1 /* Common block and equivalence list handling
2 Copyright (C) 2000-2020 Free Software Foundation, Inc.
3 Contributed by Canqun Yang <canqun@nudt.edu.cn>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* The core algorithm is based on Andy Vaught's g95 tree. Also the
22 way to build UNION_TYPE is borrowed from Richard Henderson.
23
24 Transform common blocks. An integral part of this is processing
25 equivalence variables. Equivalenced variables that are not in a
26 common block end up in a private block of their own.
27
28 Each common block or local equivalence list is declared as a union.
29 Variables within the block are represented as a field within the
30 block with the proper offset.
31
32 So if two variables are equivalenced, they just point to a common
33 area in memory.
34
35 Mathematically, laying out an equivalence block is equivalent to
36 solving a linear system of equations. The matrix is usually a
37 sparse matrix in which each row contains all zero elements except
38 for a +1 and a -1, a sort of a generalized Vandermonde matrix. The
39 matrix is usually block diagonal. The system can be
40 overdetermined, underdetermined or have a unique solution. If the
41 system is inconsistent, the program is not standard conforming.
42 The solution vector is integral, since all of the pivots are +1 or -1.
43
44 How we lay out an equivalence block is a little less complicated.
45 In an equivalence list with n elements, there are n-1 conditions to
46 be satisfied. The conditions partition the variables into what we
47 will call segments. If A and B are equivalenced then A and B are
48 in the same segment. If B and C are equivalenced as well, then A,
49 B and C are in a segment and so on. Each segment is a block of
50 memory that has one or more variables equivalenced in some way. A
51 common block is made up of a series of segments that are joined one
52 after the other. In the linear system, a segment is a block
53 diagonal.
54
55 To lay out a segment we first start with some variable and
56 determine its length. The first variable is assumed to start at
57 offset one and extends to however long it is. We then traverse the
58 list of equivalences to find an unused condition that involves at
59 least one of the variables currently in the segment.
60
61 Each equivalence condition amounts to the condition B+b=C+c where B
62 and C are the offsets of the B and C variables, and b and c are
63 constants which are nonzero for array elements, substrings or
64 structure components. So for
65
66 EQUIVALENCE(B(2), C(3))
67 we have
68 B + 2*size of B's elements = C + 3*size of C's elements.
69
70 If B and C are known we check to see if the condition already
71 holds. If B is known we can solve for C. Since we know the length
72 of C, we can see if the minimum and maximum extents of the segment
73 are affected. Eventually, we make a full pass through the
74 equivalence list without finding any new conditions and the segment
75 is fully specified.
76
77 At this point, the segment is added to the current common block.
78 Since we know the minimum extent of the segment, everything in the
79 segment is translated to its position in the common block. The
80 usual case here is that there are no equivalence statements and the
81 common block is series of segments with one variable each, which is
82 a diagonal matrix in the matrix formulation.
83
84 Each segment is described by a chain of segment_info structures. Each
85 segment_info structure describes the extents of a single variable within
86 the segment. This list is maintained in the order the elements are
87 positioned within the segment. If two elements have the same starting
88 offset the smaller will come first. If they also have the same size their
89 ordering is undefined.
90
91 Once all common blocks have been created, the list of equivalences
92 is examined for still-unused equivalence conditions. We create a
93 block for each merged equivalence list. */
94
95 #include "config.h"
96 #define INCLUDE_MAP
97 #include "system.h"
98 #include "coretypes.h"
99 #include "tm.h"
100 #include "tree.h"
101 #include "gfortran.h"
102 #include "trans.h"
103 #include "stringpool.h"
104 #include "fold-const.h"
105 #include "stor-layout.h"
106 #include "varasm.h"
107 #include "trans-types.h"
108 #include "trans-const.h"
109 #include "target-memory.h"
110
111
112 /* Holds a single variable in an equivalence set. */
113 typedef struct segment_info
114 {
115 gfc_symbol *sym;
116 HOST_WIDE_INT offset;
117 HOST_WIDE_INT length;
118 /* This will contain the field type until the field is created. */
119 tree field;
120 struct segment_info *next;
121 } segment_info;
122
123 static segment_info * current_segment;
124
125 /* Store decl of all common blocks in this translation unit; the first
126 tree is the identifier. */
127 static std::map<tree, tree> gfc_map_of_all_commons;
128
129
130 /* Make a segment_info based on a symbol. */
131
132 static segment_info *
get_segment_info(gfc_symbol * sym,HOST_WIDE_INT offset)133 get_segment_info (gfc_symbol * sym, HOST_WIDE_INT offset)
134 {
135 segment_info *s;
136
137 /* Make sure we've got the character length. */
138 if (sym->ts.type == BT_CHARACTER)
139 gfc_conv_const_charlen (sym->ts.u.cl);
140
141 /* Create the segment_info and fill it in. */
142 s = XCNEW (segment_info);
143 s->sym = sym;
144 /* We will use this type when building the segment aggregate type. */
145 s->field = gfc_sym_type (sym);
146 s->length = int_size_in_bytes (s->field);
147 s->offset = offset;
148
149 return s;
150 }
151
152
153 /* Add a copy of a segment list to the namespace. This is specifically for
154 equivalence segments, so that dependency checking can be done on
155 equivalence group members. */
156
157 static void
copy_equiv_list_to_ns(segment_info * c)158 copy_equiv_list_to_ns (segment_info *c)
159 {
160 segment_info *f;
161 gfc_equiv_info *s;
162 gfc_equiv_list *l;
163
164 l = XCNEW (gfc_equiv_list);
165
166 l->next = c->sym->ns->equiv_lists;
167 c->sym->ns->equiv_lists = l;
168
169 for (f = c; f; f = f->next)
170 {
171 s = XCNEW (gfc_equiv_info);
172 s->next = l->equiv;
173 l->equiv = s;
174 s->sym = f->sym;
175 s->offset = f->offset;
176 s->length = f->length;
177 }
178 }
179
180
181 /* Add combine segment V and segment LIST. */
182
183 static segment_info *
add_segments(segment_info * list,segment_info * v)184 add_segments (segment_info *list, segment_info *v)
185 {
186 segment_info *s;
187 segment_info *p;
188 segment_info *next;
189
190 p = NULL;
191 s = list;
192
193 while (v)
194 {
195 /* Find the location of the new element. */
196 while (s)
197 {
198 if (v->offset < s->offset)
199 break;
200 if (v->offset == s->offset
201 && v->length <= s->length)
202 break;
203
204 p = s;
205 s = s->next;
206 }
207
208 /* Insert the new element in between p and s. */
209 next = v->next;
210 v->next = s;
211 if (p == NULL)
212 list = v;
213 else
214 p->next = v;
215
216 p = v;
217 v = next;
218 }
219
220 return list;
221 }
222
223
224 /* Construct mangled common block name from symbol name. */
225
226 /* We need the bind(c) flag to tell us how/if we should mangle the symbol
227 name. There are few calls to this function, so few places that this
228 would need to be added. At the moment, there is only one call, in
229 build_common_decl(). We can't attempt to look up the common block
230 because we may be building it for the first time and therefore, it won't
231 be in the common_root. We also need the binding label, if it's bind(c).
