1 //===-- tsan_rtl.cc -------------------------------------------------------===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // This file is a part of ThreadSanitizer (TSan), a race detector.
9 //
10 // Main file (entry points) for the TSan run-time.
11 //===----------------------------------------------------------------------===//
12 
13 #include "sanitizer_common/sanitizer_atomic.h"
14 #include "sanitizer_common/sanitizer_common.h"
15 #include "sanitizer_common/sanitizer_file.h"
16 #include "sanitizer_common/sanitizer_libc.h"
17 #include "sanitizer_common/sanitizer_stackdepot.h"
18 #include "sanitizer_common/sanitizer_placement_new.h"
19 #include "sanitizer_common/sanitizer_symbolizer.h"
20 #include "tsan_defs.h"
21 #include "tsan_platform.h"
22 #include "tsan_rtl.h"
23 #include "tsan_mman.h"
24 #include "tsan_suppressions.h"
25 #include "tsan_symbolize.h"
26 #include "ubsan/ubsan_init.h"
27 
28 #ifdef __SSE3__
29 // <emmintrin.h> transitively includes <stdlib.h>,
30 // and it's prohibited to include std headers into tsan runtime.
31 // So we do this dirty trick.
32 #define _MM_MALLOC_H_INCLUDED
33 #define __MM_MALLOC_H
34 #include <emmintrin.h>
35 typedef __m128i m128;
36 #endif
37 
38 volatile int __tsan_resumed = 0;
39 
__tsan_resume()40 extern "C" void __tsan_resume() {
41   __tsan_resumed = 1;
42 }
43 
44 namespace __tsan {
45 
46 #if !SANITIZER_GO && !SANITIZER_MAC
47 __attribute__((tls_model("initial-exec")))
48 THREADLOCAL char cur_thread_placeholder[sizeof(ThreadState)] ALIGNED(64);
49 #endif
50 static char ctx_placeholder[sizeof(Context)] ALIGNED(64);
51 Context *ctx;
52 
53 // Can be overriden by a front-end.
54 #ifdef TSAN_EXTERNAL_HOOKS
55 bool OnFinalize(bool failed);
56 void OnInitialize();
57 #else
58 SANITIZER_WEAK_CXX_DEFAULT_IMPL
OnFinalize(bool failed)59 bool OnFinalize(bool failed) {
60   return failed;
61 }
62 SANITIZER_WEAK_CXX_DEFAULT_IMPL
OnInitialize()63 void OnInitialize() {}
64 #endif
65 
66 static char thread_registry_placeholder[sizeof(ThreadRegistry)];
67 
CreateThreadContext(u32 tid)68 static ThreadContextBase *CreateThreadContext(u32 tid) {
69   // Map thread trace when context is created.
70   char name[50];
71   internal_snprintf(name, sizeof(name), "trace %u", tid);
72   MapThreadTrace(GetThreadTrace(tid), TraceSize() * sizeof(Event), name);
73   const uptr hdr = GetThreadTraceHeader(tid);
74   internal_snprintf(name, sizeof(name), "trace header %u", tid);
75   MapThreadTrace(hdr, sizeof(Trace), name);
76   new((void*)hdr) Trace();
77   // We are going to use only a small part of the trace with the default
78   // value of history_size. However, the constructor writes to the whole trace.
79   // Unmap the unused part.
80   uptr hdr_end = hdr + sizeof(Trace);
81   hdr_end -= sizeof(TraceHeader) * (kTraceParts - TraceParts());
82   hdr_end = RoundUp(hdr_end, GetPageSizeCached());
83   if (hdr_end < hdr + sizeof(Trace))
84     UnmapOrDie((void*)hdr_end, hdr + sizeof(Trace) - hdr_end);
85   void *mem = internal_alloc(MBlockThreadContex, sizeof(ThreadContext));
86   return new(mem) ThreadContext(tid);
87 }
88 
89 #if !SANITIZER_GO
90 static const u32 kThreadQuarantineSize = 16;
91 #else
92 static const u32 kThreadQuarantineSize = 64;
93 #endif
94 
Context()95 Context::Context()
96   : initialized()
97   , report_mtx(MutexTypeReport, StatMtxReport)
98   , nreported()
99   , nmissed_expected()
100   , thread_registry(new(thread_registry_placeholder) ThreadRegistry(
101       CreateThreadContext, kMaxTid, kThreadQuarantineSize, kMaxTidReuse))
102   , racy_mtx(MutexTypeRacy, StatMtxRacy)
103   , racy_stacks()
104   , racy_addresses()
105   , fired_suppressions_mtx(MutexTypeFired, StatMtxFired)
106   , clock_alloc("clock allocator") {
107   fired_suppressions.reserve(8);
108 }
109 
110 // The objects are allocated in TLS, so one may rely on zero-initialization.
ThreadState(Context * ctx,int tid,int unique_id,u64 epoch,unsigned reuse_count,uptr stk_addr,uptr stk_size,uptr tls_addr,uptr tls_size)111 ThreadState::ThreadState(Context *ctx, int tid, int unique_id, u64 epoch,
112                          unsigned reuse_count,
113                          uptr stk_addr, uptr stk_size,
114                          uptr tls_addr, uptr tls_size)
115   : fast_state(tid, epoch)
116   // Do not touch these, rely on zero initialization,
117   // they may be accessed before the ctor.
118   // , ignore_reads_and_writes()
119   // , ignore_interceptors()
120   , clock(tid, reuse_count)
121 #if !SANITIZER_GO
122   , jmp_bufs()
123 #endif
124   , tid(tid)
125   , unique_id(unique_id)
126   , stk_addr(stk_addr)
127   , stk_size(stk_size)
128   , tls_addr(tls_addr)
129   , tls_size(tls_size)
130 #if !SANITIZER_GO
131   , last_sleep_clock(tid)
132 #endif
133 {
134 }
135 
136 #if !SANITIZER_GO
MemoryProfiler(Context * ctx,fd_t fd,int i)137 static void MemoryProfiler(Context *ctx, fd_t fd, int i) {
138   uptr n_threads;
139   uptr n_running_threads;
140   ctx->thread_registry->GetNumberOfThreads(&n_threads, &n_running_threads);
141   InternalMmapVector<char> buf(4096);
142   WriteMemoryProfile(buf.data(), buf.size(), n_threads, n_running_threads);
143   WriteToFile(fd, buf.data(), internal_strlen(buf.data()));
144 }
145 
BackgroundThread(void * arg)146 static void BackgroundThread(void *arg) {
147   // This is a non-initialized non-user thread, nothing to see here.
