1 /* Extended regular expression matching and search library,
2    version 0.12.
3    (Implements POSIX draft P1003.2/D11.2, except for some of the
4    internationalization features.)
5 
6    Copyright (C) 1993-2022 Free Software Foundation, Inc.
7    This file is part of the GNU C Library.
8 
9    The GNU C Library is free software; you can redistribute it and/or
10    modify it under the terms of the GNU Lesser General Public
11    License as published by the Free Software Foundation; either
12    version 2.1 of the License, or (at your option) any later version.
13 
14    The GNU C Library is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17    Lesser General Public License for more details.
18 
19    You should have received a copy of the GNU Lesser General Public
20    License along with the GNU C Library; if not, write to the Free
21    Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
22    02110-1301 USA.  */
23 
24 /* This file has been modified for usage in libiberty.  It includes "xregex.h"
25    instead of <regex.h>.  The "xregex.h" header file renames all external
26    routines with an "x" prefix so they do not collide with the native regex
27    routines or with other components regex routines. */
28 /* AIX requires this to be the first thing in the file. */
29 #if defined _AIX && !defined __GNUC__ && !defined REGEX_MALLOC
30   #pragma alloca
31 #endif
32 
33 #if __GNUC__ >= 12
34 #  pragma GCC diagnostic ignored "-Wuse-after-free"
35 #endif
36 
37 #undef	_GNU_SOURCE
38 #define _GNU_SOURCE
39 
40 #ifndef INSIDE_RECURSION
41 # ifdef HAVE_CONFIG_H
42 #  include <config.h>
43 # endif
44 #endif
45 
46 #include <ansidecl.h>
47 
48 #ifndef INSIDE_RECURSION
49 
50 # if defined STDC_HEADERS && !defined emacs
51 #  include <stddef.h>
52 #  define PTR_INT_TYPE ptrdiff_t
53 # else
54 /* We need this for `regex.h', and perhaps for the Emacs include files.  */
55 #  include <sys/types.h>
56 #  define PTR_INT_TYPE long
57 # endif
58 
59 # define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
60 
61 /* For platform which support the ISO C amendement 1 functionality we
62    support user defined character classes.  */
63 # if defined _LIBC || WIDE_CHAR_SUPPORT
64 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>.  */
65 #  include <wchar.h>
66 #  include <wctype.h>
67 # endif
68 
69 # ifdef _LIBC
70 /* We have to keep the namespace clean.  */
71 #  define regfree(preg) __regfree (preg)
72 #  define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
73 #  define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
74 #  define regerror(errcode, preg, errbuf, errbuf_size) \
75 	__regerror(errcode, preg, errbuf, errbuf_size)
76 #  define re_set_registers(bu, re, nu, st, en) \
77 	__re_set_registers (bu, re, nu, st, en)
78 #  define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
79 	__re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
80 #  define re_match(bufp, string, size, pos, regs) \
81 	__re_match (bufp, string, size, pos, regs)
82 #  define re_search(bufp, string, size, startpos, range, regs) \
83 	__re_search (bufp, string, size, startpos, range, regs)
84 #  define re_compile_pattern(pattern, length, bufp) \
85 	__re_compile_pattern (pattern, length, bufp)
86 #  define re_set_syntax(syntax) __re_set_syntax (syntax)
87 #  define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
88 	__re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
89 #  define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
90 
91 #  define btowc __btowc
92 
93 /* We are also using some library internals.  */
94 #  include <locale/localeinfo.h>
95 #  include <locale/elem-hash.h>
96 #  include <langinfo.h>
97 #  include <locale/coll-lookup.h>
98 # endif
99 
100 /* This is for other GNU distributions with internationalized messages.  */
101 # if (HAVE_LIBINTL_H && ENABLE_NLS) || defined _LIBC
102 #  include <libintl.h>
103 #  ifdef _LIBC
104 #   undef gettext
105 #   define gettext(msgid) __dcgettext ("libc", msgid, LC_MESSAGES)
106 #  endif
107 # else
108 #  define gettext(msgid) (msgid)
109 # endif
110 
111 # ifndef gettext_noop
112 /* This define is so xgettext can find the internationalizable
113    strings.  */
114 #  define gettext_noop(String) String
115 # endif
116 
117 /* The `emacs' switch turns on certain matching commands
118    that make sense only in Emacs. */
119 # ifdef emacs
120 
121 #  include "lisp.h"
122 #  include "buffer.h"
123 #  include "syntax.h"
124 
125 # else  /* not emacs */
126 
127 /* If we are not linking with Emacs proper,
128    we can't use the relocating allocator
129    even if config.h says that we can.  */
130 #  undef REL_ALLOC
131 
132 #  if defined STDC_HEADERS || defined _LIBC
133 #   include <stdlib.h>
134 #  else
135 char *malloc ();
136 char *realloc ();
137 #  endif
138 
139 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
140    If nothing else has been done, use the method below.  */
141 #  ifdef INHIBIT_STRING_HEADER
142 #   if !(defined HAVE_BZERO && defined HAVE_BCOPY)
143 #    if !defined bzero && !defined bcopy
144 #     undef INHIBIT_STRING_HEADER
145 #    endif
146 #   endif
147 #  endif
148 
149 /* This is the normal way of making sure we have a bcopy and a bzero.
150    This is used in most programs--a few other programs avoid this
151    by defining INHIBIT_STRING_HEADER.  */
152 #  ifndef INHIBIT_STRING_HEADER
153 #   if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
154 #    include <string.h>
155 #    ifndef bzero
156 #     ifndef _LIBC
157 #      define bzero(s, n)	((void) memset (s, '\0', n))
158 #     else
159 #      define bzero(s, n)	__bzero (s, n)
160 #     endif
161 #    endif
162 #   else
163 #    include <strings.h>
164 #    ifndef memcmp
165 #     define memcmp(s1, s2, n)	bcmp (s1, s2, n)
166 #    endif
167 #    ifndef memcpy
168 #     define memcpy(d, s, n)	(bcopy (s, d, n), (d))
169 #    endif
170 #   endif
171 #  endif
172 
173 /* Define the syntax stuff for \<, \>, etc.  */
174 
175 /* This must be nonzero for the wordchar and notwordchar pattern
176    commands in re_match_2.  */
177 #  ifndef Sword
178 #   define Sword 1
179 #  endif
180 
181 #  ifdef SWITCH_ENUM_BUG
182 #   define SWITCH_ENUM_CAST(x) ((int)(x))
183 #  else
184 #   define SWITCH_ENUM_CAST(x) (x)
185 #  endif
186 
187 # endif /* not emacs */
188 
189 # if defined _LIBC || HAVE_LIMITS_H
190 #  include <limits.h>
191 # endif
192 
193 # ifndef MB_LEN_MAX
194 #  define MB_LEN_MAX 1
195 # endif
196 
197 /* Get the interface, including the syntax bits.  */
198 # include "xregex.h"  /* change for libiberty */
199 
200 /* isalpha etc. are used for the character classes.  */
201 # include <ctype.h>
202 
203 /* Jim Meyering writes:
204 
205    "... Some ctype macros are valid only for character codes that
206    isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
207    using /bin/cc or gcc but without giving an ansi option).  So, all
208    ctype uses should be through macros like ISPRINT...  If
209    STDC_HEADERS is defined, then autoconf has verified that the ctype
210    macros don't need to be guarded with references to isascii. ...
211    Defining isascii to 1 should let any compiler worth its salt
212    eliminate the && through constant folding."
213    Solaris defines some of these symbols so we must undefine them first.  */
214 
215 # undef ISASCII
216 # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
217 #  define ISASCII(c) 1
218 # else
219 #  define ISASCII(c) isascii(c)
220 # endif
221 
222 # ifdef isblank
223 #  define ISBLANK(c) (ISASCII (c) && isblank (c))
224 # else
225 #  define ISBLANK(c) ((c) == ' ' || (c) == '\t')
226 # endif
227 # ifdef isgraph
228 #  define ISGRAPH(c) (ISASCII (c) && isgraph (c))
229 # else
230 #  define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
231 # endif
232 
233 # undef ISPRINT
234 # define ISPRINT(c) (ISASCII (c) && isprint (c))
235 # define ISDIGIT(c) (ISASCII (c) && isdigit (c))
236 # define ISALNUM(c) (ISASCII (c) && isalnum (c))
237 # define ISALPHA(c) (ISASCII (c) && isalpha (c))
238 # define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
239 # define ISLOWER(c) (ISASCII (c) && islower (c))
240 # define ISPUNCT(c) (ISASCII (c) && ispunct (c))
241 # define ISSPACE(c) (ISASCII (c) && isspace (c))
242 # define ISUPPER(c) (ISASCII (c) && isupper (c))
243 # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
244 
245 # ifdef _tolower
246 #  define TOLOWER(c) _tolower(c)
247 # else
248 #  define TOLOWER(c) tolower(c)
249 # endif
250 
251 # ifndef NULL
252 #  define NULL (void *)0
253 # endif
254 
255 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
256    since ours (we hope) works properly with all combinations of
257    machines, compilers, `char' and `unsigned char' argument types.
258    (Per Bothner suggested the basic approach.)  */
259 # undef SIGN_EXTEND_CHAR
260 # if __STDC__
261 #  define SIGN_EXTEND_CHAR(c) ((signed char) (c))
262 # else  /* not __STDC__ */
263 /* As in Harbison and Steele.  */
264 #  define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
265 # endif
266 
267 # ifndef emacs
268 /* How many characters in the character set.  */
269 #  define CHAR_SET_SIZE 256
270 
271 #  ifdef SYNTAX_TABLE
272 
273 extern char *re_syntax_table;
274 
275 #  else /* not SYNTAX_TABLE */
276 
277 static char re_syntax_table[CHAR_SET_SIZE];
278 
279 static void init_syntax_once (void);
280 
281 static void
init_syntax_once(void)282 init_syntax_once (void)
283 {
284    register int c;
285    static int done = 0;
286 
287    if (done)
288      return;
289    bzero (re_syntax_table, sizeof re_syntax_table);
290 
291    for (c = 0; c < CHAR_SET_SIZE; ++c)
292      if (ISALNUM (c))
293 	re_syntax_table[c] = Sword;
294 
295    re_syntax_table['_'] = Sword;
296 
297    done = 1;
298 }
299 
300 #  endif /* not SYNTAX_TABLE */
301 
302 #  define SYNTAX(c) re_syntax_table[(unsigned char) (c)]
303 
304 # endif /* emacs */
305 
306 /* Integer type for pointers.  */
307 # if !defined _LIBC && !defined HAVE_UINTPTR_T
308 typedef unsigned long int uintptr_t;
309 # endif
310 
311 /* Should we use malloc or alloca?  If REGEX_MALLOC is not defined, we
312    use `alloca' instead of `malloc'.  This is because using malloc in
313    re_search* or re_match* could cause memory leaks when C-g is used in
314    Emacs; also, malloc is slower and causes storage fragmentation.  On
315    the other hand, malloc is more portable, and easier to debug.
316 
317    Because we sometimes use alloca, some routines have to be macros,
318    not functions -- `alloca'-allocated space disappears at the end of the
319    function it is called in.  */
320 
321 # ifdef REGEX_MALLOC
322 
323 #  define REGEX_ALLOCATE malloc
324 #  define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
325 #  define REGEX_FREE free
326 
327 # else /* not REGEX_MALLOC  */
328 
329 /* Emacs already defines alloca, sometimes.  */
330 #  ifndef alloca
331 
332 /* Make alloca work the best possible way.  */
333 #   ifdef __GNUC__
334 #    define alloca __builtin_alloca
335 #   else /* not __GNUC__ */
336 #    if HAVE_ALLOCA_H
337 #     include <alloca.h>
338 #    endif /* HAVE_ALLOCA_H */
339 #   endif /* not __GNUC__ */
340 
341 #  endif /* not alloca */
342 
343 #  define REGEX_ALLOCATE alloca
344 
345 /* Assumes a `char *destination' variable.  */
346 #  define REGEX_REALLOCATE(source, osize, nsize)			\
347   (destination = (char *) alloca (nsize),				\
348    memcpy (destination, source, osize))
349 
350 /* No need to do anything to free, after alloca.  */
351 #  define REGEX_FREE(arg) ((void)0) /* Do nothing!  But inhibit gcc warning.  */
352 
353 # endif /* not REGEX_MALLOC */
354 
355 /* Define how to allocate the failure stack.  */
356 
357 # if defined REL_ALLOC && defined REGEX_MALLOC
358 
359 #  define REGEX_ALLOCATE_STACK(size)				\
360   r_alloc (&failure_stack_ptr, (size))
361 #  define REGEX_REALLOCATE_STACK(source, osize, nsize)		\
362   r_re_alloc (&failure_stack_ptr, (nsize))
363 #  define REGEX_FREE_STACK(ptr)					\
364   r_alloc_free (&failure_stack_ptr)
365 
366 # else /* not using relocating allocator */
367 
368 #  ifdef REGEX_MALLOC
369 
370 #   define REGEX_ALLOCATE_STACK malloc
371 #   define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
372 #   define REGEX_FREE_STACK free
373 
374 #  else /* not REGEX_MALLOC */
375 
376 #   define REGEX_ALLOCATE_STACK alloca
377 
378 #   define REGEX_REALLOCATE_STACK(source, osize, nsize)			\
379    REGEX_REALLOCATE (source, osize, nsize)
380 /* No need to explicitly free anything.  */
381 #   define REGEX_FREE_STACK(arg)
382 
383 #  endif /* not REGEX_MALLOC */
384 # endif /* not using relocating allocator */
385 
386 
387 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
388    `string1' or just past its end.  This works if PTR is NULL, which is
389    a good thing.  */
390 # define FIRST_STRING_P(ptr) 					\
391   (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
392 
393 /* (Re)Allocate N items of type T using malloc, or fail.  */
394 # define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
395 # define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
396 # define RETALLOC_IF(addr, n, t) \
397   if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
398 # define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
399 
400 # define BYTEWIDTH 8 /* In bits.  */
401 
402 # define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
403 
404 # undef MAX
405 # undef MIN
406 # define MAX(a, b) ((a) > (b) ? (a) : (b))
407 # define MIN(a, b) ((a) < (b) ? (a) : (b))
408 
409 typedef char boolean;
410 # define false 0
411 # define true 1
412 
413 static reg_errcode_t byte_regex_compile (const char *pattern, size_t size,
414                                          reg_syntax_t syntax,
415                                          struct re_pattern_buffer *bufp);
416 
417 static int byte_re_match_2_internal (struct re_pattern_buffer *bufp,
418                                      const char *string1, int size1,
419                                      const char *string2, int size2,
420                                      int pos,
421                                      struct re_registers *regs,
422                                      int stop);
423 static int byte_re_search_2 (struct re_pattern_buffer *bufp,
424                              const char *string1, int size1,
425                              const char *string2, int size2,
426                              int startpos, int range,
427                              struct re_registers *regs, int stop);
428 static int byte_re_compile_fastmap (struct re_pattern_buffer *bufp);
429 
430 #ifdef MBS_SUPPORT
431 static reg_errcode_t wcs_regex_compile (const char *pattern, size_t size,
432                                         reg_syntax_t syntax,
433                                         struct re_pattern_buffer *bufp);
434 
435 
436 static int wcs_re_match_2_internal (struct re_pattern_buffer *bufp,
437                                     const char *cstring1, int csize1,
438                                     const char *cstring2, int csize2,
439                                     int pos,
440                                     struct re_registers *regs,
441                                     int stop,
442                                     wchar_t *string1, int size1,
443                                     wchar_t *string2, int size2,
444                                     int *mbs_offset1, int *mbs_offset2);
445 static int wcs_re_search_2 (struct re_pattern_buffer *bufp,
446                             const char *string1, int size1,
447                             const char *string2, int size2,
448                             int startpos, int range,
449                             struct re_registers *regs, int stop);
450 static int wcs_re_compile_fastmap (struct re_pattern_buffer *bufp);
451 #endif
452 
453 /* These are the command codes that appear in compiled regular
454    expressions.  Some opcodes are followed by argument bytes.  A
455    command code can specify any interpretation whatsoever for its
456    arguments.  Zero bytes may appear in the compiled regular expression.  */
457 
458 typedef enum
459 {
460   no_op = 0,
461 
462   /* Succeed right away--no more backtracking.  */
463   succeed,
464 
465         /* Followed by one byte giving n, then by n literal bytes.  */
466   exactn,
467 
468 # ifdef MBS_SUPPORT
469 	/* Same as exactn, but contains binary data.  */
470   exactn_bin,
471 # endif
472 
473         /* Matches any (more or less) character.  */
474   anychar,
475 
476         /* Matches any one char belonging to specified set.  First
477            following byte is number of bitmap bytes.  Then come bytes
478            for a bitmap saying which chars are in.  Bits in each byte
479            are ordered low-bit-first.  A character is in the set if its
480            bit is 1.  A character too large to have a bit in the map is
481            automatically not in the set.  */
482         /* ifdef MBS_SUPPORT, following element is length of character
483 	   classes, length of collating symbols, length of equivalence
484 	   classes, length of character ranges, and length of characters.
485 	   Next, character class element, collating symbols elements,
486 	   equivalence class elements, range elements, and character
487 	   elements follow.
488 	   See regex_compile function.  */
489   charset,
490 
491         /* Same parameters as charset, but match any character that is
492            not one of those specified.  */
493   charset_not,
494 
495         /* Start remembering the text that is matched, for storing in a
496            register.  Followed by one byte with the register number, in
497            the range 0 to one less than the pattern buffer's re_nsub
498            field.  Then followed by one byte with the number of groups
499            inner to this one.  (This last has to be part of the
500            start_memory only because we need it in the on_failure_jump
501            of re_match_2.)  */
502   start_memory,
503 
504         /* Stop remembering the text that is matched and store it in a
505            memory register.  Followed by one byte with the register
506            number, in the range 0 to one less than `re_nsub' in the
507            pattern buffer, and one byte with the number of inner groups,
508            just like `start_memory'.  (We need the number of inner
509            groups here because we don't have any easy way of finding the
510            corresponding start_memory when we're at a stop_memory.)  */
511   stop_memory,
512 
513         /* Match a duplicate of something remembered. Followed by one
514            byte containing the register number.  */
515   duplicate,
516 
517         /* Fail unless at beginning of line.  */
518   begline,
519 
520         /* Fail unless at end of line.  */
521   endline,
522 
523         /* Succeeds if at beginning of buffer (if emacs) or at beginning
524            of string to be matched (if not).  */
525   begbuf,
526 
527         /* Analogously, for end of buffer/string.  */
528   endbuf,
529 
530         /* Followed by two byte relative address to which to jump.  */
531   jump,
532 
533 	/* Same as jump, but marks the end of an alternative.  */
534   jump_past_alt,
535 
536         /* Followed by two-byte relative address of place to resume at
537            in case of failure.  */
538         /* ifdef MBS_SUPPORT, the size of address is 1.  */
539   on_failure_jump,
540 
541         /* Like on_failure_jump, but pushes a placeholder instead of the
542            current string position when executed.  */
543   on_failure_keep_string_jump,
544 
545         /* Throw away latest failure point and then jump to following
546            two-byte relative address.  */
547         /* ifdef MBS_SUPPORT, the size of address is 1.  */
548   pop_failure_jump,
549 
550         /* Change to pop_failure_jump if know won't have to backtrack to
551            match; otherwise change to jump.  This is used to jump
552            back to the beginning of a repeat.  If what follows this jump
553            clearly won't match what the repeat does, such that we can be
554            sure that there is no use backtracking out of repetitions
555            already matched, then we change it to a pop_failure_jump.
556            Followed by two-byte address.  */
557         /* ifdef MBS_SUPPORT, the size of address is 1.  */
558   maybe_pop_jump,
559 
560         /* Jump to following two-byte address, and push a dummy failure
561            point. This failure point will be thrown away if an attempt
562            is made to use it for a failure.  A `+' construct makes this
563            before the first repeat.  Also used as an intermediary kind
564            of jump when compiling an alternative.  */
565         /* ifdef MBS_SUPPORT, the size of address is 1.  */
566   dummy_failure_jump,
567 
568 	/* Push a dummy failure point and continue.  Used at the end of
569 	   alternatives.  */
570   push_dummy_failure,
571 
572         /* Followed by two-byte relative address and two-byte number n.
573            After matching N times, jump to the address upon failure.  */
574         /* ifdef MBS_SUPPORT, the size of address is 1.  */
575   succeed_n,
576 
577         /* Followed by two-byte relative address, and two-byte number n.
578            Jump to the address N times, then fail.  */
579         /* ifdef MBS_SUPPORT, the size of address is 1.  */
580   jump_n,
581 
582         /* Set the following two-byte relative address to the
583            subsequent two-byte number.  The address *includes* the two
584            bytes of number.  */
585         /* ifdef MBS_SUPPORT, the size of address is 1.  */
586   set_number_at,
587 
588   wordchar,	/* Matches any word-constituent character.  */
589   notwordchar,	/* Matches any char that is not a word-constituent.  */
590 
591   wordbeg,	/* Succeeds if at word beginning.  */
592   wordend,	/* Succeeds if at word end.  */
593 
594   wordbound,	/* Succeeds if at a word boundary.  */
595   notwordbound	/* Succeeds if not at a word boundary.  */
596 
597 # ifdef emacs
598   ,before_dot,	/* Succeeds if before point.  */
599   at_dot,	/* Succeeds if at point.  */
600   after_dot,	/* Succeeds if after point.  */
601 
602 	/* Matches any character whose syntax is specified.  Followed by
603            a byte which contains a syntax code, e.g., Sword.  */
604   syntaxspec,
605 
606 	/* Matches any character whose syntax is not that specified.  */
607   notsyntaxspec
608 # endif /* emacs */
609 } re_opcode_t;
610 #endif /* not INSIDE_RECURSION */
611 
612 
613 #ifdef BYTE
614 # define CHAR_T char
615 # define UCHAR_T unsigned char
616 # define COMPILED_BUFFER_VAR bufp->buffer
617 # define OFFSET_ADDRESS_SIZE 2
618 # define PREFIX(name) byte_##name
619 # define ARG_PREFIX(name) name
620 # define PUT_CHAR(c) putchar (c)
621 #else
622 # ifdef WCHAR
623 #  define CHAR_T wchar_t
624 #  define UCHAR_T wchar_t
625 #  define COMPILED_BUFFER_VAR wc_buffer
626 #  define OFFSET_ADDRESS_SIZE 1 /* the size which STORE_NUMBER macro use */
627 #  define CHAR_CLASS_SIZE ((__alignof__(wctype_t)+sizeof(wctype_t))/sizeof(CHAR_T)+1)
628 #  define PREFIX(name) wcs_##name
629 #  define ARG_PREFIX(name) c##name
630 /* Should we use wide stream??  */
631 #  define PUT_CHAR(c) printf ("%C", c);
632 #  define TRUE 1
633 #  define FALSE 0
634 # else
635 #  ifdef MBS_SUPPORT
636 #   define WCHAR
637 #   define INSIDE_RECURSION
638 #   include "regex.c"
639 #   undef INSIDE_RECURSION
640 #  endif
641 #  define BYTE
642 #  define INSIDE_RECURSION
643 #  include "regex.c"
644 #  undef INSIDE_RECURSION
645 # endif
646 #endif
647 
648 #ifdef INSIDE_RECURSION
649 /* Common operations on the compiled pattern.  */
650 
651 /* Store NUMBER in two contiguous bytes starting at DESTINATION.  */
652 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
653 
654 # ifdef WCHAR
655 #  define STORE_NUMBER(destination, number)				\
656   do {									\
657     *(destination) = (UCHAR_T)(number);				\
658   } while (0)
659 # else /* BYTE */
660 #  define STORE_NUMBER(destination, number)				\
661   do {									\
662     (destination)[0] = (number) & 0377;					\
663     (destination)[1] = (number) >> 8;					\
664   } while (0)
665 # endif /* WCHAR */
666 
667 /* Same as STORE_NUMBER, except increment DESTINATION to
668    the byte after where the number is stored.  Therefore, DESTINATION
669    must be an lvalue.  */
670 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
671 
672 # define STORE_NUMBER_AND_INCR(destination, number)			\
673   do {									\
674     STORE_NUMBER (destination, number);					\
675     (destination) += OFFSET_ADDRESS_SIZE;				\
676   } while (0)
677 
678 /* Put into DESTINATION a number stored in two contiguous bytes starting
679    at SOURCE.  */
680 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
681 
682 # ifdef WCHAR
683 #  define EXTRACT_NUMBER(destination, source)				\
684   do {									\
685     (destination) = *(source);						\
686   } while (0)
687 # else /* BYTE */
688 #  define EXTRACT_NUMBER(destination, source)				\
689   do {									\
690     (destination) = *(source) & 0377;					\
691     (destination) += ((unsigned) SIGN_EXTEND_CHAR (*((source) + 1))) << 8; \
692   } while (0)
693 # endif
694 
695 # ifdef DEBUG
696 static void PREFIX(extract_number) (int *dest, UCHAR_T *source);
697 static void
PREFIX(extract_number)698 PREFIX(extract_number) (int *dest, UCHAR_T *source)
699 {
700 #  ifdef WCHAR
701   *dest = *source;
702 #  else /* BYTE */
703   int temp = SIGN_EXTEND_CHAR (*(source + 1));
704   *dest = *source & 0377;
705   *dest += temp << 8;
706 #  endif
707 }
708 
709 #  ifndef EXTRACT_MACROS /* To debug the macros.  */
710 #   undef EXTRACT_NUMBER
711 #   define EXTRACT_NUMBER(dest, src) PREFIX(extract_number) (&dest, src)
712 #  endif /* not EXTRACT_MACROS */
713 
714 # endif /* DEBUG */
715 
716 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
717    SOURCE must be an lvalue.  */
718 
719 # define EXTRACT_NUMBER_AND_INCR(destination, source)			\
720   do {									\
721     EXTRACT_NUMBER (destination, source);				\
722     (source) += OFFSET_ADDRESS_SIZE; 					\
723   } while (0)
724 
725 # ifdef DEBUG
726 static void PREFIX(extract_number_and_incr) (int *destination,
727                                              UCHAR_T **source);
728 static void
PREFIX(extract_number_and_incr)729 PREFIX(extract_number_and_incr) (int *destination, UCHAR_T **source)
730 {
731   PREFIX(extract_number) (destination, *source);
732   *source += OFFSET_ADDRESS_SIZE;
733 }
734 
735 #  ifndef EXTRACT_MACROS
736 #   undef EXTRACT_NUMBER_AND_INCR
737 #   define EXTRACT_NUMBER_AND_INCR(dest, src) \
738   PREFIX(extract_number_and_incr) (&dest, &src)
739 #  endif /* not EXTRACT_MACROS */
740 
741 # endif /* DEBUG */
742 
743 
744 
745 /* If DEBUG is defined, Regex prints many voluminous messages about what
746    it is doing (if the variable `debug' is nonzero).  If linked with the
747    main program in `iregex.c', you can enter patterns and strings
748    interactively.  And if linked with the main program in `main.c' and
749    the other test files, you can run the already-written tests.  */
750 
751 # ifdef DEBUG
752 
753 #  ifndef DEFINED_ONCE
754 
755 /* We use standard I/O for debugging.  */
756 #   include <stdio.h>
757 
758 /* It is useful to test things that ``must'' be true when debugging.  */
759 #   include <assert.h>
760 
761 static int debug;
762 
763 #   define DEBUG_STATEMENT(e) e
764 #   define DEBUG_PRINT1(x) if (debug) printf (x)
765 #   define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
766 #   define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
767 #   define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
768 #  endif /* not DEFINED_ONCE */
769 
770 #  define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) 			\
771   if (debug) PREFIX(print_partial_compiled_pattern) (s, e)
772 #  define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)		\
773   if (debug) PREFIX(print_double_string) (w, s1, sz1, s2, sz2)
774 
775 
776 /* Print the fastmap in human-readable form.  */
777 
778 #  ifndef DEFINED_ONCE
779 void
print_fastmap(char * fastmap)780 print_fastmap (char *fastmap)
781 {
782   unsigned was_a_range = 0;
783   unsigned i = 0;
784 
785   while (i < (1 << BYTEWIDTH))
786     {
787       if (fastmap[i++])
788 	{
789 	  was_a_range = 0;
790           putchar (i - 1);
791           while (i < (1 << BYTEWIDTH)  &&  fastmap[i])
792             {
793               was_a_range = 1;
794               i++;
795             }
796 	  if (was_a_range)
797             {
798               printf ("-");
799               putchar (i - 1);
800             }
801         }
802     }
803   putchar ('\n');
804 }
805 #  endif /* not DEFINED_ONCE */
806 
807 
808 /* Print a compiled pattern string in human-readable form, starting at
809    the START pointer into it and ending just before the pointer END.  */
810 
811 void
PREFIX(print_partial_compiled_pattern)812 PREFIX(print_partial_compiled_pattern) (UCHAR_T *start, UCHAR_T *end)
813 {
814   int mcnt, mcnt2;
815   UCHAR_T *p1;
816   UCHAR_T *p = start;
817   UCHAR_T *pend = end;
818 
819   if (start == NULL)
820     {
821       printf ("(null)\n");
822       return;
823     }
824 
825   /* Loop over pattern commands.  */
826   while (p < pend)
827     {
828 #  ifdef _LIBC
829       printf ("%td:\t", p - start);
830 #  else
831       printf ("%ld:\t", (long int) (p - start));
832 #  endif
833 
834       switch ((re_opcode_t) *p++)
835 	{
836         case no_op:
837           printf ("/no_op");
838           break;
839 
840 	case exactn:
841 	  mcnt = *p++;
842           printf ("/exactn/%d", mcnt);
843           do
844 	    {
845               putchar ('/');
846 	      PUT_CHAR (*p++);
847             }
848           while (--mcnt);
849           break;
850 
851 #  ifdef MBS_SUPPORT
852 	case exactn_bin:
853 	  mcnt = *p++;
854 	  printf ("/exactn_bin/%d", mcnt);
855           do
856 	    {
857 	      printf("/%lx", (long int) *p++);
858             }
859           while (--mcnt);
860           break;
861 #  endif /* MBS_SUPPORT */
862 
863 	case start_memory:
864           mcnt = *p++;
865           printf ("/start_memory/%d/%ld", mcnt, (long int) *p++);
866           break;
867 
868 	case stop_memory:
869           mcnt = *p++;
870 	  printf ("/stop_memory/%d/%ld", mcnt, (long int) *p++);
871           break;
872 
873 	case duplicate:
874 	  printf ("/duplicate/%ld", (long int) *p++);
875 	  break;
876 
877 	case anychar:
878 	  printf ("/anychar");
879 	  break;
880 
881 	case charset:
882         case charset_not:
883           {
884 #  ifdef WCHAR
885 	    int i, length;
886 	    wchar_t *workp = p;
887 	    printf ("/charset [%s",
888 	            (re_opcode_t) *(workp - 1) == charset_not ? "^" : "");
889 	    p += 5;
890 	    length = *workp++; /* the length of char_classes */
891 	    for (i=0 ; i<length ; i++)
892 	      printf("[:%lx:]", (long int) *p++);
893 	    length = *workp++; /* the length of collating_symbol */
894 	    for (i=0 ; i<length ;)
895 	      {
896 		printf("[.");
897 		while(*p != 0)
898 		  PUT_CHAR((i++,*p++));
899 		i++,p++;
900 		printf(".]");
901 	      }
902 	    length = *workp++; /* the length of equivalence_class */
903 	    for (i=0 ; i<length ;)
904 	      {
905 		printf("[=");
906 		while(*p != 0)
907 		  PUT_CHAR((i++,*p++));
908 		i++,p++;
909 		printf("=]");
910 	      }
911 	    length = *workp++; /* the length of char_range */
912 	    for (i=0 ; i<length ; i++)
913 	      {
914 		wchar_t range_start = *p++;
915 		wchar_t range_end = *p++;
916 		printf("%C-%C", range_start, range_end);
917 	      }
918 	    length = *workp++; /* the length of char */
919 	    for (i=0 ; i<length ; i++)
920 	      printf("%C", *p++);
921 	    putchar (']');
922 #  else
923             register int c, last = -100;
924 	    register int in_range = 0;
925 
926 	    printf ("/charset [%s",
927 	            (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
928 
929             assert (p + *p < pend);
930 
931             for (c = 0; c < 256; c++)
932 	      if (c / 8 < *p
933 		  && (p[1 + (c/8)] & (1 << (c % 8))))
934 		{
935 		  /* Are we starting a range?  */
936 		  if (last + 1 == c && ! in_range)
937 		    {
938 		      putchar ('-');
939 		      in_range = 1;
940 		    }
941 		  /* Have we broken a range?  */
942 		  else if (last + 1 != c && in_range)
943               {
944 		      putchar (last);
945 		      in_range = 0;
946 		    }
947 
948 		  if (! in_range)
949 		    putchar (c);
950 
951 		  last = c;
952               }
953 
954 	    if (in_range)
955 	      putchar (last);
956 
957 	    putchar (']');
958 
959 	    p += 1 + *p;
960 #  endif /* WCHAR */
961 	  }
962 	  break;
963 
964 	case begline:
965 	  printf ("/begline");
966           break;
967 
968 	case endline:
969           printf ("/endline");
970           break;
971 
972 	case on_failure_jump:
973           PREFIX(extract_number_and_incr) (&mcnt, &p);
974 #  ifdef _LIBC
975   	  printf ("/on_failure_jump to %td", p + mcnt - start);
976 #  else
977   	  printf ("/on_failure_jump to %ld", (long int) (p + mcnt - start));
978 #  endif
979           break;
980 
981 	case on_failure_keep_string_jump:
982           PREFIX(extract_number_and_incr) (&mcnt, &p);
983 #  ifdef _LIBC
984   	  printf ("/on_failure_keep_string_jump to %td", p + mcnt - start);
985 #  else
986   	  printf ("/on_failure_keep_string_jump to %ld",
987 		  (long int) (p + mcnt - start));
988 #  endif
989           break;
990 
991 	case dummy_failure_jump:
992           PREFIX(extract_number_and_incr) (&mcnt, &p);
993 #  ifdef _LIBC
994   	  printf ("/dummy_failure_jump to %td", p + mcnt - start);
995 #  else
996   	  printf ("/dummy_failure_jump to %ld", (long int) (p + mcnt - start));
997 #  endif
998           break;
999 
1000 	case push_dummy_failure:
1001           printf ("/push_dummy_failure");
1002           break;
1003 
1004         case maybe_pop_jump:
1005           PREFIX(extract_number_and_incr) (&mcnt, &p);
1006 #  ifdef _LIBC
1007   	  printf ("/maybe_pop_jump to %td", p + mcnt - start);
1008 #  else
1009   	  printf ("/maybe_pop_jump to %ld", (long int) (p + mcnt - start));
1010 #  endif
1011 	  break;
1012 
1013         case pop_failure_jump:
1014 	  PREFIX(extract_number_and_incr) (&mcnt, &p);
1015 #  ifdef _LIBC
1016   	  printf ("/pop_failure_jump to %td", p + mcnt - start);
1017 #  else
1018   	  printf ("/pop_failure_jump to %ld", (long int) (p + mcnt - start));
1019 #  endif
1020 	  break;
1021 
1022         case jump_past_alt:
1023 	  PREFIX(extract_number_and_incr) (&mcnt, &p);
1024 #  ifdef _LIBC
1025   	  printf ("/jump_past_alt to %td", p + mcnt - start);
1026 #  else
1027   	  printf ("/jump_past_alt to %ld", (long int) (p + mcnt - start));
1028 #  endif
1029 	  break;
1030 
1031         case jump:
1032 	  PREFIX(extract_number_and_incr) (&mcnt, &p);
1033 #  ifdef _LIBC
1034   	  printf ("/jump to %td", p + mcnt - start);
1035 #  else
1036   	  printf ("/jump to %ld", (long int) (p + mcnt - start));
1037 #  endif
1038 	  break;
1039 
1040         case succeed_n:
1041           PREFIX(extract_number_and_incr) (&mcnt, &p);
1042 	  p1 = p + mcnt;
1043           PREFIX(extract_number_and_incr) (&mcnt2, &p);
1044 #  ifdef _LIBC
1045 	  printf ("/succeed_n to %td, %d times", p1 - start, mcnt2);
1046 #  else
1047 	  printf ("/succeed_n to %ld, %d times",
1048 		  (long int) (p1 - start), mcnt2);
1049 #  endif
1050           break;
1051 
1052         case jump_n:
1053           PREFIX(extract_number_and_incr) (&mcnt, &p);
1054 	  p1 = p + mcnt;
1055           PREFIX(extract_number_and_incr) (&mcnt2, &p);
1056 	  printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
1057           break;
1058 
1059         case set_number_at:
1060           PREFIX(extract_number_and_incr) (&mcnt, &p);
1061 	  p1 = p + mcnt;
1062           PREFIX(extract_number_and_incr) (&mcnt2, &p);
1063 #  ifdef _LIBC
1064 	  printf ("/set_number_at location %td to %d", p1 - start, mcnt2);
1065 #  else
1066 	  printf ("/set_number_at location %ld to %d",
1067 		  (long int) (p1 - start), mcnt2);
1068 #  endif
1069           break;
1070 
1071         case wordbound:
1072 	  printf ("/wordbound");
1073 	  break;
1074 
1075 	case notwordbound:
1076 	  printf ("/notwordbound");
1077           break;
1078 
1079 	case wordbeg:
1080 	  printf ("/wordbeg");
1081 	  break;
1082 
1083 	case wordend:
1084 	  printf ("/wordend");
1085 	  break;
1086 
1087 #  ifdef emacs
1088 	case before_dot:
1089 	  printf ("/before_dot");
1090           break;
1091 
1092 	case at_dot:
1093 	  printf ("/at_dot");
1094           break;
1095 
1096 	case after_dot:
1097 	  printf ("/after_dot");
1098           break;
1099 
1100 	case syntaxspec:
1101           printf ("/syntaxspec");
1102 	  mcnt = *p++;
1103 	  printf ("/%d", mcnt);
1104           break;
1105 
1106 	case notsyntaxspec:
1107           printf ("/notsyntaxspec");
1108 	  mcnt = *p++;
1109 	  printf ("/%d", mcnt);
1110 	  break;
1111 #  endif /* emacs */
1112 
1113 	case wordchar:
1114 	  printf ("/wordchar");
1115           break;
1116 
1117 	case notwordchar:
1118 	  printf ("/notwordchar");
1119           break;
1120 
1121 	case begbuf:
1122 	  printf ("/begbuf");
1123           break;
1124 
1125 	case endbuf:
1126 	  printf ("/endbuf");
1127           break;
1128 
1129         default:
1130           printf ("?%ld", (long int) *(p-1));
1131 	}
1132 
1133       putchar ('\n');
1134     }
1135 
1136 #  ifdef _LIBC
1137   printf ("%td:\tend of pattern.\n", p - start);
1138 #  else
1139   printf ("%ld:\tend of pattern.\n", (long int) (p - start));
1140 #  endif
1141 }
1142 
1143 
1144 void
PREFIX(print_compiled_pattern)1145 PREFIX(print_compiled_pattern) (struct re_pattern_buffer *bufp)
1146 {
1147   UCHAR_T *buffer = (UCHAR_T*) bufp->buffer;
1148 
1149   PREFIX(print_partial_compiled_pattern) (buffer, buffer
1150 				  + bufp->used / sizeof(UCHAR_T));
1151   printf ("%ld bytes used/%ld bytes allocated.\n",
1152 	  bufp->used, bufp->allocated);
1153 
1154   if (bufp->fastmap_accurate && bufp->fastmap)
1155     {
1156       printf ("fastmap: ");
1157       print_fastmap (bufp->fastmap);
1158     }
1159 
1160 #  ifdef _LIBC
1161   printf ("re_nsub: %Zd\t", bufp->re_nsub);
1162 #  else
1163   printf ("re_nsub: %ld\t", (long int) bufp->re_nsub);
1164 #  endif
1165   printf ("regs_alloc: %d\t", bufp->regs_allocated);
1166   printf ("can_be_null: %d\t", bufp->can_be_null);
1167   printf ("newline_anchor: %d\n", bufp->newline_anchor);
1168   printf ("no_sub: %d\t", bufp->no_sub);
1169   printf ("not_bol: %d\t", bufp->not_bol);
1170   printf ("not_eol: %d\t", bufp->not_eol);
1171   printf ("syntax: %lx\n", bufp->syntax);
1172   /* Perhaps we should print the translate table?  */
1173 }
1174 
1175 
1176 void
PREFIX(print_double_string)1177 PREFIX(print_double_string) (const CHAR_T *where, const CHAR_T *string1,
1178                              int size1, const CHAR_T *string2, int size2)
1179 {
1180   int this_char;
1181 
1182   if (where == NULL)
1183     printf ("(null)");
1184   else
1185     {
1186       int cnt;
1187 
1188       if (FIRST_STRING_P (where))
1189         {
1190           for (this_char = where - string1; this_char < size1; this_char++)
1191 	    PUT_CHAR (string1[this_char]);
1192 
1193           where = string2;
1194         }
1195 
1196       cnt = 0;
1197       for (this_char = where - string2; this_char < size2; this_char++)
1198 	{
1199 	  PUT_CHAR (string2[this_char]);
1200 	  if (++cnt > 100)
1201 	    {
1202 	      fputs ("...", stdout);
1203 	      break;
1204 	    }
1205 	}
1206     }
1207 }
1208 
1209 #  ifndef DEFINED_ONCE
1210 void
printchar(int c)1211 printchar (int c)
1212 {
1213   putc (c, stderr);
1214 }
1215 #  endif
1216 
1217 # else /* not DEBUG */
1218 
1219 #  ifndef DEFINED_ONCE
1220 #   undef assert
1221 #   define assert(e)
1222 
1223 #   define DEBUG_STATEMENT(e)
1224 #   define DEBUG_PRINT1(x)
1225 #   define DEBUG_PRINT2(x1, x2)
1226 #   define DEBUG_PRINT3(x1, x2, x3)
1227 #   define DEBUG_PRINT4(x1, x2, x3, x4)
1228 #  endif /* not DEFINED_ONCE */
1229 #  define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1230 #  define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1231 
1232 # endif /* not DEBUG */
1233 
1234 
1235 
1236 # ifdef WCHAR
1237 /* This  convert a multibyte string to a wide character string.