232 Therefore, send in the pointer to the common block, so whatever info we
233 have so far can be used. All of the necessary info should be available
234 in the gfc_common_head by now, so it should be accurate to test the
235 isBindC flag and use the binding label given if it is bind(c).
236
237 We may NOT know yet if it's bind(c) or not, but we can try at least.
238 Will have to figure out what to do later if it's labeled bind(c)
239 after this is called. */
240
241 static tree
gfc_sym_mangled_common_id(gfc_common_head * com)242 gfc_sym_mangled_common_id (gfc_common_head *com)
243 {
244 int has_underscore;
245 /* Provide sufficient space to hold "symbol.symbol.eq.1234567890__". */
246 char mangled_name[2*GFC_MAX_MANGLED_SYMBOL_LEN + 1 + 16 + 1];
247 char name[sizeof (mangled_name) - 2];
248
249 /* Get the name out of the common block pointer. */
250 size_t len = strlen (com->name);
251 gcc_assert (len < sizeof (name));
252 strcpy (name, com->name);
253
254 /* If we're suppose to do a bind(c). */
255 if (com->is_bind_c == 1 && com->binding_label)
256 return get_identifier (com->binding_label);
257
258 if (strcmp (name, BLANK_COMMON_NAME) == 0)
259 return get_identifier (name);
260
261 if (flag_underscoring)
262 {
263 has_underscore = strchr (name, '_') != 0;
264 if (flag_second_underscore && has_underscore)
265 snprintf (mangled_name, sizeof mangled_name, "%s__", name);
266 else
267 snprintf (mangled_name, sizeof mangled_name, "%s_", name);
268
269 return get_identifier (mangled_name);
270 }
271 else
272 return get_identifier (name);
273 }
274
275
276 /* Build a field declaration for a common variable or a local equivalence
277 object. */
278
279 static void
build_field(segment_info * h,tree union_type,record_layout_info rli)280 build_field (segment_info *h, tree union_type, record_layout_info rli)
281 {
282 tree field;
283 tree name;
284 HOST_WIDE_INT offset = h->offset;
285 unsigned HOST_WIDE_INT desired_align, known_align;
286
287 name = get_identifier (h->sym->name);
288 field = build_decl (gfc_get_location (&h->sym->declared_at),
289 FIELD_DECL, name, h->field);
290 known_align = (offset & -offset) * BITS_PER_UNIT;
291 if (known_align == 0 || known_align > BIGGEST_ALIGNMENT)
292 known_align = BIGGEST_ALIGNMENT;
293
294 desired_align = update_alignment_for_field (rli, field, known_align);
295 if (desired_align > known_align)
296 DECL_PACKED (field) = 1;
297
298 DECL_FIELD_CONTEXT (field) = union_type;
299 DECL_FIELD_OFFSET (field) = size_int (offset);
300 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
301 SET_DECL_OFFSET_ALIGN (field, known_align);
302
303 rli->offset = size_binop (MAX_EXPR, rli->offset,
304 size_binop (PLUS_EXPR,
305 DECL_FIELD_OFFSET (field),
306 DECL_SIZE_UNIT (field)));
307 /* If this field is assigned to a label, we create another two variables.
308 One will hold the address of target label or format label. The other will
309 hold the length of format label string. */
310 if (h->sym->attr.assign)
311 {
312 tree len;
313 tree addr;
314
315 gfc_allocate_lang_decl (field);
316 GFC_DECL_ASSIGN (field) = 1;
317 len = gfc_create_var_np (gfc_charlen_type_node,h->sym->name);
318 addr = gfc_create_var_np (pvoid_type_node, h->sym->name);
319 TREE_STATIC (len) = 1;
320 TREE_STATIC (addr) = 1;
321 DECL_INITIAL (len) = build_int_cst (gfc_charlen_type_node, -2);
322 gfc_set_decl_location (len, &h->sym->declared_at);
323 gfc_set_decl_location (addr, &h->sym->declared_at);
324 GFC_DECL_STRING_LEN (field) = pushdecl_top_level (len);
325 GFC_DECL_ASSIGN_ADDR (field) = pushdecl_top_level (addr);
326 }
327
328 /* If this field is volatile, mark it. */
329 if (h->sym->attr.volatile_)
330 {
331 tree new_type;
332 TREE_THIS_VOLATILE (field) = 1;
333 TREE_SIDE_EFFECTS (field) = 1;
334 new_type = build_qualified_type (TREE_TYPE (field), TYPE_QUAL_VOLATILE);
335 TREE_TYPE (field) = new_type;
336 }
337
338 h->field = field;
339 }
340
341
342 /* Get storage for local equivalence. */
343
344 static tree
build_equiv_decl(tree union_type,bool is_init,bool is_saved,bool is_auto)345 build_equiv_decl (tree union_type, bool is_init, bool is_saved, bool is_auto)
346 {
347 tree decl;
348 char name[18];
349 static int serial = 0;
350
351 if (is_init)
352 {
353 decl = gfc_create_var (union_type, "equiv");
354 TREE_STATIC (decl) = 1;
355 GFC_DECL_COMMON_OR_EQUIV (decl) = 1;
356 return decl;
357 }
358
359 snprintf (name, sizeof (name), "equiv.%d", serial++);
360 decl = build_decl (input_location,
361 VAR_DECL, get_identifier (name), union_type);
362 DECL_ARTIFICIAL (decl) = 1;
363 DECL_IGNORED_P (decl) = 1;
364
365 if (!is_auto && (!gfc_can_put_var_on_stack (DECL_SIZE_UNIT (decl))
366 || is_saved))
367 TREE_STATIC (decl) = 1;
368
369 TREE_ADDRESSABLE (decl) = 1;
370 TREE_USED (decl) = 1;
371 GFC_DECL_COMMON_OR_EQUIV (decl) = 1;
372
373 /* The source location has been lost, and doesn't really matter.
