpp::R_AARCH64_ADR_PREL_LO21:       // 274
6193     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:    // 275
6194     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC: // 276
6195     case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:     // 277
6196     case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC:   // 278
6197     case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC:  // 284
6198     case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC:  // 285
6199     case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC:  // 286
6200     case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC: // 299
6201        break;
6202 
6203     // Control flow, pc-relative. We don't need to do anything for a relative
6204     // addressing relocation against a local symbol if it does not reference
6205     // the GOT.
6206     case elfcpp::R_AARCH64_TSTBR14:
6207     case elfcpp::R_AARCH64_CONDBR19:
6208     case elfcpp::R_AARCH64_JUMP26:
6209     case elfcpp::R_AARCH64_CALL26:
6210       break;
6211 
6212     case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6213     case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6214       {
6215 	tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6216 	  optimize_tls_reloc(!parameters->options().shared(), r_type);
6217 	if (tlsopt == tls::TLSOPT_TO_LE)
6218 	  break;
6219 
6220 	layout->set_has_static_tls();
6221 	// Create a GOT entry for the tp-relative offset.
6222 	if (!parameters->doing_static_link())
6223 	  {
6224 	    Output_data_got_aarch64<size, big_endian>* got =
6225 		target->got_section(symtab, layout);
6226 	    got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
6227 				    target->rela_dyn_section(layout),
6228 				    elfcpp::R_AARCH64_TLS_TPREL64);
6229 	  }
6230 	else if (!object->local_has_got_offset(r_sym,
6231 					       GOT_TYPE_TLS_OFFSET))
6232 	  {
6233 	    Output_data_got_aarch64<size, big_endian>* got =
6234 		target->got_section(symtab, layout);
6235 	    got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
6236 	    unsigned int got_offset =
6237 		object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
6238 	    const elfcpp::Elf_Xword addend = rela.get_r_addend();
6239 	    gold_assert(addend == 0);
6240 	    got->add_static_reloc(got_offset, elfcpp::R_AARCH64_TLS_TPREL64,
6241 				  object, r_sym);
6242 	  }
6243       }
6244       break;
6245 
6246     case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
6247     case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
6248       {
6249 	tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6250 	    optimize_tls_reloc(!parameters->options().shared(), r_type);
6251 	if (tlsopt == tls::TLSOPT_TO_LE)
6252 	  {
6253 	    layout->set_has_static_tls();
6254 	    break;
6255 	  }
6256 	gold_assert(tlsopt == tls::TLSOPT_NONE);
6257 
6258 	Output_data_got_aarch64<size, big_endian>* got =
6259 	    target->got_section(symtab, layout);
6260 	got->add_local_pair_with_rel(object,r_sym, data_shndx,
6261 				     GOT_TYPE_TLS_PAIR,
6262 				     target->rela_dyn_section(layout),
6263 				     elfcpp::R_AARCH64_TLS_DTPMOD64);
6264       }
6265       break;
6266 
6267     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
6268     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
6269     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6270     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
6271     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6272     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
6273     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
6274     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
6275     case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12:
6276     case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
6277     case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12:
6278     case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
6279     case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12:
6280     case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
6281     case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12:
6282     case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
6283       {
6284 	layout->set_has_static_tls();
6285 	bool output_is_shared = parameters->options().shared();
6286 	if (output_is_shared)
6287 	  gold_error(_("%s: unsupported TLSLE reloc %u in shared code."),
6288 		     object->name().c_str(), r_type);
6289       }
6290       break;
6291 
6292     case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
6293     case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
6294       {
6295 	tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6296 	    optimize_tls_reloc(!parameters->options().shared(), r_type);
6297 	if (tlsopt == tls::TLSOPT_NONE)
6298 	  {
6299 	    // Create a GOT entry for the module index.
6300 	    target->got_mod_index_entry(symtab, layout, object);
6301 	  }
6302 	else if (tlsopt != tls::TLSOPT_TO_LE)
6303 	  unsupported_reloc_local(object, r_type);
6304       }
6305       break;
6306 
6307     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
6308     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6309     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
6310     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
6311       break;
6312 
6313     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6314     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6315     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
6316       {
6317 	tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6318 	    optimize_tls_reloc(!parameters->options().shared(), r_type);
6319 	target->define_tls_base_symbol(symtab, layout);
6320 	if (tlsopt == tls::TLSOPT_NONE)
6321 	  {
6322 	    // Create reserved PLT and GOT entries for the resolver.
6323 	    target->reserve_tlsdesc_entries(symtab, layout);
6324 
6325 	    // Generate a double GOT entry with an R_AARCH64_TLSDESC reloc.
6326 	    // The R_AARCH64_TLSDESC reloc is resolved lazily, so the GOT
6327 	    // entry needs to be in an area in .got.plt, not .got. Call
6328 	    // got_section to make sure the section has been created.
6329 	    target->got_section(symtab, layout);
6330 	    Output_data_got<size, big_endian>* got =
6331 		target->got_tlsdesc_section();
6332 	    unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6333 	    if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
6334 	      {
6335 		unsigned int got_offset = got->add_constant(0);
6336 		got->add_constant(0);
6337 		object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
6338 					     got_offset);
6339 		Reloc_section* rt = target->rela_tlsdesc_section(layout);
6340 		// We store the arguments we need in a vector, and use
6341 		// the index into the vector as the parameter to pass
6342 		// to the target specific routines.
6343 		uintptr_t intarg = target->add_tlsdesc_info(object, r_sym);
6344 		void* arg = reinterpret_cast<void*>(intarg);
6345 		rt->add_target_specific(elfcpp::R_AARCH64_TLSDESC, arg,
6346 					got, got_offset, 0);
6347 	      }
6348 	  }
6349 	else if (tlsopt != tls::TLSOPT_TO_LE)
6350 	  unsupported_reloc_local(object, r_type);
6351       }
6352       break;
6353 
6354     case elfcpp::R_AARCH64_TLSDESC_CALL:
6355       break;
6356 
6357     default:
6358       unsupported_reloc_local(object, r_type);
6359     }
6360 }
6361 
6362 
6363 // Report an unsupported relocation against a global symbol.
6364 
6365 template<int size, bool big_endian>
6366 void
unsupported_reloc_global(Sized_relobj_file<size,big_endian> * object,unsigned int r_type,Symbol * gsym)6367 Target_aarch64<size, big_endian>::Scan::unsupported_reloc_global(
6368     Sized_relobj_file<size, big_endian>* object,
6369     unsigned int r_type,
6370     Symbol* gsym)
6371 {
6372   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
6373 	     object->name().c_str(), r_type, gsym->demangled_name().c_str());
6374 }
6375 
6376 template<int size, bool big_endian>
6377 inline void
global(Symbol_table * symtab,Layout * layout,Target_aarch64<size,big_endian> * target,Sized_relobj_file<size,big_endian> * object,unsigned int data_shndx,Output_section * output_section,const elfcpp::Rela<size,big_endian> & rela,unsigned int r_type,Symbol * gsym)6378 Target_aarch64<size, big_endian>::Scan::global(
6379     Symbol_table* symtab,
6380     Layout* layout,
6381     Target_aarch64<size, big_endian>* target,
6382     Sized_relobj_file<size, big_endian> * object,
6383     unsigned int data_shndx,
6384     Output_section* output_section,
6385     const elfcpp::Rela<size, big_endian>& rela,
6386     unsigned int r_type,
6387     Symbol* gsym)
6388 {
6389   // A STT_GNU_IFUNC symbol may require a PLT entry.
6390   if (gsym->type() == elfcpp::STT_GNU_IFUNC
6391       && this->reloc_needs_plt_for_ifunc(object, r_type))
6392     target->make_plt_entry(symtab, layout, gsym);
6393 
6394   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
6395     Reloc_section;
6396   const AArch64_reloc_property* arp =
6397       aarch64_reloc_property_table->get_reloc_property(r_type);
6398   gold_assert(arp != NULL);
6399 
6400   switch (r_type)
6401     {
6402     case elfcpp::R_AARCH64_NONE:
6403       break;
6404 
6405     case elfcpp::R_AARCH64_ABS16:
6406     case elfcpp::R_AARCH64_ABS32:
6407     case elfcpp::R_AARCH64_ABS64:
6408       {
6409 	// Make a PLT entry if necessary.
6410 	if (gsym->needs_plt_entry())
6411 	  {
6412 	    target->make_plt_entry(symtab, layout, gsym);
6413 	    // Since this is not a PC-relative relocation, we may be
6414 	    // taking the address of a function. In that case we need to
6415 	    // set the entry in the dynamic symbol table to the address of
6416 	    // the PLT entry.
6417 	    if (gsym->is_from_dynobj() && !parameters->options().shared())
6418 	      gsym->set_needs_dynsym_value();
6419 	  }
6420 	// Make a dynamic relocation if necessary.
6421 	if (gsym->needs_dynamic_reloc(arp->reference_flags()))
6422 	  {
6423 	    if (!parameters->options().output_is_position_independent()
6424 		&& gsym->may_need_copy_reloc())
6425 	      {
6426 		target->copy_reloc(symtab, layout, object,
6427 				   data_shndx, output_section, gsym, rela);
6428 	      }
6429 	    else if (r_type == elfcpp::R_AARCH64_ABS64
6430 		     && gsym->type() == elfcpp::STT_GNU_IFUNC
6431 		     && gsym->can_use_relative_reloc(false)
6432 		     && !gsym->is_from_dynobj()
6433 		     && !gsym->is_undefined()
6434 		     && !gsym->is_preemptible())
6435 	      {
6436 		// Use an IRELATIVE reloc for a locally defined STT_GNU_IFUNC
6437 		// symbol. This makes a function address in a PIE executable
6438 		// match the address in a shared library that it links against.
6439 		Reloc_section* rela_dyn =
6440 		    target->rela_irelative_section(layout);
6441 		unsigned int r_type = elfcpp::R_AARCH64_IRELATIVE;
6442 		rela_dyn->add_symbolless_global_addend(gsym, r_type,
6443 						       output_section, object,
6444 						       data_shndx,
6445 						       rela.get_r_offset(),
6446 						       rela.get_r_addend());
6447 	      }
6448 	    else if (r_type == elfcpp::R_AARCH64_ABS64
6449 		     && gsym->can_use_relative_reloc(false))
6450 	      {
6451 		Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6452 		rela_dyn->add_global_relative(gsym,
6453 					      elfcpp::R_AARCH64_RELATIVE,
6454 					      output_section,
6455 					      object,
6456 					      data_shndx,
6457 					      rela.get_r_offset(),
6458 					      rela.get_r_addend(),
6459 					      false);
6460 	      }
6461 	    else
6462 	      {
6463 		check_non_pic(object, r_type);
6464 		Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>*
6465 		    rela_dyn = target->rela_dyn_section(layout);
6466 		rela_dyn->add_global(
6467 		  gsym, r_type, output_section, object,
6468 		  data_shndx, rela.get_r_offset(),rela.get_r_addend());
6469 	      }
6470 	  }
6471       }
6472       break;
6473 
6474     case elfcpp::R_AARCH64_PREL16:
6475     case elfcpp::R_AARCH64_PREL32:
6476     case elfcpp::R_AARCH64_PREL64:
6477       // This is used to fill the GOT absolute address.
6478       if (gsym->needs_plt_entry())
6479 	{
6480 	  target->make_plt_entry(symtab, layout, gsym);
6481 	}
6482       break;
6483 
6484     case elfcpp::R_AARCH64_MOVW_UABS_G0:        // 263
6485     case elfcpp::R_AARCH64_MOVW_UABS_G0_NC:     // 264
6486     case elfcpp::R_AARCH64_MOVW_UABS_G1:        // 265
6487     case elfcpp::R_AARCH64_MOVW_UABS_G1_NC:     // 266
6488     case elfcpp::R_AARCH64_MOVW_UABS_G2:        // 267
6489     case elfcpp::R_AARCH64_MOVW_UABS_G2_NC:     // 268
6490     case elfcpp::R_AARCH64_MOVW_UABS_G3:        // 269
6491     case elfcpp::R_AARCH64_MOVW_SABS_G0:        // 270
6492     case elfcpp::R_AARCH64_MOVW_SABS_G1:        // 271
6493     case elfcpp::R_AARCH64_MOVW_SABS_G2:        // 272
6494       if (parameters->options().output_is_position_independent())
6495 	{
6496 	  gold_error(_("%s: unsupported reloc %u in pos independent link."),
6497 		     object->name().c_str(), r_type);
6498 	}
6499       // Make a PLT entry if necessary.