148   // We don't use ScopedIgnoreInterceptors, because we want ignores to be
149   // enabled even when the thread function exits (e.g. during pthread thread
150   // shutdown code).
151   cur_thread()->ignore_interceptors++;
152   const u64 kMs2Ns = 1000 * 1000;
153 
154   fd_t mprof_fd = kInvalidFd;
155   if (flags()->profile_memory && flags()->profile_memory[0]) {
156     if (internal_strcmp(flags()->profile_memory, "stdout") == 0) {
157       mprof_fd = 1;
158     } else if (internal_strcmp(flags()->profile_memory, "stderr") == 0) {
159       mprof_fd = 2;
160     } else {
161       InternalScopedString filename(kMaxPathLength);
162       filename.append("%s.%d", flags()->profile_memory, (int)internal_getpid());
163       fd_t fd = OpenFile(filename.data(), WrOnly);
164       if (fd == kInvalidFd) {
165         Printf("ThreadSanitizer: failed to open memory profile file '%s'\n",
166             &filename[0]);
167       } else {
168         mprof_fd = fd;
169       }
170     }
171   }
172 
173   u64 last_flush = NanoTime();
174   uptr last_rss = 0;
175   for (int i = 0;
176       atomic_load(&ctx->stop_background_thread, memory_order_relaxed) == 0;
177       i++) {
178     SleepForMillis(100);
179     u64 now = NanoTime();
180 
181     // Flush memory if requested.
182     if (flags()->flush_memory_ms > 0) {
183       if (last_flush + flags()->flush_memory_ms * kMs2Ns < now) {
184         VPrintf(1, "ThreadSanitizer: periodic memory flush\n");
185         FlushShadowMemory();
186         last_flush = NanoTime();
187       }
188     }
189     // GetRSS can be expensive on huge programs, so don't do it every 100ms.
190     if (flags()->memory_limit_mb > 0) {
191       uptr rss = GetRSS();
192       uptr limit = uptr(flags()->memory_limit_mb) << 20;
193       VPrintf(1, "ThreadSanitizer: memory flush check"
194                  " RSS=%llu LAST=%llu LIMIT=%llu\n",
195               (u64)rss >> 20, (u64)last_rss >> 20, (u64)limit >> 20);
196       if (2 * rss > limit + last_rss) {
197         VPrintf(1, "ThreadSanitizer: flushing memory due to RSS\n");
198         FlushShadowMemory();
199         rss = GetRSS();
200         VPrintf(1, "ThreadSanitizer: memory flushed RSS=%llu\n", (u64)rss>>20);
201       }
202       last_rss = rss;
203     }
204 
205     // Write memory profile if requested.
206     if (mprof_fd != kInvalidFd)
207       MemoryProfiler(ctx, mprof_fd, i);
208 
209     // Flush symbolizer cache if requested.
210     if (flags()->flush_symbolizer_ms > 0) {
211       u64 last = atomic_load(&ctx->last_symbolize_time_ns,
212                              memory_order_relaxed);
213       if (last != 0 && last + flags()->flush_symbolizer_ms * kMs2Ns < now) {
214         Lock l(&ctx->report_mtx);
215         ScopedErrorReportLock l2;
216         SymbolizeFlush();
217         atomic_store(&ctx->last_symbolize_time_ns, 0, memory_order_relaxed);
218       }
219     }
220   }
221 }
222 
StartBackgroundThread()223 static void StartBackgroundThread() {
224   ctx->background_thread = internal_start_thread(&BackgroundThread, 0);
225 }
226 
227 #ifndef __mips__
StopBackgroundThread()228 static void StopBackgroundThread() {
229   atomic_store(&ctx->stop_background_thread, 1, memory_order_relaxed);
230   internal_join_thread(ctx->background_thread);
231   ctx->background_thread = 0;
232 }
233 #endif
234 #endif
235 
DontNeedShadowFor(uptr addr,uptr size)236 void DontNeedShadowFor(uptr addr, uptr size) {
237   ReleaseMemoryPagesToOS(MemToShadow(addr), MemToShadow(addr + size));
238 }
239 
MapShadow(uptr addr,uptr size)240 void MapShadow(uptr addr, uptr size) {
241   // Global data is not 64K aligned, but there are no adjacent mappings,
242   // so we can get away with unaligned mapping.
243   // CHECK_EQ(addr, addr & ~((64 << 10) - 1));  // windows wants 64K alignment
244   const uptr kPageSize = GetPageSizeCached();
245   uptr shadow_begin = RoundDownTo((uptr)MemToShadow(addr), kPageSize);
246   uptr shadow_end = RoundUpTo((uptr)MemToShadow(addr + size), kPageSize);
247   if (!MmapFixedNoReserve(shadow_begin, shadow_end - shadow_begin, "shadow"))
248     Die();
249 
250   // Meta shadow is 2:1, so tread carefully.
251   static bool data_mapped = false;
252   static uptr mapped_meta_end = 0;
253   uptr meta_begin = (uptr)MemToMeta(addr);
254   uptr meta_end = (uptr)MemToMeta(addr + size);
255   meta_begin = RoundDownTo(meta_begin, 64 << 10);
256   meta_end = RoundUpTo(meta_end, 64 << 10);
257   if (!data_mapped) {
258     // First call maps data+bss.
259     data_mapped = true;
260     if (!MmapFixedNoReserve(meta_begin, meta_end - meta_begin, "meta shadow"))
261       Die();
262   } else {
263     // Mapping continous heap.
264     // Windows wants 64K alignment.
