1 /* Definitions of target machine for GNU compiler, Synopsys DesignWare ARC cpu.
2    Copyright (C) 1994-2020 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10 
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 GNU General Public License for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #ifndef GCC_ARC_H
21 #define GCC_ARC_H
22 
23 #include <stdbool.h>
24 
25 /* Things to do:
26 
27    - incscc, decscc?
28 
29 */
30 
31 #define SYMBOL_FLAG_SHORT_CALL	(SYMBOL_FLAG_MACH_DEP << 0)
32 #define SYMBOL_FLAG_MEDIUM_CALL	(SYMBOL_FLAG_MACH_DEP << 1)
33 #define SYMBOL_FLAG_LONG_CALL	(SYMBOL_FLAG_MACH_DEP << 2)
34 #define SYMBOL_FLAG_CMEM	(SYMBOL_FLAG_MACH_DEP << 3)
35 
36 #ifndef TARGET_CPU_DEFAULT
37 #define TARGET_CPU_DEFAULT	PROCESSOR_arc700
38 #endif
39 
40 /* Check if this symbol has a long_call attribute in its declaration */
41 #define SYMBOL_REF_LONG_CALL_P(X)	\
42 	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0)
43 
44 /* Check if this symbol has a medium_call attribute in its declaration */
45 #define SYMBOL_REF_MEDIUM_CALL_P(X)	\
46 	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_MEDIUM_CALL) != 0)
47 
48 /* Check if this symbol has a short_call attribute in its declaration */
49 #define SYMBOL_REF_SHORT_CALL_P(X)	\
50 	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_SHORT_CALL) != 0)
51 
52 /* Names to predefine in the preprocessor for this target machine.  */
53 #define TARGET_CPU_CPP_BUILTINS() arc_cpu_cpp_builtins (pfile)
54 
55 /* Macros enabled by specific command line option.  FIXME: to be
56    deprecatd.  */
57 #define CPP_SPEC "\
58 %{msimd:-D__Xsimd} %{mno-mpy:-D__Xno_mpy} %{mswap:-D__Xswap} \
59 %{mmin-max:-D__Xmin_max} %{mEA:-D__Xea} \
60 %{mspfp*:-D__Xspfp} %{mdpfp*:-D__Xdpfp} \
61 %{mmac-d16:-D__Xxmac_d16} %{mmac-24:-D__Xxmac_24} \
62 %{mdsp-packa:-D__Xdsp_packa} %{mcrc:-D__Xcrc} %{mdvbf:-D__Xdvbf} \
63 %{mtelephony:-D__Xtelephony} %{mxy:-D__Xxy} %{mmul64: -D__Xmult32} \
64 %{mlock:-D__Xlock} %{mswape:-D__Xswape} %{mrtsc:-D__Xrtsc} \
65 %(subtarget_cpp_spec)"
66 
67 #undef CC1_SPEC
68 #define CC1_SPEC "%{EB:%{EL:%emay not use both -EB and -EL}}	\
69 %{EB:-mbig-endian} %{EL:-mlittle-endian}			\
70 %{G*}								\
71 "
72 extern const char *arc_cpu_to_as (int argc, const char **argv);
73 
74 #define EXTRA_SPEC_FUNCTIONS			\
75   { "cpu_to_as", arc_cpu_to_as },
76 
77 /* This macro defines names of additional specifications to put in the specs
78    that can be used in various specifications like CC1_SPEC.  Its definition
79    is an initializer with a subgrouping for each command option.
80 
81    Each subgrouping contains a string constant, that defines the
82    specification name, and a string constant that used by the GCC driver
83    program.
84 
85    Do not define this macro if it does not need to do anything.  */
86 #define EXTRA_SPECS				      \
87   { "subtarget_cpp_spec",	SUBTARGET_CPP_SPEC }, \
88   SUBTARGET_EXTRA_SPECS
89 
90 #ifndef SUBTARGET_EXTRA_SPECS
91 #define SUBTARGET_EXTRA_SPECS
92 #endif
93 
94 #ifndef SUBTARGET_CPP_SPEC
95 #define SUBTARGET_CPP_SPEC ""
96 #endif
97 
98 #undef ASM_SPEC
99 #define ASM_SPEC  "%{mbig-endian|EB:-EB} %{EL} "			\
100   "%:cpu_to_as(%{mcpu=*:%*}) %{mspfp*} %{mdpfp*} "                      \
101   "%{mfpu=fpuda*:-mfpuda} %{mcode-density}"
102 
103 #define OPTION_DEFAULT_SPECS						\
104   {"cpu", "%{!mcpu=*:%{!mARC*:%{!marc*:%{!mA7:%{!mA6:-mcpu=%(VALUE)}}}}}" }
105 
106 #ifndef DRIVER_ENDIAN_SELF_SPECS
107 #define DRIVER_ENDIAN_SELF_SPECS ""
108 #endif
109 
110 #define DRIVER_SELF_SPECS DRIVER_ENDIAN_SELF_SPECS		   \
111   "%{mARC600|mA6: -mcpu=arc600 %<mARC600 %<mA6 %<mARC600}"	   \
112   "%{mARC601: -mcpu=arc601 %<mARC601}"				   \
113   "%{mARC700|mA7: -mcpu=arc700 %<mARC700 %<mA7}"		   \
114   "%{mEA: -mea %<mEA}"
115 
116 /* Run-time compilation parameters selecting different hardware subsets.  */
117 
118 #define TARGET_MIXED_CODE (TARGET_MIXED_CODE_SET)
119 
120 #define TARGET_SPFP (TARGET_SPFP_FAST_SET || TARGET_SPFP_COMPACT_SET)
121 #define TARGET_DPFP (TARGET_DPFP_FAST_SET || TARGET_DPFP_COMPACT_SET	\
122 		     || TARGET_FP_DP_AX)
123 
124 #define SUBTARGET_SWITCHES
125 
126 /* Instruction set characteristics.
127    These are internal macros, set by the appropriate -m option.  */
128 
129 /* Non-zero means the cpu supports norm instruction.  This flag is set by
130    default for A7, and only for pre A7 cores when -mnorm is given.  */
131 #define TARGET_NORM (TARGET_ARC700 || TARGET_NORM_SET || TARGET_HS)
132 /* Indicate if an optimized floating point emulation library is available.  */
133 #define TARGET_OPTFPE (TARGET_ARC700 || TARGET_FPX_QUARK)
134 
135 /* Non-zero means the cpu supports swap instruction.  This flag is set by
136    default for A7, and only for pre A7 cores when -mswap is given.  */
137 #define TARGET_SWAP (TARGET_ARC700 || TARGET_SWAP_SET)
138 
139 /* Provide some macros for size / scheduling features of the ARC700, so
140    that we can pick & choose features if we get a new cpu family member.  */
141 
142 /* Should we try to unalign likely taken branches without a delay slot.  */
143 #define TARGET_UNALIGN_BRANCH (TARGET_ARC700 && !optimize_size)
144 
145 /* Should we add padding before a return insn to avoid mispredict?  */
146 #define TARGET_PAD_RETURN (TARGET_ARC700 && !optimize_size)
147 
148 /* For an anulled-true delay slot insn for a delayed branch, should we only
149    use conditional execution?  */
150 #define TARGET_AT_DBR_CONDEXEC  (!TARGET_ARC700 && !TARGET_V2)
151 
152 #define TARGET_ARC600 ((arc_selected_cpu->arch_info->arch_id	\
153 			== BASE_ARCH_6xx)			\
154 		       && (TARGET_BARREL_SHIFTER))
155 #define TARGET_ARC601 ((arc_selected_cpu->arch_info->arch_id	\
156 			== BASE_ARCH_6xx)			\
157 		       && (!TARGET_BARREL_SHIFTER))
158 #define TARGET_ARC700 (arc_selected_cpu->arch_info->arch_id	\
159 		       == BASE_ARCH_700)
160 /* An NPS400 is a specialisation of ARC700, so it is correct for NPS400
161    TARGET_ARC700 is true, and TARGET_NPS400 is true.  */
162 #define TARGET_NPS400 ((arc_selected_cpu->arch_info->arch_id	\
163 			== BASE_ARCH_700)			\
164 		       && (arc_selected_cpu->processor		\
165 			   == PROCESSOR_nps400))
166 #define TARGET_EM (arc_selected_cpu->arch_info->arch_id == BASE_ARCH_em)
167 #define TARGET_HS (arc_selected_cpu->arch_info->arch_id == BASE_ARCH_hs)
168 #define TARGET_V2 (TARGET_EM || TARGET_HS)
169 
170 #ifndef UNALIGNED_ACCESS_DEFAULT
171 #define UNALIGNED_ACCESS_DEFAULT 0
172 #endif
173 
174 #ifndef TARGET_NPS_BITOPS_DEFAULT
175 #define TARGET_NPS_BITOPS_DEFAULT 0
176 #endif
177 
178 #ifndef TARGET_NPS_CMEM_DEFAULT
179 #define TARGET_NPS_CMEM_DEFAULT 0
180 #endif
181 
182 /* Enable the RRQ instruction alternatives.  */
183 
184 #define TARGET_RRQ_CLASS TARGET_NPS_BITOPS
185 
186 /* Target machine storage layout.  */
187 
188 /* We want zero_extract to mean the same
189    no matter what the byte endianness is.  */
190 #define BITS_BIG_ENDIAN 0
191 
192 /* Define this if most significant byte of a word is the lowest numbered.  */
193 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN)
194 
195 /* Define this if most significant word of a multiword number is the lowest
196    numbered.  */
197 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN)
198 
199 /* Width in bits of a "word", which is the contents of a machine register.
200    Note that this is not necessarily the width of data type `int';
201    if using 16-bit ints on a 68000, this would still be 32.
202    But on a machine with 16-bit registers, this would be 16.  */
203 #define BITS_PER_WORD 32
204 
205 /* Width of a word, in units (bytes).  */
206 #define UNITS_PER_WORD 4
207 
208 /* Define this macro if it is advisable to hold scalars in registers
209    in a wider mode than that declared by the program.  In such cases,
210    the value is constrained to be within the bounds of the declared
211    type, but kept valid in the wider mode.  The signedness of the
212    extension may differ from that of the type.  */
213 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
214 if (GET_MODE_CLASS (MODE) == MODE_INT		\
215     && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)	\
216 {						\
217   (MODE) = SImode;				\
218 }
219 
220 /* Width in bits of a pointer.
