xref: /netbsd/external/gpl3/gcc/dist/gcc/emit-rtl.cc (revision f0fbc68b)
1 /* Emit RTL for the GCC expander.
2    Copyright (C) 1987-2022 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 
21 /* Middle-to-low level generation of rtx code and insns.
22 
23    This file contains support functions for creating rtl expressions
24    and manipulating them in the doubly-linked chain of insns.
25 
26    The patterns of the insns are created by machine-dependent
27    routines in insn-emit.cc, which is generated automatically from
28    the machine description.  These routines make the individual rtx's
29    of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30    which are automatically generated from rtl.def; what is machine
31    dependent is the kind of rtx's they make and what arguments they
32    use.  */
33 
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "memmodel.h"
38 #include "backend.h"
39 #include "target.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "df.h"
43 #include "tm_p.h"
44 #include "stringpool.h"
45 #include "insn-config.h"
46 #include "regs.h"
47 #include "emit-rtl.h"
48 #include "recog.h"
49 #include "diagnostic-core.h"
50 #include "alias.h"
51 #include "fold-const.h"
52 #include "varasm.h"
53 #include "cfgrtl.h"
54 #include "tree-eh.h"
55 #include "explow.h"
56 #include "expr.h"
57 #include "builtins.h"
58 #include "rtl-iter.h"
59 #include "stor-layout.h"
60 #include "opts.h"
61 #include "predict.h"
62 #include "rtx-vector-builder.h"
63 #include "gimple.h"
64 #include "gimple-ssa.h"
65 #include "gimplify.h"
66 
67 struct target_rtl default_target_rtl;
68 #if SWITCHABLE_TARGET
69 struct target_rtl *this_target_rtl = &default_target_rtl;
70 #endif
71 
72 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
73 
74 /* Commonly used modes.  */
75 
76 scalar_int_mode byte_mode;	/* Mode whose width is BITS_PER_UNIT.  */
77 scalar_int_mode word_mode;	/* Mode whose width is BITS_PER_WORD.  */
78 scalar_int_mode ptr_mode;	/* Mode whose width is POINTER_SIZE.  */
79 
80 /* Datastructures maintained for currently processed function in RTL form.  */
81 
82 struct rtl_data x_rtl;
83 
84 /* Indexed by pseudo register number, gives the rtx for that pseudo.
85    Allocated in parallel with regno_pointer_align.
86    FIXME: We could put it into emit_status struct, but gengtype is not able to deal
87    with length attribute nested in top level structures.  */
88 
89 rtx * regno_reg_rtx;
90 
91 /* This is *not* reset after each function.  It gives each CODE_LABEL
92    in the entire compilation a unique label number.  */
93 
94 static GTY(()) int label_num = 1;
95 
96 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
97    the values of 0, 1, and 2.  For the integer entries and VOIDmode, we
98    record a copy of const[012]_rtx and constm1_rtx.  CONSTM1_RTX
99    is set only for MODE_INT and MODE_VECTOR_INT modes.  */
100 
101 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
102 
103 rtx const_true_rtx;
104 
105 REAL_VALUE_TYPE dconst0;
106 REAL_VALUE_TYPE dconst1;
107 REAL_VALUE_TYPE dconst2;
108 REAL_VALUE_TYPE dconstm1;
109 REAL_VALUE_TYPE dconsthalf;
110 
111 /* Record fixed-point constant 0 and 1.  */
112 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
113 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
114 
115 /* We make one copy of (const_int C) where C is in
116    [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
117    to save space during the compilation and simplify comparisons of
118    integers.  */
119 
120 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
121 
122 /* Standard pieces of rtx, to be substituted directly into things.  */
123 rtx pc_rtx;
124 rtx ret_rtx;
125 rtx simple_return_rtx;
126 
127 /* Marker used for denoting an INSN, which should never be accessed (i.e.,
128    this pointer should normally never be dereferenced), but is required to be
129    distinct from NULL_RTX.  Currently used by peephole2 pass.  */
130 rtx_insn *invalid_insn_rtx;
131 
132 /* A hash table storing CONST_INTs whose absolute value is greater
133    than MAX_SAVED_CONST_INT.  */
134 
135 struct const_int_hasher : ggc_cache_ptr_hash<rtx_def>
136 {
137   typedef HOST_WIDE_INT compare_type;
138 
139   static hashval_t hash (rtx i);
140   static bool equal (rtx i, HOST_WIDE_INT h);
141 };
142 
143 static GTY ((cache)) hash_table<const_int_hasher> *const_int_htab;
144 
145 struct const_wide_int_hasher : ggc_cache_ptr_hash<rtx_def>
146 {
147   static hashval_t hash (rtx x);
148   static bool equal (rtx x, rtx y);
149 };
150 
151 static GTY ((cache)) hash_table<const_wide_int_hasher> *const_wide_int_htab;
152 
153 struct const_poly_int_hasher : ggc_cache_ptr_hash<rtx_def>
154 {
155   typedef std::pair<machine_mode, poly_wide_int_ref> compare_type;
156 
157   static hashval_t hash (rtx x);
158   static bool equal (rtx x, const compare_type &y);
159 };
160 
161 static GTY ((cache)) hash_table<const_poly_int_hasher> *const_poly_int_htab;
162 
163 /* A hash table storing register attribute structures.  */
164 struct reg_attr_hasher : ggc_cache_ptr_hash<reg_attrs>
165 {
166   static hashval_t hash (reg_attrs *x);
167   static bool equal (reg_attrs *a, reg_attrs *b);
168 };
169 
170 static GTY ((cache)) hash_table<reg_attr_hasher> *reg_attrs_htab;
171 
172 /* A hash table storing all CONST_DOUBLEs.  */
173 struct const_double_hasher : ggc_cache_ptr_hash<rtx_def>
174 {
175   static hashval_t hash (rtx x);
176   static bool equal (rtx x, rtx y);
177 };
178 
179 static GTY ((cache)) hash_table<const_double_hasher> *const_double_htab;
180 
181 /* A hash table storing all CONST_FIXEDs.  */
182 struct const_fixed_hasher : ggc_cache_ptr_hash<rtx_def>
183 {
184   static hashval_t hash (rtx x);
185   static bool equal (rtx x, rtx y);
186 };
187 
188 static GTY ((cache)) hash_table<const_fixed_hasher> *const_fixed_htab;
189 
190 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
191 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
192 #define first_label_num (crtl->emit.x_first_label_num)
193 
194 static void set_used_decls (tree);
195 static void mark_label_nuses (rtx);
196 #if TARGET_SUPPORTS_WIDE_INT
197 static rtx lookup_const_wide_int (rtx);
198 #endif
199 static rtx lookup_const_double (rtx);
200 static rtx lookup_const_fixed (rtx);
201 static rtx gen_const_vector (machine_mode, int);
202 static void copy_rtx_if_shared_1 (rtx *orig);
203 
204 /* Probability of the conditional branch currently proceeded by try_split.  */
205 profile_probability split_branch_probability;
206 
207 /* Returns a hash code for X (which is a really a CONST_INT).  */
208 
209 hashval_t
hash(rtx x)210 const_int_hasher::hash (rtx x)
211 {
212   return (hashval_t) INTVAL (x);
213 }
214 
215 /* Returns nonzero if the value represented by X (which is really a
216    CONST_INT) is the same as that given by Y (which is really a
217    HOST_WIDE_INT *).  */
218 
219 bool
equal(rtx x,HOST_WIDE_INT y)220 const_int_hasher::equal (rtx x, HOST_WIDE_INT y)
221 {
222   return (INTVAL (x) == y);
223 }
224 
225 #if TARGET_SUPPORTS_WIDE_INT
226 /* Returns a hash code for X (which is a really a CONST_WIDE_INT).  */
227 
228 hashval_t
hash(rtx x)229 const_wide_int_hasher::hash (rtx x)
230 {
231   int i;
232   unsigned HOST_WIDE_INT hash = 0;
233   const_rtx xr = x;
234 
235   for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
236     hash += CONST_WIDE_INT_ELT (xr, i);
237 
238   return (hashval_t) hash;
239 }
240 
241 /* Returns nonzero if the value represented by X (which is really a
242    CONST_WIDE_INT) is the same as that given by Y (which is really a
243    CONST_WIDE_INT).  */
244 
245 bool
equal(rtx x,rtx y)246 const_wide_int_hasher::equal (rtx x, rtx y)
247 {
248   int i;
249   const_rtx xr = x;
250   const_rtx yr = y;
251   if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr))
252     return false;
253 
254   for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
255     if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i))
256       return false;
257 
258   return true;
259 }
260 #endif
261 
262 /* Returns a hash code for CONST_POLY_INT X.  */
263 
264 hashval_t
hash(rtx x)265 const_poly_int_hasher::hash (rtx x)
266 {
267   inchash::hash h;
268   h.add_int (GET_MODE (x));
269   for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
270     h.add_wide_int (CONST_POLY_INT_COEFFS (x)[i]);
271   return h.end ();
272 }
273 
274 /* Returns nonzero if CONST_POLY_INT X is an rtx representation of Y.  */
275 
276 bool
equal(rtx x,const compare_type & y)277 const_poly_int_hasher::equal (rtx x, const compare_type &y)
278 {
279   if (GET_MODE (x) != y.first)
280     return false;
281   for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
282     if (CONST_POLY_INT_COEFFS (x)[i] != y.second.coeffs[i])
283       return false;
284   return true;
285 }
286 
287 /* Returns a hash code for X (which is really a CONST_DOUBLE).  */
288 hashval_t
hash(rtx x)289 const_double_hasher::hash (rtx x)
290 {
291   const_rtx const value = x;
292   hashval_t h;
293 
294   if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode)
295     h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
296   else
297     {
298       h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
299       /* MODE is used in the comparison, so it should be in the hash.  */
300       h ^= GET_MODE (value);
301     }
302   return h;
303 }
304 
305 /* Returns nonzero if the value represented by X (really a ...)
306    is the same as that represented by Y (really a ...) */
307 bool
equal(rtx x,rtx y)308 const_double_hasher::equal (rtx x, rtx y)
309 {
310   const_rtx const a = x, b = y;
311 
312   if (GET_MODE (a) != GET_MODE (b))
313     return 0;
314   if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode)
315     return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
316 	    && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
317   else
318     return real_identical (CONST_DOUBLE_REAL_VALUE (a),
319 			   CONST_DOUBLE_REAL_VALUE (b));
320 }
321 
322 /* Returns a hash code for X (which is really a CONST_FIXED).  */
323 
324 hashval_t
hash(rtx x)325 const_fixed_hasher::hash (rtx x)
326 {
327   const_rtx const value = x;
328   hashval_t h;
329 
330   h = fixed_hash (CONST_FIXED_VALUE (value));
331   /* MODE is used in the comparison, so it should be in the hash.  */
332   h ^= GET_MODE (value);
333   return h;
334 }
335 
336 /* Returns nonzero if the value represented by X is the same as that
337    represented by Y.  */
338 
339 bool
equal(rtx x,rtx y)340 const_fixed_hasher::equal (rtx x, rtx y)
341 {
342   const_rtx const a = x, b = y;
343 
344   if (GET_MODE (a) != GET_MODE (b))
345     return 0;
346   return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
347 }
348 
349 /* Return true if the given memory attributes are equal.  */
350 
351 bool
mem_attrs_eq_p(const class mem_attrs * p,const class mem_attrs * q)352 mem_attrs_eq_p (const class mem_attrs *p, const class mem_attrs *q)
353 {
354   if (p == q)
355     return true;
356   if (!p || !q)
357     return false;
358   return (p->alias == q->alias
359 	  && p->offset_known_p == q->offset_known_p
360 	  && (!p->offset_known_p || known_eq (p->offset, q->offset))
361 	  && p->size_known_p == q->size_known_p
362 	  && (!p->size_known_p || known_eq (p->size, q->size))
363 	  && p->align == q->align
364 	  && p->addrspace == q->addrspace
365 	  && (p->expr == q->expr
366 	      || (p->expr != NULL_TREE && q->expr != NULL_TREE
367 		  && operand_equal_p (p->expr, q->expr, 0))));
368 }
369 
370 /* Set MEM's memory attributes so that they are the same as ATTRS.  */
371 
372 static void
set_mem_attrs(rtx mem,mem_attrs * attrs)373 set_mem_attrs (rtx mem, mem_attrs *attrs)
374 {
375   /* If everything is the default, we can just clear the attributes.  */
376   if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
377     {
378       MEM_ATTRS (mem) = 0;
379       return;
380     }
381 
382   if (!MEM_ATTRS (mem)
383       || !mem_attrs_eq_p (attrs, MEM_ATTRS (mem)))
384     {
385       MEM_ATTRS (mem) = ggc_alloc<mem_attrs> ();
386       memcpy (MEM_ATTRS (mem), attrs, sizeof (mem_attrs));
387     }
388 }
389 
390 /* Returns a hash code for X (which is a really a reg_attrs *).  */
391 
392 hashval_t
hash(reg_attrs * x)393 reg_attr_hasher::hash (reg_attrs *x)
394 {
395   const reg_attrs *const p = x;
396 
397   inchash::hash h;
398   h.add_ptr (p->decl);
399   h.add_poly_hwi (p->offset);
400   return h.end ();
401 }
402 
403 /* Returns nonzero if the value represented by X  is the same as that given by
404    Y.  */
405 
406 bool
equal(reg_attrs * x,reg_attrs * y)407 reg_attr_hasher::equal (reg_attrs *x, reg_attrs *y)
408 {
409   const reg_attrs *const p = x;
410   const reg_attrs *const q = y;
411 
412   return (p->decl == q->decl && known_eq (p->offset, q->offset));
413 }
414 /* Allocate a new reg_attrs structure and insert it into the hash table if
415    one identical to it is not already in the table.  We are doing this for
416    MEM of mode MODE.  */
417 
418 static reg_attrs *
get_reg_attrs(tree decl,poly_int64 offset)419 get_reg_attrs (tree decl, poly_int64 offset)
420 {
421   reg_attrs attrs;
422 
423   /* If everything is the default, we can just return zero.  */
424   if (decl == 0 && known_eq (offset, 0))
425     return 0;
426 
427   attrs.decl = decl;
428   attrs.offset = offset;
429 
430   reg_attrs **slot = reg_attrs_htab->find_slot (&attrs, INSERT);
431   if (*slot == 0)
432     {
433       *slot = ggc_alloc<reg_attrs> ();
434       memcpy (*slot, &attrs, sizeof (reg_attrs));
435     }
436 
437   return *slot;
438 }
439 
440 
441 #if !HAVE_blockage
442 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
443    and to block register equivalences to be seen across this insn.  */
444 
445 rtx
gen_blockage(void)446 gen_blockage (void)
447 {
448   rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
449   MEM_VOLATILE_P (x) = true;
450   return x;
451 }
452 #endif
453 
454 
455 /* Set the mode and register number of X to MODE and REGNO.  */
456 
457 void
set_mode_and_regno(rtx x,machine_mode mode,unsigned int regno)458 set_mode_and_regno (rtx x, machine_mode mode, unsigned int regno)
459 {
460   unsigned int nregs = (HARD_REGISTER_NUM_P (regno)
461 			? hard_regno_nregs (regno, mode)
462 			: 1);
463   PUT_MODE_RAW (x, mode);
464   set_regno_raw (x, regno, nregs);
465 }
466 
467 /* Initialize a fresh REG rtx with mode MODE and register REGNO.  */
468 
469 rtx
init_raw_REG(rtx x,machine_mode mode,unsigned int regno)470 init_raw_REG (rtx x, machine_mode mode, unsigned int regno)
471 {
472   set_mode_and_regno (x, mode, regno);
473   REG_ATTRS (x) = NULL;
474   ORIGINAL_REGNO (x) = regno;
475   return x;
476 }
477 
478 /* Generate a new REG rtx.  Make sure ORIGINAL_REGNO is set properly, and
479    don't attempt to share with the various global pieces of rtl (such as
480    frame_pointer_rtx).  */
481 
482 rtx
gen_raw_REG(machine_mode mode,unsigned int regno)483 gen_raw_REG (machine_mode mode, unsigned int regno)
484 {
485   rtx x = rtx_alloc (REG MEM_STAT_INFO);
486   init_raw_REG (x, mode, regno);
487   return x;
488 }
489 
490 /* There are some RTL codes that require special attention; the generation
491    functions do the raw handling.  If you add to this list, modify
492    special_rtx in gengenrtl.cc as well.  */
493 
494 rtx_expr_list *
gen_rtx_EXPR_LIST(machine_mode mode,rtx expr,rtx expr_list)495 gen_rtx_EXPR_LIST (machine_mode mode, rtx expr, rtx expr_list)
496 {
497   return as_a <rtx_expr_list *> (gen_rtx_fmt_ee (EXPR_LIST, mode, expr,
498 						 expr_list));
499 }
500 
501 rtx_insn_list *
gen_rtx_INSN_LIST(machine_mode mode,rtx insn,rtx insn_list)502 gen_rtx_INSN_LIST (machine_mode mode, rtx insn, rtx insn_list)
503 {
504   return as_a <rtx_insn_list *> (gen_rtx_fmt_ue (INSN_LIST, mode, insn,
505 						 insn_list));
506 }
507 
508 rtx_insn *
gen_rtx_INSN(machine_mode mode,rtx_insn * prev_insn,rtx_insn * next_insn,basic_block bb,rtx pattern,int location,int code,rtx reg_notes)509 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
510 	      basic_block bb, rtx pattern, int location, int code,
511 	      rtx reg_notes)
512 {
513   return as_a <rtx_insn *> (gen_rtx_fmt_uuBeiie (INSN, mode,
514 						 prev_insn, next_insn,
515 						 bb, pattern, location, code,
516 						 reg_notes));
517 }
518 
519 rtx
gen_rtx_CONST_INT(machine_mode mode ATTRIBUTE_UNUSED,HOST_WIDE_INT arg)520 gen_rtx_CONST_INT (machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
521 {
522   if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
523     return const_int_rtx[arg + MAX_SAVED_CONST_INT];
524 
525 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
526   if (const_true_rtx && arg == STORE_FLAG_VALUE)
527     return const_true_rtx;
528 #endif
529 
530   /* Look up the CONST_INT in the hash table.  */
531   rtx *slot = const_int_htab->find_slot_with_hash (arg, (hashval_t) arg,
532 						   INSERT);
533   if (*slot == 0)
534     *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
535 
536   return *slot;
537 }
538 
539 rtx
gen_int_mode(poly_int64 c,machine_mode mode)540 gen_int_mode (poly_int64 c, machine_mode mode)
541 {
542   c = trunc_int_for_mode (c, mode);
543   if (c.is_constant ())
544     return GEN_INT (c.coeffs[0]);
545   unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode));
546   return immed_wide_int_const (poly_wide_int::from (c, prec, SIGNED), mode);
547 }
548 
549 /* CONST_DOUBLEs might be created from pairs of integers, or from
550    REAL_VALUE_TYPEs.  Also, their length is known only at run time,
551    so we cannot use gen_rtx_raw_CONST_DOUBLE.  */
552 
553 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
554    hash table.  If so, return its counterpart; otherwise add it
555    to the hash table and return it.  */
556 static rtx
lookup_const_double(rtx real)557 lookup_const_double (rtx real)
558 {
559   rtx *slot = const_double_htab->find_slot (real, INSERT);
560   if (*slot == 0)
561     *slot = real;
562 
563   return *slot;
564 }
565 
566 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
567    VALUE in mode MODE.  */
568 rtx
const_double_from_real_value(REAL_VALUE_TYPE value,machine_mode mode)569 const_double_from_real_value (REAL_VALUE_TYPE value, machine_mode mode)
570 {
571   rtx real = rtx_alloc (CONST_DOUBLE);
572   PUT_MODE (real, mode);
573 
574   real->u.rv = value;
575 
576   return lookup_const_double (real);
577 }
578 
579 /* Determine whether FIXED, a CONST_FIXED, already exists in the
580    hash table.  If so, return its counterpart; otherwise add it
581    to the hash table and return it.  */
582 
583 static rtx
lookup_const_fixed(rtx fixed)584 lookup_const_fixed (rtx fixed)
585 {
586   rtx *slot = const_fixed_htab->find_slot (fixed, INSERT);
587   if (*slot == 0)
588     *slot = fixed;
589 
590   return *slot;
591 }
592 
593 /* Return a CONST_FIXED rtx for a fixed-point value specified by
594    VALUE in mode MODE.  */
595 
596 rtx
const_fixed_from_fixed_value(FIXED_VALUE_TYPE value,machine_mode mode)597 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, machine_mode mode)
598 {
599   rtx fixed = rtx_alloc (CONST_FIXED);
600   PUT_MODE (fixed, mode);
601 
602   fixed->u.fv = value;
603 
604   return lookup_const_fixed (fixed);
605 }
606 
607 #if TARGET_SUPPORTS_WIDE_INT == 0
608 /* Constructs double_int from rtx CST.  */
609 
610 double_int
rtx_to_double_int(const_rtx cst)611 rtx_to_double_int (const_rtx cst)
612 {
613   double_int r;
614 
615   if (CONST_INT_P (cst))
616       r = double_int::from_shwi (INTVAL (cst));
617   else if (CONST_DOUBLE_AS_INT_P (cst))
618     {
619       r.low = CONST_DOUBLE_LOW (cst);
620       r.high = CONST_DOUBLE_HIGH (cst);
621     }
622   else
623     gcc_unreachable ();
624 
625   return r;
626 }
627 #endif
628 
629 #if TARGET_SUPPORTS_WIDE_INT
630 /* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
631    If so, return its counterpart; otherwise add it to the hash table and
632    return it.  */
633 
634 static rtx
lookup_const_wide_int(rtx wint)635 lookup_const_wide_int (rtx wint)
636 {
637   rtx *slot = const_wide_int_htab->find_slot (wint, INSERT);
638   if (*slot == 0)
639     *slot = wint;
640 
641   return *slot;
642 }
643 #endif
644 
645 /* Return an rtx constant for V, given that the constant has mode MODE.
646    The returned rtx will be a CONST_INT if V fits, otherwise it will be
647    a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
648    (if TARGET_SUPPORTS_WIDE_INT).  */
649 
650 static rtx
immed_wide_int_const_1(const wide_int_ref & v,machine_mode mode)651 immed_wide_int_const_1 (const wide_int_ref &v, machine_mode mode)
652 {
653   unsigned int len = v.get_len ();
654   /* Not scalar_int_mode because we also allow pointer bound modes.  */
655   unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode));
656 
657   /* Allow truncation but not extension since we do not know if the
658      number is signed or unsigned.  */
659   gcc_assert (prec <= v.get_precision ());
660 
661   if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT)
662     return gen_int_mode (v.elt (0), mode);
663 
664 #if TARGET_SUPPORTS_WIDE_INT
665   {
666     unsigned int i;
667     rtx value;
668     unsigned int blocks_needed
669       = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
670 
671     if (len > blocks_needed)
672       len = blocks_needed;
673 
674     value = const_wide_int_alloc (len);
675 
676     /* It is so tempting to just put the mode in here.  Must control
677        myself ... */
678     PUT_MODE (value, VOIDmode);
679     CWI_PUT_NUM_ELEM (value, len);
680 
681     for (i = 0; i < len; i++)
682       CONST_WIDE_INT_ELT (value, i) = v.elt (i);
683 
684     return lookup_const_wide_int (value);
685   }
686 #else
687   return immed_double_const (v.elt (0), v.elt (1), mode);
688 #endif
689 }
690 
691 #if TARGET_SUPPORTS_WIDE_INT == 0
692 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
693    of ints: I0 is the low-order word and I1 is the high-order word.
694    For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
695    implied upper bits are copies of the high bit of i1.  The value
696    itself is neither signed nor unsigned.  Do not use this routine for
697    non-integer modes; convert to REAL_VALUE_TYPE and use
698    const_double_from_real_value.  */
699 
700 rtx
immed_double_const(HOST_WIDE_INT i0,HOST_WIDE_INT i1,machine_mode mode)701 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, machine_mode mode)
702 {
703   rtx value;
704   unsigned int i;
705 
706   /* There are the following cases (note that there are no modes with
707      HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
708 
709      1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
710 	gen_int_mode.
711      2) If the value of the integer fits into HOST_WIDE_INT anyway
712         (i.e., i1 consists only from copies of the sign bit, and sign
713 	of i0 and i1 are the same), then we return a CONST_INT for i0.
714      3) Otherwise, we create a CONST_DOUBLE for i0 and i1.  */
715   scalar_mode smode;
716   if (is_a <scalar_mode> (mode, &smode)
717       && GET_MODE_BITSIZE (smode) <= HOST_BITS_PER_WIDE_INT)
718     return gen_int_mode (i0, mode);
719 
720   /* If this integer fits in one word, return a CONST_INT.  */
721   if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
722     return GEN_INT (i0);
723 
724   /* We use VOIDmode for integers.  */
725   value = rtx_alloc (CONST_DOUBLE);
726   PUT_MODE (value, VOIDmode);
727 
728   CONST_DOUBLE_LOW (value) = i0;
729   CONST_DOUBLE_HIGH (value) = i1;
730 
731   for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
732     XWINT (value, i) = 0;
733 
734   return lookup_const_double (value);
735 }
736 #endif
737 
738 /* Return an rtx representation of C in mode MODE.  */
739 
740 rtx
immed_wide_int_const(const poly_wide_int_ref & c,machine_mode mode)741 immed_wide_int_const (const poly_wide_int_ref &c, machine_mode mode)
742 {
743   if (c.is_constant ())
744     return immed_wide_int_const_1 (c.coeffs[0], mode);
745 
746   /* Not scalar_int_mode because we also allow pointer bound modes.  */
747   unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode));
748 
749   /* Allow truncation but not extension since we do not know if the
750      number is signed or unsigned.  */
751   gcc_assert (prec <= c.coeffs[0].get_precision ());
752   poly_wide_int newc = poly_wide_int::from (c, prec, SIGNED);
753 
754   /* See whether we already have an rtx for this constant.  */
755   inchash::hash h;
756   h.add_int (mode);
757   for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
758     h.add_wide_int (newc.coeffs[i]);
759   const_poly_int_hasher::compare_type typed_value (mode, newc);
760   rtx *slot = const_poly_int_htab->find_slot_with_hash (typed_value,
761 							h.end (), INSERT);
762   rtx x = *slot;
763   if (x)
764     return x;
765 
766   /* Create a new rtx.  There's a choice to be made here between installing
767      the actual mode of the rtx or leaving it as VOIDmode (for consistency
768      with CONST_INT).  In practice the handling of the codes is different
769      enough that we get no benefit from using VOIDmode, and various places
770      assume that VOIDmode implies CONST_INT.  Using the real mode seems like
771      the right long-term direction anyway.  */
772   typedef trailing_wide_ints<NUM_POLY_INT_COEFFS> twi;
773   size_t extra_size = twi::extra_size (prec);
774   x = rtx_alloc_v (CONST_POLY_INT,
775 		   sizeof (struct const_poly_int_def) + extra_size);
776   PUT_MODE (x, mode);
777   CONST_POLY_INT_COEFFS (x).set_precision (prec);
778   for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
779     CONST_POLY_INT_COEFFS (x)[i] = newc.coeffs[i];
780 
781   *slot = x;
782   return x;
783 }
784 
785 rtx
gen_rtx_REG(machine_mode mode,unsigned int regno)786 gen_rtx_REG (machine_mode mode, unsigned int regno)
787 {
788   /* In case the MD file explicitly references the frame pointer, have
789      all such references point to the same frame pointer.  This is
790      used during frame pointer elimination to distinguish the explicit
791      references to these registers from pseudos that happened to be
792      assigned to them.
793 
794      If we have eliminated the frame pointer or arg pointer, we will
795      be using it as a normal register, for example as a spill
796      register.  In such cases, we might be accessing it in a mode that
797      is not Pmode and therefore cannot use the pre-allocated rtx.
798 
799      Also don't do this when we are making new REGs in reload, since
800      we don't want to get confused with the real pointers.  */
801 
802   if (mode == Pmode && !reload_in_progress && !lra_in_progress)
803     {
804       if (regno == FRAME_POINTER_REGNUM
805 	  && (!reload_completed || frame_pointer_needed))
806 	return frame_pointer_rtx;
807 
808       if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
809 	  && regno == HARD_FRAME_POINTER_REGNUM
810 	  && (!reload_completed || frame_pointer_needed))
811 	return hard_frame_pointer_rtx;
812 #if !HARD_FRAME_POINTER_IS_ARG_POINTER
813       if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
814 	  && regno == ARG_POINTER_REGNUM)
815 	return arg_pointer_rtx;
816 #endif
817 #ifdef RETURN_ADDRESS_POINTER_REGNUM
818       if (regno == RETURN_ADDRESS_POINTER_REGNUM)
819 	return return_address_pointer_rtx;
820 #endif
821       if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
822 	  && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
823 	  && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
824 	return pic_offset_table_rtx;
825       if (regno == STACK_POINTER_REGNUM)
826 	return stack_pointer_rtx;
827     }
828 
829 #if 0
830   /* If the per-function register table has been set up, try to re-use
831      an existing entry in that table to avoid useless generation of RTL.
832 
833      This code is disabled for now until we can fix the various backends
834      which depend on having non-shared hard registers in some cases.   Long
835      term we want to re-enable this code as it can significantly cut down
836      on the amount of useless RTL that gets generated.