265     meta_begin = RoundDownTo(meta_begin, 64 << 10);
266     meta_end = RoundUpTo(meta_end, 64 << 10);
267     if (meta_end <= mapped_meta_end)
268       return;
269     if (meta_begin < mapped_meta_end)
270       meta_begin = mapped_meta_end;
271     if (!MmapFixedNoReserve(meta_begin, meta_end - meta_begin, "meta shadow"))
272       Die();
273     mapped_meta_end = meta_end;
274   }
275   VPrintf(2, "mapped meta shadow for (%p-%p) at (%p-%p)\n",
276       addr, addr+size, meta_begin, meta_end);
277 }
278 
MapThreadTrace(uptr addr,uptr size,const char * name)279 void MapThreadTrace(uptr addr, uptr size, const char *name) {
280   DPrintf("#0: Mapping trace at %p-%p(0x%zx)\n", addr, addr + size, size);
281   CHECK_GE(addr, TraceMemBeg());
282   CHECK_LE(addr + size, TraceMemEnd());
283   CHECK_EQ(addr, addr & ~((64 << 10) - 1));  // windows wants 64K alignment
284   if (!MmapFixedNoReserve(addr, size, name)) {
285     Printf("FATAL: ThreadSanitizer can not mmap thread trace (%p/%p)\n",
286         addr, size);
287     Die();
288   }
289 }
290 
CheckShadowMapping()291 static void CheckShadowMapping() {
292   uptr beg, end;
293   for (int i = 0; GetUserRegion(i, &beg, &end); i++) {
294     // Skip cases for empty regions (heap definition for architectures that
295     // do not use 64-bit allocator).
296     if (beg == end)
297       continue;
298     VPrintf(3, "checking shadow region %p-%p\n", beg, end);
299     uptr prev = 0;
300     for (uptr p0 = beg; p0 <= end; p0 += (end - beg) / 4) {
301       for (int x = -(int)kShadowCell; x <= (int)kShadowCell; x += kShadowCell) {
302         const uptr p = RoundDown(p0 + x, kShadowCell);
303         if (p < beg || p >= end)
304           continue;
305         const uptr s = MemToShadow(p);
306         const uptr m = (uptr)MemToMeta(p);
307         VPrintf(3, "  checking pointer %p: shadow=%p meta=%p\n", p, s, m);
308         CHECK(IsAppMem(p));
309         CHECK(IsShadowMem(s));
310         CHECK_EQ(p, ShadowToMem(s));
311         CHECK(IsMetaMem(m));
312         if (prev) {
313           // Ensure that shadow and meta mappings are linear within a single
314           // user range. Lots of code that processes memory ranges assumes it.
315           const uptr prev_s = MemToShadow(prev);
316           const uptr prev_m = (uptr)MemToMeta(prev);
317           CHECK_EQ(s - prev_s, (p - prev) * kShadowMultiplier);
318           CHECK_EQ((m - prev_m) / kMetaShadowSize,
319                    (p - prev) / kMetaShadowCell);
320         }
321         prev = p;
322       }
323     }
324   }
325 }
326 
327 #if !SANITIZER_GO
OnStackUnwind(const SignalContext & sig,const void *,BufferedStackTrace * stack)328 static void OnStackUnwind(const SignalContext &sig, const void *,
329                           BufferedStackTrace *stack) {
330   uptr top = 0;
331   uptr bottom = 0;
332   bool fast = common_flags()->fast_unwind_on_fatal;
333   if (fast) GetThreadStackTopAndBottom(false, &top, &bottom);
334   stack->Unwind(kStackTraceMax, sig.pc, sig.bp, sig.context, top, bottom, fast);
335 }
336 
TsanOnDeadlySignal(int signo,void * siginfo,void * context)337 static void TsanOnDeadlySignal(int signo, void *siginfo, void *context) {
338   HandleDeadlySignal(siginfo, context, GetTid(), &OnStackUnwind, nullptr);
339 }
340 #endif
341 
Initialize(ThreadState * thr)342 void Initialize(ThreadState *thr) {
343   // Thread safe because done before all threads exist.
344   static bool is_initialized = false;
345   if (is_initialized)
346     return;
347   is_initialized = true;
348   // We are not ready to handle interceptors yet.
349   ScopedIgnoreInterceptors ignore;
350   SanitizerToolName = "ThreadSanitizer";
351   // Install tool-specific callbacks in sanitizer_common.
352   SetCheckFailedCallback(TsanCheckFailed);
353 
354   ctx = new(ctx_placeholder) Context;
355   const char *options = GetEnv(SANITIZER_GO ? "GORACE" : "TSAN_OPTIONS");
356   CacheBinaryName();
357   CheckASLR();
358   InitializeFlags(&ctx->flags, options);
359   AvoidCVE_2016_2143();
360   InitializePlatformEarly();
361 #if !SANITIZER_GO
362   // Re-exec ourselves if we need to set additional env or command line args.
363   MaybeReexec();
364 
365   InitializeAllocator();
366   ReplaceSystemMalloc();
367 #endif
368   if (common_flags()->detect_deadlocks)
369     ctx->dd = DDetector::Create(flags());
370   Processor *proc = ProcCreate();
371   ProcWire(proc, thr);
372   InitializeInterceptors();
373   CheckShadowMapping();
374   InitializePlatform();
375   InitializeMutex();
376   InitializeDynamicAnnotations();
377 #if !SANITIZER_GO
378   InitializeShadowMemory();
379   InitializeAllocatorLate();
380   InstallDeadlySignalHandlers(TsanOnDeadlySignal);
381 #endif
382   // Setup correct file descriptor for error reports.
383   __sanitizer_set_report_path(common_flags()->log_path);
384   InitializeSuppressions();
385 #if !SANITIZER_GO
386   InitializeLibIgnore();
387   Symbolizer::GetOrInit()->AddHooks(EnterSymbolizer, ExitSymbolizer);
388 #endif
389 
390   VPrintf(1, "***** Running under ThreadSanitizer v2 (pid %d) *****\n",
391           (int)internal_getpid());
392 
393   // Initialize thread 0.