6500       if (gsym->needs_plt_entry())
6501 	{
6502 	  target->make_plt_entry(symtab, layout, gsym);
6503 	  // Since this is not a PC-relative relocation, we may be
6504 	  // taking the address of a function. In that case we need to
6505 	  // set the entry in the dynamic symbol table to the address of
6506 	  // the PLT entry.
6507 	  if (gsym->is_from_dynobj() && !parameters->options().shared())
6508 	    gsym->set_needs_dynsym_value();
6509 	}
6510       break;
6511 
6512     case elfcpp::R_AARCH64_LD_PREL_LO19:        // 273
6513     case elfcpp::R_AARCH64_ADR_PREL_LO21:       // 274
6514     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:    // 275
6515     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC: // 276
6516     case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:     // 277
6517     case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC:   // 278
6518     case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC:  // 284
6519     case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC:  // 285
6520     case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC:  // 286
6521     case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC: // 299
6522       {
6523 	if (gsym->needs_plt_entry())
6524 	  target->make_plt_entry(symtab, layout, gsym);
6525 	// Make a dynamic relocation if necessary.
6526 	if (gsym->needs_dynamic_reloc(arp->reference_flags()))
6527 	  {
6528 	    if (parameters->options().output_is_executable()
6529 		&& gsym->may_need_copy_reloc())
6530 	      {
6531 		target->copy_reloc(symtab, layout, object,
6532 				   data_shndx, output_section, gsym, rela);
6533 	      }
6534 	  }
6535 	break;
6536       }
6537 
6538     case elfcpp::R_AARCH64_ADR_GOT_PAGE:
6539     case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
6540     case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
6541       {
6542 	// The above relocations are used to access GOT entries.
6543 	// Note a GOT entry is an *address* to a symbol.
6544 	// The symbol requires a GOT entry
6545 	Output_data_got_aarch64<size, big_endian>* got =
6546 	  target->got_section(symtab, layout);
6547 	if (gsym->final_value_is_known())
6548 	  {
6549 	    // For a STT_GNU_IFUNC symbol we want the PLT address.
6550 	    if (gsym->type() == elfcpp::STT_GNU_IFUNC)
6551 	      got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6552 	    else
6553 	      got->add_global(gsym, GOT_TYPE_STANDARD);
6554 	  }
6555 	else
6556 	  {
6557 	    // If this symbol is not fully resolved, we need to add a dynamic
6558 	    // relocation for it.
6559 	    Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6560 
6561 	    // Use a GLOB_DAT rather than a RELATIVE reloc if:
6562 	    //
6563 	    // 1) The symbol may be defined in some other module.
6564 	    // 2) We are building a shared library and this is a protected
6565 	    // symbol; using GLOB_DAT means that the dynamic linker can use
6566 	    // the address of the PLT in the main executable when appropriate
6567 	    // so that function address comparisons work.
6568 	    // 3) This is a STT_GNU_IFUNC symbol in position dependent code,
6569 	    // again so that function address comparisons work.
6570 	    if (gsym->is_from_dynobj()
6571 		|| gsym->is_undefined()
6572 		|| gsym->is_preemptible()
6573 		|| (gsym->visibility() == elfcpp::STV_PROTECTED
6574 		    && parameters->options().shared())
6575 		|| (gsym->type() == elfcpp::STT_GNU_IFUNC
6576 		    && parameters->options().output_is_position_independent()))
6577 	      got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
6578 				       rela_dyn, elfcpp::R_AARCH64_GLOB_DAT);
6579 	    else
6580 	      {
6581 		// For a STT_GNU_IFUNC symbol we want to write the PLT
6582 		// offset into the GOT, so that function pointer
6583 		// comparisons work correctly.
6584 		bool is_new;
6585 		if (gsym->type() != elfcpp::STT_GNU_IFUNC)
6586 		  is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
6587 		else
6588 		  {
6589 		    is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6590 		    // Tell the dynamic linker to use the PLT address
6591 		    // when resolving relocations.
6592 		    if (gsym->is_from_dynobj()
6593 			&& !parameters->options().shared())
6594 		      gsym->set_needs_dynsym_value();
6595 		  }
6596 		if (is_new)
6597 		  {
6598 		    rela_dyn->add_global_relative(
6599 			gsym, elfcpp::R_AARCH64_RELATIVE,
6600 			got,
6601 			gsym->got_offset(GOT_TYPE_STANDARD),
6602 			0,
6603 			false);
6604 		  }
6605 	      }
6606 	  }
6607 	break;
6608       }
6609 
6610     case elfcpp::R_AARCH64_TSTBR14:
6611     case elfcpp::R_AARCH64_CONDBR19:
6612     case elfcpp::R_AARCH64_JUMP26:
6613     case elfcpp::R_AARCH64_CALL26:
6614       {
6615 	if (gsym->final_value_is_known())
6616 	  break;
6617 
6618 	if (gsym->is_defined() &&
6619 	    !gsym->is_from_dynobj() &&
6620 	    !gsym->is_preemptible())
6621 	  break;
6622 
6623 	// Make plt entry for function call.
6624 	target->make_plt_entry(symtab, layout, gsym);
6625 	break;
6626       }
6627 
6628     case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
6629     case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:  // General dynamic
6630       {
6631 	tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6632 	    optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6633 	if (tlsopt == tls::TLSOPT_TO_LE)
6634 	  {
6635 	    layout->set_has_static_tls();
6636 	    break;
6637 	  }
6638 	gold_assert(tlsopt == tls::TLSOPT_NONE);
6639 
6640 	// General dynamic.
6641 	Output_data_got_aarch64<size, big_endian>* got =
6642 	    target->got_section(symtab, layout);
6643 	// Create 2 consecutive entries for module index and offset.
6644 	got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
6645 				      target->rela_dyn_section(layout),
6646 				      elfcpp::R_AARCH64_TLS_DTPMOD64,
6647 				      elfcpp::R_AARCH64_TLS_DTPREL64);
6648       }
6649       break;
6650 
6651     case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
6652     case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:  // Local dynamic
6653       {
6654 	tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6655 	    optimize_tls_reloc(!parameters->options().shared(), r_type);
6656 	if (tlsopt == tls::TLSOPT_NONE)
6657 	  {
6658 	    // Create a GOT entry for the module index.
6659 	    target->got_mod_index_entry(symtab, layout, object);
6660 	  }
6661 	else if (tlsopt != tls::TLSOPT_TO_LE)
6662 	  unsupported_reloc_local(object, r_type);
6663       }
6664       break;
6665 
6666     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
6667     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6668     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
6669     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:  // Other local dynamic
6670       break;
6671 
6672     case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6673     case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:  // Initial executable
6674       {
6675 	tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6676 	  optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6677 	if (tlsopt == tls::TLSOPT_TO_LE)
6678 	  break;
6679 
6680 	layout->set_has_static_tls();
6681 	// Create a GOT entry for the tp-relative offset.
6682 	Output_data_got_aarch64<size, big_endian>* got
6683 	  = target->got_section(symtab, layout);
6684 	if (!parameters->doing_static_link())
6685 	  {
6686 	    got->add_global_with_rel(
6687 	      gsym, GOT_TYPE_TLS_OFFSET,
6688 	      target->rela_dyn_section(layout),
6689 	      elfcpp::R_AARCH64_TLS_TPREL64);
6690 	  }
6691 	if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
6692 	  {
6693 	    got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
6694 	    unsigned int got_offset =
6695 	      gsym->got_offset(GOT_TYPE_TLS_OFFSET);
6696 	    const elfcpp::Elf_Xword addend = rela.get_r_addend();
6697 	    gold_assert(addend == 0);
6698 	    got->add_static_reloc(got_offset,
6699 				  elfcpp::R_AARCH64_TLS_TPREL64, gsym);
6700 	  }
6701       }
6702       break;
6703 
6704     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
6705     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
6706     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6707     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
6708     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6709     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
6710     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
6711     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
6712     case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12:
6713     case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
6714     case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12:
6715     case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
6716     case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12:
6717     case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
6718     case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12:
6719     case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:  // Local executable
6720       layout->set_has_static_tls();
6721       if (parameters->options().shared())
6722 	gold_error(_("%s: unsupported TLSLE reloc type %u in shared objects."),
6723 		   object->name().c_str(), r_type);
6724       break;
6725 
6726     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6727     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6728     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:  // TLS descriptor
6729       {
6730 	target->define_tls_base_symbol(symtab, layout);
6731 	tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6732 	    optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6733 	if (tlsopt == tls::TLSOPT_NONE)
6734 	  {
6735 	    // Create reserved PLT and GOT entries for the resolver.
6736 	    target->reserve_tlsdesc_entries(symtab, layout);
6737 
6738 	    // Create a double GOT entry with an R_AARCH64_TLSDESC
6739 	    // relocation. The R_AARCH64_TLSDESC is resolved lazily, so the GOT
6740 	    // entry needs to be in an area in .got.plt, not .got. Call
6741 	    // got_section to make sure the section has been created.
6742 	    target->got_section(symtab, layout);
6743 	    Output_data_got<size, big_endian>* got =
6744 		target->got_tlsdesc_section();
6745 	    Reloc_section* rt = target->rela_tlsdesc_section(layout);
6746 	    got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC, rt,
6747 					  elfcpp::R_AARCH64_TLSDESC, 0);
6748 	  }
6749 	else if (tlsopt == tls::TLSOPT_TO_IE)
6750 	  {
6751 	    // Create a GOT entry for the tp-relative offset.
6752 	    Output_data_got<size, big_endian>* got
6753 		= target->got_section(symtab, layout);
6754 	    got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
6755 				     target->rela_dyn_section(layout),
6756 				     elfcpp::R_AARCH64_TLS_TPREL64);
6757 	  }
6758 	else if (tlsopt != tls::TLSOPT_TO_LE)
6759 	  unsupported_reloc_global(object, r_type, gsym);
6760       }
6761       break;
6762 
6763     case elfcpp::R_AARCH64_TLSDESC_CALL:
6764       break;
6765 
6766     default:
6767       gold_error(_("%s: unsupported reloc type in global scan"),
6768 		 aarch64_reloc_property_table->
6769 		 reloc_name_in_error_message(r_type).c_str());
6770     }
6771   return;
6772 }  // End of Scan::global
6773 
6774 
6775 // Create the PLT section.
6776 template<int size, bool big_endian>
6777 void
make_plt_section(Symbol_table * symtab,Layout * layout)6778 Target_aarch64<size, big_endian>::make_plt_section(
6779   Symbol_table* symtab, Layout* layout)
6780 {
6781   if (this->plt_ == NULL)
6782     {
6783       // Create the GOT section first.
6784       this->got_section(symtab, layout);
6785 
6786       this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
6787 				       this->got_irelative_);
6788 
6789       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
6790 				      (elfcpp::SHF_ALLOC
6791 				       | elfcpp::SHF_EXECINSTR),
6792 				      this->plt_, ORDER_PLT, false);
6793 
6794       // Make the sh_info field of .rela.plt point to .plt.
6795       Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
6796       rela_plt_os->set_info_section(this->plt_->output_section());
6797     }
6798 }
6799 
6800 // Return the section for TLSDESC relocations.
6801 
6802 template<int size, bool big_endian>
6803 typename Target_aarch64<size, big_endian>::Reloc_section*
rela_tlsdesc_section(Layout * layout) const6804 Target_aarch64<size, big_endian>::rela_tlsdesc_section(Layout* layout) const
6805 {
6806   return this->plt_section()->rela_tlsdesc(layout);
6807 }
6808 
6809 // Create a PLT entry for a global symbol.
