1 /* Print VAX instructions.
2    Copyright (C) 1995-2020 Free Software Foundation, Inc.
3    Contributed by Pauline Middelink <middelin@polyware.iaf.nl>
4 
5    This file is part of the GNU opcodes library.
6 
7    This library is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3, or (at your option)
10    any later version.
11 
12    It is distributed in the hope that it will be useful, but WITHOUT
13    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
15    License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program; if not, write to the Free Software
19    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20    MA 02110-1301, USA.  */
21 
22 #include "sysdep.h"
23 #include <setjmp.h>
24 #include <string.h>
25 #include "opcode/vax.h"
26 #include "disassemble.h"
27 
28 static char *reg_names[] =
29 {
30   "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
31   "r8", "r9", "r10", "r11", "ap", "fp", "sp", "pc"
32 };
33 
34 /* Definitions for the function entry mask bits.  */
35 static char *entry_mask_bit[] =
36 {
37   /* Registers 0 and 1 shall not be saved, since they're used to pass back
38      a function's result to its caller...  */
39   "~r0~", "~r1~",
40   /* Registers 2 .. 11 are normal registers.  */
41   "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11",
42   /* Registers 12 and 13 are argument and frame pointer and must not
43      be saved by using the entry mask.  */
44   "~ap~", "~fp~",
45   /* Bits 14 and 15 control integer and decimal overflow.  */
46   "IntOvfl", "DecOvfl",
47 };
48 
49 /* Sign-extend an (unsigned char). */
50 #define COERCE_SIGNED_CHAR(ch) ((signed char)(ch))
51 
52 /* Get a 1 byte signed integer.  */
53 #define NEXTBYTE(p)  \
54   (p += 1, FETCH_DATA (info, p), \
55   COERCE_SIGNED_CHAR(p[-1]))
56 
57 /* Get a 2 byte signed integer.  */
58 #define COERCE16(x) ((int) (((x) ^ 0x8000) - 0x8000))
59 #define NEXTWORD(p)  \
60   (p += 2, FETCH_DATA (info, p), \
61    COERCE16 ((p[-1] << 8) + p[-2]))
62 
63 /* Get a 4 byte signed integer.  */
64 #define COERCE32(x) ((int) (((x) ^ 0x80000000) - 0x80000000))
65 #define NEXTLONG(p)  \
66   (p += 4, FETCH_DATA (info, p), \
67    (COERCE32 (((((((unsigned) p[-1] << 8) + p[-2]) << 8) + p[-3]) << 8) + p[-4])))
68 
69 /* Maximum length of an instruction.  */
70 #define MAXLEN 25
71 
72 struct private
73 {
74   /* Points to first byte not fetched.  */
75   bfd_byte * max_fetched;
76   bfd_byte   the_buffer[MAXLEN];
77   bfd_vma    insn_start;
78   OPCODES_SIGJMP_BUF    bailout;
79 };
80 
81 /* Make sure that bytes from INFO->PRIVATE_DATA->BUFFER (inclusive)
82    to ADDR (exclusive) are valid.  Returns 1 for success, longjmps
83    on error.  */
84 #define FETCH_DATA(info, addr) \
85   ((addr) <= ((struct private *)(info->private_data))->max_fetched \
86    ? 1 : fetch_data ((info), (addr)))
87 
88 static int
fetch_data(struct disassemble_info * info,bfd_byte * addr)89 fetch_data (struct disassemble_info *info, bfd_byte *addr)
90 {
91   int status;
92   struct private *priv = (struct private *) info->private_data;
93   bfd_vma start = priv->insn_start + (priv->max_fetched - priv->the_buffer);
94 
95   status = (*info->read_memory_func) (start,
96 				      priv->max_fetched,
97 				      addr - priv->max_fetched,
98 				      info);
99   if (status != 0)
100     {
101       (*info->memory_error_func) (status, start, info);
102       OPCODES_SIGLONGJMP (priv->bailout, 1);
103     }
104   else
105     priv->max_fetched = addr;
106 
107   return 1;
108 }
109 
110 /* Entry mask handling.  */