221    See also the macro `Pmode' defined below.  */
222 #define POINTER_SIZE 32
223 
224 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
225 #define PARM_BOUNDARY 32
226 
227 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
228 /* TOCHECK: Changed from 64 to 32 */
229 #define STACK_BOUNDARY 32
230 
231 /* ALIGN FRAMES on word boundaries.  */
232 #define ARC_STACK_ALIGN(LOC) \
233   (((LOC) + STACK_BOUNDARY / BITS_PER_UNIT - 1) & -STACK_BOUNDARY/BITS_PER_UNIT)
234 
235 /* Allocation boundary (in *bits*) for the code of a function.  */
236 #define FUNCTION_BOUNDARY 32
237 
238 /* Alignment of field after `int : 0' in a structure.  */
239 #define EMPTY_FIELD_BOUNDARY 32
240 
241 /* Every structure's size must be a multiple of this.  */
242 #define STRUCTURE_SIZE_BOUNDARY 8
243 
244 /* A bitfield declared as `int' forces `int' alignment for the struct.  */
245 #define PCC_BITFIELD_TYPE_MATTERS 1
246 
247 /* An expression for the alignment of a structure field FIELD if the
248    alignment computed in the usual way (including applying of
249    `BIGGEST_ALIGNMENT' and `BIGGEST_FIELD_ALIGNMENT' to the
250    alignment) is COMPUTED.  It overrides alignment only if the field
251    alignment has not been set by the `__attribute__ ((aligned (N)))'
252    construct.
253 */
254 
255 #define ADJUST_FIELD_ALIGN(FIELD, TYPE, COMPUTED) \
256 (TYPE_MODE (strip_array_types (TYPE)) == DFmode \
257  ? MIN ((COMPUTED), 32) : (COMPUTED))
258 
259 
260 
261 /* No data type wants to be aligned rounder than this.  */
262 /* This is bigger than currently necessary for the ARC.  If 8 byte floats are
263    ever added it's not clear whether they'll need such alignment or not.  For
264    now we assume they will.  We can always relax it if necessary but the
265    reverse isn't true.  */
266 /* TOCHECK: Changed from 64 to 32 */
267 #define BIGGEST_ALIGNMENT 32
268 
269 /* The best alignment to use in cases where we have a choice.  */
270 #define FASTEST_ALIGNMENT 32
271 
272 /* Make arrays of chars word-aligned for the same reasons.  */
273 #define LOCAL_ALIGNMENT(TYPE, ALIGN)             \
274   (TREE_CODE (TYPE) == ARRAY_TYPE               \
275    && TYPE_MODE (TREE_TYPE (TYPE)) == QImode    \
276    && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
277 
278 #define DATA_ALIGNMENT(TYPE, ALIGN)		\
279   (TREE_CODE (TYPE) == ARRAY_TYPE		\
280    && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
281    && arc_size_opt_level < 3			\
282    && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
283 
284 /* Set this nonzero if move instructions will actually fail to work
285    when given unaligned data.  */
286 /* On the ARC the lower address bits are masked to 0 as necessary.  The chip
287    won't croak when given an unaligned address, but the insn will still fail
288    to produce the correct result.  */
289 #define STRICT_ALIGNMENT (!unaligned_access)
290 
291 /* Layout of source language data types.  */
292 
293 #define SHORT_TYPE_SIZE		16
294 #define INT_TYPE_SIZE		32
295 #define LONG_TYPE_SIZE		32
296 #define LONG_LONG_TYPE_SIZE	64
297 #define FLOAT_TYPE_SIZE		32
298 #define DOUBLE_TYPE_SIZE	64
299 #define LONG_DOUBLE_TYPE_SIZE	64
300 
301 /* Define this as 1 if `char' should by default be signed; else as 0.  */
302 #define DEFAULT_SIGNED_CHAR 0
303 
304 #undef SIZE_TYPE
305 #define SIZE_TYPE "unsigned int"
306 
307 #undef PTRDIFF_TYPE
308 #define PTRDIFF_TYPE "int"
309 
310 #undef WCHAR_TYPE
311 #define WCHAR_TYPE "int"
312 
313 #undef WCHAR_TYPE_SIZE
314 #define WCHAR_TYPE_SIZE 32
315 
316 /* Standard register usage.  */
317 
318 /* Number of actual hardware registers.
319    The hardware registers are assigned numbers for the compiler
320    from 0 to just below FIRST_PSEUDO_REGISTER.
321    All registers that the compiler knows about must be given numbers,
322    even those that are not normally considered general registers.
323 
324    Registers 61, 62, and 63 are not really registers and we needn't treat
325    them as such.  We still need a register for the condition code and
326    argument pointer.  */
327 
328 /* r63 is pc, r64-r127 = simd vregs, r128-r143 = simd dma config regs
329    r144, r145 = ARG_POINTER, FRAME_POINTER
330    and therefore the pseudo registers start from r146. */
331 #define FIRST_PSEUDO_REGISTER 146
332 
333 /* 1 for registers that have pervasive standard uses
334    and are not available for the register allocator.
335 
336    0-28  - general purpose registers
337    29    - ilink1 (interrupt link register)
338    30    - ilink2 (interrupt link register)
339    31    - blink (branch link register)
340    32-59 - reserved for extensions
341    60    - LP_COUNT
342    61    - condition code
343    62    - argument pointer
344    63    - program counter
345 
346    FWIW, this is how the 61-63 encodings are used by the hardware:
347    61    - reserved
348    62    - long immediate data indicator
349    63    - PCL (program counter aligned to 32 bit, read-only)
350 
351    The general purpose registers are further broken down into:
352 
353    0-7   - arguments/results
354    8-12  - call used (r11 - static chain pointer)
355    13-25 - call saved
356    26    - global pointer
357    27    - frame pointer
358    28    - stack pointer
359    29    - ilink1
360    30    - ilink2
361    31    - return address register
362 
363    By default, the extension registers are not available.  */
364 /* Present implementations only have VR0-VR23 only.  */
365 #define FIXED_REGISTERS \
366 { 0, 0, 0, 0, 0, 0, 0, 0,	\
367   0, 0, 0, 0, 0, 0, 0, 0,	\
368   0, 0, 0, 0, 0, 0, 0, 0,	\
369   0, 0, 1, 0, 1, 1, 1, 1,	\
370 				\
371   1, 1, 1, 1, 1, 1, 1, 1,	\
372   0, 0, 0, 0, 1, 1, 1, 1,	\
373   1, 1, 1, 1, 1, 1, 1, 1,	\
374   1, 1, 1, 1, 1, 1, 1, 1,       \
375 				\
376   0, 0, 0, 0, 0, 0, 0, 0,       \
377   0, 0, 0, 0, 0, 0, 0, 0,       \
378   0, 0, 0, 0, 0, 0, 0, 0,       \
379   1, 1, 1, 1, 1, 1, 1, 1,       \
380 				\
381   1, 1, 1, 1, 1, 1, 1, 1,       \
382   1, 1, 1, 1, 1, 1, 1, 1,       \
383   1, 1, 1, 1, 1, 1, 1, 1,       \
384   1, 1, 1, 1, 1, 1, 1, 1,       \
385 				\
386   0, 0, 0, 0, 0, 0, 0, 0,       \
387   0, 0, 0, 0, 0, 0, 0, 0,	\
388   1, 1}
389 
390 /* 1 for registers not available across function calls.
391    These must include the FIXED_REGISTERS and also any
392    registers that can be used without being saved.
393    The latter must include the registers where values are returned
394    and the register where structure-value addresses are passed.
395    Aside from that, you can include as many other registers as you like.  */
396 #define CALL_USED_REGISTERS     \
397 {                               \
398   1, 1, 1, 1, 1, 1, 1, 1,	\
399   1, 1, 1, 1, 1, 0, 0, 0,	\
400   0, 0, 0, 0, 0, 0, 0, 0,	\
401   0, 0, 1, 0, 1, 1, 1, 1,	\
402 				\
403   1, 1, 1, 1, 1, 1, 1, 1,	\
404   1, 1, 1, 1, 1, 1, 1, 1,	\
405   1, 1, 1, 1, 1, 1, 1, 1,	\
406   1, 1, 1, 1, 1, 1, 1, 1,       \
407 				\
408   0, 0, 0, 0, 0, 0, 0, 0,       \
409   0, 0, 0, 0, 0, 0, 0, 0,       \
410   0, 0, 0, 0, 0, 0, 0, 0,       \
411   1, 1, 1, 1, 1, 1, 1, 1,       \
412 				\
413   1, 1, 1, 1, 1, 1, 1, 1,       \
414   1, 1, 1, 1, 1, 1, 1, 1,       \
415   1, 1, 1, 1, 1, 1, 1, 1,       \
416   1, 1, 1, 1, 1, 1, 1, 1,       \
417 				\
418   0, 0, 0, 0, 0, 0, 0, 0,       \
419   0, 0, 0, 0, 0, 0, 0, 0,	\
420   1, 1}
421 
422 /* If defined, an initializer for a vector of integers, containing the
423    numbers of hard registers in the order in which GCC should
424    prefer to use them (from most preferred to least).  */
425 #define REG_ALLOC_ORDER							\
426 {									\
427   /* General registers.  */						\
428   2, 3, 12, 13, 14, 15, 1, 0, 4, 5, 6, 7, 8, 9, 10, 11,			\
429   16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30,			\
430   /* Extension core registers.  */					\
431   32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,	\
432   48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,			\
433   /* VR regs.  */							\
434   64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,	\
435   80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,	\
436   96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109,	\
437   110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, \
438   124, 125, 126, 127,							\
439   /* DMA registers.  */							\
440   128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, \
441   142, 143,								\
442   /* Register not used for general use.  */				\
443   62, FRAME_POINTER_REGNUM, ARG_POINTER_REGNUM,				\
444   SP_REG, ILINK1_REG, RETURN_ADDR_REGNUM, LP_COUNT, CC_REG, PCL_REG	\
445 }
446 
447 /* Use different register alloc ordering for Thumb.  */
448 #define ADJUST_REG_ALLOC_ORDER arc_adjust_reg_alloc_order ()
449 
450 /* Tell IRA to use the order we define rather than messing it up with its
451    own cost calculations.  */
452 #define HONOR_REG_ALLOC_ORDER 1
453 
454 /* Internal macros to classify a register number as to whether it's a
455    general purpose register for compact insns (r0-r3,r12-r15), or
456    stack pointer (r28).  */
457 
458 #define COMPACT_GP_REG_P(REGNO) \
459    (((signed)(REGNO) >= 0 && (REGNO) <= 3) || ((REGNO) >= 12 && (REGNO) <= 15))
460 #define SP_REG_P(REGNO)  ((REGNO) == 28)
461 
462 
463 
464 /* Register classes and constants.  */
465 
466 /* Define the classes of registers for register constraints in the
467    machine description.  Also define ranges of constants.