1238    And write their correspondances to offset_buffer(see below)
1239    and write whether each wchar_t is binary data to is_binary.
1240    This assume invalid multibyte sequences as binary data.
1241    We assume offset_buffer and is_binary is already allocated
1242    enough space.  */
1243 
1244 static size_t convert_mbs_to_wcs (CHAR_T *dest, const unsigned char* src,
1245 				  size_t len, int *offset_buffer,
1246 				  char *is_binary);
1247 static size_t
convert_mbs_to_wcs(CHAR_T * dest,const unsigned char * src,size_t len,int * offset_buffer,char * is_binary)1248 convert_mbs_to_wcs (CHAR_T *dest, const unsigned char*src, size_t len,
1249                     int *offset_buffer, char *is_binary)
1250      /* It hold correspondances between src(char string) and
1251 	dest(wchar_t string) for optimization.
1252 	e.g. src  = "xxxyzz"
1253              dest = {'X', 'Y', 'Z'}
1254 	      (each "xxx", "y" and "zz" represent one multibyte character
1255 	       corresponding to 'X', 'Y' and 'Z'.)
1256 	  offset_buffer = {0, 0+3("xxx"), 0+3+1("y"), 0+3+1+2("zz")}
1257 	  	        = {0, 3, 4, 6}
1258      */
1259 {
1260   wchar_t *pdest = dest;
1261   const unsigned char *psrc = src;
1262   size_t wc_count = 0;
1263 
1264   mbstate_t mbs;
1265   int i, consumed;
1266   size_t mb_remain = len;
1267   size_t mb_count = 0;
1268 
1269   /* Initialize the conversion state.  */
1270   memset (&mbs, 0, sizeof (mbstate_t));
1271 
1272   offset_buffer[0] = 0;
1273   for( ; mb_remain > 0 ; ++wc_count, ++pdest, mb_remain -= consumed,
1274 	 psrc += consumed)
1275     {
1276 #ifdef _LIBC
1277       consumed = __mbrtowc (pdest, psrc, mb_remain, &mbs);
1278 #else
1279       consumed = mbrtowc (pdest, psrc, mb_remain, &mbs);
1280 #endif
1281 
1282       if (consumed <= 0)
1283 	/* failed to convert. maybe src contains binary data.
1284 	   So we consume 1 byte manualy.  */
1285 	{
1286 	  *pdest = *psrc;
1287 	  consumed = 1;
1288 	  is_binary[wc_count] = TRUE;
1289 	}
1290       else
1291 	is_binary[wc_count] = FALSE;
1292       /* In sjis encoding, we use yen sign as escape character in
1293 	 place of reverse solidus. So we convert 0x5c(yen sign in
1294 	 sjis) to not 0xa5(yen sign in UCS2) but 0x5c(reverse
1295 	 solidus in UCS2).  */
1296       if (consumed == 1 && (int) *psrc == 0x5c && (int) *pdest == 0xa5)
1297 	*pdest = (wchar_t) *psrc;
1298 
1299       offset_buffer[wc_count + 1] = mb_count += consumed;
1300     }
1301 
1302   /* Fill remain of the buffer with sentinel.  */
1303   for (i = wc_count + 1 ; i <= len ; i++)
1304     offset_buffer[i] = mb_count + 1;
1305 
1306   return wc_count;
1307 }
1308 
1309 # endif /* WCHAR */
1310 
1311 #else /* not INSIDE_RECURSION */
1312 
1313 /* Set by `re_set_syntax' to the current regexp syntax to recognize.  Can
1314    also be assigned to arbitrarily: each pattern buffer stores its own
1315    syntax, so it can be changed between regex compilations.  */
1316 /* This has no initializer because initialized variables in Emacs
1317    become read-only after dumping.  */
1318 reg_syntax_t re_syntax_options;
1319 
1320 
1321 /* Specify the precise syntax of regexps for compilation.  This provides
1322    for compatibility for various utilities which historically have
1323    different, incompatible syntaxes.
1324 
1325    The argument SYNTAX is a bit mask comprised of the various bits
1326    defined in regex.h.  We return the old syntax.  */
1327 
1328 reg_syntax_t
re_set_syntax(reg_syntax_t syntax)1329 re_set_syntax (reg_syntax_t syntax)
1330 {
1331   reg_syntax_t ret = re_syntax_options;
1332 
1333   re_syntax_options = syntax;
1334 # ifdef DEBUG
1335   if (syntax & RE_DEBUG)
1336     debug = 1;
1337   else if (debug) /* was on but now is not */
1338     debug = 0;
1339 # endif /* DEBUG */
1340   return ret;
1341 }
1342 # ifdef _LIBC
1343 weak_alias (__re_set_syntax, re_set_syntax)
1344 # endif
1345 
1346 /* This table gives an error message for each of the error codes listed
1347    in regex.h.  Obviously the order here has to be same as there.
1348    POSIX doesn't require that we do anything for REG_NOERROR,
1349    but why not be nice?  */
1350 
1351 static const char *re_error_msgid[] =
1352   {
1353     gettext_noop ("Success"),	/* REG_NOERROR */
1354     gettext_noop ("No match"),	/* REG_NOMATCH */
1355     gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1356     gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1357     gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1358     gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1359     gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1360     gettext_noop ("Unmatched [ or [^"),	/* REG_EBRACK */
1361     gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1362     gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1363     gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1364     gettext_noop ("Invalid range end"),	/* REG_ERANGE */
1365     gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1366     gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1367     gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1368     gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1369     gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */
1370   };
1371 
1372 #endif /* INSIDE_RECURSION */
1373 
1374 #ifndef DEFINED_ONCE
1375 /* Avoiding alloca during matching, to placate r_alloc.  */
1376 
1377 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1378    searching and matching functions should not call alloca.  On some
1379    systems, alloca is implemented in terms of malloc, and if we're
1380    using the relocating allocator routines, then malloc could cause a
1381    relocation, which might (if the strings being searched are in the
1382    ralloc heap) shift the data out from underneath the regexp
1383    routines.
1384 
1385    Here's another reason to avoid allocation: Emacs
1386    processes input from X in a signal handler; processing X input may
1387    call malloc; if input arrives while a matching routine is calling
1388    malloc, then we're scrod.  But Emacs can't just block input while
1389    calling matching routines; then we don't notice interrupts when
1390    they come in.  So, Emacs blocks input around all regexp calls
1391    except the matching calls, which it leaves unprotected, in the
1392    faith that they will not malloc.  */
1393 
1394 /* Normally, this is fine.  */
1395 # define MATCH_MAY_ALLOCATE
1396 
1397 /* When using GNU C, we are not REALLY using the C alloca, no matter
1398    what config.h may say.  So don't take precautions for it.  */
1399 # ifdef __GNUC__
1400 #  undef C_ALLOCA
1401 # endif
1402 
1403 /* The match routines may not allocate if (1) they would do it with malloc
1404    and (2) it's not safe for them to use malloc.
1405    Note that if REL_ALLOC is defined, matching would not use malloc for the
1406    failure stack, but we would still use it for the register vectors;
1407    so REL_ALLOC should not affect this.  */
1408 # if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1409 #  undef MATCH_MAY_ALLOCATE
1410 # endif
1411 #endif /* not DEFINED_ONCE */
1412 
1413 #ifdef INSIDE_RECURSION
1414 /* Failure stack declarations and macros; both re_compile_fastmap and
1415    re_match_2 use a failure stack.  These have to be macros because of
1416    REGEX_ALLOCATE_STACK.  */
1417 
1418 
1419 /* Number of failure points for which to initially allocate space
1420    when matching.  If this number is exceeded, we allocate more
1421    space, so it is not a hard limit.  */
1422 # ifndef INIT_FAILURE_ALLOC
1423 #  define INIT_FAILURE_ALLOC 5
1424 # endif
1425 
1426 /* Roughly the maximum number of failure points on the stack.  Would be
1427    exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1428    This is a variable only so users of regex can assign to it; we never
1429    change it ourselves.  */
1430 
1431 # ifdef INT_IS_16BIT
1432 
1433 #  ifndef DEFINED_ONCE
1434 #   if defined MATCH_MAY_ALLOCATE
1435 /* 4400 was enough to cause a crash on Alpha OSF/1,
1436    whose default stack limit is 2mb.  */
1437 long int re_max_failures = 4000;
1438 #   else
1439 long int re_max_failures = 2000;
1440 #   endif
1441 #  endif
1442 
PREFIX(fail_stack_elt)1443 union PREFIX(fail_stack_elt)
1444 {
1445   UCHAR_T *pointer;
1446   long int integer;
1447 };
1448 
1449 typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1450 
1451 typedef struct
1452 {
1453   PREFIX(fail_stack_elt_t) *stack;
1454   unsigned long int size;
1455   unsigned long int avail;		/* Offset of next open position.  */
1456 } PREFIX(fail_stack_type);
1457 
1458 # else /* not INT_IS_16BIT */
1459 
1460 #  ifndef DEFINED_ONCE
1461 #   if defined MATCH_MAY_ALLOCATE
1462 /* 4400 was enough to cause a crash on Alpha OSF/1,
1463    whose default stack limit is 2mb.  */
1464 int re_max_failures = 4000;
1465 #   else
1466 int re_max_failures = 2000;
1467 #   endif
1468 #  endif
1469 
PREFIX(fail_stack_elt)1470 union PREFIX(fail_stack_elt)
1471 {
1472   UCHAR_T *pointer;
1473   int integer;
1474 };
1475 
1476 typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1477 
1478 typedef struct
1479 {
1480   PREFIX(fail_stack_elt_t) *stack;
1481   unsigned size;
1482   unsigned avail;			/* Offset of next open position.  */
1483 } PREFIX(fail_stack_type);
1484 
1485 # endif /* INT_IS_16BIT */
1486 
1487 # ifndef DEFINED_ONCE
1488 #  define FAIL_STACK_EMPTY()     (fail_stack.avail == 0)
1489 #  define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1490 #  define FAIL_STACK_FULL()      (fail_stack.avail == fail_stack.size)
1491 # endif
1492 
1493 
1494 /* Define macros to initialize and free the failure stack.
1495    Do `return -2' if the alloc fails.  */
1496 
1497 # ifdef MATCH_MAY_ALLOCATE
1498 #  define INIT_FAIL_STACK()						\
1499   do {									\
1500     fail_stack.stack = (PREFIX(fail_stack_elt_t) *)		\
1501       REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (PREFIX(fail_stack_elt_t))); \
1502 									\
1503     if (fail_stack.stack == NULL)				\
1504       return -2;							\
1505 									\
1506     fail_stack.size = INIT_FAILURE_ALLOC;			\
1507     fail_stack.avail = 0;					\
1508   } while (0)
1509 
1510 #  define RESET_FAIL_STACK()  REGEX_FREE_STACK (fail_stack.stack)
1511 # else
1512 #  define INIT_FAIL_STACK()						\
1513   do {									\
1514     fail_stack.avail = 0;					\
1515   } while (0)
1516 
1517 #  define RESET_FAIL_STACK()
1518 # endif
1519 
1520 
1521 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1522 
1523    Return 1 if succeeds, and 0 if either ran out of memory
1524    allocating space for it or it was already too large.
1525 
1526    REGEX_REALLOCATE_STACK requires `destination' be declared.   */
1527 
1528 # define DOUBLE_FAIL_STACK(fail_stack)					\
1529   ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS)	\
1530    ? 0									\
1531    : ((fail_stack).stack = (PREFIX(fail_stack_elt_t) *)			\
1532         REGEX_REALLOCATE_STACK ((fail_stack).stack, 			\
1533           (fail_stack).size * sizeof (PREFIX(fail_stack_elt_t)),	\
1534           ((fail_stack).size << 1) * sizeof (PREFIX(fail_stack_elt_t))),\
1535 									\
1536       (fail_stack).stack == NULL					\
1537       ? 0								\
1538       : ((fail_stack).size <<= 1, 					\
1539          1)))
1540 
1541 
1542 /* Push pointer POINTER on FAIL_STACK.
1543    Return 1 if was able to do so and 0 if ran out of memory allocating
1544    space to do so.  */
1545 # define PUSH_PATTERN_OP(POINTER, FAIL_STACK)				\
1546   ((FAIL_STACK_FULL ()							\
1547     && !DOUBLE_FAIL_STACK (FAIL_STACK))					\
1548    ? 0									\
1549    : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER,	\
1550       1))
1551 
1552 /* Push a pointer value onto the failure stack.
1553    Assumes the variable `fail_stack'.  Probably should only
1554    be called from within `PUSH_FAILURE_POINT'.  */
1555 # define PUSH_FAILURE_POINTER(item)					\
1556   fail_stack.stack[fail_stack.avail++].pointer = (UCHAR_T *) (item)
1557 
1558 /* This pushes an integer-valued item onto the failure stack.
1559    Assumes the variable `fail_stack'.  Probably should only
1560    be called from within `PUSH_FAILURE_POINT'.  */
1561 # define PUSH_FAILURE_INT(item)					\
1562   fail_stack.stack[fail_stack.avail++].integer = (item)
1563 
1564 /* Push a fail_stack_elt_t value onto the failure stack.
1565    Assumes the variable `fail_stack'.  Probably should only
1566    be called from within `PUSH_FAILURE_POINT'.  */
1567 # define PUSH_FAILURE_ELT(item)					\
1568   fail_stack.stack[fail_stack.avail++] =  (item)
1569 
1570 /* These three POP... operations complement the three PUSH... operations.
1571    All assume that `fail_stack' is nonempty.  */
1572 # define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1573 # define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1574 # define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1575 
1576 /* Used to omit pushing failure point id's when we're not debugging.  */
1577 # ifdef DEBUG
1578 #  define DEBUG_PUSH PUSH_FAILURE_INT
1579 #  define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1580 # else
1581 #  define DEBUG_PUSH(item)
1582 #  define DEBUG_POP(item_addr)
1583 # endif
1584 
1585 
1586 /* Push the information about the state we will need
1587    if we ever fail back to it.
1588 
1589    Requires variables fail_stack, regstart, regend, reg_info, and
1590    num_regs_pushed be declared.  DOUBLE_FAIL_STACK requires `destination'
1591    be declared.
1592 
1593    Does `return FAILURE_CODE' if runs out of memory.  */
1594 
1595 # define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code)	\
1596   do {									\
1597     char *destination;							\
1598     /* Must be int, so when we don't save any registers, the arithmetic	\
1599        of 0 + -1 isn't done as unsigned.  */				\
1600     /* Can't be int, since there is not a shred of a guarantee that int	\
1601        is wide enough to hold a value of something to which pointer can	\
1602        be assigned */							\
1603     active_reg_t this_reg;						\
1604     									\
1605     DEBUG_STATEMENT (failure_id++);					\
1606     DEBUG_STATEMENT (nfailure_points_pushed++);				\
1607     DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id);		\
1608     DEBUG_PRINT2 ("  Before push, next avail: %d\n", (fail_stack).avail);\
1609     DEBUG_PRINT2 ("                     size: %d\n", (fail_stack).size);\
1610 									\
1611     DEBUG_PRINT2 ("  slots needed: %ld\n", NUM_FAILURE_ITEMS);		\
1612     DEBUG_PRINT2 ("     available: %d\n", REMAINING_AVAIL_SLOTS);	\
1613 									\
1614     /* Ensure we have enough space allocated for what we will push.  */	\
1615     while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS)			\
1616       {									\
1617         if (!DOUBLE_FAIL_STACK (fail_stack))				\
1618           return failure_code;						\
1619 									\
1620         DEBUG_PRINT2 ("\n  Doubled stack; size now: %d\n",		\
1621 		       (fail_stack).size);				\
1622         DEBUG_PRINT2 ("  slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1623       }									\
1624 									\
1625     /* Push the info, starting with the registers.  */			\
1626     DEBUG_PRINT1 ("\n");						\
1627 									\
1628     if (1)								\
1629       for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1630 	   this_reg++)							\
1631 	{								\
1632 	  DEBUG_PRINT2 ("  Pushing reg: %lu\n", this_reg);		\
1633 	  DEBUG_STATEMENT (num_regs_pushed++);				\
1634 									\
1635 	  DEBUG_PRINT2 ("    start: %p\n", regstart[this_reg]);		\
1636 	  PUSH_FAILURE_POINTER (regstart[this_reg]);			\
1637 									\
1638 	  DEBUG_PRINT2 ("    end: %p\n", regend[this_reg]);		\
1639 	  PUSH_FAILURE_POINTER (regend[this_reg]);			\
1640 									\
1641 	  DEBUG_PRINT2 ("    info: %p\n      ",				\
1642 			reg_info[this_reg].word.pointer);		\
1643 	  DEBUG_PRINT2 (" match_null=%d",				\
1644 			REG_MATCH_NULL_STRING_P (reg_info[this_reg]));	\
1645 	  DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg]));	\
1646 	  DEBUG_PRINT2 (" matched_something=%d",			\
1647 			MATCHED_SOMETHING (reg_info[this_reg]));	\
1648 	  DEBUG_PRINT2 (" ever_matched=%d",				\
1649 			EVER_MATCHED_SOMETHING (reg_info[this_reg]));	\
1650 	  DEBUG_PRINT1 ("\n");						\
1651 	  PUSH_FAILURE_ELT (reg_info[this_reg].word);			\
1652 	}								\
1653 									\
1654     DEBUG_PRINT2 ("  Pushing  low active reg: %ld\n", lowest_active_reg);\
1655     PUSH_FAILURE_INT (lowest_active_reg);				\
1656 									\
1657     DEBUG_PRINT2 ("  Pushing high active reg: %ld\n", highest_active_reg);\
1658     PUSH_FAILURE_INT (highest_active_reg);				\
1659 									\
1660     DEBUG_PRINT2 ("  Pushing pattern %p:\n", pattern_place);		\
1661     DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend);		\
1662     PUSH_FAILURE_POINTER (pattern_place);				\
1663 									\
1664     DEBUG_PRINT2 ("  Pushing string %p: `", string_place);		\
1665     DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2,   \
1666 				 size2);				\
1667     DEBUG_PRINT1 ("'\n");						\
1668     PUSH_FAILURE_POINTER (string_place);				\
1669 									\
1670     DEBUG_PRINT2 ("  Pushing failure id: %u\n", failure_id);		\
1671     DEBUG_PUSH (failure_id);						\
1672   } while (0)
1673 
1674 # ifndef DEFINED_ONCE
1675 /* This is the number of items that are pushed and popped on the stack
1676    for each register.  */
1677 #  define NUM_REG_ITEMS  3
1678 
1679 /* Individual items aside from the registers.  */
1680 #  ifdef DEBUG
1681 #   define NUM_NONREG_ITEMS 5 /* Includes failure point id.  */
1682 #  else
1683 #   define NUM_NONREG_ITEMS 4
1684 #  endif
1685 
1686 /* We push at most this many items on the stack.  */
1687 /* We used to use (num_regs - 1), which is the number of registers
1688    this regexp will save; but that was changed to 5
1689    to avoid stack overflow for a regexp with lots of parens.  */
1690 #  define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1691 
1692 /* We actually push this many items.  */
1693 #  define NUM_FAILURE_ITEMS				\
1694   (((0							\
1695      ? 0 : highest_active_reg - lowest_active_reg + 1)	\
1696     * NUM_REG_ITEMS)					\
1697    + NUM_NONREG_ITEMS)
1698 
1699 /* How many items can still be added to the stack without overflowing it.  */
1700 #  define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1701 # endif /* not DEFINED_ONCE */
1702 
1703 
1704 /* Pops what PUSH_FAIL_STACK pushes.
1705 
1706    We restore into the parameters, all of which should be lvalues:
1707      STR -- the saved data position.
1708      PAT -- the saved pattern position.
1709      LOW_REG, HIGH_REG -- the highest and lowest active registers.
1710      REGSTART, REGEND -- arrays of string positions.
1711      REG_INFO -- array of information about each subexpression.
1712 
1713    Also assumes the variables `fail_stack' and (if debugging), `bufp',
1714    `pend', `string1', `size1', `string2', and `size2'.  */
1715 # define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1716 {									\
1717   DEBUG_STATEMENT (unsigned failure_id;)				\
1718   active_reg_t this_reg;						\
1719   const UCHAR_T *string_temp;						\
1720 									\
1721   assert (!FAIL_STACK_EMPTY ());					\
1722 									\
1723   /* Remove failure points and point to how many regs pushed.  */	\
1724   DEBUG_PRINT1 ("POP_FAILURE_POINT:\n");				\
1725   DEBUG_PRINT2 ("  Before pop, next avail: %d\n", fail_stack.avail);	\
1726   DEBUG_PRINT2 ("                    size: %d\n", fail_stack.size);	\
1727 									\
1728   assert (fail_stack.avail >= NUM_NONREG_ITEMS);			\
1729 									\
1730   DEBUG_POP (&failure_id);						\
1731   DEBUG_PRINT2 ("  Popping failure id: %u\n", failure_id);		\
1732 									\
1733   /* If the saved string location is NULL, it came from an		\
1734      on_failure_keep_string_jump opcode, and we want to throw away the	\
1735      saved NULL, thus retaining our current position in the string.  */	\
1736   string_temp = POP_FAILURE_POINTER ();					\
1737   if (string_temp != NULL)						\
1738     str = (const CHAR_T *) string_temp;					\
1739 									\
1740   DEBUG_PRINT2 ("  Popping string %p: `", str);				\
1741   DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2);	\
1742   DEBUG_PRINT1 ("'\n");							\
1743 									\
1744   pat = (UCHAR_T *) POP_FAILURE_POINTER ();				\
1745   DEBUG_PRINT2 ("  Popping pattern %p:\n", pat);			\
1746   DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend);			\
1747 									\
1748   /* Restore register info.  */						\
1749   high_reg = (active_reg_t) POP_FAILURE_INT ();				\
1750   DEBUG_PRINT2 ("  Popping high active reg: %ld\n", high_reg);		\
1751 									\
1752   low_reg = (active_reg_t) POP_FAILURE_INT ();				\
1753   DEBUG_PRINT2 ("  Popping  low active reg: %ld\n", low_reg);		\
1754 									\
1755   if (1)								\
1756     for (this_reg = high_reg; this_reg >= low_reg; this_reg--)		\
1757       {									\
1758 	DEBUG_PRINT2 ("    Popping reg: %ld\n", this_reg);		\
1759 									\
1760 	reg_info[this_reg].word = POP_FAILURE_ELT ();			\
1761 	DEBUG_PRINT2 ("      info: %p\n",				\
1762 		      reg_info[this_reg].word.pointer);			\
1763 									\
1764 	regend[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER ();	\
1765 	DEBUG_PRINT2 ("      end: %p\n", regend[this_reg]);		\
1766 									\
1767 	regstart[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER ();	\
1768 	DEBUG_PRINT2 ("      start: %p\n", regstart[this_reg]);		\
1769       }									\
1770   else									\
1771     {									\
1772       for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1773 	{								\
1774 	  reg_info[this_reg].word.integer = 0;				\
1775 	  regend[this_reg] = 0;						\
1776 	  regstart[this_reg] = 0;					\
1777 	}								\
1778       highest_active_reg = high_reg;					\
1779     }									\
1780 									\
1781   set_regs_matched_done = 0;						\
1782   DEBUG_STATEMENT (nfailure_points_popped++);				\
1783 } /* POP_FAILURE_POINT */
1784 
1785 /* Structure for per-register (a.k.a. per-group) information.
1786    Other register information, such as the
1787    starting and ending positions (which are addresses), and the list of
1788    inner groups (which is a bits list) are maintained in separate
1789    variables.
1790 
1791    We are making a (strictly speaking) nonportable assumption here: that
1792    the compiler will pack our bit fields into something that fits into
1793    the type of `word', i.e., is something that fits into one item on the
1794    failure stack.  */
1795 
1796 
1797 /* Declarations and macros for re_match_2.  */
1798 
1799 typedef union
1800 {
1801   PREFIX(fail_stack_elt_t) word;
1802   struct
1803   {
1804       /* This field is one if this group can match the empty string,
1805          zero if not.  If not yet determined,  `MATCH_NULL_UNSET_VALUE'.  */
1806 # define MATCH_NULL_UNSET_VALUE 3
1807     unsigned match_null_string_p : 2;
1808     unsigned is_active : 1;
1809     unsigned matched_something : 1;
1810     unsigned ever_matched_something : 1;
1811   } bits;
1812 } PREFIX(register_info_type);
1813 
1814 # ifndef DEFINED_ONCE
1815 #  define REG_MATCH_NULL_STRING_P(R)  ((R).bits.match_null_string_p)
1816 #  define IS_ACTIVE(R)  ((R).bits.is_active)
1817 #  define MATCHED_SOMETHING(R)  ((R).bits.matched_something)
1818 #  define EVER_MATCHED_SOMETHING(R)  ((R).bits.ever_matched_something)
1819 
1820 
1821 /* Call this when have matched a real character; it sets `matched' flags
1822    for the subexpressions which we are currently inside.  Also records
1823    that those subexprs have matched.  */
1824 #  define SET_REGS_MATCHED()						\
1825   do									\
1826     {									\
1827       if (!set_regs_matched_done)					\
1828 	{								\
1829 	  active_reg_t r;						\
1830 	  set_regs_matched_done = 1;					\
1831 	  for (r = lowest_active_reg; r <= highest_active_reg; r++)	\
1832 	    {								\
1833 	      MATCHED_SOMETHING (reg_info[r])				\
1834 		= EVER_MATCHED_SOMETHING (reg_info[r])			\
1835 		= 1;							\
1836 	    }								\
1837 	}								\
1838     }									\
1839   while (0)
1840 # endif /* not DEFINED_ONCE */
1841 
1842 /* Registers are set to a sentinel when they haven't yet matched.  */
1843 static CHAR_T PREFIX(reg_unset_dummy);
1844 # define REG_UNSET_VALUE (&PREFIX(reg_unset_dummy))
1845 # define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1846 
1847 /* Subroutine declarations and macros for regex_compile.  */
1848 static void PREFIX(store_op1) (re_opcode_t op, UCHAR_T *loc, int arg);
1849 static void PREFIX(store_op2) (re_opcode_t op, UCHAR_T *loc,
1850                                int arg1, int arg2);
1851 static void PREFIX(insert_op1) (re_opcode_t op, UCHAR_T *loc,
1852                                 int arg, UCHAR_T *end);
1853 static void PREFIX(insert_op2) (re_opcode_t op, UCHAR_T *loc,
1854                                 int arg1, int arg2, UCHAR_T *end);
1855 static boolean PREFIX(at_begline_loc_p) (const CHAR_T *pattern,
1856                                          const CHAR_T *p,
1857                                          reg_syntax_t syntax);
1858 static boolean PREFIX(at_endline_loc_p) (const CHAR_T *p,
1859                                          const CHAR_T *pend,
1860                                          reg_syntax_t syntax);
1861 # ifdef WCHAR
1862 static reg_errcode_t wcs_compile_range (CHAR_T range_start,
1863                                         const CHAR_T **p_ptr,
1864                                         const CHAR_T *pend,
1865                                         char *translate,
1866                                         reg_syntax_t syntax,
1867                                         UCHAR_T *b,
1868                                         CHAR_T *char_set);
1869 static void insert_space (int num, CHAR_T *loc, CHAR_T *end);
1870 # else /* BYTE */
1871 static reg_errcode_t byte_compile_range (unsigned int range_start,
1872                                          const char **p_ptr,
1873                                          const char *pend,
1874                                          char *translate,
1875                                          reg_syntax_t syntax,
1876                                          unsigned char *b);
1877 # endif /* WCHAR */
1878 
1879 /* Fetch the next character in the uncompiled pattern---translating it
1880    if necessary.  Also cast from a signed character in the constant
1881    string passed to us by the user to an unsigned char that we can use
1882    as an array index (in, e.g., `translate').  */
1883 /* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1884    because it is impossible to allocate 4GB array for some encodings
1885    which have 4 byte character_set like UCS4.  */
1886 # ifndef PATFETCH
1887 #  ifdef WCHAR
1888 #   define PATFETCH(c)							\
1889   do {if (p == pend) return REG_EEND;					\
1890     c = (UCHAR_T) *p++;							\
1891     if (translate && (c <= 0xff)) c = (UCHAR_T) translate[c];		\
1892   } while (0)
1893 #  else /* BYTE */
1894 #   define PATFETCH(c)							\
1895   do {if (p == pend) return REG_EEND;					\
1896     c = (unsigned char) *p++;						\
1897     if (translate) c = (unsigned char) translate[c];			\
1898   } while (0)
1899 #  endif /* WCHAR */
1900 # endif
1901 
1902 /* Fetch the next character in the uncompiled pattern, with no
1903    translation.  */
1904 # define PATFETCH_RAW(c)						\
1905   do {if (p == pend) return REG_EEND;					\
1906     c = (UCHAR_T) *p++; 	       					\
1907   } while (0)
1908 
1909 /* Go backwards one character in the pattern.  */
1910 # define PATUNFETCH p--
1911 
1912 
1913 /* If `translate' is non-null, return translate[D], else just D.  We
1914    cast the subscript to translate because some data is declared as
1915    `char *', to avoid warnings when a string constant is passed.  But
1916    when we use a character as a subscript we must make it unsigned.  */
1917 /* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1918    because it is impossible to allocate 4GB array for some encodings
1919    which have 4 byte character_set like UCS4.  */
1920 
1921 # ifndef TRANSLATE
1922 #  ifdef WCHAR
1923 #   define TRANSLATE(d) \
1924   ((translate && ((UCHAR_T) (d)) <= 0xff) \
1925    ? (char) translate[(unsigned char) (d)] : (d))
1926 # else /* BYTE */
1927 #   define TRANSLATE(d) \
1928   (translate ? (char) translate[(unsigned char) (d)] : (char) (d))
1929 #  endif /* WCHAR */
1930 # endif
1931 
1932 
1933 /* Macros for outputting the compiled pattern into `buffer'.  */
1934 
1935 /* If the buffer isn't allocated when it comes in, use this.  */
1936 # define INIT_BUF_SIZE  (32 * sizeof(UCHAR_T))
1937 
1938 /* Make sure we have at least N more bytes of space in buffer.  */
1939 # ifdef WCHAR
1940 #  define GET_BUFFER_SPACE(n)						\
1941     while (((unsigned long)b - (unsigned long)COMPILED_BUFFER_VAR	\
1942             + (n)*sizeof(CHAR_T)) > bufp->allocated)			\
1943       EXTEND_BUFFER ()
1944 # else /* BYTE */
1945 #  define GET_BUFFER_SPACE(n)						\
1946     while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated)	\
1947       EXTEND_BUFFER ()
1948 # endif /* WCHAR */
1949 
1950 /* Make sure we have one more byte of buffer space and then add C to it.  */
1951 # define BUF_PUSH(c)							\
1952   do {									\
1953     GET_BUFFER_SPACE (1);						\
1954     *b++ = (UCHAR_T) (c);						\
1955   } while (0)
1956 
1957 
1958 /* Ensure we have two more bytes of buffer space and then append C1 and C2.  */
1959 # define BUF_PUSH_2(c1, c2)						\
1960   do {									\
1961     GET_BUFFER_SPACE (2);						\
1962     *b++ = (UCHAR_T) (c1);						\
1963     *b++ = (UCHAR_T) (c2);						\
1964   } while (0)
1965 
1966 
1967 /* As with BUF_PUSH_2, except for three bytes.  */
1968 # define BUF_PUSH_3(c1, c2, c3)						\
1969   do {									\
1970     GET_BUFFER_SPACE (3);						\
1971     *b++ = (UCHAR_T) (c1);						\
1972     *b++ = (UCHAR_T) (c2);						\
1973     *b++ = (UCHAR_T) (c3);						\
1974   } while (0)
1975 
1976 /* Store a jump with opcode OP at LOC to location TO.  We store a
1977    relative address offset by the three bytes the jump itself occupies.  */
1978 # define STORE_JUMP(op, loc, to) \
1979  PREFIX(store_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)))
1980 
1981 /* Likewise, for a two-argument jump.  */
1982 # define STORE_JUMP2(op, loc, to, arg) \
1983   PREFIX(store_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), arg)
1984 
1985 /* Like `STORE_JUMP', but for inserting.  Assume `b' is the buffer end.  */
1986 # define INSERT_JUMP(op, loc, to) \
1987   PREFIX(insert_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), b)
1988 
1989 /* Like `STORE_JUMP2', but for inserting.  Assume `b' is the buffer end.  */
1990 # define INSERT_JUMP2(op, loc, to, arg) \
1991   PREFIX(insert_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)),\
1992 	      arg, b)
1993 
1994 /* This is not an arbitrary limit: the arguments which represent offsets
1995    into the pattern are two bytes long.  So if 2^16 bytes turns out to
1996    be too small, many things would have to change.  */
1997 /* Any other compiler which, like MSC, has allocation limit below 2^16
1998    bytes will have to use approach similar to what was done below for
1999    MSC and drop MAX_BUF_SIZE a bit.  Otherwise you may end up
2000    reallocating to 0 bytes.  Such thing is not going to work too well.
