1 /* Implementation of the MINVAL intrinsic
2 Copyright (C) 2002-2022 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4
5 This file is part of the GNU Fortran runtime library (libgfortran).
6
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 3 of the License, or (at your option) any later version.
11
12 Libgfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
20
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
25
26 #include "libgfortran.h"
27
28
29 #if defined (HAVE_GFC_REAL_10) && defined (HAVE_GFC_REAL_10)
30
31
32 extern void minval_r10 (gfc_array_r10 * const restrict,
33 gfc_array_r10 * const restrict, const index_type * const restrict);
34 export_proto(minval_r10);
35
36 void
minval_r10(gfc_array_r10 * const restrict retarray,gfc_array_r10 * const restrict array,const index_type * const restrict pdim)37 minval_r10 (gfc_array_r10 * const restrict retarray,
38 gfc_array_r10 * const restrict array,
39 const index_type * const restrict pdim)
40 {
41 index_type count[GFC_MAX_DIMENSIONS];
42 index_type extent[GFC_MAX_DIMENSIONS];
43 index_type sstride[GFC_MAX_DIMENSIONS];
44 index_type dstride[GFC_MAX_DIMENSIONS];
45 const GFC_REAL_10 * restrict base;
46 GFC_REAL_10 * restrict dest;
47 index_type rank;
48 index_type n;
49 index_type len;
50 index_type delta;
51 index_type dim;
52 int continue_loop;
53
54 /* Make dim zero based to avoid confusion. */
55 rank = GFC_DESCRIPTOR_RANK (array) - 1;
56 dim = (*pdim) - 1;
57
58 if (unlikely (dim < 0 || dim > rank))
59 {
60 runtime_error ("Dim argument incorrect in MINVAL intrinsic: "
61 "is %ld, should be between 1 and %ld",
62 (long int) dim + 1, (long int) rank + 1);
63 }
64
65 len = GFC_DESCRIPTOR_EXTENT(array,dim);
66 if (len < 0)
67 len = 0;
68 delta = GFC_DESCRIPTOR_STRIDE(array,dim);
69
70 for (n = 0; n < dim; n++)
71 {
72 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
73 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
74
75 if (extent[n] < 0)
76 extent[n] = 0;
77 }
78 for (n = dim; n < rank; n++)
79 {
80 sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1);
81 extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
82
83 if (extent[n] < 0)
84 extent[n] = 0;
85 }
86
87 if (retarray->base_addr == NULL)
88 {
89 size_t alloc_size, str;
90
91 for (n = 0; n < rank; n++)
92 {
93 if (n == 0)
94 str = 1;
95 else
96 str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
97
98 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
99
100 }
101
102 retarray->offset = 0;
103 retarray->dtype.rank = rank;
104
105 alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
106
107 retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_REAL_10));
108 if (alloc_size == 0)
109 {
110 /* Make sure we have a zero-sized array. */
111 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
112 return;
113
114 }
115 }
116 else
117 {
118 if (rank != GFC_DESCRIPTOR_RANK (retarray))
119 runtime_error ("rank of return array incorrect in"
120 " MINVAL intrinsic: is %ld, should be %ld",
121 (long int) (GFC_DESCRIPTOR_RANK (retarray)),
122 (long int) rank);
123
124 if (unlikely (compile_options.bounds_check))
125 bounds_ifunction_return ((array_t *) retarray, extent,
126 "return value", "MINVAL");
127 }
128
129 for (n = 0; n < rank; n++)
130 {
131 count[n] = 0;
132 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
133 if (extent[n] <= 0)
134 return;
135 }
136
137 base = array->base_addr;
138 dest = retarray->base_addr;
139
140 continue_loop = 1;
141 while (continue_loop)
142 {
143 const GFC_REAL_10 * restrict src;