468 
469    One of the classes must always be named ALL_REGS and include all hard regs.
470    If there is more than one class, another class must be named NO_REGS
471    and contain no registers.
472 
473    The name GENERAL_REGS must be the name of a class (or an alias for
474    another name such as ALL_REGS).  This is the class of registers
475    that is allowed by "g" or "r" in a register constraint.
476    Also, registers outside this class are allocated only when
477    instructions express preferences for them.
478 
479    The classes must be numbered in nondecreasing order; that is,
480    a larger-numbered class must never be contained completely
481    in a smaller-numbered class.
482 
483    For any two classes, it is very desirable that there be another
484    class that represents their union.
485 
486    It is important that any condition codes have class NO_REGS.
487    See `register_operand'.  */
488 
489 enum reg_class
490 {
491    NO_REGS,
492    R0_REGS,			/* 'x' */
493    R0R1_CD_REGS,		/* 'Rsd' */
494    R0R3_CD_REGS,		/* 'Rcd' */
495    ARCOMPACT16_REGS,		/* 'q' */
496    SIBCALL_REGS,		/* "Rsc" */
497    AC16_H_REGS,			/* 'h' */
498    DOUBLE_REGS,			/* 'D' */
499    GENERAL_REGS,		/* 'r' */
500    SIMD_VR_REGS,		/* 'v' */
501    SIMD_DMA_CONFIG_REGS,	/* 'd' */
502    ALL_REGS,
503    LIM_REG_CLASSES
504 };
505 
506 #define N_REG_CLASSES (int) LIM_REG_CLASSES
507 
508 /* Give names of register classes as strings for dump file.   */
509 #define REG_CLASS_NAMES	  \
510 {			  \
511   "NO_REGS",		  \
512   "R0_REGS",		  \
513   "R0R1_CD_REGS",	  \
514   "R0R3_CD_REGS",	  \
515   "ARCOMPACT16_REGS",	  \
516   "SIBCALL_REGS",	  \
517   "AC16_H_REGS",	  \
518   "DOUBLE_REGS",	  \
519   "GENERAL_REGS",	  \
520   "SIMD_VR_REGS",	  \
521   "SIMD_DMA_CONFIG_REGS", \
522   "ALL_REGS"		  \
523 }
524 
525 /* Define which registers fit in which classes.
526    This is an initializer for a vector of HARD_REG_SET
527    of length N_REG_CLASSES.  */
528 
529 #define REG_CLASS_CONTENTS \
530 {									\
531   {0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* NO_REGS.  */\
532   {0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* 'x'.  */ \
533   {0x00000003, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* 'Rsd'.  */ \
534   {0x0000000f, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* 'Rcd'.  */ \
535   {0x0000f00f, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* 'q'.  */ \
536   {0x00001fff, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* 'Rsc'.  */ \
537   {0x9fffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* 'h'.  */ \
538   {0x00000000, 0x00000f00, 0x00000000, 0x00000000, 0x00000000}, /* 'D'.  */ \
539   {0xffffffff, 0x8fffffff, 0x00000000, 0x00000000, 0x00030000}, /* 'r'.  */ \
540   {0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x00000000}, /* 'v'.  */ \
541   {0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x0000ffff}, /* 'd'.  */ \
542   {0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x0003ffff} /* ALL_REGS.  */\
543 }
544 
545 /* Local macros to mark the first and last regs of different classes.  */
546 #define ARC_FIRST_SIMD_VR_REG              64
547 #define ARC_LAST_SIMD_VR_REG               127
548 
549 #define ARC_FIRST_SIMD_DMA_CONFIG_REG      128
550 #define ARC_FIRST_SIMD_DMA_CONFIG_IN_REG   128
551 #define ARC_FIRST_SIMD_DMA_CONFIG_OUT_REG  136
552 #define ARC_LAST_SIMD_DMA_CONFIG_REG       143
553 
554 /* ARCv2 double-register accumulator.  */
555 #define ACC_REG_FIRST 58
556 #define ACC_REG_LAST  59
557 #define ACCL_REGNO    (TARGET_BIG_ENDIAN ? ACC_REG_FIRST + 1 : ACC_REG_FIRST)
558 #define ACCH_REGNO    (TARGET_BIG_ENDIAN ? ACC_REG_FIRST : ACC_REG_FIRST + 1)
559 
560 /* The same information, inverted:
561    Return the class number of the smallest class containing
562    reg number REGNO.  This could be a conditional expression
563    or could index an array.  */
564 
565 extern enum reg_class arc_regno_reg_class[];
566 
567 #define REGNO_REG_CLASS(REGNO) (arc_regno_reg_class[REGNO])
568 
569 /* The class value for valid index registers. An index register is
570    one used in an address where its value is either multiplied by
571    a scale factor or added to another register (as well as added to a
572    displacement).  */
573 
574 #define INDEX_REG_CLASS (TARGET_MIXED_CODE ? ARCOMPACT16_REGS : GENERAL_REGS)
575 
576 /* The class value for valid base registers. A base register is one used in
577    an address which is the register value plus a displacement.  */
578 
579 #define BASE_REG_CLASS GENERAL_REGS
580 
581 /* These assume that REGNO is a hard or pseudo reg number.
582    They give nonzero only if REGNO is a hard reg of the suitable class
583    or a pseudo reg currently allocated to a suitable hard reg.
584    Since they use reg_renumber, they are safe only once reg_renumber
585    has been allocated, which happens in local-alloc.c.  */
586 #define REGNO_OK_FOR_BASE_P(REGNO)					\
587   ((REGNO) < 29								\
588    || ((REGNO) == ARG_POINTER_REGNUM)					\
589    || ((REGNO) == FRAME_POINTER_REGNUM)					\
590    || ((REGNO) == PCL_REG)						\
591    || ((unsigned) reg_renumber[REGNO] < 29)				\
592    || ((unsigned) (REGNO) == (unsigned) arc_tp_regno)			\
593    || (fixed_regs[REGNO] == 0 && IN_RANGE (REGNO, 32, 59))		\
594    || (fixed_regs[REGNO] == 0 && (REGNO) == R30_REG))
595 
596 #define REGNO_OK_FOR_INDEX_P(REGNO) REGNO_OK_FOR_BASE_P(REGNO)
597 
598 /* Given an rtx X being reloaded into a reg required to be
599    in class CLASS, return the class of reg to actually use.
600    In general this is just CLASS; but on some machines
601    in some cases it is preferable to use a more restrictive class.  */
602 
603 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
604   arc_preferred_reload_class((X), (CLASS))
605 
606   extern enum reg_class arc_preferred_reload_class (rtx, enum reg_class);
607 
608 /* Return the maximum number of consecutive registers
609    needed to represent mode MODE in a register of class CLASS.  */
610 
611 #define CLASS_MAX_NREGS(CLASS, MODE) \
612 (( GET_MODE_SIZE (MODE) == 16 && CLASS == SIMD_VR_REGS) ? 1: \
613 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
614 
615 #define SMALL_INT(X) ((unsigned) ((X) + 0x100) < 0x200)
616 #define SMALL_INT_RANGE(X, OFFSET, SHIFT) \
617   ((unsigned) (((X) >> (SHIFT)) + 0x100) \
618    < 0x200 - ((unsigned) (OFFSET) >> (SHIFT)))
619 #define SIGNED_INT12(X) ((unsigned) ((X) + 0x800) < 0x1000)
620 #define SIGNED_INT16(X) ((unsigned) ((X) + 0x8000) < 0x10000)
621 #define LARGE_INT(X) \
622 (((X) < 0) \
623  ? (X) >= (-(HOST_WIDE_INT) 0x7fffffff - 1) \
624  : (unsigned HOST_WIDE_INT) (X) <= (unsigned HOST_WIDE_INT) 0xffffffff)
625 #define UNSIGNED_INT3(X) ((unsigned) (X) < 0x8)
626 #define UNSIGNED_INT5(X) ((unsigned) (X) < 0x20)
627 #define UNSIGNED_INT6(X) ((unsigned) (X) < 0x40)
628 #define UNSIGNED_INT7(X) ((unsigned) (X) < 0x80)
629 #define UNSIGNED_INT8(X) ((unsigned) (X) < 0x100)
630 #define UNSIGNED_INT12(X) ((unsigned) (X) < 0x800)
631 #define UNSIGNED_INT16(X) ((unsigned) (X) < 0x10000)
632 #define IS_ONE(X) ((X) == 1)
633 #define IS_ZERO(X) ((X) == 0)
634 
635 /* Stack layout and stack pointer usage.  */
636 
637 /* Define this macro if pushing a word onto the stack moves the stack
638    pointer to a smaller address.  */
639 #define STACK_GROWS_DOWNWARD 1
640 
641 /* Define this if the nominal address of the stack frame
642    is at the high-address end of the local variables;
643    that is, each additional local variable allocated
644    goes at a more negative offset in the frame.  */
645 #define FRAME_GROWS_DOWNWARD 1
646 
647 /* Offset from the stack pointer register to the first location at which
648    outgoing arguments are placed.  */
649 #define STACK_POINTER_OFFSET (0)
650 
651 /* Offset of first parameter from the argument pointer register value.  */
652 #define FIRST_PARM_OFFSET(FNDECL) (0)
653 
654 /* A C expression whose value is RTL representing the address in a
655    stack frame where the pointer to the caller's frame is stored.
