1 // Multimap implementation -*- C++ -*-
2 
3 // Copyright (C) 2001-2020 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /*
26  *
27  * Copyright (c) 1994
28  * Hewlett-Packard Company
29  *
30  * Permission to use, copy, modify, distribute and sell this software
31  * and its documentation for any purpose is hereby granted without fee,
32  * provided that the above copyright notice appear in all copies and
33  * that both that copyright notice and this permission notice appear
34  * in supporting documentation.  Hewlett-Packard Company makes no
35  * representations about the suitability of this software for any
36  * purpose.  It is provided "as is" without express or implied warranty.
37  *
38  *
39  * Copyright (c) 1996,1997
40  * Silicon Graphics Computer Systems, Inc.
41  *
42  * Permission to use, copy, modify, distribute and sell this software
43  * and its documentation for any purpose is hereby granted without fee,
44  * provided that the above copyright notice appear in all copies and
45  * that both that copyright notice and this permission notice appear
46  * in supporting documentation.  Silicon Graphics makes no
47  * representations about the suitability of this software for any
48  * purpose.  It is provided "as is" without express or implied warranty.
49  */
50 
51 /** @file bits/stl_multimap.h
52  *  This is an internal header file, included by other library headers.
53  *  Do not attempt to use it directly. @headername{map}
54  */
55 
56 #ifndef _STL_MULTIMAP_H
57 #define _STL_MULTIMAP_H 1
58 
59 #include <bits/concept_check.h>
60 #if __cplusplus >= 201103L
61 #include <initializer_list>
62 #endif
63 
_GLIBCXX_VISIBILITY(default)64 namespace std _GLIBCXX_VISIBILITY(default)
65 {
66 _GLIBCXX_BEGIN_NAMESPACE_VERSION
67 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
68 
69   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
70     class map;
71 
72   /**
73    *  @brief A standard container made up of (key,value) pairs, which can be
74    *  retrieved based on a key, in logarithmic time.
75    *
76    *  @ingroup associative_containers
77    *
78    *  @tparam _Key  Type of key objects.
79    *  @tparam  _Tp  Type of mapped objects.
80    *  @tparam _Compare  Comparison function object type, defaults to less<_Key>.
81    *  @tparam _Alloc  Allocator type, defaults to
82    *                  allocator<pair<const _Key, _Tp>.
83    *
84    *  Meets the requirements of a <a href="tables.html#65">container</a>, a
85    *  <a href="tables.html#66">reversible container</a>, and an
86    *  <a href="tables.html#69">associative container</a> (using equivalent
87    *  keys).  For a @c multimap<Key,T> the key_type is Key, the mapped_type
88    *  is T, and the value_type is std::pair<const Key,T>.
89    *
90    *  Multimaps support bidirectional iterators.
91    *
92    *  The private tree data is declared exactly the same way for map and
93    *  multimap; the distinction is made entirely in how the tree functions are
94    *  called (*_unique versus *_equal, same as the standard).
95   */
96   template <typename _Key, typename _Tp,
97 	    typename _Compare = std::less<_Key>,
98 	    typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
99     class multimap
100     {
101     public:
102       typedef _Key					key_type;
103       typedef _Tp					mapped_type;
104       typedef std::pair<const _Key, _Tp>		value_type;
105       typedef _Compare					key_compare;
106       typedef _Alloc					allocator_type;
107 
108     private:
109 #ifdef _GLIBCXX_CONCEPT_CHECKS
110       // concept requirements
111       typedef typename _Alloc::value_type		_Alloc_value_type;
112 # if __cplusplus < 201103L
113       __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
114 # endif
115       __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
116 				_BinaryFunctionConcept)
117       __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)
118 #endif
119 
120 #if __cplusplus >= 201103L
121 #if __cplusplus > 201703L || defined __STRICT_ANSI__
122       static_assert(is_same<typename _Alloc::value_type, value_type>::value,
123 	  "std::multimap must have the same value_type as its allocator");
124 #endif
125 #endif
126 
127     public:
128       class value_compare
129       : public std::binary_function<value_type, value_type, bool>
130       {
131 	friend class multimap<_Key, _Tp, _Compare, _Alloc>;
132       protected:
133 	_Compare comp;
134 
135 	value_compare(_Compare __c)
136 	: comp(__c) { }
137 
138       public:
139 	bool operator()(const value_type& __x, const value_type& __y) const
140 	{ return comp(__x.first, __y.first); }
141       };
142 
143     private:
144       /// This turns a red-black tree into a [multi]map.
145       typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template
146 	rebind<value_type>::other _Pair_alloc_type;
147 
148       typedef _Rb_tree<key_type, value_type, _Select1st<value_type>,
149 		       key_compare, _Pair_alloc_type> _Rep_type;
150       /// The actual tree structure.
151       _Rep_type _M_t;
152 
153       typedef __gnu_cxx::__alloc_traits<_Pair_alloc_type> _Alloc_traits;
154 
155     public:
156       // many of these are specified differently in ISO, but the following are
157       // "functionally equivalent"
158       typedef typename _Alloc_traits::pointer		 pointer;
159       typedef typename _Alloc_traits::const_pointer	 const_pointer;
160       typedef typename _Alloc_traits::reference		 reference;
161       typedef typename _Alloc_traits::const_reference	 const_reference;
162       typedef typename _Rep_type::iterator		 iterator;
163       typedef typename _Rep_type::const_iterator	 const_iterator;
164       typedef typename _Rep_type::size_type		 size_type;
165       typedef typename _Rep_type::difference_type	 difference_type;
166       typedef typename _Rep_type::reverse_iterator	 reverse_iterator;
167       typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
168 
169 #if __cplusplus > 201402L
170       using node_type = typename _Rep_type::node_type;
171 #endif
172 
173       // [23.3.2] construct/copy/destroy
174       // (get_allocator() is also listed in this section)
175 
176       /**
177        *  @brief  Default constructor creates no elements.