2001    You have been warned!!  */
2002 # ifndef DEFINED_ONCE
2003 #  if defined _MSC_VER  && !defined WIN32
2004 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
2005    The REALLOC define eliminates a flurry of conversion warnings,
2006    but is not required. */
2007 #   define MAX_BUF_SIZE  65500L
2008 #   define REALLOC(p,s) realloc ((p), (size_t) (s))
2009 #  else
2010 #   define MAX_BUF_SIZE (1L << 16)
2011 #   define REALLOC(p,s) realloc ((p), (s))
2012 #  endif
2013 
2014 /* Extend the buffer by twice its current size via realloc and
2015    reset the pointers that pointed into the old block to point to the
2016    correct places in the new one.  If extending the buffer results in it
2017    being larger than MAX_BUF_SIZE, then flag memory exhausted.  */
2018 #  if __BOUNDED_POINTERS__
2019 #   define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
2020 #   define MOVE_BUFFER_POINTER(P) \
2021   (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
2022 #   define ELSE_EXTEND_BUFFER_HIGH_BOUND	\
2023   else						\
2024     {						\
2025       SET_HIGH_BOUND (b);			\
2026       SET_HIGH_BOUND (begalt);			\
2027       if (fixup_alt_jump)			\
2028 	SET_HIGH_BOUND (fixup_alt_jump);	\
2029       if (laststart)				\
2030 	SET_HIGH_BOUND (laststart);		\
2031       if (pending_exact)			\
2032 	SET_HIGH_BOUND (pending_exact);		\
2033     }
2034 #  else
2035 #   define MOVE_BUFFER_POINTER(P) (P) += incr
2036 #   define ELSE_EXTEND_BUFFER_HIGH_BOUND
2037 #  endif
2038 # endif /* not DEFINED_ONCE */
2039 
2040 # ifdef WCHAR
2041 #  define EXTEND_BUFFER()						\
2042   do {									\
2043     UCHAR_T *old_buffer = COMPILED_BUFFER_VAR;				\
2044     int wchar_count;							\
2045     if (bufp->allocated + sizeof(UCHAR_T) > MAX_BUF_SIZE)		\
2046       return REG_ESIZE;							\
2047     bufp->allocated <<= 1;						\
2048     if (bufp->allocated > MAX_BUF_SIZE)					\
2049       bufp->allocated = MAX_BUF_SIZE;					\
2050     /* How many characters the new buffer can have?  */			\
2051     wchar_count = bufp->allocated / sizeof(UCHAR_T);			\
2052     if (wchar_count == 0) wchar_count = 1;				\
2053     /* Truncate the buffer to CHAR_T align.  */				\
2054     bufp->allocated = wchar_count * sizeof(UCHAR_T);			\
2055     RETALLOC (COMPILED_BUFFER_VAR, wchar_count, UCHAR_T);		\
2056     bufp->buffer = (char*)COMPILED_BUFFER_VAR;				\
2057     if (COMPILED_BUFFER_VAR == NULL)					\
2058       return REG_ESPACE;						\
2059     /* If the buffer moved, move all the pointers into it.  */		\
2060     if (old_buffer != COMPILED_BUFFER_VAR)				\
2061       {									\
2062 	PTR_INT_TYPE incr = COMPILED_BUFFER_VAR - old_buffer;		\
2063 	MOVE_BUFFER_POINTER (b);					\
2064 	MOVE_BUFFER_POINTER (begalt);					\
2065 	if (fixup_alt_jump)						\
2066 	  MOVE_BUFFER_POINTER (fixup_alt_jump);				\
2067 	if (laststart)							\
2068 	  MOVE_BUFFER_POINTER (laststart);				\
2069 	if (pending_exact)						\
2070 	  MOVE_BUFFER_POINTER (pending_exact);				\
2071       }									\
2072     ELSE_EXTEND_BUFFER_HIGH_BOUND					\
2073   } while (0)
2074 # else /* BYTE */
2075 #  define EXTEND_BUFFER()						\
2076   do {									\
2077     UCHAR_T *old_buffer = COMPILED_BUFFER_VAR;				\
2078     if (bufp->allocated == MAX_BUF_SIZE)				\
2079       return REG_ESIZE;							\
2080     bufp->allocated <<= 1;						\
2081     if (bufp->allocated > MAX_BUF_SIZE)					\
2082       bufp->allocated = MAX_BUF_SIZE;					\
2083     bufp->buffer = (UCHAR_T *) REALLOC (COMPILED_BUFFER_VAR,		\
2084 						bufp->allocated);	\
2085     if (COMPILED_BUFFER_VAR == NULL)					\
2086       return REG_ESPACE;						\
2087     /* If the buffer moved, move all the pointers into it.  */		\
2088     if (old_buffer != COMPILED_BUFFER_VAR)				\
2089       {									\
2090 	PTR_INT_TYPE incr = COMPILED_BUFFER_VAR - old_buffer;		\
2091 	MOVE_BUFFER_POINTER (b);					\
2092 	MOVE_BUFFER_POINTER (begalt);					\
2093 	if (fixup_alt_jump)						\
2094 	  MOVE_BUFFER_POINTER (fixup_alt_jump);				\
2095 	if (laststart)							\
2096 	  MOVE_BUFFER_POINTER (laststart);				\
2097 	if (pending_exact)						\
2098 	  MOVE_BUFFER_POINTER (pending_exact);				\
2099       }									\
2100     ELSE_EXTEND_BUFFER_HIGH_BOUND					\
2101   } while (0)
2102 # endif /* WCHAR */
2103 
2104 # ifndef DEFINED_ONCE
2105 /* Since we have one byte reserved for the register number argument to
2106    {start,stop}_memory, the maximum number of groups we can report
2107    things about is what fits in that byte.  */
2108 #  define MAX_REGNUM 255
2109 
2110 /* But patterns can have more than `MAX_REGNUM' registers.  We just
2111    ignore the excess.  */
2112 typedef unsigned regnum_t;
2113 
2114 
2115 /* Macros for the compile stack.  */
2116 
2117 /* Since offsets can go either forwards or backwards, this type needs to
2118    be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1.  */
2119 /* int may be not enough when sizeof(int) == 2.  */
2120 typedef long pattern_offset_t;
2121 
2122 typedef struct
2123 {
2124   pattern_offset_t begalt_offset;
2125   pattern_offset_t fixup_alt_jump;
2126   pattern_offset_t inner_group_offset;
2127   pattern_offset_t laststart_offset;
2128   regnum_t regnum;
2129 } compile_stack_elt_t;
2130 
2131 
2132 typedef struct
2133 {
2134   compile_stack_elt_t *stack;
2135   unsigned size;
2136   unsigned avail;			/* Offset of next open position.  */
2137 } compile_stack_type;
2138 
2139 
2140 #  define INIT_COMPILE_STACK_SIZE 32
2141 
2142 #  define COMPILE_STACK_EMPTY  (compile_stack.avail == 0)
2143 #  define COMPILE_STACK_FULL  (compile_stack.avail == compile_stack.size)
2144 
2145 /* The next available element.  */
2146 #  define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
2147 
2148 # endif /* not DEFINED_ONCE */
2149 
2150 /* Set the bit for character C in a list.  */
2151 # ifndef DEFINED_ONCE
2152 #  define SET_LIST_BIT(c)                               \
2153   (b[((unsigned char) (c)) / BYTEWIDTH]               \
2154    |= 1 << (((unsigned char) c) % BYTEWIDTH))
2155 # endif /* DEFINED_ONCE */
2156 
2157 /* Get the next unsigned number in the uncompiled pattern.  */
2158 # define GET_UNSIGNED_NUMBER(num) \
2159   {									\
2160     while (p != pend)							\
2161       {									\
2162 	PATFETCH (c);							\
2163 	if (c < '0' || c > '9')						\
2164 	  break;							\
2165 	if (num <= RE_DUP_MAX)						\
2166 	  {								\
2167 	    if (num < 0)						\
2168 	      num = 0;							\
2169 	    num = num * 10 + c - '0';					\
2170 	  }								\
2171       }									\
2172   }
2173 
2174 # ifndef DEFINED_ONCE
2175 #  if defined _LIBC || WIDE_CHAR_SUPPORT
2176 /* The GNU C library provides support for user-defined character classes
2177    and the functions from ISO C amendement 1.  */
2178 #   ifdef CHARCLASS_NAME_MAX
2179 #    define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
2180 #   else
2181 /* This shouldn't happen but some implementation might still have this
2182    problem.  Use a reasonable default value.  */
2183 #    define CHAR_CLASS_MAX_LENGTH 256
2184 #   endif
2185 
2186 #   ifdef _LIBC
2187 #    define IS_CHAR_CLASS(string) __wctype (string)
2188 #   else
2189 #    define IS_CHAR_CLASS(string) wctype (string)
2190 #   endif
2191 #  else
2192 #   define CHAR_CLASS_MAX_LENGTH  6 /* Namely, `xdigit'.  */
2193 
2194 #   define IS_CHAR_CLASS(string)					\
2195    (STREQ (string, "alpha") || STREQ (string, "upper")			\
2196     || STREQ (string, "lower") || STREQ (string, "digit")		\
2197     || STREQ (string, "alnum") || STREQ (string, "xdigit")		\
2198     || STREQ (string, "space") || STREQ (string, "print")		\
2199     || STREQ (string, "punct") || STREQ (string, "graph")		\
2200     || STREQ (string, "cntrl") || STREQ (string, "blank"))
2201 #  endif
2202 # endif /* DEFINED_ONCE */
2203 
2204 # ifndef MATCH_MAY_ALLOCATE
2205 
2206 /* If we cannot allocate large objects within re_match_2_internal,
2207    we make the fail stack and register vectors global.
2208    The fail stack, we grow to the maximum size when a regexp
2209    is compiled.
2210    The register vectors, we adjust in size each time we
2211    compile a regexp, according to the number of registers it needs.  */
2212 
2213 static PREFIX(fail_stack_type) fail_stack;
2214 
2215 /* Size with which the following vectors are currently allocated.
2216    That is so we can make them bigger as needed,
2217    but never make them smaller.  */
2218 #  ifdef DEFINED_ONCE
2219 static int regs_allocated_size;
2220 
2221 static const char **     regstart, **     regend;
2222 static const char ** old_regstart, ** old_regend;
2223 static const char **best_regstart, **best_regend;
2224 static const char **reg_dummy;
2225 #  endif /* DEFINED_ONCE */
2226 
2227 static PREFIX(register_info_type) *PREFIX(reg_info);
2228 static PREFIX(register_info_type) *PREFIX(reg_info_dummy);
2229 
2230 /* Make the register vectors big enough for NUM_REGS registers,
2231    but don't make them smaller.  */
2232 
2233 static void
PREFIX(regex_grow_registers)2234 PREFIX(regex_grow_registers) (int num_regs)
2235 {
2236   if (num_regs > regs_allocated_size)
2237     {
2238       RETALLOC_IF (regstart,	 num_regs, const char *);
2239       RETALLOC_IF (regend,	 num_regs, const char *);
2240       RETALLOC_IF (old_regstart, num_regs, const char *);
2241       RETALLOC_IF (old_regend,	 num_regs, const char *);
2242       RETALLOC_IF (best_regstart, num_regs, const char *);
2243       RETALLOC_IF (best_regend,	 num_regs, const char *);
2244       RETALLOC_IF (PREFIX(reg_info), num_regs, PREFIX(register_info_type));
2245       RETALLOC_IF (reg_dummy,	 num_regs, const char *);
2246       RETALLOC_IF (PREFIX(reg_info_dummy), num_regs, PREFIX(register_info_type));
2247 
2248       regs_allocated_size = num_regs;
2249     }
2250 }
2251 
2252 # endif /* not MATCH_MAY_ALLOCATE */
2253 
2254 # ifndef DEFINED_ONCE
2255 static boolean group_in_compile_stack (compile_stack_type compile_stack,
2256                                        regnum_t regnum);
2257 # endif /* not DEFINED_ONCE */
2258 
2259 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2260    Returns one of error codes defined in `regex.h', or zero for success.
2261 
2262    Assumes the `allocated' (and perhaps `buffer') and `translate'
2263    fields are set in BUFP on entry.
2264 
2265    If it succeeds, results are put in BUFP (if it returns an error, the
2266    contents of BUFP are undefined):
2267      `buffer' is the compiled pattern;
2268      `syntax' is set to SYNTAX;
2269      `used' is set to the length of the compiled pattern;
2270      `fastmap_accurate' is zero;
2271      `re_nsub' is the number of subexpressions in PATTERN;
2272      `not_bol' and `not_eol' are zero;
2273 
2274    The `fastmap' and `newline_anchor' fields are neither
2275    examined nor set.  */
2276 
2277 /* Return, freeing storage we allocated.  */
2278 # ifdef WCHAR
2279 #  define FREE_STACK_RETURN(value)		\
2280   return (free(pattern), free(mbs_offset), free(is_binary), free (compile_stack.stack), value)
2281 # else
2282 #  define FREE_STACK_RETURN(value)		\
2283   return (free (compile_stack.stack), value)
2284 # endif /* WCHAR */
2285 
2286 static reg_errcode_t
PREFIX(regex_compile)2287 PREFIX(regex_compile) (const char *ARG_PREFIX(pattern),
2288                        size_t ARG_PREFIX(size), reg_syntax_t syntax,
2289                        struct re_pattern_buffer *bufp)
2290 {
2291   /* We fetch characters from PATTERN here.  Even though PATTERN is
2292      `char *' (i.e., signed), we declare these variables as unsigned, so
2293      they can be reliably used as array indices.  */
2294   register UCHAR_T c, c1;
2295 
2296 #ifdef WCHAR
2297   /* A temporary space to keep wchar_t pattern and compiled pattern.  */
2298   CHAR_T *pattern, *COMPILED_BUFFER_VAR;
2299   size_t size;
2300   /* offset buffer for optimization. See convert_mbs_to_wc.  */
2301   int *mbs_offset = NULL;
2302   /* It hold whether each wchar_t is binary data or not.  */
2303   char *is_binary = NULL;
2304   /* A flag whether exactn is handling binary data or not.  */
2305   char is_exactn_bin = FALSE;
2306 #endif /* WCHAR */
2307 
2308   /* A random temporary spot in PATTERN.  */
2309   const CHAR_T *p1;
2310 
2311   /* Points to the end of the buffer, where we should append.  */
2312   register UCHAR_T *b;
2313 
2314   /* Keeps track of unclosed groups.  */
2315   compile_stack_type compile_stack;
2316 
2317   /* Points to the current (ending) position in the pattern.  */
2318 #ifdef WCHAR
2319   const CHAR_T *p;
2320   const CHAR_T *pend;
2321 #else /* BYTE */
2322   const CHAR_T *p = pattern;
2323   const CHAR_T *pend = pattern + size;
2324 #endif /* WCHAR */
2325 
2326   /* How to translate the characters in the pattern.  */
2327   RE_TRANSLATE_TYPE translate = bufp->translate;
2328 
2329   /* Address of the count-byte of the most recently inserted `exactn'
2330      command.  This makes it possible to tell if a new exact-match
2331      character can be added to that command or if the character requires
2332      a new `exactn' command.  */
2333   UCHAR_T *pending_exact = 0;
2334 
2335   /* Address of start of the most recently finished expression.
2336      This tells, e.g., postfix * where to find the start of its
2337      operand.  Reset at the beginning of groups and alternatives.  */
2338   UCHAR_T *laststart = 0;
2339 
2340   /* Address of beginning of regexp, or inside of last group.  */
2341   UCHAR_T *begalt;
2342 
2343   /* Address of the place where a forward jump should go to the end of
2344      the containing expression.  Each alternative of an `or' -- except the
2345      last -- ends with a forward jump of this sort.  */
2346   UCHAR_T *fixup_alt_jump = 0;
2347 
2348   /* Counts open-groups as they are encountered.  Remembered for the
2349      matching close-group on the compile stack, so the same register
2350      number is put in the stop_memory as the start_memory.  */
2351   regnum_t regnum = 0;
2352 
2353 #ifdef WCHAR
2354   /* Initialize the wchar_t PATTERN and offset_buffer.  */
2355   p = pend = pattern = TALLOC(csize + 1, CHAR_T);
2356   mbs_offset = TALLOC(csize + 1, int);
2357   is_binary = TALLOC(csize + 1, char);
2358   if (pattern == NULL || mbs_offset == NULL || is_binary == NULL)
2359     {
2360       free(pattern);
2361       free(mbs_offset);
2362       free(is_binary);
2363       return REG_ESPACE;
2364     }
2365   pattern[csize] = L'\0';	/* sentinel */
2366   size = convert_mbs_to_wcs(pattern, cpattern, csize, mbs_offset, is_binary);
2367   pend = p + size;
2368   if (size < 0)
2369     {
2370       free(pattern);
2371       free(mbs_offset);
2372       free(is_binary);
2373       return REG_BADPAT;
2374     }
2375 #endif
2376 
2377 #ifdef DEBUG
2378   DEBUG_PRINT1 ("\nCompiling pattern: ");
2379   if (debug)
2380     {
2381       unsigned debug_count;
2382 
2383       for (debug_count = 0; debug_count < size; debug_count++)
2384         PUT_CHAR (pattern[debug_count]);
2385       putchar ('\n');
2386     }
2387 #endif /* DEBUG */
2388 
2389   /* Initialize the compile stack.  */
2390   compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2391   if (compile_stack.stack == NULL)
2392     {
2393 #ifdef WCHAR
2394       free(pattern);
2395       free(mbs_offset);
2396       free(is_binary);
2397 #endif
2398       return REG_ESPACE;
2399     }
2400 
2401   compile_stack.size = INIT_COMPILE_STACK_SIZE;
2402   compile_stack.avail = 0;
2403 
2404   /* Initialize the pattern buffer.  */
2405   bufp->syntax = syntax;
2406   bufp->fastmap_accurate = 0;
2407   bufp->not_bol = bufp->not_eol = 0;
2408 
2409   /* Set `used' to zero, so that if we return an error, the pattern
2410      printer (for debugging) will think there's no pattern.  We reset it
2411      at the end.  */
2412   bufp->used = 0;
2413 
2414   /* Always count groups, whether or not bufp->no_sub is set.  */
2415   bufp->re_nsub = 0;
2416 
2417 #if !defined emacs && !defined SYNTAX_TABLE
2418   /* Initialize the syntax table.  */
2419    init_syntax_once ();
2420 #endif
2421 
2422   if (bufp->allocated == 0)
2423     {
2424       if (bufp->buffer)
2425 	{ /* If zero allocated, but buffer is non-null, try to realloc
2426              enough space.  This loses if buffer's address is bogus, but
2427              that is the user's responsibility.  */
2428 #ifdef WCHAR
2429 	  /* Free bufp->buffer and allocate an array for wchar_t pattern
2430 	     buffer.  */
2431           free(bufp->buffer);
2432           COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE/sizeof(UCHAR_T),
2433 					UCHAR_T);
2434 #else
2435           RETALLOC (COMPILED_BUFFER_VAR, INIT_BUF_SIZE, UCHAR_T);
2436 #endif /* WCHAR */
2437         }
2438       else
2439         { /* Caller did not allocate a buffer.  Do it for them.  */
2440           COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE / sizeof(UCHAR_T),
2441 					UCHAR_T);
2442         }
2443 
2444       if (!COMPILED_BUFFER_VAR) FREE_STACK_RETURN (REG_ESPACE);
2445 #ifdef WCHAR
2446       bufp->buffer = (char*)COMPILED_BUFFER_VAR;
2447 #endif /* WCHAR */
2448       bufp->allocated = INIT_BUF_SIZE;
2449     }
2450 #ifdef WCHAR
2451   else
2452     COMPILED_BUFFER_VAR = (UCHAR_T*) bufp->buffer;
2453 #endif
2454 
2455   begalt = b = COMPILED_BUFFER_VAR;
2456 
2457   /* Loop through the uncompiled pattern until we're at the end.  */
2458   while (p != pend)
2459     {
2460       PATFETCH (c);
2461 
2462       switch (c)
2463         {
2464         case '^':
2465           {
2466             if (   /* If at start of pattern, it's an operator.  */
2467                    p == pattern + 1
2468                    /* If context independent, it's an operator.  */
2469                 || syntax & RE_CONTEXT_INDEP_ANCHORS
2470                    /* Otherwise, depends on what's come before.  */
2471                 || PREFIX(at_begline_loc_p) (pattern, p, syntax))
2472               BUF_PUSH (begline);
2473             else
2474               goto normal_char;
2475           }
2476           break;
2477 
2478 
2479         case '$':
2480           {
2481             if (   /* If at end of pattern, it's an operator.  */
2482                    p == pend
2483                    /* If context independent, it's an operator.  */
2484                 || syntax & RE_CONTEXT_INDEP_ANCHORS
2485                    /* Otherwise, depends on what's next.  */
2486                 || PREFIX(at_endline_loc_p) (p, pend, syntax))
2487                BUF_PUSH (endline);
2488              else
2489                goto normal_char;
2490            }
2491            break;
2492 
2493 
2494 	case '+':
2495         case '?':
2496           if ((syntax & RE_BK_PLUS_QM)
2497               || (syntax & RE_LIMITED_OPS))
2498             goto normal_char;
2499 	  /* Fall through.  */
2500         handle_plus:
2501         case '*':
2502           /* If there is no previous pattern... */
2503           if (!laststart)
2504             {
2505               if (syntax & RE_CONTEXT_INVALID_OPS)
2506                 FREE_STACK_RETURN (REG_BADRPT);
2507               else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2508                 goto normal_char;
2509             }
2510 
2511           {
2512             /* Are we optimizing this jump?  */
2513             boolean keep_string_p = false;
2514 
2515             /* 1 means zero (many) matches is allowed.  */
2516             char zero_times_ok = 0, many_times_ok = 0;
2517 
2518             /* If there is a sequence of repetition chars, collapse it
2519                down to just one (the right one).  We can't combine
2520                interval operators with these because of, e.g., `a{2}*',
2521                which should only match an even number of `a's.  */
2522 
2523             for (;;)
2524               {
2525                 zero_times_ok |= c != '+';
2526                 many_times_ok |= c != '?';
2527 
2528                 if (p == pend)
2529                   break;
2530 
2531                 PATFETCH (c);
2532 
2533                 if (c == '*'
2534                     || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2535                   ;
2536 
2537                 else if (syntax & RE_BK_PLUS_QM  &&  c == '\\')
2538                   {
2539                     if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2540 
2541                     PATFETCH (c1);
2542                     if (!(c1 == '+' || c1 == '?'))
2543                       {
2544                         PATUNFETCH;
2545                         PATUNFETCH;
2546                         break;
2547                       }
2548 
2549                     c = c1;
2550                   }
2551                 else
2552                   {
2553                     PATUNFETCH;
2554                     break;
2555                   }
2556 
2557                 /* If we get here, we found another repeat character.  */
2558                }
2559 
2560             /* Star, etc. applied to an empty pattern is equivalent
2561                to an empty pattern.  */
2562             if (!laststart)
2563               break;
2564 
2565             /* Now we know whether or not zero matches is allowed
2566                and also whether or not two or more matches is allowed.  */
2567             if (many_times_ok)
2568               { /* More than one repetition is allowed, so put in at the
2569                    end a backward relative jump from `b' to before the next
2570                    jump we're going to put in below (which jumps from
2571                    laststart to after this jump).
2572 
2573                    But if we are at the `*' in the exact sequence `.*\n',
2574                    insert an unconditional jump backwards to the .,
2575                    instead of the beginning of the loop.  This way we only
2576                    push a failure point once, instead of every time
2577                    through the loop.  */
2578                 assert (p - 1 > pattern);
2579 
2580                 /* Allocate the space for the jump.  */
2581                 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2582 
2583                 /* We know we are not at the first character of the pattern,
2584                    because laststart was nonzero.  And we've already
2585                    incremented `p', by the way, to be the character after
2586                    the `*'.  Do we have to do something analogous here
2587                    for null bytes, because of RE_DOT_NOT_NULL?  */
2588                 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2589 		    && zero_times_ok
2590                     && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2591                     && !(syntax & RE_DOT_NEWLINE))
2592                   { /* We have .*\n.  */
2593                     STORE_JUMP (jump, b, laststart);
2594                     keep_string_p = true;
2595                   }
2596                 else
2597                   /* Anything else.  */
2598                   STORE_JUMP (maybe_pop_jump, b, laststart -
2599 			      (1 + OFFSET_ADDRESS_SIZE));
2600 
2601                 /* We've added more stuff to the buffer.  */
2602                 b += 1 + OFFSET_ADDRESS_SIZE;
2603               }
2604 
2605             /* On failure, jump from laststart to b + 3, which will be the
2606                end of the buffer after this jump is inserted.  */
2607 	    /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE' instead of
2608 	       'b + 3'.  */
2609             GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2610             INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2611                                        : on_failure_jump,
2612                          laststart, b + 1 + OFFSET_ADDRESS_SIZE);
2613             pending_exact = 0;
2614             b += 1 + OFFSET_ADDRESS_SIZE;
2615 
2616             if (!zero_times_ok)
2617               {
2618                 /* At least one repetition is required, so insert a
2619                    `dummy_failure_jump' before the initial
2620                    `on_failure_jump' instruction of the loop. This
2621                    effects a skip over that instruction the first time
2622                    we hit that loop.  */
2623                 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2624                 INSERT_JUMP (dummy_failure_jump, laststart, laststart +
2625 			     2 + 2 * OFFSET_ADDRESS_SIZE);
2626                 b += 1 + OFFSET_ADDRESS_SIZE;
2627               }
2628             }
2629 	  break;
2630 
2631 
2632 	case '.':
2633           laststart = b;
2634           BUF_PUSH (anychar);
2635           break;
2636 
2637 
2638         case '[':
2639           {
2640             boolean had_char_class = false;
2641 #ifdef WCHAR
2642 	    CHAR_T range_start = 0xffffffff;
2643 #else
2644 	    unsigned int range_start = 0xffffffff;
2645 #endif
2646             if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2647 
2648 #ifdef WCHAR
2649 	    /* We assume a charset(_not) structure as a wchar_t array.
2650 	       charset[0] = (re_opcode_t) charset(_not)
2651                charset[1] = l (= length of char_classes)
2652                charset[2] = m (= length of collating_symbols)
2653                charset[3] = n (= length of equivalence_classes)
2654 	       charset[4] = o (= length of char_ranges)
2655 	       charset[5] = p (= length of chars)
2656 
2657                charset[6] = char_class (wctype_t)
2658                charset[6+CHAR_CLASS_SIZE] = char_class (wctype_t)
2659                          ...
2660                charset[l+5]  = char_class (wctype_t)
2661 
2662                charset[l+6]  = collating_symbol (wchar_t)
2663                             ...
2664                charset[l+m+5]  = collating_symbol (wchar_t)
2665 					ifdef _LIBC we use the index if
2666 					_NL_COLLATE_SYMB_EXTRAMB instead of
2667 					wchar_t string.
2668 
2669                charset[l+m+6]  = equivalence_classes (wchar_t)
2670                               ...
2671                charset[l+m+n+5]  = equivalence_classes (wchar_t)
2672 					ifdef _LIBC we use the index in
2673 					_NL_COLLATE_WEIGHT instead of
2674 					wchar_t string.
2675 
2676 	       charset[l+m+n+6] = range_start
2677 	       charset[l+m+n+7] = range_end
2678 	                       ...
2679 	       charset[l+m+n+2o+4] = range_start
2680 	       charset[l+m+n+2o+5] = range_end
2681 					ifdef _LIBC we use the value looked up
2682 					in _NL_COLLATE_COLLSEQ instead of
2683 					wchar_t character.
2684 
2685 	       charset[l+m+n+2o+6] = char
2686 	                          ...
2687 	       charset[l+m+n+2o+p+5] = char
2688 
2689 	     */
2690 
2691 	    /* We need at least 6 spaces: the opcode, the length of
2692                char_classes, the length of collating_symbols, the length of
2693                equivalence_classes, the length of char_ranges, the length of
2694                chars.  */
2695 	    GET_BUFFER_SPACE (6);
2696 
2697 	    /* Save b as laststart. And We use laststart as the pointer
2698 	       to the first element of the charset here.
2699 	       In other words, laststart[i] indicates charset[i].  */
2700             laststart = b;
2701 
2702             /* We test `*p == '^' twice, instead of using an if
2703                statement, so we only need one BUF_PUSH.  */
2704             BUF_PUSH (*p == '^' ? charset_not : charset);
2705             if (*p == '^')
2706               p++;
2707 
2708             /* Push the length of char_classes, the length of
2709                collating_symbols, the length of equivalence_classes, the
2710                length of char_ranges and the length of chars.  */
2711             BUF_PUSH_3 (0, 0, 0);
2712             BUF_PUSH_2 (0, 0);
2713 
2714             /* Remember the first position in the bracket expression.  */
2715             p1 = p;
2716 
2717             /* charset_not matches newline according to a syntax bit.  */
2718             if ((re_opcode_t) b[-6] == charset_not
2719                 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2720 	      {
2721 		BUF_PUSH('\n');
2722 		laststart[5]++; /* Update the length of characters  */
2723 	      }
2724 
2725             /* Read in characters and ranges, setting map bits.  */
2726             for (;;)
2727               {
2728                 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2729 
2730                 PATFETCH (c);
2731 
2732                 /* \ might escape characters inside [...] and [^...].  */
2733                 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2734                   {
2735                     if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2736 
2737                     PATFETCH (c1);
2738 		    BUF_PUSH(c1);
2739 		    laststart[5]++; /* Update the length of chars  */
2740 		    range_start = c1;
2741                     continue;
2742                   }
2743 
2744                 /* Could be the end of the bracket expression.  If it's
2745                    not (i.e., when the bracket expression is `[]' so
2746                    far), the ']' character bit gets set way below.  */
2747                 if (c == ']' && p != p1 + 1)
2748                   break;
2749 
2750                 /* Look ahead to see if it's a range when the last thing
2751                    was a character class.  */
2752                 if (had_char_class && c == '-' && *p != ']')
2753                   FREE_STACK_RETURN (REG_ERANGE);
2754 
2755                 /* Look ahead to see if it's a range when the last thing
2756                    was a character: if this is a hyphen not at the
2757                    beginning or the end of a list, then it's the range
2758                    operator.  */
2759                 if (c == '-'
2760                     && !(p - 2 >= pattern && p[-2] == '[')
2761                     && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2762                     && *p != ']')
2763                   {
2764                     reg_errcode_t ret;
2765 		    /* Allocate the space for range_start and range_end.  */
2766 		    GET_BUFFER_SPACE (2);
2767 		    /* Update the pointer to indicate end of buffer.  */
2768                     b += 2;
2769                     ret = wcs_compile_range (range_start, &p, pend, translate,
2770                                          syntax, b, laststart);
2771                     if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2772                     range_start = 0xffffffff;
2773                   }
2774                 else if (p[0] == '-' && p[1] != ']')
2775                   { /* This handles ranges made up of characters only.  */
2776                     reg_errcode_t ret;
2777 
2778 		    /* Move past the `-'.  */
2779                     PATFETCH (c1);
2780 		    /* Allocate the space for range_start and range_end.  */
2781 		    GET_BUFFER_SPACE (2);
2782 		    /* Update the pointer to indicate end of buffer.  */
2783                     b += 2;
2784                     ret = wcs_compile_range (c, &p, pend, translate, syntax, b,
2785                                          laststart);
2786                     if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2787 		    range_start = 0xffffffff;
2788                   }
2789 
2790                 /* See if we're at the beginning of a possible character
2791                    class.  */
2792                 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2793                   { /* Leave room for the null.  */
2794                     char str[CHAR_CLASS_MAX_LENGTH + 1];
2795 
2796                     PATFETCH (c);
2797                     c1 = 0;
2798 
2799                     /* If pattern is `[[:'.  */
2800                     if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2801 
2802                     for (;;)
2803                       {
2804                         PATFETCH (c);
2805                         if ((c == ':' && *p == ']') || p == pend)
2806                           break;
2807 			if (c1 < CHAR_CLASS_MAX_LENGTH)
2808 			  str[c1++] = c;
2809 			else
2810 			  /* This is in any case an invalid class name.  */
2811 			  str[0] = '\0';
2812                       }
2813                     str[c1] = '\0';
2814 
2815                     /* If isn't a word bracketed by `[:' and `:]':
2816                        undo the ending character, the letters, and leave
2817                        the leading `:' and `[' (but store them as character).  */
2818                     if (c == ':' && *p == ']')
2819                       {
2820 			wctype_t wt;
2821 			uintptr_t alignedp;
2822 
2823 			/* Query the character class as wctype_t.  */
2824 			wt = IS_CHAR_CLASS (str);
2825 			if (wt == 0)
2826 			  FREE_STACK_RETURN (REG_ECTYPE);
2827 
2828                         /* Throw away the ] at the end of the character
2829                            class.  */
2830                         PATFETCH (c);
2831 
2832                         if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2833 
2834 			/* Allocate the space for character class.  */
2835                         GET_BUFFER_SPACE(CHAR_CLASS_SIZE);
2836 			/* Update the pointer to indicate end of buffer.  */
2837                         b += CHAR_CLASS_SIZE;
2838 			/* Move data which follow character classes
2839 			    not to violate the data.  */
2840                         insert_space(CHAR_CLASS_SIZE,
2841 				     laststart + 6 + laststart[1],
2842 				     b - 1);
2843 			alignedp = ((uintptr_t)(laststart + 6 + laststart[1])
2844 				    + __alignof__(wctype_t) - 1)
2845 			  	    & ~(uintptr_t)(__alignof__(wctype_t) - 1);
2846 			/* Store the character class.  */
2847                         *((wctype_t*)alignedp) = wt;
2848                         /* Update length of char_classes */
2849                         laststart[1] += CHAR_CLASS_SIZE;
2850 
2851                         had_char_class = true;
2852                       }
2853                     else
2854                       {
2855                         c1++;
2856                         while (c1--)
2857                           PATUNFETCH;
2858                         BUF_PUSH ('[');
2859                         BUF_PUSH (':');
2860                         laststart[5] += 2; /* Update the length of characters  */
2861 			range_start = ':';
2862                         had_char_class = false;
2863                       }
2864                   }
2865                 else if (syntax & RE_CHAR_CLASSES && c == '[' && (*p == '='
2866 							  || *p == '.'))