656    Assume that FRAMEADDR is an RTL expression for the address of the
657    stack frame itself.
658 
659    If you don't define this macro, the default is to return the value
660    of FRAMEADDR--that is, the stack frame address is also the address
661    of the stack word that points to the previous frame.  */
662 /* ??? unfinished */
663 /*define DYNAMIC_CHAIN_ADDRESS (FRAMEADDR)*/
664 
665 /* A C expression whose value is RTL representing the value of the
666    return address for the frame COUNT steps up from the current frame.
667    FRAMEADDR is the frame pointer of the COUNT frame, or the frame
668    pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME'
669    is defined.  */
670 /* The current return address is in r31.  The return address of anything
671    farther back is at [%fp,4].  */
672 
673 #define RETURN_ADDR_RTX(COUNT, FRAME) \
674 arc_return_addr_rtx(COUNT,FRAME)
675 
676 /* Register to use for pushing function arguments.  */
677 #define STACK_POINTER_REGNUM 28
678 
679 /* Base register for access to local variables of the function.  */
680 #define FRAME_POINTER_REGNUM 145
681 #define HARD_FRAME_POINTER_REGNUM 27
682 
683 /* Base register for access to arguments of the function. This register
684    will be eliminated into either fp or sp.  */
685 #define ARG_POINTER_REGNUM 144
686 
687 #define RETURN_ADDR_REGNUM 31
688 
689 /* TODO - check usage of STATIC_CHAIN_REGNUM with a testcase */
690 /* Register in which static-chain is passed to a function.  This must
691    not be a register used by the prologue.  */
692 #define STATIC_CHAIN_REGNUM  11
693 
694 /* Function argument passing.  */
695 
696 /* If defined, the maximum amount of space required for outgoing
697    arguments will be computed and placed into the variable
698    `crtl->outgoing_args_size'.  No space will be pushed
699    onto the stack for each call; instead, the function prologue should
700    increase the stack frame size by this amount.  */
701 #define ACCUMULATE_OUTGOING_ARGS 1
702 
703 /* Define a data type for recording info about an argument list
704    during the scan of that argument list.  This data type should
705    hold all necessary information about the function itself
706    and about the args processed so far, enough to enable macros
707    such as FUNCTION_ARG to determine where the next arg should go.  */
708 #define CUMULATIVE_ARGS int
709 
710 /* Initialize a variable CUM of type CUMULATIVE_ARGS
711    for a call to a function whose data type is FNTYPE.
712    For a library call, FNTYPE is 0.  */
713 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT,N_NAMED_ARGS) \
714   ((CUM) = 0)
715 
716 /* The number of registers used for parameter passing.  Local to this file.  */
717 #define MAX_ARC_PARM_REGS (TARGET_RF16 ? 4 : 8)
718 
719 /* 1 if N is a possible register number for function argument passing.  */
720 #define FUNCTION_ARG_REGNO_P(N) \
721 ((unsigned) (N) < MAX_ARC_PARM_REGS)
722 
723 /* The ROUND_ADVANCE* macros are local to this file.  */
724 /* Round SIZE up to a word boundary.  */
725 #define ROUND_ADVANCE(SIZE) \
726 (((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
727 
728 /* Round arg MODE/TYPE up to the next word boundary.  */
729 #define ROUND_ADVANCE_ARG(MODE, TYPE) \
730 ((MODE) == BLKmode				\
731  ? ROUND_ADVANCE (int_size_in_bytes (TYPE))	\
732  : ROUND_ADVANCE (GET_MODE_SIZE (MODE)))
733 
734 #define ARC_FUNCTION_ARG_BOUNDARY(MODE,TYPE) PARM_BOUNDARY
735 /* Round CUM up to the necessary point for argument MODE/TYPE.  */
736 /* N.B. Vectors have alignment exceeding BIGGEST_ALIGNMENT.
737    ARC_FUNCTION_ARG_BOUNDARY reduces this to no more than 32 bit.  */
738 #define ROUND_ADVANCE_CUM(CUM, MODE, TYPE) \
739   ((((CUM) - 1) | (ARC_FUNCTION_ARG_BOUNDARY ((MODE), (TYPE)) - 1)/BITS_PER_WORD)\
740    + 1)
741 
742 /* Return boolean indicating arg of type TYPE and mode MODE will be passed in
743    a reg.  This includes arguments that have to be passed by reference as the
744    pointer to them is passed in a reg if one is available (and that is what
745    we're given).
746    When passing arguments NAMED is always 1.  When receiving arguments NAMED
747    is 1 for each argument except the last in a stdarg/varargs function.  In
748    a stdarg function we want to treat the last named arg as named.  In a
749    varargs function we want to treat the last named arg (which is
750    `__builtin_va_alist') as unnamed.
751    This macro is only used in this file.  */
752 #define PASS_IN_REG_P(CUM, MODE, TYPE) \
753 ((CUM) < MAX_ARC_PARM_REGS)
754 
755 
756 /* Function results.  */
757 
758 /* Define how to find the value returned by a library function
759    assuming the value has mode MODE.  */
760 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, 0)
761 
762 /* 1 if N is a possible register number for a function value
763    as seen by the caller.  */
764 /* ??? What about r1 in DI/DF values.  */
765 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
766 
767 /* Tell GCC to use RETURN_IN_MEMORY.  */
768 #define DEFAULT_PCC_STRUCT_RETURN 0
769 
770 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
771    the stack pointer does not matter.  The value is tested only in
772    functions that have frame pointers.
773    No definition is equivalent to always zero.  */
774 #define EXIT_IGNORE_STACK 0
775 
776 #define EPILOGUE_USES(REGNO) arc_epilogue_uses ((REGNO))
777 
778 #define EH_USES(REGNO) arc_eh_uses((REGNO))
779 
780 /* Definitions for register eliminations.
781 
782    This is an array of structures.  Each structure initializes one pair
783    of eliminable registers.  The "from" register number is given first,
784    followed by "to".  Eliminations of the same "from" register are listed
785    in order of preference.
786 
787    We have two registers that can be eliminated on the ARC.  First, the
788    argument pointer register can always be eliminated in favor of the stack
789    pointer register or frame pointer register.  Secondly, the frame pointer
790    register can often be eliminated in favor of the stack pointer register.
791 */
792 
793 #define ELIMINABLE_REGS					\
794 {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
795  {ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
796  {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},	\
797  {FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
798 
799 /* Define the offset between two registers, one to be eliminated, and the other
800    its replacement, at the start of a routine.  */
801 extern int arc_initial_elimination_offset(int from, int to);
802 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)                    \
803   (OFFSET) = arc_initial_elimination_offset ((FROM), (TO))
804 
805 /* All the work done in PROFILE_HOOK, but still required.  */
806 #undef FUNCTION_PROFILER
807 #define FUNCTION_PROFILER(STREAM, LABELNO) do { } while (0)
808 
809 #define NO_PROFILE_COUNTERS  1
810 
811 /* Trampolines.  */
812 
813 /* Length in units of the trampoline for entering a nested function.  */
814 #define TRAMPOLINE_SIZE 16
815 
816 /* Alignment required for a trampoline in bits .  */
817 /* For actual data alignment we just need 32, no more than the stack;
818    however, to reduce cache coherency issues, we want to make sure that
819    trampoline instructions always appear the same in any given cache line.  */
820 #define TRAMPOLINE_ALIGNMENT 256
821 
822 /* Library calls.  */
823 
824 /* Addressing modes, and classification of registers for them.  */
825 
826 /* Maximum number of registers that can appear in a valid memory address.  */
827 /* The `ld' insn allows 2, but the `st' insn only allows 1.  */
828 #define MAX_REGS_PER_ADDRESS 1
829 
830 /* We have pre inc/dec (load/store with update).  */
831 #define HAVE_PRE_INCREMENT 1
832 #define HAVE_PRE_DECREMENT 1
833 #define HAVE_POST_INCREMENT 1
834 #define HAVE_POST_DECREMENT 1
835 #define HAVE_PRE_MODIFY_DISP 1
836 #define HAVE_POST_MODIFY_DISP 1
837 #define HAVE_PRE_MODIFY_REG 1
838 #define HAVE_POST_MODIFY_REG 1
839 /* ??? should also do PRE_MODIFY_REG / POST_MODIFY_REG, but that requires
840    a special predicate for the memory operand of stores, like for the SH.  */
841 
842 /* Recognize any constant value that is a valid address.  */
843 #define CONSTANT_ADDRESS_P(X)					\
844   (flag_pic ? (arc_legitimate_pic_addr_p (X) || LABEL_P (X)):	\
845    (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF	\
846     || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST))
847 
848 /* Is the argument a const_int rtx, containing an exact power of 2 */
849 #define  IS_POWEROF2_P(X) (! ( (X) & ((X) - 1)) && (X))
850 #define  IS_POWEROF2_OR_0_P(X) (! ( (X) & ((X) - 1)))
851 
852 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
853    and check its validity for a certain class.
854    We have two alternate definitions for each of them.
855    The *_NONSTRICT definition accepts all pseudo regs; the other rejects
856    them unless they have been allocated suitable hard regs.
857 
858    Most source files want to accept pseudo regs in the hope that
859    they will get allocated to the class that the insn wants them to be in.
860    Source files for reload pass need to be strict.
861    After reload, it makes no difference, since pseudo regs have
862    been eliminated by then.  */
863 
864 /* Nonzero if X is a hard reg that can be used as an index
865    or if it is a pseudo reg.  */
866 #define REG_OK_FOR_INDEX_P_NONSTRICT(X)			\
867   ((unsigned) REGNO (X) >= FIRST_PSEUDO_REGISTER	\
868    || REGNO_OK_FOR_BASE_P (REGNO (X)))
869 
870 /* Nonzero if X is a hard reg that can be used as a base reg
871    or if it is a pseudo reg.  */
872 #define REG_OK_FOR_BASE_P_NONSTRICT(X)			\
873   ((unsigned) REGNO (X) >= FIRST_PSEUDO_REGISTER	\
874    || REGNO_OK_FOR_BASE_P (REGNO (X)))
875 
876 /* Nonzero if X is a hard reg that can be used as an index.  */
877 #define REG_OK_FOR_INDEX_P_STRICT(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
878 /* Nonzero if X is a hard reg that can be used as a base reg.  */
879 #define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X))
880 
881 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
882    that is a valid memory address for an instruction.