837 
838      We'll also need to fix some code that runs after reload that wants to
839      set ORIGINAL_REGNO.  */
840 
841   if (cfun
842       && cfun->emit
843       && regno_reg_rtx
844       && regno < FIRST_PSEUDO_REGISTER
845       && reg_raw_mode[regno] == mode)
846     return regno_reg_rtx[regno];
847 #endif
848 
849   return gen_raw_REG (mode, regno);
850 }
851 
852 rtx
gen_rtx_MEM(machine_mode mode,rtx addr)853 gen_rtx_MEM (machine_mode mode, rtx addr)
854 {
855   rtx rt = gen_rtx_raw_MEM (mode, addr);
856 
857   /* This field is not cleared by the mere allocation of the rtx, so
858      we clear it here.  */
859   MEM_ATTRS (rt) = 0;
860 
861   return rt;
862 }
863 
864 /* Generate a memory referring to non-trapping constant memory.  */
865 
866 rtx
gen_const_mem(machine_mode mode,rtx addr)867 gen_const_mem (machine_mode mode, rtx addr)
868 {
869   rtx mem = gen_rtx_MEM (mode, addr);
870   MEM_READONLY_P (mem) = 1;
871   MEM_NOTRAP_P (mem) = 1;
872   return mem;
873 }
874 
875 /* Generate a MEM referring to fixed portions of the frame, e.g., register
876    save areas.  */
877 
878 rtx
gen_frame_mem(machine_mode mode,rtx addr)879 gen_frame_mem (machine_mode mode, rtx addr)
880 {
881   rtx mem = gen_rtx_MEM (mode, addr);
882   MEM_NOTRAP_P (mem) = 1;
883   set_mem_alias_set (mem, get_frame_alias_set ());
884   return mem;
885 }
886 
887 /* Generate a MEM referring to a temporary use of the stack, not part
888     of the fixed stack frame.  For example, something which is pushed
889     by a target splitter.  */
890 rtx
gen_tmp_stack_mem(machine_mode mode,rtx addr)891 gen_tmp_stack_mem (machine_mode mode, rtx addr)
892 {
893   rtx mem = gen_rtx_MEM (mode, addr);
894   MEM_NOTRAP_P (mem) = 1;
895   if (!cfun->calls_alloca)
896     set_mem_alias_set (mem, get_frame_alias_set ());
897   return mem;
898 }
899 
900 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET).  Return true if
901    this construct would be valid, and false otherwise.  */
902 
903 bool
validate_subreg(machine_mode omode,machine_mode imode,const_rtx reg,poly_uint64 offset)904 validate_subreg (machine_mode omode, machine_mode imode,
905 		 const_rtx reg, poly_uint64 offset)
906 {
907   poly_uint64 isize = GET_MODE_SIZE (imode);
908   poly_uint64 osize = GET_MODE_SIZE (omode);
909 
910   /* The sizes must be ordered, so that we know whether the subreg
911      is partial, paradoxical or complete.  */
912   if (!ordered_p (isize, osize))
913     return false;
914 
915   /* All subregs must be aligned.  */
916   if (!multiple_p (offset, osize))
917     return false;
918 
919   /* The subreg offset cannot be outside the inner object.  */
920   if (maybe_ge (offset, isize))
921     return false;
922 
923   poly_uint64 regsize = REGMODE_NATURAL_SIZE (imode);
924 
925   /* ??? This should not be here.  Temporarily continue to allow word_mode
926      subregs of anything.  The most common offender is (subreg:SI (reg:DF)).
927      Generally, backends are doing something sketchy but it'll take time to
928      fix them all.  */
929   if (omode == word_mode)
930     ;
931   /* ??? Similarly, e.g. with (subreg:DF (reg:TI)).  Though store_bit_field
932      is the culprit here, and not the backends.  */
933   else if (known_ge (osize, regsize) && known_ge (isize, osize))
934     ;
935   /* Allow component subregs of complex and vector.  Though given the below
936      extraction rules, it's not always clear what that means.  */
937   else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
938 	   && GET_MODE_INNER (imode) == omode)
939     ;
940   /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
941      i.e. (subreg:V4SF (reg:SF) 0) or (subreg:V4SF (reg:V2SF) 0).  This
942      surely isn't the cleanest way to represent this.  It's questionable
943      if this ought to be represented at all -- why can't this all be hidden
944      in post-reload splitters that make arbitrarily mode changes to the
945      registers themselves.  */
946   else if (VECTOR_MODE_P (omode)
947 	   && GET_MODE_INNER (omode) == GET_MODE_INNER (imode))
948     ;
949   /* Subregs involving floating point modes are not allowed to
950      change size.  Therefore (subreg:DI (reg:DF) 0) is fine, but
951      (subreg:SI (reg:DF) 0) isn't.  */
952   else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
953     {
954       if (! (known_eq (isize, osize)
955 	     /* LRA can use subreg to store a floating point value in
956 		an integer mode.  Although the floating point and the
957 		integer modes need the same number of hard registers,
958 		the size of floating point mode can be less than the
959 		integer mode.  LRA also uses subregs for a register
960 		should be used in different mode in on insn.  */
961 	     || lra_in_progress))
962 	return false;
963     }
964 
965   /* Paradoxical subregs must have offset zero.  */
966   if (maybe_gt (osize, isize))
967     return known_eq (offset, 0U);
968 
969   /* This is a normal subreg.  Verify that the offset is representable.  */
970 
971   /* For hard registers, we already have most of these rules collected in
972      subreg_offset_representable_p.  */
973   if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
974     {
975       unsigned int regno = REGNO (reg);
976 
977       if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
978 	  && GET_MODE_INNER (imode) == omode)
979 	;
980       else if (!REG_CAN_CHANGE_MODE_P (regno, imode, omode))
981 	return false;
982 
983       return subreg_offset_representable_p (regno, imode, offset, omode);
984     }
985 
986   /* The outer size must be ordered wrt the register size, otherwise
987      we wouldn't know at compile time how many registers the outer
988      mode occupies.  */
989   if (!ordered_p (osize, regsize))
990     return false;
991 
992   /* For pseudo registers, we want most of the same checks.  Namely:
993 
994      Assume that the pseudo register will be allocated to hard registers
995      that can hold REGSIZE bytes each.  If OSIZE is not a multiple of REGSIZE,
996      the remainder must correspond to the lowpart of the containing hard
997      register.  If BYTES_BIG_ENDIAN, the lowpart is at the highest offset,
998      otherwise it is at the lowest offset.
999 
1000      Given that we've already checked the mode and offset alignment,
1001      we only have to check subblock subregs here.  */
1002   if (maybe_lt (osize, regsize)
1003       && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
1004     {
1005       /* It is invalid for the target to pick a register size for a mode
1006 	 that isn't ordered wrt to the size of that mode.  */
1007       poly_uint64 block_size = ordered_min (isize, regsize);
1008       unsigned int start_reg;
1009       poly_uint64 offset_within_reg;
1010       if (!can_div_trunc_p (offset, block_size, &start_reg, &offset_within_reg)
1011 	  || (BYTES_BIG_ENDIAN
1012 	      ? maybe_ne (offset_within_reg, block_size - osize)
1013 	      : maybe_ne (offset_within_reg, 0U)))
1014 	return false;
1015     }
1016   return true;
1017 }
1018 
1019 rtx
gen_rtx_SUBREG(machine_mode mode,rtx reg,poly_uint64 offset)1020 gen_rtx_SUBREG (machine_mode mode, rtx reg, poly_uint64 offset)
1021 {
1022   gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
1023   return gen_rtx_raw_SUBREG (mode, reg, offset);
1024 }
1025 
1026 /* Generate a SUBREG representing the least-significant part of REG if MODE
1027    is smaller than mode of REG, otherwise paradoxical SUBREG.  */
1028 
1029 rtx
gen_lowpart_SUBREG(machine_mode mode,rtx reg)1030 gen_lowpart_SUBREG (machine_mode mode, rtx reg)
1031 {
1032   machine_mode inmode;
1033 
1034   inmode = GET_MODE (reg);
1035   if (inmode == VOIDmode)
1036     inmode = mode;
1037   return gen_rtx_SUBREG (mode, reg,
1038 			 subreg_lowpart_offset (mode, inmode));
1039 }
1040 
1041 rtx
gen_rtx_VAR_LOCATION(machine_mode mode,tree decl,rtx loc,enum var_init_status status)1042 gen_rtx_VAR_LOCATION (machine_mode mode, tree decl, rtx loc,
1043 		      enum var_init_status status)
1044 {
1045   rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc);
1046   PAT_VAR_LOCATION_STATUS (x) = status;
1047   return x;
1048 }
1049 
1050 
1051 /* Create an rtvec and stores within it the RTXen passed in the arguments.  */
1052 
1053 rtvec
gen_rtvec(int n,...)1054 gen_rtvec (int n, ...)
1055 {
1056   int i;
1057   rtvec rt_val;
1058   va_list p;
1059 
1060   va_start (p, n);
1061 
1062   /* Don't allocate an empty rtvec...  */
1063   if (n == 0)
1064     {
1065       va_end (p);
1066       return NULL_RTVEC;
1067     }
1068 
1069   rt_val = rtvec_alloc (n);
1070 
1071   for (i = 0; i < n; i++)
1072     rt_val->elem[i] = va_arg (p, rtx);
1073 
1074   va_end (p);
1075   return rt_val;
1076 }
1077 
1078 rtvec
gen_rtvec_v(int n,rtx * argp)1079 gen_rtvec_v (int n, rtx *argp)
1080 {
1081   int i;
1082   rtvec rt_val;
1083 
1084   /* Don't allocate an empty rtvec...  */
1085   if (n == 0)
1086     return NULL_RTVEC;
1087 
1088   rt_val = rtvec_alloc (n);
1089 
1090   for (i = 0; i < n; i++)
1091     rt_val->elem[i] = *argp++;
1092 
1093   return rt_val;
1094 }
1095 
1096 rtvec
gen_rtvec_v(int n,rtx_insn ** argp)1097 gen_rtvec_v (int n, rtx_insn **argp)
1098 {
1099   int i;
1100   rtvec rt_val;
1101 
1102   /* Don't allocate an empty rtvec...  */
1103   if (n == 0)
1104     return NULL_RTVEC;
1105 
1106   rt_val = rtvec_alloc (n);
1107 
1108   for (i = 0; i < n; i++)
1109     rt_val->elem[i] = *argp++;
1110 
1111   return rt_val;
1112 }
1113 
1114 
1115 /* Return the number of bytes between the start of an OUTER_MODE
1116    in-memory value and the start of an INNER_MODE in-memory value,
1117    given that the former is a lowpart of the latter.  It may be a
1118    paradoxical lowpart, in which case the offset will be negative
1119    on big-endian targets.  */
1120 
1121 poly_int64
byte_lowpart_offset(machine_mode outer_mode,machine_mode inner_mode)1122 byte_lowpart_offset (machine_mode outer_mode,
1123 		     machine_mode inner_mode)
1124 {
1125   if (paradoxical_subreg_p (outer_mode, inner_mode))
1126     return -subreg_lowpart_offset (inner_mode, outer_mode);
1127   else
1128     return subreg_lowpart_offset (outer_mode, inner_mode);
1129 }
1130 
1131 /* Return the offset of (subreg:OUTER_MODE (mem:INNER_MODE X) OFFSET)
1132    from address X.  For paradoxical big-endian subregs this is a
1133    negative value, otherwise it's the same as OFFSET.  */
1134 
1135 poly_int64
subreg_memory_offset(machine_mode outer_mode,machine_mode inner_mode,poly_uint64 offset)1136 subreg_memory_offset (machine_mode outer_mode, machine_mode inner_mode,
1137 		      poly_uint64 offset)
1138 {
1139   if (paradoxical_subreg_p (outer_mode, inner_mode))
1140     {
1141       gcc_assert (known_eq (offset, 0U));
1142       return -subreg_lowpart_offset (inner_mode, outer_mode);
1143     }
1144   return offset;
1145 }
1146 
1147 /* As above, but return the offset that existing subreg X would have
1148    if SUBREG_REG (X) were stored in memory.  The only significant thing
1149    about the current SUBREG_REG is its mode.  */
1150 
1151 poly_int64
subreg_memory_offset(const_rtx x)1152 subreg_memory_offset (const_rtx x)
1153 {
1154   return subreg_memory_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
1155 			       SUBREG_BYTE (x));
1156 }
1157 
1158 /* Generate a REG rtx for a new pseudo register of mode MODE.
1159    This pseudo is assigned the next sequential register number.  */
1160 
1161 rtx
gen_reg_rtx(machine_mode mode)1162 gen_reg_rtx (machine_mode mode)
1163 {
1164   rtx val;
1165   unsigned int align = GET_MODE_ALIGNMENT (mode);
1166 
1167   gcc_assert (can_create_pseudo_p ());
1168 
1169   /* If a virtual register with bigger mode alignment is generated,
1170      increase stack alignment estimation because it might be spilled
1171      to stack later.  */
1172   if (SUPPORTS_STACK_ALIGNMENT
1173       && crtl->stack_alignment_estimated < align
1174       && !crtl->stack_realign_processed)
1175     {
1176       unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
1177       if (crtl->stack_alignment_estimated < min_align)
1178 	crtl->stack_alignment_estimated = min_align;
1179     }
1180 
1181   if (generating_concat_p
1182       && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
1183 	  || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
1184     {
1185       /* For complex modes, don't make a single pseudo.
1186 	 Instead, make a CONCAT of two pseudos.
1187 	 This allows noncontiguous allocation of the real and imaginary parts,
1188 	 which makes much better code.  Besides, allocating DCmode
1189 	 pseudos overstrains reload on some machines like the 386.  */
1190       rtx realpart, imagpart;
1191       machine_mode partmode = GET_MODE_INNER (mode);
1192 
1193       realpart = gen_reg_rtx (partmode);
1194       imagpart = gen_reg_rtx (partmode);
1195       return gen_rtx_CONCAT (mode, realpart, imagpart);
1196     }
1197 
1198   /* Do not call gen_reg_rtx with uninitialized crtl.  */
1199   gcc_assert (crtl->emit.regno_pointer_align_length);
1200 
1201   crtl->emit.ensure_regno_capacity ();
1202   gcc_assert (reg_rtx_no < crtl->emit.regno_pointer_align_length);
1203 
1204   val = gen_raw_REG (mode, reg_rtx_no);
1205   regno_reg_rtx[reg_rtx_no++] = val;
1206   return val;
1207 }
1208 
1209 /* Make sure m_regno_pointer_align, and regno_reg_rtx are large
1210    enough to have elements in the range 0 <= idx <= reg_rtx_no.  */
1211 
1212 void
ensure_regno_capacity()1213 emit_status::ensure_regno_capacity ()
1214 {
1215   int old_size = regno_pointer_align_length;
1216 
1217   if (reg_rtx_no < old_size)
1218     return;
1219 
1220   int new_size = old_size * 2;
1221   while (reg_rtx_no >= new_size)
1222     new_size *= 2;
1223 
1224   char *tmp = XRESIZEVEC (char, regno_pointer_align, new_size);
1225   memset (tmp + old_size, 0, new_size - old_size);
1226   regno_pointer_align = (unsigned char *) tmp;
1227 
1228   rtx *new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, new_size);
1229   memset (new1 + old_size, 0, (new_size - old_size) * sizeof (rtx));
1230   regno_reg_rtx = new1;
1231 
1232   crtl->emit.regno_pointer_align_length = new_size;
1233 }
1234 
1235 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise.  */
1236 
1237 bool
reg_is_parm_p(rtx reg)1238 reg_is_parm_p (rtx reg)
1239 {
1240   tree decl;
1241 
1242   gcc_assert (REG_P (reg));
1243   decl = REG_EXPR (reg);
1244   return (decl && TREE_CODE (decl) == PARM_DECL);
1245 }
1246 
1247 /* Update NEW with the same attributes as REG, but with OFFSET added
1248    to the REG_OFFSET.  */
1249 
1250 static void
update_reg_offset(rtx new_rtx,rtx reg,poly_int64 offset)1251 update_reg_offset (rtx new_rtx, rtx reg, poly_int64 offset)
1252 {
1253   REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
1254 				       REG_OFFSET (reg) + offset);
1255 }
1256 
1257 /* Generate a register with same attributes as REG, but with OFFSET
1258    added to the REG_OFFSET.  */
1259 
1260 rtx
gen_rtx_REG_offset(rtx reg,machine_mode mode,unsigned int regno,poly_int64 offset)1261 gen_rtx_REG_offset (rtx reg, machine_mode mode, unsigned int regno,
1262 		    poly_int64 offset)
1263 {
1264   /* Use gen_raw_REG rather than gen_rtx_REG, because otherwise we'd
1265      overwrite REG_ATTRS (and in the callers often ORIGINAL_REGNO too)
1266      of the shared REG rtxes like stack_pointer_rtx etc.  This should
1267      happen only for SUBREGs from DEBUG_INSNs, RA should ensure
1268      multi-word registers don't overlap the special registers like
1269      stack pointer.  */
1270   rtx new_rtx = gen_raw_REG (mode, regno);
1271 
1272   update_reg_offset (new_rtx, reg, offset);
1273   return new_rtx;
1274 }
1275 
1276 /* Generate a new pseudo-register with the same attributes as REG, but
1277    with OFFSET added to the REG_OFFSET.  */
1278 
1279 rtx
gen_reg_rtx_offset(rtx reg,machine_mode mode,int offset)1280 gen_reg_rtx_offset (rtx reg, machine_mode mode, int offset)
1281 {
1282   rtx new_rtx = gen_reg_rtx (mode);
1283 
1284   update_reg_offset (new_rtx, reg, offset);
1285   return new_rtx;
1286 }
1287 
1288 /* Adjust REG in-place so that it has mode MODE.  It is assumed that the
1289    new register is a (possibly paradoxical) lowpart of the old one.  */
1290 
1291 void
adjust_reg_mode(rtx reg,machine_mode mode)1292 adjust_reg_mode (rtx reg, machine_mode mode)
1293 {
1294   update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
1295   PUT_MODE (reg, mode);
1296 }
1297 
1298 /* Copy REG's attributes from X, if X has any attributes.  If REG and X
1299    have different modes, REG is a (possibly paradoxical) lowpart of X.  */
1300 
1301 void
set_reg_attrs_from_value(rtx reg,rtx x)1302 set_reg_attrs_from_value (rtx reg, rtx x)
1303 {
1304   poly_int64 offset;
1305   bool can_be_reg_pointer = true;
1306 
1307   /* Don't call mark_reg_pointer for incompatible pointer sign
1308      extension.  */
1309   while (GET_CODE (x) == SIGN_EXTEND
1310 	 || GET_CODE (x) == ZERO_EXTEND
1311 	 || GET_CODE (x) == TRUNCATE
1312 	 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
1313     {
1314 #if defined(POINTERS_EXTEND_UNSIGNED)
1315       if (((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
1316 	   || (GET_CODE (x) == ZERO_EXTEND && ! POINTERS_EXTEND_UNSIGNED)
1317 	   || (paradoxical_subreg_p (x)
1318 	       && ! (SUBREG_PROMOTED_VAR_P (x)
1319 		     && SUBREG_CHECK_PROMOTED_SIGN (x,
1320 						    POINTERS_EXTEND_UNSIGNED))))
1321 	  && !targetm.have_ptr_extend ())
1322 	can_be_reg_pointer = false;
1323 #endif
1324       x = XEXP (x, 0);
1325     }
1326 
1327   /* Hard registers can be reused for multiple purposes within the same
1328      function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1329      on them is wrong.  */
1330   if (HARD_REGISTER_P (reg))
1331     return;
1332 
1333   offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
1334   if (MEM_P (x))
1335     {
1336       if (MEM_OFFSET_KNOWN_P (x))
1337 	REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1338 					 MEM_OFFSET (x) + offset);
1339       if (can_be_reg_pointer && MEM_POINTER (x))
1340 	mark_reg_pointer (reg, 0);
1341     }
1342   else if (REG_P (x))
1343     {
1344       if (REG_ATTRS (x))
1345 	update_reg_offset (reg, x, offset);
1346       if (can_be_reg_pointer && REG_POINTER (x))
1347 	mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1348     }
1349 }
1350 
1351 /* Generate a REG rtx for a new pseudo register, copying the mode
1352    and attributes from X.  */
1353 
1354 rtx
gen_reg_rtx_and_attrs(rtx x)1355 gen_reg_rtx_and_attrs (rtx x)
1356 {
1357   rtx reg = gen_reg_rtx (GET_MODE (x));
1358   set_reg_attrs_from_value (reg, x);
1359   return reg;
1360 }
1361 
1362 /* Set the register attributes for registers contained in PARM_RTX.
1363    Use needed values from memory attributes of MEM.  */
1364 
1365 void
set_reg_attrs_for_parm(rtx parm_rtx,rtx mem)1366 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1367 {
1368   if (REG_P (parm_rtx))
1369     set_reg_attrs_from_value (parm_rtx, mem);
1370   else if (GET_CODE (parm_rtx) == PARALLEL)
1371     {
1372       /* Check for a NULL entry in the first slot, used to indicate that the
1373 	 parameter goes both on the stack and in registers.  */
1374       int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1375       for (; i < XVECLEN (parm_rtx, 0); i++)
1376 	{
1377 	  rtx x = XVECEXP (parm_rtx, 0, i);
1378 	  if (REG_P (XEXP (x, 0)))
1379 	    REG_ATTRS (XEXP (x, 0))
1380 	      = get_reg_attrs (MEM_EXPR (mem),
1381 			       INTVAL (XEXP (x, 1)));
1382 	}
1383     }
1384 }
1385 
1386 /* Set the REG_ATTRS for registers in value X, given that X represents
1387    decl T.  */
1388 
1389 void
set_reg_attrs_for_decl_rtl(tree t,rtx x)1390 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1391 {
1392   if (!t)
1393     return;
1394   tree tdecl = t;
1395   if (GET_CODE (x) == SUBREG)
1396     {
1397       gcc_assert (subreg_lowpart_p (x));
1398       x = SUBREG_REG (x);
1399     }
1400   if (REG_P (x))
1401     REG_ATTRS (x)
1402       = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1403 					       DECL_P (tdecl)
1404 					       ? DECL_MODE (tdecl)
1405 					       : TYPE_MODE (TREE_TYPE (tdecl))));
1406   if (GET_CODE (x) == CONCAT)
1407     {
1408       if (REG_P (XEXP (x, 0)))
1409         REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1410       if (REG_P (XEXP (x, 1)))
1411 	REG_ATTRS (XEXP (x, 1))
1412 	  = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1413     }
1414   if (GET_CODE (x) == PARALLEL)
1415     {
1416       int i, start;
1417 
1418       /* Check for a NULL entry, used to indicate that the parameter goes
1419 	 both on the stack and in registers.  */
1420       if (XEXP (XVECEXP (x, 0, 0), 0))
1421 	start = 0;
1422       else
1423 	start = 1;
1424 
1425       for (i = start; i < XVECLEN (x, 0); i++)
1426 	{
1427 	  rtx y = XVECEXP (x, 0, i);
1428 	  if (REG_P (XEXP (y, 0)))
1429 	    REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1430 	}
1431     }
1432 }
1433 
1434 /* Assign the RTX X to declaration T.  */
1435 
1436 void
set_decl_rtl(tree t,rtx x)1437 set_decl_rtl (tree t, rtx x)
1438 {
1439   DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1440   if (x)
1441     set_reg_attrs_for_decl_rtl (t, x);
1442 }
1443 
1444 /* Assign the RTX X to parameter declaration T.  BY_REFERENCE_P is true
1445    if the ABI requires the parameter to be passed by reference.  */
1446 
1447 void
set_decl_incoming_rtl(tree t,rtx x,bool by_reference_p)1448 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1449 {
1450   DECL_INCOMING_RTL (t) = x;
1451   if (x && !by_reference_p)
1452     set_reg_attrs_for_decl_rtl (t, x);
1453 }
1454 
1455 /* Identify REG (which may be a CONCAT) as a user register.  */
1456 
1457 void
mark_user_reg(rtx reg)1458 mark_user_reg (rtx reg)
1459 {
1460   if (GET_CODE (reg) == CONCAT)
1461     {
1462       REG_USERVAR_P (XEXP (reg, 0)) = 1;
1463       REG_USERVAR_P (XEXP (reg, 1)) = 1;
1464     }
1465   else
1466     {
1467       gcc_assert (REG_P (reg));
1468       REG_USERVAR_P (reg) = 1;
1469     }
1470 }
1471 
1472 /* Identify REG as a probable pointer register and show its alignment
1473    as ALIGN, if nonzero.  */
1474 
1475 void
mark_reg_pointer(rtx reg,int align)1476 mark_reg_pointer (rtx reg, int align)
1477 {
1478   if (! REG_POINTER (reg))
1479     {
1480       REG_POINTER (reg) = 1;
1481 
1482       if (align)
1483 	REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1484     }
1485   else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1486     /* We can no-longer be sure just how aligned this pointer is.  */
1487     REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1488 }
1489 
1490 /* Return 1 plus largest pseudo reg number used in the current function.  */
1491 
1492 int
max_reg_num(void)1493 max_reg_num (void)
1494 {
1495   return reg_rtx_no;
1496 }
1497 
1498 /* Return 1 + the largest label number used so far in the current function.  */
1499 
1500 int
max_label_num(void)1501 max_label_num (void)
1502 {
1503   return label_num;
1504 }
1505 
1506 /* Return first label number used in this function (if any were used).  */
1507 
1508 int
get_first_label_num(void)1509 get_first_label_num (void)
1510 {
1511   return first_label_num;
1512 }
1513 
1514 /* If the rtx for label was created during the expansion of a nested
1515    function, then first_label_num won't include this label number.
1516    Fix this now so that array indices work later.  */
1517 
1518 void
maybe_set_first_label_num(rtx_code_label * x)1519 maybe_set_first_label_num (rtx_code_label *x)
1520 {
1521   if (CODE_LABEL_NUMBER (x) < first_label_num)
1522     first_label_num = CODE_LABEL_NUMBER (x);
1523 }
1524 
1525 /* For use by the RTL function loader, when mingling with normal
1526    functions.
1527    Ensure that label_num is greater than the label num of X, to avoid
1528    duplicate labels in the generated assembler.  */
1529 
1530 void
maybe_set_max_label_num(rtx_code_label * x)1531 maybe_set_max_label_num (rtx_code_label *x)
1532 {
1533   if (CODE_LABEL_NUMBER (x) >= label_num)
1534     label_num = CODE_LABEL_NUMBER (x) + 1;
1535 }
1536 
1537 
1538 /* Return a value representing some low-order bits of X, where the number
1539    of low-order bits is given by MODE.  Note that no conversion is done
1540    between floating-point and fixed-point values, rather, the bit
1541    representation is returned.
1542 
1543    This function handles the cases in common between gen_lowpart, below,
1544    and two variants in cse.cc and combine.cc.  These are the cases that can
1545    be safely handled at all points in the compilation.
1546 
1547    If this is not a case we can handle, return 0.  */
1548 
1549 rtx
gen_lowpart_common(machine_mode mode,rtx x)1550 gen_lowpart_common (machine_mode mode, rtx x)
1551 {
1552   poly_uint64 msize = GET_MODE_SIZE (mode);
1553   machine_mode innermode;
1554 
1555   /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1556      so we have to make one up.  Yuk.  */
1557   innermode = GET_MODE (x);
1558   if (CONST_INT_P (x)
1559       && known_le (msize * BITS_PER_UNIT,
1560 		   (unsigned HOST_WIDE_INT) HOST_BITS_PER_WIDE_INT))
1561     innermode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require ();
1562   else if (innermode == VOIDmode)
1563     innermode = int_mode_for_size (HOST_BITS_PER_DOUBLE_INT, 0).require ();
1564 
1565   gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1566 
1567   if (innermode == mode)
1568     return x;
1569 
1570   /* The size of the outer and inner modes must be ordered.  */
1571   poly_uint64 xsize = GET_MODE_SIZE (innermode);
1572   if (!ordered_p (msize, xsize))
1573     return 0;
1574 
1575   if (SCALAR_FLOAT_MODE_P (mode))
1576     {
1577       /* Don't allow paradoxical FLOAT_MODE subregs.  */
1578       if (maybe_gt (msize, xsize))
1579 	return 0;
1580     }
1581   else
1582     {
1583       /* MODE must occupy no more of the underlying registers than X.  */
1584       poly_uint64 regsize = REGMODE_NATURAL_SIZE (innermode);
1585       unsigned int mregs, xregs;
1586       if (!can_div_away_from_zero_p (msize, regsize, &mregs)
1587 	  || !can_div_away_from_zero_p (xsize, regsize, &xregs)
1588 	  || mregs > xregs)
1589 	return 0;
1590     }
1591 
1592   scalar_int_mode int_mode, int_innermode, from_mode;
1593   if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1594       && is_a <scalar_int_mode> (mode, &int_mode)
1595       && is_a <scalar_int_mode> (innermode, &int_innermode)
1596       && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &from_mode))
1597     {
1598       /* If we are getting the low-order part of something that has been
1599 	 sign- or zero-extended, we can either just use the object being
1600 	 extended or make a narrower extension.  If we want an even smaller
1601 	 piece than the size of the object being extended, call ourselves
1602 	 recursively.