374 We need to set it to something though. */
375 gfc_set_decl_location (decl, &gfc_current_locus);
376
377 gfc_add_decl_to_function (decl);
378
379 return decl;
380 }
381
382
383 /* Get storage for common block. */
384
385 static tree
build_common_decl(gfc_common_head * com,tree union_type,bool is_init)386 build_common_decl (gfc_common_head *com, tree union_type, bool is_init)
387 {
388 tree decl, identifier;
389
390 identifier = gfc_sym_mangled_common_id (com);
391 decl = gfc_map_of_all_commons.count(identifier)
392 ? gfc_map_of_all_commons[identifier] : NULL_TREE;
393
394 /* Update the size of this common block as needed. */
395 if (decl != NULL_TREE)
396 {
397 tree size = TYPE_SIZE_UNIT (union_type);
398
399 /* Named common blocks of the same name shall be of the same size
400 in all scoping units of a program in which they appear, but
401 blank common blocks may be of different sizes. */
402 if (!tree_int_cst_equal (DECL_SIZE_UNIT (decl), size)
403 && strcmp (com->name, BLANK_COMMON_NAME))
404 gfc_warning (0, "Named COMMON block %qs at %L shall be of the "
405 "same size as elsewhere (%lu vs %lu bytes)", com->name,
406 &com->where,
407 (unsigned long) TREE_INT_CST_LOW (size),
408 (unsigned long) TREE_INT_CST_LOW (DECL_SIZE_UNIT (decl)));
409
410 if (tree_int_cst_lt (DECL_SIZE_UNIT (decl), size))
411 {
412 DECL_SIZE (decl) = TYPE_SIZE (union_type);
413 DECL_SIZE_UNIT (decl) = size;
414 SET_DECL_MODE (decl, TYPE_MODE (union_type));
415 TREE_TYPE (decl) = union_type;
416 layout_decl (decl, 0);
417 }
418 }
419
420 /* If this common block has been declared in a previous program unit,
421 and either it is already initialized or there is no new initialization
422 for it, just return. */
423 if ((decl != NULL_TREE) && (!is_init || DECL_INITIAL (decl)))
424 return decl;
425
426 /* If there is no backend_decl for the common block, build it. */
427 if (decl == NULL_TREE)
428 {
429 if (com->is_bind_c == 1 && com->binding_label)
430 decl = build_decl (input_location, VAR_DECL, identifier, union_type);
431 else
432 {
433 decl = build_decl (input_location, VAR_DECL, get_identifier (com->name),
434 union_type);
435 gfc_set_decl_assembler_name (decl, identifier);
436 }
437
438 TREE_PUBLIC (decl) = 1;
439 TREE_STATIC (decl) = 1;
440 DECL_IGNORED_P (decl) = 1;
441 if (!com->is_bind_c)
442 SET_DECL_ALIGN (decl, BIGGEST_ALIGNMENT);
443 else
444 {
445 /* Do not set the alignment for bind(c) common blocks to
446 BIGGEST_ALIGNMENT because that won't match what C does. Also,
447 for common blocks with one element, the alignment must be
448 that of the field within the common block in order to match
449 what C will do. */
450 tree field = NULL_TREE;
451 field = TYPE_FIELDS (TREE_TYPE (decl));
452 if (DECL_CHAIN (field) == NULL_TREE)
453 SET_DECL_ALIGN (decl, TYPE_ALIGN (TREE_TYPE (field)));
454 }
455 DECL_USER_ALIGN (decl) = 0;
456 GFC_DECL_COMMON_OR_EQUIV (decl) = 1;
457
458 gfc_set_decl_location (decl, &com->where);
459
460 if (com->threadprivate)
461 set_decl_tls_model (decl, decl_default_tls_model (decl));
462
463 if (com->omp_declare_target_link)
464 DECL_ATTRIBUTES (decl)
465 = tree_cons (get_identifier ("omp declare target link"),
466 NULL_TREE, DECL_ATTRIBUTES (decl));
467 else if (com->omp_declare_target)
468 DECL_ATTRIBUTES (decl)
469 = tree_cons (get_identifier ("omp declare target"),
470 NULL_TREE, DECL_ATTRIBUTES (decl));
471
472 /* Place the back end declaration for this common block in
473 GLOBAL_BINDING_LEVEL. */
474 gfc_map_of_all_commons[identifier] = pushdecl_top_level (decl);
475 }
476
477 /* Has no initial values. */
478 if (!is_init)
479 {
480 DECL_INITIAL (decl) = NULL_TREE;
481 DECL_COMMON (decl) = 1;
482 DECL_DEFER_OUTPUT (decl) = 1;
483 }
484 else
485 {
486 DECL_INITIAL (decl) = error_mark_node;
487 DECL_COMMON (decl) = 0;
488 DECL_DEFER_OUTPUT (decl) = 0;
489 }
490 return decl;
491 }
492
493
494 /* Return a field that is the size of the union, if an equivalence has
495 overlapping initializers. Merge the initializers into a single
496 initializer for this new field, then free the old ones. */
497
498 static tree
get_init_field(segment_info * head,tree union_type,tree * field_init,record_layout_info rli)499 get_init_field (segment_info *head, tree union_type, tree *field_init,
500 record_layout_info rli)
501 {
502 segment_info *s;
503 HOST_WIDE_INT length = 0;
504 HOST_WIDE_INT offset = 0;
505 unsigned HOST_WIDE_INT known_align, desired_align;
506 bool overlap = false;
507 tree tmp, field;
508 tree init;
509 unsigned char *data, *chk;
510 vec<constructor_elt, va_gc> *v = NULL;
511
512 tree type = unsigned_char_type_node;
513 int i;
514
515 /* Obtain the size of the union and check if there are any overlapping
516 initializers. */
517 for (s = head; s; s = s->next)
518 {
519 HOST_WIDE_INT slen = s->offset + s->length;
520 if (s->sym->value)
521 {
522 if (s->offset < offset)
523 overlap = true;
524 offset = slen;
525 }
526 length = length < slen ? slen : length;
527 }
528
529 if (!overlap)
530 return NULL_TREE;
531
532 /* Now absorb all the initializer data into a single vector,
