1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2    Copyright (C) 1992-2020 Free Software Foundation, Inc.
3    Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
4 
5    This file is part of GCC.
6 
7    GCC is free software; you can redistribute it and/or modify it
8    under the terms of the GNU General Public License as published
9    by the Free Software Foundation; either version 3, or (at your
10    option) any later version.
11 
12    GCC is distributed in the hope that it will be useful, but WITHOUT
13    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
15    License for more details.
16 
17    Under Section 7 of GPL version 3, you are granted additional
18    permissions described in the GCC Runtime Library Exception, version
19    3.1, as published by the Free Software Foundation.
20 
21    You should have received a copy of the GNU General Public License and
22    a copy of the GCC Runtime Library Exception along with this program;
23    see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
24    <http://www.gnu.org/licenses/>.  */
25 
26 /* Note that some other tm.h files include this one and then override
27    many of the definitions.  */
28 
29 #ifndef RS6000_OPTS_H
30 #include "config/rs6000/rs6000-opts.h"
31 #endif
32 
33 /* 128-bit floating point precision values.  */
34 #ifndef RS6000_MODES_H
35 #include "config/rs6000/rs6000-modes.h"
36 #endif
37 
38 /* Definitions for the object file format.  These are set at
39    compile-time.  */
40 
41 #define OBJECT_XCOFF 1
42 #define OBJECT_ELF 2
43 #define OBJECT_MACHO 4
44 
45 #define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
46 #define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
47 #define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
48 
49 #ifndef TARGET_AIX
50 #define TARGET_AIX 0
51 #endif
52 
53 #ifndef TARGET_AIX_OS
54 #define TARGET_AIX_OS 0
55 #endif
56 
57 /* Turn off TOC support if pc-relative addressing is used.  */
58 #define TARGET_TOC             (TARGET_HAS_TOC && !TARGET_PCREL)
59 
60 /* On 32-bit systems without a TOC or pc-relative addressing, we need to use
61    ADDIS/ADDI to load up the address of a symbol.  */
62 #define TARGET_NO_TOC_OR_PCREL (!TARGET_HAS_TOC && !TARGET_PCREL)
63 
64 /* Control whether function entry points use a "dot" symbol when
65    ABI_AIX.  */
66 #define DOT_SYMBOLS 1
67 
68 /* Default string to use for cpu if not specified.  */
69 #ifndef TARGET_CPU_DEFAULT
70 #define TARGET_CPU_DEFAULT ((char *)0)
71 #endif
72 
73 /* If configured for PPC405, support PPC405CR Erratum77.  */
74 #ifdef CONFIG_PPC405CR
75 #define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
76 #else
77 #define PPC405_ERRATUM77 0
78 #endif
79 
80 #ifndef SUBTARGET_DRIVER_SELF_SPECS
81 # define SUBTARGET_DRIVER_SELF_SPECS ""
82 #endif
83 
84 /* Only for use in the testsuite: -mdejagnu-cpu=<value> filters out all
85    -mcpu= as well as -mtune= options then simply adds -mcpu=<value>,
86    while -mdejagnu-tune=<value> filters out all -mtune= options then
87    simply adds -mtune=<value>.
88    With older versions of Dejagnu the command line arguments you set in
89    RUNTESTFLAGS override those set in the testcases; with these options,
90    the testcase will always win.  */
91 #define DRIVER_SELF_SPECS \
92   "%{mdejagnu-cpu=*: %<mcpu=* %<mtune=* -mcpu=%*}", \
93   "%{mdejagnu-tune=*: %<mtune=* -mtune=%*}", \
94   "%{mdejagnu-*: %<mdejagnu-*}", \
95    SUBTARGET_DRIVER_SELF_SPECS
96 
97 #if CHECKING_P
98 #define ASM_OPT_ANY ""
99 #else
100 #define ASM_OPT_ANY " -many"
101 #endif
102 
103 /* Common ASM definitions used by ASM_SPEC among the various targets for
104    handling -mcpu=xxx switches.  There is a parallel list in driver-rs6000.c to
105    provide the default assembler options if the user uses -mcpu=native, so if
106    you make changes here, make them also there.  PR63177: Do not pass -mpower8
107    to the assembler if -mpower9-vector was also used.  */
108 #define ASM_CPU_SPEC \
109 "%{mcpu=native: %(asm_cpu_native); \
110   mcpu=power10: -mpower10; \
111   mcpu=power9: -mpower9; \
112   mcpu=power8|mcpu=powerpc64le: %{mpower9-vector: -mpower9;: -mpower8}; \
113   mcpu=power7: -mpower7; \
114   mcpu=power6x: -mpower6 %{!mvsx:%{!maltivec:-maltivec}}; \
115   mcpu=power6: -mpower6 %{!mvsx:%{!maltivec:-maltivec}}; \
116   mcpu=power5+: -mpower5; \
117   mcpu=power5: -mpower5; \
118   mcpu=power4: -mpower4; \
119   mcpu=power3: -mppc64; \
120   mcpu=powerpc: -mppc; \
121   mcpu=powerpc64: -mppc64; \
122   mcpu=a2: -ma2; \
123   mcpu=cell: -mcell; \
124   mcpu=rs64: -mppc64; \
125   mcpu=401: -mppc; \
126   mcpu=403: -m403; \
127   mcpu=405: -m405; \
128   mcpu=405fp: -m405; \
129   mcpu=440: -m440; \
130   mcpu=440fp: -m440; \
131   mcpu=464: -m440; \
132   mcpu=464fp: -m440; \
133   mcpu=476: -m476; \
134   mcpu=476fp: -m476; \
135   mcpu=505: -mppc; \
136   mcpu=601: -m601; \
137   mcpu=602: -mppc; \
138   mcpu=603: -mppc; \
139   mcpu=603e: -mppc; \
140   mcpu=ec603e: -mppc; \
141   mcpu=604: -mppc; \
142   mcpu=604e: -mppc; \
143   mcpu=620: -mppc64; \
144   mcpu=630: -mppc64; \
145   mcpu=740: -mppc; \
146   mcpu=750: -mppc; \
147   mcpu=G3: -mppc; \
148   mcpu=7400: -mppc %{!mvsx:%{!maltivec:-maltivec}}; \
149   mcpu=7450: -mppc %{!mvsx:%{!maltivec:-maltivec}}; \
150   mcpu=G4: -mppc %{!mvsx:%{!maltivec:-maltivec}}; \
151   mcpu=801: -mppc; \
152   mcpu=821: -mppc; \
153   mcpu=823: -mppc; \
154   mcpu=860: -mppc; \
155   mcpu=970: -mpower4 %{!mvsx:%{!maltivec:-maltivec}}; \
156   mcpu=G5: -mpower4 %{!mvsx:%{!maltivec:-maltivec}}; \
157   mcpu=8540: -me500; \
158   mcpu=8548: -me500; \
159   mcpu=e300c2: -me300; \
160   mcpu=e300c3: -me300; \
161   mcpu=e500mc: -me500mc; \
162   mcpu=e500mc64: -me500mc64; \
163   mcpu=e5500: -me5500; \
164   mcpu=e6500: -me6500; \
165   mcpu=titan: -mtitan; \
166   !mcpu*: %{mpower9-vector: -mpower9; \
167 	    mpower8-vector|mcrypto|mdirect-move|mhtm: -mpower8; \
168 	    mvsx: -mpower7; \
169 	    mpowerpc64: -mppc64;: %(asm_default)}; \
170   :%eMissing -mcpu option in ASM_CPU_SPEC?\n} \
171 %{mvsx: -mvsx -maltivec; maltivec: -maltivec}" \
172 ASM_OPT_ANY
173 
174 #define CPP_DEFAULT_SPEC ""
175 
176 #define ASM_DEFAULT_SPEC ""
177 #define ASM_DEFAULT_EXTRA ""
178 
179 /* This macro defines names of additional specifications to put in the specs
180    that can be used in various specifications like CC1_SPEC.  Its definition
181    is an initializer with a subgrouping for each command option.
182 
183    Each subgrouping contains a string constant, that defines the
184    specification name, and a string constant that used by the GCC driver
185    program.
186 
187    Do not define this macro if it does not need to do anything.  */
188 
189 #define SUBTARGET_EXTRA_SPECS
190 
191 #define EXTRA_SPECS							\
192   { "cpp_default",		CPP_DEFAULT_SPEC },			\
193   { "asm_cpu",			ASM_CPU_SPEC },				\
194   { "asm_cpu_native",		ASM_CPU_NATIVE_SPEC },			\
195   { "asm_default",		ASM_DEFAULT_SPEC ASM_DEFAULT_EXTRA },	\
196   { "cc1_cpu",			CC1_CPU_SPEC },				\
197   SUBTARGET_EXTRA_SPECS
198 
199 /* -mcpu=native handling only makes sense with compiler running on
200    an PowerPC chip.  If changing this condition, also change
201    the condition in driver-rs6000.c.  */
202 #if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
203 /* In driver-rs6000.c.  */
204 extern const char *host_detect_local_cpu (int argc, const char **argv);
205 #define EXTRA_SPEC_FUNCTIONS \
206   { "local_cpu_detect", host_detect_local_cpu },
207 #define HAVE_LOCAL_CPU_DETECT
208 #define ASM_CPU_NATIVE_SPEC "%:local_cpu_detect(asm)"
209 
210 #else
211 #define ASM_CPU_NATIVE_SPEC "%(asm_default)"
212 #endif
213 
214 #ifndef CC1_CPU_SPEC
215 #ifdef HAVE_LOCAL_CPU_DETECT
216 #define CC1_CPU_SPEC \
217 "%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
218  %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
219 #else
220 #define CC1_CPU_SPEC ""
221 #endif
222 #endif
223 
224 /* Architecture type.  */
225 
226 /* Define TARGET_MFCRF if the target assembler does not support the
227    optional field operand for mfcr.  */
228 
229 #ifndef HAVE_AS_MFCRF
230 #undef  TARGET_MFCRF
231 #define TARGET_MFCRF 0
232 #endif
233 
234 #ifndef TARGET_SECURE_PLT
235 #define TARGET_SECURE_PLT 0
236 #endif
237 
238 #ifndef TARGET_CMODEL
239 #define TARGET_CMODEL CMODEL_SMALL
240 #endif
241 
242 #define TARGET_32BIT		(! TARGET_64BIT)
243 
244 #ifndef HAVE_AS_TLS
245 #define HAVE_AS_TLS 0
246 #endif
247 
248 #ifndef HAVE_AS_PLTSEQ
249 #define HAVE_AS_PLTSEQ 0
250 #endif
251 
252 #ifndef TARGET_PLTSEQ
253 #define TARGET_PLTSEQ 0
254 #endif
255 
256 #ifndef TARGET_LINK_STACK
257 #define TARGET_LINK_STACK 0
258 #endif
259 
260 #ifndef SET_TARGET_LINK_STACK
261 #define SET_TARGET_LINK_STACK(X) do { } while (0)
262 #endif
263 
264 #ifndef TARGET_FLOAT128_ENABLE_TYPE
265 #define TARGET_FLOAT128_ENABLE_TYPE 0
266 #endif
267 
268 /* Return 1 for a symbol ref for a thread-local storage symbol.  */
269 #define RS6000_SYMBOL_REF_TLS_P(RTX) \
270   (SYMBOL_REF_P (RTX) && SYMBOL_REF_TLS_MODEL (RTX) != 0)
271 
272 #ifdef IN_LIBGCC2
273 /* For libgcc2 we make sure this is a compile time constant */
274 #if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
275 #undef TARGET_POWERPC64
276 #define TARGET_POWERPC64	1
277 #else
278 #undef TARGET_POWERPC64
279 #define TARGET_POWERPC64	0
280 #endif
281 #else
282     /* The option machinery will define this.  */
283 #endif
284 
285 #define TARGET_DEFAULT (MASK_MULTIPLE)
286 
287 /* Define generic processor types based upon current deployment.  */
288 #define PROCESSOR_COMMON    PROCESSOR_PPC601
289 #define PROCESSOR_POWERPC   PROCESSOR_PPC604
290 #define PROCESSOR_POWERPC64 PROCESSOR_RS64A
291 
292 /* Define the default processor.  This is overridden by other tm.h files.  */
293 #define PROCESSOR_DEFAULT   PROCESSOR_PPC603
294 #define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
295 
296 /* Specify the dialect of assembler to use.  Only new mnemonics are supported
297    starting with GCC 4.8, i.e. just one dialect, but for backwards
298    compatibility with older inline asm ASSEMBLER_DIALECT needs to be
299    defined.  */
300 #define ASSEMBLER_DIALECT 1
301 
302 /* Debug support */
303 #define MASK_DEBUG_STACK	0x01	/* debug stack applications */
304 #define	MASK_DEBUG_ARG		0x02	/* debug argument handling */
305 #define MASK_DEBUG_REG		0x04	/* debug register handling */
306 #define MASK_DEBUG_ADDR		0x08	/* debug memory addressing */
307 #define MASK_DEBUG_COST		0x10	/* debug rtx codes */
308 #define MASK_DEBUG_TARGET	0x20	/* debug target attribute/pragma */
309 #define MASK_DEBUG_BUILTIN	0x40	/* debug builtins */
310 #define MASK_DEBUG_ALL		(MASK_DEBUG_STACK \
311 				 | MASK_DEBUG_ARG \
312 				 | MASK_DEBUG_REG \
313 				 | MASK_DEBUG_ADDR \
314 				 | MASK_DEBUG_COST \
315 				 | MASK_DEBUG_TARGET \
316 				 | MASK_DEBUG_BUILTIN)
317 
318 #define	TARGET_DEBUG_STACK	(rs6000_debug & MASK_DEBUG_STACK)
319 #define	TARGET_DEBUG_ARG	(rs6000_debug & MASK_DEBUG_ARG)
320 #define TARGET_DEBUG_REG	(rs6000_debug & MASK_DEBUG_REG)
321 #define TARGET_DEBUG_ADDR	(rs6000_debug & MASK_DEBUG_ADDR)
322 #define TARGET_DEBUG_COST	(rs6000_debug & MASK_DEBUG_COST)
323 #define TARGET_DEBUG_TARGET	(rs6000_debug & MASK_DEBUG_TARGET)
324 #define TARGET_DEBUG_BUILTIN	(rs6000_debug & MASK_DEBUG_BUILTIN)
325 
326 /* Helper macros for TFmode.  Quad floating point (TFmode) can be either IBM
327    long double format that uses a pair of doubles, or IEEE 128-bit floating
328    point.  KFmode was added as a way to represent IEEE 128-bit floating point,
329    even if the default for long double is the IBM long double format.