394   int tid = ThreadCreate(thr, 0, 0, true);
395   CHECK_EQ(tid, 0);
396   ThreadStart(thr, tid, GetTid(), /*workerthread*/ false);
397 #if TSAN_CONTAINS_UBSAN
398   __ubsan::InitAsPlugin();
399 #endif
400   ctx->initialized = true;
401 
402 #if !SANITIZER_GO
403   Symbolizer::LateInitialize();
404 #endif
405 
406   if (flags()->stop_on_start) {
407     Printf("ThreadSanitizer is suspended at startup (pid %d)."
408            " Call __tsan_resume().\n",
409            (int)internal_getpid());
410     while (__tsan_resumed == 0) {}
411   }
412 
413   OnInitialize();
414 }
415 
MaybeSpawnBackgroundThread()416 void MaybeSpawnBackgroundThread() {
417   // On MIPS, TSan initialization is run before
418   // __pthread_initialize_minimal_internal() is finished, so we can not spawn
419   // new threads.
420 #if !SANITIZER_GO && !defined(__mips__)
421   static atomic_uint32_t bg_thread = {};
422   if (atomic_load(&bg_thread, memory_order_relaxed) == 0 &&
423       atomic_exchange(&bg_thread, 1, memory_order_relaxed) == 0) {
424     StartBackgroundThread();
425     SetSandboxingCallback(StopBackgroundThread);
426   }
427 #endif
428 }
429 
430 
Finalize(ThreadState * thr)431 int Finalize(ThreadState *thr) {
432   bool failed = false;
433 
434   if (common_flags()->print_module_map == 1) PrintModuleMap();
435 
436   if (flags()->atexit_sleep_ms > 0 && ThreadCount(thr) > 1)
437     SleepForMillis(flags()->atexit_sleep_ms);
438 
439   // Wait for pending reports.
440   ctx->report_mtx.Lock();
441   { ScopedErrorReportLock l; }
442   ctx->report_mtx.Unlock();
443 
444 #if !SANITIZER_GO
445   if (Verbosity()) AllocatorPrintStats();
446 #endif
447 
448   ThreadFinalize(thr);
449 
450   if (ctx->nreported) {
451     failed = true;
452 #if !SANITIZER_GO
453     Printf("ThreadSanitizer: reported %d warnings\n", ctx->nreported);
454 #else
455     Printf("Found %d data race(s)\n", ctx->nreported);
456 #endif
457   }
458 
459   if (ctx->nmissed_expected) {
460     failed = true;
461     Printf("ThreadSanitizer: missed %d expected races\n",
462         ctx->nmissed_expected);
463   }
464 
465   if (common_flags()->print_suppressions)
466     PrintMatchedSuppressions();
467 #if !SANITIZER_GO
468   if (flags()->print_benign)
469     PrintMatchedBenignRaces();
470 #endif
471 
472   failed = OnFinalize(failed);
473 
474 #if TSAN_COLLECT_STATS
475   StatAggregate(ctx->stat, thr->stat);
476   StatOutput(ctx->stat);
477 #endif
478 
479   return failed ? common_flags()->exitcode : 0;
480 }
481 
482 #if !SANITIZER_GO
ForkBefore(ThreadState * thr,uptr pc)483 void ForkBefore(ThreadState *thr, uptr pc) {
484   ctx->thread_registry->Lock();
485   ctx->report_mtx.Lock();
486 }
487 
ForkParentAfter(ThreadState * thr,uptr pc)488 void ForkParentAfter(ThreadState *thr, uptr pc) {
489   ctx->report_mtx.Unlock();
490   ctx->thread_registry->Unlock();
491 }
492 
ForkChildAfter(ThreadState * thr,uptr pc)493 void ForkChildAfter(ThreadState *thr, uptr pc) {
494   ctx->report_mtx.Unlock();
495   ctx->thread_registry->Unlock();
496 
497   uptr nthread = 0;
498   ctx->thread_registry->GetNumberOfThreads(0, 0, &nthread /* alive threads */);
499   VPrintf(1, "ThreadSanitizer: forked new process with pid %d,"
500       " parent had %d threads\n", (int)internal_getpid(), (int)nthread);
501   if (nthread == 1) {
502     StartBackgroundThread();
503   } else {
504     // We've just forked a multi-threaded process. We cannot reasonably function
505     // after that (some mutexes may be locked before fork). So just enable
506     // ignores for everything in the hope that we will exec soon.
507     ctx->after_multithreaded_fork = true;
508     thr->ignore_interceptors++;
509     ThreadIgnoreBegin(thr, pc);
510     ThreadIgnoreSyncBegin(thr, pc);
511   }
512 }
513 #endif
514 
515 #if SANITIZER_GO
516 NOINLINE
GrowShadowStack(ThreadState * thr)517 void GrowShadowStack(ThreadState *thr) {
518   const int sz = thr->shadow_stack_end - thr->shadow_stack;
519   const int newsz = 2 * sz;
520   uptr *newstack = (uptr*)internal_alloc(MBlockShadowStack,
521       newsz * sizeof(uptr));
522   internal_memcpy(newstack, thr->shadow_stack, sz * sizeof(uptr));
523   internal_free(thr->shadow_stack);
524   thr->shadow_stack = newstack;
525   thr->shadow_stack_pos = newstack + sz;
526   thr->shadow_stack_end = newstack + newsz;
527 }
528 #endif
529 
CurrentStackId(ThreadState * thr,uptr pc)530 u32 CurrentStackId(ThreadState *thr, uptr pc) {
531   if (!thr->is_inited)  // May happen during bootstrap.