1603 
1604 	 This case is used mostly by combine and cse.  */
1605 
1606       if (from_mode == int_mode)
1607 	return XEXP (x, 0);
1608       else if (GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (from_mode))
1609 	return gen_lowpart_common (int_mode, XEXP (x, 0));
1610       else if (GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (int_innermode))
1611 	return gen_rtx_fmt_e (GET_CODE (x), int_mode, XEXP (x, 0));
1612     }
1613   else if (GET_CODE (x) == SUBREG || REG_P (x)
1614 	   || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1615 	   || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x)
1616 	   || CONST_POLY_INT_P (x))
1617     return lowpart_subreg (mode, x, innermode);
1618 
1619   /* Otherwise, we can't do this.  */
1620   return 0;
1621 }
1622 
1623 rtx
gen_highpart(machine_mode mode,rtx x)1624 gen_highpart (machine_mode mode, rtx x)
1625 {
1626   poly_uint64 msize = GET_MODE_SIZE (mode);
1627   rtx result;
1628 
1629   /* This case loses if X is a subreg.  To catch bugs early,
1630      complain if an invalid MODE is used even in other cases.  */
1631   gcc_assert (known_le (msize, (unsigned int) UNITS_PER_WORD)
1632 	      || known_eq (msize, GET_MODE_UNIT_SIZE (GET_MODE (x))));
1633 
1634   /* gen_lowpart_common handles a lot of special cases due to needing to handle
1635      paradoxical subregs; it only calls simplify_gen_subreg when certain that
1636      it will produce something meaningful.  The only case we need to handle
1637      specially here is MEM.  */
1638   if (MEM_P (x))
1639     {
1640       poly_int64 offset = subreg_highpart_offset (mode, GET_MODE (x));
1641       return adjust_address (x, mode, offset);
1642     }
1643 
1644   result = simplify_gen_subreg (mode, x, GET_MODE (x),
1645 				subreg_highpart_offset (mode, GET_MODE (x)));
1646   /* Since we handle MEM directly above, we should never get a MEM back
1647      from simplify_gen_subreg.  */
1648   gcc_assert (result && !MEM_P (result));
1649 
1650   return result;
1651 }
1652 
1653 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1654    be VOIDmode constant.  */
1655 rtx
gen_highpart_mode(machine_mode outermode,machine_mode innermode,rtx exp)1656 gen_highpart_mode (machine_mode outermode, machine_mode innermode, rtx exp)
1657 {
1658   if (GET_MODE (exp) != VOIDmode)
1659     {
1660       gcc_assert (GET_MODE (exp) == innermode);
1661       return gen_highpart (outermode, exp);
1662     }
1663   return simplify_gen_subreg (outermode, exp, innermode,
1664 			      subreg_highpart_offset (outermode, innermode));
1665 }
1666 
1667 /* Return the SUBREG_BYTE for a lowpart subreg whose outer mode has
1668    OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes.  */
1669 
1670 poly_uint64
subreg_size_lowpart_offset(poly_uint64 outer_bytes,poly_uint64 inner_bytes)1671 subreg_size_lowpart_offset (poly_uint64 outer_bytes, poly_uint64 inner_bytes)
1672 {
1673   gcc_checking_assert (ordered_p (outer_bytes, inner_bytes));
1674   if (maybe_gt (outer_bytes, inner_bytes))
1675     /* Paradoxical subregs always have a SUBREG_BYTE of 0.  */
1676     return 0;
1677 
1678   if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN)
1679     return inner_bytes - outer_bytes;
1680   else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN)
1681     return 0;
1682   else
1683     return subreg_size_offset_from_lsb (outer_bytes, inner_bytes, 0);
1684 }
1685 
1686 /* Return the SUBREG_BYTE for a highpart subreg whose outer mode has
1687    OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes.  */
1688 
1689 poly_uint64
subreg_size_highpart_offset(poly_uint64 outer_bytes,poly_uint64 inner_bytes)1690 subreg_size_highpart_offset (poly_uint64 outer_bytes, poly_uint64 inner_bytes)
1691 {
1692   gcc_assert (known_ge (inner_bytes, outer_bytes));
1693 
1694   if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN)
1695     return 0;
1696   else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN)
1697     return inner_bytes - outer_bytes;
1698   else
1699     return subreg_size_offset_from_lsb (outer_bytes, inner_bytes,
1700 					(inner_bytes - outer_bytes)
1701 					* BITS_PER_UNIT);
1702 }
1703 
1704 /* Return 1 iff X, assumed to be a SUBREG,
1705    refers to the least significant part of its containing reg.
1706    If X is not a SUBREG, always return 1 (it is its own low part!).  */
1707 
1708 int
subreg_lowpart_p(const_rtx x)1709 subreg_lowpart_p (const_rtx x)
1710 {
1711   if (GET_CODE (x) != SUBREG)
1712     return 1;
1713   else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1714     return 0;
1715 
1716   return known_eq (subreg_lowpart_offset (GET_MODE (x),
1717 					  GET_MODE (SUBREG_REG (x))),
1718 		   SUBREG_BYTE (x));
1719 }
1720 
1721 /* Return subword OFFSET of operand OP.
1722    The word number, OFFSET, is interpreted as the word number starting
1723    at the low-order address.  OFFSET 0 is the low-order word if not
1724    WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1725 
1726    If we cannot extract the required word, we return zero.  Otherwise,
1727    an rtx corresponding to the requested word will be returned.
1728 
1729    VALIDATE_ADDRESS is nonzero if the address should be validated.  Before
1730    reload has completed, a valid address will always be returned.  After
1731    reload, if a valid address cannot be returned, we return zero.
1732 
1733    If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1734    it is the responsibility of the caller.
1735 
1736    MODE is the mode of OP in case it is a CONST_INT.
1737 
1738    ??? This is still rather broken for some cases.  The problem for the
1739    moment is that all callers of this thing provide no 'goal mode' to
1740    tell us to work with.  This exists because all callers were written
1741    in a word based SUBREG world.
1742    Now use of this function can be deprecated by simplify_subreg in most
1743    cases.
1744  */
1745 
1746 rtx
operand_subword(rtx op,poly_uint64 offset,int validate_address,machine_mode mode)1747 operand_subword (rtx op, poly_uint64 offset, int validate_address,
1748 		 machine_mode mode)
1749 {
1750   if (mode == VOIDmode)
1751     mode = GET_MODE (op);
1752 
1753   gcc_assert (mode != VOIDmode);
1754 
1755   /* If OP is narrower than a word, fail.  */
1756   if (mode != BLKmode
1757       && maybe_lt (GET_MODE_SIZE (mode), UNITS_PER_WORD))
1758     return 0;
1759 
1760   /* If we want a word outside OP, return zero.  */
1761   if (mode != BLKmode
1762       && maybe_gt ((offset + 1) * UNITS_PER_WORD, GET_MODE_SIZE (mode)))
1763     return const0_rtx;
1764 
1765   /* Form a new MEM at the requested address.  */
1766   if (MEM_P (op))
1767     {
1768       rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1769 
1770       if (! validate_address)
1771 	return new_rtx;
1772 
1773       else if (reload_completed)
1774 	{
1775 	  if (! strict_memory_address_addr_space_p (word_mode,
1776 						    XEXP (new_rtx, 0),
1777 						    MEM_ADDR_SPACE (op)))
1778 	    return 0;
1779 	}
1780       else
1781 	return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1782     }
1783 
1784   /* Rest can be handled by simplify_subreg.  */
1785   return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1786 }
1787 
1788 /* Similar to `operand_subword', but never return 0.  If we can't
1789    extract the required subword, put OP into a register and try again.
1790    The second attempt must succeed.  We always validate the address in
1791    this case.
1792 
1793    MODE is the mode of OP, in case it is CONST_INT.  */
1794 
1795 rtx
operand_subword_force(rtx op,poly_uint64 offset,machine_mode mode)1796 operand_subword_force (rtx op, poly_uint64 offset, machine_mode mode)
1797 {
1798   rtx result = operand_subword (op, offset, 1, mode);
1799 
1800   if (result)
1801     return result;
1802 
1803   if (mode != BLKmode && mode != VOIDmode)
1804     {
1805       /* If this is a register which cannot be accessed by words, copy it
1806 	 to a pseudo register.  */
1807       if (REG_P (op))
1808 	op = copy_to_reg (op);
1809       else
1810 	op = force_reg (mode, op);
1811     }
1812 
1813   result = operand_subword (op, offset, 1, mode);
1814   gcc_assert (result);
1815 
1816   return result;
1817 }
1818 
mem_attrs()1819 mem_attrs::mem_attrs ()
1820   : expr (NULL_TREE),
1821     offset (0),
1822     size (0),
1823     alias (0),
1824     align (0),
1825     addrspace (ADDR_SPACE_GENERIC),
1826     offset_known_p (false),
1827     size_known_p (false)
1828 {}
1829 
1830 /* Returns 1 if both MEM_EXPR can be considered equal
1831    and 0 otherwise.  */
1832 
1833 int
mem_expr_equal_p(const_tree expr1,const_tree expr2)1834 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1835 {
1836   if (expr1 == expr2)
1837     return 1;
1838 
1839   if (! expr1 || ! expr2)
1840     return 0;
1841 
1842   if (TREE_CODE (expr1) != TREE_CODE (expr2))
1843     return 0;
1844 
1845   return operand_equal_p (expr1, expr2, 0);
1846 }
1847 
1848 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1849    bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1850    -1 if not known.  */
1851 
1852 int
get_mem_align_offset(rtx mem,unsigned int align)1853 get_mem_align_offset (rtx mem, unsigned int align)
1854 {
1855   tree expr;
1856   poly_uint64 offset;
1857 
1858   /* This function can't use
1859      if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1860 	 || (MAX (MEM_ALIGN (mem),
1861 	          MAX (align, get_object_alignment (MEM_EXPR (mem))))
1862 	     < align))
1863        return -1;
1864      else
1865        return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1866      for two reasons:
1867      - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1868        for <variable>.  get_inner_reference doesn't handle it and
1869        even if it did, the alignment in that case needs to be determined
1870        from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1871      - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1872        isn't sufficiently aligned, the object it is in might be.  */
1873   gcc_assert (MEM_P (mem));
1874   expr = MEM_EXPR (mem);
1875   if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1876     return -1;
1877 
1878   offset = MEM_OFFSET (mem);
1879   if (DECL_P (expr))
1880     {
1881       if (DECL_ALIGN (expr) < align)
1882 	return -1;
1883     }
1884   else if (INDIRECT_REF_P (expr))
1885     {
1886       if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1887 	return -1;
1888     }
1889   else if (TREE_CODE (expr) == COMPONENT_REF)
1890     {
1891       while (1)
1892 	{
1893 	  tree inner = TREE_OPERAND (expr, 0);
1894 	  tree field = TREE_OPERAND (expr, 1);
1895 	  tree byte_offset = component_ref_field_offset (expr);
1896 	  tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1897 
1898 	  poly_uint64 suboffset;
1899 	  if (!byte_offset
1900 	      || !poly_int_tree_p (byte_offset, &suboffset)
1901 	      || !tree_fits_uhwi_p (bit_offset))
1902 	    return -1;
1903 
1904 	  offset += suboffset;
1905 	  offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT;
1906 
1907 	  if (inner == NULL_TREE)
1908 	    {
1909 	      if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1910 		  < (unsigned int) align)
1911 		return -1;
1912 	      break;
1913 	    }
1914 	  else if (DECL_P (inner))
1915 	    {
1916 	      if (DECL_ALIGN (inner) < align)
1917 		return -1;
1918 	      break;
1919 	    }
1920 	  else if (TREE_CODE (inner) != COMPONENT_REF)
1921 	    return -1;
1922 	  expr = inner;
1923 	}
1924     }
1925   else
1926     return -1;
1927 
1928   HOST_WIDE_INT misalign;
1929   if (!known_misalignment (offset, align / BITS_PER_UNIT, &misalign))
1930     return -1;
1931   return misalign;
1932 }
1933 
1934 /* Given REF (a MEM) and T, either the type of X or the expression
1935    corresponding to REF, set the memory attributes.  OBJECTP is nonzero
1936    if we are making a new object of this type.  BITPOS is nonzero if
1937    there is an offset outstanding on T that will be applied later.  */
1938 
1939 void
set_mem_attributes_minus_bitpos(rtx ref,tree t,int objectp,poly_int64 bitpos)1940 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1941 				 poly_int64 bitpos)
1942 {
1943   poly_int64 apply_bitpos = 0;
1944   tree type;
1945   class mem_attrs attrs, *defattrs, *refattrs;
1946   addr_space_t as;
1947 
1948   /* It can happen that type_for_mode was given a mode for which there
1949      is no language-level type.  In which case it returns NULL, which
1950      we can see here.  */
1951   if (t == NULL_TREE)
1952     return;
1953 
1954   type = TYPE_P (t) ? t : TREE_TYPE (t);
1955   if (type == error_mark_node)
1956     return;
1957 
1958   /* If we have already set DECL_RTL = ref, get_alias_set will get the
1959      wrong answer, as it assumes that DECL_RTL already has the right alias
1960      info.  Callers should not set DECL_RTL until after the call to
1961      set_mem_attributes.  */
1962   gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1963 
1964   /* Get the alias set from the expression or type (perhaps using a
1965      front-end routine) and use it.  */
1966   attrs.alias = get_alias_set (t);
1967 
1968   MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1969   MEM_POINTER (ref) = POINTER_TYPE_P (type);
1970 
1971   /* Default values from pre-existing memory attributes if present.  */
1972   refattrs = MEM_ATTRS (ref);
1973   if (refattrs)
1974     {
1975       /* ??? Can this ever happen?  Calling this routine on a MEM that
1976 	 already carries memory attributes should probably be invalid.  */
1977       attrs.expr = refattrs->expr;
1978       attrs.offset_known_p = refattrs->offset_known_p;
1979       attrs.offset = refattrs->offset;
1980       attrs.size_known_p = refattrs->size_known_p;
1981       attrs.size = refattrs->size;
1982       attrs.align = refattrs->align;
1983     }
1984 
1985   /* Otherwise, default values from the mode of the MEM reference.  */
1986   else
1987     {
1988       defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1989       gcc_assert (!defattrs->expr);
1990       gcc_assert (!defattrs->offset_known_p);
1991 
1992       /* Respect mode size.  */
1993       attrs.size_known_p = defattrs->size_known_p;
1994       attrs.size = defattrs->size;
1995       /* ??? Is this really necessary?  We probably should always get
1996 	 the size from the type below.  */
1997 
1998       /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1999          if T is an object, always compute the object alignment below.  */
2000       if (TYPE_P (t))
2001 	attrs.align = defattrs->align;
2002       else
2003 	attrs.align = BITS_PER_UNIT;
2004       /* ??? If T is a type, respecting mode alignment may *also* be wrong
2005 	 e.g. if the type carries an alignment attribute.  Should we be
2006 	 able to simply always use TYPE_ALIGN?  */
2007     }
2008 
2009   /* We can set the alignment from the type if we are making an object or if
2010      this is an INDIRECT_REF.  */
2011   if (objectp || TREE_CODE (t) == INDIRECT_REF)
2012     attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
2013 
2014   /* If the size is known, we can set that.  */
2015   tree new_size = TYPE_SIZE_UNIT (type);
2016 
2017   /* The address-space is that of the type.  */
2018   as = TYPE_ADDR_SPACE (type);
2019 
2020   /* If T is not a type, we may be able to deduce some more information about
2021      the expression.  */
2022   if (! TYPE_P (t))
2023     {
2024       tree base;
2025 
2026       if (TREE_THIS_VOLATILE (t))
2027 	MEM_VOLATILE_P (ref) = 1;
2028 
2029       /* Now remove any conversions: they don't change what the underlying
2030 	 object is.  Likewise for SAVE_EXPR.  */
2031       while (CONVERT_EXPR_P (t)
2032 	     || TREE_CODE (t) == VIEW_CONVERT_EXPR
2033 	     || TREE_CODE (t) == SAVE_EXPR)
2034 	t = TREE_OPERAND (t, 0);
2035 
2036       /* Note whether this expression can trap.  */
2037       MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
2038 
2039       base = get_base_address (t);
2040       if (base)
2041 	{
2042 	  if (DECL_P (base)
2043 	      && TREE_READONLY (base)
2044 	      && (TREE_STATIC (base) || DECL_EXTERNAL (base))
2045 	      && !TREE_THIS_VOLATILE (base))
2046 	    MEM_READONLY_P (ref) = 1;
2047 
2048 	  /* Mark static const strings readonly as well.  */
2049 	  if (TREE_CODE (base) == STRING_CST
2050 	      && TREE_READONLY (base)
2051 	      && TREE_STATIC (base))
2052 	    MEM_READONLY_P (ref) = 1;
2053 
2054 	  /* Address-space information is on the base object.  */
2055 	  if (TREE_CODE (base) == MEM_REF
2056 	      || TREE_CODE (base) == TARGET_MEM_REF)
2057 	    as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
2058 								      0))));
2059 	  else
2060 	    as = TYPE_ADDR_SPACE (TREE_TYPE (base));
2061 	}
2062 
2063       /* If this expression uses it's parent's alias set, mark it such
2064 	 that we won't change it.  */
2065       if (component_uses_parent_alias_set_from (t) != NULL_TREE)
2066 	MEM_KEEP_ALIAS_SET_P (ref) = 1;
2067 
2068       /* If this is a decl, set the attributes of the MEM from it.  */
2069       if (DECL_P (t))
2070 	{
2071 	  attrs.expr = t;
2072 	  attrs.offset_known_p = true;
2073 	  attrs.offset = 0;
2074 	  apply_bitpos = bitpos;
2075 	  new_size = DECL_SIZE_UNIT (t);
2076 	}
2077 
2078       /* ???  If we end up with a constant or a descriptor do not
2079 	 record a MEM_EXPR.  */
2080       else if (CONSTANT_CLASS_P (t)
2081 	       || TREE_CODE (t) == CONSTRUCTOR)
2082 	;
2083 
2084       /* If this is a field reference, record it.  */
2085       else if (TREE_CODE (t) == COMPONENT_REF)
2086 	{
2087 	  attrs.expr = t;
2088 	  attrs.offset_known_p = true;
2089 	  attrs.offset = 0;
2090 	  apply_bitpos = bitpos;
2091 	  if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
2092 	    new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
2093 	}
2094 
2095       /* Else record it.  */
2096       else
2097 	{
2098 	  gcc_assert (handled_component_p (t)
2099 		      || TREE_CODE (t) == MEM_REF
2100 		      || TREE_CODE (t) == TARGET_MEM_REF);
2101 	  attrs.expr = t;
2102 	  attrs.offset_known_p = true;
2103 	  attrs.offset = 0;
2104 	  apply_bitpos = bitpos;
2105 	}
2106 
2107       /* If this is a reference based on a partitioned decl replace the
2108 	 base with a MEM_REF of the pointer representative we created
2109 	 during stack slot partitioning.  */
2110       if (attrs.expr
2111 	  && VAR_P (base)
2112 	  && ! is_global_var (base)
2113 	  && cfun->gimple_df->decls_to_pointers != NULL)
2114 	{
2115 	  tree *namep = cfun->gimple_df->decls_to_pointers->get (base);
2116 	  if (namep)
2117 	    {
2118 	      attrs.expr = unshare_expr (attrs.expr);
2119 	      tree *orig_base = &attrs.expr;
2120 	      while (handled_component_p (*orig_base))
2121 		orig_base = &TREE_OPERAND (*orig_base, 0);
2122 	      tree aptrt = reference_alias_ptr_type (*orig_base);
2123 	      *orig_base = build2 (MEM_REF, TREE_TYPE (*orig_base), *namep,
2124 				   build_int_cst (aptrt, 0));
2125 	    }
2126 	}
2127 
2128       /* Compute the alignment.  */
2129       unsigned int obj_align;
2130       unsigned HOST_WIDE_INT obj_bitpos;
2131       get_object_alignment_1 (t, &obj_align, &obj_bitpos);
2132       unsigned int diff_align = known_alignment (obj_bitpos - bitpos);
2133       if (diff_align != 0)
2134 	obj_align = MIN (obj_align, diff_align);
2135       attrs.align = MAX (attrs.align, obj_align);
2136     }
2137 
2138   poly_uint64 const_size;
2139   if (poly_int_tree_p (new_size, &const_size))
2140     {
2141       attrs.size_known_p = true;
2142       attrs.size = const_size;
2143     }
2144 
2145   /* If we modified OFFSET based on T, then subtract the outstanding
2146      bit position offset.  Similarly, increase the size of the accessed
2147      object to contain the negative offset.  */
2148   if (maybe_ne (apply_bitpos, 0))
2149     {
2150       gcc_assert (attrs.offset_known_p);
2151       poly_int64 bytepos = bits_to_bytes_round_down (apply_bitpos);
2152       attrs.offset -= bytepos;
2153       if (attrs.size_known_p)
2154 	attrs.size += bytepos;
2155     }
2156 
2157   /* Now set the attributes we computed above.  */
2158   attrs.addrspace = as;
2159   set_mem_attrs (ref, &attrs);
2160 }
2161 
2162 void
set_mem_attributes(rtx ref,tree t,int objectp)2163 set_mem_attributes (rtx ref, tree t, int objectp)
2164 {
2165   set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
2166 }
2167 
2168 /* Set the alias set of MEM to SET.  */
2169 
2170 void
set_mem_alias_set(rtx mem,alias_set_type set)2171 set_mem_alias_set (rtx mem, alias_set_type set)
2172 {
2173   /* If the new and old alias sets don't conflict, something is wrong.  */
2174   gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
2175   mem_attrs attrs (*get_mem_attrs (mem));
2176   attrs.alias = set;
2177   set_mem_attrs (mem, &attrs);
2178 }
2179 
2180 /* Set the address space of MEM to ADDRSPACE (target-defined).  */
2181 
2182 void
set_mem_addr_space(rtx mem,addr_space_t addrspace)2183 set_mem_addr_space (rtx mem, addr_space_t addrspace)
2184 {
2185   mem_attrs attrs (*get_mem_attrs (mem));
2186   attrs.addrspace = addrspace;
2187   set_mem_attrs (mem, &attrs);
2188 }
2189 
2190 /* Set the alignment of MEM to ALIGN bits.  */
2191 
2192 void
set_mem_align(rtx mem,unsigned int align)2193 set_mem_align (rtx mem, unsigned int align)
2194 {
2195   mem_attrs attrs (*get_mem_attrs (mem));
2196   attrs.align = align;
2197   set_mem_attrs (mem, &attrs);
2198 }
2199 
2200 /* Set the expr for MEM to EXPR.  */
2201 
2202 void
set_mem_expr(rtx mem,tree expr)2203 set_mem_expr (rtx mem, tree expr)
2204 {
2205   mem_attrs attrs (*get_mem_attrs (mem));
2206   attrs.expr = expr;
2207   set_mem_attrs (mem, &attrs);
2208 }
2209 
2210 /* Set the offset of MEM to OFFSET.  */
2211 
2212 void
set_mem_offset(rtx mem,poly_int64 offset)2213 set_mem_offset (rtx mem, poly_int64 offset)
2214 {
2215   mem_attrs attrs (*get_mem_attrs (mem));
2216   attrs.offset_known_p = true;
2217   attrs.offset = offset;
2218   set_mem_attrs (mem, &attrs);
2219 }
2220 
2221 /* Clear the offset of MEM.  */
2222 
2223 void
clear_mem_offset(rtx mem)2224 clear_mem_offset (rtx mem)
2225 {
2226   mem_attrs attrs (*get_mem_attrs (mem));
2227   attrs.offset_known_p = false;
2228   set_mem_attrs (mem, &attrs);
2229 }
2230 
2231 /* Set the size of MEM to SIZE.  */
2232 
2233 void
set_mem_size(rtx mem,poly_int64 size)2234 set_mem_size (rtx mem, poly_int64 size)
2235 {
2236   mem_attrs attrs (*get_mem_attrs (mem));
2237   attrs.size_known_p = true;
2238   attrs.size = size;
2239   set_mem_attrs (mem, &attrs);
2240 }
2241 
2242 /* Clear the size of MEM.  */
2243 
2244 void
clear_mem_size(rtx mem)2245 clear_mem_size (rtx mem)
2246 {
2247   mem_attrs attrs (*get_mem_attrs (mem));
2248   attrs.size_known_p = false;
2249   set_mem_attrs (mem, &attrs);
2250 }
2251 
2252 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2253    and its address changed to ADDR.  (VOIDmode means don't change the mode.
2254    NULL for ADDR means don't change the address.)  VALIDATE is nonzero if the
2255    returned memory location is required to be valid.  INPLACE is true if any
2256    changes can be made directly to MEMREF or false if MEMREF must be treated
2257    as immutable.
2258 
2259    The memory attributes are not changed.  */
2260 
2261 static rtx
change_address_1(rtx memref,machine_mode mode,rtx addr,int validate,bool inplace)2262 change_address_1 (rtx memref, machine_mode mode, rtx addr, int validate,
2263 		  bool inplace)
2264 {
2265   addr_space_t as;
2266   rtx new_rtx;
2267 
2268   gcc_assert (MEM_P (memref));
2269   as = MEM_ADDR_SPACE (memref);
2270   if (mode == VOIDmode)
2271     mode = GET_MODE (memref);
2272   if (addr == 0)
2273     addr = XEXP (memref, 0);
2274   if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
2275       && (!validate || memory_address_addr_space_p (mode, addr, as)))
2276     return memref;
2277 
2278   /* Don't validate address for LRA.  LRA can make the address valid
2279      by itself in most efficient way.  */
2280   if (validate && !lra_in_progress)
2281     {
2282       if (reload_in_progress || reload_completed)
2283 	gcc_assert (memory_address_addr_space_p (mode, addr, as));
2284       else
2285 	addr = memory_address_addr_space (mode, addr, as);
2286     }
2287 
2288   if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2289     return memref;
2290 
2291   if (inplace)
2292     {
2293       XEXP (memref, 0) = addr;
2294       return memref;
2295     }
2296 
2297   new_rtx = gen_rtx_MEM (mode, addr);
2298   MEM_COPY_ATTRIBUTES (new_rtx, memref);
2299   return new_rtx;
2300 }
2301 
2302 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2303    way we are changing MEMREF, so we only preserve the alias set.  */
2304 
2305 rtx
change_address(rtx memref,machine_mode mode,rtx addr)2306 change_address (rtx memref, machine_mode mode, rtx addr)
2307 {
2308   rtx new_rtx = change_address_1 (memref, mode, addr, 1, false);
2309   machine_mode mmode = GET_MODE (new_rtx);
2310   class mem_attrs *defattrs;
2311 
2312   mem_attrs attrs (*get_mem_attrs (memref));
2313   defattrs = mode_mem_attrs[(int) mmode];
2314   attrs.expr = NULL_TREE;
2315   attrs.offset_known_p = false;
2316   attrs.size_known_p = defattrs->size_known_p;
2317   attrs.size = defattrs->size;
2318   attrs.align = defattrs->align;
2319 
2320   /* If there are no changes, just return the original memory reference.  */
2321   if (new_rtx == memref)
2322     {
2323       if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
2324 	return new_rtx;
2325 
2326       new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2327       MEM_COPY_ATTRIBUTES (new_rtx, memref);
2328     }
2329 
2330   set_mem_attrs (new_rtx, &attrs);
2331   return new_rtx;
2332 }
2333 
2334 /* Return a memory reference like MEMREF, but with its mode changed
2335    to MODE and its address offset by OFFSET bytes.  If VALIDATE is
2336    nonzero, the memory address is forced to be valid.
2337    If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2338    and the caller is responsible for adjusting MEMREF base register.
2339    If ADJUST_OBJECT is zero, the underlying object associated with the
2340    memory reference is left unchanged and the caller is responsible for
2341    dealing with it.  Otherwise, if the new memory reference is outside
2342    the underlying object, even partially, then the object is dropped.
2343    SIZE, if nonzero, is the size of an access in cases where MODE
2344    has no inherent size.  */
2345 
2346 rtx
adjust_address_1(rtx memref,machine_mode mode,poly_int64 offset,int validate,int adjust_address,int adjust_object,poly_int64 size)2347 adjust_address_1 (rtx memref, machine_mode mode, poly_int64 offset,
2348 		  int validate, int adjust_address, int adjust_object,
2349 		  poly_int64 size)
2350 {
2351   rtx addr = XEXP (memref, 0);
2352   rtx new_rtx;
2353   scalar_int_mode address_mode;
2354   class mem_attrs attrs (*get_mem_attrs (memref)), *defattrs;
2355   unsigned HOST_WIDE_INT max_align;
2356 #ifdef POINTERS_EXTEND_UNSIGNED
2357   scalar_int_mode pointer_mode
2358     = targetm.addr_space.pointer_mode (attrs.addrspace);
2359 #endif
2360 
2361   /* VOIDmode means no mode change for change_address_1.  */
2362   if (mode == VOIDmode)
2363     mode = GET_MODE (memref);
2364 
2365   /* Take the size of non-BLKmode accesses from the mode.  */
2366   defattrs = mode_mem_attrs[(int) mode];
2367   if (defattrs->size_known_p)
2368     size = defattrs->size;
2369 
2370   /* If there are no changes, just return the original memory reference.  */
2371   if (mode == GET_MODE (memref)
2372       && known_eq (offset, 0)
2373       && (known_eq (size, 0)
2374 	  || (attrs.size_known_p && known_eq (attrs.size, size)))
2375       && (!validate || memory_address_addr_space_p (mode, addr,
2376 						    attrs.addrspace)))
2377     return memref;
2378 
2379   /* ??? Prefer to create garbage instead of creating shared rtl.