2867 		  {
2868 		    CHAR_T str[128];	/* Should be large enough.  */
2869 		    CHAR_T delim = *p; /* '=' or '.'  */
2870 # ifdef _LIBC
2871 		    uint32_t nrules =
2872 		      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
2873 # endif
2874 		    PATFETCH (c);
2875 		    c1 = 0;
2876 
2877 		    /* If pattern is `[[=' or '[[.'.  */
2878 		    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2879 
2880 		    for (;;)
2881 		      {
2882 			PATFETCH (c);
2883 			if ((c == delim && *p == ']') || p == pend)
2884 			  break;
2885 			if (c1 < sizeof (str) - 1)
2886 			  str[c1++] = c;
2887 			else
2888 			  /* This is in any case an invalid class name.  */
2889 			  str[0] = '\0';
2890                       }
2891 		    str[c1] = '\0';
2892 
2893 		    if (c == delim && *p == ']' && str[0] != '\0')
2894 		      {
2895                         unsigned int i, offset;
2896 			/* If we have no collation data we use the default
2897 			   collation in which each character is in a class
2898 			   by itself.  It also means that ASCII is the
2899 			   character set and therefore we cannot have character
2900 			   with more than one byte in the multibyte
2901 			   representation.  */
2902 
2903                         /* If not defined _LIBC, we push the name and
2904 			   `\0' for the sake of matching performance.  */
2905 			int datasize = c1 + 1;
2906 
2907 # ifdef _LIBC
2908 			int32_t idx = 0;
2909 			if (nrules == 0)
2910 # endif
2911 			  {
2912 			    if (c1 != 1)
2913 			      FREE_STACK_RETURN (REG_ECOLLATE);
2914 			  }
2915 # ifdef _LIBC
2916 			else
2917 			  {
2918 			    const int32_t *table;
2919 			    const int32_t *weights;
2920 			    const int32_t *extra;
2921 			    const int32_t *indirect;
2922 			    wint_t *cp;
2923 
2924 			    /* This #include defines a local function!  */
2925 #  include <locale/weightwc.h>
2926 
2927 			    if(delim == '=')
2928 			      {
2929 				/* We push the index for equivalence class.  */
2930 				cp = (wint_t*)str;
2931 
2932 				table = (const int32_t *)
2933 				  _NL_CURRENT (LC_COLLATE,
2934 					       _NL_COLLATE_TABLEWC);
2935 				weights = (const int32_t *)
2936 				  _NL_CURRENT (LC_COLLATE,
2937 					       _NL_COLLATE_WEIGHTWC);
2938 				extra = (const int32_t *)
2939 				  _NL_CURRENT (LC_COLLATE,
2940 					       _NL_COLLATE_EXTRAWC);
2941 				indirect = (const int32_t *)
2942 				  _NL_CURRENT (LC_COLLATE,
2943 					       _NL_COLLATE_INDIRECTWC);
2944 
2945 				idx = findidx ((const wint_t**)&cp);
2946 				if (idx == 0 || cp < (wint_t*) str + c1)
2947 				  /* This is no valid character.  */
2948 				  FREE_STACK_RETURN (REG_ECOLLATE);
2949 
2950 				str[0] = (wchar_t)idx;
2951 			      }
2952 			    else /* delim == '.' */
2953 			      {
2954 				/* We push collation sequence value
2955 				   for collating symbol.  */
2956 				int32_t table_size;
2957 				const int32_t *symb_table;
2958 				const unsigned char *extra;
2959 				int32_t idx;
2960 				int32_t elem;
2961 				int32_t second;
2962 				int32_t hash;
2963 				char char_str[c1];
2964 
2965 				/* We have to convert the name to a single-byte
2966 				   string.  This is possible since the names
2967 				   consist of ASCII characters and the internal
2968 				   representation is UCS4.  */
2969 				for (i = 0; i < c1; ++i)
2970 				  char_str[i] = str[i];
2971 
2972 				table_size =
2973 				  _NL_CURRENT_WORD (LC_COLLATE,
2974 						    _NL_COLLATE_SYMB_HASH_SIZEMB);
2975 				symb_table = (const int32_t *)
2976 				  _NL_CURRENT (LC_COLLATE,
2977 					       _NL_COLLATE_SYMB_TABLEMB);
2978 				extra = (const unsigned char *)
2979 				  _NL_CURRENT (LC_COLLATE,
2980 					       _NL_COLLATE_SYMB_EXTRAMB);
2981 
2982 				/* Locate the character in the hashing table.  */
2983 				hash = elem_hash (char_str, c1);
2984 
2985 				idx = 0;
2986 				elem = hash % table_size;
2987 				second = hash % (table_size - 2);
2988 				while (symb_table[2 * elem] != 0)
2989 				  {
2990 				    /* First compare the hashing value.  */
2991 				    if (symb_table[2 * elem] == hash
2992 					&& c1 == extra[symb_table[2 * elem + 1]]
2993 					&& memcmp (char_str,
2994 						   &extra[symb_table[2 * elem + 1]
2995 							 + 1], c1) == 0)
2996 				      {
2997 					/* Yep, this is the entry.  */
2998 					idx = symb_table[2 * elem + 1];
2999 					idx += 1 + extra[idx];
3000 					break;
3001 				      }
3002 
3003 				    /* Next entry.  */
3004 				    elem += second;
3005 				  }
3006 
3007 				if (symb_table[2 * elem] != 0)
3008 				  {
3009 				    /* Compute the index of the byte sequence
3010 				       in the table.  */
3011 				    idx += 1 + extra[idx];
3012 				    /* Adjust for the alignment.  */
3013 				    idx = (idx + 3) & ~3;
3014 
3015 				    str[0] = (wchar_t) idx + 4;
3016 				  }
3017 				else if (symb_table[2 * elem] == 0 && c1 == 1)
3018 				  {
3019 				    /* No valid character.  Match it as a
3020 				       single byte character.  */
3021 				    had_char_class = false;
3022 				    BUF_PUSH(str[0]);
3023 				    /* Update the length of characters  */
3024 				    laststart[5]++;
3025 				    range_start = str[0];
3026 
3027 				    /* Throw away the ] at the end of the
3028 				       collating symbol.  */
3029 				    PATFETCH (c);
3030 				    /* exit from the switch block.  */
3031 				    continue;
3032 				  }
3033 				else
3034 				  FREE_STACK_RETURN (REG_ECOLLATE);
3035 			      }
3036 			    datasize = 1;
3037 			  }
3038 # endif
3039                         /* Throw away the ] at the end of the equivalence
3040                            class (or collating symbol).  */
3041                         PATFETCH (c);
3042 
3043 			/* Allocate the space for the equivalence class
3044 			   (or collating symbol) (and '\0' if needed).  */
3045                         GET_BUFFER_SPACE(datasize);
3046 			/* Update the pointer to indicate end of buffer.  */
3047                         b += datasize;
3048 
3049 			if (delim == '=')
3050 			  { /* equivalence class  */
3051 			    /* Calculate the offset of char_ranges,
3052 			       which is next to equivalence_classes.  */
3053 			    offset = laststart[1] + laststart[2]
3054 			      + laststart[3] +6;
3055 			    /* Insert space.  */
3056 			    insert_space(datasize, laststart + offset, b - 1);
3057 
3058 			    /* Write the equivalence_class and \0.  */
3059 			    for (i = 0 ; i < datasize ; i++)
3060 			      laststart[offset + i] = str[i];
3061 
3062 			    /* Update the length of equivalence_classes.  */
3063 			    laststart[3] += datasize;
3064 			    had_char_class = true;
3065 			  }
3066 			else /* delim == '.' */
3067 			  { /* collating symbol  */
3068 			    /* Calculate the offset of the equivalence_classes,
3069 			       which is next to collating_symbols.  */
3070 			    offset = laststart[1] + laststart[2] + 6;
3071 			    /* Insert space and write the collationg_symbol
3072 			       and \0.  */
3073 			    insert_space(datasize, laststart + offset, b-1);
3074 			    for (i = 0 ; i < datasize ; i++)
3075 			      laststart[offset + i] = str[i];
3076 
3077 			    /* In re_match_2_internal if range_start < -1, we
3078 			       assume -range_start is the offset of the
3079 			       collating symbol which is specified as
3080 			       the character of the range start.  So we assign
3081 			       -(laststart[1] + laststart[2] + 6) to
3082 			       range_start.  */
3083 			    range_start = -(laststart[1] + laststart[2] + 6);
3084 			    /* Update the length of collating_symbol.  */
3085 			    laststart[2] += datasize;
3086 			    had_char_class = false;
3087 			  }
3088 		      }
3089                     else
3090                       {
3091                         c1++;
3092                         while (c1--)
3093                           PATUNFETCH;
3094                         BUF_PUSH ('[');
3095                         BUF_PUSH (delim);
3096                         laststart[5] += 2; /* Update the length of characters  */
3097 			range_start = delim;
3098                         had_char_class = false;
3099                       }
3100 		  }
3101                 else
3102                   {
3103                     had_char_class = false;
3104 		    BUF_PUSH(c);
3105 		    laststart[5]++;  /* Update the length of characters  */
3106 		    range_start = c;
3107                   }
3108 	      }
3109 
3110 #else /* BYTE */
3111             /* Ensure that we have enough space to push a charset: the
3112                opcode, the length count, and the bitset; 34 bytes in all.  */
3113 	    GET_BUFFER_SPACE (34);
3114 
3115             laststart = b;
3116 
3117             /* We test `*p == '^' twice, instead of using an if
3118                statement, so we only need one BUF_PUSH.  */
3119             BUF_PUSH (*p == '^' ? charset_not : charset);
3120             if (*p == '^')
3121               p++;
3122 
3123             /* Remember the first position in the bracket expression.  */
3124             p1 = p;
3125 
3126             /* Push the number of bytes in the bitmap.  */
3127             BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
3128 
3129             /* Clear the whole map.  */
3130             bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
3131 
3132             /* charset_not matches newline according to a syntax bit.  */
3133             if ((re_opcode_t) b[-2] == charset_not
3134                 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
3135               SET_LIST_BIT ('\n');
3136 
3137             /* Read in characters and ranges, setting map bits.  */
3138             for (;;)
3139               {
3140                 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3141 
3142                 PATFETCH (c);
3143 
3144                 /* \ might escape characters inside [...] and [^...].  */
3145                 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
3146                   {
3147                     if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3148 
3149                     PATFETCH (c1);
3150                     SET_LIST_BIT (c1);
3151 		    range_start = c1;
3152                     continue;
3153                   }
3154 
3155                 /* Could be the end of the bracket expression.  If it's
3156                    not (i.e., when the bracket expression is `[]' so
3157                    far), the ']' character bit gets set way below.  */
3158                 if (c == ']' && p != p1 + 1)
3159                   break;
3160 
3161                 /* Look ahead to see if it's a range when the last thing
3162                    was a character class.  */
3163                 if (had_char_class && c == '-' && *p != ']')
3164                   FREE_STACK_RETURN (REG_ERANGE);
3165 
3166                 /* Look ahead to see if it's a range when the last thing
3167                    was a character: if this is a hyphen not at the
3168                    beginning or the end of a list, then it's the range
3169                    operator.  */
3170                 if (c == '-'
3171                     && !(p - 2 >= pattern && p[-2] == '[')
3172                     && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
3173                     && *p != ']')
3174                   {
3175                     reg_errcode_t ret
3176                       = byte_compile_range (range_start, &p, pend, translate,
3177 					    syntax, b);
3178                     if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3179 		    range_start = 0xffffffff;
3180                   }
3181 
3182                 else if (p[0] == '-' && p[1] != ']')
3183                   { /* This handles ranges made up of characters only.  */
3184                     reg_errcode_t ret;
3185 
3186 		    /* Move past the `-'.  */
3187                     PATFETCH (c1);
3188 
3189                     ret = byte_compile_range (c, &p, pend, translate, syntax, b);
3190                     if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3191 		    range_start = 0xffffffff;
3192                   }
3193 
3194                 /* See if we're at the beginning of a possible character
3195                    class.  */
3196 
3197                 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
3198                   { /* Leave room for the null.  */
3199                     char str[CHAR_CLASS_MAX_LENGTH + 1];
3200 
3201                     PATFETCH (c);
3202                     c1 = 0;
3203 
3204                     /* If pattern is `[[:'.  */
3205                     if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3206 
3207                     for (;;)
3208                       {
3209                         PATFETCH (c);
3210                         if ((c == ':' && *p == ']') || p == pend)
3211                           break;
3212 			if (c1 < CHAR_CLASS_MAX_LENGTH)
3213 			  str[c1++] = c;
3214 			else
3215 			  /* This is in any case an invalid class name.  */
3216 			  str[0] = '\0';
3217                       }
3218                     str[c1] = '\0';
3219 
3220                     /* If isn't a word bracketed by `[:' and `:]':
3221                        undo the ending character, the letters, and leave
3222                        the leading `:' and `[' (but set bits for them).  */
3223                     if (c == ':' && *p == ']')
3224                       {
3225 # if defined _LIBC || WIDE_CHAR_SUPPORT
3226                         boolean is_lower = STREQ (str, "lower");
3227                         boolean is_upper = STREQ (str, "upper");
3228 			wctype_t wt;
3229                         int ch;
3230 
3231 			wt = IS_CHAR_CLASS (str);
3232 			if (wt == 0)
3233 			  FREE_STACK_RETURN (REG_ECTYPE);
3234 
3235                         /* Throw away the ] at the end of the character
3236                            class.  */
3237                         PATFETCH (c);
3238 
3239                         if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3240 
3241                         for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
3242 			  {
3243 #  ifdef _LIBC
3244 			    if (__iswctype (__btowc (ch), wt))
3245 			      SET_LIST_BIT (ch);
3246 #  else
3247 			    if (iswctype (btowc (ch), wt))
3248 			      SET_LIST_BIT (ch);
3249 #  endif
3250 
3251 			    if (translate && (is_upper || is_lower)
3252 				&& (ISUPPER (ch) || ISLOWER (ch)))
3253 			      SET_LIST_BIT (ch);
3254 			  }
3255 
3256                         had_char_class = true;
3257 # else
3258                         int ch;
3259                         boolean is_alnum = STREQ (str, "alnum");
3260                         boolean is_alpha = STREQ (str, "alpha");
3261                         boolean is_blank = STREQ (str, "blank");
3262                         boolean is_cntrl = STREQ (str, "cntrl");
3263                         boolean is_digit = STREQ (str, "digit");
3264                         boolean is_graph = STREQ (str, "graph");
3265                         boolean is_lower = STREQ (str, "lower");
3266                         boolean is_print = STREQ (str, "print");
3267                         boolean is_punct = STREQ (str, "punct");
3268                         boolean is_space = STREQ (str, "space");
3269                         boolean is_upper = STREQ (str, "upper");
3270                         boolean is_xdigit = STREQ (str, "xdigit");
3271 
3272                         if (!IS_CHAR_CLASS (str))
3273 			  FREE_STACK_RETURN (REG_ECTYPE);
3274 
3275                         /* Throw away the ] at the end of the character
3276                            class.  */
3277                         PATFETCH (c);
3278 
3279                         if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3280 
3281                         for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
3282                           {
3283 			    /* This was split into 3 if's to
3284 			       avoid an arbitrary limit in some compiler.  */
3285                             if (   (is_alnum  && ISALNUM (ch))
3286                                 || (is_alpha  && ISALPHA (ch))
3287                                 || (is_blank  && ISBLANK (ch))
3288                                 || (is_cntrl  && ISCNTRL (ch)))
3289 			      SET_LIST_BIT (ch);
3290 			    if (   (is_digit  && ISDIGIT (ch))
3291                                 || (is_graph  && ISGRAPH (ch))
3292                                 || (is_lower  && ISLOWER (ch))
3293                                 || (is_print  && ISPRINT (ch)))
3294 			      SET_LIST_BIT (ch);
3295 			    if (   (is_punct  && ISPUNCT (ch))
3296                                 || (is_space  && ISSPACE (ch))
3297                                 || (is_upper  && ISUPPER (ch))
3298                                 || (is_xdigit && ISXDIGIT (ch)))
3299 			      SET_LIST_BIT (ch);
3300 			    if (   translate && (is_upper || is_lower)
3301 				&& (ISUPPER (ch) || ISLOWER (ch)))
3302 			      SET_LIST_BIT (ch);
3303                           }
3304                         had_char_class = true;
3305 # endif	/* libc || wctype.h */
3306                       }
3307                     else
3308                       {
3309                         c1++;
3310                         while (c1--)
3311                           PATUNFETCH;
3312                         SET_LIST_BIT ('[');
3313                         SET_LIST_BIT (':');
3314 			range_start = ':';
3315                         had_char_class = false;
3316                       }
3317                   }
3318                 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '=')
3319 		  {
3320 		    unsigned char str[MB_LEN_MAX + 1];
3321 # ifdef _LIBC
3322 		    uint32_t nrules =
3323 		      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3324 # endif
3325 
3326 		    PATFETCH (c);
3327 		    c1 = 0;
3328 
3329 		    /* If pattern is `[[='.  */
3330 		    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3331 
3332 		    for (;;)
3333 		      {
3334 			PATFETCH (c);
3335 			if ((c == '=' && *p == ']') || p == pend)
3336 			  break;
3337 			if (c1 < MB_LEN_MAX)
3338 			  str[c1++] = c;
3339 			else
3340 			  /* This is in any case an invalid class name.  */
3341 			  str[0] = '\0';
3342                       }
3343 		    str[c1] = '\0';
3344 
3345 		    if (c == '=' && *p == ']' && str[0] != '\0')
3346 		      {
3347 			/* If we have no collation data we use the default
3348 			   collation in which each character is in a class
3349 			   by itself.  It also means that ASCII is the
3350 			   character set and therefore we cannot have character
3351 			   with more than one byte in the multibyte
3352 			   representation.  */
3353 # ifdef _LIBC
3354 			if (nrules == 0)
3355 # endif
3356 			  {
3357 			    if (c1 != 1)
3358 			      FREE_STACK_RETURN (REG_ECOLLATE);
3359 
3360 			    /* Throw away the ] at the end of the equivalence
3361 			       class.  */
3362 			    PATFETCH (c);
3363 
3364 			    /* Set the bit for the character.  */
3365 			    SET_LIST_BIT (str[0]);
3366 			  }
3367 # ifdef _LIBC
3368 			else
3369 			  {
3370 			    /* Try to match the byte sequence in `str' against
3371 			       those known to the collate implementation.
3372 			       First find out whether the bytes in `str' are
3373 			       actually from exactly one character.  */
3374 			    const int32_t *table;
3375 			    const unsigned char *weights;
3376 			    const unsigned char *extra;
3377 			    const int32_t *indirect;
3378 			    int32_t idx;
3379 			    const unsigned char *cp = str;
3380 			    int ch;
3381 
3382 			    /* This #include defines a local function!  */
3383 #  include <locale/weight.h>
3384 
3385 			    table = (const int32_t *)
3386 			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
3387 			    weights = (const unsigned char *)
3388 			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB);
3389 			    extra = (const unsigned char *)
3390 			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB);
3391 			    indirect = (const int32_t *)
3392 			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB);
3393 
3394 			    idx = findidx (&cp);
3395 			    if (idx == 0 || cp < str + c1)
3396 			      /* This is no valid character.  */
3397 			      FREE_STACK_RETURN (REG_ECOLLATE);
3398 
3399 			    /* Throw away the ] at the end of the equivalence
3400 			       class.  */
3401 			    PATFETCH (c);
3402 
3403 			    /* Now we have to go through the whole table
3404 			       and find all characters which have the same
3405 			       first level weight.
3406 
3407 			       XXX Note that this is not entirely correct.
3408 			       we would have to match multibyte sequences
3409 			       but this is not possible with the current
3410 			       implementation.  */
3411 			    for (ch = 1; ch < 256; ++ch)
3412 			      /* XXX This test would have to be changed if we
3413 				 would allow matching multibyte sequences.  */
3414 			      if (table[ch] > 0)
3415 				{
3416 				  int32_t idx2 = table[ch];
3417 				  size_t len = weights[idx2];
3418 
3419 				  /* Test whether the lenghts match.  */
3420 				  if (weights[idx] == len)
3421 				    {
3422 				      /* They do.  New compare the bytes of
3423 					 the weight.  */
3424 				      size_t cnt = 0;
3425 
3426 				      while (cnt < len
3427 					     && (weights[idx + 1 + cnt]
3428 						 == weights[idx2 + 1 + cnt]))
3429 					++cnt;
3430 
3431 				      if (cnt == len)
3432 					/* They match.  Mark the character as
3433 					   acceptable.  */
3434 					SET_LIST_BIT (ch);
3435 				    }
3436 				}
3437 			  }
3438 # endif
3439 			had_char_class = true;
3440 		      }
3441                     else
3442                       {
3443                         c1++;
3444                         while (c1--)
3445                           PATUNFETCH;
3446                         SET_LIST_BIT ('[');
3447                         SET_LIST_BIT ('=');
3448 			range_start = '=';
3449                         had_char_class = false;
3450                       }
3451 		  }
3452                 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '.')
3453 		  {
3454 		    unsigned char str[128];	/* Should be large enough.  */
3455 # ifdef _LIBC
3456 		    uint32_t nrules =
3457 		      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3458 # endif
3459 
3460 		    PATFETCH (c);
3461 		    c1 = 0;
3462 
3463 		    /* If pattern is `[[.'.  */
3464 		    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3465 
3466 		    for (;;)
3467 		      {
3468 			PATFETCH (c);
3469 			if ((c == '.' && *p == ']') || p == pend)
3470 			  break;
3471 			if (c1 < sizeof (str))
3472 			  str[c1++] = c;
3473 			else
3474 			  /* This is in any case an invalid class name.  */
3475 			  str[0] = '\0';
3476                       }
3477 		    str[c1] = '\0';
3478 
3479 		    if (c == '.' && *p == ']' && str[0] != '\0')
3480 		      {
3481 			/* If we have no collation data we use the default
3482 			   collation in which each character is the name
3483 			   for its own class which contains only the one
3484 			   character.  It also means that ASCII is the
3485 			   character set and therefore we cannot have character
3486 			   with more than one byte in the multibyte
3487 			   representation.  */
3488 # ifdef _LIBC
3489 			if (nrules == 0)
3490 # endif
3491 			  {
3492 			    if (c1 != 1)
3493 			      FREE_STACK_RETURN (REG_ECOLLATE);
3494 
3495 			    /* Throw away the ] at the end of the equivalence
3496 			       class.  */
3497 			    PATFETCH (c);
3498 
3499 			    /* Set the bit for the character.  */
3500 			    SET_LIST_BIT (str[0]);
3501 			    range_start = ((const unsigned char *) str)[0];
3502 			  }
3503 # ifdef _LIBC
3504 			else
3505 			  {
3506 			    /* Try to match the byte sequence in `str' against
3507 			       those known to the collate implementation.
3508 			       First find out whether the bytes in `str' are
3509 			       actually from exactly one character.  */
3510 			    int32_t table_size;
3511 			    const int32_t *symb_table;
3512 			    const unsigned char *extra;
3513 			    int32_t idx;
3514 			    int32_t elem;
3515 			    int32_t second;
3516 			    int32_t hash;
3517 
3518 			    table_size =
3519 			      _NL_CURRENT_WORD (LC_COLLATE,
3520 						_NL_COLLATE_SYMB_HASH_SIZEMB);
3521 			    symb_table = (const int32_t *)
3522 			      _NL_CURRENT (LC_COLLATE,
3523 					   _NL_COLLATE_SYMB_TABLEMB);
3524 			    extra = (const unsigned char *)
3525 			      _NL_CURRENT (LC_COLLATE,
3526 					   _NL_COLLATE_SYMB_EXTRAMB);
3527 
3528 			    /* Locate the character in the hashing table.  */
3529 			    hash = elem_hash (str, c1);
3530 
3531 			    idx = 0;
3532 			    elem = hash % table_size;
3533 			    second = hash % (table_size - 2);
3534 			    while (symb_table[2 * elem] != 0)
3535 			      {
3536 				/* First compare the hashing value.  */
3537 				if (symb_table[2 * elem] == hash
3538 				    && c1 == extra[symb_table[2 * elem + 1]]
3539 				    && memcmp (str,
3540 					       &extra[symb_table[2 * elem + 1]
3541 						     + 1],
3542 					       c1) == 0)
3543 				  {
3544 				    /* Yep, this is the entry.  */
3545 				    idx = symb_table[2 * elem + 1];
3546 				    idx += 1 + extra[idx];
3547 				    break;
3548 				  }
3549 
3550 				/* Next entry.  */
3551 				elem += second;
3552 			      }
3553 
3554 			    if (symb_table[2 * elem] == 0)
3555 			      /* This is no valid character.  */
3556 			      FREE_STACK_RETURN (REG_ECOLLATE);
3557 
3558 			    /* Throw away the ] at the end of the equivalence
3559 			       class.  */
3560 			    PATFETCH (c);
3561 
3562 			    /* Now add the multibyte character(s) we found
3563 			       to the accept list.
3564 
3565 			       XXX Note that this is not entirely correct.
3566 			       we would have to match multibyte sequences
3567 			       but this is not possible with the current
3568 			       implementation.  Also, we have to match
3569 			       collating symbols, which expand to more than
3570 			       one file, as a whole and not allow the
3571 			       individual bytes.  */
3572 			    c1 = extra[idx++];
3573 			    if (c1 == 1)
3574 			      range_start = extra[idx];
3575 			    while (c1-- > 0)
3576 			      {
3577 				SET_LIST_BIT (extra[idx]);
3578 				++idx;
3579 			      }
3580 			  }
3581 # endif
3582 			had_char_class = false;
3583 		      }
3584                     else
3585                       {
3586                         c1++;
3587                         while (c1--)
3588                           PATUNFETCH;
3589                         SET_LIST_BIT ('[');
3590                         SET_LIST_BIT ('.');
3591 			range_start = '.';
3592                         had_char_class = false;
3593                       }
3594 		  }
3595                 else
3596                   {
3597                     had_char_class = false;
3598                     SET_LIST_BIT (c);
3599 		    range_start = c;
3600                   }
3601               }
3602 
3603             /* Discard any (non)matching list bytes that are all 0 at the
3604                end of the map.  Decrease the map-length byte too.  */
3605             while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3606               b[-1]--;
3607             b += b[-1];
3608 #endif /* WCHAR */
3609           }
3610           break;
3611 
3612 
3613 	case '(':
3614           if (syntax & RE_NO_BK_PARENS)
3615             goto handle_open;
3616           else
3617             goto normal_char;
3618 
3619 
3620         case ')':
3621           if (syntax & RE_NO_BK_PARENS)
3622             goto handle_close;
3623           else
3624             goto normal_char;
3625 
3626 
3627         case '\n':
3628           if (syntax & RE_NEWLINE_ALT)
3629             goto handle_alt;
3630           else
3631             goto normal_char;
3632 
3633 
3634 	case '|':
3635           if (syntax & RE_NO_BK_VBAR)
3636             goto handle_alt;
3637           else
3638             goto normal_char;
3639 
3640 
3641         case '{':
3642            if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3643              goto handle_interval;
3644            else
3645              goto normal_char;
3646 
3647 
3648         case '\\':
3649           if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3650 
3651           /* Do not translate the character after the \, so that we can
3652              distinguish, e.g., \B from \b, even if we normally would
3653              translate, e.g., B to b.  */
3654           PATFETCH_RAW (c);
3655 
3656           switch (c)
3657             {
3658             case '(':
3659               if (syntax & RE_NO_BK_PARENS)
3660                 goto normal_backslash;
3661 
3662             handle_open:
3663               bufp->re_nsub++;
3664               regnum++;
3665 
3666               if (COMPILE_STACK_FULL)
3667                 {
3668                   RETALLOC (compile_stack.stack, compile_stack.size << 1,
3669                             compile_stack_elt_t);
3670                   if (compile_stack.stack == NULL) return REG_ESPACE;
3671 
3672                   compile_stack.size <<= 1;
3673                 }
3674 
3675               /* These are the values to restore when we hit end of this
3676                  group.  They are all relative offsets, so that if the
3677                  whole pattern moves because of realloc, they will still
3678                  be valid.  */
3679               COMPILE_STACK_TOP.begalt_offset = begalt - COMPILED_BUFFER_VAR;
3680               COMPILE_STACK_TOP.fixup_alt_jump
3681                 = fixup_alt_jump ? fixup_alt_jump - COMPILED_BUFFER_VAR + 1 : 0;
3682               COMPILE_STACK_TOP.laststart_offset = b - COMPILED_BUFFER_VAR;
3683               COMPILE_STACK_TOP.regnum = regnum;
3684 
3685               /* We will eventually replace the 0 with the number of
3686                  groups inner to this one.  But do not push a
3687                  start_memory for groups beyond the last one we can
3688                  represent in the compiled pattern.  */
3689               if (regnum <= MAX_REGNUM)
3690                 {
3691                   COMPILE_STACK_TOP.inner_group_offset = b
3692 		    - COMPILED_BUFFER_VAR + 2;
3693                   BUF_PUSH_3 (start_memory, regnum, 0);
3694                 }
3695 
3696               compile_stack.avail++;
3697 
3698               fixup_alt_jump = 0;
3699               laststart = 0;
3700               begalt = b;
3701 	      /* If we've reached MAX_REGNUM groups, then this open
3702 		 won't actually generate any code, so we'll have to
3703 		 clear pending_exact explicitly.  */
3704 	      pending_exact = 0;
3705               break;
3706 
3707 
3708             case ')':
3709               if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3710 
3711               if (COMPILE_STACK_EMPTY)
3712 		{
3713 		  if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3714 		    goto normal_backslash;
3715 		  else
3716 		    FREE_STACK_RETURN (REG_ERPAREN);
3717 		}
3718 
3719             handle_close:
3720               if (fixup_alt_jump)
3721                 { /* Push a dummy failure point at the end of the
3722                      alternative for a possible future
3723                      `pop_failure_jump' to pop.  See comments at
3724                      `push_dummy_failure' in `re_match_2'.  */
3725                   BUF_PUSH (push_dummy_failure);
3726 
3727                   /* We allocated space for this jump when we assigned
3728                      to `fixup_alt_jump', in the `handle_alt' case below.  */
3729                   STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
3730                 }
3731 
3732               /* See similar code for backslashed left paren above.  */
3733               if (COMPILE_STACK_EMPTY)
3734 		{
3735 		  if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3736 		    goto normal_char;
3737 		  else
3738 		    FREE_STACK_RETURN (REG_ERPAREN);
3739 		}
3740 
3741               /* Since we just checked for an empty stack above, this
3742                  ``can't happen''.  */
3743               assert (compile_stack.avail != 0);
3744               {
3745                 /* We don't just want to restore into `regnum', because
3746                    later groups should continue to be numbered higher,
3747                    as in `(ab)c(de)' -- the second group is #2.  */
3748                 regnum_t this_group_regnum;
3749 
3750                 compile_stack.avail--;
3751                 begalt = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.begalt_offset;
3752                 fixup_alt_jump
3753                   = COMPILE_STACK_TOP.fixup_alt_jump
3754                     ? COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.fixup_alt_jump - 1
3755                     : 0;
3756                 laststart = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.laststart_offset;
3757                 this_group_regnum = COMPILE_STACK_TOP.regnum;
3758 		/* If we've reached MAX_REGNUM groups, then this open
3759 		   won't actually generate any code, so we'll have to
3760 		   clear pending_exact explicitly.  */
3761 		pending_exact = 0;
3762 
3763                 /* We're at the end of the group, so now we know how many
3764                    groups were inside this one.  */
3765                 if (this_group_regnum <= MAX_REGNUM)
3766                   {
3767 		    UCHAR_T *inner_group_loc
3768                       = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.inner_group_offset;
3769 
3770                     *inner_group_loc = regnum - this_group_regnum;
3771                     BUF_PUSH_3 (stop_memory, this_group_regnum,
3772                                 regnum - this_group_regnum);
3773                   }
3774               }
3775               break;
3776 
3777 
3778             case '|':					/* `\|'.  */
3779               if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3780                 goto normal_backslash;
3781             handle_alt:
3782               if (syntax & RE_LIMITED_OPS)
3783                 goto normal_char;
3784 
3785               /* Insert before the previous alternative a jump which
3786                  jumps to this alternative if the former fails.  */
3787               GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3788               INSERT_JUMP (on_failure_jump, begalt,
3789 			   b + 2 + 2 * OFFSET_ADDRESS_SIZE);
3790               pending_exact = 0;
3791               b += 1 + OFFSET_ADDRESS_SIZE;
3792 
3793               /* The alternative before this one has a jump after it
3794                  which gets executed if it gets matched.  Adjust that
3795                  jump so it will jump to this alternative's analogous
3796                  jump (put in below, which in turn will jump to the next
3797                  (if any) alternative's such jump, etc.).  The last such
3798                  jump jumps to the correct final destination.  A picture:
3799                           _____ _____
3800                           |   | |   |
3801                           |   v |   v
3802                          a | b   | c
3803 
3804                  If we are at `b', then fixup_alt_jump right now points to a
3805                  three-byte space after `a'.  We'll put in the jump, set
3806                  fixup_alt_jump to right after `b', and leave behind three
3807                  bytes which we'll fill in when we get to after `c'.  */
3808 
3809               if (fixup_alt_jump)
3810                 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
3811 
3812               /* Mark and leave space for a jump after this alternative,
3813                  to be filled in later either by next alternative or
3814                  when know we're at the end of a series of alternatives.  */
3815               fixup_alt_jump = b;
3816               GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3817               b += 1 + OFFSET_ADDRESS_SIZE;
3818 
3819               laststart = 0;
3820               begalt = b;
3821               break;
3822 
3823 
3824             case '{':
3825               /* If \{ is a literal.  */
3826               if (!(syntax & RE_INTERVALS)
3827                      /* If we're at `\{' and it's not the open-interval
3828                         operator.  */
3829 		  || (syntax & RE_NO_BK_BRACES))
3830                 goto normal_backslash;
3831 
3832             handle_interval:
3833               {
3834                 /* If got here, then the syntax allows intervals.  */
3835 
3836                 /* At least (most) this many matches must be made.  */
3837                 int lower_bound = -1, upper_bound = -1;
3838 
3839 		/* Place in the uncompiled pattern (i.e., just after
3840 		   the '{') to go back to if the interval is invalid.  */
3841 		const CHAR_T *beg_interval = p;
3842 
3843                 if (p == pend)
3844 		  goto invalid_interval;
3845 
3846                 GET_UNSIGNED_NUMBER (lower_bound);
3847 
3848                 if (c == ',')
3849                   {
3850                     GET_UNSIGNED_NUMBER (upper_bound);
3851 		    if (upper_bound < 0)
3852 		      upper_bound = RE_DUP_MAX;
3853                   }
3854                 else
3855                   /* Interval such as `{1}' => match exactly once. */
3856                   upper_bound = lower_bound;
3857 
3858                 if (! (0 <= lower_bound && lower_bound <= upper_bound))
3859 		  goto invalid_interval;
3860 
3861                 if (!(syntax & RE_NO_BK_BRACES))
3862                   {
3863 		    if (c != '\\' || p == pend)
3864 		      goto invalid_interval;
3865                     PATFETCH (c);
3866                   }
3867 
3868                 if (c != '}')
3869 		  goto invalid_interval;
3870 
3871                 /* If it's invalid to have no preceding re.  */
3872                 if (!laststart)
3873                   {
3874 		    if (syntax & RE_CONTEXT_INVALID_OPS
3875 			&& !(syntax & RE_INVALID_INTERVAL_ORD))
3876                       FREE_STACK_RETURN (REG_BADRPT);
3877                     else if (syntax & RE_CONTEXT_INDEP_OPS)
3878                       laststart = b;
3879                     else
3880                       goto unfetch_interval;
3881                   }
3882 
3883                 /* We just parsed a valid interval.  */
3884 
3885                 if (RE_DUP_MAX < upper_bound)
3886 		  FREE_STACK_RETURN (REG_BADBR);
3887 
3888                 /* If the upper bound is zero, don't want to succeed at
3889                    all; jump from `laststart' to `b + 3', which will be
3890 		   the end of the buffer after we insert the jump.  */
3891 		/* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE'
3892 		   instead of 'b + 3'.  */
3893                  if (upper_bound == 0)
3894                    {
3895                      GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3896                      INSERT_JUMP (jump, laststart, b + 1
3897 				  + OFFSET_ADDRESS_SIZE);
3898                      b += 1 + OFFSET_ADDRESS_SIZE;
3899                    }
3900 
3901                  /* Otherwise, we have a nontrivial interval.  When
3902                     we're all done, the pattern will look like:
3903                       set_number_at <jump count> <upper bound>
3904                       set_number_at <succeed_n count> <lower bound>
3905                       succeed_n <after jump addr> <succeed_n count>
3906                       <body of loop>
3907                       jump_n <succeed_n addr> <jump count>
3908                     (The upper bound and `jump_n' are omitted if
3909                     `upper_bound' is 1, though.)  */
3910                  else
3911                    { /* If the upper bound is > 1, we need to insert
3912                         more at the end of the loop.  */
3913                      unsigned nbytes = 2 + 4 * OFFSET_ADDRESS_SIZE +
3914 		       (upper_bound > 1) * (2 + 4 * OFFSET_ADDRESS_SIZE);
3915 
3916                      GET_BUFFER_SPACE (nbytes);
3917 
3918                      /* Initialize lower bound of the `succeed_n', even
3919                         though it will be set during matching by its
3920                         attendant `set_number_at' (inserted next),
3921                         because `re_compile_fastmap' needs to know.
3922                         Jump to the `jump_n' we might insert below.  */
3923                      INSERT_JUMP2 (succeed_n, laststart,
3924                                    b + 1 + 2 * OFFSET_ADDRESS_SIZE
3925 				   + (upper_bound > 1) * (1 + 2 * OFFSET_ADDRESS_SIZE)
3926 				   , lower_bound);
3927                      b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3928 
3929                      /* Code to initialize the lower bound.  Insert
3930                         before the `succeed_n'.  The `5' is the last two
3931                         bytes of this `set_number_at', plus 3 bytes of
3932                         the following `succeed_n'.  */
3933 		     /* ifdef WCHAR, The '1+2*OFFSET_ADDRESS_SIZE'
3934 			is the 'set_number_at', plus '1+OFFSET_ADDRESS_SIZE'
3935 			of the following `succeed_n'.  */
3936                      PREFIX(insert_op2) (set_number_at, laststart, 1
3937 				 + 2 * OFFSET_ADDRESS_SIZE, lower_bound, b);
3938                      b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3939 
3940                      if (upper_bound > 1)
3941                        { /* More than one repetition is allowed, so
3942                             append a backward jump to the `succeed_n'
3943                             that starts this interval.
3944 
3945                             When we've reached this during matching,
3946                             we'll have matched the interval once, so
3947                             jump back only `upper_bound - 1' times.  */
3948                          STORE_JUMP2 (jump_n, b, laststart
3949 				      + 2 * OFFSET_ADDRESS_SIZE + 1,
3950                                       upper_bound - 1);
3951                          b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3952 
3953                          /* The location we want to set is the second
3954                             parameter of the `jump_n'; that is `b-2' as
3955                             an absolute address.  `laststart' will be
3956                             the `set_number_at' we're about to insert;
3957                             `laststart+3' the number to set, the source
3958                             for the relative address.  But we are
3959                             inserting into the middle of the pattern --
3960                             so everything is getting moved up by 5.
3961                             Conclusion: (b - 2) - (laststart + 3) + 5,
3962                             i.e., b - laststart.