532     return 0;
533   if (pc != 0) {
534 #if !SANITIZER_GO
535     DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
536 #else
537     if (thr->shadow_stack_pos == thr->shadow_stack_end)
538       GrowShadowStack(thr);
539 #endif
540     thr->shadow_stack_pos[0] = pc;
541     thr->shadow_stack_pos++;
542   }
543   u32 id = StackDepotPut(
544       StackTrace(thr->shadow_stack, thr->shadow_stack_pos - thr->shadow_stack));
545   if (pc != 0)
546     thr->shadow_stack_pos--;
547   return id;
548 }
549 
TraceSwitch(ThreadState * thr)550 void TraceSwitch(ThreadState *thr) {
551 #if !SANITIZER_GO
552   if (ctx->after_multithreaded_fork)
553     return;
554 #endif
555   thr->nomalloc++;
556   Trace *thr_trace = ThreadTrace(thr->tid);
557   Lock l(&thr_trace->mtx);
558   unsigned trace = (thr->fast_state.epoch() / kTracePartSize) % TraceParts();
559   TraceHeader *hdr = &thr_trace->headers[trace];
560   hdr->epoch0 = thr->fast_state.epoch();
561   ObtainCurrentStack(thr, 0, &hdr->stack0);
562   hdr->mset0 = thr->mset;
563   thr->nomalloc--;
564 }
565 
ThreadTrace(int tid)566 Trace *ThreadTrace(int tid) {
567   return (Trace*)GetThreadTraceHeader(tid);
568 }
569 
TraceTopPC(ThreadState * thr)570 uptr TraceTopPC(ThreadState *thr) {
571   Event *events = (Event*)GetThreadTrace(thr->tid);
572   uptr pc = events[thr->fast_state.GetTracePos()];
573   return pc;
574 }
575 
TraceSize()576 uptr TraceSize() {
577   return (uptr)(1ull << (kTracePartSizeBits + flags()->history_size + 1));
578 }
579 
TraceParts()580 uptr TraceParts() {
581   return TraceSize() / kTracePartSize;
582 }
583 
584 #if !SANITIZER_GO
__tsan_trace_switch()585 extern "C" void __tsan_trace_switch() {
586   TraceSwitch(cur_thread());
587 }
588 
__tsan_report_race()589 extern "C" void __tsan_report_race() {
590   ReportRace(cur_thread());
591 }
592 #endif
593 
594 ALWAYS_INLINE
LoadShadow(u64 * p)595 Shadow LoadShadow(u64 *p) {
596   u64 raw = atomic_load((atomic_uint64_t*)p, memory_order_relaxed);
597   return Shadow(raw);
598 }
599 
600 ALWAYS_INLINE
StoreShadow(u64 * sp,u64 s)601 void StoreShadow(u64 *sp, u64 s) {
602   atomic_store((atomic_uint64_t*)sp, s, memory_order_relaxed);
603 }
604 
605 ALWAYS_INLINE
StoreIfNotYetStored(u64 * sp,u64 * s)606 void StoreIfNotYetStored(u64 *sp, u64 *s) {
607   StoreShadow(sp, *s);
608   *s = 0;
609 }
610 
611 ALWAYS_INLINE
HandleRace(ThreadState * thr,u64 * shadow_mem,Shadow cur,Shadow old)612 void HandleRace(ThreadState *thr, u64 *shadow_mem,
613                               Shadow cur, Shadow old) {
614   thr->racy_state[0] = cur.raw();
615   thr->racy_state[1] = old.raw();
616   thr->racy_shadow_addr = shadow_mem;
617 #if !SANITIZER_GO
618   HACKY_CALL(__tsan_report_race);
619 #else
620   ReportRace(thr);
621 #endif
622 }
623 
HappensBefore(Shadow old,ThreadState * thr)624 static inline bool HappensBefore(Shadow old, ThreadState *thr) {
625   return thr->clock.get(old.TidWithIgnore()) >= old.epoch();
626 }
627 
628 ALWAYS_INLINE
MemoryAccessImpl1(ThreadState * thr,uptr addr,int kAccessSizeLog,bool kAccessIsWrite,bool kIsAtomic,u64 * shadow_mem,Shadow cur)629 void MemoryAccessImpl1(ThreadState *thr, uptr addr,
630     int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
631     u64 *shadow_mem, Shadow cur) {
632   StatInc(thr, StatMop);
633   StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
634   StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
635 
636   // This potentially can live in an MMX/SSE scratch register.
637   // The required intrinsics are:
638   // __m128i _mm_move_epi64(__m128i*);
639   // _mm_storel_epi64(u64*, __m128i);
640   u64 store_word = cur.raw();
641 
642   // scan all the shadow values and dispatch to 4 categories:
643   // same, replace, candidate and race (see comments below).
644   // we consider only 3 cases regarding access sizes:
645   // equal, intersect and not intersect. initially I considered
646   // larger and smaller as well, it allowed to replace some
647   // 'candidates' with 'same' or 'replace', but I think
648   // it's just not worth it (performance- and complexity-wise).
649 
650   Shadow old(0);
651 
652   // It release mode we manually unroll the loop,
653   // because empirically gcc generates better code this way.
654   // However, we can't afford unrolling in debug mode, because the function
655   // consumes almost 4K of stack. Gtest gives only 4K of stack to death test
656   // threads, which is not enough for the unrolled loop.
