1 /* Common block and equivalence list handling
2    Copyright (C) 2000-2020 Free Software Foundation, Inc.
3    Contributed by Canqun Yang <canqun@nudt.edu.cn>
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 /* The core algorithm is based on Andy Vaught's g95 tree.  Also the
22    way to build UNION_TYPE is borrowed from Richard Henderson.
23 
24    Transform common blocks.  An integral part of this is processing
25    equivalence variables.  Equivalenced variables that are not in a
26    common block end up in a private block of their own.
27 
28    Each common block or local equivalence list is declared as a union.
29    Variables within the block are represented as a field within the
30    block with the proper offset.
31 
32    So if two variables are equivalenced, they just point to a common
33    area in memory.
34 
35    Mathematically, laying out an equivalence block is equivalent to
36    solving a linear system of equations.  The matrix is usually a
37    sparse matrix in which each row contains all zero elements except
38    for a +1 and a -1, a sort of a generalized Vandermonde matrix.  The
39    matrix is usually block diagonal.  The system can be
40    overdetermined, underdetermined or have a unique solution.  If the
41    system is inconsistent, the program is not standard conforming.
42    The solution vector is integral, since all of the pivots are +1 or -1.
43 
44    How we lay out an equivalence block is a little less complicated.
45    In an equivalence list with n elements, there are n-1 conditions to
46    be satisfied.  The conditions partition the variables into what we
47    will call segments.  If A and B are equivalenced then A and B are
48    in the same segment.  If B and C are equivalenced as well, then A,
49    B and C are in a segment and so on.  Each segment is a block of
50    memory that has one or more variables equivalenced in some way.  A
51    common block is made up of a series of segments that are joined one
52    after the other.  In the linear system, a segment is a block
53    diagonal.
54 
55    To lay out a segment we first start with some variable and
56    determine its length.  The first variable is assumed to start at
57    offset one and extends to however long it is.  We then traverse the
58    list of equivalences to find an unused condition that involves at
59    least one of the variables currently in the segment.
60 
61    Each equivalence condition amounts to the condition B+b=C+c where B
62    and C are the offsets of the B and C variables, and b and c are
63    constants which are nonzero for array elements, substrings or
64    structure components.  So for
65 
66      EQUIVALENCE(B(2), C(3))
67    we have
68      B + 2*size of B's elements = C + 3*size of C's elements.
69 
70    If B and C are known we check to see if the condition already
71    holds.  If B is known we can solve for C.  Since we know the length
72    of C, we can see if the minimum and maximum extents of the segment
73    are affected.  Eventually, we make a full pass through the
74    equivalence list without finding any new conditions and the segment
75    is fully specified.
76 
77    At this point, the segment is added to the current common block.
78    Since we know the minimum extent of the segment, everything in the
79    segment is translated to its position in the common block.  The
80    usual case here is that there are no equivalence statements and the
81    common block is series of segments with one variable each, which is
82    a diagonal matrix in the matrix formulation.
83 
84    Each segment is described by a chain of segment_info structures.  Each
85    segment_info structure describes the extents of a single variable within
86    the segment.  This list is maintained in the order the elements are
87    positioned within the segment.  If two elements have the same starting
88    offset the smaller will come first.  If they also have the same size their
89    ordering is undefined.
90 
91    Once all common blocks have been created, the list of equivalences
92    is examined for still-unused equivalence conditions.  We create a
93    block for each merged equivalence list.  */
94 
95 #include "config.h"
96 #define INCLUDE_MAP
97 #include "system.h"
98 #include "coretypes.h"
99 #include "tm.h"
100 #include "tree.h"
101 #include "gfortran.h"
102 #include "trans.h"
103 #include "stringpool.h"
104 #include "fold-const.h"
105 #include "stor-layout.h"
106 #include "varasm.h"
107 #include "trans-types.h"
108 #include "trans-const.h"
109 #include "target-memory.h"
110 
111 
112 /* Holds a single variable in an equivalence set.  */
113 typedef struct segment_info
114 {
115   gfc_symbol *sym;
116   HOST_WIDE_INT offset;
117   HOST_WIDE_INT length;
118   /* This will contain the field type until the field is created.  */
119   tree field;
120   struct segment_info *next;
121 } segment_info;
122 
123 static segment_info * current_segment;
124 
125 /* Store decl of all common blocks in this translation unit; the first
126    tree is the identifier.  */
127 static std::map<tree, tree> gfc_map_of_all_commons;
128 
129 
130 /* Make a segment_info based on a symbol.  */
131 
132 static segment_info *
get_segment_info(gfc_symbol * sym,HOST_WIDE_INT offset)133 get_segment_info (gfc_symbol * sym, HOST_WIDE_INT offset)
134 {
135   segment_info *s;
136 
137   /* Make sure we've got the character length.  */
138   if (sym->ts.type == BT_CHARACTER)
139     gfc_conv_const_charlen (sym->ts.u.cl);
140 
141   /* Create the segment_info and fill it in.  */
142   s = XCNEW (segment_info);
143   s->sym = sym;
144   /* We will use this type when building the segment aggregate type.  */
145   s->field = gfc_sym_type (sym);
146   s->length = int_size_in_bytes (s->field);
147   s->offset = offset;
148 
149   return s;
150 }
151 
152 
153 /* Add a copy of a segment list to the namespace.  This is specifically for
154    equivalence segments, so that dependency checking can be done on
155    equivalence group members.  */
156 
157 static void
copy_equiv_list_to_ns(segment_info * c)158 copy_equiv_list_to_ns (segment_info *c)
159 {
160   segment_info *f;
161   gfc_equiv_info *s;
162   gfc_equiv_list *l;
163 
164   l = XCNEW (gfc_equiv_list);
165 
166   l->next = c->sym->ns->equiv_lists;
167   c->sym->ns->equiv_lists = l;
168 
169   for (f = c; f; f = f->next)
170     {
171       s = XCNEW (gfc_equiv_info);
172       s->next = l->equiv;
173       l->equiv = s;
174       s->sym = f->sym;
175       s->offset = f->offset;
176       s->length = f->length;
177     }
178 }
179 
180 
181 /* Add combine segment V and segment LIST.  */
182 
183 static segment_info *
add_segments(segment_info * list,segment_info * v)184 add_segments (segment_info *list, segment_info *v)
185 {
186   segment_info *s;
187   segment_info *p;
188   segment_info *next;
189 
190   p = NULL;
191   s = list;
192 
193   while (v)
194     {
195       /* Find the location of the new element.  */
196       while (s)
197 	{
198 	  if (v->offset < s->offset)
199 	    break;
200 	  if (v->offset == s->offset
201 	      && v->length <= s->length)
202 	    break;
203 
204 	  p = s;
205 	  s = s->next;
206 	}
207 
208       /* Insert the new element in between p and s.  */
209       next = v->next;
210       v->next = s;
211       if (p == NULL)
212 	list = v;
213       else
214 	p->next = v;
215 
216       p = v;
217       v = next;
218     }
219 
220   return list;
221 }
222 
223 
224 /* Construct mangled common block name from symbol name.  */
225 
226 /* We need the bind(c) flag to tell us how/if we should mangle the symbol
227    name.  There are few calls to this function, so few places that this
228    would need to be added.  At the moment, there is only one call, in
229    build_common_decl().  We can't attempt to look up the common block
230    because we may be building it for the first time and therefore, it won't
231    be in the common_root.  We also need the binding label, if it's bind(c).