883    The MODE argument is the machine mode for the MEM expression
884    that wants to use this address.  */
885 /* The `ld' insn allows [reg],[reg+shimm],[reg+limm],[reg+reg],[limm]
886    but the `st' insn only allows [reg],[reg+shimm],[limm].
887    The only thing we can do is only allow the most strict case `st' and hope
888    other parts optimize out the restrictions for `ld'.  */
889 
890 #define RTX_OK_FOR_BASE_P(X, STRICT) \
891 (REG_P (X) \
892  && ((STRICT) ? REG_OK_FOR_BASE_P_STRICT (X) : REG_OK_FOR_BASE_P_NONSTRICT (X)))
893 
894 #define RTX_OK_FOR_INDEX_P(X, STRICT) \
895 (REG_P (X) \
896  && ((STRICT) ? REG_OK_FOR_INDEX_P_STRICT (X) : REG_OK_FOR_INDEX_P_NONSTRICT (X)))
897 
898 /* A C compound statement that attempts to replace X, which is an address
899    that needs reloading, with a valid memory address for an operand of
900    mode MODE.  WIN is a C statement label elsewhere in the code.
901 
902    We try to get a normal form
903    of the address.  That will allow inheritance of the address reloads.  */
904 
905 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN)	\
906   do {									\
907     if (arc_legitimize_reload_address (&(X), (MODE), (OPNUM), (TYPE)))	\
908       goto WIN;								\
909   } while (0)
910 
911 /* Reading lp_count for anything but the lp instruction is very slow on the
912    ARC700.  */
913 #define DONT_REALLOC(REGNO,MODE) \
914   (TARGET_ARC700 && (REGNO) == 60)
915 
916 
917 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
918    return the mode to be used for the comparison.  */
919 /*extern machine_mode arc_select_cc_mode ();*/
920 #define SELECT_CC_MODE(OP, X, Y) \
921 arc_select_cc_mode (OP, X, Y)
922 
923 /* Return non-zero if SELECT_CC_MODE will never return MODE for a
924    floating point inequality comparison.  */
925 #define REVERSIBLE_CC_MODE(MODE) 1 /*???*/
926 
927 /* Costs.  */
928 
929 /* The cost of a branch insn.  */
930 /* ??? What's the right value here?  Branches are certainly more
931    expensive than reg->reg moves.  */
932 #define BRANCH_COST(speed_p, predictable_p) 2
933 
934 /* Scc sets the destination to 1 and then conditionally zeroes it.
935    Best case, ORed SCCs can be made into clear - condset - condset.
936    But it could also end up as five insns.  So say it costs four on
937    average.
938    These extra instructions - and the second comparison - will also be
939    an extra cost if the first comparison would have been decisive.
940    So get an average saving, with a probability of the first branch
941    beging decisive of p0, we want:
942    p0 * (branch_cost - 4) > (1 - p0) * 5
943    ??? We don't get to see that probability to evaluate, so we can
944    only wildly guess that it might be 50%.
945    ??? The compiler also lacks the notion of branch predictability.  */
946 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
947   (BRANCH_COST (optimize_function_for_speed_p (cfun), \
948 		false) > 9)
949 
950 /* Nonzero if access to memory by bytes is slow and undesirable.
951    For RISC chips, it means that access to memory by bytes is no
952    better than access by words when possible, so grab a whole word
953    and maybe make use of that.  */
954 #define SLOW_BYTE_ACCESS  0
955 
956 /* Define this macro if it is as good or better to call a constant
957    function address than to call an address kept in a register.  */
958 /* On the ARC, calling through registers is slow.  */
959 #define NO_FUNCTION_CSE 1
960 
961 /* Section selection.  */
962 /* WARNING: These section names also appear in dwarfout.c.  */
963 
964 #define TEXT_SECTION_ASM_OP	"\t.section\t.text"
965 #define DATA_SECTION_ASM_OP	"\t.section\t.data"
966 
967 #define BSS_SECTION_ASM_OP	"\t.section\t.bss"
968 #define SDATA_SECTION_ASM_OP	"\t.section\t.sdata"
969 #define SBSS_SECTION_ASM_OP	"\t.section\t.sbss"
970 
971 /* Expression whose value is a string, including spacing, containing the
972    assembler operation to identify the following data as initialization/termination
973    code. If not defined, GCC will assume such a section does not exist. */
974 #define INIT_SECTION_ASM_OP "\t.section\t.init"
975 #define FINI_SECTION_ASM_OP "\t.section\t.fini"
976 
977 /* Define this macro if jump tables (for tablejump insns) should be
978    output in the text section, along with the assembler instructions.
979    Otherwise, the readonly data section is used.
980    This macro is irrelevant if there is no separate readonly data section.  */
981 #define JUMP_TABLES_IN_TEXT_SECTION  (flag_pic || CASE_VECTOR_PC_RELATIVE)
982 
983 /* For DWARF.  Marginally different than default so output is "prettier"
984    (and consistent with above).  */
985 #define PUSHSECTION_FORMAT "\t%s %s\n"
986 
987 /* Tell crtstuff.c we're using ELF.  */
988 #define OBJECT_FORMAT_ELF
989 
990 /* PIC */
991 
992 /* The register number of the register used to address a table of static
993    data addresses in memory.  In some cases this register is defined by a
994    processor's ``application binary interface'' (ABI).  When this macro
995    is defined, RTL is generated for this register once, as with the stack
996    pointer and frame pointer registers.  If this macro is not defined, it
997    is up to the machine-dependent files to allocate such a register (if
998    necessary).  */
999 #define PIC_OFFSET_TABLE_REGNUM 26
1000 
1001 /* Define this macro if the register defined by PIC_OFFSET_TABLE_REGNUM is
1002    clobbered by calls.  Do not define this macro if PIC_OFFSET_TABLE_REGNUM
1003    is not defined.  */
1004 /* This register is call-saved on the ARC.  */
1005 /*#define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED*/
1006 
1007 /* A C expression that is nonzero if X is a legitimate immediate
1008    operand on the target machine when generating position independent code.
1009    You can assume that X satisfies CONSTANT_P, so you need not
1010    check this.  You can also assume `flag_pic' is true, so you need not
1011    check it either.  You need not define this macro if all constants
1012    (including SYMBOL_REF) can be immediate operands when generating
1013    position independent code.  */
1014 #define LEGITIMATE_PIC_OPERAND_P(X)  \
1015   (!arc_raw_symbolic_reference_mentioned_p ((X), true))
1016 
1017 /* PIC and small data don't mix on ARC because they use the same register.  */
1018 #define SDATA_BASE_REGNUM 26
1019 
1020 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
1021   (flag_pic \
1022    ? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4 \
1023    : DW_EH_PE_absptr)
1024 
1025 /* Control the assembler format that we output.  */
1026 
1027 /* A C string constant describing how to begin a comment in the target
1028    assembler language.  The compiler assumes that the comment will
1029    end at the end of the line.  */
1030 /* Gas needs this to be "#" in order to recognize line directives.  */
1031 #define ASM_COMMENT_START "#"
1032 
1033 /* Output to assembler file text saying following lines
1034    may contain character constants, extra white space, comments, etc.  */
1035 #undef ASM_APP_ON
1036 #define ASM_APP_ON ""
1037 
1038 /* Output to assembler file text saying following lines
1039    no longer contain unusual constructs.  */
1040 #undef ASM_APP_OFF
1041 #define ASM_APP_OFF ""
1042 
1043 /* Globalizing directive for a label.  */
1044 #define GLOBAL_ASM_OP "\t.global\t"
1045 
1046 /* This is how to output an assembler line defining a `char' constant.  */
1047 #define ASM_OUTPUT_CHAR(FILE, VALUE) \
1048 ( fprintf (FILE, "\t.byte\t"),			\
1049   output_addr_const (FILE, (VALUE)),		\
1050   fprintf (FILE, "\n"))
1051 
1052 /* This is how to output an assembler line defining a `short' constant.  */
1053 #define ASM_OUTPUT_SHORT(FILE, VALUE) \
1054 ( fprintf (FILE, "\t.hword\t"),			\
1055   output_addr_const (FILE, (VALUE)),		\
1056   fprintf (FILE, "\n"))
1057 
1058 /* This is how to output an assembler line defining an `int' constant.
1059    We also handle symbol output here.  Code addresses must be right shifted
1060    by 2 because that's how the jump instruction wants them.  */
1061 #define ASM_OUTPUT_INT(FILE, VALUE) \
1062 do {									\
1063   fprintf (FILE, "\t.word\t");						\
1064   if (GET_CODE (VALUE) == LABEL_REF)					\
1065     {									\
1066       fprintf (FILE, "%%st(@");						\
1067       output_addr_const (FILE, (VALUE));				\
1068       fprintf (FILE, ")");						\
1069     }									\
1070   else									\
1071     output_addr_const (FILE, (VALUE));					\
1072   fprintf (FILE, "\n");					                \
1073 } while (0)
1074 
1075 /* This is how to output an assembler line defining a `float' constant.  */
1076 #define ASM_OUTPUT_FLOAT(FILE, VALUE) \
1077 {							\
1078   long t;						\
1079   char str[30];						\
1080   REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t);		\
1081   REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str);	\
1082   fprintf (FILE, "\t.word\t0x%lx %s %s\n",		\
1083 	   t, ASM_COMMENT_START, str);			\
1084 }
1085 
1086 /* This is how to output an assembler line defining a `double' constant.  */
1087 #define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
1088 {							\
1089   long t[2];						\
1090   char str[30];						\
1091   REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t);		\
1092   REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str);	\
1093   fprintf (FILE, "\t.word\t0x%lx %s %s\n\t.word\t0x%lx\n", \
1094 	   t[0], ASM_COMMENT_START, str, t[1]);		\
1095 }
1096 
1097 /* This is how to output the definition of a user-level label named NAME,
1098    such as the label on a static function or variable NAME.  */
1099 #define ASM_OUTPUT_LABEL(FILE, NAME) \
1100 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1101 
1102 #define ASM_NAME_P(NAME) ( NAME[0]=='*')
1103 
1104 /* This is how to output a reference to a user-level label named NAME.
