1 /* Implementation of the BESSEL_JN and BESSEL_YN transformational
2    function using a recurrence algorithm.
3    Copyright (C) 2010-2020 Free Software Foundation, Inc.
4    Contributed by Tobias Burnus <burnus@net-b.de>
5 
6 This file is part of the GNU Fortran runtime library (libgfortran).
7 
8 Libgfortran is free software; you can redistribute it and/or
9 modify it under the terms of the GNU General Public
10 License as published by the Free Software Foundation; either
11 version 3 of the License, or (at your option) any later version.
12 
13 Libgfortran is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 GNU General Public License for more details.
17 
18 Under Section 7 of GPL version 3, you are granted additional
19 permissions described in the GCC Runtime Library Exception, version
20 3.1, as published by the Free Software Foundation.
21 
22 You should have received a copy of the GNU General Public License and
23 a copy of the GCC Runtime Library Exception along with this program;
24 see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
25 <http://www.gnu.org/licenses/>.  */
26 
27 #include "libgfortran.h"
28 
29 
30 
31 #if defined(GFC_REAL_16_IS_FLOAT128)
32 #define MATHFUNC(funcname) funcname ## q
33 #else
34 #define MATHFUNC(funcname) funcname ## l
35 #endif
36 
37 #if defined (HAVE_GFC_REAL_16)
38 
39 
40 
41 #if (defined(GFC_REAL_16_IS_FLOAT128) || defined(HAVE_JNL))
42 extern void bessel_jn_r16 (gfc_array_r16 * const restrict ret, int n1,
43 				     int n2, GFC_REAL_16 x);
44 export_proto(bessel_jn_r16);
45 
46 void
bessel_jn_r16(gfc_array_r16 * const restrict ret,int n1,int n2,GFC_REAL_16 x)47 bessel_jn_r16 (gfc_array_r16 * const restrict ret, int n1, int n2, GFC_REAL_16 x)
48 {
49   int i;
50   index_type stride;
51 
52   GFC_REAL_16 last1, last2, x2rev;
53 
54   stride = GFC_DESCRIPTOR_STRIDE(ret,0);
55 
56   if (ret->base_addr == NULL)
57     {
58       size_t size = n2 < n1 ? 0 : n2-n1+1;
59       GFC_DIMENSION_SET(ret->dim[0], 0, size-1, 1);
60       ret->base_addr = xmallocarray (size, sizeof (GFC_REAL_16));
61       ret->offset = 0;
62     }
63 
64   if (unlikely (n2 < n1))
65     return;
66 
67   if (unlikely (compile_options.bounds_check)
68       && GFC_DESCRIPTOR_EXTENT(ret,0) != (n2-n1+1))
69     runtime_error("Incorrect extent in return value of BESSEL_JN "
70 		  "(%ld vs. %ld)", (long int) n2-n1,
71 		  (long int) GFC_DESCRIPTOR_EXTENT(ret,0));
72 
73   stride = GFC_DESCRIPTOR_STRIDE(ret,0);
74 
75   if (unlikely (x == 0))
76     {
77       ret->base_addr[0] = 1;
78       for (i = 1; i <= n2-n1; i++)
79         ret->base_addr[i*stride] = 0;
80       return;
81     }
82 
83   last1 = MATHFUNC(jn) (n2, x);
84   ret->base_addr[(n2-n1)*stride] = last1;
85 
86   if (n1 == n2)
87     return;
88 
89   last2 = MATHFUNC(jn) (n2 - 1, x);
90   ret->base_addr[(n2-n1-1)*stride] = last2;
91 
92   if (n1 + 1 == n2)
93     return;
94 
95   x2rev = GFC_REAL_16_LITERAL(2.)/x;
96 
97   for (i = n2-n1-2; i >= 0; i--)
98     {
99       ret->base_addr[i*stride] = x2rev * (i+1+n1) * last2 - last1;
100       last1 = last2;
101       last2 = ret->base_addr[i*stride];
102     }
103 }
104 
105 #endif
106 
107 #if (defined(GFC_REAL_16_IS_FLOAT128) || defined(HAVE_YNL))
108 extern void bessel_yn_r16 (gfc_array_r16 * const restrict ret,
109 				     int n1, int n2, GFC_REAL_16 x);
110 export_proto(bessel_yn_r16);
111 
112 void
bessel_yn_r16(gfc_array_r16 * const restrict ret,int n1,int n2,GFC_REAL_16 x)113 bessel_yn_r16 (gfc_array_r16 * const restrict ret, int n1, int n2,
114 			 GFC_REAL_16 x)
115 {
116   int i;
117   index_type stride;
118 
119   GFC_REAL_16 last1, last2, x2rev;
120 
121   stride = GFC_DESCRIPTOR_STRIDE(ret,0);
122 
123   if (ret->base_addr == NULL)
124     {
125       size_t size = n2 < n1 ? 0 : n2-n1+1;
126       GFC_DIMENSION_SET(ret->dim[0], 0, size-1, 1);
127       ret->base_addr = xmallocarray (size, sizeof (GFC_REAL_16));
128       ret->offset = 0;
129     }
130 
131   if (unlikely (n2 < n1))
132     return;
133 
134   if (unlikely (compile_options.bounds_check)
135       && GFC_DESCRIPTOR_EXTENT(ret,0) != (n2-n1+1))
136     runtime_error("Incorrect extent in return value of BESSEL_JN "
137 		  "(%ld vs. %ld)", (long int) n2-n1,
138 		  (long int) GFC_DESCRIPTOR_EXTENT(ret,0));
139 
140   stride = GFC_DESCRIPTOR_STRIDE(ret,0);
141 
142   if (unlikely (x == 0))
143     {
144       for (i = 0; i <= n2-n1; i++)
145 #if defined(GFC_REAL_16_INFINITY)
146         ret->base_addr[i*stride] = -GFC_REAL_16_INFINITY;
147 #else
148         ret->base_addr[i*stride] = -GFC_REAL_16_HUGE;
149 #endif
150       return;
151     }
152 
153   last1 = MATHFUNC(yn) (n1, x);
154   ret->base_addr[0] = last1;
155 
156   if (n1 == n2)
157     return;
158 
159   last2 = MATHFUNC(yn) (n1 + 1, x);
160   ret->base_addr[1*stride] = last2;
161 
162   if (n1 + 1 == n2)
163     return;
164 
165   x2rev = GFC_REAL_16_LITERAL(2.)/x;
166 
167   for (i = 2; i <= n2 - n1; i++)
168     {
169 #if defined(GFC_REAL_16_INFINITY)
170       if (unlikely (last2 == -GFC_REAL_16_INFINITY))
171 	{
172 	  ret->base_addr[i*stride] = -GFC_REAL_16_INFINITY;
173 	}
174       else
175 #endif
176 	{
177 	  ret->base_addr[i*stride] = x2rev * (i-1+n1) * last2 - last1;
178 	  last1 = last2;
179 	  last2 = ret->base_addr[i*stride];
180 	}
181     }
182 }
183 #endif
184 
185 #endif
186 
187