2380      This may happen even if offset is nonzero -- consider
2381      (plus (plus reg reg) const_int) -- so do this always.  */
2382   addr = copy_rtx (addr);
2383 
2384   /* Convert a possibly large offset to a signed value within the
2385      range of the target address space.  */
2386   address_mode = get_address_mode (memref);
2387   offset = trunc_int_for_mode (offset, address_mode);
2388 
2389   if (adjust_address)
2390     {
2391       /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2392 	 object, we can merge it into the LO_SUM.  */
2393       if (GET_MODE (memref) != BLKmode
2394 	  && GET_CODE (addr) == LO_SUM
2395 	  && known_in_range_p (offset,
2396 			       0, (GET_MODE_ALIGNMENT (GET_MODE (memref))
2397 				   / BITS_PER_UNIT)))
2398 	addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2399 			       plus_constant (address_mode,
2400 					      XEXP (addr, 1), offset));
2401 #ifdef POINTERS_EXTEND_UNSIGNED
2402       /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2403 	 in that mode, we merge it into the ZERO_EXTEND.  We take advantage of
2404 	 the fact that pointers are not allowed to overflow.  */
2405       else if (POINTERS_EXTEND_UNSIGNED > 0
2406 	       && GET_CODE (addr) == ZERO_EXTEND
2407 	       && GET_MODE (XEXP (addr, 0)) == pointer_mode
2408 	       && known_eq (trunc_int_for_mode (offset, pointer_mode), offset))
2409 	addr = gen_rtx_ZERO_EXTEND (address_mode,
2410 				    plus_constant (pointer_mode,
2411 						   XEXP (addr, 0), offset));
2412 #endif
2413       else
2414 	addr = plus_constant (address_mode, addr, offset);
2415     }
2416 
2417   new_rtx = change_address_1 (memref, mode, addr, validate, false);
2418 
2419   /* If the address is a REG, change_address_1 rightfully returns memref,
2420      but this would destroy memref's MEM_ATTRS.  */
2421   if (new_rtx == memref && maybe_ne (offset, 0))
2422     new_rtx = copy_rtx (new_rtx);
2423 
2424   /* Conservatively drop the object if we don't know where we start from.  */
2425   if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2426     {
2427       attrs.expr = NULL_TREE;
2428       attrs.alias = 0;
2429     }
2430 
2431   /* Compute the new values of the memory attributes due to this adjustment.
2432      We add the offsets and update the alignment.  */
2433   if (attrs.offset_known_p)
2434     {
2435       attrs.offset += offset;
2436 
2437       /* Drop the object if the new left end is not within its bounds.  */
2438       if (adjust_object && maybe_lt (attrs.offset, 0))
2439 	{
2440 	  attrs.expr = NULL_TREE;
2441 	  attrs.alias = 0;
2442 	}
2443     }
2444 
2445   /* Compute the new alignment by taking the MIN of the alignment and the
2446      lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2447      if zero.  */
2448   if (maybe_ne (offset, 0))
2449     {
2450       max_align = known_alignment (offset) * BITS_PER_UNIT;
2451       attrs.align = MIN (attrs.align, max_align);
2452     }
2453 
2454   if (maybe_ne (size, 0))
2455     {
2456       /* Drop the object if the new right end is not within its bounds.  */
2457       if (adjust_object && maybe_gt (offset + size, attrs.size))
2458 	{
2459 	  attrs.expr = NULL_TREE;
2460 	  attrs.alias = 0;
2461 	}
2462       attrs.size_known_p = true;
2463       attrs.size = size;
2464     }
2465   else if (attrs.size_known_p)
2466     {
2467       gcc_assert (!adjust_object);
2468       attrs.size -= offset;
2469       /* ??? The store_by_pieces machinery generates negative sizes,
2470 	 so don't assert for that here.  */
2471     }
2472 
2473   set_mem_attrs (new_rtx, &attrs);
2474 
2475   return new_rtx;
2476 }
2477 
2478 /* Return a memory reference like MEMREF, but with its mode changed
2479    to MODE and its address changed to ADDR, which is assumed to be
2480    MEMREF offset by OFFSET bytes.  If VALIDATE is
2481    nonzero, the memory address is forced to be valid.  */
2482 
2483 rtx
adjust_automodify_address_1(rtx memref,machine_mode mode,rtx addr,poly_int64 offset,int validate)2484 adjust_automodify_address_1 (rtx memref, machine_mode mode, rtx addr,
2485 			     poly_int64 offset, int validate)
2486 {
2487   memref = change_address_1 (memref, VOIDmode, addr, validate, false);
2488   return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
2489 }
2490 
2491 /* Return a memory reference like MEMREF, but whose address is changed by
2492    adding OFFSET, an RTX, to it.  POW2 is the highest power of two factor
2493    known to be in OFFSET (possibly 1).  */
2494 
2495 rtx
offset_address(rtx memref,rtx offset,unsigned HOST_WIDE_INT pow2)2496 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2497 {
2498   rtx new_rtx, addr = XEXP (memref, 0);
2499   machine_mode address_mode;
2500   class mem_attrs *defattrs;
2501 
2502   mem_attrs attrs (*get_mem_attrs (memref));
2503   address_mode = get_address_mode (memref);
2504   new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2505 
2506   /* At this point we don't know _why_ the address is invalid.  It
2507      could have secondary memory references, multiplies or anything.
2508 
2509      However, if we did go and rearrange things, we can wind up not
2510      being able to recognize the magic around pic_offset_table_rtx.
2511      This stuff is fragile, and is yet another example of why it is
2512      bad to expose PIC machinery too early.  */
2513   if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2514 				     attrs.addrspace)
2515       && GET_CODE (addr) == PLUS
2516       && XEXP (addr, 0) == pic_offset_table_rtx)
2517     {
2518       addr = force_reg (GET_MODE (addr), addr);
2519       new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2520     }
2521 
2522   update_temp_slot_address (XEXP (memref, 0), new_rtx);
2523   new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1, false);
2524 
2525   /* If there are no changes, just return the original memory reference.  */
2526   if (new_rtx == memref)
2527     return new_rtx;
2528 
2529   /* Update the alignment to reflect the offset.  Reset the offset, which
2530      we don't know.  */
2531   defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2532   attrs.offset_known_p = false;
2533   attrs.size_known_p = defattrs->size_known_p;
2534   attrs.size = defattrs->size;
2535   attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2536   set_mem_attrs (new_rtx, &attrs);
2537   return new_rtx;
2538 }
2539 
2540 /* Return a memory reference like MEMREF, but with its address changed to
2541    ADDR.  The caller is asserting that the actual piece of memory pointed
2542    to is the same, just the form of the address is being changed, such as
2543    by putting something into a register.  INPLACE is true if any changes
2544    can be made directly to MEMREF or false if MEMREF must be treated as
2545    immutable.  */
2546 
2547 rtx
replace_equiv_address(rtx memref,rtx addr,bool inplace)2548 replace_equiv_address (rtx memref, rtx addr, bool inplace)
2549 {
2550   /* change_address_1 copies the memory attribute structure without change
2551      and that's exactly what we want here.  */
2552   update_temp_slot_address (XEXP (memref, 0), addr);
2553   return change_address_1 (memref, VOIDmode, addr, 1, inplace);
2554 }
2555 
2556 /* Likewise, but the reference is not required to be valid.  */
2557 
2558 rtx
replace_equiv_address_nv(rtx memref,rtx addr,bool inplace)2559 replace_equiv_address_nv (rtx memref, rtx addr, bool inplace)
2560 {
2561   return change_address_1 (memref, VOIDmode, addr, 0, inplace);
2562 }
2563 
2564 /* Return a memory reference like MEMREF, but with its mode widened to
2565    MODE and offset by OFFSET.  This would be used by targets that e.g.
2566    cannot issue QImode memory operations and have to use SImode memory
2567    operations plus masking logic.  */
2568 
2569 rtx
widen_memory_access(rtx memref,machine_mode mode,poly_int64 offset)2570 widen_memory_access (rtx memref, machine_mode mode, poly_int64 offset)
2571 {
2572   rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
2573   poly_uint64 size = GET_MODE_SIZE (mode);
2574 
2575   /* If there are no changes, just return the original memory reference.  */
2576   if (new_rtx == memref)
2577     return new_rtx;
2578 
2579   mem_attrs attrs (*get_mem_attrs (new_rtx));
2580 
2581   /* If we don't know what offset we were at within the expression, then
2582      we can't know if we've overstepped the bounds.  */
2583   if (! attrs.offset_known_p)
2584     attrs.expr = NULL_TREE;
2585 
2586   while (attrs.expr)
2587     {
2588       if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2589 	{
2590 	  tree field = TREE_OPERAND (attrs.expr, 1);
2591 	  tree offset = component_ref_field_offset (attrs.expr);
2592 
2593 	  if (! DECL_SIZE_UNIT (field))
2594 	    {
2595 	      attrs.expr = NULL_TREE;
2596 	      break;
2597 	    }
2598 
2599 	  /* Is the field at least as large as the access?  If so, ok,
2600 	     otherwise strip back to the containing structure.  */
2601 	  if (poly_int_tree_p (DECL_SIZE_UNIT (field))
2602 	      && known_ge (wi::to_poly_offset (DECL_SIZE_UNIT (field)), size)
2603 	      && known_ge (attrs.offset, 0))
2604 	    break;
2605 
2606 	  poly_uint64 suboffset;
2607 	  if (!poly_int_tree_p (offset, &suboffset))
2608 	    {
2609 	      attrs.expr = NULL_TREE;
2610 	      break;
2611 	    }
2612 
2613 	  attrs.expr = TREE_OPERAND (attrs.expr, 0);
2614 	  attrs.offset += suboffset;
2615 	  attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2616 			   / BITS_PER_UNIT);
2617 	}
2618       /* Similarly for the decl.  */
2619       else if (DECL_P (attrs.expr)
2620 	       && DECL_SIZE_UNIT (attrs.expr)
2621 	       && poly_int_tree_p (DECL_SIZE_UNIT (attrs.expr))
2622 	       && known_ge (wi::to_poly_offset (DECL_SIZE_UNIT (attrs.expr)),
2623 			   size)
2624 	       && known_ge (attrs.offset, 0))
2625 	break;
2626       else
2627 	{
2628 	  /* The widened memory access overflows the expression, which means
2629 	     that it could alias another expression.  Zap it.  */
2630 	  attrs.expr = NULL_TREE;
2631 	  break;
2632 	}
2633     }
2634 
2635   if (! attrs.expr)
2636     attrs.offset_known_p = false;
2637 
2638   /* The widened memory may alias other stuff, so zap the alias set.  */
2639   /* ??? Maybe use get_alias_set on any remaining expression.  */
2640   attrs.alias = 0;
2641   attrs.size_known_p = true;
2642   attrs.size = size;
2643   set_mem_attrs (new_rtx, &attrs);
2644   return new_rtx;
2645 }
2646 
2647 /* A fake decl that is used as the MEM_EXPR of spill slots.  */
2648 static GTY(()) tree spill_slot_decl;
2649 
2650 tree
get_spill_slot_decl(bool force_build_p)2651 get_spill_slot_decl (bool force_build_p)
2652 {
2653   tree d = spill_slot_decl;
2654   rtx rd;
2655 
2656   if (d || !force_build_p)
2657     return d;
2658 
2659   d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2660 		  VAR_DECL, get_identifier ("%sfp"), void_type_node);
2661   DECL_ARTIFICIAL (d) = 1;
2662   DECL_IGNORED_P (d) = 1;
2663   TREE_USED (d) = 1;
2664   spill_slot_decl = d;
2665 
2666   rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2667   MEM_NOTRAP_P (rd) = 1;
2668   mem_attrs attrs (*mode_mem_attrs[(int) BLKmode]);
2669   attrs.alias = new_alias_set ();
2670   attrs.expr = d;
2671   set_mem_attrs (rd, &attrs);
2672   SET_DECL_RTL (d, rd);
2673 
2674   return d;
2675 }
2676 
2677 /* Given MEM, a result from assign_stack_local, fill in the memory
2678    attributes as appropriate for a register allocator spill slot.
2679    These slots are not aliasable by other memory.  We arrange for
2680    them all to use a single MEM_EXPR, so that the aliasing code can
2681    work properly in the case of shared spill slots.  */
2682 
2683 void
set_mem_attrs_for_spill(rtx mem)2684 set_mem_attrs_for_spill (rtx mem)
2685 {
2686   rtx addr;
2687 
2688   mem_attrs attrs (*get_mem_attrs (mem));
2689   attrs.expr = get_spill_slot_decl (true);
2690   attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2691   attrs.addrspace = ADDR_SPACE_GENERIC;
2692 
2693   /* We expect the incoming memory to be of the form:
2694 	(mem:MODE (plus (reg sfp) (const_int offset)))
2695      with perhaps the plus missing for offset = 0.  */
2696   addr = XEXP (mem, 0);
2697   attrs.offset_known_p = true;
2698   strip_offset (addr, &attrs.offset);
2699 
2700   set_mem_attrs (mem, &attrs);
2701   MEM_NOTRAP_P (mem) = 1;
2702 }
2703 
2704 /* Return a newly created CODE_LABEL rtx with a unique label number.  */
2705 
2706 rtx_code_label *
gen_label_rtx(void)2707 gen_label_rtx (void)
2708 {
2709   return as_a <rtx_code_label *> (
2710 	    gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX,
2711 				NULL, label_num++, NULL));
2712 }
2713 
2714 /* For procedure integration.  */
2715 
2716 /* Install new pointers to the first and last insns in the chain.
2717    Also, set cur_insn_uid to one higher than the last in use.
2718    Used for an inline-procedure after copying the insn chain.  */
2719 
2720 void
set_new_first_and_last_insn(rtx_insn * first,rtx_insn * last)2721 set_new_first_and_last_insn (rtx_insn *first, rtx_insn *last)
2722 {
2723   rtx_insn *insn;
2724 
2725   set_first_insn (first);
2726   set_last_insn (last);
2727   cur_insn_uid = 0;
2728 
2729   if (param_min_nondebug_insn_uid || MAY_HAVE_DEBUG_INSNS)
2730     {
2731       int debug_count = 0;
2732 
2733       cur_insn_uid = param_min_nondebug_insn_uid - 1;
2734       cur_debug_insn_uid = 0;
2735 
2736       for (insn = first; insn; insn = NEXT_INSN (insn))
2737 	if (INSN_UID (insn) < param_min_nondebug_insn_uid)
2738 	  cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2739 	else
2740 	  {
2741 	    cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2742 	    if (DEBUG_INSN_P (insn))
2743 	      debug_count++;
2744 	  }
2745 
2746       if (debug_count)
2747 	cur_debug_insn_uid = param_min_nondebug_insn_uid + debug_count;
2748       else
2749 	cur_debug_insn_uid++;
2750     }
2751   else
2752     for (insn = first; insn; insn = NEXT_INSN (insn))
2753       cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2754 
2755   cur_insn_uid++;
2756 }
2757 
2758 /* Go through all the RTL insn bodies and copy any invalid shared
2759    structure.  This routine should only be called once.  */
2760 
2761 static void
unshare_all_rtl_1(rtx_insn * insn)2762 unshare_all_rtl_1 (rtx_insn *insn)
2763 {
2764   /* Unshare just about everything else.  */
2765   unshare_all_rtl_in_chain (insn);
2766 
2767   /* Make sure the addresses of stack slots found outside the insn chain
2768      (such as, in DECL_RTL of a variable) are not shared
2769      with the insn chain.
2770 
2771      This special care is necessary when the stack slot MEM does not
2772      actually appear in the insn chain.  If it does appear, its address
2773      is unshared from all else at that point.  */
2774   unsigned int i;
2775   rtx temp;
2776   FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp)
2777     (*stack_slot_list)[i] = copy_rtx_if_shared (temp);
2778 }
2779 
2780 /* Go through all the RTL insn bodies and copy any invalid shared
2781    structure, again.  This is a fairly expensive thing to do so it
2782    should be done sparingly.  */
2783 
2784 void
unshare_all_rtl_again(rtx_insn * insn)2785 unshare_all_rtl_again (rtx_insn *insn)
2786 {
2787   rtx_insn *p;
2788   tree decl;
2789 
2790   for (p = insn; p; p = NEXT_INSN (p))
2791     if (INSN_P (p))
2792       {
2793 	reset_used_flags (PATTERN (p));
2794 	reset_used_flags (REG_NOTES (p));
2795 	if (CALL_P (p))
2796 	  reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2797       }
2798 
2799   /* Make sure that virtual stack slots are not shared.  */
2800   set_used_decls (DECL_INITIAL (cfun->decl));
2801 
2802   /* Make sure that virtual parameters are not shared.  */
2803   for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2804     set_used_flags (DECL_RTL (decl));
2805 
2806   rtx temp;
2807   unsigned int i;
2808   FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp)
2809     reset_used_flags (temp);
2810 
2811   unshare_all_rtl_1 (insn);
2812 }
2813 
2814 unsigned int
unshare_all_rtl(void)2815 unshare_all_rtl (void)
2816 {
2817   unshare_all_rtl_1 (get_insns ());
2818 
2819   for (tree decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2820     {
2821       if (DECL_RTL_SET_P (decl))
2822 	SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2823       DECL_INCOMING_RTL (decl) = copy_rtx_if_shared (DECL_INCOMING_RTL (decl));
2824     }
2825 
2826   return 0;
2827 }
2828 
2829 
2830 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2831    Recursively does the same for subexpressions.  */
2832 
2833 static void
verify_rtx_sharing(rtx orig,rtx insn)2834 verify_rtx_sharing (rtx orig, rtx insn)
2835 {
2836   rtx x = orig;
2837   int i;
2838   enum rtx_code code;
2839   const char *format_ptr;
2840 
2841   if (x == 0)
2842     return;
2843 
2844   code = GET_CODE (x);
2845 
2846   /* These types may be freely shared.  */
2847 
2848   switch (code)
2849     {
2850     case REG:
2851     case DEBUG_EXPR:
2852     case VALUE:
2853     CASE_CONST_ANY:
2854     case SYMBOL_REF:
2855     case LABEL_REF:
2856     case CODE_LABEL:
2857     case PC:
2858     case RETURN:
2859     case SIMPLE_RETURN:
2860     case SCRATCH:
2861       /* SCRATCH must be shared because they represent distinct values.  */
2862       return;
2863     case CLOBBER:
2864       /* Share clobbers of hard registers, but do not share pseudo reg
2865          clobbers or clobbers of hard registers that originated as pseudos.
2866          This is needed to allow safe register renaming.  */
2867       if (REG_P (XEXP (x, 0))
2868 	  && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0)))
2869 	  && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0))))
2870 	return;
2871       break;
2872 
2873     case CONST:
2874       if (shared_const_p (orig))
2875 	return;
2876       break;
2877 
2878     case MEM:
2879       /* A MEM is allowed to be shared if its address is constant.  */
2880       if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2881 	  || reload_completed || reload_in_progress)
2882 	return;
2883 
2884       break;
2885 
2886     default:
2887       break;
2888     }
2889 
2890   /* This rtx may not be shared.  If it has already been seen,
2891      replace it with a copy of itself.  */
2892   if (flag_checking && RTX_FLAG (x, used))
2893     {
2894       error ("invalid rtl sharing found in the insn");
2895       debug_rtx (insn);
2896       error ("shared rtx");
2897       debug_rtx (x);
2898       internal_error ("internal consistency failure");
2899     }
2900   gcc_assert (!RTX_FLAG (x, used));
2901 
2902   RTX_FLAG (x, used) = 1;
2903 
2904   /* Now scan the subexpressions recursively.  */
2905 
2906   format_ptr = GET_RTX_FORMAT (code);
2907 
2908   for (i = 0; i < GET_RTX_LENGTH (code); i++)
2909     {
2910       switch (*format_ptr++)
2911 	{
2912 	case 'e':
2913 	  verify_rtx_sharing (XEXP (x, i), insn);
2914 	  break;
2915 
2916 	case 'E':
2917 	  if (XVEC (x, i) != NULL)
2918 	    {
2919 	      int j;
2920 	      int len = XVECLEN (x, i);
2921 
2922 	      for (j = 0; j < len; j++)
2923 		{
2924 		  /* We allow sharing of ASM_OPERANDS inside single
2925 		     instruction.  */
2926 		  if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2927 		      && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2928 			  == ASM_OPERANDS))
2929 		    verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2930 		  else
2931 		    verify_rtx_sharing (XVECEXP (x, i, j), insn);
2932 		}
2933 	    }
2934 	  break;
2935 	}
2936     }
2937   return;
2938 }
2939 
2940 /* Reset used-flags for INSN.  */
2941 
2942 static void
reset_insn_used_flags(rtx insn)2943 reset_insn_used_flags (rtx insn)
2944 {
2945   gcc_assert (INSN_P (insn));
2946   reset_used_flags (PATTERN (insn));
2947   reset_used_flags (REG_NOTES (insn));
2948   if (CALL_P (insn))
2949     reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2950 }
2951 
2952 /* Go through all the RTL insn bodies and clear all the USED bits.  */
2953 
2954 static void
reset_all_used_flags(void)2955 reset_all_used_flags (void)
2956 {
2957   rtx_insn *p;
2958 
2959   for (p = get_insns (); p; p = NEXT_INSN (p))
2960     if (INSN_P (p))
2961       {
2962 	rtx pat = PATTERN (p);
2963 	if (GET_CODE (pat) != SEQUENCE)
2964 	  reset_insn_used_flags (p);
2965 	else
2966 	  {
2967 	    gcc_assert (REG_NOTES (p) == NULL);
2968 	    for (int i = 0; i < XVECLEN (pat, 0); i++)
2969 	      {
2970 		rtx insn = XVECEXP (pat, 0, i);
2971 		if (INSN_P (insn))
2972 		  reset_insn_used_flags (insn);
2973 	      }
2974 	  }
2975       }
2976 }
2977 
2978 /* Verify sharing in INSN.  */
2979 
2980 static void
verify_insn_sharing(rtx insn)2981 verify_insn_sharing (rtx insn)
2982 {
2983   gcc_assert (INSN_P (insn));
2984   verify_rtx_sharing (PATTERN (insn), insn);
2985   verify_rtx_sharing (REG_NOTES (insn), insn);
2986   if (CALL_P (insn))
2987     verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (insn), insn);
2988 }
2989 
2990 /* Go through all the RTL insn bodies and check that there is no unexpected
2991    sharing in between the subexpressions.  */
2992 
2993 DEBUG_FUNCTION void
verify_rtl_sharing(void)2994 verify_rtl_sharing (void)
2995 {
2996   rtx_insn *p;
2997 
2998   timevar_push (TV_VERIFY_RTL_SHARING);
2999 
3000   reset_all_used_flags ();
3001 
3002   for (p = get_insns (); p; p = NEXT_INSN (p))
3003     if (INSN_P (p))
3004       {
3005 	rtx pat = PATTERN (p);
3006 	if (GET_CODE (pat) != SEQUENCE)
3007 	  verify_insn_sharing (p);
3008 	else
3009 	  for (int i = 0; i < XVECLEN (pat, 0); i++)
3010 	      {
3011 		rtx insn = XVECEXP (pat, 0, i);
3012 		if (INSN_P (insn))
3013 		  verify_insn_sharing (insn);
3014 	      }
3015       }
3016 
3017   reset_all_used_flags ();
3018 
3019   timevar_pop (TV_VERIFY_RTL_SHARING);
3020 }
3021 
3022 /* Go through all the RTL insn bodies and copy any invalid shared structure.
3023    Assumes the mark bits are cleared at entry.  */
3024 
3025 void
unshare_all_rtl_in_chain(rtx_insn * insn)3026 unshare_all_rtl_in_chain (rtx_insn *insn)
3027 {
3028   for (; insn; insn = NEXT_INSN (insn))
3029     if (INSN_P (insn))
3030       {
3031 	PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
3032 	REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
3033 	if (CALL_P (insn))
3034 	  CALL_INSN_FUNCTION_USAGE (insn)
3035 	    = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
3036       }
3037 }
3038 
3039 /* Go through all virtual stack slots of a function and mark them as
3040    shared.  We never replace the DECL_RTLs themselves with a copy,
3041    but expressions mentioned into a DECL_RTL cannot be shared with
3042    expressions in the instruction stream.
3043 
3044    Note that reload may convert pseudo registers into memories in-place.
3045    Pseudo registers are always shared, but MEMs never are.  Thus if we
3046    reset the used flags on MEMs in the instruction stream, we must set
3047    them again on MEMs that appear in DECL_RTLs.  */
3048 
3049 static void
set_used_decls(tree blk)3050 set_used_decls (tree blk)
3051 {
3052   tree t;
3053 
3054   /* Mark decls.  */
3055   for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
3056     if (DECL_RTL_SET_P (t))
3057       set_used_flags (DECL_RTL (t));
3058 
3059   /* Now process sub-blocks.  */
3060   for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
3061     set_used_decls (t);
3062 }
3063 
3064 /* Mark ORIG as in use, and return a copy of it if it was already in use.
3065    Recursively does the same for subexpressions.  Uses
3066    copy_rtx_if_shared_1 to reduce stack space.  */
3067 
3068 rtx
copy_rtx_if_shared(rtx orig)3069 copy_rtx_if_shared (rtx orig)
3070 {
3071   copy_rtx_if_shared_1 (&orig);
3072   return orig;
3073 }
3074 
3075 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
3076    use.  Recursively does the same for subexpressions.  */
3077 
3078 static void
copy_rtx_if_shared_1(rtx * orig1)3079 copy_rtx_if_shared_1 (rtx *orig1)
3080 {
3081   rtx x;
3082   int i;
3083   enum rtx_code code;
3084   rtx *last_ptr;
3085   const char *format_ptr;
3086   int copied = 0;
3087   int length;
3088 
3089   /* Repeat is used to turn tail-recursion into iteration.  */
3090 repeat:
3091   x = *orig1;
3092 
3093   if (x == 0)
3094     return;
3095 
3096   code = GET_CODE (x);
3097 
3098   /* These types may be freely shared.  */
3099 
3100   switch (code)
3101     {
3102     case REG:
3103     case DEBUG_EXPR:
3104     case VALUE:
3105     CASE_CONST_ANY:
3106     case SYMBOL_REF:
3107     case LABEL_REF:
3108     case CODE_LABEL:
3109     case PC:
3110     case RETURN:
3111     case SIMPLE_RETURN:
3112     case SCRATCH:
3113       /* SCRATCH must be shared because they represent distinct values.  */
3114       return;
3115     case CLOBBER:
3116       /* Share clobbers of hard registers, but do not share pseudo reg
3117          clobbers or clobbers of hard registers that originated as pseudos.
3118          This is needed to allow safe register renaming.  */
3119       if (REG_P (XEXP (x, 0))
3120 	  && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0)))
3121 	  && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0))))
3122 	return;
3123       break;
3124 
3125     case CONST:
3126       if (shared_const_p (x))
3127 	return;
3128       break;
3129 
3130     case DEBUG_INSN:
3131     case INSN:
3132     case JUMP_INSN:
3133     case CALL_INSN:
3134     case NOTE:
3135     case BARRIER:
3136       /* The chain of insns is not being copied.  */
3137       return;
3138 
3139     default:
3140       break;
3141     }
3142 
3143   /* This rtx may not be shared.  If it has already been seen,
3144      replace it with a copy of itself.  */
3145 
3146   if (RTX_FLAG (x, used))
3147     {
3148       x = shallow_copy_rtx (x);
3149       copied = 1;
3150     }
3151   RTX_FLAG (x, used) = 1;
3152 
3153   /* Now scan the subexpressions recursively.