6810 
6811 template<int size, bool big_endian>
6812 void
make_plt_entry(Symbol_table * symtab,Layout * layout,Symbol * gsym)6813 Target_aarch64<size, big_endian>::make_plt_entry(
6814     Symbol_table* symtab,
6815     Layout* layout,
6816     Symbol* gsym)
6817 {
6818   if (gsym->has_plt_offset())
6819     return;
6820 
6821   if (this->plt_ == NULL)
6822     this->make_plt_section(symtab, layout);
6823 
6824   this->plt_->add_entry(symtab, layout, gsym);
6825 }
6826 
6827 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
6828 
6829 template<int size, bool big_endian>
6830 void
make_local_ifunc_plt_entry(Symbol_table * symtab,Layout * layout,Sized_relobj_file<size,big_endian> * relobj,unsigned int local_sym_index)6831 Target_aarch64<size, big_endian>::make_local_ifunc_plt_entry(
6832     Symbol_table* symtab, Layout* layout,
6833     Sized_relobj_file<size, big_endian>* relobj,
6834     unsigned int local_sym_index)
6835 {
6836   if (relobj->local_has_plt_offset(local_sym_index))
6837     return;
6838   if (this->plt_ == NULL)
6839     this->make_plt_section(symtab, layout);
6840   unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
6841 							      relobj,
6842 							      local_sym_index);
6843   relobj->set_local_plt_offset(local_sym_index, plt_offset);
6844 }
6845 
6846 template<int size, bool big_endian>
6847 void
gc_process_relocs(Symbol_table * symtab,Layout * layout,Sized_relobj_file<size,big_endian> * object,unsigned int data_shndx,unsigned int sh_type,const unsigned char * prelocs,size_t reloc_count,Output_section * output_section,bool needs_special_offset_handling,size_t local_symbol_count,const unsigned char * plocal_symbols)6848 Target_aarch64<size, big_endian>::gc_process_relocs(
6849     Symbol_table* symtab,
6850     Layout* layout,
6851     Sized_relobj_file<size, big_endian>* object,
6852     unsigned int data_shndx,
6853     unsigned int sh_type,
6854     const unsigned char* prelocs,
6855     size_t reloc_count,
6856     Output_section* output_section,
6857     bool needs_special_offset_handling,
6858     size_t local_symbol_count,
6859     const unsigned char* plocal_symbols)
6860 {
6861   typedef Target_aarch64<size, big_endian> Aarch64;
6862   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
6863       Classify_reloc;
6864 
6865   if (sh_type == elfcpp::SHT_REL)
6866     {
6867       return;
6868     }
6869 
6870   gold::gc_process_relocs<size, big_endian, Aarch64, Scan, Classify_reloc>(
6871     symtab,
6872     layout,
6873     this,
6874     object,
6875     data_shndx,
6876     prelocs,
6877     reloc_count,
6878     output_section,
6879     needs_special_offset_handling,
6880     local_symbol_count,
6881     plocal_symbols);
6882 }
6883 
6884 // Scan relocations for a section.
6885 
6886 template<int size, bool big_endian>
6887 void
scan_relocs(Symbol_table * symtab,Layout * layout,Sized_relobj_file<size,big_endian> * object,unsigned int data_shndx,unsigned int sh_type,const unsigned char * prelocs,size_t reloc_count,Output_section * output_section,bool needs_special_offset_handling,size_t local_symbol_count,const unsigned char * plocal_symbols)6888 Target_aarch64<size, big_endian>::scan_relocs(
6889     Symbol_table* symtab,
6890     Layout* layout,
6891     Sized_relobj_file<size, big_endian>* object,
6892     unsigned int data_shndx,
6893     unsigned int sh_type,
6894     const unsigned char* prelocs,
6895     size_t reloc_count,
6896     Output_section* output_section,
6897     bool needs_special_offset_handling,
6898     size_t local_symbol_count,
6899     const unsigned char* plocal_symbols)
6900 {
6901   typedef Target_aarch64<size, big_endian> Aarch64;
6902   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
6903       Classify_reloc;
6904 
6905   if (sh_type == elfcpp::SHT_REL)
6906     {
6907       gold_error(_("%s: unsupported REL reloc section"),
6908 		 object->name().c_str());
6909       return;
6910     }
6911 
6912   gold::scan_relocs<size, big_endian, Aarch64, Scan, Classify_reloc>(
6913     symtab,
6914     layout,
6915     this,
6916     object,
6917     data_shndx,
6918     prelocs,
6919     reloc_count,
6920     output_section,
6921     needs_special_offset_handling,
6922     local_symbol_count,
6923     plocal_symbols);
6924 }
6925 
6926 // Return the value to use for a dynamic which requires special
6927 // treatment.  This is how we support equality comparisons of function
6928 // pointers across shared library boundaries, as described in the
6929 // processor specific ABI supplement.
6930 
6931 template<int size, bool big_endian>
6932 uint64_t
do_dynsym_value(const Symbol * gsym) const6933 Target_aarch64<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
6934 {
6935   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
6936   return this->plt_address_for_global(gsym);
6937 }
6938 
6939 
6940 // Finalize the sections.
6941 
6942 template<int size, bool big_endian>
6943 void
do_finalize_sections(Layout * layout,const Input_objects *,Symbol_table * symtab)6944 Target_aarch64<size, big_endian>::do_finalize_sections(
6945     Layout* layout,
6946     const Input_objects*,
6947     Symbol_table* symtab)
6948 {
6949   const Reloc_section* rel_plt = (this->plt_ == NULL
6950 				  ? NULL
6951 				  : this->plt_->rela_plt());
6952   layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
6953 				  this->rela_dyn_, true, false);
6954 
6955   // Emit any relocs we saved in an attempt to avoid generating COPY
6956   // relocs.
6957   if (this->copy_relocs_.any_saved_relocs())
6958     this->copy_relocs_.emit(this->rela_dyn_section(layout));
6959 
6960   // Fill in some more dynamic tags.
6961   Output_data_dynamic* const odyn = layout->dynamic_data();
6962   if (odyn != NULL)
6963     {
6964       if (this->plt_ != NULL
6965 	  && this->plt_->output_section() != NULL
6966 	  && this->plt_ ->has_tlsdesc_entry())
6967 	{
6968 	  unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
6969 	  unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
6970 	  this->got_->finalize_data_size();
6971 	  odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
6972 					this->plt_, plt_offset);
6973 	  odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
6974 					this->got_, got_offset);
6975 	}
6976     }
6977 
6978   // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
6979   // the .got section.
6980   Symbol* sym = this->global_offset_table_;
6981   if (sym != NULL)
6982     {
6983       uint64_t data_size = this->got_->current_data_size();
6984       symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);
6985 
6986       // If the .got section is more than 0x8000 bytes, we add
6987       // 0x8000 to the value of _GLOBAL_OFFSET_TABLE_, so that 16
6988       // bit relocations have a greater chance of working.
6989       if (data_size >= 0x8000)
6990 	symtab->get_sized_symbol<size>(sym)->set_value(
6991 	  symtab->get_sized_symbol<size>(sym)->value() + 0x8000);
6992     }
6993 
6994   if (parameters->doing_static_link()
6995       && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
6996     {
6997       // If linking statically, make sure that the __rela_iplt symbols
6998       // were defined if necessary, even if we didn't create a PLT.
6999       static const Define_symbol_in_segment syms[] =
7000 	{
7001 	  {
7002 	    "__rela_iplt_start",	// name
7003 	    elfcpp::PT_LOAD,		// segment_type
7004 	    elfcpp::PF_W,		// segment_flags_set
7005 	    elfcpp::PF(0),		// segment_flags_clear
7006 	    0,				// value
7007 	    0,				// size
7008 	    elfcpp::STT_NOTYPE,		// type
7009 	    elfcpp::STB_GLOBAL,		// binding
7010 	    elfcpp::STV_HIDDEN,		// visibility
7011 	    0,				// nonvis
7012 	    Symbol::SEGMENT_START,	// offset_from_base
7013 	    true			// only_if_ref
7014 	  },
7015 	  {
7016 	    "__rela_iplt_end",		// name
7017 	    elfcpp::PT_LOAD,		// segment_type
7018 	    elfcpp::PF_W,		// segment_flags_set
7019 	    elfcpp::PF(0),		// segment_flags_clear
7020 	    0,				// value
7021 	    0,				// size
7022 	    elfcpp::STT_NOTYPE,		// type
7023 	    elfcpp::STB_GLOBAL,		// binding
7024 	    elfcpp::STV_HIDDEN,		// visibility
7025 	    0,				// nonvis
7026 	    Symbol::SEGMENT_START,	// offset_from_base
7027 	    true			// only_if_ref
7028 	  }
7029 	};
7030 
7031       symtab->define_symbols(layout, 2, syms,
7032 			     layout->script_options()->saw_sections_clause());
7033     }
7034 
7035   return;
7036 }
7037 
7038 // Perform a relocation.
7039 
7040 template<int size, bool big_endian>
7041 inline bool
relocate(const Relocate_info<size,big_endian> * relinfo,unsigned int,Target_aarch64<size,big_endian> * target,Output_section *,size_t relnum,const unsigned char * preloc,const Sized_symbol<size> * gsym,const Symbol_value<size> * psymval,unsigned char * view,typename elfcpp::Elf_types<size>::Elf_Addr address,section_size_type)7042 Target_aarch64<size, big_endian>::Relocate::relocate(
7043     const Relocate_info<size, big_endian>* relinfo,
7044     unsigned int,
7045     Target_aarch64<size, big_endian>* target,
7046     Output_section* ,
7047     size_t relnum,
7048     const unsigned char* preloc,
7049     const Sized_symbol<size>* gsym,
7050     const Symbol_value<size>* psymval,
7051     unsigned char* view,
7052     typename elfcpp::Elf_types<size>::Elf_Addr address,
7053     section_size_type /* view_size */)
7054 {
7055   if (view == NULL)
7056     return true;
7057 
7058   typedef AArch64_relocate_functions<size, big_endian> Reloc;
7059 
7060   const elfcpp::Rela<size, big_endian> rela(preloc);
7061   unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
7062   const AArch64_reloc_property* reloc_property =
7063       aarch64_reloc_property_table->get_reloc_property(r_type);
7064 
7065   if (reloc_property == NULL)
7066     {
7067       std::string reloc_name =
7068 	  aarch64_reloc_property_table->reloc_name_in_error_message(r_type);
7069       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7070 			     _("cannot relocate %s in object file"),
7071 			     reloc_name.c_str());
7072       return true;
7073     }
7074 
7075   const Sized_relobj_file<size, big_endian>* object = relinfo->object;
7076 
7077   // Pick the value to use for symbols defined in the PLT.
7078   Symbol_value<size> symval;
7079   if (gsym != NULL
7080       && gsym->use_plt_offset(reloc_property->reference_flags()))
7081     {
7082       symval.set_output_value(target->plt_address_for_global(gsym));
7083       psymval = &symval;
7084     }
7085   else if (gsym == NULL && psymval->is_ifunc_symbol())
7086     {
7087       unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7088       if (object->local_has_plt_offset(r_sym))
7089 	{
7090 	  symval.set_output_value(target->plt_address_for_local(object, r_sym));
7091 	  psymval = &symval;
7092 	}
7093     }
7094 
7095   const elfcpp::Elf_Xword addend = rela.get_r_addend();
7096 
7097   // Get the GOT offset if needed.
7098   // For aarch64, the GOT pointer points to the start of the GOT section.
7099   bool have_got_offset = false;
7100   int got_offset = 0;
7101   int got_base = (target->got_ != NULL
7102 		  ? (target->got_->current_data_size() >= 0x8000
7103 		     ? 0x8000 : 0)
7104 		  : 0);
7105   switch (r_type)
7106     {
7107     case elfcpp::R_AARCH64_MOVW_GOTOFF_G0:
7108     case elfcpp::R_AARCH64_MOVW_GOTOFF_G0_NC:
7109     case elfcpp::R_AARCH64_MOVW_GOTOFF_G1:
7110     case elfcpp::R_AARCH64_MOVW_GOTOFF_G1_NC:
7111     case elfcpp::R_AARCH64_MOVW_GOTOFF_G2:
7112     case elfcpp::R_AARCH64_MOVW_GOTOFF_G2_NC:
7113     case elfcpp::R_AARCH64_MOVW_GOTOFF_G3:
7114     case elfcpp::R_AARCH64_GOTREL64:
7115     case elfcpp::R_AARCH64_GOTREL32:
7116     case elfcpp::R_AARCH64_GOT_LD_PREL19:
7117     case elfcpp::R_AARCH64_LD64_GOTOFF_LO15:
7118     case elfcpp::R_AARCH64_ADR_GOT_PAGE:
7119     case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
7120     case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
7121       if (gsym != NULL)
7122 	{
7123 	  gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
7124 	  got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - got_base;
7125 	}
7126       else
7127 	{
7128 	  unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7129 	  gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
7130 	  got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
7131 			- got_base);
7132 	}
7133       have_got_offset = true;
7134       break;
7135 
7136     default:
7137       break;
7138     }
7139 
7140   typename Reloc::Status reloc_status = Reloc::STATUS_OKAY;
7141   typename elfcpp::Elf_types<size>::Elf_Addr value;
7142   switch (r_type)
7143     {
7144     case elfcpp::R_AARCH64_NONE:
7145       break;
7146 
7147     case elfcpp::R_AARCH64_ABS64:
7148       if (!parameters->options().apply_dynamic_relocs()
7149           && parameters->options().output_is_position_independent()
7150           && gsym != NULL
7151           && gsym->needs_dynamic_reloc(reloc_property->reference_flags())
7152           && !gsym->can_use_relative_reloc(false))
7153         // We have generated an absolute dynamic relocation, so do not
7154         // apply the relocation statically. (Works around bugs in older
7155         // Android dynamic linkers.)
