xref: /netbsd/external/gpl3/gcc/dist/gcc/domwalk.c (revision dd083157)
1 /* Generic dominator tree walker
2    Copyright (C) 2003-2020 Free Software Foundation, Inc.
3    Contributed by Diego Novillo <dnovillo@redhat.com>
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11 
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "cfganal.h"
26 #include "domwalk.h"
27 #include "dumpfile.h"
28 
29 /* This file implements a generic walker for dominator trees.
30 
31   To understand the dominator walker one must first have a grasp of dominators,
32   immediate dominators and the dominator tree.
33 
34   Dominators
35     A block B1 is said to dominate B2 if every path from the entry to B2 must
36     pass through B1.  Given the dominance relationship, we can proceed to
37     compute immediate dominators.  Note it is not important whether or not
38     our definition allows a block to dominate itself.
39 
40   Immediate Dominators:
41     Every block in the CFG has no more than one immediate dominator.  The
42     immediate dominator of block BB must dominate BB and must not dominate
43     any other dominator of BB and must not be BB itself.
44 
45   Dominator tree:
46     If we then construct a tree where each node is a basic block and there
47     is an edge from each block's immediate dominator to the block itself, then
48     we have a dominator tree.
49 
50 
51   [ Note this walker can also walk the post-dominator tree, which is
52     defined in a similar manner.  i.e., block B1 is said to post-dominate
53     block B2 if all paths from B2 to the exit block must pass through
54     B1.  ]
55 
56   For example, given the CFG
57 
58                    1
59                    |
60                    2
61                   / \
62                  3   4
63                     / \
64        +---------->5   6
65        |          / \ /
66        |    +--->8   7
67        |    |   /    |
68        |    +--9    11
69        |      /      |
70        +--- 10 ---> 12
71 
72 
73   We have a dominator tree which looks like
74 
75                    1
76                    |
77                    2
78                   / \
79                  /   \
80                 3     4
81                    / / \ \
82                    | | | |
83                    5 6 7 12
84                    |   |
85                    8   11
86                    |
87                    9
88                    |
89                   10
90 
91 
92 
93   The dominator tree is the basis for a number of analysis, transformation
94   and optimization algorithms that operate on a semi-global basis.
95 
96   The dominator walker is a generic routine which visits blocks in the CFG
97   via a depth first search of the dominator tree.  In the example above
98   the dominator walker might visit blocks in the following order
99   1, 2, 3, 4, 5, 8, 9, 10, 6, 7, 11, 12.
100 
101   The dominator walker has a number of callbacks to perform actions
102   during the walk of the dominator tree.  There are two callbacks
103   which walk statements, one before visiting the dominator children,
104   one after visiting the dominator children.  There is a callback
105   before and after each statement walk callback.  In addition, the
106   dominator walker manages allocation/deallocation of data structures
107   which are local to each block visited.
108 
109   The dominator walker is meant to provide a generic means to build a pass
110   which can analyze or transform/optimize a function based on walking
111   the dominator tree.  One simply fills in the dominator walker data
112   structure with the appropriate callbacks and calls the walker.
113 
114   We currently use the dominator walker to prune the set of variables
115   which might need PHI nodes (which can greatly improve compile-time
116   performance in some cases).
117 
118   We also use the dominator walker to rewrite the function into SSA form
119   which reduces code duplication since the rewriting phase is inherently
120   a walk of the dominator tree.
121 
122   And (of course), we use the dominator walker to drive our dominator
123   optimizer, which is a semi-global optimizer.