3154      We can store any replaced subexpressions directly into X
3155      since we know X is not shared!  Any vectors in X
3156      must be copied if X was copied.  */
3157 
3158   format_ptr = GET_RTX_FORMAT (code);
3159   length = GET_RTX_LENGTH (code);
3160   last_ptr = NULL;
3161 
3162   for (i = 0; i < length; i++)
3163     {
3164       switch (*format_ptr++)
3165 	{
3166 	case 'e':
3167           if (last_ptr)
3168             copy_rtx_if_shared_1 (last_ptr);
3169 	  last_ptr = &XEXP (x, i);
3170 	  break;
3171 
3172 	case 'E':
3173 	  if (XVEC (x, i) != NULL)
3174 	    {
3175 	      int j;
3176 	      int len = XVECLEN (x, i);
3177 
3178               /* Copy the vector iff I copied the rtx and the length
3179 		 is nonzero.  */
3180 	      if (copied && len > 0)
3181 		XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
3182 
3183               /* Call recursively on all inside the vector.  */
3184 	      for (j = 0; j < len; j++)
3185                 {
3186 		  if (last_ptr)
3187 		    copy_rtx_if_shared_1 (last_ptr);
3188                   last_ptr = &XVECEXP (x, i, j);
3189                 }
3190 	    }
3191 	  break;
3192 	}
3193     }
3194   *orig1 = x;
3195   if (last_ptr)
3196     {
3197       orig1 = last_ptr;
3198       goto repeat;
3199     }
3200   return;
3201 }
3202 
3203 /* Set the USED bit in X and its non-shareable subparts to FLAG.  */
3204 
3205 static void
mark_used_flags(rtx x,int flag)3206 mark_used_flags (rtx x, int flag)
3207 {
3208   int i, j;
3209   enum rtx_code code;
3210   const char *format_ptr;
3211   int length;
3212 
3213   /* Repeat is used to turn tail-recursion into iteration.  */
3214 repeat:
3215   if (x == 0)
3216     return;
3217 
3218   code = GET_CODE (x);
3219 
3220   /* These types may be freely shared so we needn't do any resetting
3221      for them.  */
3222 
3223   switch (code)
3224     {
3225     case REG:
3226     case DEBUG_EXPR:
3227     case VALUE:
3228     CASE_CONST_ANY:
3229     case SYMBOL_REF:
3230     case CODE_LABEL:
3231     case PC:
3232     case RETURN:
3233     case SIMPLE_RETURN:
3234       return;
3235 
3236     case DEBUG_INSN:
3237     case INSN:
3238     case JUMP_INSN:
3239     case CALL_INSN:
3240     case NOTE:
3241     case LABEL_REF:
3242     case BARRIER:
3243       /* The chain of insns is not being copied.  */
3244       return;
3245 
3246     default:
3247       break;
3248     }
3249 
3250   RTX_FLAG (x, used) = flag;
3251 
3252   format_ptr = GET_RTX_FORMAT (code);
3253   length = GET_RTX_LENGTH (code);
3254 
3255   for (i = 0; i < length; i++)
3256     {
3257       switch (*format_ptr++)
3258 	{
3259 	case 'e':
3260           if (i == length-1)
3261             {
3262               x = XEXP (x, i);
3263 	      goto repeat;
3264             }
3265 	  mark_used_flags (XEXP (x, i), flag);
3266 	  break;
3267 
3268 	case 'E':
3269 	  for (j = 0; j < XVECLEN (x, i); j++)
3270 	    mark_used_flags (XVECEXP (x, i, j), flag);
3271 	  break;
3272 	}
3273     }
3274 }
3275 
3276 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
3277    to look for shared sub-parts.  */
3278 
3279 void
reset_used_flags(rtx x)3280 reset_used_flags (rtx x)
3281 {
3282   mark_used_flags (x, 0);
3283 }
3284 
3285 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3286    to look for shared sub-parts.  */
3287 
3288 void
set_used_flags(rtx x)3289 set_used_flags (rtx x)
3290 {
3291   mark_used_flags (x, 1);
3292 }
3293 
3294 /* Copy X if necessary so that it won't be altered by changes in OTHER.
3295    Return X or the rtx for the pseudo reg the value of X was copied into.
3296    OTHER must be valid as a SET_DEST.  */
3297 
3298 rtx
make_safe_from(rtx x,rtx other)3299 make_safe_from (rtx x, rtx other)
3300 {
3301   while (1)
3302     switch (GET_CODE (other))
3303       {
3304       case SUBREG:
3305 	other = SUBREG_REG (other);
3306 	break;
3307       case STRICT_LOW_PART:
3308       case SIGN_EXTEND:
3309       case ZERO_EXTEND:
3310 	other = XEXP (other, 0);
3311 	break;
3312       default:
3313 	goto done;
3314       }
3315  done:
3316   if ((MEM_P (other)
3317        && ! CONSTANT_P (x)
3318        && !REG_P (x)
3319        && GET_CODE (x) != SUBREG)
3320       || (REG_P (other)
3321 	  && (REGNO (other) < FIRST_PSEUDO_REGISTER
3322 	      || reg_mentioned_p (other, x))))
3323     {
3324       rtx temp = gen_reg_rtx (GET_MODE (x));
3325       emit_move_insn (temp, x);
3326       return temp;
3327     }
3328   return x;
3329 }
3330 
3331 /* Emission of insns (adding them to the doubly-linked list).  */
3332 
3333 /* Return the last insn emitted, even if it is in a sequence now pushed.  */
3334 
3335 rtx_insn *
get_last_insn_anywhere(void)3336 get_last_insn_anywhere (void)
3337 {
3338   struct sequence_stack *seq;
3339   for (seq = get_current_sequence (); seq; seq = seq->next)
3340     if (seq->last != 0)
3341       return seq->last;
3342   return 0;
3343 }
3344 
3345 /* Return the first nonnote insn emitted in current sequence or current
3346    function.  This routine looks inside SEQUENCEs.  */
3347 
3348 rtx_insn *
get_first_nonnote_insn(void)3349 get_first_nonnote_insn (void)
3350 {
3351   rtx_insn *insn = get_insns ();
3352 
3353   if (insn)
3354     {
3355       if (NOTE_P (insn))
3356 	for (insn = next_insn (insn);
3357 	     insn && NOTE_P (insn);
3358 	     insn = next_insn (insn))
3359 	  continue;
3360       else
3361 	{
3362 	  if (NONJUMP_INSN_P (insn)
3363 	      && GET_CODE (PATTERN (insn)) == SEQUENCE)
3364 	    insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3365 	}
3366     }
3367 
3368   return insn;
3369 }
3370 
3371 /* Return the last nonnote insn emitted in current sequence or current
3372    function.  This routine looks inside SEQUENCEs.  */
3373 
3374 rtx_insn *
get_last_nonnote_insn(void)3375 get_last_nonnote_insn (void)
3376 {
3377   rtx_insn *insn = get_last_insn ();
3378 
3379   if (insn)
3380     {
3381       if (NOTE_P (insn))
3382 	for (insn = previous_insn (insn);
3383 	     insn && NOTE_P (insn);
3384 	     insn = previous_insn (insn))
3385 	  continue;
3386       else
3387 	{
3388 	  if (NONJUMP_INSN_P (insn))
3389 	    if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3390 	      insn = seq->insn (seq->len () - 1);
3391 	}
3392     }
3393 
3394   return insn;
3395 }
3396 
3397 /* Return the number of actual (non-debug) insns emitted in this
3398    function.  */
3399 
3400 int
get_max_insn_count(void)3401 get_max_insn_count (void)
3402 {
3403   int n = cur_insn_uid;
3404 
3405   /* The table size must be stable across -g, to avoid codegen
3406      differences due to debug insns, and not be affected by
3407      -fmin-insn-uid, to avoid excessive table size and to simplify
3408      debugging of -fcompare-debug failures.  */
3409   if (cur_debug_insn_uid > param_min_nondebug_insn_uid)
3410     n -= cur_debug_insn_uid;
3411   else
3412     n -= param_min_nondebug_insn_uid;
3413 
3414   return n;
3415 }
3416 
3417 
3418 /* Return the next insn.  If it is a SEQUENCE, return the first insn
3419    of the sequence.  */
3420 
3421 rtx_insn *
next_insn(rtx_insn * insn)3422 next_insn (rtx_insn *insn)
3423 {
3424   if (insn)
3425     {
3426       insn = NEXT_INSN (insn);
3427       if (insn && NONJUMP_INSN_P (insn)
3428 	  && GET_CODE (PATTERN (insn)) == SEQUENCE)
3429 	insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3430     }
3431 
3432   return insn;
3433 }
3434 
3435 /* Return the previous insn.  If it is a SEQUENCE, return the last insn
3436    of the sequence.  */
3437 
3438 rtx_insn *
previous_insn(rtx_insn * insn)3439 previous_insn (rtx_insn *insn)
3440 {
3441   if (insn)
3442     {
3443       insn = PREV_INSN (insn);
3444       if (insn && NONJUMP_INSN_P (insn))
3445 	if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3446 	  insn = seq->insn (seq->len () - 1);
3447     }
3448 
3449   return insn;
3450 }
3451 
3452 /* Return the next insn after INSN that is not a NOTE.  This routine does not
3453    look inside SEQUENCEs.  */
3454 
3455 rtx_insn *
next_nonnote_insn(rtx_insn * insn)3456 next_nonnote_insn (rtx_insn *insn)
3457 {
3458   while (insn)
3459     {
3460       insn = NEXT_INSN (insn);
3461       if (insn == 0 || !NOTE_P (insn))
3462 	break;
3463     }
3464 
3465   return insn;
3466 }
3467 
3468 /* Return the next insn after INSN that is not a DEBUG_INSN.  This
3469    routine does not look inside SEQUENCEs.  */
3470 
3471 rtx_insn *
next_nondebug_insn(rtx_insn * insn)3472 next_nondebug_insn (rtx_insn *insn)
3473 {
3474   while (insn)
3475     {
3476       insn = NEXT_INSN (insn);
3477       if (insn == 0 || !DEBUG_INSN_P (insn))
3478 	break;
3479     }
3480 
3481   return insn;
3482 }
3483 
3484 /* Return the previous insn before INSN that is not a NOTE.  This routine does
3485    not look inside SEQUENCEs.  */
3486 
3487 rtx_insn *
prev_nonnote_insn(rtx_insn * insn)3488 prev_nonnote_insn (rtx_insn *insn)
3489 {
3490   while (insn)
3491     {
3492       insn = PREV_INSN (insn);
3493       if (insn == 0 || !NOTE_P (insn))
3494 	break;
3495     }
3496 
3497   return insn;
3498 }
3499 
3500 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3501    This routine does not look inside SEQUENCEs.  */
3502 
3503 rtx_insn *
prev_nondebug_insn(rtx_insn * insn)3504 prev_nondebug_insn (rtx_insn *insn)
3505 {
3506   while (insn)
3507     {
3508       insn = PREV_INSN (insn);
3509       if (insn == 0 || !DEBUG_INSN_P (insn))
3510 	break;
3511     }
3512 
3513   return insn;
3514 }
3515 
3516 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3517    This routine does not look inside SEQUENCEs.  */
3518 
3519 rtx_insn *
next_nonnote_nondebug_insn(rtx_insn * insn)3520 next_nonnote_nondebug_insn (rtx_insn *insn)
3521 {
3522   while (insn)
3523     {
3524       insn = NEXT_INSN (insn);
3525       if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3526 	break;
3527     }
3528 
3529   return insn;
3530 }
3531 
3532 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN,
3533    but stop the search before we enter another basic block.  This
3534    routine does not look inside SEQUENCEs.  */
3535 
3536 rtx_insn *
next_nonnote_nondebug_insn_bb(rtx_insn * insn)3537 next_nonnote_nondebug_insn_bb (rtx_insn *insn)
3538 {
3539   while (insn)
3540     {
3541       insn = NEXT_INSN (insn);
3542       if (insn == 0)
3543 	break;
3544       if (DEBUG_INSN_P (insn))
3545 	continue;
3546       if (!NOTE_P (insn))
3547 	break;
3548       if (NOTE_INSN_BASIC_BLOCK_P (insn))
3549 	return NULL;
3550     }
3551 
3552   return insn;
3553 }
3554 
3555 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3556    This routine does not look inside SEQUENCEs.  */
3557 
3558 rtx_insn *
prev_nonnote_nondebug_insn(rtx_insn * insn)3559 prev_nonnote_nondebug_insn (rtx_insn *insn)
3560 {
3561   while (insn)
3562     {
3563       insn = PREV_INSN (insn);
3564       if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3565 	break;
3566     }
3567 
3568   return insn;
3569 }
3570 
3571 /* Return the previous insn before INSN that is not a NOTE nor
3572    DEBUG_INSN, but stop the search before we enter another basic
3573    block.  This routine does not look inside SEQUENCEs.  */
3574 
3575 rtx_insn *
prev_nonnote_nondebug_insn_bb(rtx_insn * insn)3576 prev_nonnote_nondebug_insn_bb (rtx_insn *insn)
3577 {
3578   while (insn)
3579     {
3580       insn = PREV_INSN (insn);
3581       if (insn == 0)
3582 	break;
3583       if (DEBUG_INSN_P (insn))
3584 	continue;
3585       if (!NOTE_P (insn))
3586 	break;
3587       if (NOTE_INSN_BASIC_BLOCK_P (insn))
3588 	return NULL;
3589     }
3590 
3591   return insn;
3592 }
3593 
3594 /* Return the next INSN, CALL_INSN, JUMP_INSN or DEBUG_INSN after INSN;
3595    or 0, if there is none.  This routine does not look inside
3596    SEQUENCEs.  */
3597 
3598 rtx_insn *
next_real_insn(rtx_insn * insn)3599 next_real_insn (rtx_insn *insn)
3600 {
3601   while (insn)
3602     {
3603       insn = NEXT_INSN (insn);
3604       if (insn == 0 || INSN_P (insn))
3605 	break;
3606     }
3607 
3608   return insn;
3609 }
3610 
3611 /* Return the last INSN, CALL_INSN, JUMP_INSN or DEBUG_INSN before INSN;
3612    or 0, if there is none.  This routine does not look inside
3613    SEQUENCEs.  */
3614 
3615 rtx_insn *
prev_real_insn(rtx_insn * insn)3616 prev_real_insn (rtx_insn *insn)
3617 {
3618   while (insn)
3619     {
3620       insn = PREV_INSN (insn);
3621       if (insn == 0 || INSN_P (insn))
3622 	break;
3623     }
3624 
3625   return insn;
3626 }
3627 
3628 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3629    or 0, if there is none.  This routine does not look inside
3630    SEQUENCEs.  */
3631 
3632 rtx_insn *
next_real_nondebug_insn(rtx uncast_insn)3633 next_real_nondebug_insn (rtx uncast_insn)
3634 {
3635   rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3636 
3637   while (insn)
3638     {
3639       insn = NEXT_INSN (insn);
3640       if (insn == 0 || NONDEBUG_INSN_P (insn))
3641 	break;
3642     }
3643 
3644   return insn;
3645 }
3646 
3647 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3648    or 0, if there is none.  This routine does not look inside
3649    SEQUENCEs.  */
3650 
3651 rtx_insn *
prev_real_nondebug_insn(rtx_insn * insn)3652 prev_real_nondebug_insn (rtx_insn *insn)
3653 {
3654   while (insn)
3655     {
3656       insn = PREV_INSN (insn);
3657       if (insn == 0 || NONDEBUG_INSN_P (insn))
3658 	break;
3659     }
3660 
3661   return insn;
3662 }
3663 
3664 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3665    This routine does not look inside SEQUENCEs.  */
3666 
3667 rtx_call_insn *
last_call_insn(void)3668 last_call_insn (void)
3669 {
3670   rtx_insn *insn;
3671 
3672   for (insn = get_last_insn ();
3673        insn && !CALL_P (insn);
3674        insn = PREV_INSN (insn))
3675     ;
3676 
3677   return safe_as_a <rtx_call_insn *> (insn);
3678 }
3679 
3680 /* Find the next insn after INSN that really does something.  This routine
3681    does not look inside SEQUENCEs.  After reload this also skips over
3682    standalone USE and CLOBBER insn.  */
3683 
3684 int
active_insn_p(const rtx_insn * insn)3685 active_insn_p (const rtx_insn *insn)
3686 {
3687   return (CALL_P (insn) || JUMP_P (insn)
3688 	  || JUMP_TABLE_DATA_P (insn) /* FIXME */
3689 	  || (NONJUMP_INSN_P (insn)
3690 	      && (! reload_completed
3691 		  || (GET_CODE (PATTERN (insn)) != USE
3692 		      && GET_CODE (PATTERN (insn)) != CLOBBER))));
3693 }
3694 
3695 rtx_insn *
next_active_insn(rtx_insn * insn)3696 next_active_insn (rtx_insn *insn)
3697 {
3698   while (insn)
3699     {
3700       insn = NEXT_INSN (insn);
3701       if (insn == 0 || active_insn_p (insn))
3702 	break;
3703     }
3704 
3705   return insn;
3706 }
3707 
3708 /* Find the last insn before INSN that really does something.  This routine
3709    does not look inside SEQUENCEs.  After reload this also skips over
3710    standalone USE and CLOBBER insn.  */
3711 
3712 rtx_insn *
prev_active_insn(rtx_insn * insn)3713 prev_active_insn (rtx_insn *insn)
3714 {
3715   while (insn)
3716     {
3717       insn = PREV_INSN (insn);
3718       if (insn == 0 || active_insn_p (insn))
3719 	break;
3720     }
3721 
3722   return insn;
3723 }
3724 
3725 /* Find a RTX_AUTOINC class rtx which matches DATA.  */
3726 
3727 static int
find_auto_inc(const_rtx x,const_rtx reg)3728 find_auto_inc (const_rtx x, const_rtx reg)
3729 {
3730   subrtx_iterator::array_type array;
3731   FOR_EACH_SUBRTX (iter, array, x, NONCONST)
3732     {
3733       const_rtx x = *iter;
3734       if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC
3735 	  && rtx_equal_p (reg, XEXP (x, 0)))
3736 	return true;
3737     }
3738   return false;
3739 }
3740 
3741 /* Increment the label uses for all labels present in rtx.  */
3742 
3743 static void
mark_label_nuses(rtx x)3744 mark_label_nuses (rtx x)
3745 {
3746   enum rtx_code code;
3747   int i, j;
3748   const char *fmt;
3749 
3750   code = GET_CODE (x);
3751   if (code == LABEL_REF && LABEL_P (label_ref_label (x)))
3752     LABEL_NUSES (label_ref_label (x))++;
3753 
3754   fmt = GET_RTX_FORMAT (code);
3755   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3756     {
3757       if (fmt[i] == 'e')
3758 	mark_label_nuses (XEXP (x, i));
3759       else if (fmt[i] == 'E')
3760 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3761 	  mark_label_nuses (XVECEXP (x, i, j));
3762     }
3763 }
3764 
3765 
3766 /* Try splitting insns that can be split for better scheduling.
3767    PAT is the pattern which might split.
3768    TRIAL is the insn providing PAT.
3769    LAST is nonzero if we should return the last insn of the sequence produced.
3770 
3771    If this routine succeeds in splitting, it returns the first or last
3772    replacement insn depending on the value of LAST.  Otherwise, it
3773    returns TRIAL.  If the insn to be returned can be split, it will be.  */
3774 
3775 rtx_insn *
try_split(rtx pat,rtx_insn * trial,int last)3776 try_split (rtx pat, rtx_insn *trial, int last)
3777 {
3778   rtx_insn *before, *after;
3779   rtx note;
3780   rtx_insn *seq, *tem;
3781   profile_probability probability;
3782   rtx_insn *insn_last, *insn;
3783   int njumps = 0;
3784   rtx_insn *call_insn = NULL;
3785 
3786   if (any_condjump_p (trial)
3787       && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3788     split_branch_probability
3789       = profile_probability::from_reg_br_prob_note (XINT (note, 0));
3790   else
3791     split_branch_probability = profile_probability::uninitialized ();
3792 
3793   probability = split_branch_probability;
3794 
3795   seq = split_insns (pat, trial);
3796 
3797   split_branch_probability = profile_probability::uninitialized ();
3798 
3799   if (!seq)
3800     return trial;
3801 
3802   int split_insn_count = 0;
3803   /* Avoid infinite loop if any insn of the result matches
3804      the original pattern.  */
3805   insn_last = seq;
3806   while (1)
3807     {
3808       if (INSN_P (insn_last)
3809 	  && rtx_equal_p (PATTERN (insn_last), pat))
3810 	return trial;
3811       split_insn_count++;
3812       if (!NEXT_INSN (insn_last))
3813 	break;
3814       insn_last = NEXT_INSN (insn_last);
3815     }
3816 
3817   /* We're not good at redistributing frame information if
3818      the split occurs before reload or if it results in more
3819      than one insn.  */
3820   if (RTX_FRAME_RELATED_P (trial))
3821     {
3822       if (!reload_completed || split_insn_count != 1)
3823         return trial;
3824 
3825       rtx_insn *new_insn = seq;
3826       rtx_insn *old_insn = trial;
3827       copy_frame_info_to_split_insn (old_insn, new_insn);
3828     }
3829 
3830   /* We will be adding the new sequence to the function.  The splitters
3831      may have introduced invalid RTL sharing, so unshare the sequence now.  */
3832   unshare_all_rtl_in_chain (seq);
3833 
3834   /* Mark labels and copy flags.  */
3835   for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3836     {
3837       if (JUMP_P (insn))
3838 	{
3839 	  if (JUMP_P (trial))
3840 	    CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial);
3841 	  mark_jump_label (PATTERN (insn), insn, 0);
3842 	  njumps++;
3843 	  if (probability.initialized_p ()
3844 	      && any_condjump_p (insn)
3845 	      && !find_reg_note (insn, REG_BR_PROB, 0))
3846 	    {
3847 	      /* We can preserve the REG_BR_PROB notes only if exactly
3848 		 one jump is created, otherwise the machine description
3849 		 is responsible for this step using
3850 		 split_branch_probability variable.  */
3851 	      gcc_assert (njumps == 1);
3852 	      add_reg_br_prob_note (insn, probability);
3853 	    }
3854 	}
3855     }
3856 
3857   /* If we are splitting a CALL_INSN, look for the CALL_INSN
3858      in SEQ and copy any additional information across.  */
3859   if (CALL_P (trial))
3860     {
3861       for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3862 	if (CALL_P (insn))
3863 	  {
3864 	    gcc_assert (call_insn == NULL_RTX);
3865 	    call_insn = insn;
3866 
3867 	    /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3868 	       target may have explicitly specified.  */
3869 	    rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3870 	    while (*p)
3871 	      p = &XEXP (*p, 1);
3872 	    *p = CALL_INSN_FUNCTION_USAGE (trial);
3873 
3874 	    /* If the old call was a sibling call, the new one must
3875 	       be too.  */
3876 	    SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3877 	  }
3878     }
3879 
3880   /* Copy notes, particularly those related to the CFG.  */
3881   for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3882     {
3883       switch (REG_NOTE_KIND (note))
3884 	{
3885 	case REG_EH_REGION:
3886 	  copy_reg_eh_region_note_backward (note, insn_last, NULL);
3887 	  break;
3888 
3889 	case REG_NORETURN:
3890 	case REG_SETJMP:
3891 	case REG_TM:
3892 	case REG_CALL_NOCF_CHECK:
3893 	case REG_CALL_ARG_LOCATION:
3894 	  for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3895 	    {
3896 	      if (CALL_P (insn))
3897 		add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3898 	    }
3899 	  break;
3900 
3901 	case REG_NON_LOCAL_GOTO:
3902 	case REG_LABEL_TARGET:
3903 	  for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3904 	    {
3905 	      if (JUMP_P (insn))
3906 		add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3907 	    }
3908 	  break;
3909 
3910 	case REG_INC:
3911 	  if (!AUTO_INC_DEC)
3912 	    break;
3913 
3914 	  for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3915 	    {
3916 	      rtx reg = XEXP (note, 0);
3917 	      if (!FIND_REG_INC_NOTE (insn, reg)
3918 		  && find_auto_inc (PATTERN (insn), reg))
3919 		add_reg_note (insn, REG_INC, reg);
3920 	    }
3921 	  break;
3922 
3923 	case REG_ARGS_SIZE:
3924 	  fixup_args_size_notes (NULL, insn_last, get_args_size (note));
3925 	  break;
3926 
3927 	case REG_CALL_DECL:
3928 	case REG_UNTYPED_CALL:
3929 	  gcc_assert (call_insn != NULL_RTX);
3930 	  add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3931 	  break;
3932 
3933 	default:
3934 	  break;
3935 	}
3936     }
3937 
3938   /* If there are LABELS inside the split insns increment the
3939      usage count so we don't delete the label.  */
3940   if (INSN_P (trial))
3941     {
3942       insn = insn_last;
3943       while (insn != NULL_RTX)
3944 	{
3945 	  /* JUMP_P insns have already been "marked" above.  */
3946 	  if (NONJUMP_INSN_P (insn))
3947 	    mark_label_nuses (PATTERN (insn));
3948 
3949 	  insn = PREV_INSN (insn);
3950 	}
3951     }
3952 
3953   before = PREV_INSN (trial);
3954   after = NEXT_INSN (trial);
3955 
3956   emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
3957 
3958   delete_insn (trial);
3959 
3960   /* Recursively call try_split for each new insn created; by the
3961      time control returns here that insn will be fully split, so
3962      set LAST and continue from the insn after the one returned.
3963      We can't use next_active_insn here since AFTER may be a note.
3964      Ignore deleted insns, which can be occur if not optimizing.  */
3965   for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3966     if (! tem->deleted () && INSN_P (tem))
3967       tem = try_split (PATTERN (tem), tem, 1);
3968 
3969   /* Return either the first or the last insn, depending on which was
3970      requested.  */
3971   return last
3972     ? (after ? PREV_INSN (after) : get_last_insn ())
3973     : NEXT_INSN (before);
3974 }
3975 
3976 /* Make and return an INSN rtx, initializing all its slots.
3977    Store PATTERN in the pattern slots.  */
3978 
3979 rtx_insn *
make_insn_raw(rtx pattern)3980 make_insn_raw (rtx pattern)
3981 {
3982   rtx_insn *insn;
3983 
3984   insn = as_a <rtx_insn *> (rtx_alloc (INSN));
3985 
3986   INSN_UID (insn) = cur_insn_uid++;
3987   PATTERN (insn) = pattern;
3988   INSN_CODE (insn) = -1;
3989   REG_NOTES (insn) = NULL;
3990   INSN_LOCATION (insn) = curr_insn_location ();
3991   BLOCK_FOR_INSN (insn) = NULL;
3992 
3993 #ifdef ENABLE_RTL_CHECKING
3994   if (insn
3995       && INSN_P (insn)
3996       && (returnjump_p (insn)
3997 	  || (GET_CODE (insn) == SET
3998 	      && SET_DEST (insn) == pc_rtx)))
3999     {
4000       warning (0, "ICE: %<emit_insn%> used where %<emit_jump_insn%> needed:");
4001       debug_rtx (insn);
4002     }
4003 #endif
4004 
4005   return insn;
4006 }
4007 
4008 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn.  */
4009 
4010 static rtx_insn *
make_debug_insn_raw(rtx pattern)4011 make_debug_insn_raw (rtx pattern)
4012 {
4013   rtx_debug_insn *insn;
4014 
4015   insn = as_a <rtx_debug_insn *> (rtx_alloc (DEBUG_INSN));
4016   INSN_UID (insn) = cur_debug_insn_uid++;
4017   if (cur_debug_insn_uid > param_min_nondebug_insn_uid)
4018     INSN_UID (insn) = cur_insn_uid++;
4019 
4020   PATTERN (insn) = pattern;
4021   INSN_CODE (insn) = -1;
4022   REG_NOTES (insn) = NULL;
4023   INSN_LOCATION (insn) = curr_insn_location ();
4024   BLOCK_FOR_INSN (insn) = NULL;
4025 
4026   return insn;
4027 }
4028 
4029 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn.  */
4030 
4031 static rtx_insn *
make_jump_insn_raw(rtx pattern)4032 make_jump_insn_raw (rtx pattern)
4033 {
4034   rtx_jump_insn *insn;
4035 
4036   insn = as_a <rtx_jump_insn *> (rtx_alloc (JUMP_INSN));
4037   INSN_UID (insn) = cur_insn_uid++;
4038 
4039   PATTERN (insn) = pattern;
4040   INSN_CODE (insn) = -1;
4041   REG_NOTES (insn) = NULL;
4042   JUMP_LABEL (insn) = NULL;
4043   INSN_LOCATION (insn) = curr_insn_location ();
4044   BLOCK_FOR_INSN (insn) = NULL;
4045 
4046   return insn;
4047 }
4048 
4049 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn.  */
4050 
4051 static rtx_insn *
make_call_insn_raw(rtx pattern)4052 make_call_insn_raw (rtx pattern)
4053 {
4054   rtx_call_insn *insn;
4055 
4056   insn = as_a <rtx_call_insn *> (rtx_alloc (CALL_INSN));
4057   INSN_UID (insn) = cur_insn_uid++;
4058 
4059   PATTERN (insn) = pattern;
4060   INSN_CODE (insn) = -1;
4061   REG_NOTES (insn) = NULL;
4062   CALL_INSN_FUNCTION_USAGE (insn) = NULL;
4063   INSN_LOCATION (insn) = curr_insn_location ();
4064   BLOCK_FOR_INSN (insn) = NULL;
4065 
4066   return insn;
4067 }
4068 
4069 /* Like `make_insn_raw' but make a NOTE instead of an insn.  */
4070 
4071 static rtx_note *
make_note_raw(enum insn_note subtype)4072 make_note_raw (enum insn_note subtype)
4073 {
4074   /* Some notes are never created this way at all.  These notes are
4075      only created by patching out insns.  */
4076   gcc_assert (subtype != NOTE_INSN_DELETED_LABEL
4077 	      && subtype != NOTE_INSN_DELETED_DEBUG_LABEL);
4078 
4079   rtx_note *note = as_a <rtx_note *> (rtx_alloc (NOTE));
4080   INSN_UID (note) = cur_insn_uid++;
4081   NOTE_KIND (note) = subtype;
4082   BLOCK_FOR_INSN (note) = NULL;
4083   memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4084   return note;
4085 }
4086 
4087 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
4088    INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
4089    but also BARRIERs and JUMP_TABLE_DATAs.  PREV and NEXT may be NULL.  */
4090 
4091 static inline void
link_insn_into_chain(rtx_insn * insn,rtx_insn * prev,rtx_insn * next)4092 link_insn_into_chain (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
4093 {
4094   SET_PREV_INSN (insn) = prev;
4095   SET_NEXT_INSN (insn) = next;
4096   if (prev != NULL)
4097     {
4098       SET_NEXT_INSN (prev) = insn;
4099       if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4100 	{
4101 	  rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4102 	  SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = insn;
4103 	}
4104     }
4105   if (next != NULL)
4106     {
4107       SET_PREV_INSN (next) = insn;
4108       if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4109 	{
4110 	  rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4111 	  SET_PREV_INSN (sequence->insn (0)) = insn;
4112 	}
4113     }
4114 
4115   if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
4116     {
4117       rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (insn));
4118       SET_PREV_INSN (sequence->insn (0)) = prev;
4119       SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
4120     }
4121 }
4122 
4123 /* Add INSN to the end of the doubly-linked list.