7156         break;
7157       reloc_status = Reloc::template rela_ua<64>(
7158 	view, object, psymval, addend, reloc_property);
7159       break;
7160 
7161     case elfcpp::R_AARCH64_ABS32:
7162       if (!parameters->options().apply_dynamic_relocs()
7163           && parameters->options().output_is_position_independent()
7164           && gsym != NULL
7165           && gsym->needs_dynamic_reloc(reloc_property->reference_flags()))
7166         // We have generated an absolute dynamic relocation, so do not
7167         // apply the relocation statically. (Works around bugs in older
7168         // Android dynamic linkers.)
7169         break;
7170       reloc_status = Reloc::template rela_ua<32>(
7171 	view, object, psymval, addend, reloc_property);
7172       break;
7173 
7174     case elfcpp::R_AARCH64_ABS16:
7175       if (!parameters->options().apply_dynamic_relocs()
7176           && parameters->options().output_is_position_independent()
7177           && gsym != NULL
7178           && gsym->needs_dynamic_reloc(reloc_property->reference_flags()))
7179         // We have generated an absolute dynamic relocation, so do not
7180         // apply the relocation statically. (Works around bugs in older
7181         // Android dynamic linkers.)
7182         break;
7183       reloc_status = Reloc::template rela_ua<16>(
7184 	view, object, psymval, addend, reloc_property);
7185       break;
7186 
7187     case elfcpp::R_AARCH64_PREL64:
7188       reloc_status = Reloc::template pcrela_ua<64>(
7189 	view, object, psymval, addend, address, reloc_property);
7190       break;
7191 
7192     case elfcpp::R_AARCH64_PREL32:
7193       reloc_status = Reloc::template pcrela_ua<32>(
7194 	view, object, psymval, addend, address, reloc_property);
7195       break;
7196 
7197     case elfcpp::R_AARCH64_PREL16:
7198       reloc_status = Reloc::template pcrela_ua<16>(
7199 	view, object, psymval, addend, address, reloc_property);
7200       break;
7201 
7202     case elfcpp::R_AARCH64_MOVW_UABS_G0:
7203     case elfcpp::R_AARCH64_MOVW_UABS_G0_NC:
7204     case elfcpp::R_AARCH64_MOVW_UABS_G1:
7205     case elfcpp::R_AARCH64_MOVW_UABS_G1_NC:
7206     case elfcpp::R_AARCH64_MOVW_UABS_G2:
7207     case elfcpp::R_AARCH64_MOVW_UABS_G2_NC:
7208     case elfcpp::R_AARCH64_MOVW_UABS_G3:
7209       reloc_status = Reloc::template rela_general<32>(
7210 	view, object, psymval, addend, reloc_property);
7211       break;
7212     case elfcpp::R_AARCH64_MOVW_SABS_G0:
7213     case elfcpp::R_AARCH64_MOVW_SABS_G1:
7214     case elfcpp::R_AARCH64_MOVW_SABS_G2:
7215       reloc_status = Reloc::movnz(view, psymval->value(object, addend),
7216 				  reloc_property);
7217       break;
7218 
7219     case elfcpp::R_AARCH64_LD_PREL_LO19:
7220       reloc_status = Reloc::template pcrela_general<32>(
7221 	  view, object, psymval, addend, address, reloc_property);
7222       break;
7223 
7224     case elfcpp::R_AARCH64_ADR_PREL_LO21:
7225       reloc_status = Reloc::adr(view, object, psymval, addend,
7226 				address, reloc_property);
7227       break;
7228 
7229     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC:
7230     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:
7231       reloc_status = Reloc::adrp(view, object, psymval, addend, address,
7232 				 reloc_property);
7233       break;
7234 
7235     case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC:
7236     case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC:
7237     case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC:
7238     case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC:
7239     case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC:
7240     case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:
7241       reloc_status = Reloc::template rela_general<32>(
7242 	view, object, psymval, addend, reloc_property);
7243       break;
7244 
7245     case elfcpp::R_AARCH64_CALL26:
7246       if (this->skip_call_tls_get_addr_)
7247 	{
7248 	  // Double check that the TLSGD insn has been optimized away.
7249 	  typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7250 	  Insntype insn = elfcpp::Swap<32, big_endian>::readval(
7251 	      reinterpret_cast<Insntype*>(view));
7252 	  gold_assert((insn & 0xff000000) == 0x91000000);
7253 
7254 	  reloc_status = Reloc::STATUS_OKAY;
7255 	  this->skip_call_tls_get_addr_ = false;
7256 	  // Return false to stop further processing this reloc.
7257 	  return false;
7258 	}
7259       // Fall through.
7260     case elfcpp::R_AARCH64_JUMP26:
7261       if (Reloc::maybe_apply_stub(r_type, relinfo, rela, view, address,
7262 				  gsym, psymval, object,
7263 				  target->stub_group_size_))
7264 	break;
7265       // Fall through.
7266     case elfcpp::R_AARCH64_TSTBR14:
7267     case elfcpp::R_AARCH64_CONDBR19:
7268       reloc_status = Reloc::template pcrela_general<32>(
7269 	view, object, psymval, addend, address, reloc_property);
7270       break;
7271 
7272     case elfcpp::R_AARCH64_ADR_GOT_PAGE:
7273       gold_assert(have_got_offset);
7274       value = target->got_->address() + got_base + got_offset;
7275       reloc_status = Reloc::adrp(view, value + addend, address);
7276       break;
7277 
7278     case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
7279       gold_assert(have_got_offset);
7280       value = target->got_->address() + got_base + got_offset;
7281       reloc_status = Reloc::template rela_general<32>(
7282 	view, value, addend, reloc_property);
7283       break;
7284 
7285     case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
7286       {
7287 	gold_assert(have_got_offset);
7288 	value = target->got_->address() + got_base + got_offset + addend -
7289 	  Reloc::Page(target->got_->address() + got_base);
7290 	if ((value & 7) != 0)
7291 	  reloc_status = Reloc::STATUS_OVERFLOW;
7292 	else
7293 	  reloc_status = Reloc::template reloc_common<32>(
7294 	    view, value, reloc_property);
7295 	break;
7296       }
7297 
7298     case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
7299     case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
7300     case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
7301     case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
7302     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
7303     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7304     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
7305     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
7306     case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7307     case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7308     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
7309     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
7310     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7311     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
7312     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
7313     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
7314     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
7315     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
7316     case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12:
7317     case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
7318     case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12:
7319     case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
7320     case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12:
7321     case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
7322     case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12:
7323     case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
7324     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7325     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7326     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7327     case elfcpp::R_AARCH64_TLSDESC_CALL:
7328       reloc_status = relocate_tls(relinfo, target, relnum, rela, r_type,
7329 				  gsym, psymval, view, address);
7330       break;
7331 
7332     // These are dynamic relocations, which are unexpected when linking.
7333     case elfcpp::R_AARCH64_COPY:
7334     case elfcpp::R_AARCH64_GLOB_DAT:
7335     case elfcpp::R_AARCH64_JUMP_SLOT:
7336     case elfcpp::R_AARCH64_RELATIVE:
7337     case elfcpp::R_AARCH64_IRELATIVE:
7338     case elfcpp::R_AARCH64_TLS_DTPREL64:
7339     case elfcpp::R_AARCH64_TLS_DTPMOD64:
7340     case elfcpp::R_AARCH64_TLS_TPREL64:
7341     case elfcpp::R_AARCH64_TLSDESC:
7342       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7343 			     _("unexpected reloc %u in object file"),
7344 			     r_type);
7345       break;
7346 
7347     default:
7348       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7349 			     _("unsupported reloc %s"),
7350 			     reloc_property->name().c_str());
7351       break;
7352     }
7353 
7354   // Report any errors.
7355   switch (reloc_status)
7356     {
7357     case Reloc::STATUS_OKAY:
7358       break;
7359     case Reloc::STATUS_OVERFLOW:
7360       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7361 			     _("relocation overflow in %s"),
7362 			     reloc_property->name().c_str());
7363       break;
7364     case Reloc::STATUS_BAD_RELOC:
7365       gold_error_at_location(
7366 	  relinfo,
7367 	  relnum,
7368 	  rela.get_r_offset(),
7369 	  _("unexpected opcode while processing relocation %s"),
7370 	  reloc_property->name().c_str());
7371       break;
7372     default:
7373       gold_unreachable();
7374     }
7375 
7376   return true;
7377 }
7378 
7379 
7380 template<int size, bool big_endian>
7381 inline
7382 typename AArch64_relocate_functions<size, big_endian>::Status
relocate_tls(const Relocate_info<size,big_endian> * relinfo,Target_aarch64<size,big_endian> * target,size_t relnum,const elfcpp::Rela<size,big_endian> & rela,unsigned int r_type,const Sized_symbol<size> * gsym,const Symbol_value<size> * psymval,unsigned char * view,typename elfcpp::Elf_types<size>::Elf_Addr address)7383 Target_aarch64<size, big_endian>::Relocate::relocate_tls(
7384     const Relocate_info<size, big_endian>* relinfo,
7385     Target_aarch64<size, big_endian>* target,
7386     size_t relnum,
7387     const elfcpp::Rela<size, big_endian>& rela,
7388     unsigned int r_type, const Sized_symbol<size>* gsym,
7389     const Symbol_value<size>* psymval,
7390     unsigned char* view,
7391     typename elfcpp::Elf_types<size>::Elf_Addr address)
7392 {
7393   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7394   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7395 
7396   Output_segment* tls_segment = relinfo->layout->tls_segment();
7397   const elfcpp::Elf_Xword addend = rela.get_r_addend();
7398   const AArch64_reloc_property* reloc_property =
7399       aarch64_reloc_property_table->get_reloc_property(r_type);
7400   gold_assert(reloc_property != NULL);
7401 
7402   const bool is_final = (gsym == NULL
7403 			 ? !parameters->options().shared()
7404 			 : gsym->final_value_is_known());
7405   tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
7406       optimize_tls_reloc(is_final, r_type);
7407 
7408   Sized_relobj_file<size, big_endian>* object = relinfo->object;
7409   int tls_got_offset_type;
7410   switch (r_type)
7411     {
7412     case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
7413     case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:  // Global-dynamic
7414       {
7415 	if (tlsopt == tls::TLSOPT_TO_LE)
7416 	  {
7417 	    if (tls_segment == NULL)
7418 	      {
7419 		gold_assert(parameters->errors()->error_count() > 0
7420 			    || issue_undefined_symbol_error(gsym));
7421 		return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7422 	      }
7423 	    return tls_gd_to_le(relinfo, target, rela, r_type, view,
7424 				psymval);
7425 	  }
7426 	else if (tlsopt == tls::TLSOPT_NONE)
7427 	  {
7428 	    tls_got_offset_type = GOT_TYPE_TLS_PAIR;
7429 	    // Firstly get the address for the got entry.
7430 	    typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7431 	    if (gsym != NULL)
7432 	      {
7433 		gold_assert(gsym->has_got_offset(tls_got_offset_type));
7434 		got_entry_address = target->got_->address() +
7435 				    gsym->got_offset(tls_got_offset_type);
7436 	      }
7437 	    else
7438 	      {
7439 		unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7440 		gold_assert(
7441 		  object->local_has_got_offset(r_sym, tls_got_offset_type));
7442 		got_entry_address = target->got_->address() +
7443 		  object->local_got_offset(r_sym, tls_got_offset_type);
7444 	      }
7445 
7446 	    // Relocate the address into adrp/ld, adrp/add pair.