330    Similarly IFmode is the IBM long double format even if the default is IEEE
331    128-bit.  Don't allow IFmode if -msoft-float.  */
332 #define FLOAT128_IEEE_P(MODE)						\
333   ((TARGET_IEEEQUAD && TARGET_LONG_DOUBLE_128				\
334     && ((MODE) == TFmode || (MODE) == TCmode))				\
335    || ((MODE) == KFmode) || ((MODE) == KCmode))
336 
337 #define FLOAT128_IBM_P(MODE)						\
338   ((!TARGET_IEEEQUAD && TARGET_LONG_DOUBLE_128				\
339     && ((MODE) == TFmode || (MODE) == TCmode))				\
340    || (TARGET_HARD_FLOAT && ((MODE) == IFmode || (MODE) == ICmode)))
341 
342 /* Helper macros to say whether a 128-bit floating point type can go in a
343    single vector register, or whether it needs paired scalar values.  */
344 #define FLOAT128_VECTOR_P(MODE) (TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE))
345 
346 #define FLOAT128_2REG_P(MODE)						\
347   (FLOAT128_IBM_P (MODE)						\
348    || ((MODE) == TDmode)						\
349    || (!TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE)))
350 
351 /* Return true for floating point that does not use a vector register.  */
352 #define SCALAR_FLOAT_MODE_NOT_VECTOR_P(MODE)				\
353   (SCALAR_FLOAT_MODE_P (MODE) && !FLOAT128_VECTOR_P (MODE))
354 
355 /* Describe the vector unit used for arithmetic operations.  */
356 extern enum rs6000_vector rs6000_vector_unit[];
357 
358 #define VECTOR_UNIT_NONE_P(MODE)			\
359   (rs6000_vector_unit[(MODE)] == VECTOR_NONE)
360 
361 #define VECTOR_UNIT_VSX_P(MODE)				\
362   (rs6000_vector_unit[(MODE)] == VECTOR_VSX)
363 
364 #define VECTOR_UNIT_P8_VECTOR_P(MODE)			\
365   (rs6000_vector_unit[(MODE)] == VECTOR_P8_VECTOR)
366 
367 #define VECTOR_UNIT_ALTIVEC_P(MODE)			\
368   (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC)
369 
370 #define VECTOR_UNIT_VSX_OR_P8_VECTOR_P(MODE)		\
371   (IN_RANGE ((int)rs6000_vector_unit[(MODE)],		\
372 	     (int)VECTOR_VSX,				\
373 	     (int)VECTOR_P8_VECTOR))
374 
375 /* VECTOR_UNIT_ALTIVEC_OR_VSX_P is used in places where we are using either
376    altivec (VMX) or VSX vector instructions.  P8 vector support is upwards
377    compatible, so allow it as well, rather than changing all of the uses of the
378    macro.  */
379 #define VECTOR_UNIT_ALTIVEC_OR_VSX_P(MODE)		\
380   (IN_RANGE ((int)rs6000_vector_unit[(MODE)],		\
381 	     (int)VECTOR_ALTIVEC,			\
382 	     (int)VECTOR_P8_VECTOR))
383 
384 /* Describe whether to use VSX loads or Altivec loads.  For now, just use the
385    same unit as the vector unit we are using, but we may want to migrate to
386    using VSX style loads even for types handled by altivec.  */
387 extern enum rs6000_vector rs6000_vector_mem[];
388 
389 #define VECTOR_MEM_NONE_P(MODE)				\
390   (rs6000_vector_mem[(MODE)] == VECTOR_NONE)
391 
392 #define VECTOR_MEM_VSX_P(MODE)				\
393   (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
394 
395 #define VECTOR_MEM_P8_VECTOR_P(MODE)			\
396   (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
397 
398 #define VECTOR_MEM_ALTIVEC_P(MODE)			\
399   (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC)
400 
401 #define VECTOR_MEM_VSX_OR_P8_VECTOR_P(MODE)		\
402   (IN_RANGE ((int)rs6000_vector_mem[(MODE)],		\
403 	     (int)VECTOR_VSX,				\
404 	     (int)VECTOR_P8_VECTOR))
405 
406 #define VECTOR_MEM_ALTIVEC_OR_VSX_P(MODE)		\
407   (IN_RANGE ((int)rs6000_vector_mem[(MODE)],		\
408 	     (int)VECTOR_ALTIVEC,			\
409 	     (int)VECTOR_P8_VECTOR))
410 
411 /* Return the alignment of a given vector type, which is set based on the
412    vector unit use.  VSX for instance can load 32 or 64 bit aligned words
413    without problems, while Altivec requires 128-bit aligned vectors.  */
414 extern int rs6000_vector_align[];
415 
416 #define VECTOR_ALIGN(MODE)						\
417   ((rs6000_vector_align[(MODE)] != 0)					\
418    ? rs6000_vector_align[(MODE)]					\
419    : (int)GET_MODE_BITSIZE ((MODE)))
420 
421 /* Element number of the 64-bit value in a 128-bit vector that can be accessed
422    with scalar instructions.  */
423 #define VECTOR_ELEMENT_SCALAR_64BIT	((BYTES_BIG_ENDIAN) ? 0 : 1)
424 
425 /* Element number of the 64-bit value in a 128-bit vector that can be accessed
426    with the ISA 3.0 MFVSRLD instructions.  */
427 #define VECTOR_ELEMENT_MFVSRLD_64BIT	((BYTES_BIG_ENDIAN) ? 1 : 0)
428 
429 /* Alignment options for fields in structures for sub-targets following
430    AIX-like ABI.
431    ALIGN_POWER word-aligns FP doubles (default AIX ABI).
432    ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
433 
434    Override the macro definitions when compiling libobjc to avoid undefined
435    reference to rs6000_alignment_flags due to library's use of GCC alignment
436    macros which use the macros below.  */
437 
438 #ifndef IN_TARGET_LIBS
439 #define MASK_ALIGN_POWER   0x00000000
440 #define MASK_ALIGN_NATURAL 0x00000001
441 #define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
442 #else
443 #define TARGET_ALIGN_NATURAL 0
444 #endif
445 
446 /* We use values 126..128 to pick the appropriate long double type (IFmode,
447    KFmode, TFmode).  */
448 #define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size > 64)
449 #define TARGET_IEEEQUAD rs6000_ieeequad
450 #define TARGET_ALTIVEC_ABI rs6000_altivec_abi
451 #define TARGET_LDBRX (TARGET_POPCNTD || rs6000_cpu == PROCESSOR_CELL)
452 
453 /* ISA 2.01 allowed FCFID to be done in 32-bit, previously it was 64-bit only.
454    Enable 32-bit fcfid's on any of the switches for newer ISA machines.  */
455 #define TARGET_FCFID	(TARGET_POWERPC64				\
456 			 || TARGET_PPC_GPOPT	/* 970/power4 */	\
457 			 || TARGET_POPCNTB	/* ISA 2.02 */		\
458 			 || TARGET_CMPB		/* ISA 2.05 */		\
459 			 || TARGET_POPCNTD)	/* ISA 2.06 */
460 
461 #define TARGET_FCTIDZ	TARGET_FCFID
462 #define TARGET_STFIWX	TARGET_PPC_GFXOPT
463 #define TARGET_LFIWAX	TARGET_CMPB
464 #define TARGET_LFIWZX	TARGET_POPCNTD
465 #define TARGET_FCFIDS	TARGET_POPCNTD
466 #define TARGET_FCFIDU	TARGET_POPCNTD
467 #define TARGET_FCFIDUS	TARGET_POPCNTD
468 #define TARGET_FCTIDUZ	TARGET_POPCNTD
469 #define TARGET_FCTIWUZ	TARGET_POPCNTD
470 #define TARGET_CTZ	TARGET_MODULO
471 #define TARGET_EXTSWSLI	(TARGET_MODULO && TARGET_POWERPC64)
472 #define TARGET_MADDLD	TARGET_MODULO
473 
474 #define TARGET_XSCVDPSPN	(TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
475 #define TARGET_XSCVSPDPN	(TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
476 #define TARGET_VADDUQM		(TARGET_P8_VECTOR && TARGET_POWERPC64)
477 #define TARGET_DIRECT_MOVE_128	(TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
478 				 && TARGET_POWERPC64)
479 #define TARGET_VEXTRACTUB	(TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
480 				 && TARGET_POWERPC64)
481 
482 /* Whether we should avoid (SUBREG:SI (REG:SF) and (SUBREG:SF (REG:SI).  */
483 #define TARGET_NO_SF_SUBREG	TARGET_DIRECT_MOVE_64BIT
484 #define TARGET_ALLOW_SF_SUBREG	(!TARGET_DIRECT_MOVE_64BIT)
485 
486 /* This wants to be set for p8 and newer.  On p7, overlapping unaligned
487    loads are slow. */
488 #define TARGET_EFFICIENT_OVERLAPPING_UNALIGNED TARGET_EFFICIENT_UNALIGNED_VSX
489 
490 /* Byte/char syncs were added as phased in for ISA 2.06B, but are not present
491    in power7, so conditionalize them on p8 features.  TImode syncs need quad
492    memory support.  */
493 #define TARGET_SYNC_HI_QI	(TARGET_QUAD_MEMORY			\
494 				 || TARGET_QUAD_MEMORY_ATOMIC		\
495 				 || TARGET_DIRECT_MOVE)
496 
497 #define TARGET_SYNC_TI		TARGET_QUAD_MEMORY_ATOMIC
498 
499 /* Power7 has both 32-bit load and store integer for the FPRs, so we don't need
500    to allocate the SDmode stack slot to get the value into the proper location
501    in the register.  */
502 #define TARGET_NO_SDMODE_STACK	(TARGET_LFIWZX && TARGET_STFIWX && TARGET_DFP)
503 
504 /* ISA 3.0 has new min/max functions that don't need fast math that are being
505    phased in.  Min/max using FSEL or XSMAXDP/XSMINDP do not return the correct
506    answers if the arguments are not in the normal range.  */
507 #define TARGET_MINMAX	(TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT		\
508 			 && (TARGET_P9_MINMAX || !flag_trapping_math))
509 
510 /* In switching from using target_flags to using rs6000_isa_flags, the options
511    machinery creates OPTION_MASK_<xxx> instead of MASK_<xxx>.  For now map
512    OPTION_MASK_<xxx> back into MASK_<xxx>.  */
513 #define MASK_ALTIVEC			OPTION_MASK_ALTIVEC
514 #define MASK_CMPB			OPTION_MASK_CMPB
515 #define MASK_CRYPTO			OPTION_MASK_CRYPTO
516 #define MASK_DFP			OPTION_MASK_DFP
517 #define MASK_DIRECT_MOVE		OPTION_MASK_DIRECT_MOVE
518 #define MASK_DLMZB			OPTION_MASK_DLMZB
519 #define MASK_EABI			OPTION_MASK_EABI
520 #define MASK_FLOAT128_KEYWORD		OPTION_MASK_FLOAT128_KEYWORD
521 #define MASK_FLOAT128_HW		OPTION_MASK_FLOAT128_HW
522 #define MASK_FPRND			OPTION_MASK_FPRND
523 #define MASK_P8_FUSION			OPTION_MASK_P8_FUSION
524 #define MASK_HARD_FLOAT			OPTION_MASK_HARD_FLOAT
525 #define MASK_HTM			OPTION_MASK_HTM
526 #define MASK_ISEL			OPTION_MASK_ISEL
527 #define MASK_MFCRF			OPTION_MASK_MFCRF
528 #define MASK_MMA			OPTION_MASK_MMA
529 #define MASK_MULHW			OPTION_MASK_MULHW
530 #define MASK_MULTIPLE			OPTION_MASK_MULTIPLE
531 #define MASK_NO_UPDATE			OPTION_MASK_NO_UPDATE
532 #define MASK_P8_VECTOR			OPTION_MASK_P8_VECTOR
533 #define MASK_P9_VECTOR			OPTION_MASK_P9_VECTOR
534 #define MASK_P9_MISC			OPTION_MASK_P9_MISC
535 #define MASK_POPCNTB			OPTION_MASK_POPCNTB
536 #define MASK_POPCNTD			OPTION_MASK_POPCNTD
537 #define MASK_PPC_GFXOPT			OPTION_MASK_PPC_GFXOPT
538 #define MASK_PPC_GPOPT			OPTION_MASK_PPC_GPOPT
539 #define MASK_RECIP_PRECISION		OPTION_MASK_RECIP_PRECISION
540 #define MASK_SOFT_FLOAT			OPTION_MASK_SOFT_FLOAT
541 #define MASK_STRICT_ALIGN		OPTION_MASK_STRICT_ALIGN
542 #define MASK_UPDATE			OPTION_MASK_UPDATE
543 #define MASK_VSX			OPTION_MASK_VSX
544 #define MASK_POWER10			OPTION_MASK_POWER10
545 
546 #ifndef IN_LIBGCC2
547 #define MASK_POWERPC64			OPTION_MASK_POWERPC64
548 #endif
549 
550 #ifdef TARGET_64BIT
551 #define MASK_64BIT			OPTION_MASK_64BIT
552 #endif
553 
554 #ifdef TARGET_LITTLE_ENDIAN
555 #define MASK_LITTLE_ENDIAN		OPTION_MASK_LITTLE_ENDIAN
556 #endif
557 
558 #ifdef TARGET_REGNAMES
559 #define MASK_REGNAMES			OPTION_MASK_REGNAMES
560 #endif
561 
562 #ifdef TARGET_PROTOTYPE
563 #define MASK_PROTOTYPE			OPTION_MASK_PROTOTYPE
564 #endif
565 
566 #ifdef TARGET_MODULO
567 #define RS6000_BTM_MODULO		OPTION_MASK_MODULO
568 #endif
569 
570 
571 /* For power systems, we want to enable Altivec and VSX builtins even if the
572    user did not use -maltivec or -mvsx to allow the builtins to be used inside
573    of #pragma GCC target or the target attribute to change the code level for a
574    given system.  */
575 
576 #define TARGET_EXTRA_BUILTINS	(TARGET_POWERPC64			 \
577 				 || TARGET_PPC_GPOPT /* 970/power4 */	 \
578 				 || TARGET_POPCNTB   /* ISA 2.02 */	 \
579 				 || TARGET_CMPB      /* ISA 2.05 */	 \
580 				 || TARGET_POPCNTD   /* ISA 2.06 */	 \
581 				 || TARGET_ALTIVEC			 \
582 				 || TARGET_VSX				 \
583 				 || TARGET_HARD_FLOAT)
584 
585 /* E500 cores only support plain "sync", not lwsync.  */
586 #define TARGET_NO_LWSYNC (rs6000_cpu == PROCESSOR_PPC8540 \
587 			  || rs6000_cpu == PROCESSOR_PPC8548)
588 
589 
590 /* Which machine supports the various reciprocal estimate instructions.  */
591 #define TARGET_FRES	(TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT)
592 
593 #define TARGET_FRE	(TARGET_HARD_FLOAT \
594 			 && (TARGET_POPCNTB || VECTOR_UNIT_VSX_P (DFmode)))
595 
596 #define TARGET_FRSQRTES	(TARGET_HARD_FLOAT && TARGET_POPCNTB \
597 			 && TARGET_PPC_GFXOPT)
598 
599 #define TARGET_FRSQRTE	(TARGET_HARD_FLOAT \
600 			 && (TARGET_PPC_GFXOPT || VECTOR_UNIT_VSX_P (DFmode)))
601 
602 /* Macro to say whether we can do optimizations where we need to do parts of
603    the calculation in 64-bit GPRs and then is transfered to the vector
604    registers.  */
605 #define TARGET_DIRECT_MOVE_64BIT	(TARGET_DIRECT_MOVE		\
606 					 && TARGET_P8_VECTOR		\
607 					 && TARGET_POWERPC64)
608 
609 /* Whether the various reciprocal divide/square root estimate instructions
610    exist, and whether we should automatically generate code for the instruction
611    by default.  */
612 #define RS6000_RECIP_MASK_HAVE_RE	0x1	/* have RE instruction.  */
613 #define RS6000_RECIP_MASK_AUTO_RE	0x2	/* generate RE by default.  */
614 #define RS6000_RECIP_MASK_HAVE_RSQRTE	0x4	/* have RSQRTE instruction.  */
615 #define RS6000_RECIP_MASK_AUTO_RSQRTE	0x8	/* gen. RSQRTE by default.  */
616 
617 extern unsigned char rs6000_recip_bits[];
618 
619 #define RS6000_RECIP_HAVE_RE_P(MODE) \
620   (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RE)
621 
622 #define RS6000_RECIP_AUTO_RE_P(MODE) \
623   (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RE)
624 
625 #define RS6000_RECIP_HAVE_RSQRTE_P(MODE) \
626   (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RSQRTE)
627 
628 #define RS6000_RECIP_AUTO_RSQRTE_P(MODE) \
629   (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RSQRTE)
630 
631 /* The default CPU for TARGET_OPTION_OVERRIDE.  */
632 #define OPTION_TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT
633 
634 /* Target pragma.  */
635 #define REGISTER_TARGET_PRAGMAS() do {				\
636   c_register_pragma (0, "longcall", rs6000_pragma_longcall);	\
637   targetm.target_option.pragma_parse = rs6000_pragma_target_parse; \
638   targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
639   rs6000_target_modify_macros_ptr = rs6000_target_modify_macros; \
640 } while (0)
641 
642 /* Target #defines.  */
643 #define TARGET_CPU_CPP_BUILTINS() \
644   rs6000_cpu_cpp_builtins (pfile)
645 
646 /* Target CPU versions for D.  */
647 #define TARGET_D_CPU_VERSIONS rs6000_d_target_versions
648 
649 /* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
650    we're compiling for.  Some configurations may need to override it.  */
651 #define RS6000_CPU_CPP_ENDIAN_BUILTINS()	\
652   do						\
653     {						\
654       if (BYTES_BIG_ENDIAN)			\
655 	{					\
656 	  builtin_define ("__BIG_ENDIAN__");	\
657 	  builtin_define ("_BIG_ENDIAN");	\
658 	  builtin_assert ("machine=bigendian");	\
659 	}					\
660       else					\
661 	{					\
662 	  builtin_define ("__LITTLE_ENDIAN__");	\
663 	  builtin_define ("_LITTLE_ENDIAN");	\
664 	  builtin_assert ("machine=littleendian"); \
665 	}					\
666     }						\
667   while (0)
668 
669 /* Target machine storage layout.  */
670 
671 /* Define this macro if it is advisable to hold scalars in registers
672    in a wider mode than that declared by the program.  In such cases,
673    the value is constrained to be within the bounds of the declared
674    type, but kept valid in the wider mode.  The signedness of the
675    extension may differ from that of the type.  */
676 
677 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)	\
678   if (GET_MODE_CLASS (MODE) == MODE_INT		\
679       && GET_MODE_SIZE (MODE) < (TARGET_32BIT ? 4 : 8)) \
680     (MODE) = TARGET_32BIT ? SImode : DImode;
681 
682 /* Define this if most significant bit is lowest numbered
683    in instructions that operate on numbered bit-fields.  */
684 /* That is true on RS/6000.  */
685 #define BITS_BIG_ENDIAN 1
686 
687 /* Define this if most significant byte of a word is the lowest numbered.  */
688 /* That is true on RS/6000.  */
689 #define BYTES_BIG_ENDIAN 1
690 
691 /* Define this if most significant word of a multiword number is lowest
692    numbered.