3963 
3964                             We insert this at the beginning of the loop
3965                             so that if we fail during matching, we'll
3966                             reinitialize the bounds.  */
3967                          PREFIX(insert_op2) (set_number_at, laststart,
3968 					     b - laststart,
3969 					     upper_bound - 1, b);
3970                          b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3971                        }
3972                    }
3973                 pending_exact = 0;
3974 		break;
3975 
3976 	      invalid_interval:
3977 		if (!(syntax & RE_INVALID_INTERVAL_ORD))
3978 		  FREE_STACK_RETURN (p == pend ? REG_EBRACE : REG_BADBR);
3979 	      unfetch_interval:
3980 		/* Match the characters as literals.  */
3981 		p = beg_interval;
3982 		c = '{';
3983 		if (syntax & RE_NO_BK_BRACES)
3984 		  goto normal_char;
3985 		else
3986 		  goto normal_backslash;
3987 	      }
3988 
3989 #ifdef emacs
3990             /* There is no way to specify the before_dot and after_dot
3991                operators.  rms says this is ok.  --karl  */
3992             case '=':
3993               BUF_PUSH (at_dot);
3994               break;
3995 
3996             case 's':
3997               laststart = b;
3998               PATFETCH (c);
3999               BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
4000               break;
4001 
4002             case 'S':
4003               laststart = b;
4004               PATFETCH (c);
4005               BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
4006               break;
4007 #endif /* emacs */
4008 
4009 
4010             case 'w':
4011 	      if (syntax & RE_NO_GNU_OPS)
4012 		goto normal_char;
4013               laststart = b;
4014               BUF_PUSH (wordchar);
4015               break;
4016 
4017 
4018             case 'W':
4019 	      if (syntax & RE_NO_GNU_OPS)
4020 		goto normal_char;
4021               laststart = b;
4022               BUF_PUSH (notwordchar);
4023               break;
4024 
4025 
4026             case '<':
4027 	      if (syntax & RE_NO_GNU_OPS)
4028 		goto normal_char;
4029               BUF_PUSH (wordbeg);
4030               break;
4031 
4032             case '>':
4033 	      if (syntax & RE_NO_GNU_OPS)
4034 		goto normal_char;
4035               BUF_PUSH (wordend);
4036               break;
4037 
4038             case 'b':
4039 	      if (syntax & RE_NO_GNU_OPS)
4040 		goto normal_char;
4041               BUF_PUSH (wordbound);
4042               break;
4043 
4044             case 'B':
4045 	      if (syntax & RE_NO_GNU_OPS)
4046 		goto normal_char;
4047               BUF_PUSH (notwordbound);
4048               break;
4049 
4050             case '`':
4051 	      if (syntax & RE_NO_GNU_OPS)
4052 		goto normal_char;
4053               BUF_PUSH (begbuf);
4054               break;
4055 
4056             case '\'':
4057 	      if (syntax & RE_NO_GNU_OPS)
4058 		goto normal_char;
4059               BUF_PUSH (endbuf);
4060               break;
4061 
4062             case '1': case '2': case '3': case '4': case '5':
4063             case '6': case '7': case '8': case '9':
4064               if (syntax & RE_NO_BK_REFS)
4065                 goto normal_char;
4066 
4067               c1 = c - '0';
4068 
4069               if (c1 > regnum)
4070                 FREE_STACK_RETURN (REG_ESUBREG);
4071 
4072               /* Can't back reference to a subexpression if inside of it.  */
4073               if (group_in_compile_stack (compile_stack, (regnum_t) c1))
4074                 goto normal_char;
4075 
4076               laststart = b;
4077               BUF_PUSH_2 (duplicate, c1);
4078               break;
4079 
4080 
4081             case '+':
4082             case '?':
4083               if (syntax & RE_BK_PLUS_QM)
4084                 goto handle_plus;
4085               else
4086                 goto normal_backslash;
4087 
4088             default:
4089             normal_backslash:
4090               /* You might think it would be useful for \ to mean
4091                  not to translate; but if we don't translate it
4092                  it will never match anything.  */
4093               c = TRANSLATE (c);
4094               goto normal_char;
4095             }
4096           break;
4097 
4098 
4099 	default:
4100         /* Expects the character in `c'.  */
4101 	normal_char:
4102 	      /* If no exactn currently being built.  */
4103           if (!pending_exact
4104 #ifdef WCHAR
4105 	      /* If last exactn handle binary(or character) and
4106 		 new exactn handle character(or binary).  */
4107 	      || is_exactn_bin != is_binary[p - 1 - pattern]
4108 #endif /* WCHAR */
4109 
4110               /* If last exactn not at current position.  */
4111               || pending_exact + *pending_exact + 1 != b
4112 
4113               /* We have only one byte following the exactn for the count.  */
4114 	      || *pending_exact == (1 << BYTEWIDTH) - 1
4115 
4116               /* If followed by a repetition operator.  */
4117               || *p == '*' || *p == '^'
4118 	      || ((syntax & RE_BK_PLUS_QM)
4119 		  ? *p == '\\' && (p[1] == '+' || p[1] == '?')
4120 		  : (*p == '+' || *p == '?'))
4121 	      || ((syntax & RE_INTERVALS)
4122                   && ((syntax & RE_NO_BK_BRACES)
4123 		      ? *p == '{'
4124                       : (p[0] == '\\' && p[1] == '{'))))
4125 	    {
4126 	      /* Start building a new exactn.  */
4127 
4128               laststart = b;
4129 
4130 #ifdef WCHAR
4131 	      /* Is this exactn binary data or character? */
4132 	      is_exactn_bin = is_binary[p - 1 - pattern];
4133 	      if (is_exactn_bin)
4134 		  BUF_PUSH_2 (exactn_bin, 0);
4135 	      else
4136 		  BUF_PUSH_2 (exactn, 0);
4137 #else
4138 	      BUF_PUSH_2 (exactn, 0);
4139 #endif /* WCHAR */
4140 	      pending_exact = b - 1;
4141             }
4142 
4143 	  BUF_PUSH (c);
4144           (*pending_exact)++;
4145 	  break;
4146         } /* switch (c) */
4147     } /* while p != pend */
4148 
4149 
4150   /* Through the pattern now.  */
4151 
4152   if (fixup_alt_jump)
4153     STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
4154 
4155   if (!COMPILE_STACK_EMPTY)
4156     FREE_STACK_RETURN (REG_EPAREN);
4157 
4158   /* If we don't want backtracking, force success
4159      the first time we reach the end of the compiled pattern.  */
4160   if (syntax & RE_NO_POSIX_BACKTRACKING)
4161     BUF_PUSH (succeed);
4162 
4163 #ifdef WCHAR
4164   free (pattern);
4165   free (mbs_offset);
4166   free (is_binary);
4167 #endif
4168   free (compile_stack.stack);
4169 
4170   /* We have succeeded; set the length of the buffer.  */
4171 #ifdef WCHAR
4172   bufp->used = (uintptr_t) b - (uintptr_t) COMPILED_BUFFER_VAR;
4173 #else
4174   bufp->used = b - bufp->buffer;
4175 #endif
4176 
4177 #ifdef DEBUG
4178   if (debug)
4179     {
4180       DEBUG_PRINT1 ("\nCompiled pattern: \n");
4181       PREFIX(print_compiled_pattern) (bufp);
4182     }
4183 #endif /* DEBUG */
4184 
4185 #ifndef MATCH_MAY_ALLOCATE
4186   /* Initialize the failure stack to the largest possible stack.  This
4187      isn't necessary unless we're trying to avoid calling alloca in
4188      the search and match routines.  */
4189   {
4190     int num_regs = bufp->re_nsub + 1;
4191 
4192     /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
4193        is strictly greater than re_max_failures, the largest possible stack
4194        is 2 * re_max_failures failure points.  */
4195     if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
4196       {
4197 	fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
4198 
4199 # ifdef emacs
4200 	if (! fail_stack.stack)
4201 	  fail_stack.stack
4202 	    = (PREFIX(fail_stack_elt_t) *) xmalloc (fail_stack.size
4203 				    * sizeof (PREFIX(fail_stack_elt_t)));
4204 	else
4205 	  fail_stack.stack
4206 	    = (PREFIX(fail_stack_elt_t) *) xrealloc (fail_stack.stack,
4207 				     (fail_stack.size
4208 				      * sizeof (PREFIX(fail_stack_elt_t))));
4209 # else /* not emacs */
4210 	if (! fail_stack.stack)
4211 	  fail_stack.stack
4212 	    = (PREFIX(fail_stack_elt_t) *) malloc (fail_stack.size
4213 				   * sizeof (PREFIX(fail_stack_elt_t)));
4214 	else
4215 	  fail_stack.stack
4216 	    = (PREFIX(fail_stack_elt_t) *) realloc (fail_stack.stack,
4217 					    (fail_stack.size
4218 				     * sizeof (PREFIX(fail_stack_elt_t))));
4219 # endif /* not emacs */
4220       }
4221 
4222    PREFIX(regex_grow_registers) (num_regs);
4223   }
4224 #endif /* not MATCH_MAY_ALLOCATE */
4225 
4226   return REG_NOERROR;
4227 } /* regex_compile */
4228 
4229 /* Subroutines for `regex_compile'.  */
4230 
4231 /* Store OP at LOC followed by two-byte integer parameter ARG.  */
4232 /* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4233 
4234 static void
PREFIX(store_op1)4235 PREFIX(store_op1) (re_opcode_t op, UCHAR_T *loc, int arg)
4236 {
4237   *loc = (UCHAR_T) op;
4238   STORE_NUMBER (loc + 1, arg);
4239 }
4240 
4241 
4242 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2.  */
4243 /* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4244 
4245 static void
PREFIX(store_op2)4246 PREFIX(store_op2) (re_opcode_t op, UCHAR_T *loc, int arg1, int arg2)
4247 {
4248   *loc = (UCHAR_T) op;
4249   STORE_NUMBER (loc + 1, arg1);
4250   STORE_NUMBER (loc + 1 + OFFSET_ADDRESS_SIZE, arg2);
4251 }
4252 
4253 
4254 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
4255    for OP followed by two-byte integer parameter ARG.  */
4256 /* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4257 
4258 static void
PREFIX(insert_op1)4259 PREFIX(insert_op1) (re_opcode_t op, UCHAR_T *loc, int arg, UCHAR_T *end)
4260 {
4261   register UCHAR_T *pfrom = end;
4262   register UCHAR_T *pto = end + 1 + OFFSET_ADDRESS_SIZE;
4263 
4264   while (pfrom != loc)
4265     *--pto = *--pfrom;
4266 
4267   PREFIX(store_op1) (op, loc, arg);
4268 }
4269 
4270 
4271 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2.  */
4272 /* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4273 
4274 static void
PREFIX(insert_op2)4275 PREFIX(insert_op2) (re_opcode_t op, UCHAR_T *loc, int arg1,
4276                     int arg2, UCHAR_T *end)
4277 {
4278   register UCHAR_T *pfrom = end;
4279   register UCHAR_T *pto = end + 1 + 2 * OFFSET_ADDRESS_SIZE;
4280 
4281   while (pfrom != loc)
4282     *--pto = *--pfrom;
4283 
4284   PREFIX(store_op2) (op, loc, arg1, arg2);
4285 }
4286 
4287 
4288 /* P points to just after a ^ in PATTERN.  Return true if that ^ comes
4289    after an alternative or a begin-subexpression.  We assume there is at
4290    least one character before the ^.  */
4291 
4292 static boolean
PREFIX(at_begline_loc_p)4293 PREFIX(at_begline_loc_p) (const CHAR_T *pattern, const CHAR_T *p,
4294                           reg_syntax_t syntax)
4295 {
4296   const CHAR_T *prev = p - 2;
4297   boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
4298 
4299   return
4300        /* After a subexpression?  */
4301        (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
4302        /* After an alternative?  */
4303     || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
4304 }
4305 
4306 
4307 /* The dual of at_begline_loc_p.  This one is for $.  We assume there is
4308    at least one character after the $, i.e., `P < PEND'.  */
4309 
4310 static boolean
PREFIX(at_endline_loc_p)4311 PREFIX(at_endline_loc_p) (const CHAR_T *p, const CHAR_T *pend,
4312                           reg_syntax_t syntax)
4313 {
4314   const CHAR_T *next = p;
4315   boolean next_backslash = *next == '\\';
4316   const CHAR_T *next_next = p + 1 < pend ? p + 1 : 0;
4317 
4318   return
4319        /* Before a subexpression?  */
4320        (syntax & RE_NO_BK_PARENS ? *next == ')'
4321         : next_backslash && next_next && *next_next == ')')
4322        /* Before an alternative?  */
4323     || (syntax & RE_NO_BK_VBAR ? *next == '|'
4324         : next_backslash && next_next && *next_next == '|');
4325 }
4326 
4327 #else /* not INSIDE_RECURSION */
4328 
4329 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
4330    false if it's not.  */
4331 
4332 static boolean
group_in_compile_stack(compile_stack_type compile_stack,regnum_t regnum)4333 group_in_compile_stack (compile_stack_type compile_stack, regnum_t regnum)
4334 {
4335   int this_element;
4336 
4337   for (this_element = compile_stack.avail - 1;
4338        this_element >= 0;
4339        this_element--)
4340     if (compile_stack.stack[this_element].regnum == regnum)
4341       return true;
4342 
4343   return false;
4344 }
4345 #endif /* not INSIDE_RECURSION */
4346 
4347 #ifdef INSIDE_RECURSION
4348 
4349 #ifdef WCHAR
4350 /* This insert space, which size is "num", into the pattern at "loc".
4351    "end" must point the end of the allocated buffer.  */
4352 static void
insert_space(int num,CHAR_T * loc,CHAR_T * end)4353 insert_space (int num, CHAR_T *loc, CHAR_T *end)
4354 {
4355   register CHAR_T *pto = end;
4356   register CHAR_T *pfrom = end - num;
4357 
4358   while (pfrom >= loc)
4359     *pto-- = *pfrom--;
4360 }
4361 #endif /* WCHAR */
4362 
4363 #ifdef WCHAR
4364 static reg_errcode_t
wcs_compile_range(CHAR_T range_start_char,const CHAR_T ** p_ptr,const CHAR_T * pend,RE_TRANSLATE_TYPE translate,reg_syntax_t syntax,CHAR_T * b,CHAR_T * char_set)4365 wcs_compile_range (CHAR_T range_start_char, const CHAR_T **p_ptr,
4366                    const CHAR_T *pend, RE_TRANSLATE_TYPE translate,
4367                    reg_syntax_t syntax, CHAR_T *b, CHAR_T *char_set)
4368 {
4369   const CHAR_T *p = *p_ptr;
4370   CHAR_T range_start, range_end;
4371   reg_errcode_t ret;
4372 # ifdef _LIBC
4373   uint32_t nrules;
4374   uint32_t start_val, end_val;
4375 # endif
4376   if (p == pend)
4377     return REG_ERANGE;
4378 
4379 # ifdef _LIBC
4380   nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
4381   if (nrules != 0)
4382     {
4383       const char *collseq = (const char *) _NL_CURRENT(LC_COLLATE,
4384 						       _NL_COLLATE_COLLSEQWC);
4385       const unsigned char *extra = (const unsigned char *)
4386 	_NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
4387 
4388       if (range_start_char < -1)
4389 	{
4390 	  /* range_start is a collating symbol.  */
4391 	  int32_t *wextra;
4392 	  /* Retreive the index and get collation sequence value.  */
4393 	  wextra = (int32_t*)(extra + char_set[-range_start_char]);
4394 	  start_val = wextra[1 + *wextra];
4395 	}
4396       else
4397 	start_val = collseq_table_lookup(collseq, TRANSLATE(range_start_char));
4398 
4399       end_val = collseq_table_lookup (collseq, TRANSLATE (p[0]));
4400 
4401       /* Report an error if the range is empty and the syntax prohibits
4402 	 this.  */
4403       ret = ((syntax & RE_NO_EMPTY_RANGES)
4404 	     && (start_val > end_val))? REG_ERANGE : REG_NOERROR;
4405 
4406       /* Insert space to the end of the char_ranges.  */
4407       insert_space(2, b - char_set[5] - 2, b - 1);
4408       *(b - char_set[5] - 2) = (wchar_t)start_val;
4409       *(b - char_set[5] - 1) = (wchar_t)end_val;
4410       char_set[4]++; /* ranges_index */
4411     }
4412   else
4413 # endif
4414     {
4415       range_start = (range_start_char >= 0)? TRANSLATE (range_start_char):
4416 	range_start_char;
4417       range_end = TRANSLATE (p[0]);
4418       /* Report an error if the range is empty and the syntax prohibits
4419 	 this.  */
4420       ret = ((syntax & RE_NO_EMPTY_RANGES)
4421 	     && (range_start > range_end))? REG_ERANGE : REG_NOERROR;
4422 
4423       /* Insert space to the end of the char_ranges.  */
4424       insert_space(2, b - char_set[5] - 2, b - 1);
4425       *(b - char_set[5] - 2) = range_start;
4426       *(b - char_set[5] - 1) = range_end;
4427       char_set[4]++; /* ranges_index */
4428     }
4429   /* Have to increment the pointer into the pattern string, so the
4430      caller isn't still at the ending character.  */
4431   (*p_ptr)++;
4432 
4433   return ret;
4434 }
4435 #else /* BYTE */
4436 /* Read the ending character of a range (in a bracket expression) from the
4437    uncompiled pattern *P_PTR (which ends at PEND).  We assume the
4438    starting character is in `P[-2]'.  (`P[-1]' is the character `-'.)
4439    Then we set the translation of all bits between the starting and
4440    ending characters (inclusive) in the compiled pattern B.
4441 
4442    Return an error code.
4443 
4444    We use these short variable names so we can use the same macros as
4445    `regex_compile' itself.  */
4446 
4447 static reg_errcode_t
byte_compile_range(unsigned int range_start_char,const char ** p_ptr,const char * pend,RE_TRANSLATE_TYPE translate,reg_syntax_t syntax,unsigned char * b)4448 byte_compile_range (unsigned int range_start_char, const char **p_ptr,
4449                     const char *pend, RE_TRANSLATE_TYPE translate,
4450                     reg_syntax_t syntax, unsigned char *b)
4451 {
4452   unsigned this_char;
4453   const char *p = *p_ptr;
4454   reg_errcode_t ret;
4455 # if _LIBC
4456   const unsigned char *collseq;
4457   unsigned int start_colseq;
4458   unsigned int end_colseq;
4459 # else
4460   unsigned end_char;
4461 # endif
4462 
4463   if (p == pend)
4464     return REG_ERANGE;
4465 
4466   /* Have to increment the pointer into the pattern string, so the
4467      caller isn't still at the ending character.  */
4468   (*p_ptr)++;
4469 
4470   /* Report an error if the range is empty and the syntax prohibits this.  */
4471   ret = syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
4472 
4473 # if _LIBC
4474   collseq = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
4475 						 _NL_COLLATE_COLLSEQMB);
4476 
4477   start_colseq = collseq[(unsigned char) TRANSLATE (range_start_char)];
4478   end_colseq = collseq[(unsigned char) TRANSLATE (p[0])];
4479   for (this_char = 0; this_char <= (unsigned char) -1; ++this_char)
4480     {
4481       unsigned int this_colseq = collseq[(unsigned char) TRANSLATE (this_char)];
4482 
4483       if (start_colseq <= this_colseq && this_colseq <= end_colseq)
4484 	{
4485 	  SET_LIST_BIT (TRANSLATE (this_char));
4486 	  ret = REG_NOERROR;
4487 	}
4488     }
4489 # else
4490   /* Here we see why `this_char' has to be larger than an `unsigned
4491      char' -- we would otherwise go into an infinite loop, since all
4492      characters <= 0xff.  */
4493   range_start_char = TRANSLATE (range_start_char);
4494   /* TRANSLATE(p[0]) is casted to char (not unsigned char) in TRANSLATE,
4495      and some compilers cast it to int implicitly, so following for_loop
4496      may fall to (almost) infinite loop.
4497      e.g. If translate[p[0]] = 0xff, end_char may equals to 0xffffffff.
4498      To avoid this, we cast p[0] to unsigned int and truncate it.  */
4499   end_char = ((unsigned)TRANSLATE(p[0]) & ((1 << BYTEWIDTH) - 1));
4500 
4501   for (this_char = range_start_char; this_char <= end_char; ++this_char)
4502     {
4503       SET_LIST_BIT (TRANSLATE (this_char));
4504       ret = REG_NOERROR;
4505     }
4506 # endif
4507 
4508   return ret;
4509 }
4510 #endif /* WCHAR */
4511 
4512 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4513    BUFP.  A fastmap records which of the (1 << BYTEWIDTH) possible
4514    characters can start a string that matches the pattern.  This fastmap
4515    is used by re_search to skip quickly over impossible starting points.
4516 
4517    The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4518    area as BUFP->fastmap.
4519 
4520    We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4521    the pattern buffer.
4522 
4523    Returns 0 if we succeed, -2 if an internal error.   */
4524 
4525 #ifdef WCHAR
4526 /* local function for re_compile_fastmap.
4527    truncate wchar_t character to char.  */
4528 static unsigned char truncate_wchar (CHAR_T c);
4529 
4530 static unsigned char
truncate_wchar(CHAR_T c)4531 truncate_wchar (CHAR_T c)
4532 {
4533   unsigned char buf[MB_CUR_MAX];
4534   mbstate_t state;
4535   int retval;
4536   memset (&state, '\0', sizeof (state));
4537 # ifdef _LIBC
4538   retval = __wcrtomb (buf, c, &state);
4539 # else
4540   retval = wcrtomb (buf, c, &state);
4541 # endif
4542   return retval > 0 ? buf[0] : (unsigned char) c;
4543 }
4544 #endif /* WCHAR */
4545 
4546 static int
PREFIX(re_compile_fastmap)4547 PREFIX(re_compile_fastmap) (struct re_pattern_buffer *bufp)
4548 {
4549   int j, k;
4550 #ifdef MATCH_MAY_ALLOCATE
4551   PREFIX(fail_stack_type) fail_stack;
4552 #endif
4553 #ifndef REGEX_MALLOC
4554   char *destination;
4555 #endif
4556 
4557   register char *fastmap = bufp->fastmap;
4558 
4559 #ifdef WCHAR
4560   /* We need to cast pattern to (wchar_t*), because we casted this compiled
4561      pattern to (char*) in regex_compile.  */
4562   UCHAR_T *pattern = (UCHAR_T*)bufp->buffer;
4563   register UCHAR_T *pend = (UCHAR_T*) (bufp->buffer + bufp->used);
4564 #else /* BYTE */
4565   UCHAR_T *pattern = bufp->buffer;
4566   register UCHAR_T *pend = pattern + bufp->used;
4567 #endif /* WCHAR */
4568   UCHAR_T *p = pattern;
4569 
4570 #ifdef REL_ALLOC
4571   /* This holds the pointer to the failure stack, when
4572      it is allocated relocatably.  */
4573   fail_stack_elt_t *failure_stack_ptr;
4574 #endif
4575 
4576   /* Assume that each path through the pattern can be null until
4577      proven otherwise.  We set this false at the bottom of switch
4578      statement, to which we get only if a particular path doesn't
4579      match the empty string.  */
4580   boolean path_can_be_null = true;
4581 
4582   /* We aren't doing a `succeed_n' to begin with.  */
4583   boolean succeed_n_p = false;
4584 
4585   assert (fastmap != NULL && p != NULL);
4586 
4587   INIT_FAIL_STACK ();
4588   bzero (fastmap, 1 << BYTEWIDTH);  /* Assume nothing's valid.  */
4589   bufp->fastmap_accurate = 1;	    /* It will be when we're done.  */
4590   bufp->can_be_null = 0;
4591 
4592   while (1)
4593     {
4594       if (p == pend || *p == (UCHAR_T) succeed)
4595 	{
4596 	  /* We have reached the (effective) end of pattern.  */
4597 	  if (!FAIL_STACK_EMPTY ())
4598 	    {
4599 	      bufp->can_be_null |= path_can_be_null;
4600 
4601 	      /* Reset for next path.  */
4602 	      path_can_be_null = true;
4603 
4604 	      p = fail_stack.stack[--fail_stack.avail].pointer;
4605 
4606 	      continue;
4607 	    }
4608 	  else
4609 	    break;
4610 	}
4611 
4612       /* We should never be about to go beyond the end of the pattern.  */
4613       assert (p < pend);
4614 
4615       switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4616 	{
4617 
4618         /* I guess the idea here is to simply not bother with a fastmap
4619            if a backreference is used, since it's too hard to figure out
4620            the fastmap for the corresponding group.  Setting
4621            `can_be_null' stops `re_search_2' from using the fastmap, so
4622            that is all we do.  */
4623 	case duplicate:
4624 	  bufp->can_be_null = 1;
4625           goto done;
4626 
4627 
4628       /* Following are the cases which match a character.  These end
4629          with `break'.  */
4630 
4631 #ifdef WCHAR
4632 	case exactn:
4633           fastmap[truncate_wchar(p[1])] = 1;
4634 	  break;
4635 #else /* BYTE */
4636 	case exactn:
4637           fastmap[p[1]] = 1;
4638 	  break;
4639 #endif /* WCHAR */
4640 #ifdef MBS_SUPPORT
4641 	case exactn_bin:
4642 	  fastmap[p[1]] = 1;
4643 	  break;
4644 #endif
4645 
4646 #ifdef WCHAR
4647         /* It is hard to distinguish fastmap from (multi byte) characters
4648            which depends on current locale.  */
4649         case charset:
4650 	case charset_not:
4651 	case wordchar:
4652 	case notwordchar:
4653           bufp->can_be_null = 1;
4654           goto done;
4655 #else /* BYTE */
4656         case charset:
4657           for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4658 	    if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
4659               fastmap[j] = 1;
4660 	  break;
4661 
4662 
4663 	case charset_not:
4664 	  /* Chars beyond end of map must be allowed.  */
4665 	  for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
4666             fastmap[j] = 1;
4667 
4668 	  for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4669 	    if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
4670               fastmap[j] = 1;
4671           break;
4672 
4673 
4674 	case wordchar:
4675 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4676 	    if (SYNTAX (j) == Sword)
4677 	      fastmap[j] = 1;
4678 	  break;
4679 
4680 
4681 	case notwordchar:
4682 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4683 	    if (SYNTAX (j) != Sword)
4684 	      fastmap[j] = 1;
4685 	  break;
4686 #endif /* WCHAR */
4687 
4688         case anychar:
4689 	  {
4690 	    int fastmap_newline = fastmap['\n'];
4691 
4692 	    /* `.' matches anything ...  */
4693 	    for (j = 0; j < (1 << BYTEWIDTH); j++)
4694 	      fastmap[j] = 1;
4695 
4696 	    /* ... except perhaps newline.  */
4697 	    if (!(bufp->syntax & RE_DOT_NEWLINE))
4698 	      fastmap['\n'] = fastmap_newline;
4699 
4700 	    /* Return if we have already set `can_be_null'; if we have,
4701 	       then the fastmap is irrelevant.  Something's wrong here.  */
4702 	    else if (bufp->can_be_null)
4703 	      goto done;
4704 
4705 	    /* Otherwise, have to check alternative paths.  */
4706 	    break;
4707 	  }
4708 
4709 #ifdef emacs
4710         case syntaxspec:
4711 	  k = *p++;
4712 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4713 	    if (SYNTAX (j) == (enum syntaxcode) k)
4714 	      fastmap[j] = 1;
4715 	  break;
4716 
4717 
4718 	case notsyntaxspec:
4719 	  k = *p++;
4720 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4721 	    if (SYNTAX (j) != (enum syntaxcode) k)
4722 	      fastmap[j] = 1;
4723 	  break;
4724 
4725 
4726       /* All cases after this match the empty string.  These end with
4727          `continue'.  */
4728 
4729 
4730 	case before_dot:
4731 	case at_dot:
4732 	case after_dot:
4733           continue;
4734 #endif /* emacs */
4735 
4736 
4737         case no_op:
4738         case begline:
4739         case endline:
4740 	case begbuf:
4741 	case endbuf:
4742 	case wordbound:
4743 	case notwordbound:
4744 	case wordbeg:
4745 	case wordend:
4746         case push_dummy_failure:
4747           continue;
4748 
4749 
4750 	case jump_n:
4751         case pop_failure_jump:
4752 	case maybe_pop_jump:
4753 	case jump:
4754         case jump_past_alt:
4755 	case dummy_failure_jump:
4756           EXTRACT_NUMBER_AND_INCR (j, p);
4757 	  p += j;
4758 	  if (j > 0)
4759 	    continue;
4760 
4761           /* Jump backward implies we just went through the body of a
4762              loop and matched nothing.  Opcode jumped to should be
4763              `on_failure_jump' or `succeed_n'.  Just treat it like an
4764              ordinary jump.  For a * loop, it has pushed its failure
4765              point already; if so, discard that as redundant.  */
4766           if ((re_opcode_t) *p != on_failure_jump
4767 	      && (re_opcode_t) *p != succeed_n)
4768 	    continue;
4769 
4770           p++;
4771           EXTRACT_NUMBER_AND_INCR (j, p);
4772           p += j;
4773 
4774           /* If what's on the stack is where we are now, pop it.  */
4775           if (!FAIL_STACK_EMPTY ()
4776 	      && fail_stack.stack[fail_stack.avail - 1].pointer == p)
4777             fail_stack.avail--;
4778 
4779           continue;
4780 
4781 
4782         case on_failure_jump:
4783         case on_failure_keep_string_jump:
4784 	handle_on_failure_jump:
4785           EXTRACT_NUMBER_AND_INCR (j, p);
4786 
4787           /* For some patterns, e.g., `(a?)?', `p+j' here points to the
4788              end of the pattern.  We don't want to push such a point,
4789              since when we restore it above, entering the switch will
4790              increment `p' past the end of the pattern.  We don't need
4791              to push such a point since we obviously won't find any more
4792              fastmap entries beyond `pend'.  Such a pattern can match
4793              the null string, though.  */
4794           if (p + j < pend)
4795             {
4796               if (!PUSH_PATTERN_OP (p + j, fail_stack))
4797 		{
4798 		  RESET_FAIL_STACK ();
4799 		  return -2;
4800 		}
4801             }
4802           else
4803             bufp->can_be_null = 1;
4804 
4805           if (succeed_n_p)
4806             {
4807               EXTRACT_NUMBER_AND_INCR (k, p);	/* Skip the n.  */
4808               succeed_n_p = false;
4809 	    }
4810 
4811           continue;
4812 
4813 
4814 	case succeed_n:
4815           /* Get to the number of times to succeed.  */
4816           p += OFFSET_ADDRESS_SIZE;
4817 
4818           /* Increment p past the n for when k != 0.  */
4819           EXTRACT_NUMBER_AND_INCR (k, p);
4820           if (k == 0)
4821 	    {
4822               p -= 2 * OFFSET_ADDRESS_SIZE;
4823   	      succeed_n_p = true;  /* Spaghetti code alert.  */
4824               goto handle_on_failure_jump;
4825             }
4826           continue;
4827 
4828 
4829 	case set_number_at:
4830           p += 2 * OFFSET_ADDRESS_SIZE;
4831           continue;
4832 
4833 
4834 	case start_memory:
4835         case stop_memory:
4836 	  p += 2;
4837 	  continue;
4838 
4839 
4840 	default:
4841           abort (); /* We have listed all the cases.  */
4842         } /* switch *p++ */
4843 
4844       /* Getting here means we have found the possible starting
4845          characters for one path of the pattern -- and that the empty
4846          string does not match.  We need not follow this path further.
4847          Instead, look at the next alternative (remembered on the
4848          stack), or quit if no more.  The test at the top of the loop
4849          does these things.  */
4850       path_can_be_null = false;
4851       p = pend;
4852     } /* while p */
4853 
4854   /* Set `can_be_null' for the last path (also the first path, if the
4855      pattern is empty).  */
4856   bufp->can_be_null |= path_can_be_null;
4857 
4858  done:
4859   RESET_FAIL_STACK ();
4860   return 0;
4861 }
4862 
4863 #else /* not INSIDE_RECURSION */
4864 
4865 int
re_compile_fastmap(struct re_pattern_buffer * bufp)4866 re_compile_fastmap (struct re_pattern_buffer *bufp)
4867 {
4868 # ifdef MBS_SUPPORT
4869   if (MB_CUR_MAX != 1)
4870     return wcs_re_compile_fastmap(bufp);
4871   else
4872 # endif
4873     return byte_re_compile_fastmap(bufp);
4874 } /* re_compile_fastmap */
4875 #ifdef _LIBC
weak_alias(__re_compile_fastmap,re_compile_fastmap)4876 weak_alias (__re_compile_fastmap, re_compile_fastmap)
4877 #endif
4878 
4879 
4880 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4881    ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use
4882    this memory for recording register information.  STARTS and ENDS
4883    must be allocated using the malloc library routine, and must each
4884    be at least NUM_REGS * sizeof (regoff_t) bytes long.
4885 
4886    If NUM_REGS == 0, then subsequent matches should allocate their own
4887    register data.
4888 
4889    Unless this function is called, the first search or match using
4890    PATTERN_BUFFER will allocate its own register data, without
4891    freeing the old data.  */
4892 
4893 void
4894 re_set_registers (struct re_pattern_buffer *bufp,
4895                   struct re_registers *regs, unsigned num_regs,
4896                   regoff_t *starts, regoff_t *ends)
4897 {
4898   if (num_regs)
4899     {
4900       bufp->regs_allocated = REGS_REALLOCATE;
4901       regs->num_regs = num_regs;
4902       regs->start = starts;
4903       regs->end = ends;
4904     }
4905   else
4906     {
4907       bufp->regs_allocated = REGS_UNALLOCATED;
4908       regs->num_regs = 0;
4909       regs->start = regs->end = (regoff_t *) 0;
4910     }
4911 }
4912 #ifdef _LIBC
weak_alias(__re_set_registers,re_set_registers)4913 weak_alias (__re_set_registers, re_set_registers)
4914 #endif
4915 
4916 /* Searching routines.  */
4917 
4918 /* Like re_search_2, below, but only one string is specified, and
4919    doesn't let you say where to stop matching.  */
4920 
4921 int
4922 re_search (struct re_pattern_buffer *bufp, const char *string, int size,
4923            int startpos, int range, struct re_registers *regs)
4924 {
4925   return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
4926 		      regs, size);
4927 }
4928 #ifdef _LIBC
weak_alias(__re_search,re_search)4929 weak_alias (__re_search, re_search)
4930 #endif
4931 
4932 
4933 /* Using the compiled pattern in BUFP->buffer, first tries to match the
4934    virtual concatenation of STRING1 and STRING2, starting first at index
4935    STARTPOS, then at STARTPOS + 1, and so on.
4936 
4937    STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4938 
4939    RANGE is how far to scan while trying to match.  RANGE = 0 means try
4940    only at STARTPOS; in general, the last start tried is STARTPOS +
4941    RANGE.
4942 
4943    In REGS, return the indices of the virtual concatenation of STRING1
4944    and STRING2 that matched the entire BUFP->buffer and its contained
4945    subexpressions.
4946 
4947    Do not consider matching one past the index STOP in the virtual
4948    concatenation of STRING1 and STRING2.
4949 
4950    We return either the position in the strings at which the match was
4951    found, -1 if no match, or -2 if error (such as failure
4952    stack overflow).  */
4953 
4954 int
4955 re_search_2 (struct re_pattern_buffer *bufp, const char *string1, int size1,
4956              const char *string2, int size2, int startpos, int range,
4957              struct re_registers *regs, int stop)
4958 {
4959 # ifdef MBS_SUPPORT
4960   if (MB_CUR_MAX != 1)
4961     return wcs_re_search_2 (bufp, string1, size1, string2, size2, startpos,
4962 			    range, regs, stop);
4963   else
4964 # endif
4965     return byte_re_search_2 (bufp, string1, size1, string2, size2, startpos,
4966 			     range, regs, stop);
4967 } /* re_search_2 */
4968 #ifdef _LIBC
weak_alias(__re_search_2,re_search_2)4969 weak_alias (__re_search_2, re_search_2)
4970 #endif
4971 
4972 #endif /* not INSIDE_RECURSION */
4973 
4974 #ifdef INSIDE_RECURSION
4975 
4976 #ifdef MATCH_MAY_ALLOCATE
4977 # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
4978 #else
4979 # define FREE_VAR(var) free (var); var = NULL
4980 #endif
4981 
4982 #ifdef WCHAR
4983 # define MAX_ALLOCA_SIZE	2000
4984 
4985 # define FREE_WCS_BUFFERS() \
4986   do {									      \
4987     if (size1 > MAX_ALLOCA_SIZE)					      \
4988       {									      \
4989 	free (wcs_string1);						      \
4990 	free (mbs_offset1);						      \
4991       }									      \
4992     else								      \
4993       {									      \
4994 	FREE_VAR (wcs_string1);						      \
4995 	FREE_VAR (mbs_offset1);						      \
4996       }									      \
4997     if (size2 > MAX_ALLOCA_SIZE) 					      \
4998       {									      \
4999 	free (wcs_string2);						      \
5000 	free (mbs_offset2);						      \
5001       }									      \
5002     else								      \
5003       {									      \
5004 	FREE_VAR (wcs_string2);						      \
5005 	FREE_VAR (mbs_offset2);						      \
5006       }									      \
5007   } while (0)
5008 
5009 #endif
5010 
5011 
5012 static int
5013 PREFIX(re_search_2) (struct re_pattern_buffer *bufp, const char *string1,
5014                      int size1, const char *string2, int size2,
5015                      int startpos, int range,
5016                      struct re_registers *regs, int stop)
5017 {
5018   int val;
5019   register char *fastmap = bufp->fastmap;
5020   register RE_TRANSLATE_TYPE translate = bufp->translate;
5021   int total_size = size1 + size2;
5022   int endpos = startpos + range;
5023 #ifdef WCHAR
5024   /* We need wchar_t* buffers correspond to cstring1, cstring2.  */
5025   wchar_t *wcs_string1 = NULL, *wcs_string2 = NULL;
5026   /* We need the size of wchar_t buffers correspond to csize1, csize2.  */
5027   int wcs_size1 = 0, wcs_size2 = 0;
5028   /* offset buffer for optimizatoin. See convert_mbs_to_wc.  */
5029   int *mbs_offset1 = NULL, *mbs_offset2 = NULL;
5030   /* They hold whether each wchar_t is binary data or not.  */
5031   char *is_binary = NULL;
5032 #endif /* WCHAR */
5033 
5034   /* Check for out-of-range STARTPOS.  */
5035   if (startpos < 0 || startpos > total_size)
5036     return -1;
5037 
5038   /* Fix up RANGE if it might eventually take us outside
5039      the virtual concatenation of STRING1 and STRING2.
5040      Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE.  */
5041   if (endpos < 0)
5042     range = 0 - startpos;
5043   else if (endpos > total_size)
5044     range = total_size - startpos;
5045 
5046   /* If the search isn't to be a backwards one, don't waste time in a
5047      search for a pattern that must be anchored.  */
5048   if (bufp->used > 0 && range > 0
5049       && ((re_opcode_t) bufp->buffer[0] == begbuf
5050 	  /* `begline' is like `begbuf' if it cannot match at newlines.  */
5051 	  || ((re_opcode_t) bufp->buffer[0] == begline
5052 	      && !bufp->newline_anchor)))
5053     {
5054       if (startpos > 0)
5055 	return -1;
5056       else
5057 	range = 1;
5058     }
5059 
5060 #ifdef emacs
5061   /* In a forward search for something that starts with \=.