232    Therefore, send in the pointer to the common block, so whatever info we
233    have so far can be used.  All of the necessary info should be available
234    in the gfc_common_head by now, so it should be accurate to test the
235    isBindC flag and use the binding label given if it is bind(c).
236 
237    We may NOT know yet if it's bind(c) or not, but we can try at least.
238    Will have to figure out what to do later if it's labeled bind(c)
239    after this is called.  */
240 
241 static tree
gfc_sym_mangled_common_id(gfc_common_head * com)242 gfc_sym_mangled_common_id (gfc_common_head *com)
243 {
244   int has_underscore;
245   /* Provide sufficient space to hold "symbol.symbol.eq.1234567890__".  */
246   char mangled_name[2*GFC_MAX_MANGLED_SYMBOL_LEN + 1 + 16 + 1];
247   char name[sizeof (mangled_name) - 2];
248 
249   /* Get the name out of the common block pointer.  */
250   size_t len = strlen (com->name);
251   gcc_assert (len < sizeof (name));
252   strcpy (name, com->name);
253 
254   /* If we're suppose to do a bind(c).  */
255   if (com->is_bind_c == 1 && com->binding_label)
256     return get_identifier (com->binding_label);
257 
258   if (strcmp (name, BLANK_COMMON_NAME) == 0)
259     return get_identifier (name);
260 
261   if (flag_underscoring)
262     {
263       has_underscore = strchr (name, '_') != 0;
264       if (flag_second_underscore && has_underscore)
265         snprintf (mangled_name, sizeof mangled_name, "%s__", name);
266       else
267         snprintf (mangled_name, sizeof mangled_name, "%s_", name);
268 
269       return get_identifier (mangled_name);
270     }
271   else
272     return get_identifier (name);
273 }
274 
275 
276 /* Build a field declaration for a common variable or a local equivalence
277    object.  */
278 
279 static void
build_field(segment_info * h,tree union_type,record_layout_info rli)280 build_field (segment_info *h, tree union_type, record_layout_info rli)
281 {
282   tree field;
283   tree name;
284   HOST_WIDE_INT offset = h->offset;
285   unsigned HOST_WIDE_INT desired_align, known_align;
286 
287   name = get_identifier (h->sym->name);
288   field = build_decl (gfc_get_location (&h->sym->declared_at),
289 		      FIELD_DECL, name, h->field);
290   known_align = (offset & -offset) * BITS_PER_UNIT;
291   if (known_align == 0 || known_align > BIGGEST_ALIGNMENT)
292     known_align = BIGGEST_ALIGNMENT;
293 
294   desired_align = update_alignment_for_field (rli, field, known_align);
295   if (desired_align > known_align)
296     DECL_PACKED (field) = 1;
297 
298   DECL_FIELD_CONTEXT (field) = union_type;
299   DECL_FIELD_OFFSET (field) = size_int (offset);
300   DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
301   SET_DECL_OFFSET_ALIGN (field, known_align);
302 
303   rli->offset = size_binop (MAX_EXPR, rli->offset,
304                             size_binop (PLUS_EXPR,
305                                         DECL_FIELD_OFFSET (field),
306                                         DECL_SIZE_UNIT (field)));
307   /* If this field is assigned to a label, we create another two variables.
308      One will hold the address of target label or format label. The other will
309      hold the length of format label string.  */
310   if (h->sym->attr.assign)
311     {
312       tree len;
313       tree addr;
314 
315       gfc_allocate_lang_decl (field);
316       GFC_DECL_ASSIGN (field) = 1;
317       len = gfc_create_var_np (gfc_charlen_type_node,h->sym->name);
318       addr = gfc_create_var_np (pvoid_type_node, h->sym->name);
319       TREE_STATIC (len) = 1;
320       TREE_STATIC (addr) = 1;
321       DECL_INITIAL (len) = build_int_cst (gfc_charlen_type_node, -2);
322       gfc_set_decl_location (len, &h->sym->declared_at);
323       gfc_set_decl_location (addr, &h->sym->declared_at);
324       GFC_DECL_STRING_LEN (field) = pushdecl_top_level (len);
325       GFC_DECL_ASSIGN_ADDR (field) = pushdecl_top_level (addr);
326     }
327 
328   /* If this field is volatile, mark it.  */
329   if (h->sym->attr.volatile_)
330     {
331       tree new_type;
332       TREE_THIS_VOLATILE (field) = 1;
333       TREE_SIDE_EFFECTS (field) = 1;
334       new_type = build_qualified_type (TREE_TYPE (field), TYPE_QUAL_VOLATILE);
335       TREE_TYPE (field) = new_type;
336     }
337 
338   h->field = field;
339 }
340 
341 
342 /* Get storage for local equivalence.  */
343 
344 static tree
build_equiv_decl(tree union_type,bool is_init,bool is_saved,bool is_auto)345 build_equiv_decl (tree union_type, bool is_init, bool is_saved, bool is_auto)
346 {
347   tree decl;
348   char name[18];
349   static int serial = 0;
350 
351   if (is_init)
352     {
353       decl = gfc_create_var (union_type, "equiv");
354       TREE_STATIC (decl) = 1;
355       GFC_DECL_COMMON_OR_EQUIV (decl) = 1;
356       return decl;
357     }
358 
359   snprintf (name, sizeof (name), "equiv.%d", serial++);
360   decl = build_decl (input_location,
361 		     VAR_DECL, get_identifier (name), union_type);
362   DECL_ARTIFICIAL (decl) = 1;
363   DECL_IGNORED_P (decl) = 1;
364 
365   if (!is_auto && (!gfc_can_put_var_on_stack (DECL_SIZE_UNIT (decl))
366       || is_saved))
367     TREE_STATIC (decl) = 1;
368 
369   TREE_ADDRESSABLE (decl) = 1;
370   TREE_USED (decl) = 1;
371   GFC_DECL_COMMON_OR_EQUIV (decl) = 1;
372 
373   /* The source location has been lost, and doesn't really matter.