693 
694    For RS/6000 we can decide arbitrarily since there are no machine
695    instructions for them.  Might as well be consistent with bits and bytes.  */
696 #define WORDS_BIG_ENDIAN 1
697 
698 /* This says that for the IBM long double the larger magnitude double
699    comes first.  It's really a two element double array, and arrays
700    don't index differently between little- and big-endian.  */
701 #define LONG_DOUBLE_LARGE_FIRST 1
702 
703 #define MAX_BITS_PER_WORD 64
704 
705 /* Width of a word, in units (bytes).  */
706 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
707 #ifdef IN_LIBGCC2
708 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
709 #else
710 #define MIN_UNITS_PER_WORD 4
711 #endif
712 #define UNITS_PER_FP_WORD 8
713 #define UNITS_PER_ALTIVEC_WORD 16
714 #define UNITS_PER_VSX_WORD 16
715 
716 /* Type used for ptrdiff_t, as a string used in a declaration.  */
717 #define PTRDIFF_TYPE "int"
718 
719 /* Type used for size_t, as a string used in a declaration.  */
720 #define SIZE_TYPE "long unsigned int"
721 
722 /* Type used for wchar_t, as a string used in a declaration.  */
723 #define WCHAR_TYPE "short unsigned int"
724 
725 /* Width of wchar_t in bits.  */
726 #define WCHAR_TYPE_SIZE 16
727 
728 /* A C expression for the size in bits of the type `short' on the
729    target machine.  If you don't define this, the default is half a
730    word.  (If this would be less than one storage unit, it is
731    rounded up to one unit.)  */
732 #define SHORT_TYPE_SIZE 16
733 
734 /* A C expression for the size in bits of the type `int' on the
735    target machine.  If you don't define this, the default is one
736    word.  */
737 #define INT_TYPE_SIZE 32
738 
739 /* A C expression for the size in bits of the type `long' on the
740    target machine.  If you don't define this, the default is one
741    word.  */
742 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
743 
744 /* A C expression for the size in bits of the type `long long' on the
745    target machine.  If you don't define this, the default is two
746    words.  */
747 #define LONG_LONG_TYPE_SIZE 64
748 
749 /* A C expression for the size in bits of the type `float' on the
750    target machine.  If you don't define this, the default is one
751    word.  */
752 #define FLOAT_TYPE_SIZE 32
753 
754 /* A C expression for the size in bits of the type `double' on the
755    target machine.  If you don't define this, the default is two
756    words.  */
757 #define DOUBLE_TYPE_SIZE 64
758 
759 /* A C expression for the size in bits of the type `long double' on the target
760    machine.  If you don't define this, the default is two words.  */
761 #define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
762 
763 /* Work around rs6000_long_double_type_size dependency in ada/targtyps.c.  */
764 #define WIDEST_HARDWARE_FP_SIZE 64
765 
766 /* Width in bits of a pointer.
767    See also the macro `Pmode' defined below.  */
768 extern unsigned rs6000_pointer_size;
769 #define POINTER_SIZE rs6000_pointer_size
770 
771 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
772 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
773 
774 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
775 #define STACK_BOUNDARY	\
776   ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI && !TARGET_VSX) \
777     ? 64 : 128)
778 
779 /* Allocation boundary (in *bits*) for the code of a function.  */
780 #define FUNCTION_BOUNDARY 32
781 
782 /* No data type is required to be aligned rounder than this.  Warning, if
783    BIGGEST_ALIGNMENT is changed, then this may be an ABI break.  An example
784    of where this can break an ABI is in GLIBC's struct _Unwind_Exception.  */
785 #define BIGGEST_ALIGNMENT 128
786 
787 /* Alignment of field after `int : 0' in a structure.  */
788 #define EMPTY_FIELD_BOUNDARY 32
789 
790 /* Every structure's size must be a multiple of this.  */
791 #define STRUCTURE_SIZE_BOUNDARY 8
792 
793 /* A bit-field declared as `int' forces `int' alignment for the struct.  */
794 #define PCC_BITFIELD_TYPE_MATTERS 1
795 
796 enum data_align { align_abi, align_opt, align_both };
797 
798 /* A C expression to compute the alignment for a variables in the
799    local store.  TYPE is the data type, and ALIGN is the alignment
800    that the object would ordinarily have.  */
801 #define LOCAL_ALIGNMENT(TYPE, ALIGN)				\
802   rs6000_data_alignment (TYPE, ALIGN, align_both)
803 
804 /* Make arrays of chars word-aligned for the same reasons.  */
805 #define DATA_ALIGNMENT(TYPE, ALIGN) \
806   rs6000_data_alignment (TYPE, ALIGN, align_opt)
807 
808 /* Align vectors to 128 bits.  */
809 #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
810   rs6000_data_alignment (TYPE, ALIGN, align_abi)
811 
812 /* Nonzero if move instructions will actually fail to work
813    when given unaligned data.  */
814 #define STRICT_ALIGNMENT 0
815 
816 /* Standard register usage.  */
817 
818 /* Number of actual hardware registers.
819    The hardware registers are assigned numbers for the compiler
820    from 0 to just below FIRST_PSEUDO_REGISTER.
821    All registers that the compiler knows about must be given numbers,
822    even those that are not normally considered general registers.
823 
824    RS/6000 has 32 fixed-point registers, 32 floating-point registers,
825    a count register, a link register, and 8 condition register fields,
826    which we view here as separate registers.  AltiVec adds 32 vector
827    registers and a VRsave register.
828 
829    In addition, the difference between the frame and argument pointers is
830    a function of the number of registers saved, so we need to have a
831    register for AP that will later be eliminated in favor of SP or FP.
832    This is a normal register, but it is fixed.
833 
834    We also create a pseudo register for float/int conversions, that will
835    really represent the memory location used.  It is represented here as
836    a register, in order to work around problems in allocating stack storage
837    in inline functions.
838 
839    Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
840    pointer, which is eventually eliminated in favor of SP or FP.  */
841 
842 #define FIRST_PSEUDO_REGISTER 111
843 
844 /* Use standard DWARF numbering for DWARF debugging information.  */
845 #define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number ((REGNO), 0)
846 
847 /* Use gcc hard register numbering for eh_frame.  */
848 #define DWARF_FRAME_REGNUM(REGNO) (REGNO)
849 
850 /* Map register numbers held in the call frame info that gcc has
851    collected using DWARF_FRAME_REGNUM to those that should be output in
852    .debug_frame and .eh_frame.  */
853 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \
854   rs6000_dbx_register_number ((REGNO), (FOR_EH) ? 2 : 1)
855 
856 /* 1 for registers that have pervasive standard uses
857    and are not available for the register allocator.
858 
859    On RS/6000, r1 is used for the stack.  On Darwin, r2 is available
860    as a local register; for all other OS's r2 is the TOC pointer.
861 
862    On System V implementations, r13 is fixed and not available for use.  */
863 
864 #define FIXED_REGISTERS  \
865   {/* GPRs */					   \
866    0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
867    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
868    /* FPRs */					   \
869    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
870    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
871    /* VRs */					   \
872    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
873    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
874    /* lr ctr ca ap */				   \
875    0, 0, 1, 1,					   \
876    /* cr0..cr7 */				   \
877    0, 0, 0, 0, 0, 0, 0, 0,			   \
878    /* vrsave vscr sfp */			   \
879    1, 1, 1					   \
880 }
881 
882 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
883    the entire set of `FIXED_REGISTERS' be included.
884    (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
885    This macro is optional.  If not specified, it defaults to the value
886    of `CALL_USED_REGISTERS'.  */
887 
888 #define CALL_REALLY_USED_REGISTERS  \
889   {/* GPRs */					   \
890    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
891    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
892    /* FPRs */					   \
893    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
894    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
895    /* VRs */					   \
896    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
897    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
898    /* lr ctr ca ap */				   \
899    1, 1, 1, 1,					   \
900    /* cr0..cr7 */				   \
901    1, 1, 0, 0, 0, 1, 1, 1,			   \
902    /* vrsave vscr sfp */			   \
903    0, 0, 0					   \
904 }
905 
906 #define TOTAL_ALTIVEC_REGS	(LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
907 
908 #define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
909 #define FIRST_SAVED_FP_REGNO	  (14+32)
910 #define FIRST_SAVED_GP_REGNO	  (FIXED_R13 ? 14 : 13)
911 
912 /* List the order in which to allocate registers.  Each register must be
913    listed once, even those in FIXED_REGISTERS.
914 
915    We allocate in the following order:
916 	fp0		(not saved or used for anything)
917 	fp13 - fp2	(not saved; incoming fp arg registers)
918 	fp1		(not saved; return value)
919 	fp31 - fp14	(saved; order given to save least number)
920 	cr7, cr5	(not saved or special)
921 	cr6		(not saved, but used for vector operations)
922 	cr1		(not saved, but used for FP operations)
923 	cr0		(not saved, but used for arithmetic operations)
924 	cr4, cr3, cr2	(saved)
925 	r9		(not saved; best for TImode)
926 	r10, r8-r4	(not saved; highest first for less conflict with params)
927 	r3		(not saved; return value register)
928 	r11		(not saved; later alloc to help shrink-wrap)
929 	r0		(not saved; cannot be base reg)
930 	r31 - r13	(saved; order given to save least number)
931 	r12		(not saved; if used for DImode or DFmode would use r13)
932 	ctr		(not saved; when we have the choice ctr is better)
933 	lr		(saved)
934 	r1, r2, ap, ca	(fixed)
935 	v0 - v1		(not saved or used for anything)
936 	v13 - v3	(not saved; incoming vector arg registers)
937 	v2		(not saved; incoming vector arg reg; return value)
938 	v19 - v14	(not saved or used for anything)
939 	v31 - v20	(saved; order given to save least number)
940 	vrsave, vscr	(fixed)
941 	sfp		(fixed)
942 */
943 
944 #if FIXED_R2 == 1
945 #define MAYBE_R2_AVAILABLE
946 #define MAYBE_R2_FIXED 2,
947 #else
948 #define MAYBE_R2_AVAILABLE 2,
949 #define MAYBE_R2_FIXED
950 #endif
951 
952 #if FIXED_R13 == 1
953 #define EARLY_R12 12,
954 #define LATE_R12
955 #else
956 #define EARLY_R12
957 #define LATE_R12 12,
958 #endif
959 
960 #define REG_ALLOC_ORDER						\
961   {32,								\
962    /* move fr13 (ie 45) later, so if we need TFmode, it does */	\
963    /* not use fr14 which is a saved register.  */		\
964    44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 45,		\
965    33,								\
966    63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51,		\
967    50, 49, 48, 47, 46,						\
968    100, 107, 105, 106, 101, 104, 103, 102,			\
969    MAYBE_R2_AVAILABLE						\
970    9, 10, 8, 7, 6, 5, 4,					\
971    3, EARLY_R12 11, 0,						\
972    31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19,		\
973    18, 17, 16, 15, 14, 13, LATE_R12				\
974    97, 96,							\
975    1, MAYBE_R2_FIXED 99, 98,					\
976    /* AltiVec registers.  */					\
977    64, 65,							\
978    77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67,			\
979    66,								\
980    83, 82, 81, 80, 79, 78,					\
981    95, 94, 93, 92, 91, 90, 89, 88, 87, 86, 85, 84,		\
982    108, 109,							\
983    110								\
984 }
985 
986 /* True if register is floating-point.  */
987 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
988 
989 /* True if register is a condition register.  */
990 #define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
991 
992 /* True if register is a condition register, but not cr0.  */
993 #define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
994 
995 /* True if register is an integer register.  */
996 #define INT_REGNO_P(N) \
997   ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
998 
999 /* True if register is the CA register.  */
1000 #define CA_REGNO_P(N) ((N) == CA_REGNO)
1001 
1002 /* True if register is an AltiVec register.  */
1003 #define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
1004 
1005 /* True if register is a VSX register.  */
1006 #define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N))
1007 
1008 /* Alternate name for any vector register supporting floating point, no matter
1009    which instruction set(s) are available.  */
1010 #define VFLOAT_REGNO_P(N) \
1011   (ALTIVEC_REGNO_P (N) || (TARGET_VSX && FP_REGNO_P (N)))
1012 
1013 /* Alternate name for any vector register supporting integer, no matter which
1014    instruction set(s) are available.  */
1015 #define VINT_REGNO_P(N) ALTIVEC_REGNO_P (N)
1016 
1017 /* Alternate name for any vector register supporting logical operations, no
1018    matter which instruction set(s) are available.  Allow GPRs as well as the
1019    vector registers.  */
1020 #define VLOGICAL_REGNO_P(N)						\
1021   (INT_REGNO_P (N) || ALTIVEC_REGNO_P (N)				\
1022    || (TARGET_VSX && FP_REGNO_P (N)))					\
1023 
1024 /* When setting up caller-save slots (MODE == VOIDmode) ensure we allocate
1025    enough space to account for vectors in FP regs.  However, TFmode/TDmode
1026    should not use VSX instructions to do a caller save. */
1027 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE)			\
1028   ((NREGS) <= rs6000_hard_regno_nregs[MODE][REGNO]			\
1029    ? (MODE)								\
1030    : TARGET_VSX								\
1031      && ((MODE) == VOIDmode || ALTIVEC_OR_VSX_VECTOR_MODE (MODE))	\
1032      && FP_REGNO_P (REGNO)						\
1033    ? V2DFmode								\
1034    : FLOAT128_IBM_P (MODE) && FP_REGNO_P (REGNO)			\
1035    ? DFmode								\
1036    : (MODE) == TDmode && FP_REGNO_P (REGNO)				\
1037    ? DImode								\
1038    : choose_hard_reg_mode ((REGNO), (NREGS), NULL))
1039 
1040 #define VSX_VECTOR_MODE(MODE)		\
1041 	 ((MODE) == V4SFmode		\
1042 	  || (MODE) == V2DFmode)	\
1043 
1044 /* Modes that are not vectors, but require vector alignment.  Treat these like
1045    vectors in terms of loads and stores.  */
1046 #define VECTOR_ALIGNMENT_P(MODE)					\
1047   (FLOAT128_VECTOR_P (MODE) || (MODE) == POImode || (MODE) == PXImode)
1048 
1049 #define ALTIVEC_VECTOR_MODE(MODE)					\
1050   ((MODE) == V16QImode							\
1051    || (MODE) == V8HImode						\
1052    || (MODE) == V4SFmode						\
1053    || (MODE) == V4SImode						\
1054    || VECTOR_ALIGNMENT_P (MODE))
1055 
1056 #define ALTIVEC_OR_VSX_VECTOR_MODE(MODE)				\
1057   (ALTIVEC_VECTOR_MODE (MODE) || VSX_VECTOR_MODE (MODE)			\
1058    || (MODE) == V2DImode || (MODE) == V1TImode)
1059 
1060 /* Post-reload, we can't use any new AltiVec registers, as we already
1061    emitted the vrsave mask.  */
1062 
1063 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1064   (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
1065 
1066 /* Specify the cost of a branch insn; roughly the number of extra insns that
1067    should be added to avoid a branch.