533 whilst checking for overlapping, unequal values. */
534 data = XCNEWVEC (unsigned char, (size_t)length);
535 chk = XCNEWVEC (unsigned char, (size_t)length);
536
537 /* TODO - change this when default initialization is implemented. */
538 memset (data, '\0', (size_t)length);
539 memset (chk, '\0', (size_t)length);
540 for (s = head; s; s = s->next)
541 if (s->sym->value)
542 {
543 locus *loc = NULL;
544 if (s->sym->ns->equiv && s->sym->ns->equiv->eq)
545 loc = &s->sym->ns->equiv->eq->expr->where;
546 gfc_merge_initializers (s->sym->ts, s->sym->value, loc,
547 &data[s->offset],
548 &chk[s->offset],
549 (size_t)s->length);
550 }
551
552 for (i = 0; i < length; i++)
553 CONSTRUCTOR_APPEND_ELT (v, NULL, build_int_cst (type, data[i]));
554
555 free (data);
556 free (chk);
557
558 /* Build a char[length] array to hold the initializers. Much of what
559 follows is borrowed from build_field, above. */
560
561 tmp = build_int_cst (gfc_array_index_type, length - 1);
562 tmp = build_range_type (gfc_array_index_type,
563 gfc_index_zero_node, tmp);
564 tmp = build_array_type (type, tmp);
565 field = build_decl (gfc_get_location (&gfc_current_locus),
566 FIELD_DECL, NULL_TREE, tmp);
567
568 known_align = BIGGEST_ALIGNMENT;
569
570 desired_align = update_alignment_for_field (rli, field, known_align);
571 if (desired_align > known_align)
572 DECL_PACKED (field) = 1;
573
574 DECL_FIELD_CONTEXT (field) = union_type;
575 DECL_FIELD_OFFSET (field) = size_int (0);
576 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
577 SET_DECL_OFFSET_ALIGN (field, known_align);
578
579 rli->offset = size_binop (MAX_EXPR, rli->offset,
580 size_binop (PLUS_EXPR,
581 DECL_FIELD_OFFSET (field),
582 DECL_SIZE_UNIT (field)));
583
584 init = build_constructor (TREE_TYPE (field), v);
585 TREE_CONSTANT (init) = 1;
586
587 *field_init = init;
588
589 for (s = head; s; s = s->next)
590 {
591 if (s->sym->value == NULL)
592 continue;
593
594 gfc_free_expr (s->sym->value);
595 s->sym->value = NULL;
596 }
597
598 return field;
599 }
600
601
602 /* Declare memory for the common block or local equivalence, and create
603 backend declarations for all of the elements. */
604
605 static void
create_common(gfc_common_head * com,segment_info * head,bool saw_equiv)606 create_common (gfc_common_head *com, segment_info *head, bool saw_equiv)
607 {
608 segment_info *s, *next_s;
609 tree union_type;
610 tree *field_link;
611 tree field;
612 tree field_init = NULL_TREE;
613 record_layout_info rli;
614 tree decl;
615 bool is_init = false;
616 bool is_saved = false;
617 bool is_auto = false;
618
619 /* Declare the variables inside the common block.
620 If the current common block contains any equivalence object, then
621 make a UNION_TYPE node, otherwise RECORD_TYPE. This will let the
622 alias analyzer work well when there is no address overlapping for
623 common variables in the current common block. */
624 if (saw_equiv)
625 union_type = make_node (UNION_TYPE);
626 else
627 union_type = make_node (RECORD_TYPE);
628
629 rli = start_record_layout (union_type);
630 field_link = &TYPE_FIELDS (union_type);
631
632 /* Check for overlapping initializers and replace them with a single,
633 artificial field that contains all the data. */
634 if (saw_equiv)
635 field = get_init_field (head, union_type, &field_init, rli);
636 else
637 field = NULL_TREE;
638
639 if (field != NULL_TREE)
640 {
641 is_init = true;
642 *field_link = field;
643 field_link = &DECL_CHAIN (field);
644 }
645
646 for (s = head; s; s = s->next)
647 {
648 build_field (s, union_type, rli);
649
650 /* Link the field into the type. */
651 *field_link = s->field;
652 field_link = &DECL_CHAIN (s->field);
653
654 /* Has initial value. */
655 if (s->sym->value)
656 is_init = true;
657
658 /* Has SAVE attribute. */
659 if (s->sym->attr.save)
660 is_saved = true;
661
662 /* Has AUTOMATIC attribute. */
663 if (s->sym->attr.automatic)
664 is_auto = true;
665 }
666
667 finish_record_layout (rli, true);
668
669 if (com)
670 decl = build_common_decl (com, union_type, is_init);
671 else
672 decl = build_equiv_decl (union_type, is_init, is_saved, is_auto);
673
674 if (is_init)
675 {
676 tree ctor, tmp;
677 vec<constructor_elt, va_gc> *v = NULL;
678
679 if (field != NULL_TREE && field_init != NULL_TREE)
680 CONSTRUCTOR_APPEND_ELT (v, field, field_init);
681 else
682 for (s = head; s; s = s->next)
683 {
684 if (s->sym->value)
685 {
686 /* Add the initializer for this field. */
687 tmp = gfc_conv_initializer (s->sym->value, &s->sym->ts,
688 TREE_TYPE (s->field),
689 s->sym->attr.dimension,
690 s->sym->attr.pointer
691 || s->sym->attr.allocatable, false);
692
693 CONSTRUCTOR_APPEND_ELT (v, s->field, tmp);
694 }
695 }
696
697 gcc_assert (!v->is_empty ());
698 ctor = build_constructor (union_type, v);
699 TREE_CONSTANT (ctor) = 1;
700 TREE_STATIC (ctor) = 1;
701 DECL_INITIAL (decl) = ctor;
702
703 if (flag_checking)
704 {
705 tree field, value;
706 unsigned HOST_WIDE_INT idx;
707 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, field, value)
708 gcc_assert (TREE_CODE (field) == FIELD_DECL);
709 }
710 }
711
712 /* Build component reference for each variable. */