374      We need to set it to something though.  */
375   gfc_set_decl_location (decl, &gfc_current_locus);
376 
377   gfc_add_decl_to_function (decl);
378 
379   return decl;
380 }
381 
382 
383 /* Get storage for common block.  */
384 
385 static tree
build_common_decl(gfc_common_head * com,tree union_type,bool is_init)386 build_common_decl (gfc_common_head *com, tree union_type, bool is_init)
387 {
388   tree decl, identifier;
389 
390   identifier = gfc_sym_mangled_common_id (com);
391   decl = gfc_map_of_all_commons.count(identifier)
392 	 ? gfc_map_of_all_commons[identifier] : NULL_TREE;
393 
394   /* Update the size of this common block as needed.  */
395   if (decl != NULL_TREE)
396     {
397       tree size = TYPE_SIZE_UNIT (union_type);
398 
399       /* Named common blocks of the same name shall be of the same size
400 	 in all scoping units of a program in which they appear, but
401 	 blank common blocks may be of different sizes.  */
402       if (!tree_int_cst_equal (DECL_SIZE_UNIT (decl), size)
403 	  && strcmp (com->name, BLANK_COMMON_NAME))
404 	gfc_warning (0, "Named COMMON block %qs at %L shall be of the "
405 		     "same size as elsewhere (%lu vs %lu bytes)", com->name,
406 		     &com->where,
407 		     (unsigned long) TREE_INT_CST_LOW (size),
408 		     (unsigned long) TREE_INT_CST_LOW (DECL_SIZE_UNIT (decl)));
409 
410       if (tree_int_cst_lt (DECL_SIZE_UNIT (decl), size))
411 	{
412 	  DECL_SIZE (decl) = TYPE_SIZE (union_type);
413 	  DECL_SIZE_UNIT (decl) = size;
414 	  SET_DECL_MODE (decl, TYPE_MODE (union_type));
415 	  TREE_TYPE (decl) = union_type;
416 	  layout_decl (decl, 0);
417 	}
418      }
419 
420   /* If this common block has been declared in a previous program unit,
421      and either it is already initialized or there is no new initialization
422      for it, just return.  */
423   if ((decl != NULL_TREE) && (!is_init || DECL_INITIAL (decl)))
424     return decl;
425 
426   /* If there is no backend_decl for the common block, build it.  */
427   if (decl == NULL_TREE)
428     {
429       if (com->is_bind_c == 1 && com->binding_label)
430 	decl = build_decl (input_location, VAR_DECL, identifier, union_type);
431       else
432 	{
433 	  decl = build_decl (input_location, VAR_DECL, get_identifier (com->name),
434 			     union_type);
435 	  gfc_set_decl_assembler_name (decl, identifier);
436 	}
437 
438       TREE_PUBLIC (decl) = 1;
439       TREE_STATIC (decl) = 1;
440       DECL_IGNORED_P (decl) = 1;
441       if (!com->is_bind_c)
442 	SET_DECL_ALIGN (decl, BIGGEST_ALIGNMENT);
443       else
444         {
445 	  /* Do not set the alignment for bind(c) common blocks to
446 	     BIGGEST_ALIGNMENT because that won't match what C does.  Also,
447 	     for common blocks with one element, the alignment must be
448 	     that of the field within the common block in order to match
449 	     what C will do.  */
450 	  tree field = NULL_TREE;
451 	  field = TYPE_FIELDS (TREE_TYPE (decl));
452 	  if (DECL_CHAIN (field) == NULL_TREE)
453 	    SET_DECL_ALIGN (decl, TYPE_ALIGN (TREE_TYPE (field)));
454 	}
455       DECL_USER_ALIGN (decl) = 0;
456       GFC_DECL_COMMON_OR_EQUIV (decl) = 1;
457 
458       gfc_set_decl_location (decl, &com->where);
459 
460       if (com->threadprivate)
461 	set_decl_tls_model (decl, decl_default_tls_model (decl));
462 
463       if (com->omp_declare_target_link)
464 	DECL_ATTRIBUTES (decl)
465 	  = tree_cons (get_identifier ("omp declare target link"),
466 		       NULL_TREE, DECL_ATTRIBUTES (decl));
467       else if (com->omp_declare_target)
468 	DECL_ATTRIBUTES (decl)
469 	  = tree_cons (get_identifier ("omp declare target"),
470 		       NULL_TREE, DECL_ATTRIBUTES (decl));
471 
472       /* Place the back end declaration for this common block in
473          GLOBAL_BINDING_LEVEL.  */
474       gfc_map_of_all_commons[identifier] = pushdecl_top_level (decl);
475     }
476 
477   /* Has no initial values.  */
478   if (!is_init)
479     {
480       DECL_INITIAL (decl) = NULL_TREE;
481       DECL_COMMON (decl) = 1;
482       DECL_DEFER_OUTPUT (decl) = 1;
483     }
484   else
485     {
486       DECL_INITIAL (decl) = error_mark_node;
487       DECL_COMMON (decl) = 0;
488       DECL_DEFER_OUTPUT (decl) = 0;
489     }
490   return decl;
491 }
492 
493 
494 /* Return a field that is the size of the union, if an equivalence has
495    overlapping initializers.  Merge the initializers into a single
496    initializer for this new field, then free the old ones.  */
497 
498 static tree
get_init_field(segment_info * head,tree union_type,tree * field_init,record_layout_info rli)499 get_init_field (segment_info *head, tree union_type, tree *field_init,
500 		record_layout_info rli)
501 {
502   segment_info *s;
503   HOST_WIDE_INT length = 0;
504   HOST_WIDE_INT offset = 0;
505   unsigned HOST_WIDE_INT known_align, desired_align;
506   bool overlap = false;
507   tree tmp, field;
508   tree init;
509   unsigned char *data, *chk;
510   vec<constructor_elt, va_gc> *v = NULL;
511 
512   tree type = unsigned_char_type_node;
513   int i;
514 
515   /* Obtain the size of the union and check if there are any overlapping
516      initializers.  */
517   for (s = head; s; s = s->next)
518     {
519       HOST_WIDE_INT slen = s->offset + s->length;
520       if (s->sym->value)
521 	{
522 	  if (s->offset < offset)
523             overlap = true;
524 	  offset = slen;
525 	}
526       length = length < slen ? slen : length;
527     }
528 
529   if (!overlap)
530     return NULL_TREE;
531 
532   /* Now absorb all the initializer data into a single vector,
533      whilst checking for overlapping, unequal values.  */