5062      don't keep searching past point.  */
5063   if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
5064     {
5065       range = PT - startpos;
5066       if (range <= 0)
5067 	return -1;
5068     }
5069 #endif /* emacs */
5070 
5071   /* Update the fastmap now if not correct already.  */
5072   if (fastmap && !bufp->fastmap_accurate)
5073     if (re_compile_fastmap (bufp) == -2)
5074       return -2;
5075 
5076 #ifdef WCHAR
5077   /* Allocate wchar_t array for wcs_string1 and wcs_string2 and
5078      fill them with converted string.  */
5079   if (size1 != 0)
5080     {
5081       if (size1 > MAX_ALLOCA_SIZE)
5082 	{
5083 	  wcs_string1 = TALLOC (size1 + 1, CHAR_T);
5084 	  mbs_offset1 = TALLOC (size1 + 1, int);
5085 	  is_binary = TALLOC (size1 + 1, char);
5086 	}
5087       else
5088 	{
5089 	  wcs_string1 = REGEX_TALLOC (size1 + 1, CHAR_T);
5090 	  mbs_offset1 = REGEX_TALLOC (size1 + 1, int);
5091 	  is_binary = REGEX_TALLOC (size1 + 1, char);
5092 	}
5093       if (!wcs_string1 || !mbs_offset1 || !is_binary)
5094 	{
5095 	  if (size1 > MAX_ALLOCA_SIZE)
5096 	    {
5097 	      free (wcs_string1);
5098 	      free (mbs_offset1);
5099 	      free (is_binary);
5100 	    }
5101 	  else
5102 	    {
5103 	      FREE_VAR (wcs_string1);
5104 	      FREE_VAR (mbs_offset1);
5105 	      FREE_VAR (is_binary);
5106 	    }
5107 	  return -2;
5108 	}
5109       wcs_size1 = convert_mbs_to_wcs(wcs_string1, string1, size1,
5110 				     mbs_offset1, is_binary);
5111       wcs_string1[wcs_size1] = L'\0'; /* for a sentinel  */
5112       if (size1 > MAX_ALLOCA_SIZE)
5113 	free (is_binary);
5114       else
5115 	FREE_VAR (is_binary);
5116     }
5117   if (size2 != 0)
5118     {
5119       if (size2 > MAX_ALLOCA_SIZE)
5120 	{
5121 	  wcs_string2 = TALLOC (size2 + 1, CHAR_T);
5122 	  mbs_offset2 = TALLOC (size2 + 1, int);
5123 	  is_binary = TALLOC (size2 + 1, char);
5124 	}
5125       else
5126 	{
5127 	  wcs_string2 = REGEX_TALLOC (size2 + 1, CHAR_T);
5128 	  mbs_offset2 = REGEX_TALLOC (size2 + 1, int);
5129 	  is_binary = REGEX_TALLOC (size2 + 1, char);
5130 	}
5131       if (!wcs_string2 || !mbs_offset2 || !is_binary)
5132 	{
5133 	  FREE_WCS_BUFFERS ();
5134 	  if (size2 > MAX_ALLOCA_SIZE)
5135 	    free (is_binary);
5136 	  else
5137 	    FREE_VAR (is_binary);
5138 	  return -2;
5139 	}
5140       wcs_size2 = convert_mbs_to_wcs(wcs_string2, string2, size2,
5141 				     mbs_offset2, is_binary);
5142       wcs_string2[wcs_size2] = L'\0'; /* for a sentinel  */
5143       if (size2 > MAX_ALLOCA_SIZE)
5144 	free (is_binary);
5145       else
5146 	FREE_VAR (is_binary);
5147     }
5148 #endif /* WCHAR */
5149 
5150 
5151   /* Loop through the string, looking for a place to start matching.  */
5152   for (;;)
5153     {
5154       /* If a fastmap is supplied, skip quickly over characters that
5155          cannot be the start of a match.  If the pattern can match the
5156          null string, however, we don't need to skip characters; we want
5157          the first null string.  */
5158       if (fastmap && startpos < total_size && !bufp->can_be_null)
5159 	{
5160 	  if (range > 0)	/* Searching forwards.  */
5161 	    {
5162 	      register const char *d;
5163 	      register int lim = 0;
5164 	      int irange = range;
5165 
5166               if (startpos < size1 && startpos + range >= size1)
5167                 lim = range - (size1 - startpos);
5168 
5169 	      d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
5170 
5171               /* Written out as an if-else to avoid testing `translate'
5172                  inside the loop.  */
5173 	      if (translate)
5174                 while (range > lim
5175                        && !fastmap[(unsigned char)
5176 				   translate[(unsigned char) *d++]])
5177                   range--;
5178 	      else
5179                 while (range > lim && !fastmap[(unsigned char) *d++])
5180                   range--;
5181 
5182 	      startpos += irange - range;
5183 	    }
5184 	  else				/* Searching backwards.  */
5185 	    {
5186 	      register CHAR_T c = (size1 == 0 || startpos >= size1
5187 				      ? string2[startpos - size1]
5188 				      : string1[startpos]);
5189 
5190 	      if (!fastmap[(unsigned char) TRANSLATE (c)])
5191 		goto advance;
5192 	    }
5193 	}
5194 
5195       /* If can't match the null string, and that's all we have left, fail.  */
5196       if (range >= 0 && startpos == total_size && fastmap
5197           && !bufp->can_be_null)
5198        {
5199 #ifdef WCHAR
5200          FREE_WCS_BUFFERS ();
5201 #endif
5202          return -1;
5203        }
5204 
5205 #ifdef WCHAR
5206       val = wcs_re_match_2_internal (bufp, string1, size1, string2,
5207 				     size2, startpos, regs, stop,
5208 				     wcs_string1, wcs_size1,
5209 				     wcs_string2, wcs_size2,
5210 				     mbs_offset1, mbs_offset2);
5211 #else /* BYTE */
5212       val = byte_re_match_2_internal (bufp, string1, size1, string2,
5213 				      size2, startpos, regs, stop);
5214 #endif /* BYTE */
5215 
5216 #ifndef REGEX_MALLOC
5217 # ifdef C_ALLOCA
5218       alloca (0);
5219 # endif
5220 #endif
5221 
5222       if (val >= 0)
5223 	{
5224 #ifdef WCHAR
5225 	  FREE_WCS_BUFFERS ();
5226 #endif
5227 	  return startpos;
5228 	}
5229 
5230       if (val == -2)
5231 	{
5232 #ifdef WCHAR
5233 	  FREE_WCS_BUFFERS ();
5234 #endif
5235 	  return -2;
5236 	}
5237 
5238     advance:
5239       if (!range)
5240         break;
5241       else if (range > 0)
5242         {
5243           range--;
5244           startpos++;
5245         }
5246       else
5247         {
5248           range++;
5249           startpos--;
5250         }
5251     }
5252 #ifdef WCHAR
5253   FREE_WCS_BUFFERS ();
5254 #endif
5255   return -1;
5256 }
5257 
5258 #ifdef WCHAR
5259 /* This converts PTR, a pointer into one of the search wchar_t strings
5260    `string1' and `string2' into an multibyte string offset from the
5261    beginning of that string. We use mbs_offset to optimize.
5262    See convert_mbs_to_wcs.  */
5263 # define POINTER_TO_OFFSET(ptr)						\
5264   (FIRST_STRING_P (ptr)							\
5265    ? ((regoff_t)(mbs_offset1 != NULL? mbs_offset1[(ptr)-string1] : 0))	\
5266    : ((regoff_t)((mbs_offset2 != NULL? mbs_offset2[(ptr)-string2] : 0)	\
5267 		 + csize1)))
5268 #else /* BYTE */
5269 /* This converts PTR, a pointer into one of the search strings `string1'
5270    and `string2' into an offset from the beginning of that string.  */
5271 # define POINTER_TO_OFFSET(ptr)			\
5272   (FIRST_STRING_P (ptr)				\
5273    ? ((regoff_t) ((ptr) - string1))		\
5274    : ((regoff_t) ((ptr) - string2 + size1)))
5275 #endif /* WCHAR */
5276 
5277 /* Macros for dealing with the split strings in re_match_2.  */
5278 
5279 #define MATCHING_IN_FIRST_STRING  (dend == end_match_1)
5280 
5281 /* Call before fetching a character with *d.  This switches over to
5282    string2 if necessary.  */
5283 #define PREFETCH()							\
5284   while (d == dend)						    	\
5285     {									\
5286       /* End of string2 => fail.  */					\
5287       if (dend == end_match_2) 						\
5288         goto fail;							\
5289       /* End of string1 => advance to string2.  */ 			\
5290       d = string2;						        \
5291       dend = end_match_2;						\
5292     }
5293 
5294 /* Test if at very beginning or at very end of the virtual concatenation
5295    of `string1' and `string2'.  If only one string, it's `string2'.  */
5296 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5297 #define AT_STRINGS_END(d) ((d) == end2)
5298 
5299 
5300 /* Test if D points to a character which is word-constituent.  We have
5301    two special cases to check for: if past the end of string1, look at
5302    the first character in string2; and if before the beginning of
5303    string2, look at the last character in string1.  */
5304 #ifdef WCHAR
5305 /* Use internationalized API instead of SYNTAX.  */
5306 # define WORDCHAR_P(d)							\
5307   (iswalnum ((wint_t)((d) == end1 ? *string2				\
5308            : (d) == string2 - 1 ? *(end1 - 1) : *(d))) != 0		\
5309    || ((d) == end1 ? *string2						\
5310        : (d) == string2 - 1 ? *(end1 - 1) : *(d)) == L'_')
5311 #else /* BYTE */
5312 # define WORDCHAR_P(d)							\
5313   (SYNTAX ((d) == end1 ? *string2					\
5314            : (d) == string2 - 1 ? *(end1 - 1) : *(d))			\
5315    == Sword)
5316 #endif /* WCHAR */
5317 
5318 /* Disabled due to a compiler bug -- see comment at case wordbound */
5319 #if 0
5320 /* Test if the character before D and the one at D differ with respect
5321    to being word-constituent.  */
5322 #define AT_WORD_BOUNDARY(d)						\
5323   (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)				\
5324    || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
5325 #endif
5326 
5327 /* Free everything we malloc.  */
5328 #ifdef MATCH_MAY_ALLOCATE
5329 # ifdef WCHAR
5330 #  define FREE_VARIABLES()						\
5331   do {									\
5332     REGEX_FREE_STACK (fail_stack.stack);				\
5333     FREE_VAR (regstart);						\
5334     FREE_VAR (regend);							\
5335     FREE_VAR (old_regstart);						\
5336     FREE_VAR (old_regend);						\
5337     FREE_VAR (best_regstart);						\
5338     FREE_VAR (best_regend);						\
5339     FREE_VAR (reg_info);						\
5340     FREE_VAR (reg_dummy);						\
5341     FREE_VAR (reg_info_dummy);						\
5342     if (!cant_free_wcs_buf)						\
5343       {									\
5344         FREE_VAR (string1);						\
5345         FREE_VAR (string2);						\
5346         FREE_VAR (mbs_offset1);						\
5347         FREE_VAR (mbs_offset2);						\
5348       }									\
5349   } while (0)
5350 # else /* BYTE */
5351 #  define FREE_VARIABLES()						\
5352   do {									\
5353     REGEX_FREE_STACK (fail_stack.stack);				\
5354     FREE_VAR (regstart);						\
5355     FREE_VAR (regend);							\
5356     FREE_VAR (old_regstart);						\
5357     FREE_VAR (old_regend);						\
5358     FREE_VAR (best_regstart);						\
5359     FREE_VAR (best_regend);						\
5360     FREE_VAR (reg_info);						\
5361     FREE_VAR (reg_dummy);						\
5362     FREE_VAR (reg_info_dummy);						\
5363   } while (0)
5364 # endif /* WCHAR */
5365 #else
5366 # ifdef WCHAR
5367 #  define FREE_VARIABLES()						\
5368   do {									\
5369     if (!cant_free_wcs_buf)						\
5370       {									\
5371         FREE_VAR (string1);						\
5372         FREE_VAR (string2);						\
5373         FREE_VAR (mbs_offset1);						\
5374         FREE_VAR (mbs_offset2);						\
5375       }									\
5376   } while (0)
5377 # else /* BYTE */
5378 #  define FREE_VARIABLES() ((void)0) /* Do nothing!  But inhibit gcc warning. */
5379 # endif /* WCHAR */
5380 #endif /* not MATCH_MAY_ALLOCATE */
5381 
5382 /* These values must meet several constraints.  They must not be valid
5383    register values; since we have a limit of 255 registers (because
5384    we use only one byte in the pattern for the register number), we can
5385    use numbers larger than 255.  They must differ by 1, because of
5386    NUM_FAILURE_ITEMS above.  And the value for the lowest register must
5387    be larger than the value for the highest register, so we do not try
5388    to actually save any registers when none are active.  */
5389 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
5390 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
5391 
5392 #else /* not INSIDE_RECURSION */
5393 /* Matching routines.  */
5394 
5395 #ifndef emacs   /* Emacs never uses this.  */
5396 /* re_match is like re_match_2 except it takes only a single string.  */
5397 
5398 int
5399 re_match (struct re_pattern_buffer *bufp, const char *string,
5400           int size, int pos, struct re_registers *regs)
5401 {
5402   int result;
5403 # ifdef MBS_SUPPORT
5404   if (MB_CUR_MAX != 1)
5405     result = wcs_re_match_2_internal (bufp, NULL, 0, string, size,
5406 				      pos, regs, size,
5407 				      NULL, 0, NULL, 0, NULL, NULL);
5408   else
5409 # endif
5410     result = byte_re_match_2_internal (bufp, NULL, 0, string, size,
5411 				  pos, regs, size);
5412 # ifndef REGEX_MALLOC
5413 #  ifdef C_ALLOCA
5414   alloca (0);
5415 #  endif
5416 # endif
5417   return result;
5418 }
5419 # ifdef _LIBC
5420 weak_alias (__re_match, re_match)
5421 # endif
5422 #endif /* not emacs */
5423 
5424 #endif /* not INSIDE_RECURSION */
5425 
5426 #ifdef INSIDE_RECURSION
5427 static boolean PREFIX(group_match_null_string_p) (UCHAR_T **p,
5428                                                   UCHAR_T *end,
5429 					PREFIX(register_info_type) *reg_info);
5430 static boolean PREFIX(alt_match_null_string_p) (UCHAR_T *p,
5431                                                 UCHAR_T *end,
5432 					PREFIX(register_info_type) *reg_info);
5433 static boolean PREFIX(common_op_match_null_string_p) (UCHAR_T **p,
5434                                                       UCHAR_T *end,
5435 					PREFIX(register_info_type) *reg_info);
5436 static int PREFIX(bcmp_translate) (const CHAR_T *s1, const CHAR_T *s2,
5437                                    int len, char *translate);
5438 #else /* not INSIDE_RECURSION */
5439 
5440 /* re_match_2 matches the compiled pattern in BUFP against the
5441    the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
5442    and SIZE2, respectively).  We start matching at POS, and stop
5443    matching at STOP.
5444 
5445    If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
5446    store offsets for the substring each group matched in REGS.  See the
5447    documentation for exactly how many groups we fill.
5448 
5449    We return -1 if no match, -2 if an internal error (such as the
5450    failure stack overflowing).  Otherwise, we return the length of the
5451    matched substring.  */
5452 
5453 int
re_match_2(struct re_pattern_buffer * bufp,const char * string1,int size1,const char * string2,int size2,int pos,struct re_registers * regs,int stop)5454 re_match_2 (struct re_pattern_buffer *bufp, const char *string1, int size1,
5455             const char *string2, int size2, int pos,
5456             struct re_registers *regs, int stop)
5457 {
5458   int result;
5459 # ifdef MBS_SUPPORT
5460   if (MB_CUR_MAX != 1)
5461     result = wcs_re_match_2_internal (bufp, string1, size1, string2, size2,
5462 				      pos, regs, stop,
5463 				      NULL, 0, NULL, 0, NULL, NULL);
5464   else
5465 # endif
5466     result = byte_re_match_2_internal (bufp, string1, size1, string2, size2,
5467 				  pos, regs, stop);
5468 
5469 #ifndef REGEX_MALLOC
5470 # ifdef C_ALLOCA
5471   alloca (0);
5472 # endif
5473 #endif
5474   return result;
5475 }
5476 #ifdef _LIBC
5477 weak_alias (__re_match_2, re_match_2)
5478 #endif
5479 
5480 #endif /* not INSIDE_RECURSION */
5481 
5482 #ifdef INSIDE_RECURSION
5483 
5484 #ifdef WCHAR
5485 static int count_mbs_length (int *, int);
5486 
5487 /* This check the substring (from 0, to length) of the multibyte string,
5488    to which offset_buffer correspond. And count how many wchar_t_characters
5489    the substring occupy. We use offset_buffer to optimization.
5490    See convert_mbs_to_wcs.  */
5491 
5492 static int
count_mbs_length(int * offset_buffer,int length)5493 count_mbs_length(int *offset_buffer, int length)
5494 {
5495   int upper, lower;
5496 
5497   /* Check whether the size is valid.  */
5498   if (length < 0)
5499     return -1;
5500 
5501   if (offset_buffer == NULL)
5502     return 0;
5503 
5504   /* If there are no multibyte character, offset_buffer[i] == i.
5505    Optmize for this case.  */
5506   if (offset_buffer[length] == length)
5507     return length;
5508 
5509   /* Set up upper with length. (because for all i, offset_buffer[i] >= i)  */
5510   upper = length;
5511   lower = 0;
5512 
5513   while (true)
5514     {
5515       int middle = (lower + upper) / 2;
5516       if (middle == lower || middle == upper)
5517 	break;
5518       if (offset_buffer[middle] > length)
5519 	upper = middle;
5520       else if (offset_buffer[middle] < length)
5521 	lower = middle;
5522       else
5523 	return middle;
5524     }
5525 
5526   return -1;
5527 }
5528 #endif /* WCHAR */
5529 
5530 /* This is a separate function so that we can force an alloca cleanup
5531    afterwards.  */
5532 #ifdef WCHAR
5533 static int
wcs_re_match_2_internal(struct re_pattern_buffer * bufp,const char * cstring1,int csize1,const char * cstring2,int csize2,int pos,struct re_registers * regs,int stop,wchar_t * string1,int size1,wchar_t * string2,int size2,int * mbs_offset1,int * mbs_offset2)5534 wcs_re_match_2_internal (struct re_pattern_buffer *bufp,
5535                          const char *cstring1, int csize1,
5536                          const char *cstring2, int csize2,
5537                          int pos,
5538 			 struct re_registers *regs,
5539                          int stop,
5540      /* string1 == string2 == NULL means string1/2, size1/2 and
5541 	mbs_offset1/2 need seting up in this function.  */
5542      /* We need wchar_t* buffers correspond to cstring1, cstring2.  */
5543                          wchar_t *string1, int size1,
5544                          wchar_t *string2, int size2,
5545      /* offset buffer for optimizatoin. See convert_mbs_to_wc.  */
5546 			 int *mbs_offset1, int *mbs_offset2)
5547 #else /* BYTE */
5548 static int
5549 byte_re_match_2_internal (struct re_pattern_buffer *bufp,
5550                           const char *string1, int size1,
5551                           const char *string2, int size2,
5552                           int pos,
5553 			  struct re_registers *regs, int stop)
5554 #endif /* BYTE */
5555 {
5556   /* General temporaries.  */
5557   int mcnt;
5558   UCHAR_T *p1;
5559 #ifdef WCHAR
5560   /* They hold whether each wchar_t is binary data or not.  */
5561   char *is_binary = NULL;
5562   /* If true, we can't free string1/2, mbs_offset1/2.  */
5563   int cant_free_wcs_buf = 1;
5564 #endif /* WCHAR */
5565 
5566   /* Just past the end of the corresponding string.  */
5567   const CHAR_T *end1, *end2;
5568 
5569   /* Pointers into string1 and string2, just past the last characters in
5570      each to consider matching.  */
5571   const CHAR_T *end_match_1, *end_match_2;
5572 
5573   /* Where we are in the data, and the end of the current string.  */
5574   const CHAR_T *d, *dend;
5575 
5576   /* Where we are in the pattern, and the end of the pattern.  */
5577 #ifdef WCHAR
5578   UCHAR_T *pattern, *p;
5579   register UCHAR_T *pend;
5580 #else /* BYTE */
5581   UCHAR_T *p = bufp->buffer;
5582   register UCHAR_T *pend = p + bufp->used;
5583 #endif /* WCHAR */
5584 
5585   /* Mark the opcode just after a start_memory, so we can test for an
5586      empty subpattern when we get to the stop_memory.  */
5587   UCHAR_T *just_past_start_mem = 0;
5588 
5589   /* We use this to map every character in the string.  */
5590   RE_TRANSLATE_TYPE translate = bufp->translate;
5591 
5592   /* Failure point stack.  Each place that can handle a failure further
5593      down the line pushes a failure point on this stack.  It consists of
5594      restart, regend, and reg_info for all registers corresponding to
5595      the subexpressions we're currently inside, plus the number of such
5596      registers, and, finally, two char *'s.  The first char * is where
5597      to resume scanning the pattern; the second one is where to resume
5598      scanning the strings.  If the latter is zero, the failure point is
5599      a ``dummy''; if a failure happens and the failure point is a dummy,
5600      it gets discarded and the next next one is tried.  */
5601 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
5602   PREFIX(fail_stack_type) fail_stack;
5603 #endif
5604 #ifdef DEBUG
5605   static unsigned failure_id;
5606   unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
5607 #endif
5608 
5609 #ifdef REL_ALLOC
5610   /* This holds the pointer to the failure stack, when
5611      it is allocated relocatably.  */
5612   fail_stack_elt_t *failure_stack_ptr;
5613 #endif
5614 
5615   /* We fill all the registers internally, independent of what we
5616      return, for use in backreferences.  The number here includes
5617      an element for register zero.  */
5618   size_t num_regs = bufp->re_nsub + 1;
5619 
5620   /* The currently active registers.  */
5621   active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
5622   active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
5623 
5624   /* Information on the contents of registers. These are pointers into
5625      the input strings; they record just what was matched (on this
5626      attempt) by a subexpression part of the pattern, that is, the
5627      regnum-th regstart pointer points to where in the pattern we began
5628      matching and the regnum-th regend points to right after where we
5629      stopped matching the regnum-th subexpression.  (The zeroth register
5630      keeps track of what the whole pattern matches.)  */
5631 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5632   const CHAR_T **regstart, **regend;
5633 #endif
5634 
5635   /* If a group that's operated upon by a repetition operator fails to
5636      match anything, then the register for its start will need to be
5637      restored because it will have been set to wherever in the string we
5638      are when we last see its open-group operator.  Similarly for a
5639      register's end.  */
5640 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5641   const CHAR_T **old_regstart, **old_regend;
5642 #endif
5643 
5644   /* The is_active field of reg_info helps us keep track of which (possibly
5645      nested) subexpressions we are currently in. The matched_something
5646      field of reg_info[reg_num] helps us tell whether or not we have
5647      matched any of the pattern so far this time through the reg_num-th
5648      subexpression.  These two fields get reset each time through any
5649      loop their register is in.  */
5650 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
5651   PREFIX(register_info_type) *reg_info;
5652 #endif
5653 
5654   /* The following record the register info as found in the above
5655      variables when we find a match better than any we've seen before.
5656      This happens as we backtrack through the failure points, which in
5657      turn happens only if we have not yet matched the entire string. */
5658   unsigned best_regs_set = false;
5659 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5660   const CHAR_T **best_regstart, **best_regend;
5661 #endif
5662 
5663   /* Logically, this is `best_regend[0]'.  But we don't want to have to
5664      allocate space for that if we're not allocating space for anything
5665      else (see below).  Also, we never need info about register 0 for
5666      any of the other register vectors, and it seems rather a kludge to
5667      treat `best_regend' differently than the rest.  So we keep track of
5668      the end of the best match so far in a separate variable.  We
5669      initialize this to NULL so that when we backtrack the first time
5670      and need to test it, it's not garbage.  */
5671   const CHAR_T *match_end = NULL;
5672 
5673   /* This helps SET_REGS_MATCHED avoid doing redundant work.  */
5674   int set_regs_matched_done = 0;
5675 
5676   /* Used when we pop values we don't care about.  */
5677 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5678   const CHAR_T **reg_dummy;
5679   PREFIX(register_info_type) *reg_info_dummy;
5680 #endif
5681 
5682 #ifdef DEBUG
5683   /* Counts the total number of registers pushed.  */
5684   unsigned num_regs_pushed = 0;
5685 #endif
5686 
5687   DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5688 
5689   INIT_FAIL_STACK ();
5690 
5691 #ifdef MATCH_MAY_ALLOCATE
5692   /* Do not bother to initialize all the register variables if there are
5693      no groups in the pattern, as it takes a fair amount of time.  If
5694      there are groups, we include space for register 0 (the whole
5695      pattern), even though we never use it, since it simplifies the
5696      array indexing.  We should fix this.  */
5697   if (bufp->re_nsub)
5698     {
5699       regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5700       regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5701       old_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5702       old_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5703       best_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5704       best_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5705       reg_info = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
5706       reg_dummy = REGEX_TALLOC (num_regs, const CHAR_T *);
5707       reg_info_dummy = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
5708 
5709       if (!(regstart && regend && old_regstart && old_regend && reg_info
5710             && best_regstart && best_regend && reg_dummy && reg_info_dummy))
5711         {
5712           FREE_VARIABLES ();
5713           return -2;
5714         }
5715     }
5716   else
5717     {
5718       /* We must initialize all our variables to NULL, so that
5719          `FREE_VARIABLES' doesn't try to free them.  */
5720       regstart = regend = old_regstart = old_regend = best_regstart
5721         = best_regend = reg_dummy = NULL;
5722       reg_info = reg_info_dummy = (PREFIX(register_info_type) *) NULL;
5723     }
5724 #endif /* MATCH_MAY_ALLOCATE */
5725 
5726   /* The starting position is bogus.  */
5727 #ifdef WCHAR
5728   if (pos < 0 || pos > csize1 + csize2)
5729 #else /* BYTE */
5730   if (pos < 0 || pos > size1 + size2)
5731 #endif
5732     {
5733       FREE_VARIABLES ();
5734       return -1;
5735     }
5736 
5737 #ifdef WCHAR
5738   /* Allocate wchar_t array for string1 and string2 and
5739      fill them with converted string.  */
5740   if (string1 == NULL && string2 == NULL)
5741     {
5742       /* We need seting up buffers here.  */
5743 
5744       /* We must free wcs buffers in this function.  */
5745       cant_free_wcs_buf = 0;
5746 
5747       if (csize1 != 0)
5748 	{
5749 	  string1 = REGEX_TALLOC (csize1 + 1, CHAR_T);
5750 	  mbs_offset1 = REGEX_TALLOC (csize1 + 1, int);
5751 	  is_binary = REGEX_TALLOC (csize1 + 1, char);
5752 	  if (!string1 || !mbs_offset1 || !is_binary)
5753 	    {
5754 	      FREE_VAR (string1);
5755 	      FREE_VAR (mbs_offset1);
5756 	      FREE_VAR (is_binary);
5757 	      return -2;
5758 	    }
5759 	}
5760       if (csize2 != 0)
5761 	{
5762 	  string2 = REGEX_TALLOC (csize2 + 1, CHAR_T);
5763 	  mbs_offset2 = REGEX_TALLOC (csize2 + 1, int);
5764 	  is_binary = REGEX_TALLOC (csize2 + 1, char);
5765 	  if (!string2 || !mbs_offset2 || !is_binary)
5766 	    {
5767 	      FREE_VAR (string1);
5768 	      FREE_VAR (mbs_offset1);
5769 	      FREE_VAR (string2);
5770 	      FREE_VAR (mbs_offset2);
5771 	      FREE_VAR (is_binary);
5772 	      return -2;
5773 	    }
5774 	  size2 = convert_mbs_to_wcs(string2, cstring2, csize2,
5775 				     mbs_offset2, is_binary);
5776 	  string2[size2] = L'\0'; /* for a sentinel  */
5777 	  FREE_VAR (is_binary);
5778 	}
5779     }
5780 
5781   /* We need to cast pattern to (wchar_t*), because we casted this compiled
5782      pattern to (char*) in regex_compile.  */
5783   p = pattern = (CHAR_T*)bufp->buffer;
5784   pend = (CHAR_T*)(bufp->buffer + bufp->used);
5785 
5786 #endif /* WCHAR */
5787 
5788   /* Initialize subexpression text positions to -1 to mark ones that no
5789      start_memory/stop_memory has been seen for. Also initialize the
5790      register information struct.  */
5791   for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5792     {
5793       regstart[mcnt] = regend[mcnt]
5794         = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
5795 
5796       REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
5797       IS_ACTIVE (reg_info[mcnt]) = 0;
5798       MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5799       EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5800     }
5801 
5802   /* We move `string1' into `string2' if the latter's empty -- but not if
5803      `string1' is null.  */
5804   if (size2 == 0 && string1 != NULL)
5805     {
5806       string2 = string1;
5807       size2 = size1;
5808       string1 = 0;
5809       size1 = 0;
5810 #ifdef WCHAR
5811       mbs_offset2 = mbs_offset1;
5812       csize2 = csize1;
5813       mbs_offset1 = NULL;
5814       csize1 = 0;
5815 #endif
5816     }
5817   end1 = string1 + size1;
5818   end2 = string2 + size2;
5819 
5820   /* Compute where to stop matching, within the two strings.  */
5821 #ifdef WCHAR
5822   if (stop <= csize1)
5823     {
5824       mcnt = count_mbs_length(mbs_offset1, stop);
5825       end_match_1 = string1 + mcnt;
5826       end_match_2 = string2;
5827     }
5828   else
5829     {
5830       if (stop > csize1 + csize2)
5831 	stop = csize1 + csize2;
5832       end_match_1 = end1;
5833       mcnt = count_mbs_length(mbs_offset2, stop-csize1);
5834       end_match_2 = string2 + mcnt;
5835     }
5836   if (mcnt < 0)
5837     { /* count_mbs_length return error.  */
5838       FREE_VARIABLES ();
5839       return -1;
5840     }
5841 #else
5842   if (stop <= size1)
5843     {
5844       end_match_1 = string1 + stop;
5845       end_match_2 = string2;
5846     }
5847   else
5848     {
5849       end_match_1 = end1;
5850       end_match_2 = string2 + stop - size1;
5851     }
5852 #endif /* WCHAR */
5853 
5854   /* `p' scans through the pattern as `d' scans through the data.
5855      `dend' is the end of the input string that `d' points within.  `d'
5856      is advanced into the following input string whenever necessary, but
5857      this happens before fetching; therefore, at the beginning of the
5858      loop, `d' can be pointing at the end of a string, but it cannot
5859      equal `string2'.  */
5860 #ifdef WCHAR
5861   if (size1 > 0 && pos <= csize1)
5862     {
5863       mcnt = count_mbs_length(mbs_offset1, pos);
5864       d = string1 + mcnt;
5865       dend = end_match_1;
5866     }
5867   else
5868     {
5869       mcnt = count_mbs_length(mbs_offset2, pos-csize1);
5870       d = string2 + mcnt;
5871       dend = end_match_2;
5872     }
5873 
5874   if (mcnt < 0)
5875     { /* count_mbs_length return error.  */
5876       FREE_VARIABLES ();
5877       return -1;
5878     }
5879 #else
5880   if (size1 > 0 && pos <= size1)
5881     {
5882       d = string1 + pos;
5883       dend = end_match_1;
5884     }
5885   else
5886     {
5887       d = string2 + pos - size1;
5888       dend = end_match_2;
5889     }
5890 #endif /* WCHAR */
5891 
5892   DEBUG_PRINT1 ("The compiled pattern is:\n");
5893   DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5894   DEBUG_PRINT1 ("The string to match is: `");
5895   DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5896   DEBUG_PRINT1 ("'\n");
5897 
5898   /* This loops over pattern commands.  It exits by returning from the
5899      function if the match is complete, or it drops through if the match
5900      fails at this starting point in the input data.  */
5901   for (;;)
5902     {
5903 #ifdef _LIBC
5904       DEBUG_PRINT2 ("\n%p: ", p);
5905 #else
5906       DEBUG_PRINT2 ("\n0x%x: ", p);
5907 #endif
5908 
5909       if (p == pend)
5910 	{ /* End of pattern means we might have succeeded.  */
5911           DEBUG_PRINT1 ("end of pattern ... ");
5912 
5913 	  /* If we haven't matched the entire string, and we want the
5914              longest match, try backtracking.  */
5915           if (d != end_match_2)
5916 	    {
5917 	      /* 1 if this match ends in the same string (string1 or string2)
5918 		 as the best previous match.  */
5919 	      boolean same_str_p;
5920 
5921 	      /* 1 if this match is the best seen so far.  */
5922 	      boolean best_match_p;
5923 
5924               same_str_p = (FIRST_STRING_P (match_end)
5925                             == MATCHING_IN_FIRST_STRING);
5926 
5927 	      /* AIX compiler got confused when this was combined
5928 		 with the previous declaration.  */
5929 	      if (same_str_p)
5930 		best_match_p = d > match_end;
5931 	      else
5932 		best_match_p = !MATCHING_IN_FIRST_STRING;
5933 
5934               DEBUG_PRINT1 ("backtracking.\n");
5935 
5936               if (!FAIL_STACK_EMPTY ())
5937                 { /* More failure points to try.  */
5938 
5939                   /* If exceeds best match so far, save it.  */
5940                   if (!best_regs_set || best_match_p)
5941                     {
5942                       best_regs_set = true;
5943                       match_end = d;
5944 
5945                       DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5946 
5947                       for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5948                         {
5949                           best_regstart[mcnt] = regstart[mcnt];
5950                           best_regend[mcnt] = regend[mcnt];
5951                         }
5952                     }
5953                   goto fail;
5954                 }
5955 
5956               /* If no failure points, don't restore garbage.  And if
5957                  last match is real best match, don't restore second
5958                  best one. */
5959               else if (best_regs_set && !best_match_p)
5960                 {
5961   	        restore_best_regs:
5962                   /* Restore best match.  It may happen that `dend ==
5963                      end_match_1' while the restored d is in string2.
5964                      For example, the pattern `x.*y.*z' against the
5965                      strings `x-' and `y-z-', if the two strings are
5966                      not consecutive in memory.  */
5967                   DEBUG_PRINT1 ("Restoring best registers.\n");
5968 
5969                   d = match_end;
5970                   dend = ((d >= string1 && d <= end1)
5971 		           ? end_match_1 : end_match_2);
5972 
5973 		  for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5974 		    {
5975 		      regstart[mcnt] = best_regstart[mcnt];
5976 		      regend[mcnt] = best_regend[mcnt];
5977 		    }
5978                 }
5979             } /* d != end_match_2 */
5980 
5981 	succeed_label:
5982           DEBUG_PRINT1 ("Accepting match.\n");
5983           /* If caller wants register contents data back, do it.  */
5984           if (regs && !bufp->no_sub)
5985 	    {
5986 	      /* Have the register data arrays been allocated?  */
5987               if (bufp->regs_allocated == REGS_UNALLOCATED)
5988                 { /* No.  So allocate them with malloc.  We need one
5989                      extra element beyond `num_regs' for the `-1' marker
5990                      GNU code uses.  */
5991                   regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5992                   regs->start = TALLOC (regs->num_regs, regoff_t);
5993                   regs->end = TALLOC (regs->num_regs, regoff_t);
5994                   if (regs->start == NULL || regs->end == NULL)
5995 		    {
5996 		      FREE_VARIABLES ();
5997 		      return -2;
5998 		    }
5999                   bufp->regs_allocated = REGS_REALLOCATE;
6000                 }
6001               else if (bufp->regs_allocated == REGS_REALLOCATE)
6002                 { /* Yes.  If we need more elements than were already
6003                      allocated, reallocate them.  If we need fewer, just
6004                      leave it alone.  */
6005                   if (regs->num_regs < num_regs + 1)
6006                     {
6007                       regs->num_regs = num_regs + 1;
6008                       RETALLOC (regs->start, regs->num_regs, regoff_t);
6009                       RETALLOC (regs->end, regs->num_regs, regoff_t);
6010                       if (regs->start == NULL || regs->end == NULL)
6011 			{
6012 			  FREE_VARIABLES ();
6013 			  return -2;
6014 			}
6015                     }
6016                 }
6017               else
6018 		{
6019 		  /* These braces fend off a "empty body in an else-statement"
6020 		     warning under GCC when assert expands to nothing.  */
6021 		  assert (bufp->regs_allocated == REGS_FIXED);
6022 		}
6023 
6024               /* Convert the pointer data in `regstart' and `regend' to
6025                  indices.  Register zero has to be set differently,
6026                  since we haven't kept track of any info for it.  */
6027               if (regs->num_regs > 0)
6028                 {
6029                   regs->start[0] = pos;
6030 #ifdef WCHAR
6031 		  if (MATCHING_IN_FIRST_STRING)
6032 		    regs->end[0] = mbs_offset1 != NULL ?
6033 					mbs_offset1[d-string1] : 0;
6034 		  else
6035 		    regs->end[0] = csize1 + (mbs_offset2 != NULL ?