124 
125   TODO:
126 
127     Walking statements is based on the block statement iterator abstraction,
128     which is currently an abstraction over walking tree statements.  Thus
129     the dominator walker is currently only useful for trees.  */
130 
131 static int
cmp_bb_postorder(const void * a,const void * b,void * data)132 cmp_bb_postorder (const void *a, const void *b, void *data)
133 {
134   basic_block bb1 = *(const basic_block *)(a);
135   basic_block bb2 = *(const basic_block *)(b);
136   int *bb_postorder = (int *)data;
137   /* Place higher completion number first (pop off lower number first).  */
138   return bb_postorder[bb2->index] - bb_postorder[bb1->index];
139 }
140 
141 /* Permute array BBS of N basic blocks in postorder,
142    i.e. by descending number in BB_POSTORDER array.  */
143 
144 static void
sort_bbs_postorder(basic_block * bbs,int n,int * bb_postorder)145 sort_bbs_postorder (basic_block *bbs, int n, int *bb_postorder)
146 {
147   if (__builtin_expect (n == 2, true))
148     {
149       basic_block bb0 = bbs[0], bb1 = bbs[1];
150       if (bb_postorder[bb0->index] < bb_postorder[bb1->index])
151 	bbs[0] = bb1, bbs[1] = bb0;
152     }
153   else if (__builtin_expect (n == 3, true))
154     {
155       basic_block bb0 = bbs[0], bb1 = bbs[1], bb2 = bbs[2];
156       if (bb_postorder[bb0->index] < bb_postorder[bb1->index])
157 	std::swap (bb0, bb1);
158       if (bb_postorder[bb1->index] < bb_postorder[bb2->index])
159 	{
160 	  std::swap (bb1, bb2);
161 	  if (bb_postorder[bb0->index] < bb_postorder[bb1->index])
162 	    std::swap (bb0, bb1);
163 	}
164       bbs[0] = bb0, bbs[1] = bb1, bbs[2] = bb2;
165     }
166   else
167     gcc_sort_r (bbs, n, sizeof *bbs, cmp_bb_postorder, bb_postorder);
168 }
169 
170 /* Set EDGE_EXECUTABLE on every edge within FN's CFG.  */
171 
172 void
set_all_edges_as_executable(function * fn)173 set_all_edges_as_executable (function *fn)
174 {
175   basic_block bb;
176   FOR_ALL_BB_FN (bb, fn)
177     {
178       edge_iterator ei;
179       edge e;
180       FOR_EACH_EDGE (e, ei, bb->succs)
181 	e->flags |= EDGE_EXECUTABLE;
182     }
183 }
184 
185 /* Constructor for a dom walker.  */
186 
dom_walker(cdi_direction direction,enum reachability reachability,int * bb_index_to_rpo)187 dom_walker::dom_walker (cdi_direction direction,
188 			enum reachability reachability,
189 			int *bb_index_to_rpo)
190   : m_dom_direction (direction),
191     m_reachability (reachability),
192     m_user_bb_to_rpo (bb_index_to_rpo != NULL),
193     m_unreachable_dom (NULL),
194     m_bb_to_rpo (bb_index_to_rpo)
195 {
196 }
197 
198 /* Destructor.  */
199 
~dom_walker()200 dom_walker::~dom_walker ()
201 {
202   if (! m_user_bb_to_rpo)
203     free (m_bb_to_rpo);
204 }
205 
206 /* Return TRUE if BB is reachable, false otherwise.  */
207 
208 bool
bb_reachable(struct function * fun,basic_block bb)209 dom_walker::bb_reachable (struct function *fun, basic_block bb)
210 {
211   /* If we're not skipping unreachable blocks, then assume everything
212      is reachable.  */
213   if (m_reachability == ALL_BLOCKS)
214     return true;
215 
216   /* If any of the predecessor edges that do not come from blocks dominated
217      by us are still marked as possibly executable consider this block
218      reachable.  */
219   bool reachable = false;
220   if (!m_unreachable_dom)
221     {
222       reachable = bb == ENTRY_BLOCK_PTR_FOR_FN (fun);
223       edge_iterator ei;
224       edge e;
225       FOR_EACH_EDGE (e, ei, bb->preds)
226 	if (!dominated_by_p (CDI_DOMINATORS, e->src, bb))
227 	  reachable |= (e->flags & EDGE_EXECUTABLE);
228     }
229 
230   return reachable;
231 }
232 
233 /* BB has been determined to be unreachable.  Propagate that property
234    to incoming and outgoing edges of BB as appropriate.  */
235 
236 void
propagate_unreachable_to_edges(basic_block bb,FILE * dump_file,dump_flags_t dump_flags)237 dom_walker::propagate_unreachable_to_edges (basic_block bb,
238 					    FILE *dump_file,
239 					    dump_flags_t dump_flags)
240 {
241   if (dump_file && (dump_flags & TDF_DETAILS))
242     fprintf (dump_file, "Marking all outgoing edges of unreachable "
243 	     "BB %d as not executable\n", bb->index);
244 
245   edge_iterator ei;
246   edge e;
247   FOR_EACH_EDGE (e, ei, bb->succs)
248     e->flags &= ~EDGE_EXECUTABLE;
249 
250   FOR_EACH_EDGE (e, ei, bb->preds)
251     {
252       if (dominated_by_p (CDI_DOMINATORS, e->src, bb))
253 	{
254 	  if (dump_file && (dump_flags & TDF_DETAILS))
255 	    fprintf (dump_file, "Marking backedge from BB %d into "
256 		     "unreachable BB %d as not executable\n",
257 		     e->src->index, bb->index);
258 	  e->flags &= ~EDGE_EXECUTABLE;
259 	}
260     }
261 
262   if (!m_unreachable_dom)
263     m_unreachable_dom = bb;
264 }
265 
266 const edge dom_walker::STOP = (edge)-1;
267 
268 /* Recursively walk the dominator tree.