657 #if SANITIZER_DEBUG
658   for (int idx = 0; idx < 4; idx++) {
659 #include "tsan_update_shadow_word_inl.h"
660   }
661 #else
662   int idx = 0;
663 #include "tsan_update_shadow_word_inl.h"
664   idx = 1;
665 #include "tsan_update_shadow_word_inl.h"
666   idx = 2;
667 #include "tsan_update_shadow_word_inl.h"
668   idx = 3;
669 #include "tsan_update_shadow_word_inl.h"
670 #endif
671 
672   // we did not find any races and had already stored
673   // the current access info, so we are done
674   if (LIKELY(store_word == 0))
675     return;
676   // choose a random candidate slot and replace it
677   StoreShadow(shadow_mem + (cur.epoch() % kShadowCnt), store_word);
678   StatInc(thr, StatShadowReplace);
679   return;
680  RACE:
681   HandleRace(thr, shadow_mem, cur, old);
682   return;
683 }
684 
UnalignedMemoryAccess(ThreadState * thr,uptr pc,uptr addr,int size,bool kAccessIsWrite,bool kIsAtomic)685 void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr,
686     int size, bool kAccessIsWrite, bool kIsAtomic) {
687   while (size) {
688     int size1 = 1;
689     int kAccessSizeLog = kSizeLog1;
690     if (size >= 8 && (addr & ~7) == ((addr + 7) & ~7)) {
691       size1 = 8;
692       kAccessSizeLog = kSizeLog8;
693     } else if (size >= 4 && (addr & ~7) == ((addr + 3) & ~7)) {
694       size1 = 4;
695       kAccessSizeLog = kSizeLog4;
696     } else if (size >= 2 && (addr & ~7) == ((addr + 1) & ~7)) {
697       size1 = 2;
698       kAccessSizeLog = kSizeLog2;
699     }
700     MemoryAccess(thr, pc, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic);
701     addr += size1;
702     size -= size1;
703   }
704 }
705 
706 ALWAYS_INLINE
ContainsSameAccessSlow(u64 * s,u64 a,u64 sync_epoch,bool is_write)707 bool ContainsSameAccessSlow(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
708   Shadow cur(a);
709   for (uptr i = 0; i < kShadowCnt; i++) {
710     Shadow old(LoadShadow(&s[i]));
711     if (Shadow::Addr0AndSizeAreEqual(cur, old) &&
712         old.TidWithIgnore() == cur.TidWithIgnore() &&
713         old.epoch() > sync_epoch &&
714         old.IsAtomic() == cur.IsAtomic() &&
715         old.IsRead() <= cur.IsRead())
716       return true;
717   }
718   return false;
719 }
720 
721 #if defined(__SSE3__)
722 #define SHUF(v0, v1, i0, i1, i2, i3) _mm_castps_si128(_mm_shuffle_ps( \
723     _mm_castsi128_ps(v0), _mm_castsi128_ps(v1), \
724     (i0)*1 + (i1)*4 + (i2)*16 + (i3)*64))
725 ALWAYS_INLINE
ContainsSameAccessFast(u64 * s,u64 a,u64 sync_epoch,bool is_write)726 bool ContainsSameAccessFast(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
727   // This is an optimized version of ContainsSameAccessSlow.
728   // load current access into access[0:63]
729   const m128 access     = _mm_cvtsi64_si128(a);
730   // duplicate high part of access in addr0:
731   // addr0[0:31]        = access[32:63]
732   // addr0[32:63]       = access[32:63]
733   // addr0[64:95]       = access[32:63]
734   // addr0[96:127]      = access[32:63]
735   const m128 addr0      = SHUF(access, access, 1, 1, 1, 1);
736   // load 4 shadow slots
737   const m128 shadow0    = _mm_load_si128((__m128i*)s);
738   const m128 shadow1    = _mm_load_si128((__m128i*)s + 1);
739   // load high parts of 4 shadow slots into addr_vect:
740   // addr_vect[0:31]    = shadow0[32:63]
741   // addr_vect[32:63]   = shadow0[96:127]
742   // addr_vect[64:95]   = shadow1[32:63]
743   // addr_vect[96:127]  = shadow1[96:127]
744   m128 addr_vect        = SHUF(shadow0, shadow1, 1, 3, 1, 3);
745   if (!is_write) {
746     // set IsRead bit in addr_vect
747     const m128 rw_mask1 = _mm_cvtsi64_si128(1<<15);
748     const m128 rw_mask  = SHUF(rw_mask1, rw_mask1, 0, 0, 0, 0);
749     addr_vect           = _mm_or_si128(addr_vect, rw_mask);
750   }
751   // addr0 == addr_vect?
752   const m128 addr_res   = _mm_cmpeq_epi32(addr0, addr_vect);
753   // epoch1[0:63]       = sync_epoch
754   const m128 epoch1     = _mm_cvtsi64_si128(sync_epoch);
755   // epoch[0:31]        = sync_epoch[0:31]
756   // epoch[32:63]       = sync_epoch[0:31]
757   // epoch[64:95]       = sync_epoch[0:31]
758   // epoch[96:127]      = sync_epoch[0:31]
759   const m128 epoch      = SHUF(epoch1, epoch1, 0, 0, 0, 0);
760   // load low parts of shadow cell epochs into epoch_vect:
761   // epoch_vect[0:31]   = shadow0[0:31]
762   // epoch_vect[32:63]  = shadow0[64:95]
763   // epoch_vect[64:95]  = shadow1[0:31]
764   // epoch_vect[96:127] = shadow1[64:95]
765   const m128 epoch_vect = SHUF(shadow0, shadow1, 0, 2, 0, 2);
766   // epoch_vect >= sync_epoch?
767   const m128 epoch_res  = _mm_cmpgt_epi32(epoch_vect, epoch);
768   // addr_res & epoch_res
769   const m128 res        = _mm_and_si128(addr_res, epoch_res);
770   // mask[0] = res[7]
771   // mask[1] = res[15]
772   // ...
773   // mask[15] = res[127]
774   const int mask        = _mm_movemask_epi8(res);
775   return mask != 0;
776 }
777 #endif
778 
779 ALWAYS_INLINE
ContainsSameAccess(u64 * s,u64 a,u64 sync_epoch,bool is_write)780 bool ContainsSameAccess(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
781 #if defined(__SSE3__)
782   bool res = ContainsSameAccessFast(s, a, sync_epoch, is_write);
783   // NOTE: this check can fail if the shadow is concurrently mutated
784   // by other threads. But it still can be useful if you modify
785   // ContainsSameAccessFast and want to ensure that it's not completely broken.
786   // DCHECK_EQ(res, ContainsSameAccessSlow(s, a, sync_epoch, is_write));
787   return res;
788 #else
789   return ContainsSameAccessSlow(s, a, sync_epoch, is_write);
790 #endif
791 }
792 
793 ALWAYS_INLINE USED
MemoryAccess(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog,bool kAccessIsWrite,bool kIsAtomic)794 void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
795     int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic) {
796   u64 *shadow_mem = (u64*)MemToShadow(addr);
797   DPrintf2("#%d: MemoryAccess: @%p %p size=%d"
798       " is_write=%d shadow_mem=%p {%zx, %zx, %zx, %zx}\n",
799       (int)thr->fast_state.tid(), (void*)pc, (void*)addr,
800       (int)(1 << kAccessSizeLog), kAccessIsWrite, shadow_mem,
801       (uptr)shadow_mem[0], (uptr)shadow_mem[1],
802       (uptr)shadow_mem[2], (uptr)shadow_mem[3]);
803 #if SANITIZER_DEBUG
804   if (!IsAppMem(addr)) {
805     Printf("Access to non app mem %zx\n", addr);
806     DCHECK(IsAppMem(addr));
807   }
808   if (!IsShadowMem((uptr)shadow_mem)) {
809     Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr);
810     DCHECK(IsShadowMem((uptr)shadow_mem));
811   }
812 #endif
813 
814   if (!SANITIZER_GO && *shadow_mem == kShadowRodata) {
815     // Access to .rodata section, no races here.