713 for (s = head; s; s = next_s)
714 {
715 tree var_decl;
716
717 var_decl = build_decl (gfc_get_location (&s->sym->declared_at),
718 VAR_DECL, DECL_NAME (s->field),
719 TREE_TYPE (s->field));
720 TREE_STATIC (var_decl) = TREE_STATIC (decl);
721 /* Mark the variable as used in order to avoid warnings about
722 unused variables. */
723 TREE_USED (var_decl) = 1;
724 if (s->sym->attr.use_assoc)
725 DECL_IGNORED_P (var_decl) = 1;
726 if (s->sym->attr.target)
727 TREE_ADDRESSABLE (var_decl) = 1;
728 /* Fake variables are not visible from other translation units. */
729 TREE_PUBLIC (var_decl) = 0;
730 gfc_finish_decl_attrs (var_decl, &s->sym->attr);
731
732 /* To preserve identifier names in COMMON, chain to procedure
733 scope unless at top level in a module definition. */
734 if (com
735 && s->sym->ns->proc_name
736 && s->sym->ns->proc_name->attr.flavor == FL_MODULE)
737 var_decl = pushdecl_top_level (var_decl);
738 else
739 gfc_add_decl_to_function (var_decl);
740
741 SET_DECL_VALUE_EXPR (var_decl,
742 fold_build3_loc (input_location, COMPONENT_REF,
743 TREE_TYPE (s->field),
744 decl, s->field, NULL_TREE));
745 DECL_HAS_VALUE_EXPR_P (var_decl) = 1;
746 GFC_DECL_COMMON_OR_EQUIV (var_decl) = 1;
747
748 if (s->sym->attr.assign)
749 {
750 gfc_allocate_lang_decl (var_decl);
751 GFC_DECL_ASSIGN (var_decl) = 1;
752 GFC_DECL_STRING_LEN (var_decl) = GFC_DECL_STRING_LEN (s->field);
753 GFC_DECL_ASSIGN_ADDR (var_decl) = GFC_DECL_ASSIGN_ADDR (s->field);
754 }
755
756 s->sym->backend_decl = var_decl;
757
758 next_s = s->next;
759 free (s);
760 }
761 }
762
763
764 /* Given a symbol, find it in the current segment list. Returns NULL if
765 not found. */
766
767 static segment_info *
find_segment_info(gfc_symbol * symbol)768 find_segment_info (gfc_symbol *symbol)
769 {
770 segment_info *n;
771
772 for (n = current_segment; n; n = n->next)
773 {
774 if (n->sym == symbol)
775 return n;
776 }
777
778 return NULL;
779 }
780
781
782 /* Given an expression node, make sure it is a constant integer and return
783 the mpz_t value. */
784
785 static mpz_t *
get_mpz(gfc_expr * e)786 get_mpz (gfc_expr *e)
787 {
788
789 if (e->expr_type != EXPR_CONSTANT)
790 gfc_internal_error ("get_mpz(): Not an integer constant");
791
792 return &e->value.integer;
793 }
794
795
796 /* Given an array specification and an array reference, figure out the
797 array element number (zero based). Bounds and elements are guaranteed
798 to be constants. If something goes wrong we generate an error and
799 return zero. */
800
801 static HOST_WIDE_INT
element_number(gfc_array_ref * ar)802 element_number (gfc_array_ref *ar)
803 {
804 mpz_t multiplier, offset, extent, n;
805 gfc_array_spec *as;
806 HOST_WIDE_INT i, rank;
807
808 as = ar->as;
809 rank = as->rank;
810 mpz_init_set_ui (multiplier, 1);
811 mpz_init_set_ui (offset, 0);
812 mpz_init (extent);
813 mpz_init (n);
814
815 for (i = 0; i < rank; i++)
816 {
817 if (ar->dimen_type[i] != DIMEN_ELEMENT)
818 gfc_internal_error ("element_number(): Bad dimension type");
819
820 if (as && as->lower[i])
821 mpz_sub (n, *get_mpz (ar->start[i]), *get_mpz (as->lower[i]));
822 else
823 mpz_sub_ui (n, *get_mpz (ar->start[i]), 1);
824
825 mpz_mul (n, n, multiplier);
826 mpz_add (offset, offset, n);
827
828 if (as && as->upper[i] && as->lower[i])
829 {
830 mpz_sub (extent, *get_mpz (as->upper[i]), *get_mpz (as->lower[i]));
831 mpz_add_ui (extent, extent, 1);
832 }
833 else
834 mpz_set_ui (extent, 0);
835
836 if (mpz_sgn (extent) < 0)
837 mpz_set_ui (extent, 0);
838
839 mpz_mul (multiplier, multiplier, extent);
840 }
841
842 i = mpz_get_ui (offset);
843
844 mpz_clear (multiplier);
845 mpz_clear (offset);
846 mpz_clear (extent);
847 mpz_clear (n);
848
849 return i;
850 }
851
852
853 /* Given a single element of an equivalence list, figure out the offset
854 from the base symbol. For simple variables or full arrays, this is
855 simply zero. For an array element we have to calculate the array
856 element number and multiply by the element size. For a substring we
857 have to calculate the further reference. */
858
859 static HOST_WIDE_INT
calculate_offset(gfc_expr * e)860 calculate_offset (gfc_expr *e)
861 {
862 HOST_WIDE_INT n, element_size, offset;
863 gfc_typespec *element_type;
864 gfc_ref *reference;
865
866 offset = 0;
867 element_type = &e->symtree->n.sym->ts;
868
869 for (reference = e->ref; reference; reference = reference->next)
870 switch (reference->type)
871 {
872 case REF_ARRAY:
873 switch (reference->u.ar.type)
874 {
875 case AR_FULL:
876 break;
877
878 case AR_ELEMENT:
879 n = element_number (&reference->u.ar);
880 if (element_type->type == BT_CHARACTER)
881 gfc_conv_const_charlen (element_type->u.cl);
882 element_size =
883 int_size_in_bytes (gfc_typenode_for_spec (element_type));
884 offset += n * element_size;
885 break;
886
887 default:
888 gfc_error ("Bad array reference at %L", &e->where);
889 }
890 break;
891 case REF_SUBSTRING:
892 if (reference->u.ss.start != NULL)
893 offset += mpz_get_ui (*get_mpz (reference->u.ss.start)) - 1;
894 break;
895 default:
896 gfc_error ("Illegal reference type at %L as EQUIVALENCE object",