1068 
1069    Set this to 3 on the RS/6000 since that is roughly the average cost of an
1070    unscheduled conditional branch.  */
1071 
1072 #define BRANCH_COST(speed_p, predictable_p) 3
1073 
1074 /* Override BRANCH_COST heuristic which empirically produces worse
1075    performance for removing short circuiting from the logical ops.  */
1076 
1077 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
1078 
1079 /* Specify the registers used for certain standard purposes.
1080    The values of these macros are register numbers.  */
1081 
1082 /* RS/6000 pc isn't overloaded on a register that the compiler knows about.  */
1083 /* #define PC_REGNUM  */
1084 
1085 /* Register to use for pushing function arguments.  */
1086 #define STACK_POINTER_REGNUM 1
1087 
1088 /* Base register for access to local variables of the function.  */
1089 #define HARD_FRAME_POINTER_REGNUM 31
1090 
1091 /* Base register for access to local variables of the function.  */
1092 #define FRAME_POINTER_REGNUM 110
1093 
1094 /* Base register for access to arguments of the function.  */
1095 #define ARG_POINTER_REGNUM 99
1096 
1097 /* Place to put static chain when calling a function that requires it.  */
1098 #define STATIC_CHAIN_REGNUM 11
1099 
1100 /* Base register for access to thread local storage variables.  */
1101 #define TLS_REGNUM ((TARGET_64BIT) ? 13 : 2)
1102 
1103 
1104 /* Define the classes of registers for register constraints in the
1105    machine description.  Also define ranges of constants.
1106 
1107    One of the classes must always be named ALL_REGS and include all hard regs.
1108    If there is more than one class, another class must be named NO_REGS
1109    and contain no registers.
1110 
1111    The name GENERAL_REGS must be the name of a class (or an alias for
1112    another name such as ALL_REGS).  This is the class of registers
1113    that is allowed by "g" or "r" in a register constraint.
1114    Also, registers outside this class are allocated only when
1115    instructions express preferences for them.
1116 
1117    The classes must be numbered in nondecreasing order; that is,
1118    a larger-numbered class must never be contained completely
1119    in a smaller-numbered class.
1120 
1121    For any two classes, it is very desirable that there be another
1122    class that represents their union.  */
1123 
1124 /* The RS/6000 has three types of registers, fixed-point, floating-point, and
1125    condition registers, plus three special registers, CTR, and the link
1126    register.  AltiVec adds a vector register class.  VSX registers overlap the
1127    FPR registers and the Altivec registers.
1128 
1129    However, r0 is special in that it cannot be used as a base register.
1130    So make a class for registers valid as base registers.
1131 
1132    Also, cr0 is the only condition code register that can be used in
1133    arithmetic insns, so make a separate class for it.  */
1134 
1135 enum reg_class
1136 {
1137   NO_REGS,
1138   BASE_REGS,
1139   GENERAL_REGS,
1140   FLOAT_REGS,
1141   ALTIVEC_REGS,
1142   VSX_REGS,
1143   VRSAVE_REGS,
1144   VSCR_REGS,
1145   GEN_OR_FLOAT_REGS,
1146   GEN_OR_VSX_REGS,
1147   LINK_REGS,
1148   CTR_REGS,
1149   LINK_OR_CTR_REGS,
1150   SPECIAL_REGS,
1151   SPEC_OR_GEN_REGS,
1152   CR0_REGS,
1153   CR_REGS,
1154   NON_FLOAT_REGS,
1155   CA_REGS,
1156   ALL_REGS,
1157   LIM_REG_CLASSES
1158 };
1159 
1160 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1161 
1162 /* Give names of register classes as strings for dump file.  */
1163 
1164 #define REG_CLASS_NAMES							\
1165 {									\
1166   "NO_REGS",								\
1167   "BASE_REGS",								\
1168   "GENERAL_REGS",							\
1169   "FLOAT_REGS",								\
1170   "ALTIVEC_REGS",							\
1171   "VSX_REGS",								\
1172   "VRSAVE_REGS",							\
1173   "VSCR_REGS",								\
1174   "GEN_OR_FLOAT_REGS",							\
1175   "GEN_OR_VSX_REGS",							\
1176   "LINK_REGS",								\
1177   "CTR_REGS",								\
1178   "LINK_OR_CTR_REGS",							\
1179   "SPECIAL_REGS",							\
1180   "SPEC_OR_GEN_REGS",							\
1181   "CR0_REGS",								\
1182   "CR_REGS",								\
1183   "NON_FLOAT_REGS",							\
1184   "CA_REGS",								\
1185   "ALL_REGS"								\
1186 }
1187 
1188 /* Define which registers fit in which classes.
1189    This is an initializer for a vector of HARD_REG_SET
1190    of length N_REG_CLASSES.  */
1191 
1192 #define REG_CLASS_CONTENTS						\
1193 {									\
1194   /* NO_REGS.  */							\
1195   { 0x00000000, 0x00000000, 0x00000000, 0x00000000 },			\
1196   /* BASE_REGS.  */							\
1197   { 0xfffffffe, 0x00000000, 0x00000000, 0x00004008 },			\
1198   /* GENERAL_REGS.  */							\
1199   { 0xffffffff, 0x00000000, 0x00000000, 0x00004008 },			\
1200   /* FLOAT_REGS.  */							\
1201   { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 },			\
1202   /* ALTIVEC_REGS.  */							\
1203   { 0x00000000, 0x00000000, 0xffffffff, 0x00000000 },			\
1204   /* VSX_REGS.  */							\
1205   { 0x00000000, 0xffffffff, 0xffffffff, 0x00000000 },			\
1206   /* VRSAVE_REGS.  */							\
1207   { 0x00000000, 0x00000000, 0x00000000, 0x00001000 },			\
1208   /* VSCR_REGS.  */							\
1209   { 0x00000000, 0x00000000, 0x00000000, 0x00002000 },			\
1210   /* GEN_OR_FLOAT_REGS.  */						\
1211   { 0xffffffff, 0xffffffff, 0x00000000, 0x00004008 },			\
1212   /* GEN_OR_VSX_REGS.  */						\
1213   { 0xffffffff, 0xffffffff, 0xffffffff, 0x00004008 },			\
1214   /* LINK_REGS.  */							\
1215   { 0x00000000, 0x00000000, 0x00000000, 0x00000001 },			\
1216   /* CTR_REGS.  */							\
1217   { 0x00000000, 0x00000000, 0x00000000, 0x00000002 },			\
1218   /* LINK_OR_CTR_REGS.  */						\
1219   { 0x00000000, 0x00000000, 0x00000000, 0x00000003 },			\
1220   /* SPECIAL_REGS.  */							\
1221   { 0x00000000, 0x00000000, 0x00000000, 0x00001003 },			\
1222   /* SPEC_OR_GEN_REGS.  */						\
1223   { 0xffffffff, 0x00000000, 0x00000000, 0x0000500b },			\
1224   /* CR0_REGS.  */							\
1225   { 0x00000000, 0x00000000, 0x00000000, 0x00000010 },			\
1226   /* CR_REGS.  */							\
1227   { 0x00000000, 0x00000000, 0x00000000, 0x00000ff0 },			\
1228   /* NON_FLOAT_REGS.  */						\
1229   { 0xffffffff, 0x00000000, 0x00000000, 0x00004ffb },			\
1230   /* CA_REGS.  */							\
1231   { 0x00000000, 0x00000000, 0x00000000, 0x00000004 },			\
1232   /* ALL_REGS.  */							\
1233   { 0xffffffff, 0xffffffff, 0xffffffff, 0x00007fff }			\
1234 }
1235 
1236 /* The same information, inverted:
1237    Return the class number of the smallest class containing
1238    reg number REGNO.  This could be a conditional expression
1239    or could index an array.  */
1240 
1241 extern enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER];
1242 
1243 #define REGNO_REG_CLASS(REGNO) 						\
1244   (gcc_checking_assert (IN_RANGE ((REGNO), 0, FIRST_PSEUDO_REGISTER-1)),\
1245    rs6000_regno_regclass[(REGNO)])
1246 
1247 /* Register classes for various constraints that are based on the target
1248    switches.  */
1249 enum r6000_reg_class_enum {
1250   RS6000_CONSTRAINT_d,		/* fpr registers for double values */
1251   RS6000_CONSTRAINT_f,		/* fpr registers for single values */
1252   RS6000_CONSTRAINT_v,		/* Altivec registers */
1253   RS6000_CONSTRAINT_wa,		/* Any VSX register */
1254   RS6000_CONSTRAINT_we,		/* VSX register if ISA 3.0 vector. */
1255   RS6000_CONSTRAINT_wr,		/* GPR register if 64-bit  */
1256   RS6000_CONSTRAINT_wx,		/* FPR register for STFIWX */
1257   RS6000_CONSTRAINT_wA,		/* BASE_REGS if 64-bit.  */
1258   RS6000_CONSTRAINT_MAX
1259 };
1260 
1261 extern enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];
1262 
1263 /* The class value for index registers, and the one for base regs.  */
1264 #define INDEX_REG_CLASS GENERAL_REGS
1265 #define BASE_REG_CLASS BASE_REGS
1266 
1267 /* Return whether a given register class can hold VSX objects.  */
1268 #define VSX_REG_CLASS_P(CLASS)			\
1269   ((CLASS) == VSX_REGS || (CLASS) == FLOAT_REGS || (CLASS) == ALTIVEC_REGS)
1270 
1271 /* Return whether a given register class targets general purpose registers.  */
1272 #define GPR_REG_CLASS_P(CLASS) ((CLASS) == GENERAL_REGS || (CLASS) == BASE_REGS)
1273 
1274 /* Given an rtx X being reloaded into a reg required to be
1275    in class CLASS, return the class of reg to actually use.
1276    In general this is just CLASS; but on some machines
1277    in some cases it is preferable to use a more restrictive class.
1278 
1279    On the RS/6000, we have to return NO_REGS when we want to reload a
1280    floating-point CONST_DOUBLE to force it to be copied to memory.
1281 
1282    We also don't want to reload integer values into floating-point
1283    registers if we can at all help it.  In fact, this can
1284    cause reload to die, if it tries to generate a reload of CTR
1285    into a FP register and discovers it doesn't have the memory location
1286    required.
1287 
1288    ??? Would it be a good idea to have reload do the converse, that is
1289    try to reload floating modes into FP registers if possible?
1290  */
1291 
1292 #define PREFERRED_RELOAD_CLASS(X,CLASS)			\
1293   rs6000_preferred_reload_class_ptr (X, CLASS)
1294 
1295 /* Return the register class of a scratch register needed to copy IN into
1296    or out of a register in CLASS in MODE.  If it can be done directly,
1297    NO_REGS is returned.  */
1298 
1299 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1300   rs6000_secondary_reload_class_ptr (CLASS, MODE, IN)
1301 
1302 /* Return the maximum number of consecutive registers
1303    needed to represent mode MODE in a register of class CLASS.
1304 
1305    On RS/6000, this is the size of MODE in words, except in the FP regs, where
1306    a single reg is enough for two words, unless we have VSX, where the FP
1307    registers can hold 128 bits.  */
1308 #define CLASS_MAX_NREGS(CLASS, MODE) rs6000_class_max_nregs[(MODE)][(CLASS)]
1309 
1310 /* Stack layout; function entry, exit and calling.  */
1311 
1312 /* Define this if pushing a word on the stack
1313    makes the stack pointer a smaller address.  */
1314 #define STACK_GROWS_DOWNWARD 1
1315 
1316 /* Offsets recorded in opcodes are a multiple of this alignment factor.  */
1317 #define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1318 
1319 /* Define this to nonzero if the nominal address of the stack frame
1320    is at the high-address end of the local variables;
1321    that is, each additional local variable allocated
1322    goes at a more negative offset in the frame.
1323 
1324    On the RS/6000, we grow upwards, from the area after the outgoing
1325    arguments.  */
1326 #define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0			\
1327 			      || (flag_sanitize & SANITIZE_ADDRESS) != 0)
1328 
1329 /* Size of the fixed area on the stack */
1330 #define RS6000_SAVE_AREA \
1331   ((DEFAULT_ABI == ABI_V4 ? 8 : DEFAULT_ABI == ABI_ELFv2 ? 16 : 24)	\
1332    << (TARGET_64BIT ? 1 : 0))
1333 
1334 /* Stack offset for toc save slot.  */
1335 #define RS6000_TOC_SAVE_SLOT \
1336   ((DEFAULT_ABI == ABI_ELFv2 ? 12 : 20) << (TARGET_64BIT ? 1 : 0))
1337 
1338 /* Align an address */
1339 #define RS6000_ALIGN(n,a) ROUND_UP ((n), (a))
1340 
1341 /* Offset within stack frame to start allocating local variables at.
1342    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1343    first local allocated.  Otherwise, it is the offset to the BEGINNING
1344    of the first local allocated.
1345 
1346    On the RS/6000, the frame pointer is the same as the stack pointer,
1347    except for dynamic allocations.  So we start after the fixed area and
1348    outgoing parameter area.
1349 
1350    If the function uses dynamic stack space (CALLS_ALLOCA is set), that
1351    space needs to be aligned to STACK_BOUNDARY, i.e. the sum of the
1352    sizes of the fixed area and the parameter area must be a multiple of
1353    STACK_BOUNDARY.  */
1354 
1355 #define RS6000_STARTING_FRAME_OFFSET					\
1356   (cfun->calls_alloca							\
1357    ? (RS6000_ALIGN (crtl->outgoing_args_size + RS6000_SAVE_AREA,	\
1358 		    (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8 ))		\
1359    : (RS6000_ALIGN (crtl->outgoing_args_size,				\
1360 		    (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8)		\
1361       + RS6000_SAVE_AREA))
1362 
1363 /* Offset from the stack pointer register to an item dynamically
1364    allocated on the stack, e.g., by `alloca'.
1365 
1366    The default value for this macro is `STACK_POINTER_OFFSET' plus the
1367    length of the outgoing arguments.  The default is correct for most
1368    machines.  See `function.c' for details.
1369 
1370    This value must be a multiple of STACK_BOUNDARY (hard coded in
1371    `emit-rtl.c').  */
1372 #define STACK_DYNAMIC_OFFSET(FUNDECL)					\
1373   RS6000_ALIGN (crtl->outgoing_args_size.to_constant ()			\
1374 		+ STACK_POINTER_OFFSET,					\
1375 		(TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8)
1376 
1377 /* If we generate an insn to push BYTES bytes,
1378    this says how many the stack pointer really advances by.
1379    On RS/6000, don't define this because there are no push insns.  */
1380 /*  #define PUSH_ROUNDING(BYTES) */
1381 
1382 /* Offset of first parameter from the argument pointer register value.
1383    On the RS/6000, we define the argument pointer to the start of the fixed
1384    area.  */
1385 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1386 
1387 /* Offset from the argument pointer register value to the top of
1388    stack.  This is different from FIRST_PARM_OFFSET because of the
1389    register save area.  */
1390 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1391 
1392 /* Define this if stack space is still allocated for a parameter passed
1393    in a register.  The value is the number of bytes allocated to this
1394    area.  */
1395 #define REG_PARM_STACK_SPACE(FNDECL) \
1396   rs6000_reg_parm_stack_space ((FNDECL), false)
1397 
1398 /* Define this macro if space guaranteed when compiling a function body
1399    is different to space required when making a call, a situation that
1400    can arise with K&R style function definitions.  */
1401 #define INCOMING_REG_PARM_STACK_SPACE(FNDECL) \
1402   rs6000_reg_parm_stack_space ((FNDECL), true)
1403 
1404 /* Define this if the above stack space is to be considered part of the
1405    space allocated by the caller.  */
1406 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
1407 
1408 /* This is the difference between the logical top of stack and the actual sp.