178        */
179 #if __cplusplus < 201103L
180       multimap() : _M_t() { }
181 #else
182       multimap() = default;
183 #endif
184 
185       /**
186        *  @brief  Creates a %multimap with no elements.
187        *  @param  __comp  A comparison object.
188        *  @param  __a  An allocator object.
189        */
190       explicit
191       multimap(const _Compare& __comp,
192 	       const allocator_type& __a = allocator_type())
193       : _M_t(__comp, _Pair_alloc_type(__a)) { }
194 
195       /**
196        *  @brief  %Multimap copy constructor.
197        *
198        *  Whether the allocator is copied depends on the allocator traits.
199        */
200 #if __cplusplus < 201103L
201       multimap(const multimap& __x)
202       : _M_t(__x._M_t) { }
203 #else
204       multimap(const multimap&) = default;
205 
206       /**
207        *  @brief  %Multimap move constructor.
208        *
209        *  The newly-created %multimap contains the exact contents of the
210        *  moved instance. The moved instance is a valid, but unspecified
211        *  %multimap.
212        */
213       multimap(multimap&&) = default;
214 
215       /**
216        *  @brief  Builds a %multimap from an initializer_list.
217        *  @param  __l  An initializer_list.
218        *  @param  __comp  A comparison functor.
219        *  @param  __a  An allocator object.
220        *
221        *  Create a %multimap consisting of copies of the elements from
222        *  the initializer_list.  This is linear in N if the list is already
223        *  sorted, and NlogN otherwise (where N is @a __l.size()).
224        */
225       multimap(initializer_list<value_type> __l,
226 	       const _Compare& __comp = _Compare(),
227 	       const allocator_type& __a = allocator_type())
228       : _M_t(__comp, _Pair_alloc_type(__a))
229       { _M_t._M_insert_range_equal(__l.begin(), __l.end()); }
230 
231       /// Allocator-extended default constructor.
232       explicit
233       multimap(const allocator_type& __a)
234       : _M_t(_Pair_alloc_type(__a)) { }
235 
236       /// Allocator-extended copy constructor.
237       multimap(const multimap& __m, const allocator_type& __a)
238       : _M_t(__m._M_t, _Pair_alloc_type(__a)) { }
239 
240       /// Allocator-extended move constructor.
241       multimap(multimap&& __m, const allocator_type& __a)
242       noexcept(is_nothrow_copy_constructible<_Compare>::value
243 	       && _Alloc_traits::_S_always_equal())
244       : _M_t(std::move(__m._M_t), _Pair_alloc_type(__a)) { }
245 
246       /// Allocator-extended initialier-list constructor.
247       multimap(initializer_list<value_type> __l, const allocator_type& __a)
248       : _M_t(_Pair_alloc_type(__a))
249       { _M_t._M_insert_range_equal(__l.begin(), __l.end()); }
250 
251       /// Allocator-extended range constructor.
252       template<typename _InputIterator>
253 	multimap(_InputIterator __first, _InputIterator __last,
254 		 const allocator_type& __a)
255 	: _M_t(_Pair_alloc_type(__a))
256 	{ _M_t._M_insert_range_equal(__first, __last); }
257 #endif
258 
259       /**
260        *  @brief  Builds a %multimap from a range.
261        *  @param  __first  An input iterator.
262        *  @param  __last  An input iterator.
263        *
264        *  Create a %multimap consisting of copies of the elements from
265        *  [__first,__last).  This is linear in N if the range is already sorted,
266        *  and NlogN otherwise (where N is distance(__first,__last)).
267        */
268       template<typename _InputIterator>
269 	multimap(_InputIterator __first, _InputIterator __last)
270 	: _M_t()
271 	{ _M_t._M_insert_range_equal(__first, __last); }
272 
273       /**
274        *  @brief  Builds a %multimap from a range.
275        *  @param  __first  An input iterator.
276        *  @param  __last  An input iterator.
277        *  @param  __comp  A comparison functor.
278        *  @param  __a  An allocator object.
279        *
280        *  Create a %multimap consisting of copies of the elements from
281        *  [__first,__last).  This is linear in N if the range is already sorted,
282        *  and NlogN otherwise (where N is distance(__first,__last)).
283        */
284       template<typename _InputIterator>
285 	multimap(_InputIterator __first, _InputIterator __last,
286 		 const _Compare& __comp,
287 		 const allocator_type& __a = allocator_type())
288 	: _M_t(__comp, _Pair_alloc_type(__a))
289 	{ _M_t._M_insert_range_equal(__first, __last); }
290 
291 #if __cplusplus >= 201103L
292       /**
293        *  The dtor only erases the elements, and note that if the elements
294        *  themselves are pointers, the pointed-to memory is not touched in any
295        *  way. Managing the pointer is the user's responsibility.
296        */
297       ~multimap() = default;
298 #endif
299 
300       /**
301        *  @brief  %Multimap assignment operator.
302        *
303        *  Whether the allocator is copied depends on the allocator traits.
304        */
305 #if __cplusplus < 201103L
306       multimap&
307       operator=(const multimap& __x)
308       {
309 	_M_t = __x._M_t;
310 	return *this;
311       }
312 #else
313       multimap&
314       operator=(const multimap&) = default;
315 
316       /// Move assignment operator.
317       multimap&
318       operator=(multimap&&) = default;
319 
320       /**
321        *  @brief  %Multimap list assignment operator.
322        *  @param  __l  An initializer_list.