897 &e->where);
898 }
899 return offset;
900 }
901
902
903 /* Add a new segment_info structure to the current segment. eq1 is already
904 in the list, eq2 is not. */
905
906 static void
new_condition(segment_info * v,gfc_equiv * eq1,gfc_equiv * eq2)907 new_condition (segment_info *v, gfc_equiv *eq1, gfc_equiv *eq2)
908 {
909 HOST_WIDE_INT offset1, offset2;
910 segment_info *a;
911
912 offset1 = calculate_offset (eq1->expr);
913 offset2 = calculate_offset (eq2->expr);
914
915 a = get_segment_info (eq2->expr->symtree->n.sym,
916 v->offset + offset1 - offset2);
917
918 current_segment = add_segments (current_segment, a);
919 }
920
921
922 /* Given two equivalence structures that are both already in the list, make
923 sure that this new condition is not violated, generating an error if it
924 is. */
925
926 static void
confirm_condition(segment_info * s1,gfc_equiv * eq1,segment_info * s2,gfc_equiv * eq2)927 confirm_condition (segment_info *s1, gfc_equiv *eq1, segment_info *s2,
928 gfc_equiv *eq2)
929 {
930 HOST_WIDE_INT offset1, offset2;
931
932 offset1 = calculate_offset (eq1->expr);
933 offset2 = calculate_offset (eq2->expr);
934
935 if (s1->offset + offset1 != s2->offset + offset2)
936 gfc_error ("Inconsistent equivalence rules involving %qs at %L and "
937 "%qs at %L", s1->sym->name, &s1->sym->declared_at,
938 s2->sym->name, &s2->sym->declared_at);
939 }
940
941
942 /* Process a new equivalence condition. eq1 is know to be in segment f.
943 If eq2 is also present then confirm that the condition holds.
944 Otherwise add a new variable to the segment list. */
945
946 static void
add_condition(segment_info * f,gfc_equiv * eq1,gfc_equiv * eq2)947 add_condition (segment_info *f, gfc_equiv *eq1, gfc_equiv *eq2)
948 {
949 segment_info *n;
950
951 n = find_segment_info (eq2->expr->symtree->n.sym);
952
953 if (n == NULL)
954 new_condition (f, eq1, eq2);
955 else
956 confirm_condition (f, eq1, n, eq2);
957 }
958
959 static void
accumulate_equivalence_attributes(symbol_attribute * dummy_symbol,gfc_equiv * e)960 accumulate_equivalence_attributes (symbol_attribute *dummy_symbol, gfc_equiv *e)
961 {
962 symbol_attribute attr = e->expr->symtree->n.sym->attr;
963
964 dummy_symbol->dummy |= attr.dummy;
965 dummy_symbol->pointer |= attr.pointer;
966 dummy_symbol->target |= attr.target;
967 dummy_symbol->external |= attr.external;
968 dummy_symbol->intrinsic |= attr.intrinsic;
969 dummy_symbol->allocatable |= attr.allocatable;
970 dummy_symbol->elemental |= attr.elemental;
971 dummy_symbol->recursive |= attr.recursive;
972 dummy_symbol->in_common |= attr.in_common;
973 dummy_symbol->result |= attr.result;
974 dummy_symbol->in_namelist |= attr.in_namelist;
975 dummy_symbol->optional |= attr.optional;
976 dummy_symbol->entry |= attr.entry;
977 dummy_symbol->function |= attr.function;
978 dummy_symbol->subroutine |= attr.subroutine;
979 dummy_symbol->dimension |= attr.dimension;
980 dummy_symbol->in_equivalence |= attr.in_equivalence;
981 dummy_symbol->use_assoc |= attr.use_assoc;
982 dummy_symbol->cray_pointer |= attr.cray_pointer;
983 dummy_symbol->cray_pointee |= attr.cray_pointee;
984 dummy_symbol->data |= attr.data;
985 dummy_symbol->value |= attr.value;
986 dummy_symbol->volatile_ |= attr.volatile_;
987 dummy_symbol->is_protected |= attr.is_protected;
988 dummy_symbol->is_bind_c |= attr.is_bind_c;
989 dummy_symbol->procedure |= attr.procedure;
990 dummy_symbol->proc_pointer |= attr.proc_pointer;
991 dummy_symbol->abstract |= attr.abstract;
992 dummy_symbol->asynchronous |= attr.asynchronous;
993 dummy_symbol->codimension |= attr.codimension;
994 dummy_symbol->contiguous |= attr.contiguous;
995 dummy_symbol->generic |= attr.generic;
996 dummy_symbol->automatic |= attr.automatic;
997 dummy_symbol->threadprivate |= attr.threadprivate;
998 dummy_symbol->omp_declare_target |= attr.omp_declare_target;
999 dummy_symbol->omp_declare_target_link |= attr.omp_declare_target_link;
1000 dummy_symbol->oacc_declare_copyin |= attr.oacc_declare_copyin;
1001 dummy_symbol->oacc_declare_create |= attr.oacc_declare_create;
1002 dummy_symbol->oacc_declare_deviceptr |= attr.oacc_declare_deviceptr;
1003 dummy_symbol->oacc_declare_device_resident
1004 |= attr.oacc_declare_device_resident;
1005
1006 /* Not strictly correct, but probably close enough. */
1007 if (attr.save > dummy_symbol->save)
1008 dummy_symbol->save = attr.save;
1009 if (attr.access > dummy_symbol->access)
1010 dummy_symbol->access = attr.access;
1011 }
1012
1013 /* Given a segment element, search through the equivalence lists for unused
1014 conditions that involve the symbol. Add these rules to the segment. */
1015
1016 static bool
find_equivalence(segment_info * n)1017 find_equivalence (segment_info *n)
1018 {
1019 gfc_equiv *e1, *e2, *eq;
1020 bool found;
1021
1022 found = FALSE;
1023
1024 for (e1 = n->sym->ns->equiv; e1; e1 = e1->next)
1025 {
1026 eq = NULL;
1027
1028 /* Search the equivalence list, including the root (first) element
1029 for the symbol that owns the segment. */
1030 symbol_attribute dummy_symbol;
1031 memset (&dummy_symbol, 0, sizeof (dummy_symbol));