1409 
1410    For the RS/6000, sp points past the fixed area.  */
1411 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1412 
1413 /* Define this if the maximum size of all the outgoing args is to be
1414    accumulated and pushed during the prologue.  The amount can be
1415    found in the variable crtl->outgoing_args_size.  */
1416 #define ACCUMULATE_OUTGOING_ARGS 1
1417 
1418 /* Define how to find the value returned by a library function
1419    assuming the value has mode MODE.  */
1420 
1421 #define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
1422 
1423 /* DRAFT_V4_STRUCT_RET defaults off.  */
1424 #define DRAFT_V4_STRUCT_RET 0
1425 
1426 /* Let TARGET_RETURN_IN_MEMORY control what happens.  */
1427 #define DEFAULT_PCC_STRUCT_RETURN 0
1428 
1429 /* Mode of stack savearea.
1430    FUNCTION is VOIDmode because calling convention maintains SP.
1431    BLOCK needs Pmode for SP.
1432    NONLOCAL needs twice Pmode to maintain both backchain and SP.  */
1433 #define STACK_SAVEAREA_MODE(LEVEL)	\
1434   (LEVEL == SAVE_FUNCTION ? VOIDmode	\
1435   : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : PTImode) : Pmode)
1436 
1437 /* Minimum and maximum general purpose registers used to hold arguments.  */
1438 #define GP_ARG_MIN_REG 3
1439 #define GP_ARG_MAX_REG 10
1440 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1441 
1442 /* Minimum and maximum floating point registers used to hold arguments.  */
1443 #define FP_ARG_MIN_REG 33
1444 #define	FP_ARG_AIX_MAX_REG 45
1445 #define	FP_ARG_V4_MAX_REG  40
1446 #define	FP_ARG_MAX_REG (DEFAULT_ABI == ABI_V4				\
1447 			? FP_ARG_V4_MAX_REG : FP_ARG_AIX_MAX_REG)
1448 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1449 
1450 /* Minimum and maximum AltiVec registers used to hold arguments.  */
1451 #define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1452 #define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1453 #define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1454 
1455 /* Maximum number of registers per ELFv2 homogeneous aggregate argument.  */
1456 #define AGGR_ARG_NUM_REG 8
1457 
1458 /* Return registers */
1459 #define GP_ARG_RETURN GP_ARG_MIN_REG
1460 #define FP_ARG_RETURN FP_ARG_MIN_REG
1461 #define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1462 #define FP_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 ? FP_ARG_RETURN	\
1463 			   : (FP_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
1464 #define ALTIVEC_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2		\
1465 				? (ALTIVEC_ARG_RETURN			\
1466 				   + (TARGET_FLOAT128_TYPE ? 1 : 0))	\
1467 			        : (ALTIVEC_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
1468 
1469 /* Flags for the call/call_value rtl operations set up by function_arg */
1470 #define CALL_NORMAL		0x00000000	/* no special processing */
1471 /* Bits in 0x00000001 are unused.  */
1472 #define CALL_V4_CLEAR_FP_ARGS	0x00000002	/* V.4, no FP args passed */
1473 #define CALL_V4_SET_FP_ARGS	0x00000004	/* V.4, FP args were passed */
1474 #define CALL_LONG		0x00000008	/* always call indirect */
1475 #define CALL_LIBCALL		0x00000010	/* libcall */
1476 
1477 /* Identify PLT sequence for rs6000_pltseq_template.  */
1478 enum rs6000_pltseq_enum {
1479   RS6000_PLTSEQ_TOCSAVE,
1480   RS6000_PLTSEQ_PLT16_HA,
1481   RS6000_PLTSEQ_PLT16_LO,
1482   RS6000_PLTSEQ_MTCTR,
1483   RS6000_PLTSEQ_PLT_PCREL34
1484 };
1485 
1486 #define IS_V4_FP_ARGS(OP) \
1487   ((INTVAL (OP) & (CALL_V4_CLEAR_FP_ARGS | CALL_V4_SET_FP_ARGS)) != 0)
1488 
1489 /* We don't have prologue and epilogue functions to save/restore
1490    everything for most ABIs.  */
1491 #define WORLD_SAVE_P(INFO) 0
1492 
1493 /* 1 if N is a possible register number for a function value
1494    as seen by the caller.
1495 
1496    On RS/6000, this is r3, fp1, and v2 (for AltiVec).  */
1497 #define FUNCTION_VALUE_REGNO_P(N)					\
1498   ((N) == GP_ARG_RETURN							\
1499    || (IN_RANGE ((N), FP_ARG_RETURN, FP_ARG_MAX_RETURN)			\
1500        && TARGET_HARD_FLOAT)						\
1501    || (IN_RANGE ((N), ALTIVEC_ARG_RETURN, ALTIVEC_ARG_MAX_RETURN)	\
1502        && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
1503 
1504 /* 1 if N is a possible register number for function argument passing.
1505    On RS/6000, these are r3-r10 and fp1-fp13.
1506    On AltiVec, v2 - v13 are used for passing vectors.  */
1507 #define FUNCTION_ARG_REGNO_P(N)						\
1508   (IN_RANGE ((N), GP_ARG_MIN_REG, GP_ARG_MAX_REG)			\
1509    || (IN_RANGE ((N), ALTIVEC_ARG_MIN_REG, ALTIVEC_ARG_MAX_REG)		\
1510        && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI)				\
1511    || (IN_RANGE ((N), FP_ARG_MIN_REG, FP_ARG_MAX_REG)			\
1512        && TARGET_HARD_FLOAT))
1513 
1514 /* Define a data type for recording info about an argument list
1515    during the scan of that argument list.  This data type should
1516    hold all necessary information about the function itself
1517    and about the args processed so far, enough to enable macros
1518    such as FUNCTION_ARG to determine where the next arg should go.
1519 
1520    On the RS/6000, this is a structure.  The first element is the number of
1521    total argument words, the second is used to store the next
1522    floating-point register number, and the third says how many more args we
1523    have prototype types for.
1524 
1525    For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1526    the next available GP register, `fregno' is the next available FP
1527    register, and `words' is the number of words used on the stack.
1528 
1529    The varargs/stdarg support requires that this structure's size
1530    be a multiple of sizeof(int).  */
1531 
1532 typedef struct rs6000_args
1533 {
1534   int words;			/* # words used for passing GP registers */
1535   int fregno;			/* next available FP register */
1536   int vregno;			/* next available AltiVec register */
1537   int nargs_prototype;		/* # args left in the current prototype */
1538   int prototype;		/* Whether a prototype was defined */
1539   int stdarg;			/* Whether function is a stdarg function.  */
1540   int call_cookie;		/* Do special things for this call */
1541   int sysv_gregno;		/* next available GP register */
1542   int intoffset;		/* running offset in struct (darwin64) */
1543   int use_stack;		/* any part of struct on stack (darwin64) */
1544   int floats_in_gpr;		/* count of SFmode floats taking up
1545 				   GPR space (darwin64) */
1546   int named;			/* false for varargs params */
1547   int escapes;			/* if function visible outside tu */
1548   int libcall;			/* If this is a compiler generated call.  */
1549 } CUMULATIVE_ARGS;
1550 
1551 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1552    for a call to a function whose data type is FNTYPE.
1553    For a library call, FNTYPE is 0.  */
1554 
1555 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1556   init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, \
1557 			N_NAMED_ARGS, FNDECL, VOIDmode)
1558 
1559 /* Similar, but when scanning the definition of a procedure.  We always
1560    set NARGS_PROTOTYPE large so we never return an EXPR_LIST.  */
1561 
1562 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1563   init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, \
1564 			1000, current_function_decl, VOIDmode)
1565 
1566 /* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls.  */
1567 
1568 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1569   init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, \
1570 			0, NULL_TREE, MODE)
1571 
1572 #define PAD_VARARGS_DOWN \
1573   (targetm.calls.function_arg_padding (TYPE_MODE (type), type) == PAD_DOWNWARD)
1574 
1575 /* Output assembler code to FILE to increment profiler label # LABELNO
1576    for profiling a function entry.  */
1577 
1578 #define FUNCTION_PROFILER(FILE, LABELNO)	\
1579   output_function_profiler ((FILE), (LABELNO));
1580 
1581 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1582    the stack pointer does not matter. No definition is equivalent to
1583    always zero.
1584 
1585    On the RS/6000, this is nonzero because we can restore the stack from
1586    its backpointer, which we maintain.  */
1587 #define EXIT_IGNORE_STACK	1
1588 
1589 /* Define this macro as a C expression that is nonzero for registers
1590    that are used by the epilogue or the return' pattern.  The stack
1591    and frame pointer registers are already be assumed to be used as
1592    needed.  */
1593 
1594 #define	EPILOGUE_USES(REGNO)					\
1595   ((reload_completed && (REGNO) == LR_REGNO)			\
1596    || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO)		\
1597    || (crtl->calls_eh_return					\
1598        && TARGET_AIX						\
1599        && (REGNO) == 2))
1600 
1601 
1602 /* Length in units of the trampoline for entering a nested function.  */
1603 
1604 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1605 
1606 /* Definitions for __builtin_return_address and __builtin_frame_address.
1607    __builtin_return_address (0) should give link register (LR_REGNO), enable
1608    this.  */
1609 /* This should be uncommented, so that the link register is used, but
1610    currently this would result in unmatched insns and spilling fixed
1611    registers so we'll leave it for another day.  When these problems are
1612    taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1613    (mrs) */
1614 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1615 
1616 /* Number of bytes into the frame return addresses can be found.  See
1617    rs6000_stack_info in rs6000.c for more information on how the different
1618    abi's store the return address.  */
1619 #define RETURN_ADDRESS_OFFSET \
1620   ((DEFAULT_ABI == ABI_V4 ? 4 : 8) << (TARGET_64BIT ? 1 : 0))
1621 
1622 /* The current return address is in the link register.  The return address
1623    of anything farther back is accessed normally at an offset of 8 from the
1624    frame pointer.  */
1625 #define RETURN_ADDR_RTX(COUNT, FRAME)                 \
1626   (rs6000_return_addr (COUNT, FRAME))
1627 
1628 
1629 /* Definitions for register eliminations.
1630 
1631    We have two registers that can be eliminated on the RS/6000.  First, the
1632    frame pointer register can often be eliminated in favor of the stack
1633    pointer register.  Secondly, the argument pointer register can always be
1634    eliminated; it is replaced with either the stack or frame pointer.
1635 
1636    In addition, we use the elimination mechanism to see if r30 is needed
1637    Initially we assume that it isn't.  If it is, we spill it.  This is done
1638    by making it an eliminable register.  We replace it with itself so that
1639    if it isn't needed, then existing uses won't be modified.  */
1640 
1641 /* This is an array of structures.  Each structure initializes one pair
1642    of eliminable registers.  The "from" register number is given first,
1643    followed by "to".  Eliminations of the same "from" register are listed
1644    in order of preference.  */
1645 #define ELIMINABLE_REGS					\
1646 {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},	\
1647  { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1648  { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
1649  { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1650  { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
1651  { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1652 
1653 /* Define the offset between two registers, one to be eliminated, and the other
1654    its replacement, at the start of a routine.  */
1655 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1656   ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
1657 
1658 /* Addressing modes, and classification of registers for them.  */
1659 
1660 #define HAVE_PRE_DECREMENT 1
1661 #define HAVE_PRE_INCREMENT 1
1662 #define HAVE_PRE_MODIFY_DISP 1
1663 #define HAVE_PRE_MODIFY_REG 1
1664 
1665 /* Macros to check register numbers against specific register classes.  */
1666 
1667 /* These assume that REGNO is a hard or pseudo reg number.
1668    They give nonzero only if REGNO is a hard reg of the suitable class
1669    or a pseudo reg currently allocated to a suitable hard reg.
1670    Since they use reg_renumber, they are safe only once reg_renumber
1671    has been allocated, which happens in reginfo.c during register
1672    allocation.  */
1673 
1674 #define REGNO_OK_FOR_INDEX_P(REGNO)				\
1675 (HARD_REGISTER_NUM_P (REGNO)					\
1676  ? (REGNO) <= 31						\
1677    || (REGNO) == ARG_POINTER_REGNUM				\
1678    || (REGNO) == FRAME_POINTER_REGNUM				\
1679  : (reg_renumber[REGNO] >= 0					\
1680     && (reg_renumber[REGNO] <= 31				\
1681 	|| reg_renumber[REGNO] == ARG_POINTER_REGNUM		\
1682 	|| reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1683 
1684 #define REGNO_OK_FOR_BASE_P(REGNO)				\
1685 (HARD_REGISTER_NUM_P (REGNO)					\
1686  ? ((REGNO) > 0 && (REGNO) <= 31)				\
1687    || (REGNO) == ARG_POINTER_REGNUM				\
1688    || (REGNO) == FRAME_POINTER_REGNUM				\
1689  : (reg_renumber[REGNO] > 0					\
1690     && (reg_renumber[REGNO] <= 31				\
1691 	|| reg_renumber[REGNO] == ARG_POINTER_REGNUM		\
1692 	|| reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1693 
1694 /* Nonzero if X is a hard reg that can be used as an index
1695    or if it is a pseudo reg in the non-strict case.  */
1696 #define INT_REG_OK_FOR_INDEX_P(X, STRICT)			\
1697   ((!(STRICT) && !HARD_REGISTER_P (X))				\
1698    || REGNO_OK_FOR_INDEX_P (REGNO (X)))
1699 
1700 /* Nonzero if X is a hard reg that can be used as a base reg
1701    or if it is a pseudo reg in the non-strict case.  */
1702 #define INT_REG_OK_FOR_BASE_P(X, STRICT)			\
1703   ((!(STRICT) && !HARD_REGISTER_P (X))				\
1704    || REGNO_OK_FOR_BASE_P (REGNO (X)))
1705 
1706 
1707 /* Maximum number of registers that can appear in a valid memory address.  */
1708 
1709 #define MAX_REGS_PER_ADDRESS 2
1710 
1711 /* Recognize any constant value that is a valid address.  */
1712 
1713 #define CONSTANT_ADDRESS_P(X)   \
1714   (GET_CODE (X) == LABEL_REF || SYMBOL_REF_P (X)			\
1715    || CONST_INT_P (X) || GET_CODE (X) == CONST				\
1716    || GET_CODE (X) == HIGH)
1717 
1718 #define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
1719 #define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n))	\
1720 				    && EASY_VECTOR_15((n) >> 1) \
1721 				    && ((n) & 1) == 0)
1722 
1723 #define EASY_VECTOR_MSB(n,mode)						\
1724   ((((unsigned HOST_WIDE_INT) (n)) & GET_MODE_MASK (mode)) ==		\
1725    ((((unsigned HOST_WIDE_INT)GET_MODE_MASK (mode)) + 1) >> 1))
1726 
1727 
1728 #define FIND_BASE_TERM rs6000_find_base_term
1729 
1730 /* The register number of the register used to address a table of
1731    static data addresses in memory.  In some cases this register is
1732    defined by a processor's "application binary interface" (ABI).