1105    `assemble_name' uses this.  */
1106 /* We work around a dwarfout.c deficiency by watching for labels from it and
1107    not adding the '_' prefix.  There is a comment in
1108    dwarfout.c that says it should be using ASM_OUTPUT_INTERNAL_LABEL.  */
1109 #define ASM_OUTPUT_LABELREF(FILE, NAME1) \
1110 do {							\
1111   const char *NAME;					\
1112   NAME = (*targetm.strip_name_encoding)(NAME1);		\
1113   if ((NAME)[0] == '.' && (NAME)[1] == 'L')		\
1114     fprintf (FILE, "%s", NAME);				\
1115   else							\
1116     {							\
1117       if (!ASM_NAME_P (NAME1))				\
1118 	fprintf (FILE, "%s", user_label_prefix);	\
1119       fprintf (FILE, "%s", NAME);			\
1120     }							\
1121 } while (0)
1122 
1123 /* This is how to output a reference to a symbol_ref / label_ref as
1124    (part of) an operand.  To disambiguate from register names like
1125    a1 / a2 / status etc, symbols are preceded by '@'.  */
1126 #define ASM_OUTPUT_SYMBOL_REF(FILE,SYM) \
1127   ASM_OUTPUT_LABEL_REF ((FILE), XSTR ((SYM), 0))
1128 #define ASM_OUTPUT_LABEL_REF(FILE,STR)			\
1129   do							\
1130     {							\
1131       fputc ('@', file);				\
1132       assemble_name ((FILE), (STR));			\
1133     }							\
1134   while (0)
1135 
1136 /* Store in OUTPUT a string (made with alloca) containing
1137    an assembler-name for a local static variable named NAME.
1138    LABELNO is an integer which is different for each call.  */
1139 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO)			\
1140   ((OUTPUT) = (char *) alloca (strlen ((NAME)) + 10),			\
1141    sprintf ((OUTPUT), "%s.%u", (NAME), (unsigned int)(LABELNO)))
1142 
1143 /* The following macro defines the format used to output the second
1144    operand of the .type assembler directive.  Different svr4 assemblers
1145    expect various different forms for this operand.  The one given here
1146    is just a default.  You may need to override it in your machine-
1147    specific tm.h file (depending upon the particulars of your assembler).  */
1148 
1149 #undef  TYPE_OPERAND_FMT
1150 #define TYPE_OPERAND_FMT	"@%s"
1151 
1152 /*  A C string containing the appropriate assembler directive to
1153     specify the size of a symbol, without any arguments.  On systems
1154     that use ELF, the default (in `config/elfos.h') is `"\t.size\t"';
1155     on other systems, the default is not to define this macro.  */
1156 #undef SIZE_ASM_OP
1157 #define SIZE_ASM_OP "\t.size\t"
1158 
1159 /* Assembler pseudo-op to equate one value with another.  */
1160 /* ??? This is needed because dwarfout.c provides a default definition too
1161    late for defaults.h (which contains the default definition of ASM_OTPUT_DEF
1162    that we use).  */
1163 #ifdef SET_ASM_OP
1164 #undef SET_ASM_OP
1165 #endif
1166 #define SET_ASM_OP "\t.set\t"
1167 
1168 extern char rname29[], rname30[];
1169 extern char rname56[], rname57[], rname58[], rname59[];
1170 /* How to refer to registers in assembler output.
1171    This sequence is indexed by compiler's hard-register-number (see above).  */
1172 #define REGISTER_NAMES								\
1173 {  "r0",   "r1",   "r2",   "r3",       "r4",     "r5",     "r6",    "r7",	\
1174    "r8",   "r9",  "r10",  "r11",      "r12",    "r13",    "r14",   "r15",	\
1175   "r16",  "r17",  "r18",  "r19",      "r20",    "r21",    "r22",   "r23",	\
1176   "r24",  "r25",   "gp",   "fp",       "sp",  rname29,  rname30, "blink",	\
1177   "r32",  "r33",  "r34",  "r35",      "r36",    "r37",    "r38",   "r39",	\
1178    "d1",   "d1",   "d2",   "d2",      "r44",    "r45",    "r46",   "r47",	\
1179   "r48",  "r49",  "r50",  "r51",      "r52",    "r53",    "r54",   "r55",	\
1180   rname56,rname57,rname58,rname59,"lp_count",    "cc",   "limm",   "pcl",	\
1181   "vr0",  "vr1",  "vr2",  "vr3",      "vr4",    "vr5",    "vr6",   "vr7",       \
1182   "vr8",  "vr9", "vr10", "vr11",     "vr12",   "vr13",   "vr14",  "vr15",	\
1183  "vr16", "vr17", "vr18", "vr19",     "vr20",   "vr21",   "vr22",  "vr23",	\
1184  "vr24", "vr25", "vr26", "vr27",     "vr28",   "vr29",   "vr30",  "vr31",	\
1185  "vr32", "vr33", "vr34", "vr35",     "vr36",   "vr37",   "vr38",  "vr39",	\
1186  "vr40", "vr41", "vr42", "vr43",     "vr44",   "vr45",   "vr46",  "vr47",	\
1187  "vr48", "vr49", "vr50", "vr51",     "vr52",   "vr53",   "vr54",  "vr55",	\
1188  "vr56", "vr57", "vr58", "vr59",     "vr60",   "vr61",   "vr62",  "vr63",	\
1189   "dr0",  "dr1",  "dr2",  "dr3",      "dr4",    "dr5",    "dr6",   "dr7",	\
1190   "dr0",  "dr1",  "dr2",  "dr3",      "dr4",    "dr5",    "dr6",   "dr7",	\
1191   "arg", "frame" \
1192 }
1193 
1194 #define ADDITIONAL_REGISTER_NAMES		\
1195 {						\
1196   {"ilink",  29},				\
1197   {"r29",    29},				\
1198   {"r30",    30},				\
1199   {"r40",    40},				\
1200   {"r41",    41},				\
1201   {"r42",    42},				\
1202   {"r43",    43},				\
1203   {"r56",    56},				\
1204   {"r57",    57},				\
1205   {"r58",    58},				\
1206   {"r59",    59}				\
1207 }
1208 
1209 /* Entry to the insn conditionalizer.  */
1210 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
1211   arc_final_prescan_insn (INSN, OPVEC, NOPERANDS)
1212 
1213 /* A C expression which evaluates to true if CODE is a valid
1214    punctuation character for use in the `PRINT_OPERAND' macro.  */
1215 extern char arc_punct_chars[];
1216 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
1217 arc_punct_chars[(unsigned char) (CHAR)]
1218 
1219 /* Print operand X (an rtx) in assembler syntax to file FILE.
1220    CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1221    For `%' followed by punctuation, CODE is the punctuation and X is null.  */
1222 #define PRINT_OPERAND(FILE, X, CODE) \
1223 arc_print_operand (FILE, X, CODE)
1224 
1225 /* A C compound statement to output to stdio stream STREAM the
1226    assembler syntax for an instruction operand that is a memory
1227    reference whose address is ADDR.  ADDR is an RTL expression.