323        *
324        *  This function fills a %multimap with copies of the elements
325        *  in the initializer list @a __l.
326        *
327        *  Note that the assignment completely changes the %multimap and
328        *  that the resulting %multimap's size is the same as the number
329        *  of elements assigned.
330        */
331       multimap&
332       operator=(initializer_list<value_type> __l)
333       {
334 	_M_t._M_assign_equal(__l.begin(), __l.end());
335 	return *this;
336       }
337 #endif
338 
339       /// Get a copy of the memory allocation object.
340       allocator_type
341       get_allocator() const _GLIBCXX_NOEXCEPT
342       { return allocator_type(_M_t.get_allocator()); }
343 
344       // iterators
345       /**
346        *  Returns a read/write iterator that points to the first pair in the
347        *  %multimap.  Iteration is done in ascending order according to the
348        *  keys.
349        */
350       iterator
351       begin() _GLIBCXX_NOEXCEPT
352       { return _M_t.begin(); }
353 
354       /**
355        *  Returns a read-only (constant) iterator that points to the first pair
356        *  in the %multimap.  Iteration is done in ascending order according to
357        *  the keys.
358        */
359       const_iterator
360       begin() const _GLIBCXX_NOEXCEPT
361       { return _M_t.begin(); }
362 
363       /**
364        *  Returns a read/write iterator that points one past the last pair in
365        *  the %multimap.  Iteration is done in ascending order according to the
366        *  keys.
367        */
368       iterator
369       end() _GLIBCXX_NOEXCEPT
370       { return _M_t.end(); }
371 
372       /**
373        *  Returns a read-only (constant) iterator that points one past the last
374        *  pair in the %multimap.  Iteration is done in ascending order according
375        *  to the keys.
376        */
377       const_iterator
378       end() const _GLIBCXX_NOEXCEPT
379       { return _M_t.end(); }
380 
381       /**
382        *  Returns a read/write reverse iterator that points to the last pair in
383        *  the %multimap.  Iteration is done in descending order according to the
384        *  keys.
385        */
386       reverse_iterator
387       rbegin() _GLIBCXX_NOEXCEPT
388       { return _M_t.rbegin(); }
389 
390       /**
391        *  Returns a read-only (constant) reverse iterator that points to the
392        *  last pair in the %multimap.  Iteration is done in descending order
393        *  according to the keys.
394        */
395       const_reverse_iterator
396       rbegin() const _GLIBCXX_NOEXCEPT
397       { return _M_t.rbegin(); }
398 
399       /**
400        *  Returns a read/write reverse iterator that points to one before the
401        *  first pair in the %multimap.  Iteration is done in descending order
402        *  according to the keys.
403        */
404       reverse_iterator
405       rend() _GLIBCXX_NOEXCEPT
406       { return _M_t.rend(); }
407 
408       /**
409        *  Returns a read-only (constant) reverse iterator that points to one
410        *  before the first pair in the %multimap.  Iteration is done in
411        *  descending order according to the keys.
412        */
413       const_reverse_iterator
414       rend() const _GLIBCXX_NOEXCEPT
415       { return _M_t.rend(); }
416 
417 #if __cplusplus >= 201103L
418       /**
419        *  Returns a read-only (constant) iterator that points to the first pair
420        *  in the %multimap.  Iteration is done in ascending order according to
421        *  the keys.
422        */
423       const_iterator
424       cbegin() const noexcept
425       { return _M_t.begin(); }
426 
427       /**
428        *  Returns a read-only (constant) iterator that points one past the last
429        *  pair in the %multimap.  Iteration is done in ascending order according
430        *  to the keys.
431        */
432       const_iterator
433       cend() const noexcept
434       { return _M_t.end(); }
435 
436       /**
437        *  Returns a read-only (constant) reverse iterator that points to the
438        *  last pair in the %multimap.  Iteration is done in descending order
439        *  according to the keys.
440        */
441       const_reverse_iterator
442       crbegin() const noexcept
443       { return _M_t.rbegin(); }
444 
445       /**
446        *  Returns a read-only (constant) reverse iterator that points to one
447        *  before the first pair in the %multimap.  Iteration is done in
448        *  descending order according to the keys.
449        */
450       const_reverse_iterator
451       crend() const noexcept
452       { return _M_t.rend(); }
453 #endif
454 
455       // capacity
456       /** Returns true if the %multimap is empty.  */
457       _GLIBCXX_NODISCARD bool
458       empty() const _GLIBCXX_NOEXCEPT
459       { return _M_t.empty(); }
460 
461       /** Returns the size of the %multimap.  */
462       size_type
463       size() const _GLIBCXX_NOEXCEPT
464       { return _M_t.size(); }
465 
466       /** Returns the maximum size of the %multimap.  */
467       size_type
468       max_size() const _GLIBCXX_NOEXCEPT
469       { return _M_t.max_size(); }
470 
471       // modifiers
472 #if __cplusplus >= 201103L
473       /**
474        *  @brief Build and insert a std::pair into the %multimap.
475        *
476        *  @param __args  Arguments used to generate a new pair instance (see
477        *	        std::piecewise_contruct for passing arguments to each
478        *	        part of the pair constructor).
479        *
480        *  @return An iterator that points to the inserted (key,value) pair.
481        *
482        *  This function builds and inserts a (key, value) %pair into the
483        *  %multimap.
484        *  Contrary to a std::map the %multimap does not rely on unique keys and
485        *  thus multiple pairs with the same key can be inserted.
486        *
487        *  Insertion requires logarithmic time.