1032 for (e2 = e1; e2; e2 = e2->eq)
1033 {
1034 accumulate_equivalence_attributes (&dummy_symbol, e2);
1035 if (!e2->used && e2->expr->symtree->n.sym == n->sym)
1036 {
1037 eq = e2;
1038 break;
1039 }
1040 }
1041
1042 gfc_check_conflict (&dummy_symbol, e1->expr->symtree->name, &e1->expr->where);
1043
1044 /* Go to the next root element. */
1045 if (eq == NULL)
1046 continue;
1047
1048 eq->used = 1;
1049
1050 /* Now traverse the equivalence list matching the offsets. */
1051 for (e2 = e1; e2; e2 = e2->eq)
1052 {
1053 if (!e2->used && e2 != eq)
1054 {
1055 add_condition (n, eq, e2);
1056 e2->used = 1;
1057 found = TRUE;
1058 }
1059 }
1060 }
1061 return found;
1062 }
1063
1064
1065 /* Add all symbols equivalenced within a segment. We need to scan the
1066 segment list multiple times to include indirect equivalences. Since
1067 a new segment_info can inserted at the beginning of the segment list,
1068 depending on its offset, we have to force a final pass through the
1069 loop by demanding that completion sees a pass with no matches; i.e.,
1070 all symbols with equiv_built set and no new equivalences found. */
1071
1072 static void
add_equivalences(bool * saw_equiv)1073 add_equivalences (bool *saw_equiv)
1074 {
1075 segment_info *f;
1076 bool more = TRUE;
1077
1078 while (more)
1079 {
1080 more = FALSE;
1081 for (f = current_segment; f; f = f->next)
1082 {
1083 if (!f->sym->equiv_built)
1084 {
1085 f->sym->equiv_built = 1;
1086 bool seen_one = find_equivalence (f);
1087 if (seen_one)
1088 {
1089 *saw_equiv = true;
1090 more = true;
1091 }
1092 }
1093 }
1094 }
1095
1096 /* Add a copy of this segment list to the namespace. */
1097 copy_equiv_list_to_ns (current_segment);
1098 }
1099
1100
1101 /* Returns the offset necessary to properly align the current equivalence.
1102 Sets *palign to the required alignment. */
1103
1104 static HOST_WIDE_INT
align_segment(unsigned HOST_WIDE_INT * palign)1105 align_segment (unsigned HOST_WIDE_INT *palign)
1106 {
1107 segment_info *s;
1108 unsigned HOST_WIDE_INT offset;
1109 unsigned HOST_WIDE_INT max_align;
1110 unsigned HOST_WIDE_INT this_align;
1111 unsigned HOST_WIDE_INT this_offset;
1112
1113 max_align = 1;
1114 offset = 0;
1115 for (s = current_segment; s; s = s->next)
1116 {
1117 this_align = TYPE_ALIGN_UNIT (s->field);
1118 if (s->offset & (this_align - 1))
1119 {
1120 /* Field is misaligned. */
1121 this_offset = this_align - ((s->offset + offset) & (this_align - 1));
1122 if (this_offset & (max_align - 1))
1123 {
1124 /* Aligning this field would misalign a previous field. */
1125 gfc_error ("The equivalence set for variable %qs "
1126 "declared at %L violates alignment requirements",
1127 s->sym->name, &s->sym->declared_at);
1128 }
1129 offset += this_offset;
1130 }
1131 max_align = this_align;
1132 }
1133 if (palign)
1134 *palign = max_align;
1135 return offset;
1136 }
1137
1138
1139 /* Adjust segment offsets by the given amount. */
1140
1141 static void
apply_segment_offset(segment_info * s,HOST_WIDE_INT offset)1142 apply_segment_offset (segment_info *s, HOST_WIDE_INT offset)
1143 {
1144 for (; s; s = s->next)
1145 s->offset += offset;
1146 }
1147
1148
1149 /* Lay out a symbol in a common block. If the symbol has already been seen
1150 then check the location is consistent. Otherwise create segments
1151 for that symbol and all the symbols equivalenced with it. */
1152
1153 /* Translate a single common block. */
1154
1155 static void
translate_common(gfc_common_head * common,gfc_symbol * var_list)1156 translate_common (gfc_common_head *common, gfc_symbol *var_list)
1157 {
1158 gfc_symbol *sym;
1159 segment_info *s;
1160 segment_info *common_segment;
1161 HOST_WIDE_INT offset;
1162 HOST_WIDE_INT current_offset;
1163 unsigned HOST_WIDE_INT align;
1164 bool saw_equiv;
1165
1166 common_segment = NULL;
1167 offset = 0;
1168 current_offset = 0;
1169 align = 1;
1170 saw_equiv = false;
1171
1172 /* Add symbols to the segment. */
1173 for (sym = var_list; sym; sym = sym->common_next)
1174 {
1175 current_segment = common_segment;
1176 s = find_segment_info (sym);
1177
1178 /* Symbol has already been added via an equivalence. Multiple
1179 use associations of the same common block result in equiv_built
1180 being set but no information about the symbol in the segment. */
1181 if (s && sym->equiv_built)
1182 {
1183 /* Ensure the current location is properly aligned. */
1184 align = TYPE_ALIGN_UNIT (s->field);
1185 current_offset = (current_offset + align - 1) &~ (align - 1);
1186
1187 /* Verify that it ended up where we expect it. */
1188 if (s->offset != current_offset)
1189 {
1190 gfc_error ("Equivalence for %qs does not match ordering of "
1191 "COMMON %qs at %L", sym->name,
1192 common->name, &common->where);
1193 }
1194 }
1195 else
1196 {
1197 /* A symbol we haven't seen before. */
1198 s = current_segment = get_segment_info (sym, current_offset);
1199
1200 /* Add all objects directly or indirectly equivalenced with this
1201 symbol. */
1202 add_equivalences (&saw_equiv);
1203
1204 if (current_segment->offset < 0)
1205 gfc_error ("The equivalence set for %qs cause an invalid "