4124    INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE.  */
4125 
4126 void
add_insn(rtx_insn * insn)4127 add_insn (rtx_insn *insn)
4128 {
4129   rtx_insn *prev = get_last_insn ();
4130   link_insn_into_chain (insn, prev, NULL);
4131   if (get_insns () == NULL)
4132     set_first_insn (insn);
4133   set_last_insn (insn);
4134 }
4135 
4136 /* Add INSN into the doubly-linked list after insn AFTER.  */
4137 
4138 static void
add_insn_after_nobb(rtx_insn * insn,rtx_insn * after)4139 add_insn_after_nobb (rtx_insn *insn, rtx_insn *after)
4140 {
4141   rtx_insn *next = NEXT_INSN (after);
4142 
4143   gcc_assert (!optimize || !after->deleted ());
4144 
4145   link_insn_into_chain (insn, after, next);
4146 
4147   if (next == NULL)
4148     {
4149       struct sequence_stack *seq;
4150 
4151       for (seq = get_current_sequence (); seq; seq = seq->next)
4152 	if (after == seq->last)
4153 	  {
4154 	    seq->last = insn;
4155 	    break;
4156 	  }
4157     }
4158 }
4159 
4160 /* Add INSN into the doubly-linked list before insn BEFORE.  */
4161 
4162 static void
add_insn_before_nobb(rtx_insn * insn,rtx_insn * before)4163 add_insn_before_nobb (rtx_insn *insn, rtx_insn *before)
4164 {
4165   rtx_insn *prev = PREV_INSN (before);
4166 
4167   gcc_assert (!optimize || !before->deleted ());
4168 
4169   link_insn_into_chain (insn, prev, before);
4170 
4171   if (prev == NULL)
4172     {
4173       struct sequence_stack *seq;
4174 
4175       for (seq = get_current_sequence (); seq; seq = seq->next)
4176 	if (before == seq->first)
4177 	  {
4178 	    seq->first = insn;
4179 	    break;
4180 	  }
4181 
4182       gcc_assert (seq);
4183     }
4184 }
4185 
4186 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
4187    If BB is NULL, an attempt is made to infer the bb from before.
4188 
4189    This and the next function should be the only functions called
4190    to insert an insn once delay slots have been filled since only
4191    they know how to update a SEQUENCE. */
4192 
4193 void
add_insn_after(rtx_insn * insn,rtx_insn * after,basic_block bb)4194 add_insn_after (rtx_insn *insn, rtx_insn *after, basic_block bb)
4195 {
4196   add_insn_after_nobb (insn, after);
4197   if (!BARRIER_P (after)
4198       && !BARRIER_P (insn)
4199       && (bb = BLOCK_FOR_INSN (after)))
4200     {
4201       set_block_for_insn (insn, bb);
4202       if (INSN_P (insn))
4203 	df_insn_rescan (insn);
4204       /* Should not happen as first in the BB is always
4205 	 either NOTE or LABEL.  */
4206       if (BB_END (bb) == after
4207 	  /* Avoid clobbering of structure when creating new BB.  */
4208 	  && !BARRIER_P (insn)
4209 	  && !NOTE_INSN_BASIC_BLOCK_P (insn))
4210 	BB_END (bb) = insn;
4211     }
4212 }
4213 
4214 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4215    If BB is NULL, an attempt is made to infer the bb from before.
4216 
4217    This and the previous function should be the only functions called
4218    to insert an insn once delay slots have been filled since only
4219    they know how to update a SEQUENCE. */
4220 
4221 void
add_insn_before(rtx_insn * insn,rtx_insn * before,basic_block bb)4222 add_insn_before (rtx_insn *insn, rtx_insn *before, basic_block bb)
4223 {
4224   add_insn_before_nobb (insn, before);
4225 
4226   if (!bb
4227       && !BARRIER_P (before)
4228       && !BARRIER_P (insn))
4229     bb = BLOCK_FOR_INSN (before);
4230 
4231   if (bb)
4232     {
4233       set_block_for_insn (insn, bb);
4234       if (INSN_P (insn))
4235 	df_insn_rescan (insn);
4236       /* Should not happen as first in the BB is always either NOTE or
4237 	 LABEL.  */
4238       gcc_assert (BB_HEAD (bb) != insn
4239 		  /* Avoid clobbering of structure when creating new BB.  */
4240 		  || BARRIER_P (insn)
4241 		  || NOTE_INSN_BASIC_BLOCK_P (insn));
4242     }
4243 }
4244 
4245 /* Replace insn with an deleted instruction note.  */
4246 
4247 void
set_insn_deleted(rtx_insn * insn)4248 set_insn_deleted (rtx_insn *insn)
4249 {
4250   if (INSN_P (insn))
4251     df_insn_delete (insn);
4252   PUT_CODE (insn, NOTE);
4253   NOTE_KIND (insn) = NOTE_INSN_DELETED;
4254 }
4255 
4256 
4257 /* Unlink INSN from the insn chain.
4258 
4259    This function knows how to handle sequences.
4260 
4261    This function does not invalidate data flow information associated with
4262    INSN (i.e. does not call df_insn_delete).  That makes this function
4263    usable for only disconnecting an insn from the chain, and re-emit it
4264    elsewhere later.
4265 
4266    To later insert INSN elsewhere in the insn chain via add_insn and
4267    similar functions, PREV_INSN and NEXT_INSN must be nullified by
4268    the caller.  Nullifying them here breaks many insn chain walks.
4269 
4270    To really delete an insn and related DF information, use delete_insn.  */
4271 
4272 void
remove_insn(rtx_insn * insn)4273 remove_insn (rtx_insn *insn)
4274 {
4275   rtx_insn *next = NEXT_INSN (insn);
4276   rtx_insn *prev = PREV_INSN (insn);
4277   basic_block bb;
4278 
4279   if (prev)
4280     {
4281       SET_NEXT_INSN (prev) = next;
4282       if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4283 	{
4284 	  rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4285 	  SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
4286 	}
4287     }
4288   else
4289     {
4290       struct sequence_stack *seq;
4291 
4292       for (seq = get_current_sequence (); seq; seq = seq->next)
4293 	if (insn == seq->first)
4294 	  {
4295 	    seq->first = next;
4296 	    break;
4297 	  }
4298 
4299       gcc_assert (seq);
4300     }
4301 
4302   if (next)
4303     {
4304       SET_PREV_INSN (next) = prev;
4305       if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4306 	{
4307 	  rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4308 	  SET_PREV_INSN (sequence->insn (0)) = prev;
4309 	}
4310     }
4311   else
4312     {
4313       struct sequence_stack *seq;
4314 
4315       for (seq = get_current_sequence (); seq; seq = seq->next)
4316 	if (insn == seq->last)
4317 	  {
4318 	    seq->last = prev;
4319 	    break;
4320 	  }
4321 
4322       gcc_assert (seq);
4323     }
4324 
4325   /* Fix up basic block boundaries, if necessary.  */
4326   if (!BARRIER_P (insn)
4327       && (bb = BLOCK_FOR_INSN (insn)))
4328     {
4329       if (BB_HEAD (bb) == insn)
4330 	{
4331 	  /* Never ever delete the basic block note without deleting whole
4332 	     basic block.  */
4333 	  gcc_assert (!NOTE_P (insn));
4334 	  BB_HEAD (bb) = next;
4335 	}
4336       if (BB_END (bb) == insn)
4337 	BB_END (bb) = prev;
4338     }
4339 }
4340 
4341 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN.  */
4342 
4343 void
add_function_usage_to(rtx call_insn,rtx call_fusage)4344 add_function_usage_to (rtx call_insn, rtx call_fusage)
4345 {
4346   gcc_assert (call_insn && CALL_P (call_insn));
4347 
4348   /* Put the register usage information on the CALL.  If there is already
4349      some usage information, put ours at the end.  */
4350   if (CALL_INSN_FUNCTION_USAGE (call_insn))
4351     {
4352       rtx link;
4353 
4354       for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4355 	   link = XEXP (link, 1))
4356 	;
4357 
4358       XEXP (link, 1) = call_fusage;
4359     }
4360   else
4361     CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4362 }
4363 
4364 /* Delete all insns made since FROM.
4365    FROM becomes the new last instruction.  */
4366 
4367 void
delete_insns_since(rtx_insn * from)4368 delete_insns_since (rtx_insn *from)
4369 {
4370   if (from == 0)
4371     set_first_insn (0);
4372   else
4373     SET_NEXT_INSN (from) = 0;
4374   set_last_insn (from);
4375 }
4376 
4377 /* This function is deprecated, please use sequences instead.
4378 
4379    Move a consecutive bunch of insns to a different place in the chain.
4380    The insns to be moved are those between FROM and TO.
4381    They are moved to a new position after the insn AFTER.
4382    AFTER must not be FROM or TO or any insn in between.
4383 
4384    This function does not know about SEQUENCEs and hence should not be
4385    called after delay-slot filling has been done.  */
4386 
4387 void
reorder_insns_nobb(rtx_insn * from,rtx_insn * to,rtx_insn * after)4388 reorder_insns_nobb (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4389 {
4390   if (flag_checking)
4391     {
4392       for (rtx_insn *x = from; x != to; x = NEXT_INSN (x))
4393 	gcc_assert (after != x);
4394       gcc_assert (after != to);
4395     }
4396 
4397   /* Splice this bunch out of where it is now.  */
4398   if (PREV_INSN (from))
4399     SET_NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4400   if (NEXT_INSN (to))
4401     SET_PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4402   if (get_last_insn () == to)
4403     set_last_insn (PREV_INSN (from));
4404   if (get_insns () == from)
4405     set_first_insn (NEXT_INSN (to));
4406 
4407   /* Make the new neighbors point to it and it to them.  */
4408   if (NEXT_INSN (after))
4409     SET_PREV_INSN (NEXT_INSN (after)) = to;
4410 
4411   SET_NEXT_INSN (to) = NEXT_INSN (after);
4412   SET_PREV_INSN (from) = after;
4413   SET_NEXT_INSN (after) = from;
4414   if (after == get_last_insn ())
4415     set_last_insn (to);
4416 }
4417 
4418 /* Same as function above, but take care to update BB boundaries.  */
4419 void
reorder_insns(rtx_insn * from,rtx_insn * to,rtx_insn * after)4420 reorder_insns (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4421 {
4422   rtx_insn *prev = PREV_INSN (from);
4423   basic_block bb, bb2;
4424 
4425   reorder_insns_nobb (from, to, after);
4426 
4427   if (!BARRIER_P (after)
4428       && (bb = BLOCK_FOR_INSN (after)))
4429     {
4430       rtx_insn *x;
4431       df_set_bb_dirty (bb);
4432 
4433       if (!BARRIER_P (from)
4434 	  && (bb2 = BLOCK_FOR_INSN (from)))
4435 	{
4436 	  if (BB_END (bb2) == to)
4437 	    BB_END (bb2) = prev;
4438 	  df_set_bb_dirty (bb2);
4439 	}
4440 
4441       if (BB_END (bb) == after)
4442 	BB_END (bb) = to;
4443 
4444       for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4445 	if (!BARRIER_P (x))
4446 	  df_insn_change_bb (x, bb);
4447     }
4448 }
4449 
4450 
4451 /* Emit insn(s) of given code and pattern
4452    at a specified place within the doubly-linked list.
4453 
4454    All of the emit_foo global entry points accept an object
4455    X which is either an insn list or a PATTERN of a single
4456    instruction.
4457 
4458    There are thus a few canonical ways to generate code and
4459    emit it at a specific place in the instruction stream.  For
4460    example, consider the instruction named SPOT and the fact that
4461    we would like to emit some instructions before SPOT.  We might
4462    do it like this:
4463 
4464 	start_sequence ();
4465 	... emit the new instructions ...
4466 	insns_head = get_insns ();
4467 	end_sequence ();
4468 
4469 	emit_insn_before (insns_head, SPOT);
4470 
4471    It used to be common to generate SEQUENCE rtl instead, but that
4472    is a relic of the past which no longer occurs.  The reason is that
4473    SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4474    generated would almost certainly die right after it was created.  */
4475 
4476 static rtx_insn *
emit_pattern_before_noloc(rtx x,rtx_insn * before,rtx_insn * last,basic_block bb,rtx_insn * (* make_raw)(rtx))4477 emit_pattern_before_noloc (rtx x, rtx_insn *before, rtx_insn *last,
4478 			   basic_block bb,
4479                            rtx_insn *(*make_raw) (rtx))
4480 {
4481   rtx_insn *insn;
4482 
4483   gcc_assert (before);
4484 
4485   if (x == NULL_RTX)
4486     return last;
4487 
4488   switch (GET_CODE (x))
4489     {
4490     case DEBUG_INSN:
4491     case INSN:
4492     case JUMP_INSN:
4493     case CALL_INSN:
4494     case CODE_LABEL:
4495     case BARRIER:
4496     case NOTE:
4497       insn = as_a <rtx_insn *> (x);
4498       while (insn)
4499 	{
4500 	  rtx_insn *next = NEXT_INSN (insn);
4501 	  add_insn_before (insn, before, bb);
4502 	  last = insn;
4503 	  insn = next;
4504 	}
4505       break;
4506 
4507 #ifdef ENABLE_RTL_CHECKING
4508     case SEQUENCE:
4509       gcc_unreachable ();
4510       break;
4511 #endif
4512 
4513     default:
4514       last = (*make_raw) (x);
4515       add_insn_before (last, before, bb);
4516       break;
4517     }
4518 
4519   return last;
4520 }
4521 
4522 /* Make X be output before the instruction BEFORE.  */
4523 
4524 rtx_insn *
emit_insn_before_noloc(rtx x,rtx_insn * before,basic_block bb)4525 emit_insn_before_noloc (rtx x, rtx_insn *before, basic_block bb)
4526 {
4527   return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4528 }
4529 
4530 /* Make an instruction with body X and code JUMP_INSN
4531    and output it before the instruction BEFORE.  */
4532 
4533 rtx_jump_insn *
emit_jump_insn_before_noloc(rtx x,rtx_insn * before)4534 emit_jump_insn_before_noloc (rtx x, rtx_insn *before)
4535 {
4536   return as_a <rtx_jump_insn *> (
4537 		emit_pattern_before_noloc (x, before, NULL, NULL,
4538 					   make_jump_insn_raw));
4539 }
4540 
4541 /* Make an instruction with body X and code CALL_INSN
4542    and output it before the instruction BEFORE.  */
4543 
4544 rtx_insn *
emit_call_insn_before_noloc(rtx x,rtx_insn * before)4545 emit_call_insn_before_noloc (rtx x, rtx_insn *before)
4546 {
4547   return emit_pattern_before_noloc (x, before, NULL, NULL,
4548 				    make_call_insn_raw);
4549 }
4550 
4551 /* Make an instruction with body X and code DEBUG_INSN
4552    and output it before the instruction BEFORE.  */
4553 
4554 rtx_insn *
emit_debug_insn_before_noloc(rtx x,rtx_insn * before)4555 emit_debug_insn_before_noloc (rtx x, rtx_insn *before)
4556 {
4557   return emit_pattern_before_noloc (x, before, NULL, NULL,
4558 				    make_debug_insn_raw);
4559 }
4560 
4561 /* Make an insn of code BARRIER
4562    and output it before the insn BEFORE.  */
4563 
4564 rtx_barrier *
emit_barrier_before(rtx_insn * before)4565 emit_barrier_before (rtx_insn *before)
4566 {
4567   rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4568 
4569   INSN_UID (insn) = cur_insn_uid++;
4570 
4571   add_insn_before (insn, before, NULL);
4572   return insn;
4573 }
4574 
4575 /* Emit the label LABEL before the insn BEFORE.  */
4576 
4577 rtx_code_label *
emit_label_before(rtx_code_label * label,rtx_insn * before)4578 emit_label_before (rtx_code_label *label, rtx_insn *before)
4579 {
4580   gcc_checking_assert (INSN_UID (label) == 0);
4581   INSN_UID (label) = cur_insn_uid++;
4582   add_insn_before (label, before, NULL);
4583   return label;
4584 }
4585 
4586 /* Helper for emit_insn_after, handles lists of instructions
4587    efficiently.  */
4588 
4589 static rtx_insn *
emit_insn_after_1(rtx_insn * first,rtx_insn * after,basic_block bb)4590 emit_insn_after_1 (rtx_insn *first, rtx_insn *after, basic_block bb)
4591 {
4592   rtx_insn *last;
4593   rtx_insn *after_after;
4594   if (!bb && !BARRIER_P (after))
4595     bb = BLOCK_FOR_INSN (after);
4596 
4597   if (bb)
4598     {
4599       df_set_bb_dirty (bb);
4600       for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4601 	if (!BARRIER_P (last))
4602 	  {
4603 	    set_block_for_insn (last, bb);
4604 	    df_insn_rescan (last);
4605 	  }
4606       if (!BARRIER_P (last))
4607 	{
4608 	  set_block_for_insn (last, bb);
4609 	  df_insn_rescan (last);
4610 	}
4611       if (BB_END (bb) == after)
4612 	BB_END (bb) = last;
4613     }
4614   else
4615     for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4616       continue;
4617 
4618   after_after = NEXT_INSN (after);
4619 
4620   SET_NEXT_INSN (after) = first;
4621   SET_PREV_INSN (first) = after;
4622   SET_NEXT_INSN (last) = after_after;
4623   if (after_after)
4624     SET_PREV_INSN (after_after) = last;
4625 
4626   if (after == get_last_insn ())
4627     set_last_insn (last);
4628 
4629   return last;
4630 }
4631 
4632 static rtx_insn *
emit_pattern_after_noloc(rtx x,rtx_insn * after,basic_block bb,rtx_insn * (* make_raw)(rtx))4633 emit_pattern_after_noloc (rtx x, rtx_insn *after, basic_block bb,
4634 			  rtx_insn *(*make_raw)(rtx))
4635 {
4636   rtx_insn *last = after;
4637 
4638   gcc_assert (after);
4639 
4640   if (x == NULL_RTX)
4641     return last;
4642 
4643   switch (GET_CODE (x))
4644     {
4645     case DEBUG_INSN:
4646     case INSN:
4647     case JUMP_INSN:
4648     case CALL_INSN:
4649     case CODE_LABEL:
4650     case BARRIER:
4651     case NOTE:
4652       last = emit_insn_after_1 (as_a <rtx_insn *> (x), after, bb);
4653       break;
4654 
4655 #ifdef ENABLE_RTL_CHECKING
4656     case SEQUENCE:
4657       gcc_unreachable ();
4658       break;
4659 #endif
4660 
4661     default:
4662       last = (*make_raw) (x);
4663       add_insn_after (last, after, bb);
4664       break;
4665     }
4666 
4667   return last;
4668 }
4669 
4670 /* Make X be output after the insn AFTER and set the BB of insn.  If
4671    BB is NULL, an attempt is made to infer the BB from AFTER.  */
4672 
4673 rtx_insn *
emit_insn_after_noloc(rtx x,rtx_insn * after,basic_block bb)4674 emit_insn_after_noloc (rtx x, rtx_insn *after, basic_block bb)
4675 {
4676   return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4677 }
4678 
4679 
4680 /* Make an insn of code JUMP_INSN with body X
4681    and output it after the insn AFTER.  */
4682 
4683 rtx_jump_insn *
emit_jump_insn_after_noloc(rtx x,rtx_insn * after)4684 emit_jump_insn_after_noloc (rtx x, rtx_insn *after)
4685 {
4686   return as_a <rtx_jump_insn *> (
4687 		emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw));
4688 }
4689 
4690 /* Make an instruction with body X and code CALL_INSN
4691    and output it after the instruction AFTER.  */
4692 
4693 rtx_insn *
emit_call_insn_after_noloc(rtx x,rtx_insn * after)4694 emit_call_insn_after_noloc (rtx x, rtx_insn *after)
4695 {
4696   return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4697 }
4698 
4699 /* Make an instruction with body X and code CALL_INSN
4700    and output it after the instruction AFTER.  */
4701 
4702 rtx_insn *
emit_debug_insn_after_noloc(rtx x,rtx_insn * after)4703 emit_debug_insn_after_noloc (rtx x, rtx_insn *after)
4704 {
4705   return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4706 }
4707 
4708 /* Make an insn of code BARRIER
4709    and output it after the insn AFTER.  */
4710 
4711 rtx_barrier *
emit_barrier_after(rtx_insn * after)4712 emit_barrier_after (rtx_insn *after)
4713 {
4714   rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4715 
4716   INSN_UID (insn) = cur_insn_uid++;
4717 
4718   add_insn_after (insn, after, NULL);
4719   return insn;
4720 }
4721 
4722 /* Emit the label LABEL after the insn AFTER.  */
4723 
4724 rtx_insn *
emit_label_after(rtx_insn * label,rtx_insn * after)4725 emit_label_after (rtx_insn *label, rtx_insn *after)
4726 {
4727   gcc_checking_assert (INSN_UID (label) == 0);
4728   INSN_UID (label) = cur_insn_uid++;
4729   add_insn_after (label, after, NULL);
4730   return label;
4731 }
4732 
4733 /* Notes require a bit of special handling: Some notes need to have their
4734    BLOCK_FOR_INSN set, others should never have it set, and some should
4735    have it set or clear depending on the context.   */
4736 
4737 /* Return true iff a note of kind SUBTYPE should be emitted with routines
4738    that never set BLOCK_FOR_INSN on NOTE.  BB_BOUNDARY is true if the
4739    caller is asked to emit a note before BB_HEAD, or after BB_END.  */
4740 
4741 static bool
note_outside_basic_block_p(enum insn_note subtype,bool on_bb_boundary_p)4742 note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p)
4743 {
4744   switch (subtype)
4745     {
4746       /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks.  */
4747       case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4748 	return true;
4749 
4750       /* Notes for var tracking and EH region markers can appear between or
4751 	 inside basic blocks.  If the caller is emitting on the basic block
4752 	 boundary, do not set BLOCK_FOR_INSN on the new note.  */
4753       case NOTE_INSN_VAR_LOCATION:
4754       case NOTE_INSN_EH_REGION_BEG:
4755       case NOTE_INSN_EH_REGION_END:
4756 	return on_bb_boundary_p;
4757 
4758       /* Otherwise, BLOCK_FOR_INSN must be set.  */
4759       default:
4760 	return false;
4761     }
4762 }
4763 
4764 /* Emit a note of subtype SUBTYPE after the insn AFTER.  */
4765 
4766 rtx_note *
emit_note_after(enum insn_note subtype,rtx_insn * after)4767 emit_note_after (enum insn_note subtype, rtx_insn *after)
4768 {
4769   rtx_note *note = make_note_raw (subtype);
4770   basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after);
4771   bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after);
4772 
4773   if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4774     add_insn_after_nobb (note, after);
4775   else
4776     add_insn_after (note, after, bb);
4777   return note;
4778 }
4779 
4780 /* Emit a note of subtype SUBTYPE before the insn BEFORE.  */
4781 
4782 rtx_note *
emit_note_before(enum insn_note subtype,rtx_insn * before)4783 emit_note_before (enum insn_note subtype, rtx_insn *before)
4784 {
4785   rtx_note *note = make_note_raw (subtype);
4786   basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before);
4787   bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before);
4788 
4789   if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4790     add_insn_before_nobb (note, before);
4791   else
4792     add_insn_before (note, before, bb);
4793   return note;
4794 }
4795 
4796 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4797    MAKE_RAW indicates how to turn PATTERN into a real insn.  */
4798 
4799 static rtx_insn *
emit_pattern_after_setloc(rtx pattern,rtx_insn * after,location_t loc,rtx_insn * (* make_raw)(rtx))4800 emit_pattern_after_setloc (rtx pattern, rtx_insn *after, location_t loc,
4801 			   rtx_insn *(*make_raw) (rtx))
4802 {
4803   rtx_insn *last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4804 
4805   if (pattern == NULL_RTX || !loc)
4806     return last;
4807 
4808   after = NEXT_INSN (after);
4809   while (1)
4810     {
4811       if (active_insn_p (after)
4812 	  && !JUMP_TABLE_DATA_P (after) /* FIXME */
4813 	  && !INSN_LOCATION (after))
4814 	INSN_LOCATION (after) = loc;
4815       if (after == last)
4816 	break;
4817       after = NEXT_INSN (after);
4818     }
4819   return last;
4820 }
4821 
4822 /* Insert PATTERN after AFTER.  MAKE_RAW indicates how to turn PATTERN
4823    into a real insn.  SKIP_DEBUG_INSNS indicates whether to insert after
4824    any DEBUG_INSNs.  */
4825 
4826 static rtx_insn *
emit_pattern_after(rtx pattern,rtx_insn * after,bool skip_debug_insns,rtx_insn * (* make_raw)(rtx))4827 emit_pattern_after (rtx pattern, rtx_insn *after, bool skip_debug_insns,
4828 		    rtx_insn *(*make_raw) (rtx))
4829 {
4830   rtx_insn *prev = after;
4831 
4832   if (skip_debug_insns)
4833     while (DEBUG_INSN_P (prev))
4834       prev = PREV_INSN (prev);
4835 
4836   if (INSN_P (prev))
4837     return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
4838 				      make_raw);
4839   else
4840     return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4841 }
4842 
4843 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC.  */
4844 rtx_insn *
emit_insn_after_setloc(rtx pattern,rtx_insn * after,location_t loc)4845 emit_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc)
4846 {
4847   return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4848 }
4849 
4850 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER.  */
4851 rtx_insn *
emit_insn_after(rtx pattern,rtx_insn * after)4852 emit_insn_after (rtx pattern, rtx_insn *after)
4853 {
4854   return emit_pattern_after (pattern, after, true, make_insn_raw);
4855 }
4856 
4857 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC.  */
4858 rtx_jump_insn *
emit_jump_insn_after_setloc(rtx pattern,rtx_insn * after,location_t loc)4859 emit_jump_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc)
4860 {
4861   return as_a <rtx_jump_insn *> (
4862 	emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw));
4863 }
4864 
4865 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER.  */
4866 rtx_jump_insn *
emit_jump_insn_after(rtx pattern,rtx_insn * after)4867 emit_jump_insn_after (rtx pattern, rtx_insn *after)
4868 {
4869   return as_a <rtx_jump_insn *> (
4870 	emit_pattern_after (pattern, after, true, make_jump_insn_raw));
4871 }
4872 
4873 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC.  */
4874 rtx_insn *
emit_call_insn_after_setloc(rtx pattern,rtx_insn * after,location_t loc)4875 emit_call_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc)
4876 {
4877   return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4878 }
4879 
4880 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER.  */
4881 rtx_insn *
emit_call_insn_after(rtx pattern,rtx_insn * after)4882 emit_call_insn_after (rtx pattern, rtx_insn *after)
4883 {
4884   return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4885 }
4886 
4887 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC.  */
4888 rtx_insn *
emit_debug_insn_after_setloc(rtx pattern,rtx_insn * after,location_t loc)4889 emit_debug_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc)
4890 {
4891   return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4892 }
4893 
4894 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER.  */
4895 rtx_insn *
emit_debug_insn_after(rtx pattern,rtx_insn * after)4896 emit_debug_insn_after (rtx pattern, rtx_insn *after)
4897 {
4898   return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4899 }
4900 
4901 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4902    MAKE_RAW indicates how to turn PATTERN into a real insn.  INSNP
4903    indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4904    CALL_INSN, etc.  */
4905 
4906 static rtx_insn *
emit_pattern_before_setloc(rtx pattern,rtx_insn * before,location_t loc,bool insnp,rtx_insn * (* make_raw)(rtx))4907 emit_pattern_before_setloc (rtx pattern, rtx_insn *before, location_t loc,
4908 			    bool insnp, rtx_insn *(*make_raw) (rtx))
4909 {
4910   rtx_insn *first = PREV_INSN (before);
4911   rtx_insn *last = emit_pattern_before_noloc (pattern, before,
4912 					      insnp ? before : NULL,
4913 					      NULL, make_raw);
4914 
4915   if (pattern == NULL_RTX || !loc)
4916     return last;
4917 
4918   if (!first)
4919     first = get_insns ();
4920   else
4921     first = NEXT_INSN (first);
4922   while (1)
4923     {
4924       if (active_insn_p (first)
4925 	  && !JUMP_TABLE_DATA_P (first) /* FIXME */
4926 	  && !INSN_LOCATION (first))
4927 	INSN_LOCATION (first) = loc;
4928       if (first == last)
4929 	break;
4930       first = NEXT_INSN (first);
4931     }
4932   return last;
4933 }
4934 
4935 /* Insert PATTERN before BEFORE.  MAKE_RAW indicates how to turn PATTERN
4936    into a real insn.  SKIP_DEBUG_INSNS indicates whether to insert
4937    before any DEBUG_INSNs.  INSNP indicates if PATTERN is meant for an
4938    INSN as opposed to a JUMP_INSN, CALL_INSN, etc.  */
4939 
4940 static rtx_insn *
emit_pattern_before(rtx pattern,rtx_insn * before,bool skip_debug_insns,bool insnp,rtx_insn * (* make_raw)(rtx))4941 emit_pattern_before (rtx pattern, rtx_insn *before, bool skip_debug_insns,
4942 		     bool insnp, rtx_insn *(*make_raw) (rtx))
4943 {
4944   rtx_insn *next = before;
4945 
4946   if (skip_debug_insns)
4947     while (DEBUG_INSN_P (next))
4948       next = PREV_INSN (next);
4949 
4950   if (INSN_P (next))
4951     return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
4952 				       insnp, make_raw);
4953   else
4954     return emit_pattern_before_noloc (pattern, before,
4955 				      insnp ? before : NULL,
4956                                       NULL, make_raw);
4957 }
4958 
4959 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC.  */
4960 rtx_insn *
emit_insn_before_setloc(rtx pattern,rtx_insn * before,location_t loc)4961 emit_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc)
4962 {
4963   return emit_pattern_before_setloc (pattern, before, loc, true,
4964 				     make_insn_raw);
4965 }
4966 
4967 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE.  */
4968 rtx_insn *
emit_insn_before(rtx pattern,rtx_insn * before)4969 emit_insn_before (rtx pattern, rtx_insn *before)
4970 {
4971   return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4972 }
4973 
4974 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC.  */
4975 rtx_jump_insn *
emit_jump_insn_before_setloc(rtx pattern,rtx_insn * before,location_t loc)4976 emit_jump_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc)
4977 {
4978   return as_a <rtx_jump_insn *> (
4979 	emit_pattern_before_setloc (pattern, before, loc, false,
4980 				    make_jump_insn_raw));
4981 }
4982 
4983 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE.  */
4984 rtx_jump_insn *
emit_jump_insn_before(rtx pattern,rtx_insn * before)4985 emit_jump_insn_before (rtx pattern, rtx_insn *before)
4986 {
4987   return as_a <rtx_jump_insn *> (
4988 	emit_pattern_before (pattern, before, true, false,
4989 			     make_jump_insn_raw));
4990 }
4991 
4992 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC.  */
4993 rtx_insn *
emit_call_insn_before_setloc(rtx pattern,rtx_insn * before,location_t loc)4994 emit_call_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc)
4995 {
4996   return emit_pattern_before_setloc (pattern, before, loc, false,
4997 				     make_call_insn_raw);
4998 }
4999 
5000 /* Like emit_call_insn_before_noloc,
5001    but set insn_location according to BEFORE.  */
5002 rtx_insn *
emit_call_insn_before(rtx pattern,rtx_insn * before)5003 emit_call_insn_before (rtx pattern, rtx_insn *before)
5004 {
5005   return emit_pattern_before (pattern, before, true, false,
5006 			      make_call_insn_raw);
5007 }
5008 
5009 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC.  */
5010 rtx_insn *
emit_debug_insn_before_setloc(rtx pattern,rtx_insn * before,location_t loc)5011 emit_debug_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc)
5012 {
5013   return emit_pattern_before_setloc (pattern, before, loc, false,
5014 				     make_debug_insn_raw);
5015 }
5016 
5017 /* Like emit_debug_insn_before_noloc,
5018    but set insn_location according to BEFORE.  */
5019 rtx_insn *
emit_debug_insn_before(rtx pattern,rtx_insn * before)5020 emit_debug_insn_before (rtx pattern, rtx_insn *before)
5021 {
5022   return emit_pattern_before (pattern, before, false, false,
5023 			      make_debug_insn_raw);