488        */
489       template<typename... _Args>
490 	iterator
491 	emplace(_Args&&... __args)
492 	{ return _M_t._M_emplace_equal(std::forward<_Args>(__args)...); }
493 
494       /**
495        *  @brief Builds and inserts a std::pair into the %multimap.
496        *
497        *  @param  __pos  An iterator that serves as a hint as to where the pair
498        *                should be inserted.
499        *  @param  __args  Arguments used to generate a new pair instance (see
500        *	         std::piecewise_contruct for passing arguments to each
501        *	         part of the pair constructor).
502        *  @return An iterator that points to the inserted (key,value) pair.
503        *
504        *  This function inserts a (key, value) pair into the %multimap.
505        *  Contrary to a std::map the %multimap does not rely on unique keys and
506        *  thus multiple pairs with the same key can be inserted.
507        *  Note that the first parameter is only a hint and can potentially
508        *  improve the performance of the insertion process.  A bad hint would
509        *  cause no gains in efficiency.
510        *
511        *  For more on @a hinting, see:
512        *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
513        *
514        *  Insertion requires logarithmic time (if the hint is not taken).
515        */
516       template<typename... _Args>
517 	iterator
518 	emplace_hint(const_iterator __pos, _Args&&... __args)
519 	{
520 	  return _M_t._M_emplace_hint_equal(__pos,
521 					    std::forward<_Args>(__args)...);
522 	}
523 #endif
524 
525       /**
526        *  @brief Inserts a std::pair into the %multimap.
527        *  @param  __x  Pair to be inserted (see std::make_pair for easy creation
528        *             of pairs).
529        *  @return An iterator that points to the inserted (key,value) pair.
530        *
531        *  This function inserts a (key, value) pair into the %multimap.
532        *  Contrary to a std::map the %multimap does not rely on unique keys and
533        *  thus multiple pairs with the same key can be inserted.
534        *
535        *  Insertion requires logarithmic time.
536        *  @{
537        */
538       iterator
539       insert(const value_type& __x)
540       { return _M_t._M_insert_equal(__x); }
541 
542 #if __cplusplus >= 201103L
543       // _GLIBCXX_RESOLVE_LIB_DEFECTS
544       // 2354. Unnecessary copying when inserting into maps with braced-init
545       iterator
546       insert(value_type&& __x)
547       { return _M_t._M_insert_equal(std::move(__x)); }
548 
549       template<typename _Pair>
550 	__enable_if_t<is_constructible<value_type, _Pair>::value, iterator>
551 	insert(_Pair&& __x)
552 	{ return _M_t._M_emplace_equal(std::forward<_Pair>(__x)); }
553 #endif
554       /// @}
555 
556       /**
557        *  @brief Inserts a std::pair into the %multimap.
558        *  @param  __position  An iterator that serves as a hint as to where the
559        *                      pair should be inserted.
560        *  @param  __x  Pair to be inserted (see std::make_pair for easy creation
561        *               of pairs).
562        *  @return An iterator that points to the inserted (key,value) pair.
563        *
564        *  This function inserts a (key, value) pair into the %multimap.
565        *  Contrary to a std::map the %multimap does not rely on unique keys and
566        *  thus multiple pairs with the same key can be inserted.
567        *  Note that the first parameter is only a hint and can potentially
568        *  improve the performance of the insertion process.  A bad hint would
569        *  cause no gains in efficiency.
570        *
571        *  For more on @a hinting, see:
572        *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
573        *
574        *  Insertion requires logarithmic time (if the hint is not taken).
575        * @{
576        */
577       iterator
578 #if __cplusplus >= 201103L
579       insert(const_iterator __position, const value_type& __x)
580 #else
581       insert(iterator __position, const value_type& __x)
582 #endif
583       { return _M_t._M_insert_equal_(__position, __x); }
584 
585 #if __cplusplus >= 201103L
586       // _GLIBCXX_RESOLVE_LIB_DEFECTS
587       // 2354. Unnecessary copying when inserting into maps with braced-init
588       iterator
589       insert(const_iterator __position, value_type&& __x)
590       { return _M_t._M_insert_equal_(__position, std::move(__x)); }
591 
592       template<typename _Pair>
593 	__enable_if_t<is_constructible<value_type, _Pair&&>::value, iterator>
594 	insert(const_iterator __position, _Pair&& __x)
595 	{
596 	  return _M_t._M_emplace_hint_equal(__position,
597 					    std::forward<_Pair>(__x));
598 	}
599 #endif
600       /// @}
601 
602       /**
603        *  @brief A template function that attempts to insert a range
604        *  of elements.
605        *  @param  __first  Iterator pointing to the start of the range to be
606        *                   inserted.
607        *  @param  __last  Iterator pointing to the end of the range.
608        *
609        *  Complexity similar to that of the range constructor.
610        */
611       template<typename _InputIterator>
612 	void
613 	insert(_InputIterator __first, _InputIterator __last)
614 	{ _M_t._M_insert_range_equal(__first, __last); }
615 
616 #if __cplusplus >= 201103L
617       /**
618        *  @brief Attempts to insert a list of std::pairs into the %multimap.
619        *  @param  __l  A std::initializer_list<value_type> of pairs to be
620        *               inserted.
621        *
622        *  Complexity similar to that of the range constructor.
623        */
624       void
625       insert(initializer_list<value_type> __l)
626       { this->insert(__l.begin(), __l.end()); }
627 #endif
628 
629 #if __cplusplus > 201402L
630       /// Extract a node.
631       node_type
632       extract(const_iterator __pos)
633       {
634 	__glibcxx_assert(__pos != end());
635 	return _M_t.extract(__pos);
636       }
637 
638       /// Extract a node.
639       node_type
640       extract(const key_type& __x)
641       { return _M_t.extract(__x); }
642 
643       /// Re-insert an extracted node.