1228 
1229    On some machines, the syntax for a symbolic address depends on
1230    the section that the address refers to.  On these machines,
1231    define the macro `ENCODE_SECTION_INFO' to store the information
1232    into the `symbol_ref', and then check for it here.  */
1233 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1234 arc_print_operand_address (FILE, ADDR)
1235 
1236 /* This is how to output an element of a case-vector that is absolute.  */
1237 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
1238 do {							\
1239   char label[30];					\
1240   ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE);	\
1241   fprintf (FILE, "\t.word ");				\
1242   assemble_name (FILE, label);				\
1243   fprintf (FILE, "\n");					\
1244 } while (0)
1245 
1246 /* This is how to output an element of a case-vector that is relative.  */
1247 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)	\
1248   do {								\
1249     char label[30];						\
1250     ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE);		\
1251     if (!TARGET_BI_BIH)						\
1252       {								\
1253 	switch (GET_MODE (BODY))				\
1254 	  {							\
1255 	  case E_QImode: fprintf (FILE, "\t.byte "); break;	\
1256 	  case E_HImode: fprintf (FILE, "\t.hword "); break;	\
1257 	  case E_SImode: fprintf (FILE, "\t.word "); break;	\
1258 	  default: gcc_unreachable ();				\
1259 	  }							\
1260 	assemble_name (FILE, label);				\
1261 	fprintf (FILE, "-");					\
1262 	ASM_GENERATE_INTERNAL_LABEL (label, "L", REL);		\
1263 	assemble_name (FILE, label);				\
1264 	fprintf (FILE, "\n");					\
1265       }								\
1266     else							\
1267       {								\
1268       switch (GET_MODE (BODY))					\
1269 	{							\
1270 	case E_SImode: fprintf (FILE, "\tb\t@"); break;		\
1271 	case E_HImode:						\
1272 	case E_QImode: fprintf (FILE, "\tb_s\t@"); break;	\
1273 	default: gcc_unreachable ();				\
1274 	}							\
1275       assemble_name (FILE, label);				\
1276       fprintf(FILE, "\n");					\
1277     }								\
1278   } while (0)
1279 
1280 /* Defined to also emit an .align in elfos.h.  We don't want that.  */
1281 #undef ASM_OUTPUT_CASE_LABEL
1282 
1283 /* ADDR_DIFF_VECs are in the text section and thus can affect the
1284    current alignment.  */
1285 #define ASM_OUTPUT_CASE_END(FILE, NUM, JUMPTABLE)       \
1286   do                                                    \
1287     {                                                   \
1288       if (GET_CODE (PATTERN (JUMPTABLE)) == ADDR_DIFF_VEC \
1289 	  && ((GET_MODE_SIZE (as_a <scalar_int_mode>	\
1290 			      (GET_MODE (PATTERN (JUMPTABLE)))) \
1291 	       * XVECLEN (PATTERN (JUMPTABLE), 1) + 1)	\
1292 	      & 2))					\
1293       arc_toggle_unalign ();				\
1294     }                                                   \
1295   while (0)
1296 
1297 #define JUMP_ALIGN(LABEL) (arc_size_opt_level < 2 ? 2 : 0)
1298 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) \
1299   (JUMP_ALIGN(LABEL) \
1300    ? JUMP_ALIGN(LABEL) \
1301    : GET_CODE (PATTERN (prev_active_insn (LABEL))) == ADDR_DIFF_VEC \
1302    ? 1 : 0)
1303 /* The desired alignment for the location counter at the beginning
1304    of a loop.  */
1305 /* On the ARC, align loops to 4 byte boundaries unless doing all-out size
1306    optimization.  */
1307 #define LOOP_ALIGN(X) 0
1308 
1309 #define LABEL_ALIGN(LABEL) (arc_label_align (LABEL))
1310 
1311 /* This is how to output an assembler line
1312    that says to advance the location counter
1313    to a multiple of 2**LOG bytes.  */
1314 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1315 do { \
1316   if ((LOG) != 0) fprintf (FILE, "\t.align %d\n", 1 << (LOG)); \
1317   if ((LOG)  > 1) \
1318     arc_clear_unalign (); \
1319 } while (0)
1320 
1321 /*  ASM_OUTPUT_ALIGNED_DECL_LOCAL (STREAM, DECL, NAME, SIZE, ALIGNMENT)
1322     Define this macro when you need to see the variable's decl in order to
1323     chose what to output.  */
1324 #define ASM_OUTPUT_ALIGNED_DECL_LOCAL(STREAM, DECL, NAME, SIZE, ALIGNMENT) \
1325   arc_asm_output_aligned_decl_local (STREAM, DECL, NAME, SIZE, ALIGNMENT, 0)
1326 
1327 /* Debugging information.  */
1328 
1329 /* Generate DBX and DWARF debugging information.  */
1330 #ifdef DBX_DEBUGGING_INFO
1331 #undef DBX_DEBUGGING_INFO
1332 #endif
1333 #define DBX_DEBUGGING_INFO
1334 
1335 #ifdef DWARF2_DEBUGGING_INFO
1336 #undef DWARF2_DEBUGGING_INFO
1337 #endif
1338 #define DWARF2_DEBUGGING_INFO
1339 
1340 /* Prefer STABS (for now).  */
1341 #undef PREFERRED_DEBUGGING_TYPE
1342 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1343 
1344 /* How to renumber registers for dbx and gdb.  */
1345 #define DBX_REGISTER_NUMBER(REGNO)				\
1346   ((TARGET_MULMAC_32BY16_SET && (REGNO) >= 56 && (REGNO) <= 57) \
1347    ? ((REGNO) ^ !TARGET_BIG_ENDIAN)				\
1348    : (TARGET_MUL64_SET && (REGNO) >= 57 && (REGNO) <= 58)	\
1349    ? (((REGNO) == 57)						\
1350       ? 58 /* MMED */						\
1351       : 57 + !!TARGET_MULMAC_32BY16_SET) /* MLO */		\
1352    : (REGNO))
1353 
1354 /* Use gcc hard register numbering for eh_frame.  */
1355 #define DWARF_FRAME_REGNUM(REG) (REG)
1356 
1357 /* Map register numbers held in the call frame info that gcc has
1358    collected using DWARF_FRAME_REGNUM to those that should be output
1359    in .debug_frame and .eh_frame.  */
1360 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH)			\
1361   ((TARGET_MULMAC_32BY16_SET && (REGNO) >= 56 && (REGNO) <= 57) \
1362    ? ((REGNO) ^ !TARGET_BIG_ENDIAN)				\
1363    : (TARGET_MUL64_SET && (REGNO) >= 57 && (REGNO) <= 58)	\
1364    ? (((REGNO) == 57)						\
1365       ? 58 /* MMED */						\
1366       : 57 + !!TARGET_MULMAC_32BY16_SET) /* MLO */		\
1367    : (REGNO))
1368 
1369 #define DWARF_FRAME_RETURN_COLUMN 	DWARF_FRAME_REGNUM (31)
1370 
1371 #define INCOMING_RETURN_ADDR_RTX  gen_rtx_REG (Pmode, 31)
1372 
1373 /* Frame info.  */
1374 
1375 #define EH_RETURN_DATA_REGNO(N)  ((N) < 2 ? (N) : INVALID_REGNUM)
1376 
1377 #define EH_RETURN_STACKADJ_RTX   gen_rtx_REG (Pmode, 2)
1378 
1379 /* Turn off splitting of long stabs.  */
1380 #define DBX_CONTIN_LENGTH 0
1381 
1382 /* Miscellaneous.  */
1383 
1384 /* Specify the machine mode that this machine uses
1385    for the index in the tablejump instruction.
1386    If we have pc relative case vectors, we start the case vector shortening
1387    with QImode.  */
1388 #define CASE_VECTOR_MODE						\
1389   (TARGET_BI_BIH ? SImode						\
1390    : (optimize && (CASE_VECTOR_PC_RELATIVE || flag_pic)) ? QImode : Pmode)
1391 
1392 /* Define as C expression which evaluates to nonzero if the tablejump
1393    instruction expects the table to contain offsets from the address of the
1394    table.
1395    Do not define this if the table should contain absolute addresses.  */
1396 #define CASE_VECTOR_PC_RELATIVE					\
1397   (TARGET_CASE_VECTOR_PC_RELATIVE || TARGET_BI_BIH)
1398 
1399 #define CASE_VECTOR_SHORTEN_MODE(MIN_OFFSET, MAX_OFFSET, BODY)		\
1400   (TARGET_BI_BIH ?						\
1401    ((MIN_OFFSET) >= -512 && (MAX_OFFSET) <= 508 ? HImode : SImode)	\
1402    : ((MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 255				\
1403       ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 1, QImode)	\
1404       : (MIN_OFFSET) >= -128 && (MAX_OFFSET) <= 127			\
1405       ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 0, QImode)	\
1406       : (MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 65535			\
1407       ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 1, HImode)	\
1408       : (MIN_OFFSET) >= -32768 && (MAX_OFFSET) <= 32767			\
1409       ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 0, HImode)	\
1410       : SImode))
1411 
1412 #define ADDR_VEC_ALIGN(VEC_INSN)					\
1413   (TARGET_BI_BIH ? 0							\
1414    : exact_log2 (GET_MODE_SIZE (as_a <scalar_int_mode>			\
1415 				(GET_MODE (PATTERN (VEC_INSN))))))
1416 
1417 #define INSN_LENGTH_ALIGNMENT(INSN)		  \
1418   ((JUMP_TABLE_DATA_P (INSN)			  \
1419     && GET_CODE (PATTERN (INSN)) == ADDR_DIFF_VEC \
1420     && GET_MODE (PATTERN (INSN)) == QImode)	  \
1421    ? 0 : length_unit_log)
1422 
1423 /* Define if operations between registers always perform the operation
1424    on the full register even if a narrower mode is specified.  */
1425 #define WORD_REGISTER_OPERATIONS 1
1426 
1427 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1428    will either zero-extend or sign-extend.  The value of this macro should
1429    be the code that says which one of the two operations is implicitly
1430    done, NIL if none.  */
1431 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1432 
1433 
1434 /* Max number of bytes we can move from memory to memory
1435    in one reasonably fast instruction.  */
1436 #define MOVE_MAX 4
1437 
1438 /* Undo the effects of the cpymem pattern presence on STORE_BY_PIECES_P .  */
1439 #define MOVE_RATIO(SPEED) ((SPEED) ? 15 : 3)
1440 
1441 /* Define this to be nonzero if shift instructions ignore all but the
1442    low-order few bits.
1443 */
1444 #define SHIFT_COUNT_TRUNCATED 1
1445 
1446 /* We assume that the store-condition-codes instructions store 0 for false
1447    and some other value for true.  This is the value stored for true.  */
1448 #define STORE_FLAG_VALUE 1
1449 
1450 /* Specify the machine mode that pointers have.