534   data = XCNEWVEC (unsigned char, (size_t)length);
535   chk = XCNEWVEC (unsigned char, (size_t)length);
536 
537   /* TODO - change this when default initialization is implemented.  */
538   memset (data, '\0', (size_t)length);
539   memset (chk, '\0', (size_t)length);
540   for (s = head; s; s = s->next)
541     if (s->sym->value)
542       {
543 	locus *loc = NULL;
544 	if (s->sym->ns->equiv && s->sym->ns->equiv->eq)
545 	  loc = &s->sym->ns->equiv->eq->expr->where;
546 	gfc_merge_initializers (s->sym->ts, s->sym->value, loc,
547 			      &data[s->offset],
548 			      &chk[s->offset],
549 			     (size_t)s->length);
550       }
551 
552   for (i = 0; i < length; i++)
553     CONSTRUCTOR_APPEND_ELT (v, NULL, build_int_cst (type, data[i]));
554 
555   free (data);
556   free (chk);
557 
558   /* Build a char[length] array to hold the initializers.  Much of what
559      follows is borrowed from build_field, above.  */
560 
561   tmp = build_int_cst (gfc_array_index_type, length - 1);
562   tmp = build_range_type (gfc_array_index_type,
563 			  gfc_index_zero_node, tmp);
564   tmp = build_array_type (type, tmp);
565   field = build_decl (gfc_get_location (&gfc_current_locus),
566 		      FIELD_DECL, NULL_TREE, tmp);
567 
568   known_align = BIGGEST_ALIGNMENT;
569 
570   desired_align = update_alignment_for_field (rli, field, known_align);
571   if (desired_align > known_align)
572     DECL_PACKED (field) = 1;
573 
574   DECL_FIELD_CONTEXT (field) = union_type;
575   DECL_FIELD_OFFSET (field) = size_int (0);
576   DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
577   SET_DECL_OFFSET_ALIGN (field, known_align);
578 
579   rli->offset = size_binop (MAX_EXPR, rli->offset,
580                             size_binop (PLUS_EXPR,
581                                         DECL_FIELD_OFFSET (field),
582                                         DECL_SIZE_UNIT (field)));
583 
584   init = build_constructor (TREE_TYPE (field), v);
585   TREE_CONSTANT (init) = 1;
586 
587   *field_init = init;
588 
589   for (s = head; s; s = s->next)
590     {
591       if (s->sym->value == NULL)
592 	continue;
593 
594       gfc_free_expr (s->sym->value);
595       s->sym->value = NULL;
596     }
597 
598   return field;
599 }
600 
601 
602 /* Declare memory for the common block or local equivalence, and create
603    backend declarations for all of the elements.  */
604 
605 static void
create_common(gfc_common_head * com,segment_info * head,bool saw_equiv)606 create_common (gfc_common_head *com, segment_info *head, bool saw_equiv)
607 {
608   segment_info *s, *next_s;
609   tree union_type;
610   tree *field_link;
611   tree field;
612   tree field_init = NULL_TREE;
613   record_layout_info rli;
614   tree decl;
615   bool is_init = false;
616   bool is_saved = false;
617   bool is_auto = false;
618 
619   /* Declare the variables inside the common block.
620      If the current common block contains any equivalence object, then
621      make a UNION_TYPE node, otherwise RECORD_TYPE. This will let the
622      alias analyzer work well when there is no address overlapping for
623      common variables in the current common block.  */
624   if (saw_equiv)
625     union_type = make_node (UNION_TYPE);
626   else
627     union_type = make_node (RECORD_TYPE);
628 
629   rli = start_record_layout (union_type);
630   field_link = &TYPE_FIELDS (union_type);
631 
632   /* Check for overlapping initializers and replace them with a single,
633      artificial field that contains all the data.  */
634   if (saw_equiv)
635     field = get_init_field (head, union_type, &field_init, rli);
636   else
637     field = NULL_TREE;
638 
639   if (field != NULL_TREE)
640     {
641       is_init = true;
642       *field_link = field;
643       field_link = &DECL_CHAIN (field);
644     }
645 
646   for (s = head; s; s = s->next)
647     {
648       build_field (s, union_type, rli);
649 
650       /* Link the field into the type.  */
651       *field_link = s->field;
652       field_link = &DECL_CHAIN (s->field);
653 
654       /* Has initial value.  */
655       if (s->sym->value)
656         is_init = true;
657 
658       /* Has SAVE attribute.  */
659       if (s->sym->attr.save)
660         is_saved = true;
661 
662       /* Has AUTOMATIC attribute.  */
663       if (s->sym->attr.automatic)
664 	is_auto = true;
665     }
666 
667   finish_record_layout (rli, true);
668 
669   if (com)
670     decl = build_common_decl (com, union_type, is_init);
671   else
672     decl = build_equiv_decl (union_type, is_init, is_saved, is_auto);
673 
674   if (is_init)
675     {
676       tree ctor, tmp;
677       vec<constructor_elt, va_gc> *v = NULL;
678 
679       if (field != NULL_TREE && field_init != NULL_TREE)
680 	CONSTRUCTOR_APPEND_ELT (v, field, field_init);
681       else
682 	for (s = head; s; s = s->next)
683 	  {
684 	    if (s->sym->value)
685 	      {
686 		/* Add the initializer for this field.  */
687 		tmp = gfc_conv_initializer (s->sym->value, &s->sym->ts,
688 					    TREE_TYPE (s->field),
689 					    s->sym->attr.dimension,
690 					    s->sym->attr.pointer
691 					    || s->sym->attr.allocatable, false);
692 
693 		CONSTRUCTOR_APPEND_ELT (v, s->field, tmp);
694 	      }
695 	  }
696 
697       gcc_assert (!v->is_empty ());
698       ctor = build_constructor (union_type, v);
699       TREE_CONSTANT (ctor) = 1;
700       TREE_STATIC (ctor) = 1;
701       DECL_INITIAL (decl) = ctor;
702 
703       if (flag_checking)
704 	{
705 	  tree field, value;
706 	  unsigned HOST_WIDE_INT idx;
707 	  FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, field, value)