7447 	    switch (r_type)
7448 	      {
7449 	      case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
7450 		return aarch64_reloc_funcs::adrp(
7451 		  view, got_entry_address + addend, address);
7452 
7453 		break;
7454 
7455 	      case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
7456 		return aarch64_reloc_funcs::template rela_general<32>(
7457 		  view, got_entry_address, addend, reloc_property);
7458 		break;
7459 
7460 	      default:
7461 		gold_unreachable();
7462 	      }
7463 	  }
7464 	gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7465 			       _("unsupported gd_to_ie relaxation on %u"),
7466 			       r_type);
7467       }
7468       break;
7469 
7470     case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
7471     case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:  // Local-dynamic
7472       {
7473 	if (tlsopt == tls::TLSOPT_TO_LE)
7474 	  {
7475 	    if (tls_segment == NULL)
7476 	      {
7477 		gold_assert(parameters->errors()->error_count() > 0
7478 			    || issue_undefined_symbol_error(gsym));
7479 		return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7480 	      }
7481 	    return this->tls_ld_to_le(relinfo, target, rela, r_type, view,
7482 				      psymval);
7483 	  }
7484 
7485 	gold_assert(tlsopt == tls::TLSOPT_NONE);
7486 	// Relocate the field with the offset of the GOT entry for
7487 	// the module index.
7488 	typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7489 	got_entry_address = (target->got_mod_index_entry(NULL, NULL, NULL) +
7490 			     target->got_->address());
7491 
7492 	switch (r_type)
7493 	  {
7494 	  case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
7495 	    return aarch64_reloc_funcs::adrp(
7496 	      view, got_entry_address + addend, address);
7497 	    break;
7498 
7499 	  case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
7500 	    return aarch64_reloc_funcs::template rela_general<32>(
7501 	      view, got_entry_address, addend, reloc_property);
7502 	    break;
7503 
7504 	  default:
7505 	    gold_unreachable();
7506 	  }
7507       }
7508       break;
7509 
7510     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
7511     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7512     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
7513     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:  // Other local-dynamic
7514       {
7515 	AArch64_address value = psymval->value(object, 0);
7516 	if (tlsopt == tls::TLSOPT_TO_LE)
7517 	  {
7518 	    if (tls_segment == NULL)
7519 	      {
7520 		gold_assert(parameters->errors()->error_count() > 0
7521 			    || issue_undefined_symbol_error(gsym));
7522 		return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7523 	      }
7524 	  }
7525 	switch (r_type)
7526 	  {
7527 	  case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
7528 	    return aarch64_reloc_funcs::movnz(view, value + addend,
7529 					      reloc_property);
7530 	    break;
7531 
7532 	  case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7533 	  case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
7534 	  case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
7535 	    return aarch64_reloc_funcs::template rela_general<32>(
7536 		view, value, addend, reloc_property);
7537 	    break;
7538 
7539 	  default:
7540 	    gold_unreachable();
7541 	  }
7542 	// We should never reach here.
7543       }
7544       break;
7545 
7546     case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7547     case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:  // Initial-exec
7548       {
7549 	if (tlsopt == tls::TLSOPT_TO_LE)
7550 	  {
7551 	    if (tls_segment == NULL)
7552 	      {
7553 		gold_assert(parameters->errors()->error_count() > 0
7554 			    || issue_undefined_symbol_error(gsym));
7555 		return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7556 	      }
7557 	    return tls_ie_to_le(relinfo, target, rela, r_type, view,
7558 				psymval);
7559 	  }
7560 	tls_got_offset_type = GOT_TYPE_TLS_OFFSET;
7561 
7562 	// Firstly get the address for the got entry.
7563 	typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7564 	if (gsym != NULL)
7565 	  {
7566 	    gold_assert(gsym->has_got_offset(tls_got_offset_type));
7567 	    got_entry_address = target->got_->address() +
7568 				gsym->got_offset(tls_got_offset_type);
7569 	  }
7570 	else
7571 	  {
7572 	    unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7573 	    gold_assert(
7574 		object->local_has_got_offset(r_sym, tls_got_offset_type));
7575 	    got_entry_address = target->got_->address() +
7576 		object->local_got_offset(r_sym, tls_got_offset_type);
7577 	  }
7578 	// Relocate the address into adrp/ld, adrp/add pair.
7579 	switch (r_type)
7580 	  {
7581 	  case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7582 	    return aarch64_reloc_funcs::adrp(view, got_entry_address + addend,
7583 					     address);
7584 	    break;
7585 	  case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7586 	    return aarch64_reloc_funcs::template rela_general<32>(
7587 	      view, got_entry_address, addend, reloc_property);
7588 	  default:
7589 	    gold_unreachable();
7590 	  }
7591       }
7592       // We shall never reach here.
7593       break;
7594 
7595     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
7596     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
7597     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7598     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
7599     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
7600     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
7601     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
7602     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
7603     case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12:
7604     case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
7605     case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12:
7606     case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
7607     case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12:
7608     case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
7609     case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12:
7610     case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
7611       {
7612 	gold_assert(tls_segment != NULL);
7613 	AArch64_address value = psymval->value(object, 0);
7614 
7615 	if (!parameters->options().shared())
7616 	  {
7617 	    AArch64_address aligned_tcb_size =
7618 		align_address(target->tcb_size(),
7619 			      tls_segment->maximum_alignment());
7620 	    value += aligned_tcb_size;
7621 	    switch (r_type)
7622 	      {
7623 	      case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
7624 	      case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
7625 	      case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
7626 		return aarch64_reloc_funcs::movnz(view, value + addend,
7627 						  reloc_property);
7628 	      default:
7629 		return aarch64_reloc_funcs::template
7630 		  rela_general<32>(view,
7631 				   value,
7632 				   addend,
7633 				   reloc_property);
7634 	      }
7635 	  }
7636 	else
7637 	  gold_error(_("%s: unsupported reloc %u "
7638 		       "in non-static TLSLE mode."),
7639 		     object->name().c_str(), r_type);
7640       }
7641       break;
7642 
7643     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7644     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7645     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7646     case elfcpp::R_AARCH64_TLSDESC_CALL:
7647       {
7648 	if (tlsopt == tls::TLSOPT_TO_LE)
7649 	  {
7650 	    if (tls_segment == NULL)
7651 	      {
7652 		gold_assert(parameters->errors()->error_count() > 0
7653 			    || issue_undefined_symbol_error(gsym));
7654 		return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7655 	      }
7656 	    return tls_desc_gd_to_le(relinfo, target, rela, r_type,
7657 				     view, psymval);
7658 	  }
7659 	else
7660 	  {
7661 	    tls_got_offset_type = (tlsopt == tls::TLSOPT_TO_IE
7662 				   ? GOT_TYPE_TLS_OFFSET
7663 				   : GOT_TYPE_TLS_DESC);
7664 	    int got_tlsdesc_offset = 0;
7665 	    if (r_type != elfcpp::R_AARCH64_TLSDESC_CALL
7666 		&& tlsopt == tls::TLSOPT_NONE)
7667 	      {
7668 		// We created GOT entries in the .got.tlsdesc portion of the
7669 		// .got.plt section, but the offset stored in the symbol is the
7670 		// offset within .got.tlsdesc.
7671 		got_tlsdesc_offset = (target->got_tlsdesc_->address()
7672 				      - target->got_->address());
7673 	      }
7674 	    typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7675 	    if (gsym != NULL)
7676 	      {
7677 		gold_assert(gsym->has_got_offset(tls_got_offset_type));
7678 		got_entry_address = target->got_->address()
7679 				    + got_tlsdesc_offset
7680 				    + gsym->got_offset(tls_got_offset_type);
7681 	      }
7682 	    else
7683 	      {
7684 		unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7685 		gold_assert(
7686 		    object->local_has_got_offset(r_sym, tls_got_offset_type));
7687 		got_entry_address = target->got_->address() +
7688 		  got_tlsdesc_offset +
7689 		  object->local_got_offset(r_sym, tls_got_offset_type);
7690 	      }
7691 	    if (tlsopt == tls::TLSOPT_TO_IE)
7692 	      {
7693 		return tls_desc_gd_to_ie(relinfo, target, rela, r_type,
7694 					 view, psymval, got_entry_address,
7695 					 address);
7696 	      }
7697 
7698 	    // Now do tlsdesc relocation.
7699 	    switch (r_type)
7700 	      {
7701 	      case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7702 		return aarch64_reloc_funcs::adrp(view,
7703 						 got_entry_address + addend,
7704 						 address);
7705 		break;
7706 	      case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7707 	      case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7708 		return aarch64_reloc_funcs::template rela_general<32>(
7709 		  view, got_entry_address, addend, reloc_property);
7710 		break;
7711 	      case elfcpp::R_AARCH64_TLSDESC_CALL:
7712 		return aarch64_reloc_funcs::STATUS_OKAY;
7713 		break;
7714 	      default:
7715 		gold_unreachable();
7716 	      }
7717 	  }
7718 	}
7719       break;
7720 
7721     default:
7722       gold_error(_("%s: unsupported TLS reloc %u."),
7723 		 object->name().c_str(), r_type);
7724     }
7725   return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7726 }  // End of relocate_tls.
7727 
7728 
7729 template<int size, bool big_endian>
7730 inline
7731 typename AArch64_relocate_functions<size, big_endian>::Status
tls_gd_to_le(const Relocate_info<size,big_endian> * relinfo,Target_aarch64<size,big_endian> * target,const elfcpp::Rela<size,big_endian> & rela,unsigned int r_type,unsigned char * view,const Symbol_value<size> * psymval)7732 Target_aarch64<size, big_endian>::Relocate::tls_gd_to_le(
7733 	     const Relocate_info<size, big_endian>* relinfo,
7734 	     Target_aarch64<size, big_endian>* target,
7735 	     const elfcpp::Rela<size, big_endian>& rela,
7736 	     unsigned int r_type,
7737 	     unsigned char* view,
7738 	     const Symbol_value<size>* psymval)
7739 {
7740   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7741   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7742   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7743 
7744   Insntype* ip = reinterpret_cast<Insntype*>(view);
7745   Insntype insn1 = elfcpp::Swap<32, big_endian>::readval(ip);
7746   Insntype insn2 = elfcpp::Swap<32, big_endian>::readval(ip + 1);
7747   Insntype insn3 = elfcpp::Swap<32, big_endian>::readval(ip + 2);
7748 
7749   if (r_type == elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC)
7750     {
7751       // This is the 2nd relocs, optimization should already have been
7752       // done.
7753       gold_assert((insn1 & 0xfff00000) == 0x91400000);
7754       return aarch64_reloc_funcs::STATUS_OKAY;
7755     }
7756 
7757   // The original sequence is -
7758   //   90000000        adrp    x0, 0 <main>
7759   //   91000000        add     x0, x0, #0x0
7760   //   94000000        bl      0 <__tls_get_addr>
7761   // optimized to sequence -
7762   //   d53bd040        mrs     x0, tpidr_el0
7763   //   91400000        add     x0, x0, #0x0, lsl #12
7764   //   91000000        add     x0, x0, #0x0
7765 
7766   // Unlike tls_ie_to_le, we change the 3 insns in one function call when we
7767   // encounter the first relocation "R_AARCH64_TLSGD_ADR_PAGE21". Because we
7768   // have to change "bl tls_get_addr", which does not have a corresponding tls
7769   // relocation type. So before proceeding, we need to make sure compiler
7770   // does not change the sequence.
7771   if(!(insn1 == 0x90000000      // adrp x0,0
7772        && insn2 == 0x91000000   // add x0, x0, #0x0
7773        && insn3 == 0x94000000)) // bl 0
7774     {
7775       // Ideally we should give up gd_to_le relaxation and do gd access.
7776       // However the gd_to_le relaxation decision has been made early
7777       // in the scan stage, where we did not allocate any GOT entry for
7778       // this symbol. Therefore we have to exit and report error now.
7779       gold_error(_("unexpected reloc insn sequence while relaxing "
7780 		   "tls gd to le for reloc %u."), r_type);
7781       return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7782     }
7783 
7784   // Write new insns.