1451    After generation of rtl, the compiler makes no further distinction
1452    between pointers and any other objects of this machine mode.  */
1453 /* ARCompact has full 32-bit pointers.  */
1454 #define Pmode SImode
1455 
1456 /* A function address in a call instruction.  */
1457 #define FUNCTION_MODE SImode
1458 
1459 /* Define the information needed to generate branch and scc insns.  This is
1460    stored from the compare operation.  Note that we can't use "rtx" here
1461    since it hasn't been defined!  */
1462 extern struct rtx_def *arc_compare_op0, *arc_compare_op1;
1463 
1464 /* ARC function types.   */
1465 enum arc_function_type {
1466   /* No function should have the unknown type.  This value is used to
1467    indicate the that function type has not yet been computed.  */
1468   ARC_FUNCTION_UNKNOWN  = 0,
1469 
1470   /* The normal function type indicates that the function has the
1471    standard prologue and epilogue.  */
1472   ARC_FUNCTION_NORMAL  = 1 << 0,
1473   /* These are interrupt handlers.  The name corresponds to the register
1474      name that contains the return address.  */
1475   ARC_FUNCTION_ILINK1  = 1 << 1,
1476   ARC_FUNCTION_ILINK2  = 1 << 2,
1477   /* Fast interrupt is only available on ARCv2 processors.  */
1478   ARC_FUNCTION_FIRQ    = 1 << 3,
1479   /* The naked function type indicates that the function does not have
1480    prologue or epilogue, and that no stack frame is available.  */
1481   ARC_FUNCTION_NAKED   = 1 << 4
1482 };
1483 
1484 /* Check if a function is an interrupt function.  */
1485 #define ARC_INTERRUPT_P(TYPE)					\
1486   (((TYPE) & (ARC_FUNCTION_ILINK1 | ARC_FUNCTION_ILINK2		\
1487 	      | ARC_FUNCTION_FIRQ)) != 0)
1488 
1489 /* Check if a function is a fast interrupt function.  */
1490 #define ARC_FAST_INTERRUPT_P(TYPE) (((TYPE) & ARC_FUNCTION_FIRQ) != 0)
1491 
1492 /* Check if a function is normal, that is, has standard prologue and
1493    epilogue.  */
1494 #define ARC_NORMAL_P(TYPE) (((TYPE) & ARC_FUNCTION_NORMAL) != 0)
1495 
1496 /* Check if a function is naked.  */
1497 #define ARC_NAKED_P(TYPE) (((TYPE) & ARC_FUNCTION_NAKED) != 0)
1498 
1499 /* Called by crtstuff.c to make calls to function FUNCTION that are defined in
1500    SECTION_OP, and then to switch back to text section.  */
1501 #undef CRT_CALL_STATIC_FUNCTION
1502 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)		\
1503   asm (SECTION_OP "\n\t"					\
1504        "add r12,pcl,@" USER_LABEL_PREFIX #FUNC "@pcl\n\t"	\
1505        "jl  [r12]\n"						\
1506        TEXT_SECTION_ASM_OP);
1507 
1508 /* This macro expands to the name of the scratch register r12, used for
1509    temporary calculations according to the ABI.  */
1510 #define ARC_TEMP_SCRATCH_REG "r12"
1511 
1512 /* The C++ compiler must use one bit to indicate whether the function
1513    that will be called through a pointer-to-member-function is
1514    virtual.  Normally, we assume that the low-order bit of a function
1515    pointer must always be zero.  Then, by ensuring that the
1516    vtable_index is odd, we can distinguish which variant of the union
1517    is in use.  But, on some platforms function pointers can be odd,
1518    and so this doesn't work.  In that case, we use the low-order bit
1519    of the `delta' field, and shift the remainder of the `delta' field
1520    to the left. We needed to do this for A4 because the address was always
1521    shifted and thus could be odd.  */
1522 #define TARGET_PTRMEMFUNC_VBIT_LOCATION \
1523   (ptrmemfunc_vbit_in_pfn)
1524 
1525 #define INSN_SETS_ARE_DELAYED(X)		\
1526   (GET_CODE (X) == INSN				\
1527    && GET_CODE (PATTERN (X)) != SEQUENCE	\
1528    && GET_CODE (PATTERN (X)) != USE		\
1529    && GET_CODE (PATTERN (X)) != CLOBBER		\
1530    && (get_attr_type (X) == TYPE_CALL || get_attr_type (X) == TYPE_SFUNC))
1531 
1532 #define INSN_REFERENCES_ARE_DELAYED(insn)				\
1533   (INSN_SETS_ARE_DELAYED (insn))
1534 
1535 #define CALL_ATTR(X, NAME) \
1536   ((CALL_P (X) || NONJUMP_INSN_P (X)) \
1537    && GET_CODE (PATTERN (X)) != USE \
1538    && GET_CODE (PATTERN (X)) != CLOBBER \
1539    && get_attr_is_##NAME (X) == IS_##NAME##_YES) \
1540 
1541 #define REVERSE_CONDITION(CODE,MODE)				 \
1542   (((MODE) == CC_FP_GTmode || (MODE) == CC_FP_GEmode		 \
1543     || (MODE) == CC_FP_UNEQmode || (MODE) == CC_FP_ORDmode	 \
1544     || (MODE) == CC_FPXmode || (MODE) == CC_FPU_UNEQmode	 \
1545     || (MODE) == CC_FPUmode || (MODE) == CC_FPUEmode)		 \
1546    ? reverse_condition_maybe_unordered ((CODE))			 \
1547    : reverse_condition ((CODE)))
1548 
1549 #define ADJUST_INSN_LENGTH(X, LENGTH) \
1550   ((LENGTH) \
1551    = (GET_CODE (PATTERN (X)) == SEQUENCE \
1552       ? ((LENGTH) \
1553 	 + arc_adjust_insn_length ( \
1554              as_a <rtx_sequence *> (PATTERN (X))->insn (0), \
1555 	     get_attr_length (as_a <rtx_sequence *> (PATTERN (X))->insn (0)), \
1556 	     true)							\
1557 	 - get_attr_length (as_a <rtx_sequence *> (PATTERN (X))->insn (0)) \
1558 	 + arc_adjust_insn_length ( \
1559 	     as_a <rtx_sequence *> (PATTERN (X))->insn (1), \
1560 	     get_attr_length (as_a <rtx_sequence *> (PATTERN (X))->insn (1)), \
1561 	     true)							\
1562 	 - get_attr_length (as_a <rtx_sequence *> (PATTERN (X))->insn (1))) \
1563       : arc_adjust_insn_length ((X), (LENGTH), false)))
1564 
1565 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C,STR) ((C) == '`')
1566 
1567 #define INIT_EXPANDERS arc_init_expanders ()
1568 
1569 enum
1570 {
1571   ARC_LRA_PRIORITY_NONE, ARC_LRA_PRIORITY_NONCOMPACT, ARC_LRA_PRIORITY_COMPACT
1572 };
1573 
1574 /* The define_cond_exec construct is rather crude, as we can't have
1575    different ones with different conditions apply to different sets
1576    of instructions.  We can't use an attribute test inside the condition,
1577    because that would lead to infinite recursion as the attribute test
1578    needs to recognize the insn.  So, instead we have a clause for
1579    the pattern condition of all sfunc patterns which is only relevant for
1580    the predicated varaint.  */
1581 #define SFUNC_CHECK_PREDICABLE \
1582   (GET_CODE (PATTERN (insn)) != COND_EXEC || !flag_pic || !TARGET_MEDIUM_CALLS)
1583 
1584 /* MPYW feature macro.  Only valid for ARCHS and ARCEM cores.  */
1585 #define TARGET_MPYW     ((arc_mpy_option > 0) && TARGET_V2)
1586 /* Full ARCv2 multiplication feature macro.  */
1587 #define TARGET_MULTI    ((arc_mpy_option > 1) && TARGET_V2)
1588 /* General MPY feature macro.  */
1589 #define TARGET_MPY      ((TARGET_ARC700 && (!TARGET_NOMPY_SET)) || TARGET_MULTI)
1590 /* ARC700 MPY feature macro.  */
1591 #define TARGET_ARC700_MPY (TARGET_ARC700 && (!TARGET_NOMPY_SET))
1592 /* Any multiplication feature macro.  */
1593 #define TARGET_ANY_MPY						\
1594   (TARGET_MPY || TARGET_MUL64_SET || TARGET_MULMAC_32BY16_SET)
1595 /* PLUS_DMPY feature macro.  */
1596 #define TARGET_PLUS_DMPY  ((arc_mpy_option > 6) && TARGET_HS)
1597 /* PLUS_MACD feature macro.  */
1598 #define TARGET_PLUS_MACD  ((arc_mpy_option > 7) && TARGET_HS)
1599 /* PLUS_QMACW feature macro.  */
1600 #define TARGET_PLUS_QMACW ((arc_mpy_option > 8) && TARGET_HS)
1601 
1602 /* ARC600 and ARC601 feature macro.  */
1603 #define TARGET_ARC600_FAMILY (TARGET_ARC600 || TARGET_ARC601)
1604 /* ARC600, ARC601 and ARC700 feature macro.  */
1605 #define TARGET_ARCOMPACT_FAMILY				\
1606   (TARGET_ARC600 || TARGET_ARC601 || TARGET_ARC700)
1607 /* Loop count register can be read in very next instruction after has
1608    been written to by an ordinary instruction.  */
1609 #define TARGET_LP_WR_INTERLOCK (!TARGET_ARC600_FAMILY)
1610 
1611 /* FPU defines.  */
1612 /* Any FPU support.  */
1613 #define TARGET_HARD_FLOAT   ((arc_fpu_build & (FPU_SP | FPU_DP)) != 0)
1614 /* Single precision floating point support.  */
1615 #define TARGET_FP_SP_BASE   ((arc_fpu_build & FPU_SP) != 0)
1616 /* Double precision floating point support.  */
1617 #define TARGET_FP_DP_BASE   ((arc_fpu_build & FPU_DP) != 0)
1618 /* Single precision floating point support with fused operation.  */
1619 #define TARGET_FP_SP_FUSED  ((arc_fpu_build & FPU_SF) != 0)
1620 /* Double precision floating point support with fused operation.  */
1621 #define TARGET_FP_DP_FUSED  ((arc_fpu_build & FPU_DF) != 0)
1622 /* Single precision floating point conversion instruction support.  */
1623 #define TARGET_FP_SP_CONV   ((arc_fpu_build & FPU_SC) != 0)
1624 /* Double precision floating point conversion instruction support.  */
1625 #define TARGET_FP_DP_CONV   ((arc_fpu_build & FPU_DC) != 0)
1626 /* Single precision floating point SQRT/DIV instruction support.  */
1627 #define TARGET_FP_SP_SQRT   ((arc_fpu_build & FPU_SD) != 0)
1628 /* Double precision floating point SQRT/DIV instruction support.  */
1629 #define TARGET_FP_DP_SQRT   ((arc_fpu_build & FPU_DD) != 0)
1630 /* Double precision floating point assist instruction support.  */
1631 #define TARGET_FP_DP_AX     ((arc_fpu_build & FPX_DP) != 0)
1632 /* Custom FP instructions used by QuarkSE EM cpu.  */
1633 #define TARGET_FPX_QUARK    (TARGET_EM && TARGET_SPFP		\
1634 			     && (arc_fpu_build == FPX_QK))
1635 /* DBNZ support is available for ARCv2 core3 and newer cpus.  */
1636 #define TARGET_DBNZ (TARGET_V2 && (arc_tune >= ARC_TUNE_CORE_3))
1637 
1638 /* BI/BIH feature macro.  */
1639 #define TARGET_BI_BIH (TARGET_BRANCH_INDEX && TARGET_CODE_DENSITY)
1640 
1641 /* The default option for BI/BIH instructions.  */
1642 #define DEFAULT_BRANCH_INDEX 0
1643 
1644 #ifndef TARGET_LRA
1645 #define TARGET_LRA arc_lra_p()
1646 #endif
1647 
1648 #endif /* GCC_ARC_H */
1649