111 static unsigned int  entry_addr_occupied_slots = 0;
112 static unsigned int  entry_addr_total_slots = 0;
113 static bfd_vma *     entry_addr = NULL;
114 
115 /* Parse the VAX specific disassembler options.  These contain function
116    entry addresses, which can be useful to disassemble ROM images, since
117    there's no symbol table.  Returns TRUE upon success, FALSE otherwise.  */
118 
119 static bfd_boolean
parse_disassembler_options(const char * options)120 parse_disassembler_options (const char *options)
121 {
122   const char * entry_switch = "entry:";
123 
124   while ((options = strstr (options, entry_switch)))
125     {
126       options += strlen (entry_switch);
127 
128       /* The greater-than part of the test below is paranoia.  */
129       if (entry_addr_occupied_slots >= entry_addr_total_slots)
130 	{
131 	  /* A guesstimate of the number of entries we will have to create.  */
132 	  entry_addr_total_slots +=
133 	    strlen (options) / (strlen (entry_switch) + 5);
134 
135 	  entry_addr = realloc (entry_addr, sizeof (bfd_vma)
136 				* entry_addr_total_slots);
137 	}
138 
139       if (entry_addr == NULL)
140 	return FALSE;
141 
142       entry_addr[entry_addr_occupied_slots] = bfd_scan_vma (options, NULL, 0);
143       entry_addr_occupied_slots ++;
144     }
145 
146   return TRUE;
147 }
148 
149 #if 0 /* FIXME:  Ideally the disassembler should have target specific
150 	 initialisation and termination function pointers.  Then
151 	 parse_disassembler_options could be the init function and
152 	 free_entry_array (below) could be the termination routine.
153 	 Until then there is no way for the disassembler to tell us
154 	 that it has finished and that we no longer need the entry
155 	 array, so this routine is suppressed for now.  It does mean
156 	 that we leak memory, but only to the extent that we do not
157 	 free it just before the disassembler is about to terminate
158 	 anyway.  */
159 
160 /* Free memory allocated to our entry array.  */
161 
162 static void
163 free_entry_array (void)
164 {
165   if (entry_addr)
166     {
167       free (entry_addr);
168       entry_addr = NULL;
169       entry_addr_occupied_slots = entry_addr_total_slots = 0;
170     }
171 }
172 #endif
173 /* Check if the given address is a known function entry point.  This is
174    the case if there is a symbol of the function type at this address.
175    We also check for synthetic symbols as these are used for PLT entries
176    (weak undefined symbols may not have the function type set).  Finally
177    the address may have been forced to be treated as an entry point.  The
178    latter helps in disassembling ROM images, because there's no symbol
179    table at all.  Forced entry points can be given by supplying several
180    -M options to objdump: -M entry:0xffbb7730.  */
181 
182 static bfd_boolean
is_function_entry(struct disassemble_info * info,bfd_vma addr)183 is_function_entry (struct disassemble_info *info, bfd_vma addr)
184 {
185   unsigned int i;
186 
187   /* Check if there's a function or PLT symbol at our address.  */
188   if (info->symbols
189       && info->symbols[0]
190       && (info->symbols[0]->flags & (BSF_FUNCTION | BSF_SYNTHETIC))
191       && addr == bfd_asymbol_value (info->symbols[0]))
192     return TRUE;
193 
194   /* Check for forced function entry address.  */
195   for (i = entry_addr_occupied_slots; i--;)
196     if (entry_addr[i] == addr)
197       return TRUE;
198 
199   return FALSE;
200 }
201 
202 /* Check if the given address is the last longword of a PLT entry.