708 	    gcc_assert (TREE_CODE (field) == FIELD_DECL);
709 	}
710     }
711 
712   /* Build component reference for each variable.  */
713   for (s = head; s; s = next_s)
714     {
715       tree var_decl;
716 
717       var_decl = build_decl (gfc_get_location (&s->sym->declared_at),
718 			     VAR_DECL, DECL_NAME (s->field),
719 			     TREE_TYPE (s->field));
720       TREE_STATIC (var_decl) = TREE_STATIC (decl);
721       /* Mark the variable as used in order to avoid warnings about
722 	 unused variables.  */
723       TREE_USED (var_decl) = 1;
724       if (s->sym->attr.use_assoc)
725 	DECL_IGNORED_P (var_decl) = 1;
726       if (s->sym->attr.target)
727 	TREE_ADDRESSABLE (var_decl) = 1;
728       /* Fake variables are not visible from other translation units.  */
729       TREE_PUBLIC (var_decl) = 0;
730       gfc_finish_decl_attrs (var_decl, &s->sym->attr);
731 
732       /* To preserve identifier names in COMMON, chain to procedure
733          scope unless at top level in a module definition.  */
734       if (com
735           && s->sym->ns->proc_name
736           && s->sym->ns->proc_name->attr.flavor == FL_MODULE)
737 	var_decl = pushdecl_top_level (var_decl);
738       else
739 	gfc_add_decl_to_function (var_decl);
740 
741       SET_DECL_VALUE_EXPR (var_decl,
742 			   fold_build3_loc (input_location, COMPONENT_REF,
743 					    TREE_TYPE (s->field),
744 					    decl, s->field, NULL_TREE));
745       DECL_HAS_VALUE_EXPR_P (var_decl) = 1;
746       GFC_DECL_COMMON_OR_EQUIV (var_decl) = 1;
747 
748       if (s->sym->attr.assign)
749 	{
750 	  gfc_allocate_lang_decl (var_decl);
751 	  GFC_DECL_ASSIGN (var_decl) = 1;
752 	  GFC_DECL_STRING_LEN (var_decl) = GFC_DECL_STRING_LEN (s->field);
753 	  GFC_DECL_ASSIGN_ADDR (var_decl) = GFC_DECL_ASSIGN_ADDR (s->field);
754 	}
755 
756       s->sym->backend_decl = var_decl;
757 
758       next_s = s->next;
759       free (s);
760     }
761 }
762 
763 
764 /* Given a symbol, find it in the current segment list. Returns NULL if
765    not found.  */
766 
767 static segment_info *
find_segment_info(gfc_symbol * symbol)768 find_segment_info (gfc_symbol *symbol)
769 {
770   segment_info *n;
771 
772   for (n = current_segment; n; n = n->next)
773     {
774       if (n->sym == symbol)
775 	return n;
776     }
777 
778   return NULL;
779 }
780 
781 
782 /* Given an expression node, make sure it is a constant integer and return
783    the mpz_t value.  */
784 
785 static mpz_t *
get_mpz(gfc_expr * e)786 get_mpz (gfc_expr *e)
787 {
788 
789   if (e->expr_type != EXPR_CONSTANT)
790     gfc_internal_error ("get_mpz(): Not an integer constant");
791 
792   return &e->value.integer;
793 }
794 
795 
796 /* Given an array specification and an array reference, figure out the
797    array element number (zero based). Bounds and elements are guaranteed
798    to be constants.  If something goes wrong we generate an error and
799    return zero.  */
800 
801 static HOST_WIDE_INT
element_number(gfc_array_ref * ar)802 element_number (gfc_array_ref *ar)
803 {
804   mpz_t multiplier, offset, extent, n;
805   gfc_array_spec *as;
806   HOST_WIDE_INT i, rank;
807 
808   as = ar->as;
809   rank = as->rank;
810   mpz_init_set_ui (multiplier, 1);
811   mpz_init_set_ui (offset, 0);
812   mpz_init (extent);
813   mpz_init (n);
814 
815   for (i = 0; i < rank; i++)
816     {
817       if (ar->dimen_type[i] != DIMEN_ELEMENT)
818         gfc_internal_error ("element_number(): Bad dimension type");
819 
820       if (as && as->lower[i])
821 	mpz_sub (n, *get_mpz (ar->start[i]), *get_mpz (as->lower[i]));
822       else
823 	mpz_sub_ui (n, *get_mpz (ar->start[i]), 1);
824 
825       mpz_mul (n, n, multiplier);
826       mpz_add (offset, offset, n);
827 
828       if (as && as->upper[i] && as->lower[i])
829 	{
830 	  mpz_sub (extent, *get_mpz (as->upper[i]), *get_mpz (as->lower[i]));
831 	  mpz_add_ui (extent, extent, 1);
832 	}
833       else
834 	mpz_set_ui (extent, 0);
835 
836       if (mpz_sgn (extent) < 0)
837         mpz_set_ui (extent, 0);
838 
839       mpz_mul (multiplier, multiplier, extent);
840     }
841 
842   i = mpz_get_ui (offset);
843 
844   mpz_clear (multiplier);
845   mpz_clear (offset);
846   mpz_clear (extent);
847   mpz_clear (n);
848 
849   return i;
850 }
851 
852 
853 /* Given a single element of an equivalence list, figure out the offset
854    from the base symbol.  For simple variables or full arrays, this is
855    simply zero.  For an array element we have to calculate the array
856    element number and multiply by the element size. For a substring we
857    have to calculate the further reference.  */
858 
859 static HOST_WIDE_INT
calculate_offset(gfc_expr * e)860 calculate_offset (gfc_expr *e)
861 {
862   HOST_WIDE_INT n, element_size, offset;
863   gfc_typespec *element_type;
864   gfc_ref *reference;
865 
866   offset = 0;
867   element_type = &e->symtree->n.sym->ts;
868 
869   for (reference = e->ref; reference; reference = reference->next)
870     switch (reference->type)
871       {
872       case REF_ARRAY:
873         switch (reference->u.ar.type)
874           {
875           case AR_FULL:
876 	    break;
877 
878           case AR_ELEMENT:
879 	    n = element_number (&reference->u.ar);
880 	    if (element_type->type == BT_CHARACTER)
881 	      gfc_conv_const_charlen (element_type->u.cl);
882 	    element_size =
883               int_size_in_bytes (gfc_typenode_for_spec (element_type));
884 	    offset += n * element_size;
885 	    break;
886 
887           default:
888 	    gfc_error ("Bad array reference at %L", &e->where);
889           }