7785   insn1 = 0xd53bd040;  // mrs x0, tpidr_el0
7786   insn2 = 0x91400000;  // add x0, x0, #0x0, lsl #12
7787   insn3 = 0x91000000;  // add x0, x0, #0x0
7788   elfcpp::Swap<32, big_endian>::writeval(ip, insn1);
7789   elfcpp::Swap<32, big_endian>::writeval(ip + 1, insn2);
7790   elfcpp::Swap<32, big_endian>::writeval(ip + 2, insn3);
7791 
7792   // Calculate tprel value.
7793   Output_segment* tls_segment = relinfo->layout->tls_segment();
7794   gold_assert(tls_segment != NULL);
7795   AArch64_address value = psymval->value(relinfo->object, 0);
7796   const elfcpp::Elf_Xword addend = rela.get_r_addend();
7797   AArch64_address aligned_tcb_size =
7798       align_address(target->tcb_size(), tls_segment->maximum_alignment());
7799   AArch64_address x = value + aligned_tcb_size;
7800 
7801   // After new insns are written, apply TLSLE relocs.
7802   const AArch64_reloc_property* rp1 =
7803       aarch64_reloc_property_table->get_reloc_property(
7804 	  elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12);
7805   const AArch64_reloc_property* rp2 =
7806       aarch64_reloc_property_table->get_reloc_property(
7807 	  elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12);
7808   gold_assert(rp1 != NULL && rp2 != NULL);
7809 
7810   typename aarch64_reloc_funcs::Status s1 =
7811       aarch64_reloc_funcs::template rela_general<32>(view + 4,
7812 						     x,
7813 						     addend,
7814 						     rp1);
7815   if (s1 != aarch64_reloc_funcs::STATUS_OKAY)
7816     return s1;
7817 
7818   typename aarch64_reloc_funcs::Status s2 =
7819       aarch64_reloc_funcs::template rela_general<32>(view + 8,
7820 						     x,
7821 						     addend,
7822 						     rp2);
7823 
7824   this->skip_call_tls_get_addr_ = true;
7825   return s2;
7826 }  // End of tls_gd_to_le
7827 
7828 
7829 template<int size, bool big_endian>
7830 inline
7831 typename AArch64_relocate_functions<size, big_endian>::Status
tls_ld_to_le(const Relocate_info<size,big_endian> * relinfo,Target_aarch64<size,big_endian> * target,const elfcpp::Rela<size,big_endian> & rela,unsigned int r_type,unsigned char * view,const Symbol_value<size> * psymval)7832 Target_aarch64<size, big_endian>::Relocate::tls_ld_to_le(
7833 	     const Relocate_info<size, big_endian>* relinfo,
7834 	     Target_aarch64<size, big_endian>* target,
7835 	     const elfcpp::Rela<size, big_endian>& rela,
7836 	     unsigned int r_type,
7837 	     unsigned char* view,
7838 	     const Symbol_value<size>* psymval)
7839 {
7840   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7841   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7842   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7843 
7844   Insntype* ip = reinterpret_cast<Insntype*>(view);
7845   Insntype insn1 = elfcpp::Swap<32, big_endian>::readval(ip);
7846   Insntype insn2 = elfcpp::Swap<32, big_endian>::readval(ip + 1);
7847   Insntype insn3 = elfcpp::Swap<32, big_endian>::readval(ip + 2);
7848 
7849   if (r_type == elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC)
7850     {
7851       // This is the 2nd relocs, optimization should already have been
7852       // done.
7853       gold_assert((insn1 & 0xfff00000) == 0x91400000);
7854       return aarch64_reloc_funcs::STATUS_OKAY;
7855     }
7856 
7857   // The original sequence is -
7858   //   90000000        adrp    x0, 0 <main>
7859   //   91000000        add     x0, x0, #0x0
7860   //   94000000        bl      0 <__tls_get_addr>
7861   // optimized to sequence -
7862   //   d53bd040        mrs     x0, tpidr_el0
7863   //   91400000        add     x0, x0, #0x0, lsl #12
7864   //   91000000        add     x0, x0, #0x0
7865 
7866   // Unlike tls_ie_to_le, we change the 3 insns in one function call when we
7867   // encounter the first relocation "R_AARCH64_TLSLD_ADR_PAGE21". Because we
7868   // have to change "bl tls_get_addr", which does not have a corresponding tls
7869   // relocation type. So before proceeding, we need to make sure compiler
7870   // does not change the sequence.
7871   if(!(insn1 == 0x90000000      // adrp x0,0
7872        && insn2 == 0x91000000   // add x0, x0, #0x0
7873        && insn3 == 0x94000000)) // bl 0
7874     {
7875       // Ideally we should give up gd_to_le relaxation and do gd access.
7876       // However the gd_to_le relaxation decision has been made early
7877       // in the scan stage, where we did not allocate a GOT entry for
7878       // this symbol. Therefore we have to exit and report an error now.
7879       gold_error(_("unexpected reloc insn sequence while relaxing "
7880 		   "tls gd to le for reloc %u."), r_type);
7881       return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7882     }
7883 
7884   // Write new insns.
7885   insn1 = 0xd53bd040;  // mrs x0, tpidr_el0
7886   insn2 = 0x91400000;  // add x0, x0, #0x0, lsl #12
7887   insn3 = 0x91000000;  // add x0, x0, #0x0
7888   elfcpp::Swap<32, big_endian>::writeval(ip, insn1);
7889   elfcpp::Swap<32, big_endian>::writeval(ip + 1, insn2);
7890   elfcpp::Swap<32, big_endian>::writeval(ip + 2, insn3);
7891 
7892   // Calculate tprel value.
7893   Output_segment* tls_segment = relinfo->layout->tls_segment();
7894   gold_assert(tls_segment != NULL);
7895   AArch64_address value = psymval->value(relinfo->object, 0);
7896   const elfcpp::Elf_Xword addend = rela.get_r_addend();
7897   AArch64_address aligned_tcb_size =
7898       align_address(target->tcb_size(), tls_segment->maximum_alignment());
7899   AArch64_address x = value + aligned_tcb_size;
7900 
7901   // After new insns are written, apply TLSLE relocs.
7902   const AArch64_reloc_property* rp1 =
7903       aarch64_reloc_property_table->get_reloc_property(
7904 	  elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12);
7905   const AArch64_reloc_property* rp2 =
7906       aarch64_reloc_property_table->get_reloc_property(
7907 	  elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12);
7908   gold_assert(rp1 != NULL && rp2 != NULL);
7909 
7910   typename aarch64_reloc_funcs::Status s1 =
7911       aarch64_reloc_funcs::template rela_general<32>(view + 4,
7912 						     x,
7913 						     addend,
7914 						     rp1);
7915   if (s1 != aarch64_reloc_funcs::STATUS_OKAY)
7916     return s1;
7917 
7918   typename aarch64_reloc_funcs::Status s2 =
7919       aarch64_reloc_funcs::template rela_general<32>(view + 8,
7920 						     x,
7921 						     addend,
7922 						     rp2);
7923 
7924   this->skip_call_tls_get_addr_ = true;
7925   return s2;
7926 
7927 }  // End of tls_ld_to_le
7928 
7929 template<int size, bool big_endian>
7930 inline
7931 typename AArch64_relocate_functions<size, big_endian>::Status
tls_ie_to_le(const Relocate_info<size,big_endian> * relinfo,Target_aarch64<size,big_endian> * target,const elfcpp::Rela<size,big_endian> & rela,unsigned int r_type,unsigned char * view,const Symbol_value<size> * psymval)7932 Target_aarch64<size, big_endian>::Relocate::tls_ie_to_le(
7933 	     const Relocate_info<size, big_endian>* relinfo,
7934 	     Target_aarch64<size, big_endian>* target,
7935 	     const elfcpp::Rela<size, big_endian>& rela,
7936 	     unsigned int r_type,
7937 	     unsigned char* view,
7938 	     const Symbol_value<size>* psymval)
7939 {
7940   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7941   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7942   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7943 
7944   AArch64_address value = psymval->value(relinfo->object, 0);
7945   Output_segment* tls_segment = relinfo->layout->tls_segment();
7946   AArch64_address aligned_tcb_address =
7947       align_address(target->tcb_size(), tls_segment->maximum_alignment());
7948   const elfcpp::Elf_Xword addend = rela.get_r_addend();
7949   AArch64_address x = value + addend + aligned_tcb_address;
7950   // "x" is the offset to tp, we can only do this if x is within
7951   // range [0, 2^32-1]
7952   if (!(size == 32 || (size == 64 && (static_cast<uint64_t>(x) >> 32) == 0)))
7953     {
7954       gold_error(_("TLS variable referred by reloc %u is too far from TP."),
7955 		 r_type);
7956       return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7957     }
7958 
7959   Insntype* ip = reinterpret_cast<Insntype*>(view);
7960   Insntype insn = elfcpp::Swap<32, big_endian>::readval(ip);
7961   unsigned int regno;
7962   Insntype newinsn;
7963   if (r_type == elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21)
7964     {
7965       // Generate movz.
7966       regno = (insn & 0x1f);
7967       newinsn = (0xd2a00000 | regno) | (((x >> 16) & 0xffff) << 5);
7968     }
7969   else if (r_type == elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC)
7970     {
7971       // Generate movk.
7972       regno = (insn & 0x1f);
7973       gold_assert(regno == ((insn >> 5) & 0x1f));
7974       newinsn = (0xf2800000 | regno) | ((x & 0xffff) << 5);
7975     }
7976   else
7977     gold_unreachable();
7978 
7979   elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
7980   return aarch64_reloc_funcs::STATUS_OKAY;
7981 }  // End of tls_ie_to_le
7982 
7983 
7984 template<int size, bool big_endian>
7985 inline
7986 typename AArch64_relocate_functions<size, big_endian>::Status
tls_desc_gd_to_le(const Relocate_info<size,big_endian> * relinfo,Target_aarch64<size,big_endian> * target,const elfcpp::Rela<size,big_endian> & rela,unsigned int r_type,unsigned char * view,const Symbol_value<size> * psymval)7987 Target_aarch64<size, big_endian>::Relocate::tls_desc_gd_to_le(
7988 	     const Relocate_info<size, big_endian>* relinfo,
7989 	     Target_aarch64<size, big_endian>* target,
7990 	     const elfcpp::Rela<size, big_endian>& rela,
7991 	     unsigned int r_type,
7992 	     unsigned char* view,
7993 	     const Symbol_value<size>* psymval)
7994 {
7995   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7996   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7997   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7998 
7999   // TLSDESC-GD sequence is like:
8000   //   adrp  x0, :tlsdesc:v1
8001   //   ldr   x1, [x0, #:tlsdesc_lo12:v1]
8002   //   add   x0, x0, :tlsdesc_lo12:v1
8003   //   .tlsdesccall    v1
8004   //   blr   x1
8005   // After desc_gd_to_le optimization, the sequence will be like:
8006   //   movz  x0, #0x0, lsl #16
8007   //   movk  x0, #0x10
8008   //   nop
8009   //   nop
8010 
8011   // Calculate tprel value.
8012   Output_segment* tls_segment = relinfo->layout->tls_segment();
8013   gold_assert(tls_segment != NULL);
8014   Insntype* ip = reinterpret_cast<Insntype*>(view);
8015   const elfcpp::Elf_Xword addend = rela.get_r_addend();
8016   AArch64_address value = psymval->value(relinfo->object, addend);
8017   AArch64_address aligned_tcb_size =
8018       align_address(target->tcb_size(), tls_segment->maximum_alignment());
8019   AArch64_address x = value + aligned_tcb_size;
8020   // x is the offset to tp, we can only do this if x is within range
8021   // [0, 2^32-1]. If x is out of range, fail and exit.
8022   if (size == 64 && (static_cast<uint64_t>(x) >> 32) != 0)
8023     {
8024       gold_error(_("TLS variable referred by reloc %u is too far from TP. "
8025 		   "We Can't do gd_to_le relaxation.\n"), r_type);
8026       return aarch64_reloc_funcs::STATUS_BAD_RELOC;
8027     }
8028   Insntype newinsn;
8029   switch (r_type)
8030     {
8031     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
8032     case elfcpp::R_AARCH64_TLSDESC_CALL:
8033       // Change to nop
8034       newinsn = 0xd503201f;
8035       break;
8036 
8037     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
8038       // Change to movz.
8039       newinsn = 0xd2a00000 | (((x >> 16) & 0xffff) << 5);
8040       break;
8041 
8042     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
8043       // Change to movk.