269    BB is the basic block we are currently visiting.  */
270 
271 void
walk(basic_block bb)272 dom_walker::walk (basic_block bb)
273 {
274   /* Compute the basic-block index to RPO mapping lazily.  */
275   if (!m_bb_to_rpo
276       && m_dom_direction == CDI_DOMINATORS)
277     {
278       int *postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
279       int postorder_num = pre_and_rev_post_order_compute (NULL, postorder,
280 							  true);
281       m_bb_to_rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
282       for (int i = 0; i < postorder_num; ++i)
283 	m_bb_to_rpo[postorder[i]] = i;
284       free (postorder);
285     }
286 
287   /* Set up edge flags if need be.  */
288   if (m_reachability == REACHABLE_BLOCKS)
289     set_all_edges_as_executable (cfun);
290 
291   basic_block dest;
292   basic_block *worklist = XNEWVEC (basic_block,
293 				   n_basic_blocks_for_fn (cfun) * 2);
294   int sp = 0;
295 
296   while (true)
297     {
298       /* Don't worry about unreachable blocks.  */
299       if (EDGE_COUNT (bb->preds) > 0
300 	  || bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)
301 	  || bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
302 	{
303 	  edge taken_edge = NULL;
304 
305 	  /* Callback for subclasses to do custom things before we have walked
306 	     the dominator children, but before we walk statements.  */
307 	  if (this->bb_reachable (cfun, bb))
308 	    {
309 	      taken_edge = before_dom_children (bb);
310 	      if (taken_edge && taken_edge != STOP)
311 		{
312 		  edge_iterator ei;
313 		  edge e;
314 		  FOR_EACH_EDGE (e, ei, bb->succs)
315 		    if (e != taken_edge)
316 		      e->flags &= ~EDGE_EXECUTABLE;
317 		}
318 	    }
319 	  else
320 	    propagate_unreachable_to_edges (bb, dump_file, dump_flags);
321 
322 	  /* Mark the current BB to be popped out of the recursion stack
323 	     once children are processed.  */
324 	  worklist[sp++] = bb;
325 	  worklist[sp++] = NULL;
326 
327 	  /* If the callback returned NONE then we are supposed to
328 	     stop and not even propagate EDGE_EXECUTABLE further.  */
329 	  if (taken_edge != STOP)
330 	    {
331 	      int saved_sp = sp;
332 	      for (dest = first_dom_son (m_dom_direction, bb);
333 		   dest; dest = next_dom_son (m_dom_direction, dest))
334 		worklist[sp++] = dest;
335 	      /* Sort worklist after RPO order if requested.  */
336 	      if (sp - saved_sp > 1
337 		  && m_dom_direction == CDI_DOMINATORS
338 		  && m_bb_to_rpo)
339 		sort_bbs_postorder (&worklist[saved_sp], sp - saved_sp,
340 				    m_bb_to_rpo);
341 	    }
342 	}
343       /* NULL is used to mark pop operations in the recursion stack.  */
344       while (sp > 0 && !worklist[sp - 1])
345 	{
346 	  --sp;
347 	  bb = worklist[--sp];
348 
349 	  /* Callback allowing subclasses to do custom things after we have
350 	     walked dominator children, but before we walk statements.  */
351 	  if (bb_reachable (cfun, bb))
352 	    after_dom_children (bb);
353 	  else if (m_unreachable_dom == bb)
354 	    m_unreachable_dom = NULL;
355 	}
356       if (sp)
357 	bb = worklist[--sp];
358       else
359 	break;
360     }
361   free (worklist);
362 }
363