890         break;
891       case REF_SUBSTRING:
892         if (reference->u.ss.start != NULL)
893 	  offset += mpz_get_ui (*get_mpz (reference->u.ss.start)) - 1;
894         break;
895       default:
896         gfc_error ("Illegal reference type at %L as EQUIVALENCE object",
897                    &e->where);
898     }
899   return offset;
900 }
901 
902 
903 /* Add a new segment_info structure to the current segment.  eq1 is already
904    in the list, eq2 is not.  */
905 
906 static void
new_condition(segment_info * v,gfc_equiv * eq1,gfc_equiv * eq2)907 new_condition (segment_info *v, gfc_equiv *eq1, gfc_equiv *eq2)
908 {
909   HOST_WIDE_INT offset1, offset2;
910   segment_info *a;
911 
912   offset1 = calculate_offset (eq1->expr);
913   offset2 = calculate_offset (eq2->expr);
914 
915   a = get_segment_info (eq2->expr->symtree->n.sym,
916 			v->offset + offset1 - offset2);
917 
918   current_segment = add_segments (current_segment, a);
919 }
920 
921 
922 /* Given two equivalence structures that are both already in the list, make
923    sure that this new condition is not violated, generating an error if it
924    is.  */
925 
926 static void
confirm_condition(segment_info * s1,gfc_equiv * eq1,segment_info * s2,gfc_equiv * eq2)927 confirm_condition (segment_info *s1, gfc_equiv *eq1, segment_info *s2,
928                    gfc_equiv *eq2)
929 {
930   HOST_WIDE_INT offset1, offset2;
931 
932   offset1 = calculate_offset (eq1->expr);
933   offset2 = calculate_offset (eq2->expr);
934 
935   if (s1->offset + offset1 != s2->offset + offset2)
936     gfc_error ("Inconsistent equivalence rules involving %qs at %L and "
937 	       "%qs at %L", s1->sym->name, &s1->sym->declared_at,
938 	       s2->sym->name, &s2->sym->declared_at);
939 }
940 
941 
942 /* Process a new equivalence condition. eq1 is know to be in segment f.
943    If eq2 is also present then confirm that the condition holds.
944    Otherwise add a new variable to the segment list.  */
945 
946 static void
add_condition(segment_info * f,gfc_equiv * eq1,gfc_equiv * eq2)947 add_condition (segment_info *f, gfc_equiv *eq1, gfc_equiv *eq2)
948 {
949   segment_info *n;
950 
951   n = find_segment_info (eq2->expr->symtree->n.sym);
952 
953   if (n == NULL)
954     new_condition (f, eq1, eq2);
955   else
956     confirm_condition (f, eq1, n, eq2);
957 }
958 
959 static void
accumulate_equivalence_attributes(symbol_attribute * dummy_symbol,gfc_equiv * e)960 accumulate_equivalence_attributes (symbol_attribute *dummy_symbol, gfc_equiv *e)
961 {
962   symbol_attribute attr = e->expr->symtree->n.sym->attr;
963 
964   dummy_symbol->dummy |= attr.dummy;
965   dummy_symbol->pointer |= attr.pointer;
966   dummy_symbol->target |= attr.target;
967   dummy_symbol->external |= attr.external;
968   dummy_symbol->intrinsic |= attr.intrinsic;
969   dummy_symbol->allocatable |= attr.allocatable;
970   dummy_symbol->elemental |= attr.elemental;
971   dummy_symbol->recursive |= attr.recursive;
972   dummy_symbol->in_common |= attr.in_common;
973   dummy_symbol->result |= attr.result;
974   dummy_symbol->in_namelist |= attr.in_namelist;
975   dummy_symbol->optional |= attr.optional;
976   dummy_symbol->entry |= attr.entry;
977   dummy_symbol->function |= attr.function;
978   dummy_symbol->subroutine |= attr.subroutine;
979   dummy_symbol->dimension |= attr.dimension;
980   dummy_symbol->in_equivalence |= attr.in_equivalence;
981   dummy_symbol->use_assoc |= attr.use_assoc;
982   dummy_symbol->cray_pointer |= attr.cray_pointer;
983   dummy_symbol->cray_pointee |= attr.cray_pointee;
984   dummy_symbol->data |= attr.data;
985   dummy_symbol->value |= attr.value;
986   dummy_symbol->volatile_ |= attr.volatile_;
987   dummy_symbol->is_protected |= attr.is_protected;
988   dummy_symbol->is_bind_c |= attr.is_bind_c;
989   dummy_symbol->procedure |= attr.procedure;
990   dummy_symbol->proc_pointer |= attr.proc_pointer;
991   dummy_symbol->abstract |= attr.abstract;
992   dummy_symbol->asynchronous |= attr.asynchronous;
993   dummy_symbol->codimension |= attr.codimension;
994   dummy_symbol->contiguous |= attr.contiguous;
995   dummy_symbol->generic |= attr.generic;
996   dummy_symbol->automatic |= attr.automatic;
997   dummy_symbol->threadprivate |= attr.threadprivate;
998   dummy_symbol->omp_declare_target |= attr.omp_declare_target;
999   dummy_symbol->omp_declare_target_link |= attr.omp_declare_target_link;
1000   dummy_symbol->oacc_declare_copyin |= attr.oacc_declare_copyin;
1001   dummy_symbol->oacc_declare_create |= attr.oacc_declare_create;
1002   dummy_symbol->oacc_declare_deviceptr |= attr.oacc_declare_deviceptr;
1003   dummy_symbol->oacc_declare_device_resident
1004     |= attr.oacc_declare_device_resident;
1005 
1006   /* Not strictly correct, but probably close enough.  */
1007   if (attr.save > dummy_symbol->save)
1008     dummy_symbol->save = attr.save;
1009   if (attr.access > dummy_symbol->access)
1010     dummy_symbol->access = attr.access;
1011 }
1012 
1013 /* Given a segment element, search through the equivalence lists for unused
1014    conditions that involve the symbol.  Add these rules to the segment.  */
1015 
1016 static bool
find_equivalence(segment_info * n)1017 find_equivalence (segment_info *n)
1018 {
1019   gfc_equiv *e1, *e2, *eq;
1020   bool found;
1021 
1022   found = FALSE;
1023 
1024   for (e1 = n->sym->ns->equiv; e1; e1 = e1->next)
1025     {
1026       eq = NULL;
1027 
1028       /* Search the equivalence list, including the root (first) element
1029 	 for the symbol that owns the segment.  */
1030       symbol_attribute dummy_symbol;
1031       memset (&dummy_symbol, 0, sizeof (dummy_symbol));