144 GFC_REAL_10 result;
145 src = base;
146 {
147
148 #if defined (GFC_REAL_10_INFINITY)
149 result = GFC_REAL_10_INFINITY;
150 #else
151 result = GFC_REAL_10_HUGE;
152 #endif
153 if (len <= 0)
154 *dest = GFC_REAL_10_HUGE;
155 else
156 {
157 #if ! defined HAVE_BACK_ARG
158 for (n = 0; n < len; n++, src += delta)
159 {
160 #endif
161
162 #if defined (GFC_REAL_10_QUIET_NAN)
163 if (*src <= result)
164 break;
165 }
166 if (unlikely (n >= len))
167 result = GFC_REAL_10_QUIET_NAN;
168 else for (; n < len; n++, src += delta)
169 {
170 #endif
171 if (*src < result)
172 result = *src;
173 }
174
175 *dest = result;
176 }
177 }
178 /* Advance to the next element. */
179 count[0]++;
180 base += sstride[0];
181 dest += dstride[0];
182 n = 0;
183 while (count[n] == extent[n])
184 {
185 /* When we get to the end of a dimension, reset it and increment
186 the next dimension. */
187 count[n] = 0;
188 /* We could precalculate these products, but this is a less
189 frequently used path so probably not worth it. */
190 base -= sstride[n] * extent[n];
191 dest -= dstride[n] * extent[n];
192 n++;
193 if (n >= rank)
194 {
195 /* Break out of the loop. */
196 continue_loop = 0;
197 break;
198 }
199 else
200 {
201 count[n]++;
202 base += sstride[n];
203 dest += dstride[n];
204 }
205 }
206 }
207 }
208
209
210 extern void mminval_r10 (gfc_array_r10 * const restrict,
211 gfc_array_r10 * const restrict, const index_type * const restrict,
212 gfc_array_l1 * const restrict);
213 export_proto(mminval_r10);
214
215 void
mminval_r10(gfc_array_r10 * const restrict retarray,gfc_array_r10 * const restrict array,const index_type * const restrict pdim,gfc_array_l1 * const restrict mask)216 mminval_r10 (gfc_array_r10 * const restrict retarray,
217 gfc_array_r10 * const restrict array,
218 const index_type * const restrict pdim,
219 gfc_array_l1 * const restrict mask)
220 {
221 index_type count[GFC_MAX_DIMENSIONS];
222 index_type extent[GFC_MAX_DIMENSIONS];
223 index_type sstride[GFC_MAX_DIMENSIONS];
224 index_type dstride[GFC_MAX_DIMENSIONS];
225 index_type mstride[GFC_MAX_DIMENSIONS];
226 GFC_REAL_10 * restrict dest;
227 const GFC_REAL_10 * restrict base;
228 const GFC_LOGICAL_1 * restrict mbase;
229 index_type rank;
230 index_type dim;
231 index_type n;
232 index_type len;
233 index_type delta;
234 index_type mdelta;
235 int mask_kind;
236
237 if (mask == NULL)
238 {
239 #ifdef HAVE_BACK_ARG
240 minval_r10 (retarray, array, pdim, back);
241 #else
242 minval_r10 (retarray, array, pdim);
243 #endif
244 return;
245 }
246
247 dim = (*pdim) - 1;
248 rank = GFC_DESCRIPTOR_RANK (array) - 1;
249
250
251 if (unlikely (dim < 0 || dim > rank))
252 {
253 runtime_error ("Dim argument incorrect in MINVAL intrinsic: "
254 "is %ld, should be between 1 and %ld",
255 (long int) dim + 1, (long int) rank + 1);
256 }
257
258 len = GFC_DESCRIPTOR_EXTENT(array,dim);
259 if (len <= 0)
260 return;
261
262 mbase = mask->base_addr;
263
264 mask_kind = GFC_DESCRIPTOR_SIZE (mask);
265
266 if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
267 #ifdef HAVE_GFC_LOGICAL_16
268 || mask_kind == 16
269 #endif
270 )
271 mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
272 else
273 runtime_error ("Funny sized logical array");
274
275 delta = GFC_DESCRIPTOR_STRIDE(array,dim);
276 mdelta = GFC_DESCRIPTOR_STRIDE_BYTES(mask,dim);
277
278 for (n = 0; n < dim; n++)
279 {
280 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
281 mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