1733    When this macro is defined, RTL is generated for this register
1734    once, as with the stack pointer and frame pointer registers.  If
1735    this macro is not defined, it is up to the machine-dependent files
1736    to allocate such a register (if necessary).  */
1737 
1738 #define RS6000_PIC_OFFSET_TABLE_REGNUM 30
1739 #define PIC_OFFSET_TABLE_REGNUM \
1740   (TARGET_TOC ? TOC_REGISTER			\
1741    : flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM	\
1742    : INVALID_REGNUM)
1743 
1744 #define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
1745 
1746 /* Define this macro if the register defined by
1747    `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls.  Do not define
1748    this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined.  */
1749 
1750 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
1751 
1752 /* A C expression that is nonzero if X is a legitimate immediate
1753    operand on the target machine when generating position independent
1754    code.  You can assume that X satisfies `CONSTANT_P', so you need
1755    not check this.  You can also assume FLAG_PIC is true, so you need
1756    not check it either.  You need not define this macro if all
1757    constants (including `SYMBOL_REF') can be immediate operands when
1758    generating position independent code.  */
1759 
1760 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
1761 
1762 /* Specify the machine mode that this machine uses
1763    for the index in the tablejump instruction.  */
1764 #define CASE_VECTOR_MODE SImode
1765 
1766 /* Define as C expression which evaluates to nonzero if the tablejump
1767    instruction expects the table to contain offsets from the address of the
1768    table.
1769    Do not define this if the table should contain absolute addresses.  */
1770 #define CASE_VECTOR_PC_RELATIVE 1
1771 
1772 /* Define this as 1 if `char' should by default be signed; else as 0.  */
1773 #define DEFAULT_SIGNED_CHAR 0
1774 
1775 /* An integer expression for the size in bits of the largest integer machine
1776    mode that should actually be used.  */
1777 
1778 /* Allow pairs of registers to be used, which is the intent of the default.  */
1779 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
1780 
1781 /* Max number of bytes we can move from memory to memory
1782    in one reasonably fast instruction.  */
1783 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
1784 #define MAX_MOVE_MAX 8
1785 
1786 /* Nonzero if access to memory by bytes is no faster than for words.
1787    Also nonzero if doing byte operations (specifically shifts) in registers
1788    is undesirable.  */
1789 #define SLOW_BYTE_ACCESS 1
1790 
1791 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1792    will either zero-extend or sign-extend.  The value of this macro should
1793    be the code that says which one of the two operations is implicitly
1794    done, UNKNOWN if none.  */
1795 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1796 
1797 /* Define if loading short immediate values into registers sign extends.  */
1798 #define SHORT_IMMEDIATES_SIGN_EXTEND 1
1799 
1800 /* The cntlzw and cntlzd instructions return 32 and 64 for input of zero.  */
1801 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1802   ((VALUE) = GET_MODE_BITSIZE (MODE), 2)
1803 
1804 /* The CTZ patterns that are implemented in terms of CLZ return -1 for input of
1805    zero.  The hardware instructions added in Power9 and the sequences using
1806    popcount return 32 or 64.  */
1807 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE)				\
1808   (TARGET_CTZ || TARGET_POPCNTD						\
1809    ? ((VALUE) = GET_MODE_BITSIZE (MODE), 2)				\
1810    : ((VALUE) = -1, 2))
1811 
1812 /* Specify the machine mode that pointers have.
1813    After generation of rtl, the compiler makes no further distinction
1814    between pointers and any other objects of this machine mode.  */
1815 extern scalar_int_mode rs6000_pmode;
1816 #define Pmode rs6000_pmode
1817 
1818 /* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space.  */
1819 #define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
1820 
1821 /* Mode of a function address in a call instruction (for indexing purposes).
1822    Doesn't matter on RS/6000.  */
1823 #define FUNCTION_MODE SImode
1824 
1825 /* Define this if addresses of constant functions
1826    shouldn't be put through pseudo regs where they can be cse'd.
1827    Desirable on machines where ordinary constants are expensive
1828    but a CALL with constant address is cheap.  */
1829 #define NO_FUNCTION_CSE 1
1830 
1831 /* Define this to be nonzero if shift instructions ignore all but the low-order
1832    few bits.
1833 
1834    The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
1835    have been dropped from the PowerPC architecture.  */
1836 #define SHIFT_COUNT_TRUNCATED 0
1837 
1838 /* Adjust the length of an INSN.  LENGTH is the currently-computed length and
1839    should be adjusted to reflect any required changes.  This macro is used when
1840    there is some systematic length adjustment required that would be difficult
1841    to express in the length attribute.
1842 
1843    In the PowerPC, we use this to adjust the length of an instruction if one or
1844    more prefixed instructions are generated, using the attribute
1845    num_prefixed_insns.  A prefixed instruction is 8 bytes instead of 4, but the
1846    hardware requires that a prefied instruciton does not cross a 64-byte
1847    boundary.  This means the compiler has to assume the length of the first
1848    prefixed instruction is 12 bytes instead of 8 bytes.  Since the length is
1849    already set for the non-prefixed instruction, we just need to udpate for the
1850    difference.  */
1851 
1852 #define ADJUST_INSN_LENGTH(INSN,LENGTH)					\
1853   (LENGTH) = rs6000_adjust_insn_length ((INSN), (LENGTH))
1854 
1855 /* Given a comparison code (EQ, NE, etc.) and the first operand of a
1856    COMPARE, return the mode to be used for the comparison.  For
1857    floating-point, CCFPmode should be used.  CCUNSmode should be used
1858    for unsigned comparisons.  CCEQmode should be used when we are
1859    doing an inequality comparison on the result of a
1860    comparison.  CCmode should be used in all other cases.  */
1861 
1862 #define SELECT_CC_MODE(OP,X,Y) \
1863   (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode	\
1864    : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
1865    : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X)			  \
1866       ? CCEQmode : CCmode))
1867 
1868 /* Can the condition code MODE be safely reversed?  This is safe in
1869    all cases on this port, because at present it doesn't use the
1870    trapping FP comparisons (fcmpo).  */
1871 #define REVERSIBLE_CC_MODE(MODE) 1
1872 
1873 /* Given a condition code and a mode, return the inverse condition.  */
1874 #define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
1875 
1876 
1877 /* Target cpu costs.  */
1878 
1879 struct processor_costs {
1880   const int mulsi;	  /* cost of SImode multiplication.  */
1881   const int mulsi_const;  /* cost of SImode multiplication by constant.  */
1882   const int mulsi_const9; /* cost of SImode mult by short constant.  */
1883   const int muldi;	  /* cost of DImode multiplication.  */
1884   const int divsi;	  /* cost of SImode division.  */
1885   const int divdi;	  /* cost of DImode division.  */
1886   const int fp;		  /* cost of simple SFmode and DFmode insns.  */
1887   const int dmul;	  /* cost of DFmode multiplication (and fmadd).  */
1888   const int sdiv;	  /* cost of SFmode division (fdivs).  */
1889   const int ddiv;	  /* cost of DFmode division (fdiv).  */
1890   const int cache_line_size;    /* cache line size in bytes. */
1891   const int l1_cache_size;	/* size of l1 cache, in kilobytes.  */
1892   const int l2_cache_size;	/* size of l2 cache, in kilobytes.  */
1893   const int simultaneous_prefetches; /* number of parallel prefetch
1894 					operations.  */
1895   const int sfdf_convert;	/* cost of SF->DF conversion.  */
1896 };
1897 
1898 extern const struct processor_costs *rs6000_cost;
1899 
1900 /* Control the assembler format that we output.  */
1901 
1902 /* A C string constant describing how to begin a comment in the target
1903    assembler language.  The compiler assumes that the comment will end at
1904    the end of the line.  */
1905 #define ASM_COMMENT_START " #"
1906 
1907 /* Flag to say the TOC is initialized */
1908 extern int toc_initialized;
1909 
1910 /* Macro to output a special constant pool entry.  Go to WIN if we output
1911    it.  Otherwise, it is written the usual way.
1912 
1913    On the RS/6000, toc entries are handled this way.  */
1914 
1915 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
1916 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE))			  \
1917     {									  \
1918       output_toc (FILE, X, LABELNO, MODE);				  \
1919       goto WIN;								  \
1920     }									  \
1921 }
1922 
1923 #ifdef HAVE_GAS_WEAK
1924 #define RS6000_WEAK 1
1925 #else
1926 #define RS6000_WEAK 0
1927 #endif
1928 
1929 #if RS6000_WEAK
1930 /* Used in lieu of ASM_WEAKEN_LABEL.  */
1931 #define        ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
1932   rs6000_asm_weaken_decl ((FILE), (DECL), (NAME), (VAL))
1933 #endif
1934 
1935 #if HAVE_GAS_WEAKREF
1936 #define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE)			\
1937   do									\
1938     {									\
1939       fputs ("\t.weakref\t", (FILE));					\
1940       RS6000_OUTPUT_BASENAME ((FILE), (NAME)); 				\
1941       fputs (", ", (FILE));						\
1942       RS6000_OUTPUT_BASENAME ((FILE), (VALUE));				\
1943       if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL			\
1944 	  && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)			\
1945 	{								\
1946 	  fputs ("\n\t.weakref\t.", (FILE));				\
1947 	  RS6000_OUTPUT_BASENAME ((FILE), (NAME)); 			\
1948 	  fputs (", .", (FILE));					\
1949 	  RS6000_OUTPUT_BASENAME ((FILE), (VALUE));			\
1950 	}								\
1951       fputc ('\n', (FILE));						\
1952     } while (0)
1953 #endif
1954 
1955 /* This implements the `alias' attribute.  */
1956 #undef	ASM_OUTPUT_DEF_FROM_DECLS
1957 #define	ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET)			\
1958   do									\
1959     {									\
1960       const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0);		\
1961       const char *name = IDENTIFIER_POINTER (TARGET);			\
1962       if (TREE_CODE (DECL) == FUNCTION_DECL				\
1963 	  && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)			\
1964 	{								\
1965 	  if (TREE_PUBLIC (DECL))					\
1966 	    {								\
1967 	      if (!RS6000_WEAK || !DECL_WEAK (DECL))			\
1968 		{							\
1969 		  fputs ("\t.globl\t.", FILE);				\
1970 		  RS6000_OUTPUT_BASENAME (FILE, alias);			\
1971 		  putc ('\n', FILE);					\
1972 		}							\
1973 	    }								\
1974 	  else if (TARGET_XCOFF)					\
1975 	    {								\
1976 	      if (!RS6000_WEAK || !DECL_WEAK (DECL))			\
1977 		{							\
1978 		  fputs ("\t.lglobl\t.", FILE);				\
1979 		  RS6000_OUTPUT_BASENAME (FILE, alias);			\
1980 		  putc ('\n', FILE);					\
1981 		  fputs ("\t.lglobl\t", FILE);				\
1982 		  RS6000_OUTPUT_BASENAME (FILE, alias);			\
1983 		  putc ('\n', FILE);					\
1984 		}							\
1985 	    }								\
1986 	  fputs ("\t.set\t.", FILE);					\
1987 	  RS6000_OUTPUT_BASENAME (FILE, alias);				\
1988 	  fputs (",.", FILE);						\
1989 	  RS6000_OUTPUT_BASENAME (FILE, name);				\
1990 	  fputc ('\n', FILE);						\
1991 	}								\
1992       ASM_OUTPUT_DEF (FILE, alias, name);				\
1993     }									\
1994    while (0)
1995 
1996 #define TARGET_ASM_FILE_START rs6000_file_start
1997 
1998 /* Output to assembler file text saying following lines
1999    may contain character constants, extra white space, comments, etc.  */
2000 
2001 #define ASM_APP_ON ""
2002 
2003 /* Output to assembler file text saying following lines
2004    no longer contain unusual constructs.  */
2005 
2006 #define ASM_APP_OFF ""
2007 
2008 /* How to refer to registers in assembler output.
2009    This sequence is indexed by compiler's hard-register-number (see above).  */
2010 
2011 extern char rs6000_reg_names[][8];	/* register names (0 vs. %r0).  */
2012 
2013 #define REGISTER_NAMES							\
2014 {									\
2015   &rs6000_reg_names[ 0][0],	/* r0   */				\
2016   &rs6000_reg_names[ 1][0],	/* r1	*/				\
2017   &rs6000_reg_names[ 2][0],	/* r2	*/				\
2018   &rs6000_reg_names[ 3][0],	/* r3	*/				\
2019   &rs6000_reg_names[ 4][0],	/* r4	*/				\
2020   &rs6000_reg_names[ 5][0],	/* r5	*/				\
2021   &rs6000_reg_names[ 6][0],	/* r6	*/				\
2022   &rs6000_reg_names[ 7][0],	/* r7	*/				\
2023   &rs6000_reg_names[ 8][0],	/* r8	*/				\
2024   &rs6000_reg_names[ 9][0],	/* r9	*/				\
2025   &rs6000_reg_names[10][0],	/* r10  */				\
2026   &rs6000_reg_names[11][0],	/* r11  */				\
2027   &rs6000_reg_names[12][0],	/* r12  */				\
2028   &rs6000_reg_names[13][0],	/* r13  */				\
2029   &rs6000_reg_names[14][0],	/* r14  */				\
2030   &rs6000_reg_names[15][0],	/* r15  */				\
2031   &rs6000_reg_names[16][0],	/* r16  */				\
2032   &rs6000_reg_names[17][0],	/* r17  */				\
2033   &rs6000_reg_names[18][0],	/* r18  */				\
2034   &rs6000_reg_names[19][0],	/* r19  */				\
2035   &rs6000_reg_names[20][0],	/* r20  */				\
2036   &rs6000_reg_names[21][0],	/* r21  */				\
2037   &rs6000_reg_names[22][0],	/* r22  */				\
2038   &rs6000_reg_names[23][0],	/* r23  */				\
2039   &rs6000_reg_names[24][0],	/* r24  */				\
2040   &rs6000_reg_names[25][0],	/* r25  */				\
2041   &rs6000_reg_names[26][0],	/* r26  */				\
2042   &rs6000_reg_names[27][0],	/* r27  */				\
2043   &rs6000_reg_names[28][0],	/* r28  */				\
2044   &rs6000_reg_names[29][0],	/* r29  */				\
2045   &rs6000_reg_names[30][0],	/* r30  */				\
2046   &rs6000_reg_names[31][0],	/* r31  */				\
2047 									\
2048   &rs6000_reg_names[32][0],	/* fr0  */				\
2049   &rs6000_reg_names[33][0],	/* fr1  */				\