8044       newinsn = 0xf2800000 | ((x & 0xffff) << 5);
8045       break;
8046 
8047     default:
8048       gold_error(_("unsupported tlsdesc gd_to_le optimization on reloc %u"),
8049 		 r_type);
8050       gold_unreachable();
8051     }
8052   elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
8053   return aarch64_reloc_funcs::STATUS_OKAY;
8054 }  // End of tls_desc_gd_to_le
8055 
8056 
8057 template<int size, bool big_endian>
8058 inline
8059 typename AArch64_relocate_functions<size, big_endian>::Status
tls_desc_gd_to_ie(const Relocate_info<size,big_endian> *,Target_aarch64<size,big_endian> *,const elfcpp::Rela<size,big_endian> & rela,unsigned int r_type,unsigned char * view,const Symbol_value<size> *,typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address,typename elfcpp::Elf_types<size>::Elf_Addr address)8060 Target_aarch64<size, big_endian>::Relocate::tls_desc_gd_to_ie(
8061 	     const Relocate_info<size, big_endian>* /* relinfo */,
8062 	     Target_aarch64<size, big_endian>* /* target */,
8063 	     const elfcpp::Rela<size, big_endian>& rela,
8064 	     unsigned int r_type,
8065 	     unsigned char* view,
8066 	     const Symbol_value<size>* /* psymval */,
8067 	     typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address,
8068 	     typename elfcpp::Elf_types<size>::Elf_Addr address)
8069 {
8070   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
8071   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
8072 
8073   // TLSDESC-GD sequence is like:
8074   //   adrp  x0, :tlsdesc:v1
8075   //   ldr   x1, [x0, #:tlsdesc_lo12:v1]
8076   //   add   x0, x0, :tlsdesc_lo12:v1
8077   //   .tlsdesccall    v1
8078   //   blr   x1
8079   // After desc_gd_to_ie optimization, the sequence will be like:
8080   //   adrp  x0, :tlsie:v1
8081   //   ldr   x0, [x0, :tlsie_lo12:v1]
8082   //   nop
8083   //   nop
8084 
8085   Insntype* ip = reinterpret_cast<Insntype*>(view);
8086   const elfcpp::Elf_Xword addend = rela.get_r_addend();
8087   Insntype newinsn;
8088   switch (r_type)
8089     {
8090     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
8091     case elfcpp::R_AARCH64_TLSDESC_CALL:
8092       // Change to nop
8093       newinsn = 0xd503201f;
8094       elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
8095       break;
8096 
8097     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
8098       {
8099 	return aarch64_reloc_funcs::adrp(view, got_entry_address + addend,
8100 					 address);
8101       }
8102       break;
8103 
8104     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
8105       {
8106        // Set ldr target register to be x0.
8107        Insntype insn = elfcpp::Swap<32, big_endian>::readval(ip);
8108        insn &= 0xffffffe0;
8109        elfcpp::Swap<32, big_endian>::writeval(ip, insn);
8110        // Do relocation.
8111 	const AArch64_reloc_property* reloc_property =
8112 	    aarch64_reloc_property_table->get_reloc_property(
8113 	      elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
8114 	return aarch64_reloc_funcs::template rela_general<32>(
8115 		 view, got_entry_address, addend, reloc_property);
8116       }
8117       break;
8118 
8119     default:
8120       gold_error(_("Don't support tlsdesc gd_to_ie optimization on reloc %u"),
8121 		 r_type);
8122       gold_unreachable();
8123     }
8124   return aarch64_reloc_funcs::STATUS_OKAY;
8125 }  // End of tls_desc_gd_to_ie
8126 
8127 // Relocate section data.
8128 
8129 template<int size, bool big_endian>
8130 void
relocate_section(const Relocate_info<size,big_endian> * relinfo,unsigned int sh_type,const unsigned char * prelocs,size_t reloc_count,Output_section * output_section,bool needs_special_offset_handling,unsigned char * view,typename elfcpp::Elf_types<size>::Elf_Addr address,section_size_type view_size,const Reloc_symbol_changes * reloc_symbol_changes)8131 Target_aarch64<size, big_endian>::relocate_section(
8132     const Relocate_info<size, big_endian>* relinfo,
8133     unsigned int sh_type,
8134     const unsigned char* prelocs,
8135     size_t reloc_count,
8136     Output_section* output_section,
8137     bool needs_special_offset_handling,
8138     unsigned char* view,
8139     typename elfcpp::Elf_types<size>::Elf_Addr address,
8140     section_size_type view_size,
8141     const Reloc_symbol_changes* reloc_symbol_changes)
8142 {
8143   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
8144   typedef Target_aarch64<size, big_endian> Aarch64;
8145   typedef typename Target_aarch64<size, big_endian>::Relocate AArch64_relocate;
8146   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8147       Classify_reloc;
8148 
8149   gold_assert(sh_type == elfcpp::SHT_RELA);
8150 
8151   // See if we are relocating a relaxed input section.  If so, the view
8152   // covers the whole output section and we need to adjust accordingly.
8153   if (needs_special_offset_handling)
8154     {
8155       const Output_relaxed_input_section* poris =
8156 	output_section->find_relaxed_input_section(relinfo->object,
8157 						   relinfo->data_shndx);
8158       if (poris != NULL)
8159 	{
8160 	  Address section_address = poris->address();
8161 	  section_size_type section_size = poris->data_size();
8162 
8163 	  gold_assert((section_address >= address)
8164 		      && ((section_address + section_size)
8165 			  <= (address + view_size)));
8166 
8167 	  off_t offset = section_address - address;
8168 	  view += offset;
8169 	  address += offset;
8170 	  view_size = section_size;
8171 	}
8172     }
8173 
8174   gold::relocate_section<size, big_endian, Aarch64, AArch64_relocate,
8175 			 gold::Default_comdat_behavior, Classify_reloc>(
8176     relinfo,
8177     this,
8178     prelocs,
8179     reloc_count,
8180     output_section,
8181     needs_special_offset_handling,
8182     view,
8183     address,
8184     view_size,
8185     reloc_symbol_changes);
8186 }
8187 
8188 // Scan the relocs during a relocatable link.
8189 
8190 template<int size, bool big_endian>
8191 void
scan_relocatable_relocs(Symbol_table * symtab,Layout * layout,Sized_relobj_file<size,big_endian> * object,unsigned int data_shndx,unsigned int sh_type,const unsigned char * prelocs,size_t reloc_count,Output_section * output_section,bool needs_special_offset_handling,size_t local_symbol_count,const unsigned char * plocal_symbols,Relocatable_relocs * rr)8192 Target_aarch64<size, big_endian>::scan_relocatable_relocs(
8193     Symbol_table* symtab,
8194     Layout* layout,
8195     Sized_relobj_file<size, big_endian>* object,
8196     unsigned int data_shndx,
8197     unsigned int sh_type,
8198     const unsigned char* prelocs,
8199     size_t reloc_count,
8200     Output_section* output_section,
8201     bool needs_special_offset_handling,
8202     size_t local_symbol_count,
8203     const unsigned char* plocal_symbols,
8204     Relocatable_relocs* rr)
8205 {
8206   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8207       Classify_reloc;
8208   typedef gold::Default_scan_relocatable_relocs<Classify_reloc>
8209       Scan_relocatable_relocs;
8210 
8211   gold_assert(sh_type == elfcpp::SHT_RELA);
8212 
8213   gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
8214     symtab,
8215     layout,
8216     object,
8217     data_shndx,
8218     prelocs,
8219     reloc_count,
8220     output_section,
8221     needs_special_offset_handling,
8222     local_symbol_count,
8223     plocal_symbols,
8224     rr);
8225 }
8226 
8227 // Scan the relocs for --emit-relocs.
8228 
8229 template<int size, bool big_endian>
8230 void
emit_relocs_scan(Symbol_table * symtab,Layout * layout,Sized_relobj_file<size,big_endian> * object,unsigned int data_shndx,unsigned int sh_type,const unsigned char * prelocs,size_t reloc_count,Output_section * output_section,bool needs_special_offset_handling,size_t local_symbol_count,const unsigned char * plocal_syms,Relocatable_relocs * rr)8231 Target_aarch64<size, big_endian>::emit_relocs_scan(
8232     Symbol_table* symtab,
8233     Layout* layout,
8234     Sized_relobj_file<size, big_endian>* object,
8235     unsigned int data_shndx,
8236     unsigned int sh_type,
8237     const unsigned char* prelocs,
8238     size_t reloc_count,
8239     Output_section* output_section,
8240     bool needs_special_offset_handling,
8241     size_t local_symbol_count,
8242     const unsigned char* plocal_syms,
8243     Relocatable_relocs* rr)
8244 {
8245   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8246       Classify_reloc;
8247   typedef gold::Default_emit_relocs_strategy<Classify_reloc>
8248       Emit_relocs_strategy;
8249 
8250   gold_assert(sh_type == elfcpp::SHT_RELA);
8251 
8252   gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
8253     symtab,
8254     layout,
8255     object,
8256     data_shndx,
8257     prelocs,
8258     reloc_count,
8259     output_section,
8260     needs_special_offset_handling,
8261     local_symbol_count,
8262     plocal_syms,
8263     rr);
8264 }
8265 
8266 // Relocate a section during a relocatable link.
8267 
8268 template<int size, bool big_endian>
8269 void
relocate_relocs(const Relocate_info<size,big_endian> * relinfo,unsigned int sh_type,const unsigned char * prelocs,size_t reloc_count,Output_section * output_section,typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,unsigned char * view,typename elfcpp::Elf_types<size>::Elf_Addr view_address,section_size_type view_size,unsigned char * reloc_view,section_size_type reloc_view_size)8270 Target_aarch64<size, big_endian>::relocate_relocs(
8271     const Relocate_info<size, big_endian>* relinfo,
8272     unsigned int sh_type,
8273     const unsigned char* prelocs,
8274     size_t reloc_count,
8275     Output_section* output_section,
8276     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
8277     unsigned char* view,
8278     typename elfcpp::Elf_types<size>::Elf_Addr view_address,
8279     section_size_type view_size,
8280     unsigned char* reloc_view,
8281     section_size_type reloc_view_size)
8282 {
8283   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8284       Classify_reloc;
8285 
8286   gold_assert(sh_type == elfcpp::SHT_RELA);
8287 
8288   gold::relocate_relocs<size, big_endian, Classify_reloc>(
8289     relinfo,
8290     prelocs,
8291     reloc_count,
8292     output_section,
8293     offset_in_output_section,
8294     view,
8295     view_address,
8296     view_size,
8297     reloc_view,
8298     reloc_view_size);
8299 }
8300 
8301 
8302 // Return whether this is a 3-insn erratum sequence.
8303 
8304 template<int size, bool big_endian>
8305 bool
is_erratum_843419_sequence(typename elfcpp::Swap<32,big_endian>::Valtype insn1,typename elfcpp::Swap<32,big_endian>::Valtype insn2,typename elfcpp::Swap<32,big_endian>::Valtype insn3)8306 Target_aarch64<size, big_endian>::is_erratum_843419_sequence(
8307     typename elfcpp::Swap<32,big_endian>::Valtype insn1,
8308     typename elfcpp::Swap<32,big_endian>::Valtype insn2,
8309     typename elfcpp::Swap<32,big_endian>::Valtype insn3)
8310 {
8311   unsigned rt1, rt2;
8312   bool load, pair;
8313 
8314   // The 2nd insn is a single register load or store; or register pair
8315   // store.
8316   if (Insn_utilities::aarch64_mem_op_p(insn2, &rt1, &rt2, &pair, &load)
8317       && (!pair || (pair && !load)))
8318     {
8319       // The 3rd insn is a load or store instruction from the "Load/store
8320       // register (unsigned immediate)" encoding class, using Rn as the
8321       // base address register.
8322       if (Insn_utilities::aarch64_ldst_uimm(insn3)
8323 	  && (Insn_utilities::aarch64_rn(insn3)
8324 	      == Insn_utilities::aarch64_rd(insn1)))
8325 	return true;
8326     }
8327   return false;
8328 }
8329 
8330 
8331 // Return whether this is a 835769 sequence.
8332 // (Similarly implemented as in elfnn-aarch64.c.)