644       iterator
645       insert(node_type&& __nh)
646       { return _M_t._M_reinsert_node_equal(std::move(__nh)); }
647 
648       /// Re-insert an extracted node.
649       iterator
650       insert(const_iterator __hint, node_type&& __nh)
651       { return _M_t._M_reinsert_node_hint_equal(__hint, std::move(__nh)); }
652 
653       template<typename, typename>
654 	friend class std::_Rb_tree_merge_helper;
655 
656       template<typename _Cmp2>
657 	void
658 	merge(multimap<_Key, _Tp, _Cmp2, _Alloc>& __source)
659 	{
660 	  using _Merge_helper = _Rb_tree_merge_helper<multimap, _Cmp2>;
661 	  _M_t._M_merge_equal(_Merge_helper::_S_get_tree(__source));
662 	}
663 
664       template<typename _Cmp2>
665 	void
666 	merge(multimap<_Key, _Tp, _Cmp2, _Alloc>&& __source)
667 	{ merge(__source); }
668 
669       template<typename _Cmp2>
670 	void
671 	merge(map<_Key, _Tp, _Cmp2, _Alloc>& __source)
672 	{
673 	  using _Merge_helper = _Rb_tree_merge_helper<multimap, _Cmp2>;
674 	  _M_t._M_merge_equal(_Merge_helper::_S_get_tree(__source));
675 	}
676 
677       template<typename _Cmp2>
678 	void
679 	merge(map<_Key, _Tp, _Cmp2, _Alloc>&& __source)
680 	{ merge(__source); }
681 #endif // C++17
682 
683 #if __cplusplus >= 201103L
684       // _GLIBCXX_RESOLVE_LIB_DEFECTS
685       // DR 130. Associative erase should return an iterator.
686       /**
687        *  @brief Erases an element from a %multimap.
688        *  @param  __position  An iterator pointing to the element to be erased.
689        *  @return An iterator pointing to the element immediately following
690        *          @a position prior to the element being erased. If no such
691        *          element exists, end() is returned.
692        *
693        *  This function erases an element, pointed to by the given iterator,
694        *  from a %multimap.  Note that this function only erases the element,
695        *  and that if the element is itself a pointer, the pointed-to memory is
696        *  not touched in any way.  Managing the pointer is the user's
697        *  responsibility.
698        *
699        * @{
700        */
701       iterator
702       erase(const_iterator __position)
703       { return _M_t.erase(__position); }
704 
705       // LWG 2059.
706       _GLIBCXX_ABI_TAG_CXX11
707       iterator
708       erase(iterator __position)
709       { return _M_t.erase(__position); }
710       /// @}
711 #else
712       /**
713        *  @brief Erases an element from a %multimap.
714        *  @param  __position  An iterator pointing to the element to be erased.
715        *
716        *  This function erases an element, pointed to by the given iterator,
717        *  from a %multimap.  Note that this function only erases the element,
718        *  and that if the element is itself a pointer, the pointed-to memory is
719        *  not touched in any way.  Managing the pointer is the user's
720        *  responsibility.
721        */
722       void
723       erase(iterator __position)
724       { _M_t.erase(__position); }
725 #endif
726 
727       /**
728        *  @brief Erases elements according to the provided key.
729        *  @param  __x  Key of element to be erased.
730        *  @return  The number of elements erased.
731        *
732        *  This function erases all elements located by the given key from a
733        *  %multimap.
734        *  Note that this function only erases the element, and that if
735        *  the element is itself a pointer, the pointed-to memory is not touched
736        *  in any way.  Managing the pointer is the user's responsibility.
737        */
738       size_type
739       erase(const key_type& __x)
740       { return _M_t.erase(__x); }
741 
742 #if __cplusplus >= 201103L
743       // _GLIBCXX_RESOLVE_LIB_DEFECTS
744       // DR 130. Associative erase should return an iterator.
745       /**
746        *  @brief Erases a [first,last) range of elements from a %multimap.
747        *  @param  __first  Iterator pointing to the start of the range to be
748        *                   erased.
749        *  @param __last Iterator pointing to the end of the range to be
750        *                erased .
751        *  @return The iterator @a __last.
752        *
753        *  This function erases a sequence of elements from a %multimap.
754        *  Note that this function only erases the elements, and that if
755        *  the elements themselves are pointers, the pointed-to memory is not
756        *  touched in any way.  Managing the pointer is the user's
757        *  responsibility.
758        */
759       iterator
760       erase(const_iterator __first, const_iterator __last)
761       { return _M_t.erase(__first, __last); }
762 #else
763       // _GLIBCXX_RESOLVE_LIB_DEFECTS
764       // DR 130. Associative erase should return an iterator.
765       /**
766        *  @brief Erases a [first,last) range of elements from a %multimap.
767        *  @param  __first  Iterator pointing to the start of the range to be
768        *                 erased.
769        *  @param __last Iterator pointing to the end of the range to
770        *                be erased.
771        *
772        *  This function erases a sequence of elements from a %multimap.
773        *  Note that this function only erases the elements, and that if
774        *  the elements themselves are pointers, the pointed-to memory is not
775        *  touched in any way.  Managing the pointer is the user's
776        *  responsibility.
777        */
778       void
779       erase(iterator __first, iterator __last)
780       { _M_t.erase(__first, __last); }
781 #endif
782 
783       /**
784        *  @brief  Swaps data with another %multimap.
785        *  @param  __x  A %multimap of the same element and allocator types.
786        *
787        *  This exchanges the elements between two multimaps in constant time.
788        *  (It is only swapping a pointer, an integer, and an instance of
789        *  the @c Compare type (which itself is often stateless and empty), so it
790        *  should be quite fast.)