203    This longword is data and depending on the value it may interfere
204    with disassembly of further PLT entries.  We make use of the fact
205    PLT symbols are marked BSF_SYNTHETIC.  */
206 static bfd_boolean
is_plt_tail(struct disassemble_info * info,bfd_vma addr)207 is_plt_tail (struct disassemble_info *info, bfd_vma addr)
208 {
209   if (info->symbols
210       && info->symbols[0]
211       && (info->symbols[0]->flags & BSF_SYNTHETIC)
212       && addr == bfd_asymbol_value (info->symbols[0]) + 8)
213     return TRUE;
214 
215   return FALSE;
216 }
217 
218 static int
print_insn_mode(const char * d,int size,unsigned char * p0,bfd_vma addr,disassemble_info * info)219 print_insn_mode (const char *d,
220 		 int size,
221 		 unsigned char *p0,
222 		 bfd_vma addr,	/* PC for this arg to be relative to.  */
223 		 disassemble_info *info)
224 {
225   unsigned char *p = p0;
226   unsigned char mode, reg;
227 
228   /* Fetch and interpret mode byte.  */
229   mode = (unsigned char) NEXTBYTE (p);
230   reg = mode & 0xF;
231   switch (mode & 0xF0)
232     {
233     case 0x00:
234     case 0x10:
235     case 0x20:
236     case 0x30: /* Literal mode			$number.  */
237       if (d[1] == 'd' || d[1] == 'f' || d[1] == 'g' || d[1] == 'h')
238 	(*info->fprintf_func) (info->stream, "$0x%x [%c-float]", mode, d[1]);
239       else
240         (*info->fprintf_func) (info->stream, "$0x%x", mode);
241       break;
242     case 0x40: /* Index:			base-addr[Rn] */
243       {
244 	unsigned char *q = p0 + 1;
245 	unsigned char nextmode = NEXTBYTE (q);
246 	if (nextmode < 0x60 || nextmode == 0x8f)
247 	  /* Literal, index, register, or immediate is invalid.  In
248 	     particular don't recurse into another index mode which
249 	     might overflow the_buffer.   */
250 	  (*info->fprintf_func) (info->stream, "[invalid base]");
251 	else
252 	  p += print_insn_mode (d, size, p0 + 1, addr + 1, info);
253 	(*info->fprintf_func) (info->stream, "[%s]", reg_names[reg]);
254       }
255       break;
256     case 0x50: /* Register:			Rn */
257       (*info->fprintf_func) (info->stream, "%s", reg_names[reg]);
258       break;
259     case 0x60: /* Register deferred:		(Rn) */
260       (*info->fprintf_func) (info->stream, "(%s)", reg_names[reg]);
261       break;
262     case 0x70: /* Autodecrement:		-(Rn) */
263       (*info->fprintf_func) (info->stream, "-(%s)", reg_names[reg]);
264       break;
265     case 0x80: /* Autoincrement:		(Rn)+ */
266       if (reg == 0xF)
267 	{	/* Immediate?  */
268 	  int i;
269 
270 	  FETCH_DATA (info, p + size);
271 	  (*info->fprintf_func) (info->stream, "$0x");
272 	  if (d[1] == 'd' || d[1] == 'f' || d[1] == 'g' || d[1] == 'h')
273 	    {
274 	      int float_word;
275 
276 	      float_word = p[0] | (p[1] << 8);
277 	      if ((d[1] == 'd' || d[1] == 'f')
278 		  && (float_word & 0xff80) == 0x8000)
279 		{
280 		  (*info->fprintf_func) (info->stream, "[invalid %c-float]",
281 					 d[1]);
282 		}
283 	      else
284 		{
285 	          for (i = 0; i < size; i++)
286 		    (*info->fprintf_func) (info->stream, "%02x",
287 		                           p[size - i - 1]);
288 	          (*info->fprintf_func) (info->stream, " [%c-float]", d[1]);
289 		}
290 	    }
291 	  else
292 	    {
293 	      for (i = 0; i < size; i++)
294 	        (*info->fprintf_func) (info->stream, "%02x", p[size - i - 1]);