1032       for (e2 = e1; e2; e2 = e2->eq)
1033 	{
1034 	  accumulate_equivalence_attributes (&dummy_symbol, e2);
1035 	  if (!e2->used && e2->expr->symtree->n.sym == n->sym)
1036 	    {
1037 	      eq = e2;
1038 	      break;
1039 	    }
1040 	}
1041 
1042       gfc_check_conflict (&dummy_symbol, e1->expr->symtree->name, &e1->expr->where);
1043 
1044       /* Go to the next root element.  */
1045       if (eq == NULL)
1046 	continue;
1047 
1048       eq->used = 1;
1049 
1050       /* Now traverse the equivalence list matching the offsets.  */
1051       for (e2 = e1; e2; e2 = e2->eq)
1052 	{
1053 	  if (!e2->used && e2 != eq)
1054 	    {
1055 	      add_condition (n, eq, e2);
1056 	      e2->used = 1;
1057 	      found = TRUE;
1058 	    }
1059 	}
1060     }
1061   return found;
1062 }
1063 
1064 
1065 /* Add all symbols equivalenced within a segment.  We need to scan the
1066    segment list multiple times to include indirect equivalences.  Since
1067    a new segment_info can inserted at the beginning of the segment list,
1068    depending on its offset, we have to force a final pass through the
1069    loop by demanding that completion sees a pass with no matches; i.e.,
1070    all symbols with equiv_built set and no new equivalences found.  */
1071 
1072 static void
add_equivalences(bool * saw_equiv)1073 add_equivalences (bool *saw_equiv)
1074 {
1075   segment_info *f;
1076   bool more = TRUE;
1077 
1078   while (more)
1079     {
1080       more = FALSE;
1081       for (f = current_segment; f; f = f->next)
1082 	{
1083 	  if (!f->sym->equiv_built)
1084 	    {
1085 	      f->sym->equiv_built = 1;
1086 	      bool seen_one = find_equivalence (f);
1087 	      if (seen_one)
1088 		{
1089 		  *saw_equiv = true;
1090 		  more = true;
1091 		}
1092 	    }
1093 	}
1094     }
1095 
1096   /* Add a copy of this segment list to the namespace.  */
1097   copy_equiv_list_to_ns (current_segment);
1098 }
1099 
1100 
1101 /* Returns the offset necessary to properly align the current equivalence.
1102    Sets *palign to the required alignment.  */
1103 
1104 static HOST_WIDE_INT
align_segment(unsigned HOST_WIDE_INT * palign)1105 align_segment (unsigned HOST_WIDE_INT *palign)
1106 {
1107   segment_info *s;
1108   unsigned HOST_WIDE_INT offset;
1109   unsigned HOST_WIDE_INT max_align;
1110   unsigned HOST_WIDE_INT this_align;
1111   unsigned HOST_WIDE_INT this_offset;
1112 
1113   max_align = 1;
1114   offset = 0;
1115   for (s = current_segment; s; s = s->next)
1116     {
1117       this_align = TYPE_ALIGN_UNIT (s->field);
1118       if (s->offset & (this_align - 1))
1119 	{
1120 	  /* Field is misaligned.  */
1121 	  this_offset = this_align - ((s->offset + offset) & (this_align - 1));
1122 	  if (this_offset & (max_align - 1))
1123 	    {
1124 	      /* Aligning this field would misalign a previous field.  */
1125 	      gfc_error ("The equivalence set for variable %qs "
1126 			 "declared at %L violates alignment requirements",
1127 			 s->sym->name, &s->sym->declared_at);
1128 	    }
1129 	  offset += this_offset;
1130 	}
1131       max_align = this_align;
1132     }
1133   if (palign)
1134     *palign = max_align;
1135   return offset;
1136 }
1137 
1138 
1139 /* Adjust segment offsets by the given amount.  */
1140 
1141 static void
apply_segment_offset(segment_info * s,HOST_WIDE_INT offset)1142 apply_segment_offset (segment_info *s, HOST_WIDE_INT offset)
1143 {
1144   for (; s; s = s->next)
1145     s->offset += offset;
1146 }
1147 
1148 
1149 /* Lay out a symbol in a common block.  If the symbol has already been seen
1150    then check the location is consistent.  Otherwise create segments
1151    for that symbol and all the symbols equivalenced with it.  */
1152 
1153 /* Translate a single common block.  */
1154 
1155 static void
translate_common(gfc_common_head * common,gfc_symbol * var_list)1156 translate_common (gfc_common_head *common, gfc_symbol *var_list)
1157 {
1158   gfc_symbol *sym;
1159   segment_info *s;
1160   segment_info *common_segment;
1161   HOST_WIDE_INT offset;
1162   HOST_WIDE_INT current_offset;
1163   unsigned HOST_WIDE_INT align;
1164   bool saw_equiv;
1165 
1166   common_segment = NULL;
1167   offset = 0;
1168   current_offset = 0;
1169   align = 1;
1170   saw_equiv = false;
1171 
1172   /* Add symbols to the segment.  */
1173   for (sym = var_list; sym; sym = sym->common_next)
1174     {
1175       current_segment = common_segment;
1176       s = find_segment_info (sym);
1177 
1178       /* Symbol has already been added via an equivalence.  Multiple
1179 	 use associations of the same common block result in equiv_built
1180 	 being set but no information about the symbol in the segment.  */
1181       if (s && sym->equiv_built)
1182 	{
1183 	  /* Ensure the current location is properly aligned.  */
1184 	  align = TYPE_ALIGN_UNIT (s->field);
1185 	  current_offset = (current_offset + align - 1) &~ (align - 1);
1186 
1187 	  /* Verify that it ended up where we expect it.  */
1188 	  if (s->offset != current_offset)
1189 	    {
1190 	      gfc_error ("Equivalence for %qs does not match ordering of "
1191 			 "COMMON %qs at %L", sym->name,
1192 			 common->name, &common->where);
1193 	    }
1194 	}
1195       else
1196 	{
1197 	  /* A symbol we haven't seen before.  */
1198 	  s = current_segment = get_segment_info (sym, current_offset);
1199 
1200 	  /* Add all objects directly or indirectly equivalenced with this
1201 	     symbol.  */
1202 	  add_equivalences (&saw_equiv);
1203 
1204 	  if (current_segment->offset < 0)
1205 	    gfc_error ("The equivalence set for %qs cause an invalid "