791        *  Note that the global std::swap() function is specialized such that
792        *  std::swap(m1,m2) will feed to this function.
793        *
794        *  Whether the allocators are swapped depends on the allocator traits.
795        */
796       void
797       swap(multimap& __x)
798       _GLIBCXX_NOEXCEPT_IF(__is_nothrow_swappable<_Compare>::value)
799       { _M_t.swap(__x._M_t); }
800 
801       /**
802        *  Erases all elements in a %multimap.  Note that this function only
803        *  erases the elements, and that if the elements themselves are pointers,
804        *  the pointed-to memory is not touched in any way.  Managing the pointer
805        *  is the user's responsibility.
806        */
807       void
808       clear() _GLIBCXX_NOEXCEPT
809       { _M_t.clear(); }
810 
811       // observers
812       /**
813        *  Returns the key comparison object out of which the %multimap
814        *  was constructed.
815        */
816       key_compare
817       key_comp() const
818       { return _M_t.key_comp(); }
819 
820       /**
821        *  Returns a value comparison object, built from the key comparison
822        *  object out of which the %multimap was constructed.
823        */
824       value_compare
825       value_comp() const
826       { return value_compare(_M_t.key_comp()); }
827 
828       // multimap operations
829 
830       ///@{
831       /**
832        *  @brief Tries to locate an element in a %multimap.
833        *  @param  __x  Key of (key, value) pair to be located.
834        *  @return  Iterator pointing to sought-after element,
835        *           or end() if not found.
836        *
837        *  This function takes a key and tries to locate the element with which
838        *  the key matches.  If successful the function returns an iterator
839        *  pointing to the sought after %pair.  If unsuccessful it returns the
840        *  past-the-end ( @c end() ) iterator.
841        */
842       iterator
843       find(const key_type& __x)
844       { return _M_t.find(__x); }
845 
846 #if __cplusplus > 201103L
847       template<typename _Kt>
848 	auto
849 	find(const _Kt& __x) -> decltype(_M_t._M_find_tr(__x))
850 	{ return _M_t._M_find_tr(__x); }
851 #endif
852       ///@}
853 
854       ///@{
855       /**
856        *  @brief Tries to locate an element in a %multimap.
857        *  @param  __x  Key of (key, value) pair to be located.
858        *  @return  Read-only (constant) iterator pointing to sought-after
859        *           element, or end() if not found.
860        *
861        *  This function takes a key and tries to locate the element with which
862        *  the key matches.  If successful the function returns a constant
863        *  iterator pointing to the sought after %pair.  If unsuccessful it
864        *  returns the past-the-end ( @c end() ) iterator.
865        */
866       const_iterator
867       find(const key_type& __x) const
868       { return _M_t.find(__x); }
869 
870 #if __cplusplus > 201103L
871       template<typename _Kt>
872 	auto
873 	find(const _Kt& __x) const -> decltype(_M_t._M_find_tr(__x))
874 	{ return _M_t._M_find_tr(__x); }
875 #endif
876       ///@}
877 
878       ///@{
879       /**
880        *  @brief Finds the number of elements with given key.
881        *  @param  __x  Key of (key, value) pairs to be located.
882        *  @return Number of elements with specified key.
883        */
884       size_type
885       count(const key_type& __x) const
886       { return _M_t.count(__x); }
887 
888 #if __cplusplus > 201103L
889       template<typename _Kt>
890 	auto
891 	count(const _Kt& __x) const -> decltype(_M_t._M_count_tr(__x))
892 	{ return _M_t._M_count_tr(__x); }
893 #endif
894       ///@}
895 
896 #if __cplusplus > 201703L
897       ///@{
898       /**
899        *  @brief  Finds whether an element with the given key exists.
900        *  @param  __x  Key of (key, value) pairs to be located.
901        *  @return  True if there is any element with the specified key.
902        */
903       bool
904       contains(const key_type& __x) const
905       { return _M_t.find(__x) != _M_t.end(); }
906 
907       template<typename _Kt>
908 	auto
909 	contains(const _Kt& __x) const
910 	-> decltype(_M_t._M_find_tr(__x), void(), true)
911 	{ return _M_t._M_find_tr(__x) != _M_t.end(); }
912       ///@}
913 #endif
914 
915       ///@{
916       /**
917        *  @brief Finds the beginning of a subsequence matching given key.
918        *  @param  __x  Key of (key, value) pair to be located.
919        *  @return  Iterator pointing to first element equal to or greater
920        *           than key, or end().
921        *
922        *  This function returns the first element of a subsequence of elements
923        *  that matches the given key.  If unsuccessful it returns an iterator
924        *  pointing to the first element that has a greater value than given key
925        *  or end() if no such element exists.
926        */
927       iterator
928       lower_bound(const key_type& __x)
929       { return _M_t.lower_bound(__x); }
930 
931 #if __cplusplus > 201103L
932       template<typename _Kt>
933 	auto
934 	lower_bound(const _Kt& __x)
935 	-> decltype(iterator(_M_t._M_lower_bound_tr(__x)))
936 	{ return iterator(_M_t._M_lower_bound_tr(__x)); }
937 #endif
938       ///@}
939 
940       ///@{
941       /**
942        *  @brief Finds the beginning of a subsequence matching given key.
943        *  @param  __x  Key of (key, value) pair to be located.
944        *  @return  Read-only (constant) iterator pointing to first element
945        *           equal to or greater than key, or end().
946        *
947        *  This function returns the first element of a subsequence of
948        *  elements that matches the given key.  If unsuccessful the
949        *  iterator will point to the next greatest element or, if no
950        *  such greater element exists, to end().