1206 "extension to COMMON %qs at %L", sym->name,
1207 common->name, &common->where);
1208
1209 if (flag_align_commons)
1210 offset = align_segment (&align);
1211
1212 if (offset)
1213 {
1214 /* The required offset conflicts with previous alignment
1215 requirements. Insert padding immediately before this
1216 segment. */
1217 if (warn_align_commons)
1218 {
1219 if (strcmp (common->name, BLANK_COMMON_NAME))
1220 gfc_warning (OPT_Walign_commons,
1221 "Padding of %d bytes required before %qs in "
1222 "COMMON %qs at %L; reorder elements or use "
1223 "%<-fno-align-commons%>", (int)offset,
1224 s->sym->name, common->name, &common->where);
1225 else
1226 gfc_warning (OPT_Walign_commons,
1227 "Padding of %d bytes required before %qs in "
1228 "COMMON at %L; reorder elements or use "
1229 "%<-fno-align-commons%>", (int)offset,
1230 s->sym->name, &common->where);
1231 }
1232 }
1233
1234 /* Apply the offset to the new segments. */
1235 apply_segment_offset (current_segment, offset);
1236 current_offset += offset;
1237
1238 /* Add the new segments to the common block. */
1239 common_segment = add_segments (common_segment, current_segment);
1240 }
1241
1242 /* The offset of the next common variable. */
1243 current_offset += s->length;
1244 }
1245
1246 if (common_segment == NULL)
1247 {
1248 gfc_error ("COMMON %qs at %L does not exist",
1249 common->name, &common->where);
1250 return;
1251 }
1252
1253 if (common_segment->offset != 0 && warn_align_commons)
1254 {
1255 if (strcmp (common->name, BLANK_COMMON_NAME))
1256 gfc_warning (OPT_Walign_commons,
1257 "COMMON %qs at %L requires %d bytes of padding; "
1258 "reorder elements or use %<-fno-align-commons%>",
1259 common->name, &common->where, (int)common_segment->offset);
1260 else
1261 gfc_warning (OPT_Walign_commons,
1262 "COMMON at %L requires %d bytes of padding; "
1263 "reorder elements or use %<-fno-align-commons%>",
1264 &common->where, (int)common_segment->offset);
1265 }
1266
1267 create_common (common, common_segment, saw_equiv);
1268 }
1269
1270
1271 /* Create a new block for each merged equivalence list. */
1272
1273 static void
finish_equivalences(gfc_namespace * ns)1274 finish_equivalences (gfc_namespace *ns)
1275 {
1276 gfc_equiv *z, *y;
1277 gfc_symbol *sym;
1278 gfc_common_head * c;
1279 HOST_WIDE_INT offset;
1280 unsigned HOST_WIDE_INT align;
1281 bool dummy;
1282
1283 for (z = ns->equiv; z; z = z->next)
1284 for (y = z->eq; y; y = y->eq)
1285 {
1286 if (y->used)
1287 continue;
1288 sym = z->expr->symtree->n.sym;
1289 current_segment = get_segment_info (sym, 0);
1290
1291 /* All objects directly or indirectly equivalenced with this
1292 symbol. */
1293 add_equivalences (&dummy);
1294
1295 /* Align the block. */
1296 offset = align_segment (&align);
1297
1298 /* Ensure all offsets are positive. */
1299 offset -= current_segment->offset & ~(align - 1);
1300
1301 apply_segment_offset (current_segment, offset);
1302
1303 /* Create the decl. If this is a module equivalence, it has a
1304 unique name, pointed to by z->module. This is written to a
1305 gfc_common_header to push create_common into using
1306 build_common_decl, so that the equivalence appears as an
1307 external symbol. Otherwise, a local declaration is built using
1308 build_equiv_decl. */
1309 if (z->module)
1310 {
1311 c = gfc_get_common_head ();
1312 /* We've lost the real location, so use the location of the
1313 enclosing procedure. If we're in a BLOCK DATA block, then
1314 use the location in the sym_root. */
1315 if (ns->proc_name)
1316 c->where = ns->proc_name->declared_at;
1317 else if (ns->is_block_data)
1318 c->where = ns->sym_root->n.sym->declared_at;
1319
1320 size_t len = strlen (z->module);
1321 gcc_assert (len < sizeof (c->name));
1322 memcpy (c->name, z->module, len);
1323 c->name[len] = '\0';
1324 }
1325 else
1326 c = NULL;
1327
1328 create_common (c, current_segment, true);
1329 break;
1330 }
1331 }
1332
1333
1334 /* Work function for translating a named common block. */
1335
1336 static void
named_common(gfc_symtree * st)1337 named_common (gfc_symtree *st)
1338 {
1339 translate_common (st->n.common, st->n.common->head);
1340 }
1341
1342
1343 /* Translate the common blocks in a namespace. Unlike other variables,
1344 these have to be created before code, because the backend_decl depends
1345 on the rest of the common block. */
1346
1347 void
gfc_trans_common(gfc_namespace * ns)1348 gfc_trans_common (gfc_namespace *ns)
1349 {
1350 gfc_common_head *c;
1351
1352 /* Translate the blank common block. */
1353 if (ns->blank_common.head != NULL)
1354 {
1355 c = gfc_get_common_head ();
1356 c->where = ns->blank_common.head->common_head->where;
1357 strcpy (c->name, BLANK_COMMON_NAME);
1358 translate_common (c, ns->blank_common.head);
1359 }
1360
1361 /* Translate all named common blocks. */
1362 gfc_traverse_symtree (ns->common_root, named_common);
1363
1364 /* Translate local equivalence. */
1365 finish_equivalences (ns);
1366
1367 /* Commit the newly created symbols for common blocks and module
1368 equivalences. */
1369 gfc_commit_symbols ();
1370 }
1371