2050   &rs6000_reg_names[34][0],	/* fr2  */				\
2051   &rs6000_reg_names[35][0],	/* fr3  */				\
2052   &rs6000_reg_names[36][0],	/* fr4  */				\
2053   &rs6000_reg_names[37][0],	/* fr5  */				\
2054   &rs6000_reg_names[38][0],	/* fr6  */				\
2055   &rs6000_reg_names[39][0],	/* fr7  */				\
2056   &rs6000_reg_names[40][0],	/* fr8  */				\
2057   &rs6000_reg_names[41][0],	/* fr9  */				\
2058   &rs6000_reg_names[42][0],	/* fr10 */				\
2059   &rs6000_reg_names[43][0],	/* fr11 */				\
2060   &rs6000_reg_names[44][0],	/* fr12 */				\
2061   &rs6000_reg_names[45][0],	/* fr13 */				\
2062   &rs6000_reg_names[46][0],	/* fr14 */				\
2063   &rs6000_reg_names[47][0],	/* fr15 */				\
2064   &rs6000_reg_names[48][0],	/* fr16 */				\
2065   &rs6000_reg_names[49][0],	/* fr17 */				\
2066   &rs6000_reg_names[50][0],	/* fr18 */				\
2067   &rs6000_reg_names[51][0],	/* fr19 */				\
2068   &rs6000_reg_names[52][0],	/* fr20 */				\
2069   &rs6000_reg_names[53][0],	/* fr21 */				\
2070   &rs6000_reg_names[54][0],	/* fr22 */				\
2071   &rs6000_reg_names[55][0],	/* fr23 */				\
2072   &rs6000_reg_names[56][0],	/* fr24 */				\
2073   &rs6000_reg_names[57][0],	/* fr25 */				\
2074   &rs6000_reg_names[58][0],	/* fr26 */				\
2075   &rs6000_reg_names[59][0],	/* fr27 */				\
2076   &rs6000_reg_names[60][0],	/* fr28 */				\
2077   &rs6000_reg_names[61][0],	/* fr29 */				\
2078   &rs6000_reg_names[62][0],	/* fr30 */				\
2079   &rs6000_reg_names[63][0],	/* fr31 */				\
2080 									\
2081   &rs6000_reg_names[64][0],	/* vr0  */				\
2082   &rs6000_reg_names[65][0],	/* vr1  */				\
2083   &rs6000_reg_names[66][0],	/* vr2  */				\
2084   &rs6000_reg_names[67][0],	/* vr3  */				\
2085   &rs6000_reg_names[68][0],	/* vr4  */				\
2086   &rs6000_reg_names[69][0],	/* vr5  */				\
2087   &rs6000_reg_names[70][0],	/* vr6  */				\
2088   &rs6000_reg_names[71][0],	/* vr7  */				\
2089   &rs6000_reg_names[72][0],	/* vr8  */				\
2090   &rs6000_reg_names[73][0],	/* vr9  */				\
2091   &rs6000_reg_names[74][0],	/* vr10 */				\
2092   &rs6000_reg_names[75][0],	/* vr11 */				\
2093   &rs6000_reg_names[76][0],	/* vr12 */				\
2094   &rs6000_reg_names[77][0],	/* vr13 */				\
2095   &rs6000_reg_names[78][0],	/* vr14 */				\
2096   &rs6000_reg_names[79][0],	/* vr15 */				\
2097   &rs6000_reg_names[80][0],	/* vr16 */				\
2098   &rs6000_reg_names[81][0],	/* vr17 */				\
2099   &rs6000_reg_names[82][0],	/* vr18 */				\
2100   &rs6000_reg_names[83][0],	/* vr19 */				\
2101   &rs6000_reg_names[84][0],	/* vr20 */				\
2102   &rs6000_reg_names[85][0],	/* vr21 */				\
2103   &rs6000_reg_names[86][0],	/* vr22 */				\
2104   &rs6000_reg_names[87][0],	/* vr23 */				\
2105   &rs6000_reg_names[88][0],	/* vr24 */				\
2106   &rs6000_reg_names[89][0],	/* vr25 */				\
2107   &rs6000_reg_names[90][0],	/* vr26 */				\
2108   &rs6000_reg_names[91][0],	/* vr27 */				\
2109   &rs6000_reg_names[92][0],	/* vr28 */				\
2110   &rs6000_reg_names[93][0],	/* vr29 */				\
2111   &rs6000_reg_names[94][0],	/* vr30 */				\
2112   &rs6000_reg_names[95][0],	/* vr31 */				\
2113 									\
2114   &rs6000_reg_names[96][0],	/* lr   */				\
2115   &rs6000_reg_names[97][0],	/* ctr  */				\
2116   &rs6000_reg_names[98][0],	/* ca  */				\
2117   &rs6000_reg_names[99][0],	/* ap   */				\
2118 									\
2119   &rs6000_reg_names[100][0],	/* cr0  */				\
2120   &rs6000_reg_names[101][0],	/* cr1  */				\
2121   &rs6000_reg_names[102][0],	/* cr2  */				\
2122   &rs6000_reg_names[103][0],	/* cr3  */				\
2123   &rs6000_reg_names[104][0],	/* cr4  */				\
2124   &rs6000_reg_names[105][0],	/* cr5  */				\
2125   &rs6000_reg_names[106][0],	/* cr6  */				\
2126   &rs6000_reg_names[107][0],	/* cr7  */				\
2127 									\
2128   &rs6000_reg_names[108][0],	/* vrsave  */				\
2129   &rs6000_reg_names[109][0],	/* vscr  */				\
2130 									\
2131   &rs6000_reg_names[110][0]	/* sfp  */				\
2132 }
2133 
2134 /* Table of additional register names to use in user input.  */
2135 
2136 #define ADDITIONAL_REGISTER_NAMES \
2137  {{"r0",    0}, {"r1",    1}, {"r2",    2}, {"r3",    3},	\
2138   {"r4",    4}, {"r5",    5}, {"r6",    6}, {"r7",    7},	\
2139   {"r8",    8}, {"r9",    9}, {"r10",  10}, {"r11",  11},	\
2140   {"r12",  12}, {"r13",  13}, {"r14",  14}, {"r15",  15},	\
2141   {"r16",  16}, {"r17",  17}, {"r18",  18}, {"r19",  19},	\
2142   {"r20",  20}, {"r21",  21}, {"r22",  22}, {"r23",  23},	\
2143   {"r24",  24}, {"r25",  25}, {"r26",  26}, {"r27",  27},	\
2144   {"r28",  28}, {"r29",  29}, {"r30",  30}, {"r31",  31},	\
2145   {"fr0",  32}, {"fr1",  33}, {"fr2",  34}, {"fr3",  35},	\
2146   {"fr4",  36}, {"fr5",  37}, {"fr6",  38}, {"fr7",  39},	\
2147   {"fr8",  40}, {"fr9",  41}, {"fr10", 42}, {"fr11", 43},	\
2148   {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47},	\
2149   {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51},	\
2150   {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55},	\
2151   {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59},	\
2152   {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63},	\
2153   {"v0",   64}, {"v1",   65}, {"v2",   66}, {"v3",   67},	\
2154   {"v4",   68}, {"v5",   69}, {"v6",   70}, {"v7",   71},	\
2155   {"v8",   72}, {"v9",   73}, {"v10",  74}, {"v11",  75},	\
2156   {"v12",  76}, {"v13",  77}, {"v14",  78}, {"v15",  79},	\
2157   {"v16",  80}, {"v17",  81}, {"v18",  82}, {"v19",  83},	\
2158   {"v20",  84}, {"v21",  85}, {"v22",  86}, {"v23",  87},	\
2159   {"v24",  88}, {"v25",  89}, {"v26",  90}, {"v27",  91},	\
2160   {"v28",  92}, {"v29",  93}, {"v30",  94}, {"v31",  95},	\
2161   {"vrsave", 108}, {"vscr", 109},				\
2162   /* no additional names for: lr, ctr, ap */			\
2163   {"cr0",  100},{"cr1",  101},{"cr2",  102},{"cr3",  103},	\
2164   {"cr4",  104},{"cr5",  105},{"cr6",  106},{"cr7",  107},	\
2165   {"cc",   100},{"sp",    1}, {"toc",   2},			\
2166   /* CA is only part of XER, but we do not model the other parts (yet).  */ \
2167   {"xer",  98},							\
2168   /* VSX registers overlaid on top of FR, Altivec registers */	\
2169   {"vs0",  32}, {"vs1",  33}, {"vs2",  34}, {"vs3",  35},	\
2170   {"vs4",  36}, {"vs5",  37}, {"vs6",  38}, {"vs7",  39},	\
2171   {"vs8",  40}, {"vs9",  41}, {"vs10", 42}, {"vs11", 43},	\
2172   {"vs12", 44}, {"vs13", 45}, {"vs14", 46}, {"vs15", 47},	\
2173   {"vs16", 48}, {"vs17", 49}, {"vs18", 50}, {"vs19", 51},	\
2174   {"vs20", 52}, {"vs21", 53}, {"vs22", 54}, {"vs23", 55},	\
2175   {"vs24", 56}, {"vs25", 57}, {"vs26", 58}, {"vs27", 59},	\
2176   {"vs28", 60}, {"vs29", 61}, {"vs30", 62}, {"vs31", 63},	\
2177   {"vs32", 64}, {"vs33", 65}, {"vs34", 66}, {"vs35", 67},	\
2178   {"vs36", 68}, {"vs37", 69}, {"vs38", 70}, {"vs39", 71},	\
2179   {"vs40", 72}, {"vs41", 73}, {"vs42", 74}, {"vs43", 75},	\
2180   {"vs44", 76}, {"vs45", 77}, {"vs46", 78}, {"vs47", 79},	\
2181   {"vs48", 80}, {"vs49", 81}, {"vs50", 82}, {"vs51", 83},	\
2182   {"vs52", 84}, {"vs53", 85}, {"vs54", 86}, {"vs55", 87},	\
2183   {"vs56", 88}, {"vs57", 89}, {"vs58", 90}, {"vs59", 91},	\
2184   {"vs60", 92}, {"vs61", 93}, {"vs62", 94}, {"vs63", 95},	\
2185 }
2186 
2187 /* This is how to output an element of a case-vector that is relative.  */
2188 
2189 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2190   do { char buf[100];					\
2191        fputs ("\t.long ", FILE);			\
2192        ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE);	\
2193        assemble_name (FILE, buf);			\
2194        putc ('-', FILE);				\
2195        ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL);	\
2196        assemble_name (FILE, buf);			\
2197        putc ('\n', FILE);				\
2198      } while (0)
2199 
2200 /* This is how to output an assembler line
2201    that says to advance the location counter
2202    to a multiple of 2**LOG bytes.  */
2203 
2204 #define ASM_OUTPUT_ALIGN(FILE,LOG)	\
2205   if ((LOG) != 0)			\
2206     fprintf (FILE, "\t.align %d\n", (LOG))
2207 
2208 /* How to align the given loop. */
2209 #define LOOP_ALIGN(LABEL)  rs6000_loop_align(LABEL)
2210 
2211 /* Alignment guaranteed by __builtin_malloc.  */
2212 /* FIXME:  128-bit alignment is guaranteed by glibc for TARGET_64BIT.
2213    However, specifying the stronger guarantee currently leads to
2214    a regression in SPEC CPU2006 437.leslie3d.  The stronger
2215    guarantee should be implemented here once that's fixed.  */
2216 #define MALLOC_ABI_ALIGNMENT (64)
2217 
2218 /* Pick up the return address upon entry to a procedure. Used for
2219    dwarf2 unwind information.  This also enables the table driven
2220    mechanism.  */
2221 
2222 #define INCOMING_RETURN_ADDR_RTX   gen_rtx_REG (Pmode, LR_REGNO)
2223 #define DWARF_FRAME_RETURN_COLUMN  DWARF_FRAME_REGNUM (LR_REGNO)
2224 
2225 /* Describe how we implement __builtin_eh_return.  */
2226 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2227 #define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, 10)
2228 
2229 /* Print operand X (an rtx) in assembler syntax to file FILE.
2230    CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2231    For `%' followed by punctuation, CODE is the punctuation and X is null.  */
2232 
2233 #define PRINT_OPERAND(FILE, X, CODE)  print_operand (FILE, X, CODE)
2234 
2235 /* Define which CODE values are valid.  */
2236 
2237 #define PRINT_OPERAND_PUNCT_VALID_P(CODE)  ((CODE) == '&')
2238 
2239 /* Print a memory address as an operand to reference that memory location.  */
2240 
2241 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2242 
2243 /* For switching between functions with different target attributes.  */
2244 #define SWITCHABLE_TARGET 1
2245 
2246 /* uncomment for disabling the corresponding default options */
2247 /* #define  MACHINE_no_sched_interblock */
2248 /* #define  MACHINE_no_sched_speculative */
2249 /* #define  MACHINE_no_sched_speculative_load */
2250 
2251 /* General flags.  */
2252 extern int frame_pointer_needed;
2253 
2254 /* Classification of the builtin functions as to which switches enable the
2255    builtin, and what attributes it should have.  We used to use the target
2256    flags macros, but we've run out of bits, so we now map the options into new
2257    settings used here.  */
2258 
2259 /* Builtin operand count.  */
2260 #define RS6000_BTC_UNARY	0x00000001	/* normal unary function.  */
2261 #define RS6000_BTC_BINARY	0x00000002	/* normal binary function.  */
2262 #define RS6000_BTC_TERNARY	0x00000003	/* normal ternary function.  */
2263 #define RS6000_BTC_QUATERNARY	0x00000004	/* normal quaternary
2264 						   function. */
2265 #define RS6000_BTC_QUINARY	0x00000005	/* normal quinary function.  */
2266 #define RS6000_BTC_SENARY	0x00000006	/* normal senary function.  */
2267 #define RS6000_BTC_OPND_MASK	0x00000007	/* Mask to isolate operands. */
2268 
2269 /* Builtin attributes.  */
2270 #define RS6000_BTC_SPECIAL	0x00000000	/* Special function.  */
2271 #define RS6000_BTC_PREDICATE	0x00000008	/* predicate function.  */
2272 #define RS6000_BTC_ABS		0x00000010	/* Altivec/VSX ABS
2273 						   function.  */
2274 #define RS6000_BTC_DST		0x00000020	/* Altivec DST function.  */
2275 
2276 #define RS6000_BTC_TYPE_MASK	0x0000003f	/* Mask to isolate types */
2277 
2278 #define RS6000_BTC_MISC		0x00000000	/* No special attributes.  */
2279 #define RS6000_BTC_CONST	0x00000100	/* Neither uses, nor
2280 						   modifies global state.  */
2281 #define RS6000_BTC_PURE		0x00000200	/* reads global
2282 						   state/mem and does
2283 						   not modify global state.  */
2284 #define RS6000_BTC_FP		0x00000400	/* depends on rounding mode.  */
2285 #define RS6000_BTC_QUAD		0x00000800	/* Uses a register quad.  */
2286 #define RS6000_BTC_PAIR		0x00001000	/* Uses a register pair.  */
2287 #define RS6000_BTC_QUADPAIR	0x00001800	/* Uses a quad and a pair.  */
2288 #define RS6000_BTC_ATTR_MASK	0x00001f00	/* Mask of the attributes.  */
2289 
2290 /* Miscellaneous information.  */
2291 #define RS6000_BTC_SPR		0x01000000	/* function references SPRs.  */
2292 #define RS6000_BTC_VOID		0x02000000	/* function has no return value.  */
2293 #define RS6000_BTC_CR		0x04000000	/* function references a CR.  */
2294 #define RS6000_BTC_OVERLOADED	0x08000000	/* function is overloaded.  */
2295 #define RS6000_BTC_GIMPLE	0x10000000	/* function should be expanded
2296 						   into gimple.  */
2297 #define RS6000_BTC_MISC_MASK	0x1f000000	/* Mask of the misc info.  */
2298 
2299 /* Convenience macros to document the instruction type.  */
2300 #define RS6000_BTC_MEM		RS6000_BTC_MISC	/* load/store touches mem.  */
2301 #define RS6000_BTC_SAT		RS6000_BTC_MISC	/* saturate sets VSCR.  */
2302 
2303 /* Builtin targets.  For now, we reuse the masks for those options that are in
2304    target flags, and pick a random bit for ldbl128, which isn't in
2305    target_flags.  */
2306 #define RS6000_BTM_ALWAYS	0		/* Always enabled.  */
2307 #define RS6000_BTM_ALTIVEC	MASK_ALTIVEC	/* VMX/altivec vectors.  */
2308 #define RS6000_BTM_CMPB		MASK_CMPB	/* ISA 2.05: compare bytes.  */
2309 #define RS6000_BTM_VSX		MASK_VSX	/* VSX (vector/scalar).  */
2310 #define RS6000_BTM_P8_VECTOR	MASK_P8_VECTOR	/* ISA 2.07 vector.  */
2311 #define RS6000_BTM_P9_VECTOR	MASK_P9_VECTOR	/* ISA 3.0 vector.  */
2312 #define RS6000_BTM_P9_MISC	MASK_P9_MISC	/* ISA 3.0 misc. non-vector */
2313 #define RS6000_BTM_CRYPTO	MASK_CRYPTO	/* crypto funcs.  */
2314 #define RS6000_BTM_HTM		MASK_HTM	/* hardware TM funcs.  */
2315 #define RS6000_BTM_FRE		MASK_POPCNTB	/* FRE instruction.  */
2316 #define RS6000_BTM_FRES		MASK_PPC_GFXOPT	/* FRES instruction.  */
2317 #define RS6000_BTM_FRSQRTE	MASK_PPC_GFXOPT	/* FRSQRTE instruction.  */
2318 #define RS6000_BTM_FRSQRTES	MASK_POPCNTB	/* FRSQRTES instruction.  */
2319 #define RS6000_BTM_POPCNTD	MASK_POPCNTD	/* Target supports ISA 2.06.  */
2320 #define RS6000_BTM_CELL		MASK_FPRND	/* Target is cell powerpc.  */
2321 #define RS6000_BTM_DFP		MASK_DFP	/* Decimal floating point.  */
2322 #define RS6000_BTM_HARD_FLOAT	MASK_SOFT_FLOAT	/* Hardware floating point.  */
2323 #define RS6000_BTM_LDBL128	MASK_MULTIPLE	/* 128-bit long double.  */