951        */
952       const_iterator
953       lower_bound(const key_type& __x) const
954       { return _M_t.lower_bound(__x); }
955 
956 #if __cplusplus > 201103L
957       template<typename _Kt>
958 	auto
959 	lower_bound(const _Kt& __x) const
960 	-> decltype(const_iterator(_M_t._M_lower_bound_tr(__x)))
961 	{ return const_iterator(_M_t._M_lower_bound_tr(__x)); }
962 #endif
963       ///@}
964 
965       ///@{
966       /**
967        *  @brief Finds the end of a subsequence matching given key.
968        *  @param  __x  Key of (key, value) pair to be located.
969        *  @return Iterator pointing to the first element
970        *          greater than key, or end().
971        */
972       iterator
973       upper_bound(const key_type& __x)
974       { return _M_t.upper_bound(__x); }
975 
976 #if __cplusplus > 201103L
977       template<typename _Kt>
978 	auto
979 	upper_bound(const _Kt& __x)
980 	-> decltype(iterator(_M_t._M_upper_bound_tr(__x)))
981 	{ return iterator(_M_t._M_upper_bound_tr(__x)); }
982 #endif
983       ///@}
984 
985       ///@{
986       /**
987        *  @brief Finds the end of a subsequence matching given key.
988        *  @param  __x  Key of (key, value) pair to be located.
989        *  @return  Read-only (constant) iterator pointing to first iterator
990        *           greater than key, or end().
991        */
992       const_iterator
993       upper_bound(const key_type& __x) const
994       { return _M_t.upper_bound(__x); }
995 
996 #if __cplusplus > 201103L
997       template<typename _Kt>
998 	auto
999 	upper_bound(const _Kt& __x) const
1000 	-> decltype(const_iterator(_M_t._M_upper_bound_tr(__x)))
1001 	{ return const_iterator(_M_t._M_upper_bound_tr(__x)); }
1002 #endif
1003       ///@}
1004 
1005       ///@{
1006       /**
1007        *  @brief Finds a subsequence matching given key.
1008        *  @param  __x  Key of (key, value) pairs to be located.
1009        *  @return  Pair of iterators that possibly points to the subsequence
1010        *           matching given key.
1011        *
1012        *  This function is equivalent to
1013        *  @code
1014        *    std::make_pair(c.lower_bound(val),
1015        *                   c.upper_bound(val))
1016        *  @endcode
1017        *  (but is faster than making the calls separately).
1018        */
1019       std::pair<iterator, iterator>
1020       equal_range(const key_type& __x)
1021       { return _M_t.equal_range(__x); }
1022 
1023 #if __cplusplus > 201103L
1024       template<typename _Kt>
1025 	auto
1026 	equal_range(const _Kt& __x)
1027 	-> decltype(pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)))
1028 	{ return pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)); }
1029 #endif
1030       ///@}
1031 
1032       ///@{
1033       /**
1034        *  @brief Finds a subsequence matching given key.
1035        *  @param  __x  Key of (key, value) pairs to be located.
1036        *  @return  Pair of read-only (constant) iterators that possibly points
1037        *           to the subsequence matching given key.
1038        *
1039        *  This function is equivalent to
1040        *  @code
1041        *    std::make_pair(c.lower_bound(val),
1042        *                   c.upper_bound(val))
1043        *  @endcode
1044        *  (but is faster than making the calls separately).
1045        */
1046       std::pair<const_iterator, const_iterator>
1047       equal_range(const key_type& __x) const
1048       { return _M_t.equal_range(__x); }
1049 
1050 #if __cplusplus > 201103L
1051       template<typename _Kt>
1052 	auto
1053 	equal_range(const _Kt& __x) const
1054 	-> decltype(pair<const_iterator, const_iterator>(
1055 	      _M_t._M_equal_range_tr(__x)))
1056 	{
1057 	  return pair<const_iterator, const_iterator>(
1058 	      _M_t._M_equal_range_tr(__x));
1059 	}
1060 #endif
1061       ///@}
1062 
1063       template<typename _K1, typename _T1, typename _C1, typename _A1>
1064 	friend bool
1065 	operator==(const multimap<_K1, _T1, _C1, _A1>&,
1066 		   const multimap<_K1, _T1, _C1, _A1>&);
1067 
1068 #if __cpp_lib_three_way_comparison
1069       template<typename _K1, typename _T1, typename _C1, typename _A1>
1070 	friend __detail::__synth3way_t<pair<const _K1, _T1>>
1071 	operator<=>(const multimap<_K1, _T1, _C1, _A1>&,
1072 		    const multimap<_K1, _T1, _C1, _A1>&);
1073 #else
1074       template<typename _K1, typename _T1, typename _C1, typename _A1>
1075 	friend bool
1076 	operator<(const multimap<_K1, _T1, _C1, _A1>&,
1077 		  const multimap<_K1, _T1, _C1, _A1>&);
1078 #endif
1079   };
1080 
1081 #if __cpp_deduction_guides >= 201606
1082 
1083   template<typename _InputIterator,
1084 	   typename _Compare = less<__iter_key_t<_InputIterator>>,
1085 	   typename _Allocator = allocator<__iter_to_alloc_t<_InputIterator>>,
1086 	   typename = _RequireInputIter<_InputIterator>,
1087 	   typename = _RequireNotAllocator<_Compare>,
1088 	   typename = _RequireAllocator<_Allocator>>
1089     multimap(_InputIterator, _InputIterator,
1090 	     _Compare = _Compare(), _Allocator = _Allocator())
1091     -> multimap<__iter_key_t<_InputIterator>, __iter_val_t<_InputIterator>,
1092 		_Compare, _Allocator>;
1093 
1094   template<typename _Key, typename _Tp, typename _Compare = less<_Key>,
1095 	   typename _Allocator = allocator<pair<const _Key, _Tp>>,
1096 	   typename = _RequireNotAllocator<_Compare>,
1097 	   typename = _RequireAllocator<_Allocator>>
1098     multimap(initializer_list<pair<_Key, _Tp>>,
1099 	     _Compare = _Compare(), _Allocator = _Allocator())
1100     -> multimap<_Key, _Tp, _Compare, _Allocator>;
1101 
1102   template<typename _InputIterator, typename _Allocator,
1103 	   typename = _RequireInputIter<_InputIterator>,
1104 	   typename = _RequireAllocator<_Allocator>>
1105     multimap(_InputIterator, _InputIterator, _Allocator)
1106     -> multimap<__iter_key_t<_InputIterator>, __iter_val_t<_InputIterator>,
1107 		less<__iter_key_t<_InputIterator>>, _Allocator>;
1108 
1109   template<typename _Key, typename _Tp, typename _Allocator,
1110 	   typename = _RequireAllocator<_Allocator>>
1111     multimap(initializer_list<pair<_Key, _Tp>>, _Allocator)
1112     -> multimap<_Key, _Tp, less<_Key>, _Allocator>;
1113 
1114 #endif // deduction guides
1115 
1116   /**
1117    *  @brief  Multimap equality comparison.