282 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
283
284 if (extent[n] < 0)
285 extent[n] = 0;
286
287 }
288 for (n = dim; n < rank; n++)
289 {
290 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1);
291 mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n + 1);
292 extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
293
294 if (extent[n] < 0)
295 extent[n] = 0;
296 }
297
298 if (retarray->base_addr == NULL)
299 {
300 size_t alloc_size, str;
301
302 for (n = 0; n < rank; n++)
303 {
304 if (n == 0)
305 str = 1;
306 else
307 str= GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
308
309 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
310
311 }
312
313 alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
314
315 retarray->offset = 0;
316 retarray->dtype.rank = rank;
317
318 if (alloc_size == 0)
319 {
320 /* Make sure we have a zero-sized array. */
321 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
322 return;
323 }
324 else
325 retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_REAL_10));
326
327 }
328 else
329 {
330 if (rank != GFC_DESCRIPTOR_RANK (retarray))
331 runtime_error ("rank of return array incorrect in MINVAL intrinsic");
332
333 if (unlikely (compile_options.bounds_check))
334 {
335 bounds_ifunction_return ((array_t *) retarray, extent,
336 "return value", "MINVAL");
337 bounds_equal_extents ((array_t *) mask, (array_t *) array,
338 "MASK argument", "MINVAL");
339 }
340 }
341
342 for (n = 0; n < rank; n++)
343 {
344 count[n] = 0;
345 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
346 if (extent[n] <= 0)
347 return;
348 }
349
350 dest = retarray->base_addr;
351 base = array->base_addr;
352
353 while (base)
354 {
355 const GFC_REAL_10 * restrict src;
356 const GFC_LOGICAL_1 * restrict msrc;
357 GFC_REAL_10 result;
358 src = base;
359 msrc = mbase;
360 {
361
362 #if defined (GFC_REAL_10_INFINITY)
363 result = GFC_REAL_10_INFINITY;
364 #else
365 result = GFC_REAL_10_HUGE;
366 #endif
367 #if defined (GFC_REAL_10_QUIET_NAN)
368 int non_empty_p = 0;
369 #endif
370 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
371 {
372
373 #if defined (GFC_REAL_10_INFINITY) || defined (GFC_REAL_10_QUIET_NAN)
374 if (*msrc)
375 {
376 #if defined (GFC_REAL_10_QUIET_NAN)
377 non_empty_p = 1;
378 if (*src <= result)
379 #endif
380 break;
381 }
382 }
383 if (unlikely (n >= len))
384 {
385 #if defined (GFC_REAL_10_QUIET_NAN)
386 result = non_empty_p ? GFC_REAL_10_QUIET_NAN : GFC_REAL_10_HUGE;
387 #else
388 result = GFC_REAL_10_HUGE;
389 #endif
390 }
391 else for (; n < len; n++, src += delta, msrc += mdelta)
392 {
393 #endif
394 if (*msrc && *src < result)
395 result = *src;
396 }
397 *dest = result;
398 }
399 /* Advance to the next element. */
400 count[0]++;
401 base += sstride[0];
402 mbase += mstride[0];
403 dest += dstride[0];
404 n = 0;
405 while (count[n] == extent[n])
406 {
407 /* When we get to the end of a dimension, reset it and increment
408 the next dimension. */
409 count[n] = 0;
410 /* We could precalculate these products, but this is a less
411 frequently used path so probably not worth it. */
412 base -= sstride[n] * extent[n];
413 mbase -= mstride[n] * extent[n];
414 dest -= dstride[n] * extent[n];
415 n++;
416 if (n >= rank)
417 {
418 /* Break out of the loop. */
419 base = NULL;
420 break;
421 }
422 else
423 {
424 count[n]++;
425 base += sstride[n];
426 mbase += mstride[n];
427 dest += dstride[n];
428 }
429 }
430 }
431 }
432
433
434 extern void sminval_r10 (gfc_array_r10 * const restrict,