295 	    }
296 	  p += size;
297 	}
298       else
299 	(*info->fprintf_func) (info->stream, "(%s)+", reg_names[reg]);
300       break;
301     case 0x90: /* Autoincrement deferred:	@(Rn)+ */
302       if (reg == 0xF)
303 	(*info->fprintf_func) (info->stream, "*0x%x", NEXTLONG (p));
304       else
305 	(*info->fprintf_func) (info->stream, "@(%s)+", reg_names[reg]);
306       break;
307     case 0xB0: /* Displacement byte deferred:	*displ(Rn).  */
308       (*info->fprintf_func) (info->stream, "*");
309       /* Fall through.  */
310     case 0xA0: /* Displacement byte:		displ(Rn).  */
311       if (reg == 0xF)
312 	(*info->print_address_func) (addr + 2 + NEXTBYTE (p), info);
313       else
314 	(*info->fprintf_func) (info->stream, "0x%x(%s)", NEXTBYTE (p),
315 			       reg_names[reg]);
316       break;
317     case 0xD0: /* Displacement word deferred:	*displ(Rn).  */
318       (*info->fprintf_func) (info->stream, "*");
319       /* Fall through.  */
320     case 0xC0: /* Displacement word:		displ(Rn).  */
321       if (reg == 0xF)
322 	(*info->print_address_func) (addr + 3 + NEXTWORD (p), info);
323       else
324 	(*info->fprintf_func) (info->stream, "0x%x(%s)", NEXTWORD (p),
325 			       reg_names[reg]);
326       break;
327     case 0xF0: /* Displacement long deferred:	*displ(Rn).  */
328       (*info->fprintf_func) (info->stream, "*");
329       /* Fall through.  */
330     case 0xE0: /* Displacement long:		displ(Rn).  */
331       if (reg == 0xF)
332 	(*info->print_address_func) (addr + 5 + NEXTLONG (p), info);
333       else
334 	(*info->fprintf_func) (info->stream, "0x%x(%s)", NEXTLONG (p),
335 			       reg_names[reg]);
336       break;
337     }
338 
339   return p - p0;
340 }
341 
342 /* Returns number of bytes "eaten" by the operand, or return -1 if an
343    invalid operand was found, or -2 if an opcode tabel error was
344    found. */
345 
346 static int
print_insn_arg(const char * d,unsigned char * p0,bfd_vma addr,disassemble_info * info)347 print_insn_arg (const char *d,
348 		unsigned char *p0,
349 		bfd_vma addr,	/* PC for this arg to be relative to.  */
350 		disassemble_info *info)
351 {
352   int arg_len;
353 
354   /* Check validity of addressing length.  */
355   switch (d[1])
356     {
357     case 'b' : arg_len = 1;	break;
358     case 'd' : arg_len = 8;	break;
359     case 'f' : arg_len = 4;	break;
360     case 'g' : arg_len = 8;	break;
361     case 'h' : arg_len = 16;	break;
362     case 'l' : arg_len = 4;	break;
363     case 'o' : arg_len = 16;	break;
364     case 'w' : arg_len = 2;	break;
365     case 'q' : arg_len = 8;	break;
366     default  : abort ();
367     }
368 
369   /* Branches have no mode byte.  */
370   if (d[0] == 'b')
371     {
372       unsigned char *p = p0;
373 
374       if (arg_len == 1)
375 	(*info->print_address_func) (addr + 1 + NEXTBYTE (p), info);
376       else
377 	(*info->print_address_func) (addr + 2 + NEXTWORD (p), info);
378 
379       return p - p0;
380     }
381 
382   return print_insn_mode (d, arg_len, p0, addr, info);
383 }
384 
385 /* Print the vax instruction at address MEMADDR in debugged memory,
386    on INFO->STREAM.  Returns length of the instruction, in bytes.  */
387 
388 int
print_insn_vax(bfd_vma memaddr,disassemble_info * info)389 print_insn_vax (bfd_vma memaddr, disassemble_info *info)