5024 }
5025 
5026 /* Take X and emit it at the end of the doubly-linked
5027    INSN list.
5028 
5029    Returns the last insn emitted.  */
5030 
5031 rtx_insn *
emit_insn(rtx x)5032 emit_insn (rtx x)
5033 {
5034   rtx_insn *last = get_last_insn ();
5035   rtx_insn *insn;
5036 
5037   if (x == NULL_RTX)
5038     return last;
5039 
5040   switch (GET_CODE (x))
5041     {
5042     case DEBUG_INSN:
5043     case INSN:
5044     case JUMP_INSN:
5045     case CALL_INSN:
5046     case CODE_LABEL:
5047     case BARRIER:
5048     case NOTE:
5049       insn = as_a <rtx_insn *> (x);
5050       while (insn)
5051 	{
5052 	  rtx_insn *next = NEXT_INSN (insn);
5053 	  add_insn (insn);
5054 	  last = insn;
5055 	  insn = next;
5056 	}
5057       break;
5058 
5059 #ifdef ENABLE_RTL_CHECKING
5060     case JUMP_TABLE_DATA:
5061     case SEQUENCE:
5062       gcc_unreachable ();
5063       break;
5064 #endif
5065 
5066     default:
5067       last = make_insn_raw (x);
5068       add_insn (last);
5069       break;
5070     }
5071 
5072   return last;
5073 }
5074 
5075 /* Make an insn of code DEBUG_INSN with pattern X
5076    and add it to the end of the doubly-linked list.  */
5077 
5078 rtx_insn *
emit_debug_insn(rtx x)5079 emit_debug_insn (rtx x)
5080 {
5081   rtx_insn *last = get_last_insn ();
5082   rtx_insn *insn;
5083 
5084   if (x == NULL_RTX)
5085     return last;
5086 
5087   switch (GET_CODE (x))
5088     {
5089     case DEBUG_INSN:
5090     case INSN:
5091     case JUMP_INSN:
5092     case CALL_INSN:
5093     case CODE_LABEL:
5094     case BARRIER:
5095     case NOTE:
5096       insn = as_a <rtx_insn *> (x);
5097       while (insn)
5098 	{
5099 	  rtx_insn *next = NEXT_INSN (insn);
5100 	  add_insn (insn);
5101 	  last = insn;
5102 	  insn = next;
5103 	}
5104       break;
5105 
5106 #ifdef ENABLE_RTL_CHECKING
5107     case JUMP_TABLE_DATA:
5108     case SEQUENCE:
5109       gcc_unreachable ();
5110       break;
5111 #endif
5112 
5113     default:
5114       last = make_debug_insn_raw (x);
5115       add_insn (last);
5116       break;
5117     }
5118 
5119   return last;
5120 }
5121 
5122 /* Make an insn of code JUMP_INSN with pattern X
5123    and add it to the end of the doubly-linked list.  */
5124 
5125 rtx_insn *
emit_jump_insn(rtx x)5126 emit_jump_insn (rtx x)
5127 {
5128   rtx_insn *last = NULL;
5129   rtx_insn *insn;
5130 
5131   switch (GET_CODE (x))
5132     {
5133     case DEBUG_INSN:
5134     case INSN:
5135     case JUMP_INSN:
5136     case CALL_INSN:
5137     case CODE_LABEL:
5138     case BARRIER:
5139     case NOTE:
5140       insn = as_a <rtx_insn *> (x);
5141       while (insn)
5142 	{
5143 	  rtx_insn *next = NEXT_INSN (insn);
5144 	  add_insn (insn);
5145 	  last = insn;
5146 	  insn = next;
5147 	}
5148       break;
5149 
5150 #ifdef ENABLE_RTL_CHECKING
5151     case JUMP_TABLE_DATA:
5152     case SEQUENCE:
5153       gcc_unreachable ();
5154       break;
5155 #endif
5156 
5157     default:
5158       last = make_jump_insn_raw (x);
5159       add_insn (last);
5160       break;
5161     }
5162 
5163   return last;
5164 }
5165 
5166 /* Make an insn of code CALL_INSN with pattern X
5167    and add it to the end of the doubly-linked list.  */
5168 
5169 rtx_insn *
emit_call_insn(rtx x)5170 emit_call_insn (rtx x)
5171 {
5172   rtx_insn *insn;
5173 
5174   switch (GET_CODE (x))
5175     {
5176     case DEBUG_INSN:
5177     case INSN:
5178     case JUMP_INSN:
5179     case CALL_INSN:
5180     case CODE_LABEL:
5181     case BARRIER:
5182     case NOTE:
5183       insn = emit_insn (x);
5184       break;
5185 
5186 #ifdef ENABLE_RTL_CHECKING
5187     case SEQUENCE:
5188     case JUMP_TABLE_DATA:
5189       gcc_unreachable ();
5190       break;
5191 #endif
5192 
5193     default:
5194       insn = make_call_insn_raw (x);
5195       add_insn (insn);
5196       break;
5197     }
5198 
5199   return insn;
5200 }
5201 
5202 /* Add the label LABEL to the end of the doubly-linked list.  */
5203 
5204 rtx_code_label *
emit_label(rtx uncast_label)5205 emit_label (rtx uncast_label)
5206 {
5207   rtx_code_label *label = as_a <rtx_code_label *> (uncast_label);
5208 
5209   gcc_checking_assert (INSN_UID (label) == 0);
5210   INSN_UID (label) = cur_insn_uid++;
5211   add_insn (label);
5212   return label;
5213 }
5214 
5215 /* Make an insn of code JUMP_TABLE_DATA
5216    and add it to the end of the doubly-linked list.  */
5217 
5218 rtx_jump_table_data *
emit_jump_table_data(rtx table)5219 emit_jump_table_data (rtx table)
5220 {
5221   rtx_jump_table_data *jump_table_data =
5222     as_a <rtx_jump_table_data *> (rtx_alloc (JUMP_TABLE_DATA));
5223   INSN_UID (jump_table_data) = cur_insn_uid++;
5224   PATTERN (jump_table_data) = table;
5225   BLOCK_FOR_INSN (jump_table_data) = NULL;
5226   add_insn (jump_table_data);
5227   return jump_table_data;
5228 }
5229 
5230 /* Make an insn of code BARRIER
5231    and add it to the end of the doubly-linked list.  */
5232 
5233 rtx_barrier *
emit_barrier(void)5234 emit_barrier (void)
5235 {
5236   rtx_barrier *barrier = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
5237   INSN_UID (barrier) = cur_insn_uid++;
5238   add_insn (barrier);
5239   return barrier;
5240 }
5241 
5242 /* Emit a copy of note ORIG.  */
5243 
5244 rtx_note *
emit_note_copy(rtx_note * orig)5245 emit_note_copy (rtx_note *orig)
5246 {
5247   enum insn_note kind = (enum insn_note) NOTE_KIND (orig);
5248   rtx_note *note = make_note_raw (kind);
5249   NOTE_DATA (note) = NOTE_DATA (orig);
5250   add_insn (note);
5251   return note;
5252 }
5253 
5254 /* Make an insn of code NOTE or type NOTE_NO
5255    and add it to the end of the doubly-linked list.  */
5256 
5257 rtx_note *
emit_note(enum insn_note kind)5258 emit_note (enum insn_note kind)
5259 {
5260   rtx_note *note = make_note_raw (kind);
5261   add_insn (note);
5262   return note;
5263 }
5264 
5265 /* Emit a clobber of lvalue X.  */
5266 
5267 rtx_insn *
emit_clobber(rtx x)5268 emit_clobber (rtx x)
5269 {
5270   /* CONCATs should not appear in the insn stream.  */
5271   if (GET_CODE (x) == CONCAT)
5272     {
5273       emit_clobber (XEXP (x, 0));
5274       return emit_clobber (XEXP (x, 1));
5275     }
5276   return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5277 }
5278 
5279 /* Return a sequence of insns to clobber lvalue X.  */
5280 
5281 rtx_insn *
gen_clobber(rtx x)5282 gen_clobber (rtx x)
5283 {
5284   rtx_insn *seq;
5285 
5286   start_sequence ();
5287   emit_clobber (x);
5288   seq = get_insns ();
5289   end_sequence ();
5290   return seq;
5291 }
5292 
5293 /* Emit a use of rvalue X.  */
5294 
5295 rtx_insn *
emit_use(rtx x)5296 emit_use (rtx x)
5297 {
5298   /* CONCATs should not appear in the insn stream.  */
5299   if (GET_CODE (x) == CONCAT)
5300     {
5301       emit_use (XEXP (x, 0));
5302       return emit_use (XEXP (x, 1));
5303     }
5304   return emit_insn (gen_rtx_USE (VOIDmode, x));
5305 }
5306 
5307 /* Return a sequence of insns to use rvalue X.  */
5308 
5309 rtx_insn *
gen_use(rtx x)5310 gen_use (rtx x)
5311 {
5312   rtx_insn *seq;
5313 
5314   start_sequence ();
5315   emit_use (x);
5316   seq = get_insns ();
5317   end_sequence ();
5318   return seq;
5319 }
5320 
5321 /* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5322    Return the set in INSN that such notes describe, or NULL if the notes
5323    have no meaning for INSN.  */
5324 
5325 rtx
set_for_reg_notes(rtx insn)5326 set_for_reg_notes (rtx insn)
5327 {
5328   rtx pat, reg;
5329 
5330   if (!INSN_P (insn))
5331     return NULL_RTX;
5332 
5333   pat = PATTERN (insn);
5334   if (GET_CODE (pat) == PARALLEL)
5335     {
5336       /* We do not use single_set because that ignores SETs of unused
5337 	 registers.  REG_EQUAL and REG_EQUIV notes really do require the
5338 	 PARALLEL to have a single SET.  */
5339       if (multiple_sets (insn))
5340 	return NULL_RTX;
5341       pat = XVECEXP (pat, 0, 0);
5342     }
5343 
5344   if (GET_CODE (pat) != SET)
5345     return NULL_RTX;
5346 
5347   reg = SET_DEST (pat);
5348 
5349   /* Notes apply to the contents of a STRICT_LOW_PART.  */
5350   if (GET_CODE (reg) == STRICT_LOW_PART
5351       || GET_CODE (reg) == ZERO_EXTRACT)
5352     reg = XEXP (reg, 0);
5353 
5354   /* Check that we have a register.  */
5355   if (!(REG_P (reg) || GET_CODE (reg) == SUBREG))
5356     return NULL_RTX;
5357 
5358   return pat;
5359 }
5360 
5361 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5362    note of this type already exists, remove it first.  */
5363 
5364 rtx
set_unique_reg_note(rtx insn,enum reg_note kind,rtx datum)5365 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5366 {
5367   rtx note = find_reg_note (insn, kind, NULL_RTX);
5368 
5369   switch (kind)
5370     {
5371     case REG_EQUAL:
5372     case REG_EQUIV:
5373       /* We need to support the REG_EQUAL on USE trick of find_reloads.  */
5374       if (!set_for_reg_notes (insn) && GET_CODE (PATTERN (insn)) != USE)
5375 	return NULL_RTX;
5376 
5377       /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5378 	 It serves no useful purpose and breaks eliminate_regs.  */
5379       if (GET_CODE (datum) == ASM_OPERANDS)
5380 	return NULL_RTX;
5381 
5382       /* Notes with side effects are dangerous.  Even if the side-effect
5383 	 initially mirrors one in PATTERN (INSN), later optimizations
5384 	 might alter the way that the final register value is calculated
5385 	 and so move or alter the side-effect in some way.  The note would
5386 	 then no longer be a valid substitution for SET_SRC.  */
5387       if (side_effects_p (datum))
5388 	return NULL_RTX;
5389       break;
5390 
5391     default:
5392       break;
5393     }
5394 
5395   if (note)
5396     XEXP (note, 0) = datum;
5397   else
5398     {
5399       add_reg_note (insn, kind, datum);
5400       note = REG_NOTES (insn);
5401     }
5402 
5403   switch (kind)
5404     {
5405     case REG_EQUAL:
5406     case REG_EQUIV:
5407       df_notes_rescan (as_a <rtx_insn *> (insn));
5408       break;
5409     default:
5410       break;
5411     }
5412 
5413   return note;
5414 }
5415 
5416 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST.  */
5417 rtx
set_dst_reg_note(rtx insn,enum reg_note kind,rtx datum,rtx dst)5418 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5419 {
5420   rtx set = set_for_reg_notes (insn);
5421 
5422   if (set && SET_DEST (set) == dst)
5423     return set_unique_reg_note (insn, kind, datum);
5424   return NULL_RTX;
5425 }
5426 
5427 /* Emit the rtl pattern X as an appropriate kind of insn.  Also emit a
5428    following barrier if the instruction needs one and if ALLOW_BARRIER_P
5429    is true.
5430 
5431    If X is a label, it is simply added into the insn chain.  */
5432 
5433 rtx_insn *
emit(rtx x,bool allow_barrier_p)5434 emit (rtx x, bool allow_barrier_p)
5435 {
5436   enum rtx_code code = classify_insn (x);
5437 
5438   switch (code)
5439     {
5440     case CODE_LABEL:
5441       return emit_label (x);
5442     case INSN:
5443       return emit_insn (x);
5444     case  JUMP_INSN:
5445       {
5446 	rtx_insn *insn = emit_jump_insn (x);
5447 	if (allow_barrier_p
5448 	    && (any_uncondjump_p (insn) || GET_CODE (x) == RETURN))
5449 	  return emit_barrier ();
5450 	return insn;
5451       }
5452     case CALL_INSN:
5453       return emit_call_insn (x);
5454     case DEBUG_INSN:
5455       return emit_debug_insn (x);
5456     default:
5457       gcc_unreachable ();
5458     }
5459 }
5460 
5461 /* Space for free sequence stack entries.  */
5462 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5463 
5464 /* Begin emitting insns to a sequence.  If this sequence will contain
5465    something that might cause the compiler to pop arguments to function
5466    calls (because those pops have previously been deferred; see
5467    INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5468    before calling this function.  That will ensure that the deferred
5469    pops are not accidentally emitted in the middle of this sequence.  */
5470 
5471 void
start_sequence(void)5472 start_sequence (void)
5473 {
5474   struct sequence_stack *tem;
5475 
5476   if (free_sequence_stack != NULL)
5477     {
5478       tem = free_sequence_stack;
5479       free_sequence_stack = tem->next;
5480     }
5481   else
5482     tem = ggc_alloc<sequence_stack> ();
5483 
5484   tem->next = get_current_sequence ()->next;
5485   tem->first = get_insns ();
5486   tem->last = get_last_insn ();
5487   get_current_sequence ()->next = tem;
5488 
5489   set_first_insn (0);
5490   set_last_insn (0);
5491 }
5492 
5493 /* Set up the insn chain starting with FIRST as the current sequence,
5494    saving the previously current one.  See the documentation for
5495    start_sequence for more information about how to use this function.  */
5496 
5497 void
push_to_sequence(rtx_insn * first)5498 push_to_sequence (rtx_insn *first)
5499 {
5500   rtx_insn *last;
5501 
5502   start_sequence ();
5503 
5504   for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5505     ;
5506 
5507   set_first_insn (first);
5508   set_last_insn (last);
5509 }
5510 
5511 /* Like push_to_sequence, but take the last insn as an argument to avoid
5512    looping through the list.  */
5513 
5514 void
push_to_sequence2(rtx_insn * first,rtx_insn * last)5515 push_to_sequence2 (rtx_insn *first, rtx_insn *last)
5516 {
5517   start_sequence ();
5518 
5519   set_first_insn (first);
5520   set_last_insn (last);
5521 }
5522 
5523 /* Set up the outer-level insn chain
5524    as the current sequence, saving the previously current one.  */
5525 
5526 void
push_topmost_sequence(void)5527 push_topmost_sequence (void)
5528 {
5529   struct sequence_stack *top;
5530 
5531   start_sequence ();
5532 
5533   top = get_topmost_sequence ();
5534   set_first_insn (top->first);
5535   set_last_insn (top->last);
5536 }
5537 
5538 /* After emitting to the outer-level insn chain, update the outer-level
5539    insn chain, and restore the previous saved state.  */
5540 
5541 void
pop_topmost_sequence(void)5542 pop_topmost_sequence (void)
5543 {
5544   struct sequence_stack *top;
5545 
5546   top = get_topmost_sequence ();
5547   top->first = get_insns ();
5548   top->last = get_last_insn ();
5549 
5550   end_sequence ();
5551 }
5552 
5553 /* After emitting to a sequence, restore previous saved state.
5554 
5555    To get the contents of the sequence just made, you must call
5556    `get_insns' *before* calling here.
5557 
5558    If the compiler might have deferred popping arguments while
5559    generating this sequence, and this sequence will not be immediately
5560    inserted into the instruction stream, use do_pending_stack_adjust
5561    before calling get_insns.  That will ensure that the deferred
5562    pops are inserted into this sequence, and not into some random
5563    location in the instruction stream.  See INHIBIT_DEFER_POP for more
5564    information about deferred popping of arguments.  */
5565 
5566 void
end_sequence(void)5567 end_sequence (void)
5568 {
5569   struct sequence_stack *tem = get_current_sequence ()->next;
5570 
5571   set_first_insn (tem->first);
5572   set_last_insn (tem->last);
5573   get_current_sequence ()->next = tem->next;
5574 
5575   memset (tem, 0, sizeof (*tem));
5576   tem->next = free_sequence_stack;
5577   free_sequence_stack = tem;
5578 }
5579 
5580 /* Return 1 if currently emitting into a sequence.  */
5581 
5582 int
in_sequence_p(void)5583 in_sequence_p (void)
5584 {
5585   return get_current_sequence ()->next != 0;
5586 }
5587 
5588 /* Put the various virtual registers into REGNO_REG_RTX.  */
5589 
5590 static void
init_virtual_regs(void)5591 init_virtual_regs (void)
5592 {
5593   regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5594   regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5595   regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5596   regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5597   regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5598   regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5599     = virtual_preferred_stack_boundary_rtx;
5600 }
5601 
5602 
5603 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once.  */
5604 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5605 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5606 static int copy_insn_n_scratches;
5607 
5608 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5609    copied an ASM_OPERANDS.
5610    In that case, it is the original input-operand vector.  */
5611 static rtvec orig_asm_operands_vector;
5612 
5613 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5614    copied an ASM_OPERANDS.
5615    In that case, it is the copied input-operand vector.  */
5616 static rtvec copy_asm_operands_vector;
5617 
5618 /* Likewise for the constraints vector.  */
5619 static rtvec orig_asm_constraints_vector;
5620 static rtvec copy_asm_constraints_vector;
5621 
5622 /* Recursively create a new copy of an rtx for copy_insn.
5623    This function differs from copy_rtx in that it handles SCRATCHes and
5624    ASM_OPERANDs properly.
5625    Normally, this function is not used directly; use copy_insn as front end.
5626    However, you could first copy an insn pattern with copy_insn and then use
5627    this function afterwards to properly copy any REG_NOTEs containing
5628    SCRATCHes.  */
5629 
5630 rtx
copy_insn_1(rtx orig)5631 copy_insn_1 (rtx orig)
5632 {
5633   rtx copy;
5634   int i, j;
5635   RTX_CODE code;
5636   const char *format_ptr;
5637 
5638   if (orig == NULL)
5639     return NULL;
5640 
5641   code = GET_CODE (orig);
5642 
5643   switch (code)
5644     {
5645     case REG:
5646     case DEBUG_EXPR:
5647     CASE_CONST_ANY:
5648     case SYMBOL_REF:
5649     case CODE_LABEL:
5650     case PC:
5651     case RETURN:
5652     case SIMPLE_RETURN:
5653       return orig;
5654     case CLOBBER:
5655       /* Share clobbers of hard registers, but do not share pseudo reg
5656          clobbers or clobbers of hard registers that originated as pseudos.
5657          This is needed to allow safe register renaming.  */
5658       if (REG_P (XEXP (orig, 0))
5659 	  && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0)))
5660 	  && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (orig, 0))))
5661 	return orig;
5662       break;
5663 
5664     case SCRATCH:
5665       for (i = 0; i < copy_insn_n_scratches; i++)
5666 	if (copy_insn_scratch_in[i] == orig)
5667 	  return copy_insn_scratch_out[i];
5668       break;
5669 
5670     case CONST:
5671       if (shared_const_p (orig))
5672 	return orig;
5673       break;
5674 
5675       /* A MEM with a constant address is not sharable.  The problem is that
5676 	 the constant address may need to be reloaded.  If the mem is shared,
5677 	 then reloading one copy of this mem will cause all copies to appear
5678 	 to have been reloaded.  */
5679 
5680     default:
5681       break;
5682     }
5683 
5684   /* Copy the various flags, fields, and other information.  We assume
5685      that all fields need copying, and then clear the fields that should
5686      not be copied.  That is the sensible default behavior, and forces
5687      us to explicitly document why we are *not* copying a flag.  */
5688   copy = shallow_copy_rtx (orig);
5689 
5690   /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs.  */
5691   if (INSN_P (orig))
5692     {
5693       RTX_FLAG (copy, jump) = 0;
5694       RTX_FLAG (copy, call) = 0;
5695       RTX_FLAG (copy, frame_related) = 0;
5696     }
5697 
5698   format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5699 
5700   for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5701     switch (*format_ptr++)
5702       {
5703       case 'e':
5704 	if (XEXP (orig, i) != NULL)
5705 	  XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5706 	break;
5707 
5708       case 'E':
5709       case 'V':
5710 	if (XVEC (orig, i) == orig_asm_constraints_vector)
5711 	  XVEC (copy, i) = copy_asm_constraints_vector;
5712 	else if (XVEC (orig, i) == orig_asm_operands_vector)
5713 	  XVEC (copy, i) = copy_asm_operands_vector;
5714 	else if (XVEC (orig, i) != NULL)
5715 	  {
5716 	    XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5717 	    for (j = 0; j < XVECLEN (copy, i); j++)
5718 	      XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5719 	  }
5720 	break;
5721 
5722       case 't':
5723       case 'w':
5724       case 'i':
5725       case 'p':
5726       case 's':
5727       case 'S':
5728       case 'u':
5729       case '0':
5730 	/* These are left unchanged.  */
5731 	break;
5732 
5733       default:
5734 	gcc_unreachable ();
5735       }
5736 
5737   if (code == SCRATCH)
5738     {
5739       i = copy_insn_n_scratches++;
5740       gcc_assert (i < MAX_RECOG_OPERANDS);
5741       copy_insn_scratch_in[i] = orig;
5742       copy_insn_scratch_out[i] = copy;
5743     }
5744   else if (code == ASM_OPERANDS)
5745     {
5746       orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5747       copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5748       orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5749       copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5750     }
5751 
5752   return copy;
5753 }
5754 
5755 /* Create a new copy of an rtx.