8333 
8334 template<int size, bool big_endian>
8335 bool
is_erratum_835769_sequence(typename elfcpp::Swap<32,big_endian>::Valtype insn1,typename elfcpp::Swap<32,big_endian>::Valtype insn2)8336 Target_aarch64<size, big_endian>::is_erratum_835769_sequence(
8337     typename elfcpp::Swap<32,big_endian>::Valtype insn1,
8338     typename elfcpp::Swap<32,big_endian>::Valtype insn2)
8339 {
8340   uint32_t rt;
8341   uint32_t rt2 = 0;
8342   uint32_t rn;
8343   uint32_t rm;
8344   uint32_t ra;
8345   bool pair;
8346   bool load;
8347 
8348   if (Insn_utilities::aarch64_mlxl(insn2)
8349       && Insn_utilities::aarch64_mem_op_p (insn1, &rt, &rt2, &pair, &load))
8350     {
8351       /* Any SIMD memory op is independent of the subsequent MLA
8352 	 by definition of the erratum.  */
8353       if (Insn_utilities::aarch64_bit(insn1, 26))
8354 	return true;
8355 
8356       /* If not SIMD, check for integer memory ops and MLA relationship.  */
8357       rn = Insn_utilities::aarch64_rn(insn2);
8358       ra = Insn_utilities::aarch64_ra(insn2);
8359       rm = Insn_utilities::aarch64_rm(insn2);
8360 
8361       /* If this is a load and there's a true(RAW) dependency, we are safe
8362 	 and this is not an erratum sequence.  */
8363       if (load &&
8364 	  (rt == rn || rt == rm || rt == ra
8365 	   || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
8366 	return false;
8367 
8368       /* We conservatively put out stubs for all other cases (including
8369 	 writebacks).  */
8370       return true;
8371     }
8372 
8373   return false;
8374 }
8375 
8376 
8377 // Helper method to create erratum stub for ST_E_843419 and ST_E_835769.
8378 
8379 template<int size, bool big_endian>
8380 void
create_erratum_stub(AArch64_relobj<size,big_endian> * relobj,unsigned int shndx,section_size_type erratum_insn_offset,Address erratum_address,typename Insn_utilities::Insntype erratum_insn,int erratum_type,unsigned int e843419_adrp_offset)8381 Target_aarch64<size, big_endian>::create_erratum_stub(
8382     AArch64_relobj<size, big_endian>* relobj,
8383     unsigned int shndx,
8384     section_size_type erratum_insn_offset,
8385     Address erratum_address,
8386     typename Insn_utilities::Insntype erratum_insn,
8387     int erratum_type,
8388     unsigned int e843419_adrp_offset)
8389 {
8390   gold_assert(erratum_type == ST_E_843419 || erratum_type == ST_E_835769);
8391   The_stub_table* stub_table = relobj->stub_table(shndx);
8392   gold_assert(stub_table != NULL);
8393   if (stub_table->find_erratum_stub(relobj,
8394 				    shndx,
8395 				    erratum_insn_offset) == NULL)
8396     {
8397       const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
8398       The_erratum_stub* stub;
8399       if (erratum_type == ST_E_835769)
8400 	stub = new The_erratum_stub(relobj, erratum_type, shndx,
8401 				    erratum_insn_offset);
8402       else if (erratum_type == ST_E_843419)
8403 	stub = new E843419_stub<size, big_endian>(
8404 	    relobj, shndx, erratum_insn_offset, e843419_adrp_offset);
8405       else
8406 	gold_unreachable();
8407       stub->set_erratum_insn(erratum_insn);
8408       stub->set_erratum_address(erratum_address);
8409       // For erratum ST_E_843419 and ST_E_835769, the destination address is
8410       // always the next insn after erratum insn.
8411       stub->set_destination_address(erratum_address + BPI);
8412       stub_table->add_erratum_stub(stub);
8413     }
8414 }
8415 
8416 
8417 // Scan erratum for section SHNDX range [output_address + span_start,
8418 // output_address + span_end). Note here we do not share the code with
8419 // scan_erratum_843419_span function, because for 843419 we optimize by only
8420 // scanning the last few insns of a page, whereas for 835769, we need to scan
8421 // every insn.
8422 
8423 template<int size, bool big_endian>
8424 void
scan_erratum_835769_span(AArch64_relobj<size,big_endian> * relobj,unsigned int shndx,const section_size_type span_start,const section_size_type span_end,unsigned char * input_view,Address output_address)8425 Target_aarch64<size, big_endian>::scan_erratum_835769_span(
8426     AArch64_relobj<size, big_endian>*  relobj,
8427     unsigned int shndx,
8428     const section_size_type span_start,
8429     const section_size_type span_end,
8430     unsigned char* input_view,
8431     Address output_address)
8432 {
8433   typedef typename Insn_utilities::Insntype Insntype;
8434 
8435   const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
8436 
8437   // Adjust output_address and view to the start of span.
8438   output_address += span_start;
8439   input_view += span_start;
8440 
8441   section_size_type span_length = span_end - span_start;
8442   section_size_type offset = 0;
8443   for (offset = 0; offset + BPI < span_length; offset += BPI)
8444     {
8445       Insntype* ip = reinterpret_cast<Insntype*>(input_view + offset);
8446       Insntype insn1 = ip[0];
8447       Insntype insn2 = ip[1];
8448       if (is_erratum_835769_sequence(insn1, insn2))
8449 	{
8450 	  Insntype erratum_insn = insn2;
8451 	  // "span_start + offset" is the offset for insn1. So for insn2, it is
8452 	  // "span_start + offset + BPI".
8453 	  section_size_type erratum_insn_offset = span_start + offset + BPI;
8454 	  Address erratum_address = output_address + offset + BPI;
8455 	  gold_info(_("Erratum 835769 found and fixed at \"%s\", "
8456 			 "section %d, offset 0x%08x."),
8457 		       relobj->name().c_str(), shndx,
8458 		       (unsigned int)(span_start + offset));
8459 
8460 	  this->create_erratum_stub(relobj, shndx,
8461 				    erratum_insn_offset, erratum_address,
8462 				    erratum_insn, ST_E_835769);
8463 	  offset += BPI;  // Skip mac insn.
8464 	}
8465     }
8466 }  // End of "Target_aarch64::scan_erratum_835769_span".
8467 
8468 
8469 // Scan erratum for section SHNDX range
8470 // [output_address + span_start, output_address + span_end).
8471 
8472 template<int size, bool big_endian>
8473 void
scan_erratum_843419_span(AArch64_relobj<size,big_endian> * relobj,unsigned int shndx,const section_size_type span_start,const section_size_type span_end,unsigned char * input_view,Address output_address)8474 Target_aarch64<size, big_endian>::scan_erratum_843419_span(
8475     AArch64_relobj<size, big_endian>*  relobj,
8476     unsigned int shndx,
8477     const section_size_type span_start,
8478     const section_size_type span_end,
8479     unsigned char* input_view,
8480     Address output_address)
8481 {
8482   typedef typename Insn_utilities::Insntype Insntype;
8483 
8484   // Adjust output_address and view to the start of span.
8485   output_address += span_start;
8486   input_view += span_start;
8487 
8488   if ((output_address & 0x03) != 0)
8489     return;
8490 
8491   section_size_type offset = 0;
8492   section_size_type span_length = span_end - span_start;
8493   // The first instruction must be ending at 0xFF8 or 0xFFC.
8494   unsigned int page_offset = output_address & 0xFFF;
8495   // Make sure starting position, that is "output_address+offset",
8496   // starts at page position 0xff8 or 0xffc.
8497   if (page_offset < 0xff8)
8498     offset = 0xff8 - page_offset;
8499   while (offset + 3 * Insn_utilities::BYTES_PER_INSN <= span_length)
8500     {
8501       Insntype* ip = reinterpret_cast<Insntype*>(input_view + offset);
8502       Insntype insn1 = ip[0];
8503       if (Insn_utilities::is_adrp(insn1))
8504 	{
8505 	  Insntype insn2 = ip[1];
8506 	  Insntype insn3 = ip[2];
8507 	  Insntype erratum_insn;
8508 	  unsigned insn_offset;
8509 	  bool do_report = false;
8510 	  if (is_erratum_843419_sequence(insn1, insn2, insn3))
8511 	    {
8512 	      do_report = true;
8513 	      erratum_insn = insn3;
8514 	      insn_offset = 2 * Insn_utilities::BYTES_PER_INSN;
8515 	    }
8516 	  else if (offset + 4 * Insn_utilities::BYTES_PER_INSN <= span_length)
8517 	    {
8518 	      // Optionally we can have an insn between ins2 and ins3
8519 	      Insntype insn_opt = ip[2];
8520 	      // And insn_opt must not be a branch.
8521 	      if (!Insn_utilities::aarch64_b(insn_opt)
8522 		  && !Insn_utilities::aarch64_bl(insn_opt)
8523 		  && !Insn_utilities::aarch64_blr(insn_opt)
8524 		  && !Insn_utilities::aarch64_br(insn_opt))
8525 		{
8526 		  // And insn_opt must not write to dest reg in insn1. However
8527 		  // we do a conservative scan, which means we may fix/report
8528 		  // more than necessary, but it doesn't hurt.
8529 
8530 		  Insntype insn4 = ip[3];
8531 		  if (is_erratum_843419_sequence(insn1, insn2, insn4))
8532 		    {
8533 		      do_report = true;
8534 		      erratum_insn = insn4;
8535 		      insn_offset = 3 * Insn_utilities::BYTES_PER_INSN;
8536 		    }
8537 		}
8538 	    }
8539 	  if (do_report)
8540 	    {
8541 	      unsigned int erratum_insn_offset =
8542 		span_start + offset + insn_offset;
8543 	      Address erratum_address =
8544 		output_address + offset + insn_offset;
8545 	      create_erratum_stub(relobj, shndx,
8546 				  erratum_insn_offset, erratum_address,
8547 				  erratum_insn, ST_E_843419,
8548 				  span_start + offset);
8549 	    }
8550 	}
8551 
8552       // Advance to next candidate instruction. We only consider instruction
8553       // sequences starting at a page offset of 0xff8 or 0xffc.
8554       page_offset = (output_address + offset) & 0xfff;
8555       if (page_offset == 0xff8)
8556 	offset += 4;
8557       else  // (page_offset == 0xffc), we move to next page's 0xff8.
8558 	offset += 0xffc;
8559     }
8560 }  // End of "Target_aarch64::scan_erratum_843419_span".
8561 
8562 
8563 // The selector for aarch64 object files.
8564 
8565 template<int size, bool big_endian>
8566 class Target_selector_aarch64 : public Target_selector
8567 {
8568  public:
8569   Target_selector_aarch64();
8570 
8571   virtual Target*
do_instantiate_target()8572   do_instantiate_target()
8573   { return new Target_aarch64<size, big_endian>(); }
8574 };
8575 
8576 template<>
Target_selector_aarch64()8577 Target_selector_aarch64<32, true>::Target_selector_aarch64()
8578   : Target_selector(elfcpp::EM_AARCH64, 32, true,
8579 		    "elf32-bigaarch64", "aarch64_elf32_be_vec")
8580 { }
8581 
8582 template<>
Target_selector_aarch64()8583 Target_selector_aarch64<32, false>::Target_selector_aarch64()
8584   : Target_selector(elfcpp::EM_AARCH64, 32, false,
8585 		    "elf32-littleaarch64", "aarch64_elf32_le_vec")
8586 { }
8587 
8588 template<>
Target_selector_aarch64()8589 Target_selector_aarch64<64, true>::Target_selector_aarch64()
8590   : Target_selector(elfcpp::EM_AARCH64, 64, true,
8591 		    "elf64-bigaarch64", "aarch64_elf64_be_vec")
8592 { }
8593 
8594 template<>
Target_selector_aarch64()8595 Target_selector_aarch64<64, false>::Target_selector_aarch64()
8596   : Target_selector(elfcpp::EM_AARCH64, 64, false,
8597 		    "elf64-littleaarch64", "aarch64_elf64_le_vec")
8598 { }
8599 
8600 Target_selector_aarch64<32, true> target_selector_aarch64elf32b;
8601 Target_selector_aarch64<32, false> target_selector_aarch64elf32;
8602 Target_selector_aarch64<64, true> target_selector_aarch64elfb;
8603 Target_selector_aarch64<64, false> target_selector_aarch64elf;
8604 
8605 } // End anonymous namespace.
8606