390 {
391   static bfd_boolean parsed_disassembler_options = FALSE;
392   const struct vot *votp;
393   const char *argp;
394   unsigned char *arg;
395   struct private priv;
396   bfd_byte *buffer = priv.the_buffer;
397 
398   info->private_data = & priv;
399   priv.max_fetched = priv.the_buffer;
400   priv.insn_start = memaddr;
401 
402   if (! parsed_disassembler_options
403       && info->disassembler_options != NULL)
404     {
405       parse_disassembler_options (info->disassembler_options);
406 
407       /* To avoid repeated parsing of these options.  */
408       parsed_disassembler_options = TRUE;
409     }
410 
411   if (OPCODES_SIGSETJMP (priv.bailout) != 0)
412     /* Error return.  */
413     return -1;
414 
415   argp = NULL;
416   /* Check if the info buffer has more than one byte left since
417      the last opcode might be a single byte with no argument data.  */
418   if (info->buffer_length - (memaddr - info->buffer_vma) > 1
419       && (info->stop_vma == 0 || memaddr < (info->stop_vma - 1)))
420     {
421       FETCH_DATA (info, buffer + 2);
422     }
423   else
424     {
425       FETCH_DATA (info, buffer + 1);
426       buffer[1] = 0;
427     }
428 
429   /* Decode function entry mask.  */
430   if (is_function_entry (info, memaddr))
431     {
432       int i = 0;
433       int register_mask = buffer[1] << 8 | buffer[0];
434 
435       (*info->fprintf_func) (info->stream, ".word 0x%04x # Entry mask: <",
436 			     register_mask);
437 
438       for (i = 15; i >= 0; i--)
439 	if (register_mask & (1 << i))
440           (*info->fprintf_func) (info->stream, " %s", entry_mask_bit[i]);
441 
442       (*info->fprintf_func) (info->stream, " >");
443 
444       return 2;
445     }
446 
447   /* Decode PLT entry offset longword.  */
448   if (is_plt_tail (info, memaddr))
449     {
450       int offset;
451 
452       FETCH_DATA (info, buffer + 4);
453       offset = ((unsigned) buffer[3] << 24 | buffer[2] << 16
454 		| buffer[1] << 8 | buffer[0]);
455       (*info->fprintf_func) (info->stream, ".long 0x%08x", offset);
456 
457       return 4;
458     }
459 
460   for (votp = &votstrs[0]; votp->name[0]; votp++)
461     {
462       vax_opcodeT opcode = votp->detail.code;
463 
464       /* 2 byte codes match 2 buffer pos. */
465       if ((bfd_byte) opcode == buffer[0]
466 	  && (opcode >> 8 == 0 || opcode >> 8 == buffer[1]))
467 	{
468 	  argp = votp->detail.args;
469 	  break;
470 	}
471     }
472   if (argp == NULL)
473     {
474       /* Handle undefined instructions. */
475       (*info->fprintf_func) (info->stream, ".word 0x%x",
476 			     (buffer[0] << 8) + buffer[1]);
477       return 2;
478     }
479 
480   /* Point at first byte of argument data, and at descriptor for first
481      argument.  */
482   arg = buffer + ((votp->detail.code >> 8) ? 2 : 1);
483 
484   /* Make sure we have it in mem */
485   FETCH_DATA (info, arg);
486 
487   (*info->fprintf_func) (info->stream, "%s", votp->name);
488   if (*argp)
489     (*info->fprintf_func) (info->stream, " ");
490 
491   while (*argp)
492     {
493       arg += print_insn_arg (argp, arg, memaddr + arg - buffer, info);
494       argp += 2;
495       if (*argp)
496 	(*info->fprintf_func) (info->stream, ",");
497     }
498 
499   return arg - buffer;
500 }
501 
502