816     // Measurements show that it can be 10-20% of all memory accesses.
817     StatInc(thr, StatMop);
818     StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
819     StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
820     StatInc(thr, StatMopRodata);
821     return;
822   }
823 
824   FastState fast_state = thr->fast_state;
825   if (fast_state.GetIgnoreBit()) {
826     StatInc(thr, StatMop);
827     StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
828     StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
829     StatInc(thr, StatMopIgnored);
830     return;
831   }
832 
833   Shadow cur(fast_state);
834   cur.SetAddr0AndSizeLog(addr & 7, kAccessSizeLog);
835   cur.SetWrite(kAccessIsWrite);
836   cur.SetAtomic(kIsAtomic);
837 
838   if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(),
839       thr->fast_synch_epoch, kAccessIsWrite))) {
840     StatInc(thr, StatMop);
841     StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
842     StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
843     StatInc(thr, StatMopSame);
844     return;
845   }
846 
847   if (kCollectHistory) {
848     fast_state.IncrementEpoch();
849     thr->fast_state = fast_state;
850     TraceAddEvent(thr, fast_state, EventTypeMop, pc);
851     cur.IncrementEpoch();
852   }
853 
854   MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic,
855       shadow_mem, cur);
856 }
857 
858 // Called by MemoryAccessRange in tsan_rtl_thread.cc
859 ALWAYS_INLINE USED
MemoryAccessImpl(ThreadState * thr,uptr addr,int kAccessSizeLog,bool kAccessIsWrite,bool kIsAtomic,u64 * shadow_mem,Shadow cur)860 void MemoryAccessImpl(ThreadState *thr, uptr addr,
861     int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
862     u64 *shadow_mem, Shadow cur) {
863   if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(),
864       thr->fast_synch_epoch, kAccessIsWrite))) {
865     StatInc(thr, StatMop);
866     StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
867     StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
868     StatInc(thr, StatMopSame);
869     return;
870   }
871 
872   MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic,
873       shadow_mem, cur);
874 }
875 
MemoryRangeSet(ThreadState * thr,uptr pc,uptr addr,uptr size,u64 val)876 static void MemoryRangeSet(ThreadState *thr, uptr pc, uptr addr, uptr size,
877                            u64 val) {
878   (void)thr;
879   (void)pc;
880   if (size == 0)
881     return;
882   // FIXME: fix me.
883   uptr offset = addr % kShadowCell;
884   if (offset) {
885     offset = kShadowCell - offset;
886     if (size <= offset)
887       return;
888     addr += offset;
889     size -= offset;
890   }
891   DCHECK_EQ(addr % 8, 0);
892   // If a user passes some insane arguments (memset(0)),
893   // let it just crash as usual.
894   if (!IsAppMem(addr) || !IsAppMem(addr + size - 1))
895     return;
896   // Don't want to touch lots of shadow memory.
897   // If a program maps 10MB stack, there is no need reset the whole range.
898   size = (size + (kShadowCell - 1)) & ~(kShadowCell - 1);
899   // UnmapOrDie/MmapFixedNoReserve does not work on Windows.
900   if (SANITIZER_WINDOWS || size < common_flags()->clear_shadow_mmap_threshold) {
901     u64 *p = (u64*)MemToShadow(addr);
902     CHECK(IsShadowMem((uptr)p));
903     CHECK(IsShadowMem((uptr)(p + size * kShadowCnt / kShadowCell - 1)));
904     // FIXME: may overwrite a part outside the region
905     for (uptr i = 0; i < size / kShadowCell * kShadowCnt;) {
906       p[i++] = val;
907       for (uptr j = 1; j < kShadowCnt; j++)
908         p[i++] = 0;
909     }
910   } else {
911     // The region is big, reset only beginning and end.
912     const uptr kPageSize = GetPageSizeCached();
913     u64 *begin = (u64*)MemToShadow(addr);
914     u64 *end = begin + size / kShadowCell * kShadowCnt;
915     u64 *p = begin;
916     // Set at least first kPageSize/2 to page boundary.
917     while ((p < begin + kPageSize / kShadowSize / 2) || ((uptr)p % kPageSize)) {
918       *p++ = val;
919       for (uptr j = 1; j < kShadowCnt; j++)
920         *p++ = 0;
921     }
922     // Reset middle part.
923     u64 *p1 = p;
924     p = RoundDown(end, kPageSize);
925     UnmapOrDie((void*)p1, (uptr)p - (uptr)p1);
926     if (!MmapFixedNoReserve((uptr)p1, (uptr)p - (uptr)p1))
927       Die();
928     // Set the ending.
929     while (p < end) {
930       *p++ = val;
931       for (uptr j = 1; j < kShadowCnt; j++)
932         *p++ = 0;
933     }
934   }
935 }
936 
MemoryResetRange(ThreadState * thr,uptr pc,uptr addr,uptr size)937 void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size) {
938   MemoryRangeSet(thr, pc, addr, size, 0);
939 }
940 
MemoryRangeFreed(ThreadState * thr,uptr pc,uptr addr,uptr size)941 void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size) {
942   // Processing more than 1k (4k of shadow) is expensive,
943   // can cause excessive memory consumption (user does not necessary touch
944   // the whole range) and most likely unnecessary.