2324 #define RS6000_BTM_64BIT	MASK_64BIT	/* 64-bit addressing.  */
2325 #define RS6000_BTM_POWERPC64	MASK_POWERPC64	/* 64-bit registers.  */
2326 #define RS6000_BTM_FLOAT128	MASK_FLOAT128_KEYWORD /* IEEE 128-bit float.  */
2327 #define RS6000_BTM_FLOAT128_HW	MASK_FLOAT128_HW /* IEEE 128-bit float h/w.  */
2328 #define RS6000_BTM_MMA		MASK_MMA	/* ISA 3.1 MMA.  */
2329 #define RS6000_BTM_P10		MASK_POWER10
2330 
2331 #define RS6000_BTM_COMMON	(RS6000_BTM_ALTIVEC			\
2332 				 | RS6000_BTM_VSX			\
2333 				 | RS6000_BTM_P8_VECTOR			\
2334 				 | RS6000_BTM_P9_VECTOR			\
2335 				 | RS6000_BTM_P9_MISC			\
2336 				 | RS6000_BTM_MODULO                    \
2337 				 | RS6000_BTM_CRYPTO			\
2338 				 | RS6000_BTM_FRE			\
2339 				 | RS6000_BTM_FRES			\
2340 				 | RS6000_BTM_FRSQRTE			\
2341 				 | RS6000_BTM_FRSQRTES			\
2342 				 | RS6000_BTM_HTM			\
2343 				 | RS6000_BTM_POPCNTD			\
2344 				 | RS6000_BTM_CELL			\
2345 				 | RS6000_BTM_DFP			\
2346 				 | RS6000_BTM_HARD_FLOAT		\
2347 				 | RS6000_BTM_LDBL128			\
2348 				 | RS6000_BTM_POWERPC64			\
2349 				 | RS6000_BTM_FLOAT128			\
2350 				 | RS6000_BTM_FLOAT128_HW		\
2351 				 | RS6000_BTM_MMA			\
2352 				 | RS6000_BTM_P10)
2353 
2354 /* Define builtin enum index.  */
2355 
2356 #undef RS6000_BUILTIN_0
2357 #undef RS6000_BUILTIN_1
2358 #undef RS6000_BUILTIN_2
2359 #undef RS6000_BUILTIN_3
2360 #undef RS6000_BUILTIN_A
2361 #undef RS6000_BUILTIN_D
2362 #undef RS6000_BUILTIN_H
2363 #undef RS6000_BUILTIN_M
2364 #undef RS6000_BUILTIN_P
2365 #undef RS6000_BUILTIN_X
2366 
2367 #define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2368 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2369 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2370 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2371 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2372 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2373 #define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2374 #define RS6000_BUILTIN_M(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2375 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2376 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2377 
2378 enum rs6000_builtins
2379 {
2380 #include "rs6000-builtin.def"
2381 
2382   RS6000_BUILTIN_COUNT
2383 };
2384 
2385 #undef RS6000_BUILTIN_0
2386 #undef RS6000_BUILTIN_1
2387 #undef RS6000_BUILTIN_2
2388 #undef RS6000_BUILTIN_3
2389 #undef RS6000_BUILTIN_A
2390 #undef RS6000_BUILTIN_D
2391 #undef RS6000_BUILTIN_H
2392 #undef RS6000_BUILTIN_M
2393 #undef RS6000_BUILTIN_P
2394 #undef RS6000_BUILTIN_X
2395 
2396 /* Mappings for overloaded builtins.  */
2397 struct altivec_builtin_types
2398 {
2399   enum rs6000_builtins code;
2400   enum rs6000_builtins overloaded_code;
2401   signed char ret_type;
2402   signed char op1;
2403   signed char op2;
2404   signed char op3;
2405 };
2406 extern const struct altivec_builtin_types altivec_overloaded_builtins[];
2407 
2408 enum rs6000_builtin_type_index
2409 {
2410   RS6000_BTI_NOT_OPAQUE,
2411   RS6000_BTI_opaque_V4SI,
2412   RS6000_BTI_V16QI,              /* __vector signed char */
2413   RS6000_BTI_V1TI,
2414   RS6000_BTI_V2DI,
2415   RS6000_BTI_V2DF,
2416   RS6000_BTI_V4HI,
2417   RS6000_BTI_V4SI,
2418   RS6000_BTI_V4SF,
2419   RS6000_BTI_V8HI,
2420   RS6000_BTI_unsigned_V16QI,     /* __vector unsigned char */
2421   RS6000_BTI_unsigned_V1TI,
2422   RS6000_BTI_unsigned_V8HI,
2423   RS6000_BTI_unsigned_V4SI,
2424   RS6000_BTI_unsigned_V2DI,
2425   RS6000_BTI_bool_char,          /* __bool char */
2426   RS6000_BTI_bool_short,         /* __bool short */
2427   RS6000_BTI_bool_int,           /* __bool int */
2428   RS6000_BTI_bool_long_long,     /* __bool long long */
2429   RS6000_BTI_pixel,              /* __pixel (16 bits arranged as 4
2430 				    channels of 1, 5, 5, and 5 bits
2431 				    respectively as packed with the
2432 				    vpkpx insn.  __pixel is only
2433 				    meaningful as a vector type.
2434 				    There is no corresponding scalar
2435 				    __pixel data type.)  */
2436   RS6000_BTI_bool_V16QI,         /* __vector __bool char */
2437   RS6000_BTI_bool_V8HI,          /* __vector __bool short */
2438   RS6000_BTI_bool_V4SI,          /* __vector __bool int */
2439   RS6000_BTI_bool_V2DI,          /* __vector __bool long */
2440   RS6000_BTI_pixel_V8HI,         /* __vector __pixel */
2441   RS6000_BTI_long,	         /* long_integer_type_node */
2442   RS6000_BTI_unsigned_long,      /* long_unsigned_type_node */
2443   RS6000_BTI_long_long,	         /* long_long_integer_type_node */
2444   RS6000_BTI_unsigned_long_long, /* long_long_unsigned_type_node */
2445   RS6000_BTI_INTQI,	         /* (signed) intQI_type_node */
2446   RS6000_BTI_UINTQI,		 /* unsigned_intQI_type_node */
2447   RS6000_BTI_INTHI,	         /* intHI_type_node */
2448   RS6000_BTI_UINTHI,		 /* unsigned_intHI_type_node */
2449   RS6000_BTI_INTSI,		 /* intSI_type_node (signed) */
2450   RS6000_BTI_UINTSI,		 /* unsigned_intSI_type_node */
2451   RS6000_BTI_INTDI,		 /* intDI_type_node */
2452   RS6000_BTI_UINTDI,		 /* unsigned_intDI_type_node */
2453   RS6000_BTI_INTTI,		 /* intTI_type_node */
2454   RS6000_BTI_UINTTI,		 /* unsigned_intTI_type_node */
2455   RS6000_BTI_float,	         /* float_type_node */
2456   RS6000_BTI_double,	         /* double_type_node */
2457   RS6000_BTI_long_double,        /* long_double_type_node */
2458   RS6000_BTI_dfloat64,		 /* dfloat64_type_node */
2459   RS6000_BTI_dfloat128,		 /* dfloat128_type_node */
2460   RS6000_BTI_void,	         /* void_type_node */
2461   RS6000_BTI_ieee128_float,	 /* ieee 128-bit floating point */
2462   RS6000_BTI_ibm128_float,	 /* IBM 128-bit floating point */
2463   RS6000_BTI_const_str,		 /* pointer to const char * */
2464   RS6000_BTI_vector_pair,	 /* unsigned 256-bit types (vector pair).  */
2465   RS6000_BTI_vector_quad,	 /* unsigned 512-bit types (vector quad).  */
2466   RS6000_BTI_MAX
2467 };
2468 
2469 
2470 #define opaque_V4SI_type_node         (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
2471 #define V16QI_type_node               (rs6000_builtin_types[RS6000_BTI_V16QI])
2472 #define V1TI_type_node                (rs6000_builtin_types[RS6000_BTI_V1TI])
2473 #define V2DI_type_node                (rs6000_builtin_types[RS6000_BTI_V2DI])
2474 #define V2DF_type_node                (rs6000_builtin_types[RS6000_BTI_V2DF])
2475 #define V4HI_type_node                (rs6000_builtin_types[RS6000_BTI_V4HI])
2476 #define V4SI_type_node                (rs6000_builtin_types[RS6000_BTI_V4SI])
2477 #define V4SF_type_node                (rs6000_builtin_types[RS6000_BTI_V4SF])
2478 #define V8HI_type_node                (rs6000_builtin_types[RS6000_BTI_V8HI])
2479 #define unsigned_V16QI_type_node      (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
2480 #define unsigned_V1TI_type_node       (rs6000_builtin_types[RS6000_BTI_unsigned_V1TI])
2481 #define unsigned_V8HI_type_node       (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
2482 #define unsigned_V4SI_type_node       (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
2483 #define unsigned_V2DI_type_node       (rs6000_builtin_types[RS6000_BTI_unsigned_V2DI])
2484 #define bool_char_type_node           (rs6000_builtin_types[RS6000_BTI_bool_char])
2485 #define bool_short_type_node          (rs6000_builtin_types[RS6000_BTI_bool_short])
2486 #define bool_int_type_node            (rs6000_builtin_types[RS6000_BTI_bool_int])
2487 #define bool_long_long_type_node      (rs6000_builtin_types[RS6000_BTI_bool_long_long])
2488 #define pixel_type_node               (rs6000_builtin_types[RS6000_BTI_pixel])
2489 #define bool_V16QI_type_node	      (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
2490 #define bool_V8HI_type_node	      (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
2491 #define bool_V4SI_type_node	      (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
2492 #define bool_V2DI_type_node	      (rs6000_builtin_types[RS6000_BTI_bool_V2DI])
2493 #define pixel_V8HI_type_node	      (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
2494 
2495 #define long_long_integer_type_internal_node  (rs6000_builtin_types[RS6000_BTI_long_long])
2496 #define long_long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long_long])
2497 #define long_integer_type_internal_node  (rs6000_builtin_types[RS6000_BTI_long])
2498 #define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
2499 #define intQI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_INTQI])
2500 #define uintQI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_UINTQI])
2501 #define intHI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_INTHI])
2502 #define uintHI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_UINTHI])
2503 #define intSI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_INTSI])
2504 #define uintSI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_UINTSI])
2505 #define intDI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_INTDI])
2506 #define uintDI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_UINTDI])
2507 #define intTI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_INTTI])
2508 #define uintTI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_UINTTI])
2509 #define float_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_float])
2510 #define double_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_double])
2511 #define long_double_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_long_double])
2512 #define dfloat64_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_dfloat64])
2513 #define dfloat128_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_dfloat128])
2514 #define void_type_internal_node		 (rs6000_builtin_types[RS6000_BTI_void])
2515 #define ieee128_float_type_node		 (rs6000_builtin_types[RS6000_BTI_ieee128_float])
2516 #define ibm128_float_type_node		 (rs6000_builtin_types[RS6000_BTI_ibm128_float])
2517 #define const_str_type_node		 (rs6000_builtin_types[RS6000_BTI_const_str])
2518 #define vector_pair_type_node		 (rs6000_builtin_types[RS6000_BTI_vector_pair])
2519 #define vector_quad_type_node		 (rs6000_builtin_types[RS6000_BTI_vector_quad])
2520 
2521 extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
2522 extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];
2523 
2524 #ifndef USED_FOR_TARGET
2525 extern GTY(()) tree builtin_mode_to_type[MAX_MACHINE_MODE][2];
2526 extern GTY(()) tree altivec_builtin_mask_for_load;
2527 extern GTY(()) section *toc_section;
2528 
2529 /* A C structure for machine-specific, per-function data.
2530    This is added to the cfun structure.  */
2531 typedef struct GTY(()) machine_function
2532 {
2533   /* Flags if __builtin_return_address (n) with n >= 1 was used.  */
2534   int ra_needs_full_frame;
2535   /* Flags if __builtin_return_address (0) was used.  */
2536   int ra_need_lr;
2537   /* Cache lr_save_p after expansion of builtin_eh_return.  */
2538   int lr_save_state;
2539   /* Whether we need to save the TOC to the reserved stack location in the
2540      function prologue.  */
2541   bool save_toc_in_prologue;
2542   /* Offset from virtual_stack_vars_rtx to the start of the ABI_V4
2543      varargs save area.  */
2544   HOST_WIDE_INT varargs_save_offset;
2545   /* Alternative internal arg pointer for -fsplit-stack.  */
2546   rtx split_stack_arg_pointer;
2547   bool split_stack_argp_used;
2548   /* Flag if r2 setup is needed with ELFv2 ABI.  */
2549   bool r2_setup_needed;
2550   /* The number of components we use for separate shrink-wrapping.  */
2551   int n_components;
2552   /* The components already handled by separate shrink-wrapping, which should
2553      not be considered by the prologue and epilogue.  */
2554   bool gpr_is_wrapped_separately[32];
2555   bool fpr_is_wrapped_separately[32];
2556   bool lr_is_wrapped_separately;
2557   bool toc_is_wrapped_separately;
2558 } machine_function;
2559 #endif
2560 
2561 
2562 #define TARGET_SUPPORTS_WIDE_INT 1
2563 
2564 #if (GCC_VERSION >= 3000)
2565 #pragma GCC poison TARGET_FLOAT128 OPTION_MASK_FLOAT128 MASK_FLOAT128
2566 #endif
2567 
2568 /* Whether a given VALUE is a valid 16 or 34-bit signed integer.  */
2569 #define SIGNED_INTEGER_NBIT_P(VALUE, N)					\
2570   IN_RANGE ((VALUE),							\
2571 	    -(HOST_WIDE_INT_1 << ((N)-1)),				\
2572 	    (HOST_WIDE_INT_1 << ((N)-1)) - 1)
2573 
2574 #define SIGNED_INTEGER_16BIT_P(VALUE)	SIGNED_INTEGER_NBIT_P (VALUE, 16)
2575 #define SIGNED_INTEGER_34BIT_P(VALUE)	SIGNED_INTEGER_NBIT_P (VALUE, 34)
2576 
2577 /* Like SIGNED_INTEGER_16BIT_P and SIGNED_INTEGER_34BIT_P, but with an extra
2578    argument that gives a length to validate a range of addresses, to allow for
2579    splitting insns into several insns, each of which has an offsettable
2580    address.  */
2581 #define SIGNED_16BIT_OFFSET_EXTRA_P(VALUE, EXTRA)			\
2582   IN_RANGE ((VALUE),							\
2583 	    -(HOST_WIDE_INT_1 << 15),					\
2584 	    (HOST_WIDE_INT_1 << 15) - 1 - (EXTRA))
2585 
2586 #define SIGNED_34BIT_OFFSET_EXTRA_P(VALUE, EXTRA)			\
2587   IN_RANGE ((VALUE),							\
2588 	    -(HOST_WIDE_INT_1 << 33),					\
2589 	    (HOST_WIDE_INT_1 << 33) - 1 - (EXTRA))
2590 
2591 /* Define this if some processing needs to be done before outputting the
2592    assembler code.  On the PowerPC, we remember if the current insn is a normal
2593    prefixed insn where we need to emit a 'p' before the insn.  */
2594 #define FINAL_PRESCAN_INSN(INSN, OPERANDS, NOPERANDS)			\
2595 do									\
2596   {									\
2597     if (TARGET_PREFIXED)						\
2598       rs6000_final_prescan_insn (INSN, OPERANDS, NOPERANDS);		\
2599   }									\
2600 while (0)
2601 
2602 /* Do anything special before emitting an opcode.  We use it to emit a 'p' for
2603    prefixed insns that is set in FINAL_PRESCAN_INSN.  */
2604 #define ASM_OUTPUT_OPCODE(STREAM, OPCODE)				\
2605   do									\
2606     {									\
2607      if (TARGET_PREFIXED)						\
2608        rs6000_asm_output_opcode (STREAM);				\
2609     }									\
2610   while (0)
2611