435 gfc_array_r10 * const restrict, const index_type * const restrict,
436 GFC_LOGICAL_4 *);
437 export_proto(sminval_r10);
438
439 void
sminval_r10(gfc_array_r10 * const restrict retarray,gfc_array_r10 * const restrict array,const index_type * const restrict pdim,GFC_LOGICAL_4 * mask)440 sminval_r10 (gfc_array_r10 * const restrict retarray,
441 gfc_array_r10 * const restrict array,
442 const index_type * const restrict pdim,
443 GFC_LOGICAL_4 * mask)
444 {
445 index_type count[GFC_MAX_DIMENSIONS];
446 index_type extent[GFC_MAX_DIMENSIONS];
447 index_type dstride[GFC_MAX_DIMENSIONS];
448 GFC_REAL_10 * restrict dest;
449 index_type rank;
450 index_type n;
451 index_type dim;
452
453
454 if (mask == NULL || *mask)
455 {
456 #ifdef HAVE_BACK_ARG
457 minval_r10 (retarray, array, pdim, back);
458 #else
459 minval_r10 (retarray, array, pdim);
460 #endif
461 return;
462 }
463 /* Make dim zero based to avoid confusion. */
464 dim = (*pdim) - 1;
465 rank = GFC_DESCRIPTOR_RANK (array) - 1;
466
467 if (unlikely (dim < 0 || dim > rank))
468 {
469 runtime_error ("Dim argument incorrect in MINVAL intrinsic: "
470 "is %ld, should be between 1 and %ld",
471 (long int) dim + 1, (long int) rank + 1);
472 }
473
474 for (n = 0; n < dim; n++)
475 {
476 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
477
478 if (extent[n] <= 0)
479 extent[n] = 0;
480 }
481
482 for (n = dim; n < rank; n++)
483 {
484 extent[n] =
485 GFC_DESCRIPTOR_EXTENT(array,n + 1);
486
487 if (extent[n] <= 0)
488 extent[n] = 0;
489 }
490
491 if (retarray->base_addr == NULL)
492 {
493 size_t alloc_size, str;
494
495 for (n = 0; n < rank; n++)
496 {
497 if (n == 0)
498 str = 1;
499 else
500 str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
501
502 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
503
504 }
505
506 retarray->offset = 0;
507 retarray->dtype.rank = rank;
508
509 alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
510
511 if (alloc_size == 0)
512 {
513 /* Make sure we have a zero-sized array. */
514 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
515 return;
516 }
517 else
518 retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_REAL_10));
519 }
520 else
521 {
522 if (rank != GFC_DESCRIPTOR_RANK (retarray))
523 runtime_error ("rank of return array incorrect in"
524 " MINVAL intrinsic: is %ld, should be %ld",
525 (long int) (GFC_DESCRIPTOR_RANK (retarray)),
526 (long int) rank);
527
528 if (unlikely (compile_options.bounds_check))
529 {
530 for (n=0; n < rank; n++)
531 {
532 index_type ret_extent;
533
534 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n);
535 if (extent[n] != ret_extent)
536 runtime_error ("Incorrect extent in return value of"
537 " MINVAL intrinsic in dimension %ld:"
538 " is %ld, should be %ld", (long int) n + 1,
539 (long int) ret_extent, (long int) extent[n]);
540 }
541 }
542 }
543
544 for (n = 0; n < rank; n++)
545 {
546 count[n] = 0;
547 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
548 }
549
550 dest = retarray->base_addr;
551
552 while(1)
553 {
554 *dest = GFC_REAL_10_HUGE;
555 count[0]++;
556 dest += dstride[0];
557 n = 0;
558 while (count[n] == extent[n])
559 {
560 /* When we get to the end of a dimension, reset it and increment
561 the next dimension. */
562 count[n] = 0;
563 /* We could precalculate these products, but this is a less
564 frequently used path so probably not worth it. */
565 dest -= dstride[n] * extent[n];
566 n++;
567 if (n >= rank)
568 return;
569 else
570 {
571 count[n]++;
572 dest += dstride[n];
573 }
574 }
575 }
576 }
577
578 #endif
579