5756    This function differs from copy_rtx in that it handles SCRATCHes and
5757    ASM_OPERANDs properly.
5758    INSN doesn't really have to be a full INSN; it could be just the
5759    pattern.  */
5760 rtx
copy_insn(rtx insn)5761 copy_insn (rtx insn)
5762 {
5763   copy_insn_n_scratches = 0;
5764   orig_asm_operands_vector = 0;
5765   orig_asm_constraints_vector = 0;
5766   copy_asm_operands_vector = 0;
5767   copy_asm_constraints_vector = 0;
5768   return copy_insn_1 (insn);
5769 }
5770 
5771 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5772    on that assumption that INSN itself remains in its original place.  */
5773 
5774 rtx_insn *
copy_delay_slot_insn(rtx_insn * insn)5775 copy_delay_slot_insn (rtx_insn *insn)
5776 {
5777   /* Copy INSN with its rtx_code, all its notes, location etc.  */
5778   insn = as_a <rtx_insn *> (copy_rtx (insn));
5779   INSN_UID (insn) = cur_insn_uid++;
5780   return insn;
5781 }
5782 
5783 /* Initialize data structures and variables in this file
5784    before generating rtl for each function.  */
5785 
5786 void
init_emit(void)5787 init_emit (void)
5788 {
5789   set_first_insn (NULL);
5790   set_last_insn (NULL);
5791   if (param_min_nondebug_insn_uid)
5792     cur_insn_uid = param_min_nondebug_insn_uid;
5793   else
5794     cur_insn_uid = 1;
5795   cur_debug_insn_uid = 1;
5796   reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5797   first_label_num = label_num;
5798   get_current_sequence ()->next = NULL;
5799 
5800   /* Init the tables that describe all the pseudo regs.  */
5801 
5802   crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5803 
5804   crtl->emit.regno_pointer_align
5805     = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5806 
5807   regno_reg_rtx
5808     = ggc_cleared_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length);
5809 
5810   /* Put copies of all the hard registers into regno_reg_rtx.  */
5811   memcpy (regno_reg_rtx,
5812 	  initial_regno_reg_rtx,
5813 	  FIRST_PSEUDO_REGISTER * sizeof (rtx));
5814 
5815   /* Put copies of all the virtual register rtx into regno_reg_rtx.  */
5816   init_virtual_regs ();
5817 
5818   /* Indicate that the virtual registers and stack locations are
5819      all pointers.  */
5820   REG_POINTER (stack_pointer_rtx) = 1;
5821   REG_POINTER (frame_pointer_rtx) = 1;
5822   REG_POINTER (hard_frame_pointer_rtx) = 1;
5823   REG_POINTER (arg_pointer_rtx) = 1;
5824 
5825   REG_POINTER (virtual_incoming_args_rtx) = 1;
5826   REG_POINTER (virtual_stack_vars_rtx) = 1;
5827   REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5828   REG_POINTER (virtual_outgoing_args_rtx) = 1;
5829   REG_POINTER (virtual_cfa_rtx) = 1;
5830 
5831 #ifdef STACK_BOUNDARY
5832   REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5833   REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5834   REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5835   REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5836 
5837   REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5838   REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5839   REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5840   REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5841 
5842   REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5843 #endif
5844 
5845 #ifdef INIT_EXPANDERS
5846   INIT_EXPANDERS;
5847 #endif
5848 }
5849 
5850 /* Return the value of element I of CONST_VECTOR X as a wide_int.  */
5851 
5852 wide_int
const_vector_int_elt(const_rtx x,unsigned int i)5853 const_vector_int_elt (const_rtx x, unsigned int i)
5854 {
5855   /* First handle elements that are directly encoded.  */
5856   machine_mode elt_mode = GET_MODE_INNER (GET_MODE (x));
5857   if (i < (unsigned int) XVECLEN (x, 0))
5858     return rtx_mode_t (CONST_VECTOR_ENCODED_ELT (x, i), elt_mode);
5859 
5860   /* Identify the pattern that contains element I and work out the index of
5861      the last encoded element for that pattern.  */
5862   unsigned int encoded_nelts = const_vector_encoded_nelts (x);
5863   unsigned int npatterns = CONST_VECTOR_NPATTERNS (x);
5864   unsigned int count = i / npatterns;
5865   unsigned int pattern = i % npatterns;
5866   unsigned int final_i = encoded_nelts - npatterns + pattern;
5867 
5868   /* If there are no steps, the final encoded value is the right one.  */
5869   if (!CONST_VECTOR_STEPPED_P (x))
5870     return rtx_mode_t (CONST_VECTOR_ENCODED_ELT (x, final_i), elt_mode);
5871 
5872   /* Otherwise work out the value from the last two encoded elements.  */
5873   rtx v1 = CONST_VECTOR_ENCODED_ELT (x, final_i - npatterns);
5874   rtx v2 = CONST_VECTOR_ENCODED_ELT (x, final_i);
5875   wide_int diff = wi::sub (rtx_mode_t (v2, elt_mode),
5876 			   rtx_mode_t (v1, elt_mode));
5877   return wi::add (rtx_mode_t (v2, elt_mode), (count - 2) * diff);
5878 }
5879 
5880 /* Return the value of element I of CONST_VECTOR X.  */
5881 
5882 rtx
const_vector_elt(const_rtx x,unsigned int i)5883 const_vector_elt (const_rtx x, unsigned int i)
5884 {
5885   /* First handle elements that are directly encoded.  */
5886   if (i < (unsigned int) XVECLEN (x, 0))
5887     return CONST_VECTOR_ENCODED_ELT (x, i);
5888 
5889   /* If there are no steps, the final encoded value is the right one.  */
5890   if (!CONST_VECTOR_STEPPED_P (x))
5891     {
5892       /* Identify the pattern that contains element I and work out the index of
5893 	 the last encoded element for that pattern.  */
5894       unsigned int encoded_nelts = const_vector_encoded_nelts (x);
5895       unsigned int npatterns = CONST_VECTOR_NPATTERNS (x);
5896       unsigned int pattern = i % npatterns;
5897       unsigned int final_i = encoded_nelts - npatterns + pattern;
5898       return CONST_VECTOR_ENCODED_ELT (x, final_i);
5899     }
5900 
5901   /* Otherwise work out the value from the last two encoded elements.  */
5902   return immed_wide_int_const (const_vector_int_elt (x, i),
5903 			       GET_MODE_INNER (GET_MODE (x)));
5904 }
5905 
5906 /* Return true if X is a valid element for a CONST_VECTOR of the given
5907   mode.  */
5908 
5909 bool
valid_for_const_vector_p(machine_mode,rtx x)5910 valid_for_const_vector_p (machine_mode, rtx x)
5911 {
5912   return (CONST_SCALAR_INT_P (x)
5913 	  || CONST_POLY_INT_P (x)
5914 	  || CONST_DOUBLE_AS_FLOAT_P (x)
5915 	  || CONST_FIXED_P (x));
5916 }
5917 
5918 /* Generate a vector constant of mode MODE in which every element has
5919    value ELT.  */
5920 
5921 rtx
gen_const_vec_duplicate(machine_mode mode,rtx elt)5922 gen_const_vec_duplicate (machine_mode mode, rtx elt)
5923 {
5924   rtx_vector_builder builder (mode, 1, 1);
5925   builder.quick_push (elt);
5926   return builder.build ();
5927 }
5928 
5929 /* Return a vector rtx of mode MODE in which every element has value X.
5930    The result will be a constant if X is constant.  */
5931 
5932 rtx
gen_vec_duplicate(machine_mode mode,rtx x)5933 gen_vec_duplicate (machine_mode mode, rtx x)
5934 {
5935   if (valid_for_const_vector_p (mode, x))
5936     return gen_const_vec_duplicate (mode, x);
5937   return gen_rtx_VEC_DUPLICATE (mode, x);
5938 }
5939 
5940 /* A subroutine of const_vec_series_p that handles the case in which:
5941 
5942      (GET_CODE (X) == CONST_VECTOR
5943       && CONST_VECTOR_NPATTERNS (X) == 1
5944       && !CONST_VECTOR_DUPLICATE_P (X))
5945 
5946    is known to hold.  */
5947 
5948 bool
const_vec_series_p_1(const_rtx x,rtx * base_out,rtx * step_out)5949 const_vec_series_p_1 (const_rtx x, rtx *base_out, rtx *step_out)
5950 {
5951   /* Stepped sequences are only defined for integers, to avoid specifying
5952      rounding behavior.  */
5953   if (GET_MODE_CLASS (GET_MODE (x)) != MODE_VECTOR_INT)
5954     return false;
5955 
5956   /* A non-duplicated vector with two elements can always be seen as a
5957      series with a nonzero step.  Longer vectors must have a stepped
5958      encoding.  */
5959   if (maybe_ne (CONST_VECTOR_NUNITS (x), 2)
5960       && !CONST_VECTOR_STEPPED_P (x))
5961     return false;
5962 
5963   /* Calculate the step between the first and second elements.  */
5964   scalar_mode inner = GET_MODE_INNER (GET_MODE (x));
5965   rtx base = CONST_VECTOR_ELT (x, 0);
5966   rtx step = simplify_binary_operation (MINUS, inner,
5967 					CONST_VECTOR_ENCODED_ELT (x, 1), base);
5968   if (rtx_equal_p (step, CONST0_RTX (inner)))
5969     return false;
5970 
5971   /* If we have a stepped encoding, check that the step between the
5972      second and third elements is the same as STEP.  */
5973   if (CONST_VECTOR_STEPPED_P (x))
5974     {
5975       rtx diff = simplify_binary_operation (MINUS, inner,
5976 					    CONST_VECTOR_ENCODED_ELT (x, 2),
5977 					    CONST_VECTOR_ENCODED_ELT (x, 1));
5978       if (!rtx_equal_p (step, diff))
5979 	return false;
5980     }
5981 
5982   *base_out = base;
5983   *step_out = step;
5984   return true;
5985 }
5986 
5987 /* Generate a vector constant of mode MODE in which element I has
5988    the value BASE + I * STEP.  */
5989 
5990 rtx
gen_const_vec_series(machine_mode mode,rtx base,rtx step)5991 gen_const_vec_series (machine_mode mode, rtx base, rtx step)
5992 {
5993   gcc_assert (valid_for_const_vector_p (mode, base)
5994 	      && valid_for_const_vector_p (mode, step));
5995 
5996   rtx_vector_builder builder (mode, 1, 3);
5997   builder.quick_push (base);
5998   for (int i = 1; i < 3; ++i)
5999     builder.quick_push (simplify_gen_binary (PLUS, GET_MODE_INNER (mode),
6000 					     builder[i - 1], step));
6001   return builder.build ();
6002 }
6003 
6004 /* Generate a vector of mode MODE in which element I has the value
6005    BASE + I * STEP.  The result will be a constant if BASE and STEP
6006    are both constants.  */
6007 
6008 rtx
gen_vec_series(machine_mode mode,rtx base,rtx step)6009 gen_vec_series (machine_mode mode, rtx base, rtx step)
6010 {
6011   if (step == const0_rtx)
6012     return gen_vec_duplicate (mode, base);
6013   if (valid_for_const_vector_p (mode, base)
6014       && valid_for_const_vector_p (mode, step))
6015     return gen_const_vec_series (mode, base, step);
6016   return gen_rtx_VEC_SERIES (mode, base, step);
6017 }
6018 
6019 /* Generate a new vector constant for mode MODE and constant value
6020    CONSTANT.  */
6021 
6022 static rtx
gen_const_vector(machine_mode mode,int constant)6023 gen_const_vector (machine_mode mode, int constant)
6024 {
6025   machine_mode inner = GET_MODE_INNER (mode);
6026 
6027   gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
6028 
6029   rtx el = const_tiny_rtx[constant][(int) inner];
6030   gcc_assert (el);
6031 
6032   return gen_const_vec_duplicate (mode, el);
6033 }
6034 
6035 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
6036    all elements are zero, and the one vector when all elements are one.  */
6037 rtx
gen_rtx_CONST_VECTOR(machine_mode mode,rtvec v)6038 gen_rtx_CONST_VECTOR (machine_mode mode, rtvec v)
6039 {
6040   gcc_assert (known_eq (GET_MODE_NUNITS (mode), GET_NUM_ELEM (v)));
6041 
6042   /* If the values are all the same, check to see if we can use one of the
6043      standard constant vectors.  */
6044   if (rtvec_all_equal_p (v))
6045     return gen_const_vec_duplicate (mode, RTVEC_ELT (v, 0));
6046 
6047   unsigned int nunits = GET_NUM_ELEM (v);
6048   rtx_vector_builder builder (mode, nunits, 1);
6049   for (unsigned int i = 0; i < nunits; ++i)
6050     builder.quick_push (RTVEC_ELT (v, i));
6051   return builder.build (v);
6052 }
6053 
6054 /* Initialise global register information required by all functions.  */
6055 
6056 void
init_emit_regs(void)6057 init_emit_regs (void)
6058 {
6059   int i;
6060   machine_mode mode;
6061   mem_attrs *attrs;
6062 
6063   /* Reset register attributes */
6064   reg_attrs_htab->empty ();
6065 
6066   /* We need reg_raw_mode, so initialize the modes now.  */
6067   init_reg_modes_target ();
6068 
6069   /* Assign register numbers to the globally defined register rtx.  */
6070   stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
6071   frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
6072   hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
6073   arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
6074   virtual_incoming_args_rtx =
6075     gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
6076   virtual_stack_vars_rtx =
6077     gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
6078   virtual_stack_dynamic_rtx =
6079     gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
6080   virtual_outgoing_args_rtx =
6081     gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
6082   virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
6083   virtual_preferred_stack_boundary_rtx =
6084     gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
6085 
6086   /* Initialize RTL for commonly used hard registers.  These are
6087      copied into regno_reg_rtx as we begin to compile each function.  */
6088   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
6089     initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
6090 
6091 #ifdef RETURN_ADDRESS_POINTER_REGNUM
6092   return_address_pointer_rtx
6093     = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
6094 #endif
6095 
6096   pic_offset_table_rtx = NULL_RTX;
6097   if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
6098     pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
6099 
6100   /* Process stack-limiting command-line options.  */
6101   if (opt_fstack_limit_symbol_arg != NULL)
6102     stack_limit_rtx
6103       = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (opt_fstack_limit_symbol_arg));
6104   if (opt_fstack_limit_register_no >= 0)
6105     stack_limit_rtx = gen_rtx_REG (Pmode, opt_fstack_limit_register_no);
6106 
6107   for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
6108     {
6109       mode = (machine_mode) i;
6110       attrs = ggc_cleared_alloc<mem_attrs> ();
6111       attrs->align = BITS_PER_UNIT;
6112       attrs->addrspace = ADDR_SPACE_GENERIC;
6113       if (mode != BLKmode && mode != VOIDmode)
6114 	{
6115 	  attrs->size_known_p = true;
6116 	  attrs->size = GET_MODE_SIZE (mode);
6117 	  if (STRICT_ALIGNMENT)
6118 	    attrs->align = GET_MODE_ALIGNMENT (mode);
6119 	}
6120       mode_mem_attrs[i] = attrs;
6121     }
6122 
6123   split_branch_probability = profile_probability::uninitialized ();
6124 }
6125 
6126 /* Initialize global machine_mode variables.  */
6127 
6128 void
init_derived_machine_modes(void)6129 init_derived_machine_modes (void)
6130 {
6131   opt_scalar_int_mode mode_iter, opt_byte_mode, opt_word_mode;
6132   FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
6133     {
6134       scalar_int_mode mode = mode_iter.require ();
6135 
6136       if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
6137 	  && !opt_byte_mode.exists ())
6138 	opt_byte_mode = mode;
6139 
6140       if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
6141 	  && !opt_word_mode.exists ())
6142 	opt_word_mode = mode;
6143     }
6144 
6145   byte_mode = opt_byte_mode.require ();
6146   word_mode = opt_word_mode.require ();
6147   ptr_mode = as_a <scalar_int_mode>
6148     (mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0).require ());
6149 }
6150 
6151 /* Create some permanent unique rtl objects shared between all functions.  */
6152 
6153 void
init_emit_once(void)6154 init_emit_once (void)
6155 {
6156   int i;
6157   machine_mode mode;
6158   scalar_float_mode double_mode;
6159   opt_scalar_mode smode_iter;
6160 
6161   /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
6162      CONST_FIXED, and memory attribute hash tables.  */
6163   const_int_htab = hash_table<const_int_hasher>::create_ggc (37);
6164 
6165 #if TARGET_SUPPORTS_WIDE_INT
6166   const_wide_int_htab = hash_table<const_wide_int_hasher>::create_ggc (37);
6167 #endif
6168   const_double_htab = hash_table<const_double_hasher>::create_ggc (37);
6169 
6170   if (NUM_POLY_INT_COEFFS > 1)
6171     const_poly_int_htab = hash_table<const_poly_int_hasher>::create_ggc (37);
6172 
6173   const_fixed_htab = hash_table<const_fixed_hasher>::create_ggc (37);
6174 
6175   reg_attrs_htab = hash_table<reg_attr_hasher>::create_ggc (37);
6176 
6177 #ifdef INIT_EXPANDERS
6178   /* This is to initialize {init|mark|free}_machine_status before the first
6179      call to push_function_context_to.  This is needed by the Chill front
6180      end which calls push_function_context_to before the first call to
6181      init_function_start.  */
6182   INIT_EXPANDERS;
6183 #endif
6184 
6185   /* Create the unique rtx's for certain rtx codes and operand values.  */
6186 
6187   /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
6188      tries to use these variables.  */
6189   for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
6190     const_int_rtx[i + MAX_SAVED_CONST_INT] =
6191       gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
6192 
6193   if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
6194       && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
6195     const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
6196   else
6197     const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
6198 
6199   double_mode = float_mode_for_size (DOUBLE_TYPE_SIZE).require ();
6200 
6201   real_from_integer (&dconst0, double_mode, 0, SIGNED);
6202   real_from_integer (&dconst1, double_mode, 1, SIGNED);
6203   real_from_integer (&dconst2, double_mode, 2, SIGNED);
6204 
6205   dconstm1 = dconst1;
6206   dconstm1.sign = 1;
6207 
6208   dconsthalf = dconst1;
6209   SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
6210 
6211   for (i = 0; i < 3; i++)
6212     {
6213       const REAL_VALUE_TYPE *const r =
6214 	(i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
6215 
6216       FOR_EACH_MODE_IN_CLASS (mode, MODE_FLOAT)
6217 	const_tiny_rtx[i][(int) mode] =
6218 	  const_double_from_real_value (*r, mode);
6219 
6220       FOR_EACH_MODE_IN_CLASS (mode, MODE_DECIMAL_FLOAT)
6221 	const_tiny_rtx[i][(int) mode] =
6222 	  const_double_from_real_value (*r, mode);
6223 
6224       const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
6225 
6226       FOR_EACH_MODE_IN_CLASS (mode, MODE_INT)
6227 	const_tiny_rtx[i][(int) mode] = GEN_INT (i);
6228 
6229       for (mode = MIN_MODE_PARTIAL_INT;
6230 	   mode <= MAX_MODE_PARTIAL_INT;
6231 	   mode = (machine_mode)((int)(mode) + 1))
6232 	const_tiny_rtx[i][(int) mode] = GEN_INT (i);
6233     }
6234 
6235   const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
6236 
6237   FOR_EACH_MODE_IN_CLASS (mode, MODE_INT)
6238     const_tiny_rtx[3][(int) mode] = constm1_rtx;
6239 
6240   /* For BImode, 1 and -1 are unsigned and signed interpretations
6241      of the same value.  */
6242   for (mode = MIN_MODE_BOOL;
6243        mode <= MAX_MODE_BOOL;
6244        mode = (machine_mode)((int)(mode) + 1))
6245     {
6246       const_tiny_rtx[0][(int) mode] = const0_rtx;
6247       if (mode == BImode)
6248 	{
6249 	  const_tiny_rtx[1][(int) mode] = const_true_rtx;
6250 	  const_tiny_rtx[3][(int) mode] = const_true_rtx;
6251 	}
6252       else
6253 	{
6254 	  const_tiny_rtx[1][(int) mode] = const1_rtx;
6255 	  const_tiny_rtx[3][(int) mode] = constm1_rtx;
6256 	}
6257     }
6258 
6259   for (mode = MIN_MODE_PARTIAL_INT;
6260        mode <= MAX_MODE_PARTIAL_INT;
6261        mode = (machine_mode)((int)(mode) + 1))
6262     const_tiny_rtx[3][(int) mode] = constm1_rtx;
6263 
6264   FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_INT)
6265     {
6266       rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
6267       const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
6268     }
6269 
6270   FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_FLOAT)
6271     {
6272       rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
6273       const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
6274     }
6275 
6276   FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_BOOL)
6277     {
6278       const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6279       const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
6280       if (GET_MODE_INNER (mode) == BImode)
6281 	/* As for BImode, "all 1" and "all -1" are unsigned and signed
6282 	   interpretations of the same value.  */
6283 	const_tiny_rtx[1][(int) mode] = const_tiny_rtx[3][(int) mode];
6284       else
6285 	const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6286     }
6287 
6288   FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_INT)
6289     {
6290       const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6291       const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6292       const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
6293     }
6294 
6295   FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FLOAT)
6296     {
6297       const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6298       const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6299     }
6300 
6301   FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_FRACT)
6302     {
6303       scalar_mode smode = smode_iter.require ();
6304       FCONST0 (smode).data.high = 0;
6305       FCONST0 (smode).data.low = 0;
6306       FCONST0 (smode).mode = smode;
6307       const_tiny_rtx[0][(int) smode]
6308 	= CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
6309     }
6310 
6311   FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_UFRACT)
6312     {
6313       scalar_mode smode = smode_iter.require ();
6314       FCONST0 (smode).data.high = 0;
6315       FCONST0 (smode).data.low = 0;
6316       FCONST0 (smode).mode = smode;
6317       const_tiny_rtx[0][(int) smode]
6318 	= CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
6319     }
6320 
6321   FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_ACCUM)
6322     {
6323       scalar_mode smode = smode_iter.require ();
6324       FCONST0 (smode).data.high = 0;
6325       FCONST0 (smode).data.low = 0;
6326       FCONST0 (smode).mode = smode;
6327       const_tiny_rtx[0][(int) smode]
6328 	= CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
6329 
6330       /* We store the value 1.  */
6331       FCONST1 (smode).data.high = 0;
6332       FCONST1 (smode).data.low = 0;
6333       FCONST1 (smode).mode = smode;
6334       FCONST1 (smode).data
6335 	= double_int_one.lshift (GET_MODE_FBIT (smode),
6336 				 HOST_BITS_PER_DOUBLE_INT,
6337 				 SIGNED_FIXED_POINT_MODE_P (smode));
6338       const_tiny_rtx[1][(int) smode]
6339 	= CONST_FIXED_FROM_FIXED_VALUE (FCONST1 (smode), smode);
6340     }
6341 
6342   FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_UACCUM)
6343     {
6344       scalar_mode smode = smode_iter.require ();
6345       FCONST0 (smode).data.high = 0;
6346       FCONST0 (smode).data.low = 0;
6347       FCONST0 (smode).mode = smode;
6348       const_tiny_rtx[0][(int) smode]
6349 	= CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
6350 
6351       /* We store the value 1.  */
6352       FCONST1 (smode).data.high = 0;
6353       FCONST1 (smode).data.low = 0;
6354       FCONST1 (smode).mode = smode;
6355       FCONST1 (smode).data
6356 	= double_int_one.lshift (GET_MODE_FBIT (smode),
6357 				 HOST_BITS_PER_DOUBLE_INT,
6358 				 SIGNED_FIXED_POINT_MODE_P (smode));
6359       const_tiny_rtx[1][(int) smode]
6360 	= CONST_FIXED_FROM_FIXED_VALUE (FCONST1 (smode), smode);
6361     }
6362 
6363   FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FRACT)
6364     {
6365       const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6366     }
6367 
6368   FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_UFRACT)
6369     {
6370       const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6371     }
6372 
6373   FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_ACCUM)
6374     {
6375       const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6376       const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6377     }
6378 
6379   FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_UACCUM)
6380     {
6381       const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6382       const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6383     }
6384 
6385   for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
6386     if (GET_MODE_CLASS ((machine_mode) i) == MODE_CC)
6387       const_tiny_rtx[0][i] = const0_rtx;
6388 
6389   pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
6390   ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
6391   simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
6392   invalid_insn_rtx = gen_rtx_INSN (VOIDmode,
6393 				   /*prev_insn=*/NULL,
6394 				   /*next_insn=*/NULL,
6395 				   /*bb=*/NULL,
6396 				   /*pattern=*/NULL_RTX,
6397 				   /*location=*/-1,
6398 				   CODE_FOR_nothing,
6399 				   /*reg_notes=*/NULL_RTX);
6400 }
6401 
6402 /* Produce exact duplicate of insn INSN after AFTER.
6403    Care updating of libcall regions if present.  */
6404 
6405 rtx_insn *
emit_copy_of_insn_after(rtx_insn * insn,rtx_insn * after)6406 emit_copy_of_insn_after (rtx_insn *insn, rtx_insn *after)
6407 {
6408   rtx_insn *new_rtx;
6409   rtx link;
6410 
6411   switch (GET_CODE (insn))
6412     {
6413     case INSN:
6414       new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
6415       break;
6416 
6417     case JUMP_INSN:
6418       new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
6419       CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn);
6420       break;
6421 
6422     case DEBUG_INSN:
6423       new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
6424       break;
6425 
6426     case CALL_INSN:
6427       new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
6428       if (CALL_INSN_FUNCTION_USAGE (insn))
6429 	CALL_INSN_FUNCTION_USAGE (new_rtx)
6430 	  = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
6431       SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6432       RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6433       RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
6434       RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
6435 	= RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
6436       break;
6437 
6438     default:
6439       gcc_unreachable ();
6440     }
6441 
6442   /* Update LABEL_NUSES.  */
6443   if (NONDEBUG_INSN_P (insn))
6444     mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
6445 
6446   INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
6447 
6448   /* If the old insn is frame related, then so is the new one.  This is
6449      primarily needed for IA-64 unwind info which marks epilogue insns,
6450      which may be duplicated by the basic block reordering code.  */
6451   RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
6452 
6453   /* Locate the end of existing REG_NOTES in NEW_RTX.  */
6454   rtx *ptail = &REG_NOTES (new_rtx);
6455   while (*ptail != NULL_RTX)
6456     ptail = &XEXP (*ptail, 1);
6457 
6458   /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6459      will make them.  REG_LABEL_TARGETs are created there too, but are
6460      supposed to be sticky, so we copy them.  */
6461   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
6462     if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
6463       {
6464 	*ptail = duplicate_reg_note (link);
6465 	ptail = &XEXP (*ptail, 1);
6466       }
6467 
6468   INSN_CODE (new_rtx) = INSN_CODE (insn);
6469   return new_rtx;
6470 }
6471 
6472 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6473 rtx
gen_hard_reg_clobber(machine_mode mode,unsigned int regno)6474 gen_hard_reg_clobber (machine_mode mode, unsigned int regno)
6475 {
6476   if (hard_reg_clobbers[mode][regno])
6477     return hard_reg_clobbers[mode][regno];
6478   else
6479     return (hard_reg_clobbers[mode][regno] =
6480 	    gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6481 }
6482 
6483 location_t prologue_location;
6484 location_t epilogue_location;
6485 
6486 /* Hold current location information and last location information, so the
6487    datastructures are built lazily only when some instructions in given
6488    place are needed.  */
6489 static location_t curr_location;
6490 
6491 /* Allocate insn location datastructure.  */
6492 void
insn_locations_init(void)6493 insn_locations_init (void)
6494 {
6495   prologue_location = epilogue_location = 0;
6496   curr_location = UNKNOWN_LOCATION;
6497 }
6498 
6499 /* At the end of emit stage, clear current location.  */
6500 void
insn_locations_finalize(void)6501 insn_locations_finalize (void)
6502 {
6503   epilogue_location = curr_location;
6504   curr_location = UNKNOWN_LOCATION;
6505 }
6506 
6507 /* Set current location.  */
6508 void
set_curr_insn_location(location_t location)6509 set_curr_insn_location (location_t location)
6510 {
6511   curr_location = location;
6512 }
6513 
6514 /* Get current location.  */
6515 location_t
curr_insn_location(void)6516 curr_insn_location (void)
6517 {
6518   return curr_location;
6519 }
6520 
6521 /* Set the location of the insn chain starting at INSN to LOC.  */
6522 void
set_insn_locations(rtx_insn * insn,location_t loc)6523 set_insn_locations (rtx_insn *insn, location_t loc)
6524 {
6525   while (insn)
6526     {
6527       if (INSN_P (insn))
6528 	INSN_LOCATION (insn) = loc;
6529       insn = NEXT_INSN (insn);
6530     }
6531 }
6532 
6533 /* Return lexical scope block insn belongs to.  */
6534 tree
insn_scope(const rtx_insn * insn)6535 insn_scope (const rtx_insn *insn)
6536 {
6537   return LOCATION_BLOCK (INSN_LOCATION (insn));
6538 }
6539 
6540 /* Return line number of the statement that produced this insn.  */
6541 int
insn_line(const rtx_insn * insn)6542 insn_line (const rtx_insn *insn)
6543 {
6544   return LOCATION_LINE (INSN_LOCATION (insn));
6545 }
6546 
6547 /* Return source file of the statement that produced this insn.  */
6548 const char *
insn_file(const rtx_insn * insn)6549 insn_file (const rtx_insn *insn)
6550 {
6551   return LOCATION_FILE (INSN_LOCATION (insn));
6552 }
6553 
6554 /* Return expanded location of the statement that produced this insn.  */
6555 expanded_location
insn_location(const rtx_insn * insn)6556 insn_location (const rtx_insn *insn)
6557 {
6558   return expand_location (INSN_LOCATION (insn));
6559 }
6560 
6561 /* Return true if memory model MODEL requires a pre-operation (release-style)
6562    barrier or a post-operation (acquire-style) barrier.  While not universal,
6563    this function matches behavior of several targets.  */
6564 
6565 bool
need_atomic_barrier_p(enum memmodel model,bool pre)6566 need_atomic_barrier_p (enum memmodel model, bool pre)
6567 {
6568   switch (model & MEMMODEL_BASE_MASK)
6569     {
6570     case MEMMODEL_RELAXED:
6571     case MEMMODEL_CONSUME:
6572       return false;
6573     case MEMMODEL_RELEASE:
6574       return pre;
6575     case MEMMODEL_ACQUIRE:
6576       return !pre;
6577     case MEMMODEL_ACQ_REL:
6578     case MEMMODEL_SEQ_CST:
6579       return true;
6580     default:
6581       gcc_unreachable ();
6582     }
6583 }
6584 
6585 /* Return a constant shift amount for shifting a value of mode MODE
6586    by VALUE bits.  */
6587 
6588 rtx
gen_int_shift_amount(machine_mode,poly_int64 value)6589 gen_int_shift_amount (machine_mode, poly_int64 value)
6590 {
6591   /* Use a 64-bit mode, to avoid any truncation.
6592 
6593      ??? Perhaps this should be automatically derived from the .md files
6594      instead, or perhaps have a target hook.  */
6595   scalar_int_mode shift_mode = (BITS_PER_UNIT == 8
6596 				? DImode
6597 				: int_mode_for_size (64, 0).require ());
6598   return gen_int_mode (value, shift_mode);
6599 }
6600 
6601 /* Initialize fields of rtl_data related to stack alignment.  */
6602 
6603 void
init_stack_alignment()6604 rtl_data::init_stack_alignment ()
6605 {
6606   stack_alignment_needed = STACK_BOUNDARY;
6607   max_used_stack_slot_alignment = STACK_BOUNDARY;
6608   stack_alignment_estimated = 0;
6609   preferred_stack_boundary = STACK_BOUNDARY;
6610 }
6611 
6612 
6613 #include "gt-emit-rtl.h"
6614