945   if (size > 1024)
946     size = 1024;
947   CHECK_EQ(thr->is_freeing, false);
948   thr->is_freeing = true;
949   MemoryAccessRange(thr, pc, addr, size, true);
950   thr->is_freeing = false;
951   if (kCollectHistory) {
952     thr->fast_state.IncrementEpoch();
953     TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc);
954   }
955   Shadow s(thr->fast_state);
956   s.ClearIgnoreBit();
957   s.MarkAsFreed();
958   s.SetWrite(true);
959   s.SetAddr0AndSizeLog(0, 3);
960   MemoryRangeSet(thr, pc, addr, size, s.raw());
961 }
962 
MemoryRangeImitateWrite(ThreadState * thr,uptr pc,uptr addr,uptr size)963 void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size) {
964   if (kCollectHistory) {
965     thr->fast_state.IncrementEpoch();
966     TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc);
967   }
968   Shadow s(thr->fast_state);
969   s.ClearIgnoreBit();
970   s.SetWrite(true);
971   s.SetAddr0AndSizeLog(0, 3);
972   MemoryRangeSet(thr, pc, addr, size, s.raw());
973 }
974 
975 ALWAYS_INLINE USED
FuncEntry(ThreadState * thr,uptr pc)976 void FuncEntry(ThreadState *thr, uptr pc) {
977   StatInc(thr, StatFuncEnter);
978   DPrintf2("#%d: FuncEntry %p\n", (int)thr->fast_state.tid(), (void*)pc);
979   if (kCollectHistory) {
980     thr->fast_state.IncrementEpoch();
981     TraceAddEvent(thr, thr->fast_state, EventTypeFuncEnter, pc);
982   }
983 
984   // Shadow stack maintenance can be replaced with
985   // stack unwinding during trace switch (which presumably must be faster).
986   DCHECK_GE(thr->shadow_stack_pos, thr->shadow_stack);
987 #if !SANITIZER_GO
988   DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
989 #else
990   if (thr->shadow_stack_pos == thr->shadow_stack_end)
991     GrowShadowStack(thr);
992 #endif
993   thr->shadow_stack_pos[0] = pc;
994   thr->shadow_stack_pos++;
995 }
996 
997 ALWAYS_INLINE USED
FuncExit(ThreadState * thr)998 void FuncExit(ThreadState *thr) {
999   StatInc(thr, StatFuncExit);
1000   DPrintf2("#%d: FuncExit\n", (int)thr->fast_state.tid());
1001   if (kCollectHistory) {
1002     thr->fast_state.IncrementEpoch();
1003     TraceAddEvent(thr, thr->fast_state, EventTypeFuncExit, 0);
1004   }
1005 
1006   DCHECK_GT(thr->shadow_stack_pos, thr->shadow_stack);
1007 #if !SANITIZER_GO
1008   DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
1009 #endif
1010   thr->shadow_stack_pos--;
1011 }
1012 
ThreadIgnoreBegin(ThreadState * thr,uptr pc,bool save_stack)1013 void ThreadIgnoreBegin(ThreadState *thr, uptr pc, bool save_stack) {
1014   DPrintf("#%d: ThreadIgnoreBegin\n", thr->tid);
1015   thr->ignore_reads_and_writes++;
1016   CHECK_GT(thr->ignore_reads_and_writes, 0);
1017   thr->fast_state.SetIgnoreBit();
1018 #if !SANITIZER_GO
1019   if (save_stack && !ctx->after_multithreaded_fork)
1020     thr->mop_ignore_set.Add(CurrentStackId(thr, pc));
1021 #endif
1022 }
1023 
ThreadIgnoreEnd(ThreadState * thr,uptr pc)1024 void ThreadIgnoreEnd(ThreadState *thr, uptr pc) {
1025   DPrintf("#%d: ThreadIgnoreEnd\n", thr->tid);
1026   CHECK_GT(thr->ignore_reads_and_writes, 0);
1027   thr->ignore_reads_and_writes--;
1028   if (thr->ignore_reads_and_writes == 0) {
1029     thr->fast_state.ClearIgnoreBit();
1030 #if !SANITIZER_GO
1031     thr->mop_ignore_set.Reset();
1032 #endif
1033   }
1034 }
1035 
1036 #if !SANITIZER_GO
1037 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
__tsan_testonly_shadow_stack_current_size()1038 uptr __tsan_testonly_shadow_stack_current_size() {
1039   ThreadState *thr = cur_thread();
1040   return thr->shadow_stack_pos - thr->shadow_stack;
1041 }
1042 #endif
1043 
ThreadIgnoreSyncBegin(ThreadState * thr,uptr pc,bool save_stack)1044 void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc, bool save_stack) {
1045   DPrintf("#%d: ThreadIgnoreSyncBegin\n", thr->tid);
1046   thr->ignore_sync++;
1047   CHECK_GT(thr->ignore_sync, 0);
1048 #if !SANITIZER_GO
1049   if (save_stack && !ctx->after_multithreaded_fork)
1050     thr->sync_ignore_set.Add(CurrentStackId(thr, pc));
1051 #endif
1052 }
1053 
ThreadIgnoreSyncEnd(ThreadState * thr,uptr pc)1054 void ThreadIgnoreSyncEnd(ThreadState *thr, uptr pc) {
1055   DPrintf("#%d: ThreadIgnoreSyncEnd\n", thr->tid);
1056   CHECK_GT(thr->ignore_sync, 0);
1057   thr->ignore_sync--;
1058 #if !SANITIZER_GO
1059   if (thr->ignore_sync == 0)
1060     thr->sync_ignore_set.Reset();
1061 #endif
1062 }
1063 
operator ==(const MD5Hash & other) const1064 bool MD5Hash::operator==(const MD5Hash &other) const {
1065   return hash[0] == other.hash[0] && hash[1] == other.hash[1];
1066 }
1067 
1068 #if SANITIZER_DEBUG
build_consistency_debug()1069 void build_consistency_debug() {}
1070 #else
build_consistency_release()1071 void build_consistency_release() {}
1072 #endif
1073 
1074 #if TSAN_COLLECT_STATS
build_consistency_stats()1075 void build_consistency_stats() {}
1076 #else
build_consistency_nostats()1077 void build_consistency_nostats() {}
1078 #endif
1079 
1080 }  // namespace __tsan
1081 
1082 #if !SANITIZER_GO
1083 // Must be included in this file to make sure everything is inlined.
1084 #include "tsan_interface_inl.h"
1085 #endif
1086