1206 		       "extension to COMMON %qs at %L", sym->name,
1207 		       common->name, &common->where);
1208 
1209 	  if (flag_align_commons)
1210 	    offset = align_segment (&align);
1211 
1212 	  if (offset)
1213 	    {
1214 	      /* The required offset conflicts with previous alignment
1215 		 requirements.  Insert padding immediately before this
1216 		 segment.  */
1217 	      if (warn_align_commons)
1218 		{
1219 		  if (strcmp (common->name, BLANK_COMMON_NAME))
1220 		    gfc_warning (OPT_Walign_commons,
1221 				 "Padding of %d bytes required before %qs in "
1222 				 "COMMON %qs at %L; reorder elements or use "
1223 				 "%<-fno-align-commons%>", (int)offset,
1224 				 s->sym->name, common->name, &common->where);
1225 		  else
1226 		    gfc_warning (OPT_Walign_commons,
1227 				 "Padding of %d bytes required before %qs in "
1228 				 "COMMON at %L; reorder elements or use "
1229 				 "%<-fno-align-commons%>", (int)offset,
1230 				 s->sym->name, &common->where);
1231 		}
1232 	    }
1233 
1234 	  /* Apply the offset to the new segments.  */
1235 	  apply_segment_offset (current_segment, offset);
1236 	  current_offset += offset;
1237 
1238 	  /* Add the new segments to the common block.  */
1239 	  common_segment = add_segments (common_segment, current_segment);
1240 	}
1241 
1242       /* The offset of the next common variable.  */
1243       current_offset += s->length;
1244     }
1245 
1246   if (common_segment == NULL)
1247     {
1248       gfc_error ("COMMON %qs at %L does not exist",
1249 		 common->name, &common->where);
1250       return;
1251     }
1252 
1253   if (common_segment->offset != 0 && warn_align_commons)
1254     {
1255       if (strcmp (common->name, BLANK_COMMON_NAME))
1256 	gfc_warning (OPT_Walign_commons,
1257 		     "COMMON %qs at %L requires %d bytes of padding; "
1258 		     "reorder elements or use %<-fno-align-commons%>",
1259 		     common->name, &common->where, (int)common_segment->offset);
1260       else
1261 	gfc_warning (OPT_Walign_commons,
1262 		     "COMMON at %L requires %d bytes of padding; "
1263 		     "reorder elements or use %<-fno-align-commons%>",
1264 		     &common->where, (int)common_segment->offset);
1265     }
1266 
1267   create_common (common, common_segment, saw_equiv);
1268 }
1269 
1270 
1271 /* Create a new block for each merged equivalence list.  */
1272 
1273 static void
finish_equivalences(gfc_namespace * ns)1274 finish_equivalences (gfc_namespace *ns)
1275 {
1276   gfc_equiv *z, *y;
1277   gfc_symbol *sym;
1278   gfc_common_head * c;
1279   HOST_WIDE_INT offset;
1280   unsigned HOST_WIDE_INT align;
1281   bool dummy;
1282 
1283   for (z = ns->equiv; z; z = z->next)
1284     for (y = z->eq; y; y = y->eq)
1285       {
1286         if (y->used)
1287 	  continue;
1288         sym = z->expr->symtree->n.sym;
1289         current_segment = get_segment_info (sym, 0);
1290 
1291         /* All objects directly or indirectly equivalenced with this
1292 	   symbol.  */
1293         add_equivalences (&dummy);
1294 
1295 	/* Align the block.  */
1296 	offset = align_segment (&align);
1297 
1298 	/* Ensure all offsets are positive.  */
1299 	offset -= current_segment->offset & ~(align - 1);
1300 
1301 	apply_segment_offset (current_segment, offset);
1302 
1303 	/* Create the decl.  If this is a module equivalence, it has a
1304 	   unique name, pointed to by z->module.  This is written to a
1305 	   gfc_common_header to push create_common into using
1306 	   build_common_decl, so that the equivalence appears as an
1307 	   external symbol.  Otherwise, a local declaration is built using
1308 	   build_equiv_decl.  */
1309 	if (z->module)
1310 	  {
1311 	    c = gfc_get_common_head ();
1312 	    /* We've lost the real location, so use the location of the
1313 	       enclosing procedure.  If we're in a BLOCK DATA block, then
1314 	       use the location in the sym_root.  */
1315 	    if (ns->proc_name)
1316 	      c->where = ns->proc_name->declared_at;
1317 	    else if (ns->is_block_data)
1318 	      c->where = ns->sym_root->n.sym->declared_at;
1319 
1320 	    size_t len = strlen (z->module);
1321 	    gcc_assert (len < sizeof (c->name));
1322 	    memcpy (c->name, z->module, len);
1323 	    c->name[len] = '\0';
1324 	  }
1325 	else
1326 	  c = NULL;
1327 
1328         create_common (c, current_segment, true);
1329         break;
1330       }
1331 }
1332 
1333 
1334 /* Work function for translating a named common block.  */
1335 
1336 static void
named_common(gfc_symtree * st)1337 named_common (gfc_symtree *st)
1338 {
1339   translate_common (st->n.common, st->n.common->head);
1340 }
1341 
1342 
1343 /* Translate the common blocks in a namespace. Unlike other variables,
1344    these have to be created before code, because the backend_decl depends
1345    on the rest of the common block.  */
1346 
1347 void
gfc_trans_common(gfc_namespace * ns)1348 gfc_trans_common (gfc_namespace *ns)
1349 {
1350   gfc_common_head *c;
1351 
1352   /* Translate the blank common block.  */
1353   if (ns->blank_common.head != NULL)
1354     {
1355       c = gfc_get_common_head ();
1356       c->where = ns->blank_common.head->common_head->where;
1357       strcpy (c->name, BLANK_COMMON_NAME);
1358       translate_common (c, ns->blank_common.head);
1359     }
1360 
1361   /* Translate all named common blocks.  */
1362   gfc_traverse_symtree (ns->common_root, named_common);
1363 
1364   /* Translate local equivalence.  */
1365   finish_equivalences (ns);
1366 
1367   /* Commit the newly created symbols for common blocks and module
1368      equivalences.  */
1369   gfc_commit_symbols ();
1370 }
1371