6036 					     mbs_offset2[d-string2] : 0);
6037 #else
6038                   regs->end[0] = (MATCHING_IN_FIRST_STRING
6039 				  ? ((regoff_t) (d - string1))
6040 			          : ((regoff_t) (d - string2 + size1)));
6041 #endif /* WCHAR */
6042                 }
6043 
6044               /* Go through the first `min (num_regs, regs->num_regs)'
6045                  registers, since that is all we initialized.  */
6046 	      for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
6047 		   mcnt++)
6048 		{
6049                   if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
6050                     regs->start[mcnt] = regs->end[mcnt] = -1;
6051                   else
6052                     {
6053 		      regs->start[mcnt]
6054 			= (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
6055                       regs->end[mcnt]
6056 			= (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
6057                     }
6058 		}
6059 
6060               /* If the regs structure we return has more elements than
6061                  were in the pattern, set the extra elements to -1.  If
6062                  we (re)allocated the registers, this is the case,
6063                  because we always allocate enough to have at least one
6064                  -1 at the end.  */
6065               for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
6066                 regs->start[mcnt] = regs->end[mcnt] = -1;
6067 	    } /* regs && !bufp->no_sub */
6068 
6069           DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
6070                         nfailure_points_pushed, nfailure_points_popped,
6071                         nfailure_points_pushed - nfailure_points_popped);
6072           DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
6073 
6074 #ifdef WCHAR
6075 	  if (MATCHING_IN_FIRST_STRING)
6076 	    mcnt = mbs_offset1 != NULL ? mbs_offset1[d-string1] : 0;
6077 	  else
6078 	    mcnt = (mbs_offset2 != NULL ? mbs_offset2[d-string2] : 0) +
6079 			csize1;
6080           mcnt -= pos;
6081 #else
6082           mcnt = d - pos - (MATCHING_IN_FIRST_STRING
6083 			    ? string1
6084 			    : string2 - size1);
6085 #endif /* WCHAR */
6086 
6087           DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
6088 
6089           FREE_VARIABLES ();
6090           return mcnt;
6091         }
6092 
6093       /* Otherwise match next pattern command.  */
6094       switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
6095 	{
6096         /* Ignore these.  Used to ignore the n of succeed_n's which
6097            currently have n == 0.  */
6098         case no_op:
6099           DEBUG_PRINT1 ("EXECUTING no_op.\n");
6100           break;
6101 
6102 	case succeed:
6103           DEBUG_PRINT1 ("EXECUTING succeed.\n");
6104 	  goto succeed_label;
6105 
6106         /* Match the next n pattern characters exactly.  The following
6107            byte in the pattern defines n, and the n bytes after that
6108            are the characters to match.  */
6109 	case exactn:
6110 #ifdef MBS_SUPPORT
6111 	case exactn_bin:
6112 #endif
6113 	  mcnt = *p++;
6114           DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
6115 
6116           /* This is written out as an if-else so we don't waste time
6117              testing `translate' inside the loop.  */
6118           if (translate)
6119 	    {
6120 	      do
6121 		{
6122 		  PREFETCH ();
6123 #ifdef WCHAR
6124 		  if (*d <= 0xff)
6125 		    {
6126 		      if ((UCHAR_T) translate[(unsigned char) *d++]
6127 			  != (UCHAR_T) *p++)
6128 			goto fail;
6129 		    }
6130 		  else
6131 		    {
6132 		      if (*d++ != (CHAR_T) *p++)
6133 			goto fail;
6134 		    }
6135 #else
6136 		  if ((UCHAR_T) translate[(unsigned char) *d++]
6137 		      != (UCHAR_T) *p++)
6138                     goto fail;
6139 #endif /* WCHAR */
6140 		}
6141 	      while (--mcnt);
6142 	    }
6143 	  else
6144 	    {
6145 	      do
6146 		{
6147 		  PREFETCH ();
6148 		  if (*d++ != (CHAR_T) *p++) goto fail;
6149 		}
6150 	      while (--mcnt);
6151 	    }
6152 	  SET_REGS_MATCHED ();
6153           break;
6154 
6155 
6156         /* Match any character except possibly a newline or a null.  */
6157 	case anychar:
6158           DEBUG_PRINT1 ("EXECUTING anychar.\n");
6159 
6160           PREFETCH ();
6161 
6162           if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
6163               || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
6164 	    goto fail;
6165 
6166           SET_REGS_MATCHED ();
6167           DEBUG_PRINT2 ("  Matched `%ld'.\n", (long int) *d);
6168           d++;
6169 	  break;
6170 
6171 
6172 	case charset:
6173 	case charset_not:
6174 	  {
6175 	    register UCHAR_T c;
6176 #ifdef WCHAR
6177 	    unsigned int i, char_class_length, coll_symbol_length,
6178               equiv_class_length, ranges_length, chars_length, length;
6179 	    CHAR_T *workp, *workp2, *charset_top;
6180 #define WORK_BUFFER_SIZE 128
6181             CHAR_T str_buf[WORK_BUFFER_SIZE];
6182 # ifdef _LIBC
6183 	    uint32_t nrules;
6184 # endif /* _LIBC */
6185 #endif /* WCHAR */
6186 	    boolean negate = (re_opcode_t) *(p - 1) == charset_not;
6187 
6188             DEBUG_PRINT2 ("EXECUTING charset%s.\n", negate ? "_not" : "");
6189 	    PREFETCH ();
6190 	    c = TRANSLATE (*d); /* The character to match.  */
6191 #ifdef WCHAR
6192 # ifdef _LIBC
6193 	    nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
6194 # endif /* _LIBC */
6195 	    charset_top = p - 1;
6196 	    char_class_length = *p++;
6197 	    coll_symbol_length = *p++;
6198 	    equiv_class_length = *p++;
6199 	    ranges_length = *p++;
6200 	    chars_length = *p++;
6201 	    /* p points charset[6], so the address of the next instruction
6202 	       (charset[l+m+n+2o+k+p']) equals p[l+m+n+2*o+p'],
6203 	       where l=length of char_classes, m=length of collating_symbol,
6204 	       n=equivalence_class, o=length of char_range,
6205 	       p'=length of character.  */
6206 	    workp = p;
6207 	    /* Update p to indicate the next instruction.  */
6208 	    p += char_class_length + coll_symbol_length+ equiv_class_length +
6209               2*ranges_length + chars_length;
6210 
6211             /* match with char_class?  */
6212 	    for (i = 0; i < char_class_length ; i += CHAR_CLASS_SIZE)
6213 	      {
6214 		wctype_t wctype;
6215 		uintptr_t alignedp = ((uintptr_t)workp
6216 				      + __alignof__(wctype_t) - 1)
6217 		  		      & ~(uintptr_t)(__alignof__(wctype_t) - 1);
6218 		wctype = *((wctype_t*)alignedp);
6219 		workp += CHAR_CLASS_SIZE;
6220 # ifdef _LIBC
6221 		if (__iswctype((wint_t)c, wctype))
6222 		  goto char_set_matched;
6223 # else
6224 		if (iswctype((wint_t)c, wctype))
6225 		  goto char_set_matched;
6226 # endif
6227 	      }
6228 
6229             /* match with collating_symbol?  */
6230 # ifdef _LIBC
6231 	    if (nrules != 0)
6232 	      {
6233 		const unsigned char *extra = (const unsigned char *)
6234 		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
6235 
6236 		for (workp2 = workp + coll_symbol_length ; workp < workp2 ;
6237 		     workp++)
6238 		  {
6239 		    int32_t *wextra;
6240 		    wextra = (int32_t*)(extra + *workp++);
6241 		    for (i = 0; i < *wextra; ++i)
6242 		      if (TRANSLATE(d[i]) != wextra[1 + i])
6243 			break;
6244 
6245 		    if (i == *wextra)
6246 		      {
6247 			/* Update d, however d will be incremented at
6248 			   char_set_matched:, we decrement d here.  */
6249 			d += i - 1;
6250 			goto char_set_matched;
6251 		      }
6252 		  }
6253 	      }
6254 	    else /* (nrules == 0) */
6255 # endif
6256 	      /* If we can't look up collation data, we use wcscoll
6257 		 instead.  */
6258 	      {
6259 		for (workp2 = workp + coll_symbol_length ; workp < workp2 ;)
6260 		  {
6261 		    const CHAR_T *backup_d = d, *backup_dend = dend;
6262 # ifdef _LIBC
6263 		    length = __wcslen (workp);
6264 # else
6265 		    length = wcslen (workp);
6266 # endif
6267 
6268 		    /* If wcscoll(the collating symbol, whole string) > 0,
6269 		       any substring of the string never match with the
6270 		       collating symbol.  */
6271 # ifdef _LIBC
6272 		    if (__wcscoll (workp, d) > 0)
6273 # else
6274 		    if (wcscoll (workp, d) > 0)
6275 # endif
6276 		      {
6277 			workp += length + 1;
6278 			continue;
6279 		      }
6280 
6281 		    /* First, we compare the collating symbol with
6282 		       the first character of the string.
6283 		       If it don't match, we add the next character to
6284 		       the compare buffer in turn.  */
6285 		    for (i = 0 ; i < WORK_BUFFER_SIZE-1 ; i++, d++)
6286 		      {
6287 			int match;
6288 			if (d == dend)
6289 			  {
6290 			    if (dend == end_match_2)
6291 			      break;
6292 			    d = string2;
6293 			    dend = end_match_2;
6294 			  }
6295 
6296 			/* add next character to the compare buffer.  */
6297 			str_buf[i] = TRANSLATE(*d);
6298 			str_buf[i+1] = '\0';
6299 
6300 # ifdef _LIBC
6301 			match = __wcscoll (workp, str_buf);
6302 # else
6303 			match = wcscoll (workp, str_buf);
6304 # endif
6305 			if (match == 0)
6306 			  goto char_set_matched;
6307 
6308 			if (match < 0)
6309 			  /* (str_buf > workp) indicate (str_buf + X > workp),
6310 			     because for all X (str_buf + X > str_buf).
6311 			     So we don't need continue this loop.  */
6312 			  break;
6313 
6314 			/* Otherwise(str_buf < workp),
6315 			   (str_buf+next_character) may equals (workp).
6316 			   So we continue this loop.  */
6317 		      }
6318 		    /* not matched */
6319 		    d = backup_d;
6320 		    dend = backup_dend;
6321 		    workp += length + 1;
6322 		  }
6323               }
6324             /* match with equivalence_class?  */
6325 # ifdef _LIBC
6326 	    if (nrules != 0)
6327 	      {
6328                 const CHAR_T *backup_d = d, *backup_dend = dend;
6329 		/* Try to match the equivalence class against
6330 		   those known to the collate implementation.  */
6331 		const int32_t *table;
6332 		const int32_t *weights;
6333 		const int32_t *extra;
6334 		const int32_t *indirect;
6335 		int32_t idx, idx2;
6336 		wint_t *cp;
6337 		size_t len;
6338 
6339 		/* This #include defines a local function!  */
6340 #  include <locale/weightwc.h>
6341 
6342 		table = (const int32_t *)
6343 		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEWC);
6344 		weights = (const wint_t *)
6345 		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTWC);
6346 		extra = (const wint_t *)
6347 		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAWC);
6348 		indirect = (const int32_t *)
6349 		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTWC);
6350 
6351 		/* Write 1 collating element to str_buf, and
6352 		   get its index.  */
6353 		idx2 = 0;
6354 
6355 		for (i = 0 ; idx2 == 0 && i < WORK_BUFFER_SIZE - 1; i++)
6356 		  {
6357 		    cp = (wint_t*)str_buf;
6358 		    if (d == dend)
6359 		      {
6360 			if (dend == end_match_2)
6361 			  break;
6362 			d = string2;
6363 			dend = end_match_2;
6364 		      }
6365 		    str_buf[i] = TRANSLATE(*(d+i));
6366 		    str_buf[i+1] = '\0'; /* sentinel */
6367 		    idx2 = findidx ((const wint_t**)&cp);
6368 		  }
6369 
6370 		/* Update d, however d will be incremented at
6371 		   char_set_matched:, we decrement d here.  */
6372 		d = backup_d + ((wchar_t*)cp - (wchar_t*)str_buf - 1);
6373 		if (d >= dend)
6374 		  {
6375 		    if (dend == end_match_2)
6376 			d = dend;
6377 		    else
6378 		      {
6379 			d = string2;
6380 			dend = end_match_2;
6381 		      }
6382 		  }
6383 
6384 		len = weights[idx2];
6385 
6386 		for (workp2 = workp + equiv_class_length ; workp < workp2 ;
6387 		     workp++)
6388 		  {
6389 		    idx = (int32_t)*workp;
6390 		    /* We already checked idx != 0 in regex_compile. */
6391 
6392 		    if (idx2 != 0 && len == weights[idx])
6393 		      {
6394 			int cnt = 0;
6395 			while (cnt < len && (weights[idx + 1 + cnt]
6396 					     == weights[idx2 + 1 + cnt]))
6397 			  ++cnt;
6398 
6399 			if (cnt == len)
6400 			  goto char_set_matched;
6401 		      }
6402 		  }
6403 		/* not matched */
6404                 d = backup_d;
6405                 dend = backup_dend;
6406 	      }
6407 	    else /* (nrules == 0) */
6408 # endif
6409 	      /* If we can't look up collation data, we use wcscoll
6410 		 instead.  */
6411 	      {
6412 		for (workp2 = workp + equiv_class_length ; workp < workp2 ;)
6413 		  {
6414 		    const CHAR_T *backup_d = d, *backup_dend = dend;
6415 # ifdef _LIBC
6416 		    length = __wcslen (workp);
6417 # else
6418 		    length = wcslen (workp);
6419 # endif
6420 
6421 		    /* If wcscoll(the collating symbol, whole string) > 0,
6422 		       any substring of the string never match with the
6423 		       collating symbol.  */
6424 # ifdef _LIBC
6425 		    if (__wcscoll (workp, d) > 0)
6426 # else
6427 		    if (wcscoll (workp, d) > 0)
6428 # endif
6429 		      {
6430 			workp += length + 1;
6431 			break;
6432 		      }
6433 
6434 		    /* First, we compare the equivalence class with
6435 		       the first character of the string.
6436 		       If it don't match, we add the next character to
6437 		       the compare buffer in turn.  */
6438 		    for (i = 0 ; i < WORK_BUFFER_SIZE - 1 ; i++, d++)
6439 		      {
6440 			int match;
6441 			if (d == dend)
6442 			  {
6443 			    if (dend == end_match_2)
6444 			      break;
6445 			    d = string2;
6446 			    dend = end_match_2;
6447 			  }
6448 
6449 			/* add next character to the compare buffer.  */
6450 			str_buf[i] = TRANSLATE(*d);
6451 			str_buf[i+1] = '\0';
6452 
6453 # ifdef _LIBC
6454 			match = __wcscoll (workp, str_buf);
6455 # else
6456 			match = wcscoll (workp, str_buf);
6457 # endif
6458 
6459 			if (match == 0)
6460 			  goto char_set_matched;
6461 
6462 			if (match < 0)
6463 			/* (str_buf > workp) indicate (str_buf + X > workp),
6464 			   because for all X (str_buf + X > str_buf).
6465 			   So we don't need continue this loop.  */
6466 			  break;
6467 
6468 			/* Otherwise(str_buf < workp),
6469 			   (str_buf+next_character) may equals (workp).
6470 			   So we continue this loop.  */
6471 		      }
6472 		    /* not matched */
6473 		    d = backup_d;
6474 		    dend = backup_dend;
6475 		    workp += length + 1;
6476 		  }
6477 	      }
6478 
6479             /* match with char_range?  */
6480 # ifdef _LIBC
6481 	    if (nrules != 0)
6482 	      {
6483 		uint32_t collseqval;
6484 		const char *collseq = (const char *)
6485 		  _NL_CURRENT(LC_COLLATE, _NL_COLLATE_COLLSEQWC);
6486 
6487 		collseqval = collseq_table_lookup (collseq, c);
6488 
6489 		for (; workp < p - chars_length ;)
6490 		  {
6491 		    uint32_t start_val, end_val;
6492 
6493 		    /* We already compute the collation sequence value
6494 		       of the characters (or collating symbols).  */
6495 		    start_val = (uint32_t) *workp++; /* range_start */
6496 		    end_val = (uint32_t) *workp++; /* range_end */
6497 
6498 		    if (start_val <= collseqval && collseqval <= end_val)
6499 		      goto char_set_matched;
6500 		  }
6501 	      }
6502 	    else
6503 # endif
6504 	      {
6505 		/* We set range_start_char at str_buf[0], range_end_char
6506 		   at str_buf[4], and compared char at str_buf[2].  */
6507 		str_buf[1] = 0;
6508 		str_buf[2] = c;
6509 		str_buf[3] = 0;
6510 		str_buf[5] = 0;
6511 		for (; workp < p - chars_length ;)
6512 		  {
6513 		    wchar_t *range_start_char, *range_end_char;
6514 
6515 		    /* match if (range_start_char <= c <= range_end_char).  */
6516 
6517 		    /* If range_start(or end) < 0, we assume -range_start(end)
6518 		       is the offset of the collating symbol which is specified
6519 		       as the character of the range start(end).  */
6520 
6521 		    /* range_start */
6522 		    if (*workp < 0)
6523 		      range_start_char = charset_top - (*workp++);
6524 		    else
6525 		      {
6526 			str_buf[0] = *workp++;
6527 			range_start_char = str_buf;
6528 		      }
6529 
6530 		    /* range_end */
6531 		    if (*workp < 0)
6532 		      range_end_char = charset_top - (*workp++);
6533 		    else
6534 		      {
6535 			str_buf[4] = *workp++;
6536 			range_end_char = str_buf + 4;
6537 		      }
6538 
6539 # ifdef _LIBC
6540 		    if (__wcscoll (range_start_char, str_buf+2) <= 0
6541 			&& __wcscoll (str_buf+2, range_end_char) <= 0)
6542 # else
6543 		    if (wcscoll (range_start_char, str_buf+2) <= 0
6544 			&& wcscoll (str_buf+2, range_end_char) <= 0)
6545 # endif
6546 		      goto char_set_matched;
6547 		  }
6548 	      }
6549 
6550             /* match with char?  */
6551 	    for (; workp < p ; workp++)
6552 	      if (c == *workp)
6553 		goto char_set_matched;
6554 
6555 	    negate = !negate;
6556 
6557 	  char_set_matched:
6558 	    if (negate) goto fail;
6559 #else
6560             /* Cast to `unsigned' instead of `unsigned char' in case the
6561                bit list is a full 32 bytes long.  */
6562 	    if (c < (unsigned) (*p * BYTEWIDTH)
6563 		&& p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
6564 	      negate = !negate;
6565 
6566 	    p += 1 + *p;
6567 
6568 	    if (!negate) goto fail;
6569 #undef WORK_BUFFER_SIZE
6570 #endif /* WCHAR */
6571 	    SET_REGS_MATCHED ();
6572             d++;
6573 	    break;
6574 	  }
6575 
6576 
6577         /* The beginning of a group is represented by start_memory.
6578            The arguments are the register number in the next byte, and the
6579            number of groups inner to this one in the next.  The text
6580            matched within the group is recorded (in the internal
6581            registers data structure) under the register number.  */
6582         case start_memory:
6583 	  DEBUG_PRINT3 ("EXECUTING start_memory %ld (%ld):\n",
6584 			(long int) *p, (long int) p[1]);
6585 
6586           /* Find out if this group can match the empty string.  */
6587 	  p1 = p;		/* To send to group_match_null_string_p.  */
6588 
6589           if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
6590             REG_MATCH_NULL_STRING_P (reg_info[*p])
6591               = PREFIX(group_match_null_string_p) (&p1, pend, reg_info);
6592 
6593           /* Save the position in the string where we were the last time
6594              we were at this open-group operator in case the group is
6595              operated upon by a repetition operator, e.g., with `(a*)*b'
6596              against `ab'; then we want to ignore where we are now in
6597              the string in case this attempt to match fails.  */
6598           old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6599                              ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
6600                              : regstart[*p];
6601 	  DEBUG_PRINT2 ("  old_regstart: %d\n",
6602 			 POINTER_TO_OFFSET (old_regstart[*p]));
6603 
6604           regstart[*p] = d;
6605 	  DEBUG_PRINT2 ("  regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
6606 
6607           IS_ACTIVE (reg_info[*p]) = 1;
6608           MATCHED_SOMETHING (reg_info[*p]) = 0;
6609 
6610 	  /* Clear this whenever we change the register activity status.  */
6611 	  set_regs_matched_done = 0;
6612 
6613           /* This is the new highest active register.  */
6614           highest_active_reg = *p;
6615 
6616           /* If nothing was active before, this is the new lowest active
6617              register.  */
6618           if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
6619             lowest_active_reg = *p;
6620 
6621           /* Move past the register number and inner group count.  */
6622           p += 2;
6623 	  just_past_start_mem = p;
6624 
6625           break;
6626 
6627 
6628         /* The stop_memory opcode represents the end of a group.  Its
6629            arguments are the same as start_memory's: the register
6630            number, and the number of inner groups.  */
6631 	case stop_memory:
6632 	  DEBUG_PRINT3 ("EXECUTING stop_memory %ld (%ld):\n",
6633 			(long int) *p, (long int) p[1]);
6634 
6635           /* We need to save the string position the last time we were at
6636              this close-group operator in case the group is operated
6637              upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
6638              against `aba'; then we want to ignore where we are now in
6639              the string in case this attempt to match fails.  */
6640           old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6641                            ? REG_UNSET (regend[*p]) ? d : regend[*p]
6642 			   : regend[*p];
6643 	  DEBUG_PRINT2 ("      old_regend: %d\n",
6644 			 POINTER_TO_OFFSET (old_regend[*p]));
6645 
6646           regend[*p] = d;
6647 	  DEBUG_PRINT2 ("      regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
6648 
6649           /* This register isn't active anymore.  */
6650           IS_ACTIVE (reg_info[*p]) = 0;
6651 
6652 	  /* Clear this whenever we change the register activity status.  */
6653 	  set_regs_matched_done = 0;
6654 
6655           /* If this was the only register active, nothing is active
6656              anymore.  */
6657           if (lowest_active_reg == highest_active_reg)
6658             {
6659               lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6660               highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6661             }
6662           else
6663             { /* We must scan for the new highest active register, since
6664                  it isn't necessarily one less than now: consider
6665                  (a(b)c(d(e)f)g).  When group 3 ends, after the f), the
6666                  new highest active register is 1.  */
6667               UCHAR_T r = *p - 1;
6668               while (r > 0 && !IS_ACTIVE (reg_info[r]))
6669                 r--;
6670 
6671               /* If we end up at register zero, that means that we saved
6672                  the registers as the result of an `on_failure_jump', not
6673                  a `start_memory', and we jumped to past the innermost
6674                  `stop_memory'.  For example, in ((.)*) we save
6675                  registers 1 and 2 as a result of the *, but when we pop
6676                  back to the second ), we are at the stop_memory 1.
6677                  Thus, nothing is active.  */
6678 	      if (r == 0)
6679                 {
6680                   lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6681                   highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6682                 }
6683               else
6684                 highest_active_reg = r;
6685             }
6686 
6687           /* If just failed to match something this time around with a
6688              group that's operated on by a repetition operator, try to
6689              force exit from the ``loop'', and restore the register
6690              information for this group that we had before trying this
6691              last match.  */
6692           if ((!MATCHED_SOMETHING (reg_info[*p])
6693                || just_past_start_mem == p - 1)
6694 	      && (p + 2) < pend)
6695             {
6696               boolean is_a_jump_n = false;
6697 
6698               p1 = p + 2;
6699               mcnt = 0;
6700               switch ((re_opcode_t) *p1++)
6701                 {
6702                   case jump_n:
6703 		    is_a_jump_n = true;
6704 		    /* Fall through.  */
6705                   case pop_failure_jump:
6706 		  case maybe_pop_jump:
6707 		  case jump:
6708 		  case dummy_failure_jump:
6709                     EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6710 		    if (is_a_jump_n)
6711 		      p1 += OFFSET_ADDRESS_SIZE;
6712                     break;
6713 
6714                   default:
6715                     /* do nothing */ ;
6716                 }
6717 	      p1 += mcnt;
6718 
6719               /* If the next operation is a jump backwards in the pattern
6720 	         to an on_failure_jump right before the start_memory
6721                  corresponding to this stop_memory, exit from the loop
6722                  by forcing a failure after pushing on the stack the
6723                  on_failure_jump's jump in the pattern, and d.  */
6724               if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
6725                   && (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == start_memory
6726 		  && p1[2+OFFSET_ADDRESS_SIZE] == *p)
6727 		{
6728                   /* If this group ever matched anything, then restore
6729                      what its registers were before trying this last
6730                      failed match, e.g., with `(a*)*b' against `ab' for
6731                      regstart[1], and, e.g., with `((a*)*(b*)*)*'
6732                      against `aba' for regend[3].
6733 
6734                      Also restore the registers for inner groups for,
6735                      e.g., `((a*)(b*))*' against `aba' (register 3 would
6736                      otherwise get trashed).  */
6737 
6738                   if (EVER_MATCHED_SOMETHING (reg_info[*p]))
6739 		    {
6740 		      unsigned r;
6741 
6742                       EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
6743 
6744 		      /* Restore this and inner groups' (if any) registers.  */
6745                       for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
6746 			   r++)
6747                         {
6748                           regstart[r] = old_regstart[r];
6749 
6750                           /* xx why this test?  */
6751                           if (old_regend[r] >= regstart[r])
6752                             regend[r] = old_regend[r];
6753                         }
6754                     }
6755 		  p1++;
6756                   EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6757                   PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
6758 
6759                   goto fail;
6760                 }
6761             }
6762 
6763           /* Move past the register number and the inner group count.  */
6764           p += 2;
6765           break;
6766 
6767 
6768 	/* \<digit> has been turned into a `duplicate' command which is
6769            followed by the numeric value of <digit> as the register number.  */
6770         case duplicate:
6771 	  {
6772 	    register const CHAR_T *d2, *dend2;
6773 	    int regno = *p++;   /* Get which register to match against.  */
6774 	    DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
6775 
6776 	    /* Can't back reference a group which we've never matched.  */
6777             if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
6778               goto fail;
6779 
6780             /* Where in input to try to start matching.  */
6781             d2 = regstart[regno];
6782 
6783             /* Where to stop matching; if both the place to start and
6784                the place to stop matching are in the same string, then
6785                set to the place to stop, otherwise, for now have to use
6786                the end of the first string.  */
6787 
6788             dend2 = ((FIRST_STRING_P (regstart[regno])
6789 		      == FIRST_STRING_P (regend[regno]))
6790 		     ? regend[regno] : end_match_1);
6791 	    for (;;)
6792 	      {
6793 		/* If necessary, advance to next segment in register
6794                    contents.  */
6795 		while (d2 == dend2)
6796 		  {
6797 		    if (dend2 == end_match_2) break;
6798 		    if (dend2 == regend[regno]) break;
6799 
6800                     /* End of string1 => advance to string2. */
6801                     d2 = string2;
6802                     dend2 = regend[regno];
6803 		  }
6804 		/* At end of register contents => success */
6805 		if (d2 == dend2) break;
6806 
6807 		/* If necessary, advance to next segment in data.  */
6808 		PREFETCH ();
6809 
6810 		/* How many characters left in this segment to match.  */
6811 		mcnt = dend - d;
6812 
6813 		/* Want how many consecutive characters we can match in
6814                    one shot, so, if necessary, adjust the count.  */
6815                 if (mcnt > dend2 - d2)
6816 		  mcnt = dend2 - d2;
6817 
6818 		/* Compare that many; failure if mismatch, else move
6819                    past them.  */
6820 		if (translate
6821                     ? PREFIX(bcmp_translate) (d, d2, mcnt, translate)
6822                     : memcmp (d, d2, mcnt*sizeof(UCHAR_T)))
6823 		  goto fail;
6824 		d += mcnt, d2 += mcnt;
6825 
6826 		/* Do this because we've match some characters.  */
6827 		SET_REGS_MATCHED ();
6828 	      }
6829 	  }
6830 	  break;
6831 
6832 
6833         /* begline matches the empty string at the beginning of the string
6834            (unless `not_bol' is set in `bufp'), and, if
6835            `newline_anchor' is set, after newlines.  */
6836 	case begline:
6837           DEBUG_PRINT1 ("EXECUTING begline.\n");
6838 
6839           if (AT_STRINGS_BEG (d))
6840             {
6841               if (!bufp->not_bol) break;
6842             }
6843           else if (d[-1] == '\n' && bufp->newline_anchor)
6844             {
6845               break;
6846             }
6847           /* In all other cases, we fail.  */
6848           goto fail;
6849 
6850 
6851         /* endline is the dual of begline.  */
6852 	case endline:
6853           DEBUG_PRINT1 ("EXECUTING endline.\n");
6854 
6855           if (AT_STRINGS_END (d))
6856             {
6857               if (!bufp->not_eol) break;
6858             }
6859 
6860           /* We have to ``prefetch'' the next character.  */
6861           else if ((d == end1 ? *string2 : *d) == '\n'
6862                    && bufp->newline_anchor)
6863             {
6864               break;
6865             }
6866           goto fail;
6867 
6868 
6869 	/* Match at the very beginning of the data.  */
6870         case begbuf:
6871           DEBUG_PRINT1 ("EXECUTING begbuf.\n");
6872           if (AT_STRINGS_BEG (d))
6873             break;
6874           goto fail;
6875 
6876 
6877 	/* Match at the very end of the data.  */
6878         case endbuf:
6879           DEBUG_PRINT1 ("EXECUTING endbuf.\n");
6880 	  if (AT_STRINGS_END (d))
6881 	    break;
6882           goto fail;
6883 
6884 
6885         /* on_failure_keep_string_jump is used to optimize `.*\n'.  It
6886            pushes NULL as the value for the string on the stack.  Then
6887            `pop_failure_point' will keep the current value for the
6888            string, instead of restoring it.  To see why, consider
6889            matching `foo\nbar' against `.*\n'.  The .* matches the foo;
6890            then the . fails against the \n.  But the next thing we want
6891            to do is match the \n against the \n; if we restored the
6892            string value, we would be back at the foo.
6893 
6894            Because this is used only in specific cases, we don't need to
6895            check all the things that `on_failure_jump' does, to make
6896            sure the right things get saved on the stack.  Hence we don't
6897            share its code.  The only reason to push anything on the
6898            stack at all is that otherwise we would have to change
6899            `anychar's code to do something besides goto fail in this
6900            case; that seems worse than this.  */
6901         case on_failure_keep_string_jump:
6902           DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
6903 
6904           EXTRACT_NUMBER_AND_INCR (mcnt, p);
6905 #ifdef _LIBC
6906           DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
6907 #else
6908           DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
6909 #endif
6910 
6911           PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
6912           break;
6913 
6914 
6915 	/* Uses of on_failure_jump:
6916 
6917            Each alternative starts with an on_failure_jump that points
6918            to the beginning of the next alternative.  Each alternative
6919            except the last ends with a jump that in effect jumps past
6920            the rest of the alternatives.  (They really jump to the
6921            ending jump of the following alternative, because tensioning
6922            these jumps is a hassle.)
6923 
6924            Repeats start with an on_failure_jump that points past both
6925            the repetition text and either the following jump or
6926            pop_failure_jump back to this on_failure_jump.  */
6927 	case on_failure_jump:
6928         on_failure:
6929           DEBUG_PRINT1 ("EXECUTING on_failure_jump");
6930 
6931           EXTRACT_NUMBER_AND_INCR (mcnt, p);
6932 #ifdef _LIBC
6933           DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
6934 #else
6935           DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
6936 #endif
6937 
6938           /* If this on_failure_jump comes right before a group (i.e.,
6939              the original * applied to a group), save the information
6940              for that group and all inner ones, so that if we fail back
6941              to this point, the group's information will be correct.
6942              For example, in \(a*\)*\1, we need the preceding group,
6943              and in \(zz\(a*\)b*\)\2, we need the inner group.  */
6944 
6945           /* We can't use `p' to check ahead because we push
6946              a failure point to `p + mcnt' after we do this.  */
6947           p1 = p;
6948 
6949           /* We need to skip no_op's before we look for the
6950              start_memory in case this on_failure_jump is happening as
6951              the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
6952              against aba.  */
6953           while (p1 < pend && (re_opcode_t) *p1 == no_op)
6954             p1++;
6955 
6956           if (p1 < pend && (re_opcode_t) *p1 == start_memory)
6957             {
6958               /* We have a new highest active register now.  This will
6959                  get reset at the start_memory we are about to get to,
6960                  but we will have saved all the registers relevant to
6961                  this repetition op, as described above.  */
6962               highest_active_reg = *(p1 + 1) + *(p1 + 2);
6963               if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
6964                 lowest_active_reg = *(p1 + 1);
6965             }
6966 
6967           DEBUG_PRINT1 (":\n");
6968           PUSH_FAILURE_POINT (p + mcnt, d, -2);
6969           break;
6970 
6971 
6972         /* A smart repeat ends with `maybe_pop_jump'.
6973 	   We change it to either `pop_failure_jump' or `jump'.  */
6974         case maybe_pop_jump:
6975           EXTRACT_NUMBER_AND_INCR (mcnt, p);
6976           DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
6977           {
6978 	    register UCHAR_T *p2 = p;
6979 
6980             /* Compare the beginning of the repeat with what in the
6981                pattern follows its end. If we can establish that there
6982                is nothing that they would both match, i.e., that we
6983                would have to backtrack because of (as in, e.g., `a*a')
6984                then we can change to pop_failure_jump, because we'll
6985                never have to backtrack.
6986 
6987                This is not true in the case of alternatives: in
6988                `(a|ab)*' we do need to backtrack to the `ab' alternative
6989                (e.g., if the string was `ab').  But instead of trying to
6990                detect that here, the alternative has put on a dummy
6991                failure point which is what we will end up popping.  */
6992 
6993 	    /* Skip over open/close-group commands.