1118    *  @param  __x  A %multimap.
1119    *  @param  __y  A %multimap of the same type as @a __x.
1120    *  @return  True iff the size and elements of the maps are equal.
1121    *
1122    *  This is an equivalence relation.  It is linear in the size of the
1123    *  multimaps.  Multimaps are considered equivalent if their sizes are equal,
1124    *  and if corresponding elements compare equal.
1125   */
1126   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1127     inline bool
1128     operator==(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
1129 	       const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
1130     { return __x._M_t == __y._M_t; }
1131 
1132 #if __cpp_lib_three_way_comparison
1133   /**
1134    *  @brief  Multimap ordering relation.
1135    *  @param  __x  A `multimap`.
1136    *  @param  __y  A `multimap` of the same type as `x`.
1137    *  @return  A value indicating whether `__x` is less than, equal to,
1138    *           greater than, or incomparable with `__y`.
1139    *
1140    *  This is a total ordering relation.  It is linear in the size of the
1141    *  maps.  The elements must be comparable with @c <.
1142    *
1143    *  See `std::lexicographical_compare_three_way()` for how the determination
1144    *  is made. This operator is used to synthesize relational operators like
1145    *  `<` and `>=` etc.
1146   */
1147   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1148     inline __detail::__synth3way_t<pair<const _Key, _Tp>>
1149     operator<=>(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
1150 		const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
1151     { return __x._M_t <=> __y._M_t; }
1152 #else
1153   /**
1154    *  @brief  Multimap ordering relation.
1155    *  @param  __x  A %multimap.
1156    *  @param  __y  A %multimap of the same type as @a __x.
1157    *  @return  True iff @a x is lexicographically less than @a y.
1158    *
1159    *  This is a total ordering relation.  It is linear in the size of the
1160    *  multimaps.  The elements must be comparable with @c <.
1161    *
1162    *  See std::lexicographical_compare() for how the determination is made.
1163   */
1164   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1165     inline bool
1166     operator<(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
1167 	      const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
1168     { return __x._M_t < __y._M_t; }
1169 
1170   /// Based on operator==
1171   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1172     inline bool
1173     operator!=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
1174 	       const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
1175     { return !(__x == __y); }
1176 
1177   /// Based on operator<
1178   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1179     inline bool
1180     operator>(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
1181 	      const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
1182     { return __y < __x; }
1183 
1184   /// Based on operator<
1185   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1186     inline bool
1187     operator<=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
1188 	       const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
1189     { return !(__y < __x); }
1190 
1191   /// Based on operator<
1192   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1193     inline bool
1194     operator>=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
1195 	       const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
1196     { return !(__x < __y); }
1197 #endif // three-way comparison
1198 
1199   /// See std::multimap::swap().
1200   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1201     inline void
1202     swap(multimap<_Key, _Tp, _Compare, _Alloc>& __x,
1203 	 multimap<_Key, _Tp, _Compare, _Alloc>& __y)
1204     _GLIBCXX_NOEXCEPT_IF(noexcept(__x.swap(__y)))
1205     { __x.swap(__y); }
1206 
1207 _GLIBCXX_END_NAMESPACE_CONTAINER
1208 
1209 #if __cplusplus > 201402L
1210   // Allow std::multimap access to internals of compatible maps.
1211   template<typename _Key, typename _Val, typename _Cmp1, typename _Alloc,
1212 	   typename _Cmp2>
1213     struct
1214     _Rb_tree_merge_helper<_GLIBCXX_STD_C::multimap<_Key, _Val, _Cmp1, _Alloc>,
1215 			  _Cmp2>
1216     {
1217     private:
1218       friend class _GLIBCXX_STD_C::multimap<_Key, _Val, _Cmp1, _Alloc>;
1219 
1220       static auto&
1221       _S_get_tree(_GLIBCXX_STD_C::map<_Key, _Val, _Cmp2, _Alloc>& __map)
1222       { return __map._M_t; }
1223 
1224       static auto&
1225       _S_get_tree(_GLIBCXX_STD_C::multimap<_Key, _Val, _Cmp2, _Alloc>& __map)
1226       { return __map._M_t; }
1227     };
1228 #endif // C++17
1229 
1230 _GLIBCXX_END_NAMESPACE_VERSION
1231 } // namespace std
1232 
1233 #endif /* _STL_MULTIMAP_H */
1234