6994 	       If what follows this loop is a ...+ construct,
6995 	       look at what begins its body, since we will have to
6996 	       match at least one of that.  */
6997 	    while (1)
6998 	      {
6999 		if (p2 + 2 < pend
7000 		    && ((re_opcode_t) *p2 == stop_memory
7001 			|| (re_opcode_t) *p2 == start_memory))
7002 		  p2 += 3;
7003 		else if (p2 + 2 + 2 * OFFSET_ADDRESS_SIZE < pend
7004 			 && (re_opcode_t) *p2 == dummy_failure_jump)
7005 		  p2 += 2 + 2 * OFFSET_ADDRESS_SIZE;
7006 		else
7007 		  break;
7008 	      }
7009 
7010 	    p1 = p + mcnt;
7011 	    /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
7012 	       to the `maybe_finalize_jump' of this case.  Examine what
7013 	       follows.  */
7014 
7015             /* If we're at the end of the pattern, we can change.  */
7016             if (p2 == pend)
7017 	      {
7018 		/* Consider what happens when matching ":\(.*\)"
7019 		   against ":/".  I don't really understand this code
7020 		   yet.  */
7021   	        p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7022 		  pop_failure_jump;
7023                 DEBUG_PRINT1
7024                   ("  End of pattern: change to `pop_failure_jump'.\n");
7025               }
7026 
7027             else if ((re_opcode_t) *p2 == exactn
7028 #ifdef MBS_SUPPORT
7029 		     || (re_opcode_t) *p2 == exactn_bin
7030 #endif
7031 		     || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
7032 	      {
7033 		register UCHAR_T c
7034                   = *p2 == (UCHAR_T) endline ? '\n' : p2[2];
7035 
7036                 if (((re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn
7037 #ifdef MBS_SUPPORT
7038 		     || (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn_bin
7039 #endif
7040 		    ) && p1[3+OFFSET_ADDRESS_SIZE] != c)
7041                   {
7042   		    p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7043 		      pop_failure_jump;
7044 #ifdef WCHAR
7045 		      DEBUG_PRINT3 ("  %C != %C => pop_failure_jump.\n",
7046 				    (wint_t) c,
7047 				    (wint_t) p1[3+OFFSET_ADDRESS_SIZE]);
7048 #else
7049 		      DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n",
7050 				    (char) c,
7051 				    (char) p1[3+OFFSET_ADDRESS_SIZE]);
7052 #endif
7053                   }
7054 
7055 #ifndef WCHAR
7056 		else if ((re_opcode_t) p1[3] == charset
7057 			 || (re_opcode_t) p1[3] == charset_not)
7058 		  {
7059 		    int negate = (re_opcode_t) p1[3] == charset_not;
7060 
7061 		    if (c < (unsigned) (p1[4] * BYTEWIDTH)
7062 			&& p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
7063 		      negate = !negate;
7064 
7065                     /* `negate' is equal to 1 if c would match, which means
7066                         that we can't change to pop_failure_jump.  */
7067 		    if (!negate)
7068                       {
7069   		        p[-3] = (unsigned char) pop_failure_jump;
7070                         DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7071                       }
7072 		  }
7073 #endif /* not WCHAR */
7074 	      }
7075 #ifndef WCHAR
7076             else if ((re_opcode_t) *p2 == charset)
7077 	      {
7078 		/* We win if the first character of the loop is not part
7079                    of the charset.  */
7080                 if ((re_opcode_t) p1[3] == exactn
7081  		    && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
7082  			  && (p2[2 + p1[5] / BYTEWIDTH]
7083  			      & (1 << (p1[5] % BYTEWIDTH)))))
7084 		  {
7085 		    p[-3] = (unsigned char) pop_failure_jump;
7086 		    DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7087                   }
7088 
7089 		else if ((re_opcode_t) p1[3] == charset_not)
7090 		  {
7091 		    int idx;
7092 		    /* We win if the charset_not inside the loop
7093 		       lists every character listed in the charset after.  */
7094 		    for (idx = 0; idx < (int) p2[1]; idx++)
7095 		      if (! (p2[2 + idx] == 0
7096 			     || (idx < (int) p1[4]
7097 				 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
7098 			break;
7099 
7100 		    if (idx == p2[1])
7101                       {
7102   		        p[-3] = (unsigned char) pop_failure_jump;
7103                         DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7104                       }
7105 		  }
7106 		else if ((re_opcode_t) p1[3] == charset)
7107 		  {
7108 		    int idx;
7109 		    /* We win if the charset inside the loop
7110 		       has no overlap with the one after the loop.  */
7111 		    for (idx = 0;
7112 			 idx < (int) p2[1] && idx < (int) p1[4];
7113 			 idx++)
7114 		      if ((p2[2 + idx] & p1[5 + idx]) != 0)
7115 			break;
7116 
7117 		    if (idx == p2[1] || idx == p1[4])
7118                       {
7119   		        p[-3] = (unsigned char) pop_failure_jump;
7120                         DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7121                       }
7122 		  }
7123 	      }
7124 #endif /* not WCHAR */
7125 	  }
7126 	  p -= OFFSET_ADDRESS_SIZE;	/* Point at relative address again.  */
7127 	  if ((re_opcode_t) p[-1] != pop_failure_jump)
7128 	    {
7129 	      p[-1] = (UCHAR_T) jump;
7130               DEBUG_PRINT1 ("  Match => jump.\n");
7131 	      goto unconditional_jump;
7132 	    }
7133         /* Fall through.  */
7134 
7135 
7136 	/* The end of a simple repeat has a pop_failure_jump back to
7137            its matching on_failure_jump, where the latter will push a
7138            failure point.  The pop_failure_jump takes off failure
7139            points put on by this pop_failure_jump's matching
7140            on_failure_jump; we got through the pattern to here from the
7141            matching on_failure_jump, so didn't fail.  */
7142         case pop_failure_jump:
7143           {
7144             /* We need to pass separate storage for the lowest and
7145                highest registers, even though we don't care about the
7146                actual values.  Otherwise, we will restore only one
7147                register from the stack, since lowest will == highest in
7148                `pop_failure_point'.  */
7149             active_reg_t dummy_low_reg, dummy_high_reg;
7150             UCHAR_T *pdummy ATTRIBUTE_UNUSED = NULL;
7151             const CHAR_T *sdummy ATTRIBUTE_UNUSED = NULL;
7152 
7153             DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
7154             POP_FAILURE_POINT (sdummy, pdummy,
7155                                dummy_low_reg, dummy_high_reg,
7156                                reg_dummy, reg_dummy, reg_info_dummy);
7157           }
7158 	  /* Fall through.  */
7159 
7160 	unconditional_jump:
7161 #ifdef _LIBC
7162 	  DEBUG_PRINT2 ("\n%p: ", p);
7163 #else
7164 	  DEBUG_PRINT2 ("\n0x%x: ", p);
7165 #endif
7166           /* Note fall through.  */
7167 
7168         /* Unconditionally jump (without popping any failure points).  */
7169         case jump:
7170 	  EXTRACT_NUMBER_AND_INCR (mcnt, p);	/* Get the amount to jump.  */
7171           DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
7172 	  p += mcnt;				/* Do the jump.  */
7173 #ifdef _LIBC
7174           DEBUG_PRINT2 ("(to %p).\n", p);
7175 #else
7176           DEBUG_PRINT2 ("(to 0x%x).\n", p);
7177 #endif
7178 	  break;
7179 
7180 
7181         /* We need this opcode so we can detect where alternatives end
7182            in `group_match_null_string_p' et al.  */
7183         case jump_past_alt:
7184           DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
7185           goto unconditional_jump;
7186 
7187 
7188         /* Normally, the on_failure_jump pushes a failure point, which
7189            then gets popped at pop_failure_jump.  We will end up at
7190            pop_failure_jump, also, and with a pattern of, say, `a+', we
7191            are skipping over the on_failure_jump, so we have to push
7192            something meaningless for pop_failure_jump to pop.  */
7193         case dummy_failure_jump:
7194           DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
7195           /* It doesn't matter what we push for the string here.  What
7196              the code at `fail' tests is the value for the pattern.  */
7197           PUSH_FAILURE_POINT (NULL, NULL, -2);
7198           goto unconditional_jump;
7199 
7200 
7201         /* At the end of an alternative, we need to push a dummy failure
7202            point in case we are followed by a `pop_failure_jump', because
7203            we don't want the failure point for the alternative to be
7204            popped.  For example, matching `(a|ab)*' against `aab'
7205            requires that we match the `ab' alternative.  */
7206         case push_dummy_failure:
7207           DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
7208           /* See comments just above at `dummy_failure_jump' about the
7209              two zeroes.  */
7210           PUSH_FAILURE_POINT (NULL, NULL, -2);
7211           break;
7212 
7213         /* Have to succeed matching what follows at least n times.
7214            After that, handle like `on_failure_jump'.  */
7215         case succeed_n:
7216           EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7217           DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
7218 
7219           assert (mcnt >= 0);
7220           /* Originally, this is how many times we HAVE to succeed.  */
7221           if (mcnt > 0)
7222             {
7223                mcnt--;
7224 	       p += OFFSET_ADDRESS_SIZE;
7225                STORE_NUMBER_AND_INCR (p, mcnt);
7226 #ifdef _LIBC
7227                DEBUG_PRINT3 ("  Setting %p to %d.\n", p - OFFSET_ADDRESS_SIZE
7228 			     , mcnt);
7229 #else
7230                DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p - OFFSET_ADDRESS_SIZE
7231 			     , mcnt);
7232 #endif
7233             }
7234 	  else if (mcnt == 0)
7235             {
7236 #ifdef _LIBC
7237               DEBUG_PRINT2 ("  Setting two bytes from %p to no_op.\n",
7238 			    p + OFFSET_ADDRESS_SIZE);
7239 #else
7240               DEBUG_PRINT2 ("  Setting two bytes from 0x%x to no_op.\n",
7241 			    p + OFFSET_ADDRESS_SIZE);
7242 #endif /* _LIBC */
7243 
7244 #ifdef WCHAR
7245 	      p[1] = (UCHAR_T) no_op;
7246 #else
7247 	      p[2] = (UCHAR_T) no_op;
7248               p[3] = (UCHAR_T) no_op;
7249 #endif /* WCHAR */
7250               goto on_failure;
7251             }
7252           break;
7253 
7254         case jump_n:
7255           EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7256           DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
7257 
7258           /* Originally, this is how many times we CAN jump.  */
7259           if (mcnt)
7260             {
7261                mcnt--;
7262                STORE_NUMBER (p + OFFSET_ADDRESS_SIZE, mcnt);
7263 
7264 #ifdef _LIBC
7265                DEBUG_PRINT3 ("  Setting %p to %d.\n", p + OFFSET_ADDRESS_SIZE,
7266 			     mcnt);
7267 #else
7268                DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p + OFFSET_ADDRESS_SIZE,
7269 			     mcnt);
7270 #endif /* _LIBC */
7271 	       goto unconditional_jump;
7272             }
7273           /* If don't have to jump any more, skip over the rest of command.  */
7274 	  else
7275 	    p += 2 * OFFSET_ADDRESS_SIZE;
7276           break;
7277 
7278 	case set_number_at:
7279 	  {
7280             DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
7281 
7282             EXTRACT_NUMBER_AND_INCR (mcnt, p);
7283             p1 = p + mcnt;
7284             EXTRACT_NUMBER_AND_INCR (mcnt, p);
7285 #ifdef _LIBC
7286             DEBUG_PRINT3 ("  Setting %p to %d.\n", p1, mcnt);
7287 #else
7288             DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p1, mcnt);
7289 #endif
7290 	    STORE_NUMBER (p1, mcnt);
7291             break;
7292           }
7293 
7294 #if 0
7295 	/* The DEC Alpha C compiler 3.x generates incorrect code for the
7296 	   test  WORDCHAR_P (d - 1) != WORDCHAR_P (d)  in the expansion of
7297 	   AT_WORD_BOUNDARY, so this code is disabled.  Expanding the
7298 	   macro and introducing temporary variables works around the bug.  */
7299 
7300 	case wordbound:
7301 	  DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7302 	  if (AT_WORD_BOUNDARY (d))
7303 	    break;
7304 	  goto fail;
7305 
7306 	case notwordbound:
7307 	  DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7308 	  if (AT_WORD_BOUNDARY (d))
7309 	    goto fail;
7310 	  break;
7311 #else
7312 	case wordbound:
7313 	{
7314 	  boolean prevchar, thischar;
7315 
7316 	  DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7317 	  if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7318 	    break;
7319 
7320 	  prevchar = WORDCHAR_P (d - 1);
7321 	  thischar = WORDCHAR_P (d);
7322 	  if (prevchar != thischar)
7323 	    break;
7324 	  goto fail;
7325 	}
7326 
7327       case notwordbound:
7328 	{
7329 	  boolean prevchar, thischar;
7330 
7331 	  DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7332 	  if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7333 	    goto fail;
7334 
7335 	  prevchar = WORDCHAR_P (d - 1);
7336 	  thischar = WORDCHAR_P (d);
7337 	  if (prevchar != thischar)
7338 	    goto fail;
7339 	  break;
7340 	}
7341 #endif
7342 
7343 	case wordbeg:
7344           DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
7345 	  if (!AT_STRINGS_END (d) && WORDCHAR_P (d)
7346 	      && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
7347 	    break;
7348           goto fail;
7349 
7350 	case wordend:
7351           DEBUG_PRINT1 ("EXECUTING wordend.\n");
7352 	  if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
7353               && (AT_STRINGS_END (d) || !WORDCHAR_P (d)))
7354 	    break;
7355           goto fail;
7356 
7357 #ifdef emacs
7358   	case before_dot:
7359           DEBUG_PRINT1 ("EXECUTING before_dot.\n");
7360  	  if (PTR_CHAR_POS ((unsigned char *) d) >= point)
7361   	    goto fail;
7362   	  break;
7363 
7364   	case at_dot:
7365           DEBUG_PRINT1 ("EXECUTING at_dot.\n");
7366  	  if (PTR_CHAR_POS ((unsigned char *) d) != point)
7367   	    goto fail;
7368   	  break;
7369 
7370   	case after_dot:
7371           DEBUG_PRINT1 ("EXECUTING after_dot.\n");
7372           if (PTR_CHAR_POS ((unsigned char *) d) <= point)
7373   	    goto fail;
7374   	  break;
7375 
7376 	case syntaxspec:
7377           DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
7378 	  mcnt = *p++;
7379 	  goto matchsyntax;
7380 
7381         case wordchar:
7382           DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
7383 	  mcnt = (int) Sword;
7384         matchsyntax:
7385 	  PREFETCH ();
7386 	  /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
7387 	  d++;
7388 	  if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
7389 	    goto fail;
7390           SET_REGS_MATCHED ();
7391 	  break;
7392 
7393 	case notsyntaxspec:
7394           DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
7395 	  mcnt = *p++;
7396 	  goto matchnotsyntax;
7397 
7398         case notwordchar:
7399           DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
7400 	  mcnt = (int) Sword;
7401         matchnotsyntax:
7402 	  PREFETCH ();
7403 	  /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
7404 	  d++;
7405 	  if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
7406 	    goto fail;
7407 	  SET_REGS_MATCHED ();
7408           break;
7409 
7410 #else /* not emacs */
7411 	case wordchar:
7412           DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
7413 	  PREFETCH ();
7414           if (!WORDCHAR_P (d))
7415             goto fail;
7416 	  SET_REGS_MATCHED ();
7417           d++;
7418 	  break;
7419 
7420 	case notwordchar:
7421           DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
7422 	  PREFETCH ();
7423 	  if (WORDCHAR_P (d))
7424             goto fail;
7425           SET_REGS_MATCHED ();
7426           d++;
7427 	  break;
7428 #endif /* not emacs */
7429 
7430         default:
7431           abort ();
7432 	}
7433       continue;  /* Successfully executed one pattern command; keep going.  */
7434 
7435 
7436     /* We goto here if a matching operation fails. */
7437     fail:
7438       if (!FAIL_STACK_EMPTY ())
7439 	{ /* A restart point is known.  Restore to that state.  */
7440           DEBUG_PRINT1 ("\nFAIL:\n");
7441           POP_FAILURE_POINT (d, p,
7442                              lowest_active_reg, highest_active_reg,
7443                              regstart, regend, reg_info);
7444 
7445           /* If this failure point is a dummy, try the next one.  */
7446           if (!p)
7447 	    goto fail;
7448 
7449           /* If we failed to the end of the pattern, don't examine *p.  */
7450 	  assert (p <= pend);
7451           if (p < pend)
7452             {
7453               boolean is_a_jump_n = false;
7454 
7455               /* If failed to a backwards jump that's part of a repetition
7456                  loop, need to pop this failure point and use the next one.  */
7457               switch ((re_opcode_t) *p)
7458                 {
7459                 case jump_n:
7460                   is_a_jump_n = true;
7461 		  /* Fall through.  */
7462                 case maybe_pop_jump:
7463                 case pop_failure_jump:
7464                 case jump:
7465                   p1 = p + 1;
7466                   EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7467                   p1 += mcnt;
7468 
7469                   if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
7470                       || (!is_a_jump_n
7471                           && (re_opcode_t) *p1 == on_failure_jump))
7472                     goto fail;
7473                   break;
7474                 default:
7475                   /* do nothing */ ;
7476                 }
7477             }
7478 
7479           if (d >= string1 && d <= end1)
7480 	    dend = end_match_1;
7481         }
7482       else
7483         break;   /* Matching at this starting point really fails.  */
7484     } /* for (;;) */
7485 
7486   if (best_regs_set)
7487     goto restore_best_regs;
7488 
7489   FREE_VARIABLES ();
7490 
7491   return -1;         			/* Failure to match.  */
7492 } /* re_match_2 */
7493 
7494 /* Subroutine definitions for re_match_2.  */
7495 
7496 
7497 /* We are passed P pointing to a register number after a start_memory.
7498 
7499    Return true if the pattern up to the corresponding stop_memory can
7500    match the empty string, and false otherwise.
7501 
7502    If we find the matching stop_memory, sets P to point to one past its number.
7503    Otherwise, sets P to an undefined byte less than or equal to END.
7504 
7505    We don't handle duplicates properly (yet).  */
7506 
7507 static boolean
PREFIX(group_match_null_string_p)7508 PREFIX(group_match_null_string_p) (UCHAR_T **p, UCHAR_T *end,
7509                                    PREFIX(register_info_type) *reg_info)
7510 {
7511   int mcnt;
7512   /* Point to after the args to the start_memory.  */
7513   UCHAR_T *p1 = *p + 2;
7514 
7515   while (p1 < end)
7516     {
7517       /* Skip over opcodes that can match nothing, and return true or
7518 	 false, as appropriate, when we get to one that can't, or to the
7519          matching stop_memory.  */
7520 
7521       switch ((re_opcode_t) *p1)
7522         {
7523         /* Could be either a loop or a series of alternatives.  */
7524         case on_failure_jump:
7525           p1++;
7526           EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7527 
7528           /* If the next operation is not a jump backwards in the
7529 	     pattern.  */
7530 
7531 	  if (mcnt >= 0)
7532 	    {
7533               /* Go through the on_failure_jumps of the alternatives,
7534                  seeing if any of the alternatives cannot match nothing.
7535                  The last alternative starts with only a jump,
7536                  whereas the rest start with on_failure_jump and end
7537                  with a jump, e.g., here is the pattern for `a|b|c':
7538 
7539                  /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
7540                  /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
7541                  /exactn/1/c
7542 
7543                  So, we have to first go through the first (n-1)
7544                  alternatives and then deal with the last one separately.  */
7545 
7546 
7547               /* Deal with the first (n-1) alternatives, which start
7548                  with an on_failure_jump (see above) that jumps to right
7549                  past a jump_past_alt.  */
7550 
7551               while ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] ==
7552 		     jump_past_alt)
7553                 {
7554                   /* `mcnt' holds how many bytes long the alternative
7555                      is, including the ending `jump_past_alt' and
7556                      its number.  */
7557 
7558                   if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt -
7559 						(1 + OFFSET_ADDRESS_SIZE),
7560 						reg_info))
7561                     return false;
7562 
7563                   /* Move to right after this alternative, including the
7564 		     jump_past_alt.  */
7565                   p1 += mcnt;
7566 
7567                   /* Break if it's the beginning of an n-th alternative
7568                      that doesn't begin with an on_failure_jump.  */
7569                   if ((re_opcode_t) *p1 != on_failure_jump)
7570                     break;
7571 
7572 		  /* Still have to check that it's not an n-th
7573 		     alternative that starts with an on_failure_jump.  */
7574 		  p1++;
7575                   EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7576                   if ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] !=
7577 		      jump_past_alt)
7578                     {
7579 		      /* Get to the beginning of the n-th alternative.  */
7580                       p1 -= 1 + OFFSET_ADDRESS_SIZE;
7581                       break;
7582                     }
7583                 }
7584 
7585               /* Deal with the last alternative: go back and get number
7586                  of the `jump_past_alt' just before it.  `mcnt' contains
7587                  the length of the alternative.  */
7588               EXTRACT_NUMBER (mcnt, p1 - OFFSET_ADDRESS_SIZE);
7589 
7590               if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt, reg_info))
7591                 return false;
7592 
7593               p1 += mcnt;	/* Get past the n-th alternative.  */
7594             } /* if mcnt > 0 */
7595           break;
7596 
7597 
7598         case stop_memory:
7599 	  assert (p1[1] == **p);
7600           *p = p1 + 2;
7601           return true;
7602 
7603 
7604         default:
7605           if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7606             return false;
7607         }
7608     } /* while p1 < end */
7609 
7610   return false;
7611 } /* group_match_null_string_p */
7612 
7613 
7614 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
7615    It expects P to be the first byte of a single alternative and END one
7616    byte past the last. The alternative can contain groups.  */
7617 
7618 static boolean
PREFIX(alt_match_null_string_p)7619 PREFIX(alt_match_null_string_p) (UCHAR_T *p, UCHAR_T *end,
7620                                  PREFIX(register_info_type) *reg_info)
7621 {
7622   int mcnt;
7623   UCHAR_T *p1 = p;
7624 
7625   while (p1 < end)
7626     {
7627       /* Skip over opcodes that can match nothing, and break when we get
7628          to one that can't.  */
7629 
7630       switch ((re_opcode_t) *p1)
7631         {
7632 	/* It's a loop.  */
7633         case on_failure_jump:
7634           p1++;
7635           EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7636           p1 += mcnt;
7637           break;
7638 
7639 	default:
7640           if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7641             return false;
7642         }
7643     }  /* while p1 < end */
7644 
7645   return true;
7646 } /* alt_match_null_string_p */
7647 
7648 
7649 /* Deals with the ops common to group_match_null_string_p and
7650    alt_match_null_string_p.
7651 
7652    Sets P to one after the op and its arguments, if any.  */
7653 
7654 static boolean
PREFIX(common_op_match_null_string_p)7655 PREFIX(common_op_match_null_string_p) (UCHAR_T **p, UCHAR_T *end,
7656                                        PREFIX(register_info_type) *reg_info)
7657 {
7658   int mcnt;
7659   boolean ret;
7660   int reg_no;
7661   UCHAR_T *p1 = *p;
7662 
7663   switch ((re_opcode_t) *p1++)
7664     {
7665     case no_op:
7666     case begline:
7667     case endline:
7668     case begbuf:
7669     case endbuf:
7670     case wordbeg:
7671     case wordend:
7672     case wordbound:
7673     case notwordbound:
7674 #ifdef emacs
7675     case before_dot:
7676     case at_dot:
7677     case after_dot:
7678 #endif
7679       break;
7680 
7681     case start_memory:
7682       reg_no = *p1;
7683       assert (reg_no > 0 && reg_no <= MAX_REGNUM);
7684       ret = PREFIX(group_match_null_string_p) (&p1, end, reg_info);
7685 
7686       /* Have to set this here in case we're checking a group which
7687          contains a group and a back reference to it.  */
7688 
7689       if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
7690         REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
7691 
7692       if (!ret)
7693         return false;
7694       break;
7695 
7696     /* If this is an optimized succeed_n for zero times, make the jump.  */
7697     case jump:
7698       EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7699       if (mcnt >= 0)
7700         p1 += mcnt;
7701       else
7702         return false;
7703       break;
7704 
7705     case succeed_n:
7706       /* Get to the number of times to succeed.  */
7707       p1 += OFFSET_ADDRESS_SIZE;
7708       EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7709 
7710       if (mcnt == 0)
7711         {
7712           p1 -= 2 * OFFSET_ADDRESS_SIZE;
7713           EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7714           p1 += mcnt;
7715         }
7716       else
7717         return false;
7718       break;
7719 
7720     case duplicate:
7721       if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
7722         return false;
7723       break;
7724 
7725     case set_number_at:
7726       p1 += 2 * OFFSET_ADDRESS_SIZE;
7727       return false;
7728 
7729     default:
7730       /* All other opcodes mean we cannot match the empty string.  */
7731       return false;
7732   }
7733 
7734   *p = p1;
7735   return true;
7736 } /* common_op_match_null_string_p */
7737 
7738 
7739 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
7740    bytes; nonzero otherwise.  */
7741 
7742 static int
PREFIX(bcmp_translate)7743 PREFIX(bcmp_translate) (const CHAR_T *s1, const CHAR_T *s2, register int len,
7744                         RE_TRANSLATE_TYPE translate)
7745 {
7746   register const UCHAR_T *p1 = (const UCHAR_T *) s1;
7747   register const UCHAR_T *p2 = (const UCHAR_T *) s2;
7748   while (len)
7749     {
7750 #ifdef WCHAR
7751       if (((*p1<=0xff)?translate[*p1++]:*p1++)
7752 	  != ((*p2<=0xff)?translate[*p2++]:*p2++))
7753 	return 1;
7754 #else /* BYTE */
7755       if (translate[*p1++] != translate[*p2++]) return 1;
7756 #endif /* WCHAR */
7757       len--;
7758     }
7759   return 0;
7760 }
7761 
7762 
7763 #else /* not INSIDE_RECURSION */
7764 
7765 /* Entry points for GNU code.  */
7766 
7767 /* re_compile_pattern is the GNU regular expression compiler: it
7768    compiles PATTERN (of length SIZE) and puts the result in BUFP.
7769    Returns 0 if the pattern was valid, otherwise an error string.
7770 
7771    Assumes the `allocated' (and perhaps `buffer') and `translate' fields
7772    are set in BUFP on entry.
7773 
7774    We call regex_compile to do the actual compilation.  */
7775 
7776 const char *
7777 re_compile_pattern (const char *pattern, size_t length,
7778                     struct re_pattern_buffer *bufp)
7779 {
7780   reg_errcode_t ret;
7781 
7782   /* GNU code is written to assume at least RE_NREGS registers will be set
7783      (and at least one extra will be -1).  */
7784   bufp->regs_allocated = REGS_UNALLOCATED;
7785 
7786   /* And GNU code determines whether or not to get register information
7787      by passing null for the REGS argument to re_match, etc., not by
7788      setting no_sub.  */
7789   bufp->no_sub = 0;
7790 
7791   /* Match anchors at newline.  */
7792   bufp->newline_anchor = 1;
7793 
7794 # ifdef MBS_SUPPORT
7795   if (MB_CUR_MAX != 1)
7796     ret = wcs_regex_compile (pattern, length, re_syntax_options, bufp);
7797   else
7798 # endif
7799     ret = byte_regex_compile (pattern, length, re_syntax_options, bufp);
7800 
7801   if (!ret)
7802     return NULL;
7803   return gettext (re_error_msgid[(int) ret]);
7804 }
7805 #ifdef _LIBC
7806 weak_alias (__re_compile_pattern, re_compile_pattern)
7807 #endif
7808 
7809 /* Entry points compatible with 4.2 BSD regex library.  We don't define
7810    them unless specifically requested.  */
7811 
7812 #if defined _REGEX_RE_COMP || defined _LIBC
7813 
7814 /* BSD has one and only one pattern buffer.  */
7815 static struct re_pattern_buffer re_comp_buf;
7816 
7817 char *
7818 #ifdef _LIBC
7819 /* Make these definitions weak in libc, so POSIX programs can redefine
7820    these names if they don't use our functions, and still use
7821    regcomp/regexec below without link errors.  */
7822 weak_function
7823 #endif
7824 re_comp (const char *s)
7825 {
7826   reg_errcode_t ret;
7827 
7828   if (!s)
7829     {
7830       if (!re_comp_buf.buffer)
7831 	return (char *) gettext ("No previous regular expression");
7832       return 0;
7833     }
7834 
7835   if (!re_comp_buf.buffer)
7836     {
7837       re_comp_buf.buffer = (unsigned char *) malloc (200);
7838       if (re_comp_buf.buffer == NULL)
7839         return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
7840       re_comp_buf.allocated = 200;
7841 
7842       re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
7843       if (re_comp_buf.fastmap == NULL)
7844 	return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
7845     }
7846 
7847   /* Since `re_exec' always passes NULL for the `regs' argument, we
7848      don't need to initialize the pattern buffer fields which affect it.  */
7849 
7850   /* Match anchors at newlines.  */
7851   re_comp_buf.newline_anchor = 1;
7852 
7853 # ifdef MBS_SUPPORT
7854   if (MB_CUR_MAX != 1)
7855     ret = wcs_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
7856   else
7857 # endif
7858     ret = byte_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
7859 
7860   if (!ret)
7861     return NULL;
7862 
7863   /* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
7864   return (char *) gettext (re_error_msgid[(int) ret]);
7865 }
7866 
7867 
7868 int
7869 #ifdef _LIBC
7870 weak_function
7871 #endif
7872 re_exec (const char *s)
7873 {
7874   const int len = strlen (s);
7875   return
7876     0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
7877 }
7878 
7879 #endif /* _REGEX_RE_COMP */
7880 
7881 /* POSIX.2 functions.  Don't define these for Emacs.  */
7882 
7883 #ifndef emacs
7884 
7885 /* regcomp takes a regular expression as a string and compiles it.
7886 
7887    PREG is a regex_t *.  We do not expect any fields to be initialized,
7888    since POSIX says we shouldn't.  Thus, we set
7889 
7890      `buffer' to the compiled pattern;
7891      `used' to the length of the compiled pattern;
7892      `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
7893        REG_EXTENDED bit in CFLAGS is set; otherwise, to
7894        RE_SYNTAX_POSIX_BASIC;
7895      `newline_anchor' to REG_NEWLINE being set in CFLAGS;
7896      `fastmap' to an allocated space for the fastmap;
7897      `fastmap_accurate' to zero;
7898      `re_nsub' to the number of subexpressions in PATTERN.
7899 
7900    PATTERN is the address of the pattern string.
7901 
7902    CFLAGS is a series of bits which affect compilation.
7903 
7904      If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
7905      use POSIX basic syntax.
7906 
7907      If REG_NEWLINE is set, then . and [^...] don't match newline.
7908      Also, regexec will try a match beginning after every newline.
7909 
7910      If REG_ICASE is set, then we considers upper- and lowercase
7911      versions of letters to be equivalent when matching.
7912 
7913      If REG_NOSUB is set, then when PREG is passed to regexec, that
7914      routine will report only success or failure, and nothing about the
7915      registers.
7916 
7917    It returns 0 if it succeeds, nonzero if it doesn't.  (See regex.h for
7918    the return codes and their meanings.)  */
7919 
7920 int
7921 regcomp (regex_t *preg, const char *pattern, int cflags)
7922 {
7923   reg_errcode_t ret;
7924   reg_syntax_t syntax
7925     = (cflags & REG_EXTENDED) ?
7926       RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
7927 
7928   /* regex_compile will allocate the space for the compiled pattern.  */
7929   preg->buffer = 0;
7930   preg->allocated = 0;
7931   preg->used = 0;
7932 
7933   /* Try to allocate space for the fastmap.  */
7934   preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
7935 
7936   if (cflags & REG_ICASE)
7937     {
7938       int i;
7939 
7940       preg->translate
7941 	= (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
7942 				      * sizeof (*(RE_TRANSLATE_TYPE)0));
7943       if (preg->translate == NULL)
7944         return (int) REG_ESPACE;
7945 
7946       /* Map uppercase characters to corresponding lowercase ones.  */
7947       for (i = 0; i < CHAR_SET_SIZE; i++)
7948         preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
7949     }
7950   else
7951     preg->translate = NULL;
7952 
7953   /* If REG_NEWLINE is set, newlines are treated differently.  */
7954   if (cflags & REG_NEWLINE)
7955     { /* REG_NEWLINE implies neither . nor [^...] match newline.  */
7956       syntax &= ~RE_DOT_NEWLINE;
7957       syntax |= RE_HAT_LISTS_NOT_NEWLINE;
7958       /* It also changes the matching behavior.  */
7959       preg->newline_anchor = 1;
7960     }
7961   else
7962     preg->newline_anchor = 0;
7963 
7964   preg->no_sub = !!(cflags & REG_NOSUB);
7965 
7966   /* POSIX says a null character in the pattern terminates it, so we
7967      can use strlen here in compiling the pattern.  */
7968 # ifdef MBS_SUPPORT
7969   if (MB_CUR_MAX != 1)
7970     ret = wcs_regex_compile (pattern, strlen (pattern), syntax, preg);
7971   else
7972 # endif
7973     ret = byte_regex_compile (pattern, strlen (pattern), syntax, preg);
7974 
7975   /* POSIX doesn't distinguish between an unmatched open-group and an
7976      unmatched close-group: both are REG_EPAREN.  */
7977   if (ret == REG_ERPAREN) ret = REG_EPAREN;
7978 
7979   if (ret == REG_NOERROR && preg->fastmap)
7980     {
7981       /* Compute the fastmap now, since regexec cannot modify the pattern
7982 	 buffer.  */
7983       if (re_compile_fastmap (preg) == -2)
7984 	{
7985 	  /* Some error occurred while computing the fastmap, just forget
7986 	     about it.  */
7987 	  free (preg->fastmap);
7988 	  preg->fastmap = NULL;
7989 	}
7990     }
7991 
7992   return (int) ret;
7993 }
7994 #ifdef _LIBC
7995 weak_alias (__regcomp, regcomp)
7996 #endif
7997 
7998 
7999 /* regexec searches for a given pattern, specified by PREG, in the
8000    string STRING.
8001 
8002    If NMATCH is zero or REG_NOSUB was set in the cflags argument to
8003    `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at
8004    least NMATCH elements, and we set them to the offsets of the
8005    corresponding matched substrings.
8006 
8007    EFLAGS specifies `execution flags' which affect matching: if
8008    REG_NOTBOL is set, then ^ does not match at the beginning of the
8009    string; if REG_NOTEOL is set, then $ does not match at the end.
8010 
8011    We return 0 if we find a match and REG_NOMATCH if not.  */
8012 
8013 int
8014 regexec (const regex_t *preg, const char *string, size_t nmatch,
8015          regmatch_t pmatch[], int eflags)
8016 {
8017   int ret;
8018   struct re_registers regs;
8019   regex_t private_preg;
8020   int len = strlen (string);
8021   boolean want_reg_info = !preg->no_sub && nmatch > 0;
8022 
8023   private_preg = *preg;
8024 
8025   private_preg.not_bol = !!(eflags & REG_NOTBOL);
8026   private_preg.not_eol = !!(eflags & REG_NOTEOL);
8027 
8028   /* The user has told us exactly how many registers to return
8029      information about, via `nmatch'.  We have to pass that on to the
8030      matching routines.  */
8031   private_preg.regs_allocated = REGS_FIXED;
8032 
8033   if (want_reg_info)
8034     {
8035       regs.num_regs = nmatch;
8036       regs.start = TALLOC (nmatch * 2, regoff_t);
8037       if (regs.start == NULL)
8038         return (int) REG_NOMATCH;
8039       regs.end = regs.start + nmatch;
8040     }
8041 
8042   /* Perform the searching operation.  */
8043   ret = re_search (&private_preg, string, len,
8044                    /* start: */ 0, /* range: */ len,
8045                    want_reg_info ? &regs : (struct re_registers *) 0);
8046 
8047   /* Copy the register information to the POSIX structure.  */
8048   if (want_reg_info)
8049     {
8050       if (ret >= 0)
8051         {
8052           unsigned r;
8053 
8054           for (r = 0; r < nmatch; r++)
8055             {
8056               pmatch[r].rm_so = regs.start[r];
8057               pmatch[r].rm_eo = regs.end[r];
8058             }
8059         }
8060 
8061       /* If we needed the temporary register info, free the space now.  */
8062       free (regs.start);
8063     }
8064 
8065   /* We want zero return to mean success, unlike `re_search'.  */
8066   return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
8067 }
8068 #ifdef _LIBC
8069 weak_alias (__regexec, regexec)
8070 #endif
8071 
8072 
8073 /* Returns a message corresponding to an error code, ERRCODE, returned
8074    from either regcomp or regexec.   We don't use PREG here.  */
8075 
8076 size_t
8077 regerror (int errcode, const regex_t *preg ATTRIBUTE_UNUSED,
8078           char *errbuf, size_t errbuf_size)
8079 {
8080   const char *msg;
8081   size_t msg_size;
8082 
8083   if (errcode < 0
8084       || errcode >= (int) (sizeof (re_error_msgid)
8085 			   / sizeof (re_error_msgid[0])))
8086     /* Only error codes returned by the rest of the code should be passed
8087        to this routine.  If we are given anything else, or if other regex
8088        code generates an invalid error code, then the program has a bug.
8089        Dump core so we can fix it.  */
8090     abort ();
8091 
8092   msg = gettext (re_error_msgid[errcode]);
8093 
8094   msg_size = strlen (msg) + 1; /* Includes the null.  */
8095 
8096   if (errbuf_size != 0)
8097     {
8098       if (msg_size > errbuf_size)
8099         {
8100 #if defined HAVE_MEMPCPY || defined _LIBC
8101 	  *((char *) mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
8102 #else
8103           (void) memcpy (errbuf, msg, errbuf_size - 1);
8104           errbuf[errbuf_size - 1] = 0;
8105 #endif
8106         }
8107       else
8108         (void) memcpy (errbuf, msg, msg_size);
8109     }
8110 
8111   return msg_size;
8112 }
8113 #ifdef _LIBC
8114 weak_alias (__regerror, regerror)
8115 #endif
8116 
8117 
8118 /* Free dynamically allocated space used by PREG.  */
8119 
8120 void
8121 regfree (regex_t *preg)
8122 {
8123   free (preg->buffer);
8124   preg->buffer = NULL;
8125 
8126   preg->allocated = 0;
8127   preg->used = 0;
8128 
8129   free (preg->fastmap);
8130   preg->fastmap = NULL;
8131   preg->fastmap_accurate = 0;
8132 
8133   free (preg->translate);
8134   preg->translate = NULL;
8135 }
8136 #ifdef _LIBC
8137 weak_alias (__regfree, regfree)
8138 #endif
8139 
8140 #endif /* not emacs  */
8141 
8142 #endif /* not INSIDE_RECURSION */
8143 
8144 
8145 #undef STORE_NUMBER
8146 #undef STORE_NUMBER_AND_INCR
8147 #undef EXTRACT_NUMBER
8148 #undef EXTRACT_NUMBER_AND_INCR
8149 
8150 #undef DEBUG_PRINT_COMPILED_PATTERN
8151 #undef DEBUG_PRINT_DOUBLE_STRING
8152 
8153 #undef INIT_FAIL_STACK
8154 #undef RESET_FAIL_STACK
8155 #undef DOUBLE_FAIL_STACK
8156 #undef PUSH_PATTERN_OP
8157 #undef PUSH_FAILURE_POINTER
8158 #undef PUSH_FAILURE_INT
8159 #undef PUSH_FAILURE_ELT
8160 #undef POP_FAILURE_POINTER
8161 #undef POP_FAILURE_INT
8162 #undef POP_FAILURE_ELT
8163 #undef DEBUG_PUSH
8164 #undef DEBUG_POP
8165 #undef PUSH_FAILURE_POINT
8166 #undef POP_FAILURE_POINT
8167 
8168 #undef REG_UNSET_VALUE
8169 #undef REG_UNSET
8170 
8171 #undef PATFETCH
8172 #undef PATFETCH_RAW
8173 #undef PATUNFETCH
8174 #undef TRANSLATE
8175 
8176 #undef INIT_BUF_SIZE
8177 #undef GET_BUFFER_SPACE
8178 #undef BUF_PUSH
8179 #undef BUF_PUSH_2
8180 #undef BUF_PUSH_3
8181 #undef STORE_JUMP
8182 #undef STORE_JUMP2
8183 #undef INSERT_JUMP
8184 #undef INSERT_JUMP2
8185 #undef EXTEND_BUFFER
8186 #undef GET_UNSIGNED_NUMBER
8187 #undef FREE_STACK_RETURN
8188 
8189 # undef POINTER_TO_OFFSET
8190 # undef MATCHING_IN_FRST_STRING
8191 # undef PREFETCH
8192 # undef AT_STRINGS_BEG
8193 # undef AT_STRINGS_END
8194 # undef WORDCHAR_P
8195 # undef FREE_VAR
8196 # undef FREE_VARIABLES
8197 # undef NO_HIGHEST_ACTIVE_REG
8198 # undef NO_LOWEST_ACTIVE_REG
8199 
8200 # undef CHAR_T
8201 # undef UCHAR_T
8202 # undef COMPILED_BUFFER_VAR
8203 # undef OFFSET_ADDRESS_SIZE
8204 # undef CHAR_CLASS_SIZE
8205 # undef PREFIX
8206 # undef ARG_PREFIX
8207 # undef PUT_CHAR
8208 # undef BYTE
8209 # undef WCHAR
8210 
8211 # define DEFINED_ONCE
8212